SIEMENS

SIMOREG DC-MASTER Control Module

6RA70 Series

Control Module with microprocessor for Variable-Speed DC Drives

These Operating Instructions are available in the following languages:

Language	German	French	Spanish	Italian
Order No.	6RX1700-0BD00	6RX1700-0BD77	6RX1700-0BD78	6RX1700-0BD72

Control Module software version:

As these Operating Instructions went to print, SIMOREG DC-MASTER Control Modules were being delivered from the factory with software version 3.1 installed.

These Operating Instructions also apply to other software versions.
Earlier software versions: Some parameters described in this document might not be stored in the software
(i.e. the corresponding functionality is not available on the converter) or some parameters will have a restricted setting range. If this is the case, however, appropriate reference to this status will be made in the Parameter List.

Later software versions: Additional parameters might be available on the SIMOREG DC-MASTER Control Module (i.e. extra functions might be available which are not described in these Operating Instructions) or some parameters might have an extended setting range. In this case, leave the relevant parameters at their factory setting, or do not set any parameter values which are not described in these Instructions !

The software version of the SIMOREG DC-MASTER Control Module can be read in parameters r060 and r065.

The latest software version is available at the following Internet site:
http://www4.ad.siemens.de/view/cs/en/8479576

CAUTION
Before updating your software, find out the product state of your SIMOREG device. You will find this on the rating plate (field on the bottom left-hand side "Prod. State"). Prod. State = A1,A2 (devices with the CUD1 electronics board, version C98043-A7001-L1-xx): It is only permissible to load software versions 1.xx and 2.xx. Prod. State = A3 (devices with the CUD1 electronics board, version C98043-A7001-L2-xx): It is only permissible to load software versions 3.xx.

The reproduction, transmission or use of this document or contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

We have checked that the contents of this publication agree with the hardware and software described herein. Nonetheless, differences might exist and therefore we cannot guarantee that they are completely identical. The information given in this publication is reviewed at regular intervals and any corrections that might be necessary are made in the subsequent printings. Suggestions for improvement are welcome at all times.

0 Contents

Page
1 Safety information
2 Ordering Information
$2.1 \quad$ Converter order number 2-1
$2.2 \quad$ Rating plate 2-1
2.3 Packaging label 2-1
2.4 Ordering information for options with order codes 2-2
2.5 Ordering information for cable sets 2-4
2.6 Reference to new products 2-6
3 Description
3.1 Applications 3-1
3.2 Design 3-1
3.3 Mode of operation 3-2
3.4 Technical data 3-2
3.5 Applicable standards 3-3
3.6 Certification 3-3
3.7 Abbreviations 3-3
4 Shipment, unpacking
5 Installation
5.1 Dimensions drawings 5-2
5.1.1 Converter components assembled (state as delivered) 5-2
5.1.2 Converter components arranged side by side 5-3
5.2 Mounting/removal and division of modules 5-4
5.2.1 Removal of module C98043-A7043 5-4
5.2.2 Dividing module C98043-A7043 5-5
5.2.3 Dividing module C98043-A7044 5-6
5.2.4 Mounting module C98043-A7043 5-7
5.2.5 External assembly of module parts 5-8
5.2.5.1 Terminal strip 5-8
5.2.5.2 Firing transfer plates 5-8
5.2.5.3 Fuse monitoring 5-8
5.2.5.4 Voltage acquisition 5-8
5.3 Mounting options 5-9
5.3.1 Terminal expansion module CUD2 5-9
Page
5.3.2 Optional supplementary boards 5-10
5.3.2.1 Local bus adapter (LBA) for mounting optional supplementary boards 5-10
5.3.2.2 Mounting of optional supplementary boards 5-10
6 Connections
6.1 Installation instructions for proper EMC installation of drives 6-2
6.1.1 Fundamental principles of EMC 6-2
6.1.1.1 What is EMC 6-2
6.1.1.2 Noise radiation and noise immunity 6-2
6.1.1.3 Limit values 6-2
6.1.1.4 SIMOREG converters in industrial applications 6-3
6.1.1.5 Non-grounded supply systems 6-3
6.1.1.6 EMC planning 6-3
6.1.2 Proper EMC installation of drives (installation instructions) 6-4
6.1.2.1 General 6-4
6.1.2.2 Rules for proper EMC installation 6-4
6.1.2.3 Arrangement of components for converters 6-10
6.1.3 Information on line-side harmonics generated by converters in a fully-controlled three-phase bridge circuit configuration B6C and (B6)A(B6)C 6-11
6.2 Block diagrams with recommended connection 6-13
6.3 Connection of the external power section 6-16
6.4 Dismantle capability 6-21
6.5 Measuring the armature current 6-31
6.5.1 General information 6-31
6.5.2 Current measurement with two current transformers on the network side 6-32
6.5.3 Current measurement via terminal block X3 with external measuring circuit 6-33
6.5.3.1 External current transformer in V connection with +1 V with rated armature direct current 6-33
6.5.3.2 External current transformer in V connection with +10V with rated armature direct current 6-34
6.5.3.3 Differential input for +10 V at rated armature direct current 6-34
6.5.4 External current measurement via X21A 6-34
6.5.5 Notes on the difference input, control range limits, and grounding 6-35
6.6 Connecting the firing transformer 6-36
6.6.1 General information 6-36
6.6.1.1 Normal use (individual) 6-36
6.6.1.2 Parallel connection of firing pulses 6-36
6.6.1.3 External amplification of firing pulses 6-36
6.7 Connecting the voltage measurement 6-37
6.8 Connecting the fuse monitors 6-38
Page
6.9 Parallel connection 6-39
6.9.1 Parallel connection of devices 6-39
6.9.1.1 Connection scheme for parallel connection of power sections, each with its own control electronics 6-39
6.9.1.2 Parameterization of SIMOREG converters for parallel connection 6-41
6.9.1.3 Redundancy mode of the field supply 6-44
6.9.2 Parallel connection of power sections 6-45
6.9.2.1 Current distribution / symmetry 6-45
6.9.2.2 Comment about voltage measurement / synchronization 6-45
6.9.2.3 Comment about fuse monitoring 6-45
6.10 Field supply 6-46
6.10.1 Circuit diagram of the power section 6-46
6.10.2 Voltage measurement of the field power section 6-46
6.10.3 Conversion to field extra-low voltage 6-47
6.11 Fuses and commutating reactors 6-47
6.11.1 Notes on commutating reactors 6-47
6.11.2 Fuses for the field circuit 6-47
6.11.3 Fuses in the power interface 6-48
6.12 Arrangement of printed circuit boards 6-48
6.13 Arrangement of customer connections (terminals, connectors, Faston tabs) 6-49
6.14 Terminal assignment (terminals, Faston tabs, ribbon cables) 6-55
$7 \quad$ Start-up
7.1 General safety information 7-1
7.2 Operator control panels 7-3
7.2.1 Simple operator control panel (PMU) 7-3
7.2.2 User-friendly operator control panel (OP1S) 7-4
7.3 Parameterization procedure 7-6
7.3.1 Parameter types 7-6
7.3.2 Parameterization at the simple operator control panel 7-6
7.4 Reset to default value and adjust offset 7-8
7.5 Start-up procedure 7-9
7.6 Manual optimization (if necessary) 7-18
7.6.1 Manual setting of armature resistance $R_{A}(P 110)$ and armature inductance L_{A} (P111) 7-18
7.6.2 Manual setting of field resistance $R_{F}(P 112)$ 7-19
7.7 Starting up optional supplementary boards 7-20
7.7.1 Procedure for starting up technology boards (T100, T300, T400) 7-20
7.7.2 Sequence of operations for starting up PROFIBUS boards (CBP2) 7-22
7.7.2.1 Mechanisms for processing parameters via the PROFIBUS 7-24
7.7.2.2 Diagnostic tools 7-25
Page
7.7.3 Sequence of operations for starting up CAN bus boards (CBC) 7-29
7.7.3.1 Description of CBC with CAN Layer 2 7-30
7.7.3.2 Description of CBC with CANopen 7-34
7.7.3.2.1 Introduction to CANopen 7-34
7.7.3.2.2 Functionality of CBC with CANopen 7-35
7.7.3.2.3 Requirements for operating the CBC with CANopen 7-36
7.7.3.3 Diagnostic tools 7-36
7.7.4 Procedure for starting up the SIMOLINK board (SLB) 7-40
7.7.5 Procedure for starting up expansion boards (EB1 and EB2) 7-44
7.7.6 Procedure for starting up the pulse encoder board (SBP) 7-45
7.7.7 Sequence of operations for starting up DeviceNet boards (CBD) 7-46
7.7.7.1 Diagnostic tools 7-52
7.7.8 Sequence of operations for starting up the serial I/O board (SCB1) 7-54
7.7.8.1 Diagnostic tools 7-56
7.7.9 Structure of request/response telegrams 7-57
7.7.10 Transmission of double-word connectors for technology and communication modules 7-60
8 Function diagrams
$9 \quad$ Function descriptions
9.1 General explanations of terms and functionality 9-1
9.2 Computation cycles, time dela 9-6
9.3 Switch-on, shutdown, enabling 9-7
9.3.1 OFF2 (voltage disconnection) - control word 1, bit 1 9-7
9.3.2 OFF3 (Fast stop) - control word 1, bit 2 9-7
9.3.3 Switch-on / shutdown (ON / OFF) terminal 37 - control word 1 , bit 0 9-8
9.3.4 Operating enable (enable) terminal 38 - control word 1, bit 3 9-11
9.4 Ramp-function generator 9-11
9.4.1 Definitions 9-12
9.4.2 Operating principle of ramp-function generator 9-12
9.4.3 Control signals for ramp-function generator 9-13
9.4.4 Ramp-function generator settings 1,2 and 3 9-13
9.4.5 Ramp-up integrator 9-14
9.4.6 Ramp-function generator tracking 9-14
9.4.7 Limitation after ramp-function generator 9-15
9.4.8 Velocity signal dv/dt (K0191) 9-15
9.5 Inching 9-15
9.6 Crawling 9-16
$9.7 \quad$ Fixed setpoint 9-16
9.8 Safety shutdown (E-Stop) 9-17
Page
9.9 Activation command for holding or operating brake (low active) 9-18
9.10 Switch on auxiliaries 9-21
9.11 Switch over parameter sets 9-21
9.12 Speed controller 9-22
9.13 Serial interfaces 9-23
9.13.1 Serial interfaces with USS ${ }^{\circledR}$ protocol 9-24
9.13.2 Serial interfaces with peer-to-peer protocol 9-27
9.14 Thermal overload protection of DC motor (12 t monitoring of motor) 9-31
9.15 Speed-dependent current limitation 9-34
9.15.1 Setting the speed-dependent current limitation for motors with commutation transition 9-35
9.15.2 Setting of speed-dependent current limitation for motors without commutation transition 9-36
9.16 Automatic restart 9-37
9.17 Field reversal 9-37
9.17.1 Direction of rotation reversal using field reversal 9-38
9.17.2 Braking with field reversal 9-39
9.18 Status description of some bits of status word ZSW1 9-41
$9.19 \quad$ 12-pulse series connection 9-42
10 Faults / Alarms
10.1 Fault messages 10-2
10.1.1 General information about faults 10-2
10.1.2 List of fault messages 10-2
10.2 Alarm messages 10-27
11 Parameter list
12 List of connectors and binectors
12.1 Connector list 12-1
12.2 Binector list 12-27
13 Maintenance
13.1 Procedure for updating software 13-1
13.2 Replacement of components 13-3
13.2.1 Replacement of PCBs 13-3
13.2.2 Replacement of thyristor and diode modules (field) 13-3
14 Servicing
14.1 Technical Support 14-1
14.1.1 Time zone Europe and Africa 14-1
14.1.2 Time zone America 14-1
14.1.3 Time zone Asia / Australia 14-1
14.2 Spare parts 14-2
14.3 Repairs 14-2
14.4 On-site servicing 14-2
15 DriveMonitor
15.1 Scope of delivery 15-1
15.2 Installing the software 15-1
15.3 Connecting the SIMOREG to the PC 15-1
15.4 Setting up an online link to the SIMOREG 15-2
15.5 Further information 15-2
16 Environmental compatibility
17 Applications
18 Appendix
18.1 Additional documentation 18-1
Sheet for customer feedback 18-3

1 Safety information

WARNING

The manufacturer can only provide a warranty for correct functioning of the SIMOREG CM converter and accept liability for any damage if the device is installed and started up by qualified personnel and the instructions in this manual are correctly observed. The converters are operated at high voltages.

Hazardous voltages and rotating parts (fans) are present in this electrical equipment during operation. Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.
Only qualified personnel should work on or around the equipment after first becoming thoroughly familiar with all warning and safety notices and maintenance procedures contained herein. The successful and safe operation of this equipment is dependent on proper handling, installation, operation and maintenance.

Definitions:

- QUALIFIED PERSONNEL

For the purpose of this Instruction Manual and product labels, a "Qualified person" is someone who is familiar with the installation, construction and operation of the equipment and the hazards involved. He or she must have the following qualifications:

1. Trained and authorized to energize, de-energize, clear, ground and tag circuits and equipment in accordance with established safety procedures.
2. Trained in the proper care and use of protective equipment in accordance with established safety procedures.
3. Trained in rendering first aid.

- 1 DANGER

indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

- 1 WARNING

indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

- \triangle CAUTION

used with the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in minor or moderata injury.

- CAUTION

used without the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in property demage.

- NOTICE

NOTICE used without the safety alert symbol indicates a potentially situation which, if not avoided, may result in an undesirable result or state.

NOTE

These operating instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in connection with installation, operation or maintenance.

Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to the local Siemens Sales Office.

The contents of these operating instructions shall not become part or modify any prior or existing agreement, commitment or relationship. The Sales Contract contains the entire obligations of Siemens. The warranty contained in the contract between the parties is the sole warranty of Siemens. Any statements contained herein do not create new warranties or modify the existing warranty.

DANGER

Converters contain hazardous electrical voltages, Death, severe bodily injury or significant material damage can occur if the safety measures are not followed.

1. Only qualified personnel, who are knowledgeable about the converters and the provided information, can install, start up, operate, troubleshoot or repair the converters.
2. The converters must be installed in accordance with all relevant safety regulations (e.g. DIN VDE) as well as all other national or local regulations. Operational safety and reliability must be ensured by correct grounding, cable dimensioning and appropriate short-circuit protection.
3. All panels and doors must be kept closed during normal operation.
4. Before carrying out visual checks and maintenance work, ensure that the AC power supply is disconnected and locked out. Before the AC supply is disconnected, both converters and motors have hazardous voltage levels. Even when the converter contactor is open, hazardous voltages are still present.
5. When making measurements with the power supply switched on, electrical connections must not be touched under any circumstances. Remove all jewellery from wrists and fingers. Ensure that the test equipment is in good conditions and operationally safe.
6. When working on units which are switched on, stand on an insulating surface, i.e. ensure that you are not grounded.
7. Carefully follow the relevant instructions and observe all danger, warning and cautionary instructions.
8. This does not represent a full listing of all the measures necessary for safe operation of the equipment. If you require other information or if certain problems occur which are not handled in enough detail in the information provided in the Instruction Manual, please contact your local Siemens office.

CAUTION

Electrostatically sensitive devices

The converter contains electrostatically sensitive devices. These can easily be destroyed if they are not handled correctly. If, however, it is absolutely essential for you to work on electronic modules, please pay careful attention to the following instructions:

- Electronic modules (PCBs) should not be touched unless work has to be carried out on them.
- Before touching a PCB, the person carrying out the work must himself be electrostatically discharged. The simplest way of doing this is to touch an electrically conductive earthed object, e.g. socket outlet earth contact.
- PCBs must not be allowed to come into contact with electrically insulating materials - plastic foil, insulating table tops or clothing made of synthetic fibres -
- PCBs may only be set down or stored on electrically conducting surfaces.
- When carrying out soldering jobs on PCBs, make sure that the soldering tip has been earthed.
- PCBs and electronic components should generally be packed in electrically conducting containers (such as metallized-plastic boxes or metal cans) before being stored or shipped.
- If the use of non-conducting packing containers cannot be avoided, PCBs must be wrapped in a conducting material before being put in them. Examples of such materials include electrically conducting foam rubber or household aluminium foil.

For easy reference, the protective measures necessary when dealing with sensitive electronic components are illustrated in the sketches below.

$\mathrm{a}=$ Conductive flooring	$\mathrm{d}=$ Anti-static overall
$\mathrm{b}=$ Anti-static table	$\mathrm{e}=$ Anti-static chain
$c=$ Anti-static footwear	$f=$ Earthing connections of cabinets

Seated workstation
Standing workstation
Standing/seated workstation

WARNING

Hazardous voltages and rotating parts (fans) are present in this electrical equipment during operation.
Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.
Only qualified personnel should work on or around the equipment after first becoming thoroughly familiar with all warning and safety notices and maintenance procedures contained herein.

The successful and safe operation of this equipment is dependent on proper handling, installation, operation and maintenance.

2 Ordering Information

2.1 Converter order number

Without option: 6RA7000-0MV62-0
With options: 6RA7000-0MV62-0-Z

2.2 Rating plate

1) Bar code for order number (MLFB)
2) $A-Z$ is affixed after the MLFB for options
3) Code for options (order-specific)
4) Bar code, serial number (orderspecific)
5) Product version

2.3 Packaging label

CONTROL MODULE	SIEMENS	1) A -Z is affixed to the MLFB for options, followed by the code for the relevant option (order-specific)																																											
6RA7000 - 0MV62-0 \|																																												C	
1P 6RA7000-0MV62-0 ...,,...,... 1)																																												
\|																																			s Q6	A									
\|																																			QTY 1										
Q .	$\begin{array}{cc} \text { SW-STAND } & \text { E-STAND } \\ \text { (Version) } & \text { (Version) } \end{array}$																																												
Made in Austria																																													

2.4 Ordering information for options with order codes

Order number of SIMOREG CM converter with order code Z

Order codes (several added order codes) and/or

Plain text, where necessary

Options	Codes	Order No..
Technology software in the basic converter ("Free function blocks") (for orders at a later date, please quote factory serial number of converter)	S00	6RX1700-0AS00
Module terminal expansion (CUD2)	K00	6RX1700-0AK00
DriveMonitor PC - PMU (RS232) connecting cable, 3m		9AK1012-1AA00
User-friendly operator control panel (OP1S) AOP1 adapter for mounting OP1A in cubicle door, including 5 m connecting cable PMU-OP1S connecting cable, 3 m PMU-OP1S connecting cable, 5 m		6SE7090-0XX84-2FK0 6SX7010-0AA00 6SX7010-0AB03 6SX7010-0AB05
Electronics power supply 24 V DC	L05	6RY1703-0CM24
LBA Local bus adapter for the electronics box LBA is always needed to install supplementary boards (see Section 5.3.2)	K11	6SE7090-0XX84-4HA0
ADB Adapter board ADB is always needed to install CBC, CBP, EB1, EB2, SBP and SLB boards	K01, K02 5)	6SE7090-0XX84-0KA0
SBP Pulse encoder evaluation board 1) 2) 3) (miniature-format board; ADB required)	$\begin{array}{\|ll\|} \hline \text { C14, C15 } \\ \text { C16, C17 } \end{array}$	6SX7010-0FA00
EB1 Terminal expansion board 3) (miniature-format board; ADB required)	$\begin{array}{\|l\|} \hline \text { G64, G65 } \\ \text { G66, G67 } \end{array}$	6SE7090-0XX84-0KB0
EB2 Terminal expansion board 3) (miniature-format board; ADB required)	$\begin{array}{ll} \text { G74, G75 } \\ \text { G76, G77 } \end{array}$	6SE7090-0XX84-0KC0
$\begin{array}{ll}\text { SLB } & \begin{array}{l}\text { SIMOLINK board 1) 3) } \\ \text { (miniature-format board; ADB required) }\end{array}\end{array}$	$\begin{aligned} & \text { G44, G45 } \\ & \text { G46, G47 } \end{aligned}$	6SX7010-0FJ00
CBP2 Communications board with interface for SINEC- L2-DP, (PROFIBUS) 1) 3) (miniature-format board; ADB required)	$\begin{array}{\|ll} \hline \text { G94, G95 } \\ \text { G96, G97 } \end{array}$	6SX7010-0FF05
CBC Communications board with interface for CAN protocol 1) 3) (miniature-format board; ADB required)	$\begin{array}{ll} \hline \text { G24, G25 } \\ \text { G26, G27 } \end{array}$	6SX7010-0FG00
CBD Communications board with interface for DeviceNet protocol 1)3) (miniature-format board; ADB required)	$\begin{array}{\|ll} \hline \text { G54, G55 } \\ \text { G56, G57 } \end{array}$	6SX7010-0FK00
SCB1 Serial Communication Board 1 (Master for SCI1 and SCl 2 with FO link) 3) 4)		6SE7090-0XX84-0BC0
SCl1 Serial Communication Interface 1 (terminal expansion with FO link to SCB1) for attachment to DIN EN 50022 rail 4)		6SE7090-0XX84-3EA0

SCI2 Serial Communication Interface 2 (terminal expansion with FO link to SCB1) for attachment to DIN EN 50022 rail 4)		6SE7090-0XX84-3EF0
T100 module incl. hardware operating instructions without software module) ${ }^{3)}$ Hardware operating instructions for T100 MS100 "Universal Drive" software module for T100 (EPROM) without manual Manual for MS100 "Universal Drive" software module German English French Spanish Italian		6SE7090-0XX87-0BB0 6SE7080-0CX87-0BB0 6SE7098-0XX84-0BB0 6SE7080-0CX84-0BB1 6SE7087-6CX84-0BB1 6SE7087-7CX84-0BB1 6SE7087-8CX84-0BB1 6SE7087-2CX84-0BB1
T300 technology board with 2 connecting leads, SC58 and SC60, terminal block SE300 and hardware operating instructions ${ }^{3)}$		6SE7090-0XX84-0AH0
T400 technology board (incl. short description) 3) T400 hardware and configuring manual		6DD1606-0AD0 6DD1903-0EA0
Operating instructions for SIMOREG DC-MASTER Control Module Operating instructions German Operating instructions Italian Operating instructions English Operating instructions French Operating instructions Spanish Operating Instructions and DriveMonitor in all the above languages available on CD-ROM	$\begin{array}{\|l\|} \hline \text { D72 } \\ \text { D76 } \\ \text { D77 } \\ \text { D78 } \\ \text { D64 } \end{array}$	6RX1700-0BD00 6RX1700-0BD72 6RX1700-0BD76 6RX1700-0BD77 6RX1700-0BD78 6RX1700-0AD64

1) These boards can be ordered under two different numbers, i.e.

- under the order number of the board without accessories (such as connectors and Short Guide)
- as a retrofit kit: Board with connectors and Short Guide

Board	Order number of board (w/o accessories)	Order number of retrofit kit
ADB	6SE7090-0XX84-0KA0	6SE7010-0KA00
SBP	6SE7090-0XX84-0FA0	6SE7010-0FA00
EB1	6SE7090-0XX84-0KB0	6SE7010-0KB00
EB2	6SE7090-0XX84-0KC0	6SE7010-0KC00
SLB	6SE7090-0XX84-0FJ0	6SE7010-0FJ00
CBP2	6SE7090-0XX84-0FF5	6SE7010-0FF05
CBC	6SE7090-0XX84-0FG0	6SE7010-0FG00
CBD	6SE7090-0XX84-0FK0	6SE7010-0FK00

The retrofit kit must be ordered to install boards in the SMOREG converter so that the correct connectors for system cabling and the Short Guide are also available.

The LBA local bus adapter and ADB adapter board must be ordered as additional components for installing supplementary boards in the SIMOREG converter. These adapters are available under separate order numbers.
2) A pulse encoder evaluation circuit is a standard component of the basic SIMOREG converter. The SBP need therefore be ordered only in configurations requiring evaluation of a second pulse encoder.
3) An LBA local bus adapter is required to install this board in a SIMOREG converter. The adapter is available under a separate order number.
4) Supplied packed separately, including 10 m fiber-optic cable.
5) The last figure in the order code identifies the module location or slot of the electronic box (see Section 5.3.2):
1... Board location 2

2 . . . Board location 3
4... Slot D

5 . . . Slot E
6 . . . Slot F
7 . . Slot G

2.5 Ordering information for cable sets

The SIMOREG DC-MASTER control module is supplied with a front and back trough mounted one above the other. The ribbon cables required for this type of assembly are already fitted.

The following cable sets for connecting components (printed circuit boards or board components) for other installation methods (see Section 6) are available on request.

Order No.	Product Description	Contents	For Connecting
6RY1707-0CM00	Assembly kit	Screws, studs and snap-on parts for external assembly of board components	
6RY1707-0CM01	Pre-assembled jumpering kit, ribbon cables: For connecting the two tanks when they are mounted separately	2×26-pin shielded ribbon cables (L=3m) 2×10-pin shielded ribbon cables (L=3m) 1x 20-pin shielded ribbon cable (L=3m)	X21A, X22A on PCB -A7041/A7042to X21A, X22A on PCB -A7043XS20, XS21 on PCB -A7041/A7042to XS20, XS21 on PCB -A7044X102 on PCB -A7041/A7042- to X102 on PCB -A7044-
6RY1707-0CM02	Pre-assembled jumpering kit, ribbon cables: For connecting the two tanks when they are mounted separately	2×26-pin shielded ribbon cables (L=10m) 2×10-pin shielded ribbon cables (L=10m) 1x 20-pin shielded ribbon cable ($\mathrm{L}=10 \mathrm{~m}$)	X21A, X22A on PCB -A7041/A7042to X21A, X22A on PCB -A7043- XS20, XS21 on PCB -A7041/A7042to XS20, XS21 on PCB -A7044- X102 on PCB -A7041/A7042- to X102 on PCB -A7044-
6RY1707-0CM03	Pre-assembled jumpering kit for current transformers	2x 2-pin twisted cables ($\mathrm{L}=2 \mathrm{~m}$)	X3 on PCB -A7041/A7042- to the current transformers
6RY1707-0CM04	Pre-assembled jumpering kit for current transformers	2x 2-pin shielded cables (L=10m)	X3 on PCB -A7041/A7042- to the current transformers
6RY1707-0CM05	Pre-assembled jumpering kit for heat sink temperature sensing	1x 2-pin shielded cable (L=10m)	X6 and X7 on PCB -A7041/A7042to temperature sensor on heat sink
6RY1707-0CM06	Pre-assembled jumpering kit for firing pulse cables	Jumpering kit for 12x 2-pin twisted cables (L=3m)	XIMP11, XIMP12, XIMP13, XIMP14, XIMP15, XIMP16 XIMP21, XIMP22, XIMP23, XIMP24, XIMP25, XIMP26 to the thyristors

Order No.	Product Description	Contents	For Connecting .
6RY1707-0CM07	Pre-assembled jumpering kit for fuse monitoring	6x 2-pin twisted cables (L=10m)	XS1_4, XS2_4, XS3_4, XS4_4, XS5_4, XS6-4, XS7-4, XS8-4, XS9_4, XS10_4, XS11_4, XS12_4 or XS1_3, XS2_3, XS3_3, XS4_3, XS5_3, XS6_3, XS7_3, XS8_3, XS9_3, XS10_3, XS11_3, XS 12 _3 or XS1_2, XS2_2, XS3_2, XS4_2, XS5_2, XS6_2, XS7_2, XS8_2, XS9_2, XS10_2, XS11_2, XS12_2 or XS1_1, XS2_1, XS3_1, XS4_1, XS5_1, XS6_1, XS7_1, XS8_1, XS9_1, XS10_1, XS 11 1_1, X $\overline{\mathrm{S}} 12 _1$ depending on voltage ($85 \mathrm{~V}, 250 \mathrm{~V}$, 575 V or 1000 V) to the fuses
6RY1707-0CM08	Pre-assembled jumpering kit for voltage sensing	$\begin{aligned} & \text { 1x 3-pin twisted cable U-V-W } \\ & (\mathrm{L}=3 \mathrm{~m}) \\ & 1 \times 2 \text {-pin twisted cable C-D (L=3m) } \end{aligned}$	XU4, XV4, XW4 or XU3, XV3, XW3 or XU2, XV2, XW2 or XU1, XV1, XW1 depending on voltage (85V, $250 \mathrm{~V}, 575 \mathrm{~V}$ or 1000 V) to incoming supply XC4, XD4 or XC3, XD3 or XC2, XD2 or XC1, XD1 depending on voltage $(85 \mathrm{~V}, 250 \mathrm{~V}, 575 \mathrm{~V}$ or 1000 V) to incoming supply
6RY1707-0CM13	Pre-assembled jumpering kit for firing-pulse transformer trigger circuit	12x 2-pin twisted cable (L=1m)	XIMP1, XIMP4 or XIMP2, XIMP5 or XIMP3, XIMP6 on PCB -A7043(side panels) to firing-pulse transformer modules (single plates) with terminals X11, X12, X13, X14, X15, X16, X21, X22, X23, X24, X25, X26
6RY1707-0CM10	Pre-assembled jumpering kit for firing-pulse transformer trigger circuit	2×12-pin shielded cables (L=10m)	XIMP1, XIMP4 and/or XIMP2, XIMP5 and/or XIMP3, XIMP6 on PCB -A7043- to external firing-pulse transformers
6RY1707-0CM11	Pre-assembled jumpering kit for adjacent tank mounting	2×26-pin ribbon cables 2×10-pin ribbon cables 1×20-pin ribbon cable	X21A, X22A on PCB -A7041/A7042to X21A, X22A on PCB -A7043XS20, XS21 on PCB -A7041/A7042to XS20, XS21 on PCB -A7044- X102 on PCB -A7041/A7042- to X102 on PCB -A7044-

2.6 Reference to new products

SIMOREG DC-MASTER Converter Commutation Protector (SIMOREG CCP)

The SIMOREG DC-MASTER Converter Commutation Protector (SIMOREG CCP) can be supplied as an option for the converters in the SIMOREG DC-MASTER 6RA70 series.

Field of application:
The SIMOREG DC-MASTER Converter Commutation Protector (SIMOREG CCP) is for protecting the semiconductor fuses of a line-commutated power converter in inverter mode. If the inverter stalls, a large current is created in the regenerating direction via the power system or a crossover current is created in the power converter. The SIMOREG CCP limits this current to a harmless level so that thyristors and the associated super-fast fuses are protected. As a result, timeconsuming and expensive replacement of the fuses is no longer necessary. Stalling of the inverter cannot be prevented but its effects can.

Compatibility:
Because the sensor technology and the recognition of a commutation failure can only be made in the SIMOREG basic unit the SIMOREG CCP is only compatible to line-commutated converters of the SIMOREG DC-MASTER 6RA70 series (and later).
Use with converters connected in parallel is possible.
The SIMOREG CCP is operated via the SIMOREG unit (parameterization, fault messages). Version 2.2 or a later software version must be installed in the SIMOREG unit.

For more information and help selecting the most suitable unit for your application, please contact your local SIEMENS Sales Office.

3 Description

3.1 Applications

The main application of the SIMOREG DC-MASTER Control Module (SIMOREG CM) is conversion and modernization of DC drives in existing installations.
In DC technology, many installations exist that are older than 5-10 years and still use analog technology.
When these installations are converted or upgraded, the motor, mechanical and power sections are left in the installation and the trigger and control section replaced by a SIMOREG DC-MASTER Control Module. The result is a modern DC drive at an extremely low price, with the full functional scope of the tried and tested fully digital devices of the SIMOREG DC-MASTER 6RA70 range.

The configuration of the existing components is adapted by simple parameterization.
The SIMOREG DC-MASTER Control Module contains a power section for the field supply with a rated current of up to 40A.

3.2 Design

The SIMOREG DC-MASTER Control Module is characterized by its compact, space-saving construction. Their compact design makes them particularly easy to service and maintain since individual components are readily accessible. The electronics box contains the basic electronic circuitry as well as any supplementary boards.

In order to make optimum use of the mounting possibilities of the installation, the SIMOREG DCMASTER Control Module can be divided along its depth. In addition, the PCBs for the firing pulse generation and distribution and for safety monitoring and voltage acquisition have been designed in such a way that they can be divided and either partially or completely mounted outside the converter directly on the power section and connected with the basic unit via cable.

All SIMOREG DC-MASTER Control Modules are equipped with a PMU simple operator panel mounted in the converter door. The panel consists of a five-digit, seven-segment display, three LEDs as status indicators and three parameterization keys. The PMU also features connector X300 with a USS interface in accordance with the RS232 or RS485 standard.
The panel provides all the facilities for making adjustments or settings and displaying measured values required to start up the converter.

The OP1S optional converter operator panel can be mounted either in the converter door or externally, e.g. in the cubicle door. For this purpose, it can be connected up by means of a 5 m long cable. Cables of up to 200 m in length can be used if a separate 5 V supply is available. The OP1S is connected to the SIMOREG CM via connector X300.
The OP1S can be installed as an economic alternative to control cubicle measuring instruments which display physical measured quantities.
The OP1S features an LCD with 4×16 characters for displaying parameter names in plaintext. German, English, French, Spanish and Italian can be selected as the display languages. The OP1S can store parameter sets for easy downloading to other devices.

The converter can also be parameterized on a standard PC with appropriate software connected to the serial interface on the basic unit. This PC interface is used during start-up, for maintenance during shutdown and for diagnosis in operation. Furthermore, converter software upgrades can be loaded via this interface for storage in a Flash memory.

The field is supplied by a B2HZ single-phase single pair controllable two-pulse bridge connection. The power section for the field is constructed using isolated thyristor modules, the heat sink is therefore electrically isolated.

3.3 Mode of operation

All open-loop and closed-loop drive control and communication functions are performed by two powerful microprocessors. Drive control functions are implemented in the software as program modules which can be "wired up" by parameters.

3.4 Technical data

Measurable rated supply voltage armature	$85 \mathrm{~V} / 250 \mathrm{~V} / 575 \mathrm{~V} / 1000 \mathrm{~V}$
Rated supply voltage electronics power supply	$\begin{gathered} 2 \text { AC } 380(-25 \%) \text { to } 460(+15 \%) ;{ }^{I} n=1 \mathrm{~A} \text { or } \\ 1 \text { AC } 190(-25 \%) \text { to } 230(+15 \%) ; \mathrm{I}_{\mathrm{n}}=2 \mathrm{~A} \\ (-35 \% \text { for } 1 \mathrm{~min}) \end{gathered}$ with Power Interface C98043-A7041 (Option L05): DC 18 to $30 ; \mathrm{I}_{\mathrm{n}}=4 \mathrm{~A}$
Rated supply voltage field 1)	$\begin{gathered} 2 \text { AC } 400(+15 \% /-20 \%) \\ 2 \text { AC } 460(+10 \%) \end{gathered}$
Rated frequency Hz	Converters self-adapt to the frequency of the available supply voltage in the range from 45 to 65 Hz 3)
Rated DC voltage field 1)	max. 325 / 373
Rated DC current field	40
Operational ambient temperature ${ }^{\circ} \mathrm{C}$	0-+60
Storage and transport temperature ${ }^{\circ} \mathrm{C}$	-25 to +70
Control stability	$\Delta \mathrm{n}=0.006 \%$ of the rated motor speed, valid for pulse encoder operation and digital setpoint $\Delta \mathrm{n}=0.1 \%$ of the rated motor speed, valid for analog tacho or analog setpoint ${ }^{2)}$
Environmental class DIN IEC 60721-3-3	3K3
Degree of protection DIN EN 60529	IP00
Dimensions	Refer to dimensional drawings in Section 5
Weight (approx.) kg	15

1) The field supply voltage can be lower than the rated field voltage (setting in parameter P078, input voltages of up to 85 V are permissible). The output voltage is reduced accordingly.
The specified output DC voltage can be guaranteed up to an undervoltage corresponding to 95% of line voltage (rated supply voltage field).
2) Requirements:

The control stability (closed-loop PI control) is referred to the rated motor speed and applies when the SIMOREG converter is warm. The following conditions are applicable:

- Temperature changes of $\pm 10 \mathrm{~K}$
- Line voltage changes corresponding to $+10 \% /-5 \%$ of the rated input voltage
- Temperature coefficient of temperature-compensated tacho-generators 0.15% per 10 K (applies only to analog tacho-generator)
- Constant setpoint (14-bit resolution)

3) Operation in the extended frequency range between 23 Hz and 110 Hz is available on request.

3.5 Applicable standards

VDE 0106 Part 100

Arrangement of operator control elements in the vicinity of components/parts at hazardous voltage levels.

EN 50178
Electronic equipment for use in power installations
Degree of pollution 2:
Under normal conditions, only non-conductive pollution occurs. Occasionally, pollution may become conductive for a short period of time when the electronic equipment is not in operation.

EN 60146 T1-1 / VDE 0558 T11
Semiconductor converter
General requirements and line-commutated converters
DIN EN 50178 / VDE 0160
Regulations for equipping electrical power systems with electronic equipment.
EN 61800-3
Variable-speed drives, part 3, EMC Product Standard including special testing procedures
DIN IEC 60068-2-6 acc. to severity grade 12 (SN 29010 Part1)
Mechanical stressing

3.6 Certification

ISO 9001:

The products referred to in this document are manufactured and operated in accordance with DIN ISO 9001 (Certificate Register No.: 257-0).

Ship-building:

> Certificate No.

Germanischer Lloyd
26 071-05 HH
Lloyd's Register
06 / 20053
American Bureau of Shipping
06HG196692-PDA
Det Norske Veritas
E-7996

Information on the necessary measures can be found in the CD-ROM package "SIMOREG DCMASTER documentation" - order number 6RX1700-0D64 (CD1 from issue 24 onwards) or in the Internet at http://support.automation.siemens.com/WW/view/de/24063215

3.7 Abbreviations

ADB	Adapter Board, carrier for miniature-format supplementary boards CAN
Field bus specification of user organization CiA (CAN in Automation) (Controller Area Network)	
CBC	Supplementary Communication Board
CBD	Supplementary board for CAN Bus link (Communication Board CAN Bus)
CBP2	Supplementary board for DeviceNet link (Communication Board DeviceNet)
COB	Supplementary board for PROFIBUS link (Communication Board PROFIBUS) Communication Object for CAN Bus communication

CUD1	Electronics board C98043-A7001 of SIMOREG DC-MASTER (Control Unit / Direct Current)
CUD2	Terminal expansion board C98043-A7006 for CUD1
DeviceNet	Field bus specification of ODVA (Open DeviceNet Vendor Association)
DP	Distributed Peripherals
EB1	Supplementary board with additional inputs/outputs (Expansion Board 1)
EB2	Supplementary board with additional inputs/outputs (Expansion Board 2)
GSD file	Device master data file defining the communication features of the PROFIBUS communication board
ID	Identifier for CAN Bus communication
IND	Parameter Index
LBA	Connection module for mounting supplementary modules (Local Bus Adapter)
LWL	Fiber-optic cable
MSAC_C1	Designation of a transmission channel for PROFIBUS (Master Slave Acyclic / Class 1)
MSCY_C1	Designation of a transmission channel for PROFIBUS (Master Slave Cyclic / Class 1)
OP1S	Optional device operating panel with plaintext display and internal memory for parameter sets (Operator Panel 1 / Store)
PKE	Parameter identifier
PKW	Reference to parameter (parameter identifier value)
PMU	Simple operator panel of SIMOREG DC-MASTER (Parameterization Unit)
PNU	Parameter number
PPO	Definition of number of parameter and process data words for PROFIBUS communication (Parameter Process Data Object)
PROFIBUS	Field bus specification of PROFIBUS user organization (Process Field Bus)
PWE	Parameter value
PZD	Process data
SBP	Supplementary board for linking tacho (Sensor Board Pulse)
SCB1	Supplementary board for linking SCI1 or SCI2 via fiber optic cable (Serial Communication Board 1)
SCI1	Supplementary board with additional inputs/outputs; I/O slave module on SCB1 (Serial Communication Interface 1)
SCl2	Supplementary board with additional inputs/outputs; I/O slave module on SCB1 (Serial Communication Interface 2)
SIMOLINK	Field bus specification for fiber optic ring bus (Siemens Motion Link)
SLB	Supplementary board for SIMOLINK link (SIMOLINK Board)
STW	Control word
T100	Supplementary board with technology functions (Technology Board 100)
T300	Supplementary board with technology functions (Technology Board 300)
T400	Supplementary board with technology functions (Technology Board 400)
TB	Technology board T100, T300 or T400
USS	Universal serial interface
ZSW	Status word

4 Shipment, unpacking

SIMOREG CM converters are packed in the production works according to the relevant ordering data. A product packing label is attached to the box.

Protect the package against severe jolts and shocks during shipment, e.g. when setting it down.
Carefully observe the information on the packaging relating to transportation, storage and proper handling.

The SIMOREG CM device can be installed after it has been unpacked and the shipment checked for completeness and/or damage.

The packaging materials consist of cardboard and corrugated paper and can be disposed of according to locally applicable waste disposal regulations.

If you discover that the converter has been damaged during shipment, please inform your shipping agent immediately.

5 Installation

CAUTION

Failure to lift the converter in the correct manner can result in bodily injury and/or property damage.
The device must always be lifted by properly trained personnel using the appropriate equipment (i.e. protective gloves, etc.).

The user is responsible for installing the SIMOREG CM converter, the power section, the motor, transformer, as well as other equipment according to safety regulations (e.g. EN, DIN, VDE), as well as all other relevant national or local regulations regarding cable dimensioning and protection, grounding, isolating switch, overcurrent protection, etc.

The converter must be installed in accordance with the relevant safety regulations (e.g. EN, DIN, VDE), as well as all other relevant national and local regulations. It must be ensured that the grounding, cable dimensioning and appropriate short-circuit protection have been implemented to guarantee operational safety and reliability..

5.1 Dimensions drawings

5.1.1 Converter components assembled (state as delivered)

5.1.2 Converter components arranged side by side

5.2 Mounting/removal and division of modules

(see also Chapters 6.4 and 6.9)

5.2.1 Removal of module C98043-A7043

- Remove 4 Torx TX20 screws (1) and take off cover (2).
- Remove 5 Torx TX20 screws (3) and 4 hexagon-head studs (4).
- Remove module C98043-A7043 (5) and divide (see Chapter 5.2.2).
- Remove the loosely attached insulation plate (6).
- Divide module C98043-A7044 7 (see Chapter 5.2.3).
- See Chapter 5.2.4 for how to mount module C98043-A7043.

5.2.2 Dividing module C98043-A7043

- Remove cover and module C98043-A7043 (see Chapter 5.2.1)
- Break the two terminal parts (1) across the table edge
- Break control plates (2) across the table edge.
- Mount the cover and the two terminal parts (1) (see Chapter 5.2.4).

5.2.3 Dividing module C98043-A7044

- Remove cover and module C98043-A7043 (see Chapter 5.2.1)
- Remove the 3 hexagon-head studs (1).
- Break module part (2) n in the direction of the arrow.
- Remove the 4 hexagon-head studs (3).
- Break module part (4) in the direction of the arrow.

5.2.4 Mounting module C98043-A7043

The parts required are not part of the scope of supply, they are available as a "set of loose parts" under order No.: 6RY1707-0CM00.

\triangle

WARNING

The hexagon-head studs shown in gray must be metal bolts, all other bolts must be nonconductive (danger of short circuit).

- Fit 4 hexagon-head studs ($\mathrm{L}=30 \mathrm{~mm}$) (1).
- The two hexagon-head studs (2) are not required and can be removed.
- Screw 9 hexagon-head studs $(L=35 \mathrm{~mm})$ (3) onto the fitted hexagon-head studs.
- Clip on insulation plate (4).
- Fix the two terminal parts (5) of module C98043-A7043 with 6 Torx TX20 screws (6) and 4 hexagon-head studs (7).
- Connect terminals and ribbon cable and fix cover (8) with 4 Torx TX20 screws (9).

5.2.5 External assembly of module parts

The parts required are not part of the scope of supply, they are available as a "set of loose parts" under order No.: 6RY1707-0CM00.

5.2.5.1 Terminal strip

The 3 snap-on parts (1) for DIN rail acc. to DIN EN 50022-35x7.5 are mounted using distance rolls (2) and M3x16 screws (3) on the terminal strip.

5.2.5.2 Firing transfer plates

The 2 snap-on parts (1) for DIN rail acc. to DIN EN 50022-35x7.5 are mounted with M3x8 screws (2) on the control plates.

5.2.5.3 Fuse monitoring

The 4 snap-on parts (1) for DIN rail acc. to DIN EN 50022-35x7.5 are mounted on the fuse monitoring with screws M3x8 (2).

5.2.5.4 Voltage acquisition

The voltage acquisition can be mounted externally using mounting housing UM 72 supplied by Phönix. This mounting housing must be ordered directly from Phönix.

5.3 Mounting options

5.3.1 Terminal expansion module CUD2

- Remove electronics board CUD1 from the electronics box by undoing the two fixing screws (1).
- Attach the 3 hexagon-head bolts supplied at position (2) on the CUD1 electronics board with the screws and fixing elements (3) supplied and insert the two plug connectors (4). The two plug connectors must be positioned such that the short pin ends are inserted in the socket connectors of the CUD1 and the long pin ends in the socket connectors of the CUD2.
- Position board CUD2 in such a way that the two plug connectors (4) are properly contacted.
- Secure board CUD2 in position using the supplied screws and retaining elements (5).
- Insert electronics board CUD1 into electronics box and tighten up the two fixing screws (1) again as instructed.

5.3.2 Optional supplementary boards

WARNING

Safe operation is dependent upon proper installation and start-up by qualified personnel under observance of all warnings contained in these operating instructions.

Boards must always be replaced by properly qualified personnel.
Boards must not be inserted or removed when the power supply is connected.
Failure to observe this warning can result in death, severe physical injury or substantial property damage.

CAUTION

The boards contain ElectroStatic Discharge Sensitive Devices (ESDS). Before touching a board, make sure that your own body has been electrostatically discharged. The easiest way to do this is to touch a conductive, grounded object (e.g. bare metal part of cubicle) immediately beforehand).

5.3.2.1 Local bus adapter (LBA) for mounting optional supplementary boards

Optional supplementary boards can be installed only in conjunction with the LBA option. If an LBA is not already fitted in the SIMOREG converter, one must be installed in the electronics box to accommodate the optional board.

How to install an LBA local bus adapter in the electronics box:

- Undo the two fixing screws on the CUD1 board and pull board out by special handles.
- Push LBA bus extension into electronics box (see picture on right for position) until it engages
- Insert CUD1 board in left-hand board location again and tighten fixing screws in handles.

5.3.2.2 Mounting of optional supplementary boards

Supplementary boards are inserted in the slots of the electronics box. Option LBA (local bus adapter) is required to fit supplementary boards. The designations of the board locations or slots are shown in the adjacent diagram.

Arrangement of board locations 1 to 3 and slots D to G in electronics box

Supplementary boards may be inserted in any slot subject to the following restrictions:

NOTICE

- Slot 3 must not be used until slot 2 is already occupied.
- A technology board must always be installed in board location 2 of the electronics box.
- If a technology board is used in conjunction with one communication board, then the communication board must be fitted in slot G (miniature-format boards, for example CBP2 and CBC) or slot 3 (large-format board SCB1).
A type T400 technology module can also be used with two communication boards of type CBC, CBD or CBP2 (see Section 7.7.1, Procedure for starting up technology boards).
- It is not possible to operate boards EB1, EB2, SLB and SBP in conjunction with a technology board.
- The data of large-format boards are always output under slot E or slot G, i.e. the software version of a technology board, for example, is displayed in r060.003.
- In addition to the LBA, miniature-format boards (for example CBP2 and CBC) also require an ADB (adapter board, support board). Due to their very compact physical dimensions, these boards must be inserted in an ADB before they can be installed in the electronics box.
- A total of two supplementary boards of the same type can be used (e.g. 2 EB1s), but only 1 SBP and 1 SLB may be installed.

The diagram below shows which locations or slots can be used for the supplementary boards you wish to install and which board combinations are possible:

For information about starting up supplementary boards, please refer to Section 7.7 "Starting up optional supplementary boards".

6 Connections

WARNING

The manufacturer shall give warranty for the serviceability of the SIMOREG CM device and assume liability for any damage which may arise only on the condition that the device has been installed and commissioned by properly qualified personnel and the instructions and warnings in this Operator's Guide duly followed.

The converters are operated at high voltages.
Disconnect the power supply before making any connections!
Only qualified personnel who are thoroughly familiar with all safety notices contained in the operating instructions as well as erection, installation, operating and maintenance instructions must be allowed to work on these devices.

Non-observance of the safety instructions can result in death, severe personal injury or substantial damage to property .

The converter might sustain serious or irreparable damage if connected incorrectly.
Voltage may be present at the power and control terminals even when the motor is stopped.
A hazardous voltage might still be present in the snubber capacitors even after isolation. For this reason, wait for an appropriate time before opening the converter.
When working on the open converter, remember that live parts are exposed. The unit must always be operated with the standard front covers in place.

The user is responsible for ensuring that the motor, SIMOREG converter and other devices are installed and connected up in accordance with the approved codes of practice of the country concerned and any other regional or local codes that may apply. Special attention must be paid to proper conductor sizing, fusing, grounding, isolation, and disconnection measures and to overcurrent protection.

These converters contain hazardous rotating machinery (fans) and control rotating mechanical components (drives). Death, serious bodily injury or substantial damage to property may occur if the instructions in the relevant operating manuals are not observed.

Successful and safe operation of this equipment is dependent on careful transportation, proper storage and installation as well as correct operation and maintenance.

6.1 Installation instructions for proper EMC installation of drives

NOTE

These installation instructions do not purport to handle or take into account all of the equipment details or versions or to cover every conceivable operating situation or application. If you require more detailed information, or if special problems occur, which are not handled in enough detail in this document, please contact your local Siemens office.
The contents of these installation instructions are not part of an earlier or existing agreement or legal contract and neither do they change it. The actual purchase contract represents the complete liability of the ASI 1 Variable-Speed Drives Group of Siemens AG. The warranty agreed in the contract between the parties is the sole warranty to which the Automation and Drives Division A\&D is bound. The warranty conditions specified in the contract are neither expanded nor changed by the information provided in the installation instructions.

6.1.1 Fundamental principles of EMC

6.1.1.1 What is EMC

EMC stands for "electromagnetic compatibility" and defines the capability of an item of equipment to operate satisfactorily in an electromagnetic environment without itself causing electromagnetic disturbances that would adversely affect other items of equipment in its vicinity.

Different items of equipment must therefore not adversely affect one another.

6.1.1.2 Noise radiation and noise immunity

EMC is dependent on two characteristics of the equipment/units involved, i.e. radiated noise and noise immunity. Items of electrical equipment can either be fault sources (transmitters) and/or noise receivers.
Electromagnetic compatibility exists if the fault sources do not adversely affect the function of the noise receivers.
An item of equipment can be both a fault source and a fault receiver. For example, the power section of a converter must be regarded as a fault source and the control section as a noise receiver.

6.1.1.3 Limit values

Electrical drives are governed by Product Standard EN 61800-3. According to this standard, it is not necessary to implement all EMC measures for industrial supply networks. Instead, a solution adapted specifically to the relevant environment can be applied. It might therefore be more economical to increase the interference immunity of a sensitive device rather than implementing noise suppression measures for the converter. In this way, solutions selected will depend on their cost-effectiveness.

SIMOREG converters are designed for industrial applications (industrial low-voltage supply system, i.e. a system that does not supply domestic households).
Noise immunity defines the behavior of a piece of equipment when subjected to electromagnetic disturbance. The Product Standard regulates the requirements and assessment criteria for the behavior of equipment in industrial environments. The converters in this description comply with this Standard (Section 6.1.2.3).

6.1.1.4 SIMOREG CM in industrial applications

In an industrial environment, equipment must have a high level of noise immunity whereas lower demands are placed on noise radiation.
SIMOREG CM converters are components of an electrical drive system in the same way as contactors, switches, and the power section. Properly qualified personnel must integrate them into a drive system consisting, at least, of the converter, power section, motor cables, and motor. Commutating reactors and fuses are also required in most cases. Limit values can only be maintained if these components are installed and mounted in the correct way. In order to limit the radiated noise according to limit value "A1", the appropriate radio interference suppression filter and a commutating reactor are required in addition to the converter itself. Without an RI suppression filter, the noise radiated by a SIMOREG CM converter exceeds limit value "A1" as defined by EN55011.
If the drive forms part of a complete installation, it does not initially have to fulfill any requirements regarding radiated noise. However, EMC legislation requires the installation as a whole to be electromagnetically compatible with its environment.
If all control components in the installation (e.g. PLCs) have noise immunity for industrial environments, it is not necessary for each drive to meet limit value "A1" in its own right.

6.1.1.5 Non-grounded supply systems

Non-grounded supply systems (IT systems) are used in a number of industrial sectors to increase plant availability. In the event of a ground fault, no fault current flows so that the plant can continue to produce. However, with radio interference suppression filters, in the event of a ground fault a fault current will flow that can cause irreparable damage to the radio interference suppression filter. The product standard therefore does not define limit values for such networks. From the economic viewpoint, RI suppression should, if required, be implemented on the grounded primary side of the supply transformer.
Radio interference suppression filters for IT networks up to 690 V have recently become available (Epcos B84143-Bxxx-S24).

6.1.1.6 EMC planning

If two units are not electromagnetically compatible, you can either reduce the noise radiated by the noise source, or increase the noise immunity of the noise receiver. Noise sources are generally power electronics units with a high power consumption. To reduce the radiated noise from these units, complex and costly filters are required. Noise receivers are predominantly control equipment and sensors including evaluation circuitry. Increasing the noise immunity of less powerful equipment is generally easier and cheaper. In an industrial environment, therefore, it is often more cost-effective to increase noise immunity rather than reduce radiated noise. For example, in order to adhere to limit value class A1 of EN 55011, the noise suppression voltage at the mains connection may be max. $79 \mathrm{~dB}(\mu \mathrm{~V})$ between 150 kHz and 500 kHz and max. $73 \mathrm{~dB}(\mu \mathrm{~V})(9 \mathrm{mV}$ or 4.5 mV) between 500 kHz and 30 MHz .

In industrial environments, the EMC of the equipment used must be based on a well balanced mixture of noise radiation and noise immunity.

The most cost-effective RI suppression measure is the physical separation of noise sources and noise receivers, assuming that it has already been taken into account when designing the machine/plant. The first step is to define whether each unit is a potential noise source (noise radiator or noise receiver). Noise sources are, for example, converter units, contactors. Interference sinks include, for example, programmable controllers, encoders, and sensors. The components in the switching cabinet (sources of interference, interference sinks) must be kept separate, if necessary using partition plates or by placing them in a metal housing. Proper EMC installation of drives (installation instructions)

6.1.2 Proper EMC installation of drives (installation instructions)

6.1.2.1 General information

Since drives can be operated in a wide range of differing environments and the electrical components used (controls, switched-mode power supplies, etc.) can widely differ with respect to noise immunity and radiation, any mounting/installation guideline can only represent a practical compromise. For that reason, EMC regulations do not need to be implemented to the letter, provided that measures are checked out on a case by case basis.
In order to guarantee electromagnetic compatibility in your cabinets in rugged electrical environments and fulfill the standards specified by the relevant regulatory bodies, the following EMC regulations must be observed when designing and installing cabinets.

Rules 1 to 10 generally apply. Rules 11 to 15 must be followed to fulfill standards governing radiated noise.

6.1.2.2 Rules for proper EMC installation

Rule 1

All the metal components in the cabinet must be conductively connected with one another over a large contact area. (Not paint to paint!)
Serrated or contact washers must be used where necessary. The cabinet door should be connected to the cabinet through the shortest possible grounding straps (top, center, bottom).

Rule 2

Contactors, relays, solenoid valves, electromechanical hours counters, etc. in the cabinet, and, if applicable, in adjacent cabinets, must be provided with quenching elements, for example, RC elements, varistors, diodes. These devices must be connected directly at the coil.
(RC elements are better than varistors)

Rule 3

Signal cables ${ }^{1)}$ should enter the cabinet at only one level wherever possible.

Rule 4

Unshielded cables in the same circuit (incoming and outgoing conductors) must be twisted where possible, or the area between them kept as small as possible in order to prevent unnecessary coupling effects.

Rule 5

Connect spare strands at both ends with cabinet frame (ground ${ }^{2)}$). This provides an additional shielding effect.

Rule 6

Avoid unnecessary cable lengths. This keeps coupling capacitances and inductances to a minimum.

Rule 7

Crosstalk is kept low if cables are routed close to the cabinet ground. For this reason, wiring should not be routed freely in the cabinet, but as close as possible to the cabinet frame and mounting panels. This applies equally to spare cables.

Rule 8

Signal and power cables must be routed separately from one another (to prevent noise from being coupled in). Minimum distance: A clearance of 20 cm should be maintained.
If the encoder cables and motor cables cannot be routed separately, then the encoder cable must be decoupled by means of a metal partition or installation in a metal conduit. The partition or metal conduit must be grounded at several points.

Rule 9

The shields of digital signal cables must be connected to ground at both ends (source and destination). If there is poor equipotential bonding between the shield connections, an additional equipotential bonding cable of at least $10 \mathrm{~mm}^{2}$ must be connected in parallel to the shield to reduce the shield current. Generally speaking, the shields can be connected to the cabinet housing (ground ${ }^{2)}$) at several points. The shields may also be connected at several locations outside the cabinet.
Foil-type shields should be avoided. Their shielding effect is five times poorer than that of braided shields.

Rule 10
The shields of analog signal cables may be connected to ground at both ends (conductively over a large area) if equipotential bonding is good. Equipotential bonding can be assumed to be good if all metal parts are well connected and all the electronic components involved are supplied from the same source.
The single-ended shield connection prevents low-frequency, capacitive noise from being coupled in (e.g. 50 Hz hum). The shield connection should then be made in the cabinet. In that case, the shield can be connected by means of a sheath wire.
The cable to the temperature sensor on the motor (X174:22 and X174:23) must be shielded and connected to ground at both ends.

Rule 11

The RI suppression filter must always be mounted close to the suspected noise source. The filter must be connected to the cabinet housing, mounting plates, etc., over a large area. Input and output cables must be kept separate.

Rule 12

To ensure adherence to limit value class A1, the use of RI suppression filters is obligatory. Additional loads must be connected on the line side of the filter.

The control system used and the other wiring in the cubicle determines whether an additional line filter needs to be installed.

Rule 13
A commutating reactor must be installed in the field circuit for controlled field supplies.
Rule 14
A commutating reactor must be installed in the converter armature circuit.

Rule 15

Unshielded motor cables may be used in SIMOREG drive systems.
In such cases, the line supply cable must be routed at a distance of at least 20 cm from the motor cables (field, armature). Use a metal partition if necessary.

Footnotes:

1) Signal cables are defined as:

Digital signal cable:
Binary inputs and outputs
Pulse encoder cables
Serial interfaces, e.g. PROFIBUS-DP
2) The term "ground" generally refers to all metallic, conductive components which can be connected to a protective conductor, e.g. cabinet housing, motor housing, foundation ground, etc.

Cabinet design and shielding:

Fig. 1a: Shield at cable entry point to cabinet

Fig. 1b: Shielding in the cabinet

The customer connections must be routed above the electronics box.
Fig. 1c: Shield contacting on SIMOREG CM

Fig. 1d: Line filter for SIMOREG CM electronics power supply

Shield connections:

Variant 1 :

Fig. 2a: Terminal on a copper busbar, max. cable diameter 15 mm

Caution!

The conductor could be damaged if the terminal screw is over-tightened.

Variant 2

Fig. 2b: Terminal on copper busbar, max. cable diameter 10 mm

Note:

Terminals:
5 mm busbar thickness
Order No. 8US1921-2AC00
10 mm busbar thickness
Order No. 8US1921-2BC00

Note:

Terminals:
Order No. 8HS7104,
8HS7104, 8HS7174, 8HS7164

Fig. 2c: Metallized tubing or cable ties on a bare metal comb-type/serrated rail

Note:

Comb-type rail:
Item No. J48028

Variant 4:

Fig. 2d: Clamp and metallic mating piece on a cable clamping rail

Note:

Siemens 5VC55... cable clamps;
Clamping rails in various sizes: Item No. K48001 to 48005

6.1.2.3 Arrangement of components for converters

Arrangement of reactors and radio interference suppression filters

Fig. 6.1.2.3.1

1) The commutating reactor in the field circuit is dimensioned for the rated motor field current.
2) The commutating reactor in the armature circuit is dimensioned for the rated motor current in the armature. The line current equals DC current $x 0.82$.
3) The radio interference suppression filter for the armature circuit is dimensioned for the rated motor current in the armature. The line current equals DC current $\times 0.82$.
4) The radio interference suppression filter for the field circuit and the electronics power supply (if 380 to 460 V) is designed for the rated current of the motor of plus 1 A (see description terminal XP).
5) The radio interference suppression filter for the electronics power supply (if 190 to 230 V) is designed for 2 A (see description for terminal XP).

CAUTION

When radio interference suppression filters are used, commutating reactors are always required at the converter input to decouple the snubber circuitry.
Commutating reactors are selected according to the information in Catalog LV60.

6.1.3 Information on line-side harmonics generated by converters in a fully-controlled three-phase bridge circuit configuration B6C and (B6)A(B6)C

Converters for the medium power range usually consist of fully-controlled three-phase bridge circuit configurations. An example of the harmonics generated by a typical system configuration for two firing angles ($\alpha=20^{\circ}$ and $\alpha=60^{\circ}$) is given below.

The values have been taken from an earlier publication entitled "Harmonics in the Line-Side Current of Six-Pulse Line-Commutated Converters" written by H. Arremann and G. Möltgen, Siemens Research and Development Dept., Volume 7 (1978) No. 2, © Springer-Verlag 1978.

Formulas have been specified with which the short circuit power S_{K} and armature inductance L_{a} of the motor to which the specified harmonics spectrum applies can be calculated depending on the applicable operating data [line voltage (no-load voltage $U_{\mathrm{v} 0}$), line frequency f_{N}, and DC current I_{d}]. A dedicated calculation must be performed if the actual system short circuit power and/or actual armature reactance deviate from the values determined by this method.
The spectrum of harmonics listed below is obtained if the values for short circuit power S_{K} at the converter supply connection point and the armature inductance L_{a} of the motor calculated by the following formulas correspond to the actual plant data. If the calculated values differ, the harmonics must be calculated separately.
a.) $\alpha=20^{\circ}$

Fundamental factor $g=0.962$

v	$I_{v} I_{\mathbf{1}}$	v	$I_{v} I_{\mathbf{1}}$
5	0.235	29	0.018
7	0.100	31	0.016
11	0.083	35	0.011
13	0.056	37	0.010
17	0.046	41	0.006
19	0.035	43	0.006
23	0.028	47	0.003
25	0.024	49	0.003

b.) $\alpha=60^{\circ}$

Fundamental factor $g=0.953$

v	I_{v} / I_{1}	v	I_{v} / I_{1}
5	0.283	29	0.026
7	0.050	31	0.019
11	0.089	35	0.020
13	0.038	37	0.016
17	0.050	41	0.016
19	0.029	43	0.013
23	0.034	47	0.013
25	0.023	49	0.011

The fundamental-frequency current I_{1} as a reference quantity is calculated with the following equation:

$$
I_{1}=g \times 0.817 \times I_{d}
$$

where $I_{\mathrm{d}} \quad$ DC current of operating point under investigation
where $g \quad$ Fundamental factor (see above)
The harmonic currents calculated from the above tables are valid only for
I.) Short-circuit power S_{K} at converter supply connection point

$$
S_{\mathrm{K}}=\frac{U_{\mathrm{V} 0}^{2}}{X_{\mathrm{N}}} \quad(\mathrm{VA})
$$

where

$$
X_{\mathrm{N}}=X_{\mathrm{K}}-X_{\mathrm{D}}=0.3536 \times \frac{U_{\mathrm{v} 0}}{l_{\mathrm{d}}}-2 \pi f_{\mathrm{N}} \times L_{\mathrm{D}}
$$

and
UV0 No-load voltage in V at the converter supply connection point
$I_{\mathrm{d}} \quad \mathrm{DC}$ current in A of operating point under investigation
$f_{\mathrm{N}} \quad$ Line frequency in Hz
LD Inductance in H of commutating reactor used
$X_{D} \quad$ Impedance of the commutating reactor
$X_{N} \quad$ Impedance of the network
$X_{K} \quad$ Impedance at the device terminals

II.) Armature inductance L_{a}

$$
L_{\mathrm{a}}=0.0488 \times \frac{U_{\mathrm{v} 0}}{f_{\mathrm{N}} \times I_{\mathrm{d}}}(\mathrm{H})
$$

A separate calculation must be performed if the actual values for short-circuit power S_{K} and/or armature inductance L_{a} deviate from the values calculated on the basis of the above equations.

Example

Let us assume that a drive has the following data:
$U_{\mathrm{v} 0}=400 \mathrm{~V}$
$I_{\mathrm{d}}=150 \mathrm{~A}$
$\mathrm{f}_{\mathrm{N}}=50 \mathrm{~Hz}$
$L_{D}=0.169 \mathrm{mH}(4 \mathrm{EU} 2421-7 \mathrm{AA} 10$ where $/ \mathrm{Ln}=125 \mathrm{~A})$

When
$X_{N}=0.03536 \times \frac{400}{150}-2 \pi \times 50 \times 0.169 \times 10^{-3}=0.0412 \Omega$
the required system short-circuit power at the converter supply connection point is as follows:
$S_{K}=\frac{400^{2}}{0.0412}=3.88 \mathrm{MVA}$
and the required motor armature inductance as follows:
$\mathrm{L}_{\mathrm{a}}=0.0488 \times \frac{400}{50 \times 150}=2.60 \mathrm{mH}$
The harmonic currents I_{V} listed in the tables above (where $I_{1}=g \times 0.817 \times I_{\mathrm{d}}$ for firing angles $\alpha=$ 20° and $\alpha=60^{\circ}$) apply only to the values S_{K} and L_{a} calculated by the above method. If the calculated and actual values are not the same, the harmonics must be calculated separately.
For the purpose of dimensioning filters and compensation circuits with reactors, the harmonic values calculated by these equations can be applied only if the values calculated for S_{K} and L_{a} tally with the actual values of the system. If they do not, they must be calculated separately (this is especially true when using compensated motors as these have a very low armature inductance).

6.2 Block diagram with recommended connection

Fig. 6.2.1 a

Fig. 6.2.1b

Fig. 6.2.1c with electronics power supply option, 24 V DC

6.3 Connection of the external power section

All the necessary connections to the power section are shown in the following figs. 6.3.1 to 6.3.4.
Fig. 6.3.1

- Four-quadrant drive (parameterized as a four-quadrant drive - U825=4 when supplied from the factory
- Measurement of the line voltage and armature voltage via the Faston connections on the firing pulse transfer module (when supplied from the factory)

Fig. 6.3.2

- Four-quadrant drive (parameterized as a four-quadrant drive - U825=4 when supplied from the factory)
- Measurement of the system voltage and armature voltage directly from the power section via cables that must be additionally laid

Fig. 6.3.3:

- Single-quadrant drive (parameterization via parameter U825 = 1)
- Measurement of the system voltage and armature voltage via the Faston connections on the firing pulse transfer module (state as delivered) In order to measure the armature voltage it is necessary to make a connection to 1D1 on the power section.

Fig. 6.3.4:

- Single-quadrant drive (parameterization via parameter U825 = 1)
- Measurement of the system voltage and armature voltage directly from the power section via cables that must be additionally laid

See Chapter 6.4 for possible ways of positioning the two troughs and dismantling the device.

WARNING

The following electrical cables between the power section (system voltage) and the electronics must be protected against short-circuits:
Secondary sides of the firing transmission, voltage measurement, fuse monitoring.
$\sqrt{7}$
All these cables (that lead to the supply voltage) must be laid in a such a way as to preclude short circuits or with short-circuit protection.
The effective currents in the specified cables are smaller than 0.5 A.
Method 1: Short-circuit protected cables that burn internally but whose insulation does not split.
Method 2: Protect the cables as close as possible to the power section with fuses. The fuses must have the necessary cutout capability.

Fig. 6.3.1

Fig. 6.3.2

Fig. 6.3.3

Fig. 6.3.4

6.4 Dismantle capability

See also Chapter 5.2
The SIMOREG DC-MASTER Control Module is mounted in two troughs.
The front trough contains the power interface module and the electronics box with the electronics module CUD1 (C98043-A7001) and the terminal expansion CUD2 (ordering option K01) (C98043A7006) as an option, and further supplementary modules such as technology modules or interface modules.

The rear trough contains the firing pulse transmission module (C98043-A7043) and the module with the voltage measurement, fuse monitoring, and field supply (C98043-A7044). The two modules can be separated mechanically so that parts of it can be mounted in the proximity of the power section.
The two troughs can be mounted one on top of the other or separately.
Here are a few examples:

1. Rear and front troughs mounted one on top of the other or separately, modules C98043-A7043 and C98043-A7044 not separated (Fig. 6.4.1)

Connection (connectors / terminals	Cable	Length	Comments
X21A (torque direction 1)	Ribbon cable 26-way	max. 10m *)	Shield if >1m
X22A (torque direction 2)	Ribbon cable 26-way	max. 10m *)	Shield if >1m
XS20 (fuse monitoring)	Ribbon cable 10-way	max. 10m *)	Shield if >1m
XS21 (voltage measurement)	Ribbon cable 10-way	max. 10m *)	Shield if >1m
X102 (field)	Ribbon cable 20-way	max. 10m *)	Shield if >1m
Current transformer (X3)	Single wires (stranded) twisted pairs	max. 10m *)	Shield if >2m
Heat sink temperature (X6, X7)	Single wires (stranded) twisted	max. 10m *)	Shield if >1m
Firing pulse (X11...X16, X21...X26)	Single wires (short-circuit- proof cables) twisted pairs	max. 3m *)	Do not shield !
Fuse monitoring (XS1_1...XS1_12 etc.)	Single wires (short-circuit- proof cables) laid in pairs (for each monitored fuse)	max. 10m *)	
Voltage measurement (XU1,XV1,XW1,XC1,CD1 etc.)	Single wires (short-circuit- proof cables) U,V,W twisted C,D twisted	max. 3m *)	Connection of voltage measurement see also Chapter . 6.3

Fig. 6.4.1
\#...short-circuit-proof cable laying
*) The SIMOREG CM is supplied with the front and rear trough mounted one on top of the other. Ribbon cables are already installed for this assembly type.
See Chapter 2.3 for other cable lengths
2. Rear and front trough mounted one on top of the other or separately, module C98043-A7043 and separated (firing pulse transformer mounted with power section), module C98043-A7044 not separated (Fig. 6.4.2)
Mechanical conversion see Chapter 5

Connection (connectors / terminals)	Cable	Length	Comments
X21A (torque direction 1)	Ribbon cable 26-way	max. 10m *)	Shield if $>1 \mathrm{~m}$
X22A (torque direction 2)	Ribbon cable 26-way	max. 10m *)	Shield if $>1 \mathrm{~m}$
XS20 (fuse monitoring)	Ribbon cable 10-way	max. 10m *)	Shield if $>1 \mathrm{~m}$
XS21 (voltage measurement)	Ribbon cable 10-way	max. 10m *)	Shield if $>1 \mathrm{~m}$
X102 (field)	Ribbon cable 20-way	max. 10m *)	Shield if $>1 \mathrm{~m}$
Current transformer (X3)	Single wires (stranded) twisted pairs	max. 10m *)	Shield if $>2 m$
Heat sink temperature $(\mathrm{X} 6, \mathrm{X} 7)$	Single wires (stranded) twisted	max. 10m *)	Shield if $>1 \mathrm{~m}$
Control firing pulse transformer	$2 x$ LiyCY $8 \times 2 \times 0.5$ (or 1) mm^{2} or	max. 10m *)	Apply shield on both sides
$\begin{aligned} & \text { (XIMP_1 - XIMP11...16) } \\ & \text { (XIMP_6 - XIMP21...26) } \\ & \hline \end{aligned}$	Single wires (stranded) twisted pairs	max. 3m *)	Shield if $>1 \mathrm{~m}$
Firing pulse (X11...X16, X21...X26)	Single wires (short-circuitproof cables) twisted pairs	max. 3m *)	Do not shield !
Fuse monitoring (XS1_1...XS1_12 etc.)	Single wires (short-circuitproof cables) laid in pairs (for each monitored fuse)	max. 10m *)	
Voltage measurement (XU1,XV1,XW1,XC1,CD1 etc.)	Single wires (short-circuitproof cables) U-V-W twisted, C-D twisted	max. 3m *)	Connection of voltage measurement see also Chapter 6.3

Fig. 6.4.2
\#...short-circuit-proof cable laying
*) The SIMOREG CM is supplied with the front and rear trough mounted one on top of the other. Ribbon cables are already installed for this assembly type.
See Chapter 2.3 for other cable lengths
3. Rear and front trough mounted one on top of the other or separately, modules C98043-A7043 C98043-A7044 separated (firing pulse transformer, voltage measurement, and fuse monitoring mounted with power section), field supply remains in trough (Fig. 6.4.3)
Mechanical conversion see Chapter 5

Connection (connectors / terminals)	Cable	Length	Comments
X21A (torque direction 1)	Ribbon cable 26-way	max. 10m *)	Shield if $>1 \mathrm{~m}$
X22A (torque direction 2)	Ribbon cable 26-way	max. 10m *)	Shield if $>1 \mathrm{~m}$
$\begin{aligned} & \hline \text { XS20 } \\ & \text { (fuse monitoring) } \end{aligned}$	Ribbon cable 10-way	max. 10m *)	Shield if $>1 \mathrm{~m}$
XS21 (voltage measurement)	Ribbon cable 10-way	max. 10m *)	Shield if >1m
X102 (field)	Ribbon cable 20-way	max. 10m *)	Shield if $>1 \mathrm{~m}$
Current transformer (X3)	Single wires (stranded) twisted pairs	max. 10m *)	Shield if $>2 m$
Heat sink temperature $(\mathrm{X} 6, \mathrm{X} 7)$	Single wires (stranded) twisted	max. 10m *)	Shield if >1m
Control firing pulse transformer$\begin{array}{\|l} \text { (XIMP_1 - XIMP11...16) } \\ \text { (XIMP_6 - XIMP21...26) } \\ \hline \end{array}$	$2 \times \text { LiyCY } 8 \times 2 \times 0.5 \text { (or1) } \mathrm{mm}^{2}$ or Single wires (stranded) twisted pairs	max. 10m *)	Apply shield on both sides
		max. 3m *)	Shield if $>1 \mathrm{~m}$
Firing pulse (X11...X16, X21...X26)	Single wires (short-circuitproof cables) twisted pairs	max. 3m *)	Do not shield !
Fuse monitoring (XS1_1...XS1_12 etc.)	Single wires (short-circuitproof cables) laid in pairs (for each monitored fuse)	max. 10m *)	
Voltage measurement (XU1,XV1,XW1,XC1,CD1 etc.)	Single wires (short-circuitproof cables) U-V-W twisted, C-D twisted	max. 3m *)	Connection of voltage measurement see also Chapter 6.3

Fig. 6.4.3
\#...short-circuit-proof cable laying
*) The SIMOREG CM is supplied with the front and rear trough mounted one on top of the other. Ribbon cables are already installed for this assembly type.
See Chapter 2.3 for other cable lengths

4. Parallel connection of power sections with shared control electronics

Bild 6.4.4
\#... short-circuit-proof cable laying

Notes:

- Temperature monitoring:

The SIMOREG CM closed-loop control electronics can monitor the temperature of only one power section via terminals X6 / X7. The temperature of the other power sections must be monitored by supplementary circuits.

- Cables:

With respect to cable types and permissible cable lengths, the specifications in subsections 1 to 3 of this section apply analogously.

- See Section 6.6 for firing pulse transformers
- See Section 6.8 for fuse monitoring
- See also the Note in Section 6.9.2

5. Control of SITOR thyristor set 6QG12 (Figs. 6.4.5 to 6.4.9)

With respect to cables, cable lengths, and separation of modules, largely corresponds to example 3.
The firing pulse transmission module (C98043-A7043) is completely separated. The individual plates with the firing pulse transformers can be slotted into the plastic supports on the power section instead of the old firing pulse transformer plates. The safety monitoring and voltage measurement are mounted directly next to the SITOR set.

Circuit (B6)A(B6)C (four-quadrant drive)

<1>
Firing pulse transformer C98043-A7043 into existing plastic mounts
(sequence according to the terminal designations as shown in the figure)
Cables to the firing pulse transformers from the terminal strips XIMP $_1$ and XIMP $_6$ to
XIMP11 (IMP11, P24) to XIMP26 (IMP26, P24)
Firing cables X11 (K, G) to X26 (K, G) to the thyristors not shown
(X11 to X16 each to thyristor V01 in thyristor double module, X21 to X26 to thyristor V02)
<2>
Connection of fuse monitors to the Faston tabs on the fuse-carriers.
The supply voltage measurement can be connected to Faston tabs in thyristor modules A1 $(=A K 1=\mathrm{U}), \mathrm{A} 3(=\mathrm{AK} 3=\mathrm{V})$ and $\mathrm{A} 5(=\mathrm{AK} 5=\mathrm{W})$ (see circuit diagram on next page).
$<3>$ Do not connect X1, X2
<4> Measurement of armature voltage: Connections KW (AW) to C and AW (KW) to D
Fig. 6.4.5
\#...short-circuit-proof cable laying
See also Fig. 6.4.7 for information and to simplify conversion (circuit diagram of SITOR set before conversion).

Rear view

Fig. 6.4.6

Circuit diagram SITOR set (4Q) before being equipped with SIMOREG CM (for information):

SITOR sets 6QG12 in inverse parallel connection of two three-phase connections [(B6)A(B6)C] with transformer module for actual current measurement (module A7 not used for SITOR sets 6QG12 without transformer module for actual current measurement)

Fig. 6.4.7

<1>
Firing pulse transformer C98043-A7043 into existing plastic mounts
(sequence according to the terminal designations as shown in the figure)
Cables to the firing pulse transformers from the terminal strips XIMP_1 to
XIMP11 (IMP11, P24) to XIMP16 (IMP16, P24)
Firing cables $\mathrm{X} 11(\mathrm{~K}, \mathrm{G})$ to $\mathrm{X} 16(\mathrm{~K}, \mathrm{G})$ to the thyristors not shown
<2>
Connection of fuse monitors to the Faston tabs on the fuse-carriers.
The supply voltage measurement can be connected to Faston tabs in thyristor modules
A1 ($=\mathrm{AK} 1=\mathrm{U}), \mathrm{A} 3(=\mathrm{AK} 3=\mathrm{V})$ and $\mathrm{A} 5(=\mathrm{AK} 5=\mathrm{W})$ (see circuit diagram on next page).
<3>
Do not connect X1
<4>
Measurement of armature voltage: Connection KW - C und AW - D
(for how to connect Faston tabs on thyristor modules see circuit diagram on next page).
Fig. 6.4.8

\#...short-circuit-proof cable laying

See also Fig. 6.4.9 for information and to simplify conversion (circuit diagram of SITOR set before conversion).

Circuit diagram SITOR set (1Q) before being equipped with SIMOREG CM (for information):

SITOR sets 6QG12 in three-phase bridge connection [B6C] with transformer module for actual current measurement (module A7 not used for SITOR sets 6QG12 without transformer module for actual current measurement)

Fig. 6.4.9

6.5 Measuring the armature current

6.5.1 General information

Measuring circuit at the power interface C98043- A7041/A7042:

Fig. 6.5.1

Mechanical arrangement at the power interface C98043- A7041/A7042:

Note:
To ensure a secure connection, the jumpers of switches S1, S2, and S3 must be soldered into the hooks

Fig. 6.5.2

Dimensioning of the current transformers, load resistances

The D/A converter circuit on the CUD1 can process voltages up to $\pm 2.5 \mathrm{~V}$ (peak value). When dimensioning the current transformers and load resistances, it is important to ensure that the voltage to X101-51 (BUERDE_1) or X101-53 (BUERDE_2) (see Fig. 6.5.1) never exceeds this value even with the highest overcurrent to be expected in the power section. In the state as delivered, the current actual value measurement of the CM is set such that a 1 V current actual value signal is set at device rated current. The differential amplifier with an amplification of 0.1 shown in Fig. 6.5.1 can be used to adapt the input voltage of existing measurements with other scalings.
We recommend that the current transformers and load resistors are dimensioned such that an average load voltage of maximum 1 V is present at rated direct current of the armature.

If an external load resistor is used, the wires from it to terminal X3 should be kept as short as possible and twisted. The external load resistor itself should be contacted at four points (potential pick-off) and have as little inductance as possible to prevent measuring errors.

Four-point contacting means: The current to be measured is routed through the resistor. The resulting voltage (load voltage) is picked off at the connections at the distances specified by the manufacturer. This method ensures the most precise possible measurement. The load resistance must never be connected via two separate cables - this only increases the effective value of the load resistance and the converter provides too little current.
Only load resistances with a maximum power loss of 0.5 watts can be soldered to the soldering terminals parallel to the installed load resistances of 10 ohms. If 5A current converters already exist, 5A / 0.1 A coupling transformers should be used. In that case, standard R75 and R76 load resistances of 10 ohms each can be used.

If two current transformers in V-connection already exist, they can be connected directly to terminal X3 to reduce the time to the next current reversal (higher dynamic response on change of torque). For calculation of the load resistances see above.

Interposing transformers must be connected directly behind a current transformer - and not behind a V-connection!

6.5.2 Current measurement with two current transformers on the network side

(state as delivered)
Configuration as shown in Chapter 6.3

Current transformer

X3-1 k2 Current transformer T2 signal K line side
X3-2 12 Reference ground L device side
X3-3 11 Reference ground
X3-4 k1 Current transformer T1 signal
The current transformers must not be connected to ground externally. The connection must be made via terminals X3-2 and X3-3 only.
Recommended current transformers:

Up to armature current	Transformati on ratio	Item number	MLFB number	Primary side
600 A	$6000: 1$	C98130-A1023-C771	6RY1702-0AA03	Hole $31 \times 5.5 \mathrm{~mm}$
850 A	$8500: 1$	C98130-A1023-C850	6RY1702-0AA06	Hole $\varnothing 22 \mathrm{~mm}$
1200 A	$12000: 1$	C98130-A1023-C772	6RY1702-0AA04	Hole $61 \times 10.5 \mathrm{~mm}$
2400 A	$24000: 1$	C98130-A1023-C773	6RY1702-0AA05	Cylindrical el. Cu height 45 mm hole dia. 12.2 mm

Switch positions

S1 in position 2-3
S2 in position 2-3
S3 in position 2-3
The position of switches S1 to S3 makes the differential amplifier on power interface C98043A7041/A7042 (Fig. 6.5.1) inactive. The load voltages of X3 are connected directly to the control electronics.

Load resistances

$R_{B}=\frac{u_{B}}{\ddot{u} * I_{d}}$
$R_{B}=$ Load resistance
$\mathrm{u}_{\mathrm{B}}=$ Load resistance (= average value across 1 current maximum value, not rms value or average value across whole period); Recommended value $=1 \mathrm{~V}$
ü $=$ Transmission ratio of current transformer ($\mathrm{I}_{2} / \mathrm{I}$) (in general ü = 1 / number of turns per unit length)
$I_{d}=$ Rated armature direct current

In the state as delivered, load resistors (R75, R76) of 10Ω are installed.
The values calculated for the load resistances can be set by soldering additional resistors on the soldering tags parallel to R75 and R76, possibly also removing R75 and R76.
To calculate load resistances precisely, the influence of the magnetizing current can be taken into account. If the magnetization current is not taken into account, "magnetizing current x number of turns" more current flows in the cables than is indicated.
Determining the magnetizing current:
The secondary current of the current transformer must flow through the series connection of its ohmic resistance (at maximum working temperature) and the load resistor, and any rectifier diodes. This produces a calculated voltage drop at rated current (sinusoidal). This voltage (50 Hz sine) is now applied on the secondary side and the magnetizing current measured. This is used in the calculations for R_{B}.

It is also important to ensure that the current transformers do not easily become saturated on overcurrent because otherwise the magnetization current would rise too quickly. A temperature rise caused by continuous load must also be monitored.

Load resistance taking the magnetizing current into account:
$R_{B}=\frac{u_{B}}{\ddot{u} *\left(I_{d}+\frac{I_{m}}{\ddot{u}}\right)}$
$I_{m}=$ Magnetizing current

Parameter settings

U822 = Rated armature direct current
U823 = Load voltage at armature rated current (state as delivered $=1000.0 \mathrm{mV}$)
U824 = 1: Current transformer in phases U and V
2: Current transformer in phases U and W (state as delivered)
3: Current transformer in phases V and W

6.5.3 Current measurement via terminal block X3 with external measuring circuit

6.5.3.1 External current transformer in V connection with +1 V with rated armature direct current
 Connection

The output signal of the V connection is connected to terminals X3-4 (I_IST) and X3-3 (M)
(terminals X3-1 and X3-2 are not used).

Switch positions

S1 in position 2-3 (parking position)
S2 in position 2-3 (parking position)
S3 in position 2-3
Remove resistor R125. The differential amplifier is not used.

Parameter settings

U822 = Rated armature direct current
U823 = Input voltage for armature rated current
U824 = 4
Load
The load resistor of the V connection must be connected externally and must not be grounded. It is grounded via terminals X3-2 or X3-3. Remove R75 and R76.

6.5.3.2 External current transformer in V connection with +10V with rated armature direct current Connection

The output signals of the V connection is connected to terminals $\mathrm{X} 3-1$ (I_IST) and X3-2 (M).
Connect terminals X3-3 and X3-4.
Switch positions
S1 in position 1-3
S2 in position 1-3
S3 in position 1-3
Remove resistor R125.
The differential amplifier on the power interface is active. The input signal is attenuated by a factor of 10 (10 V to 1 V at rated direct current).

Parameter settings

U822 $=$ Rated armature direct current
U823 = Input voltage for armature rated current / 10
U824 =4
Load
The load resistor of the V connection must be connected externally and must not be grounded. It is grounded via terminals X3-2 or X3-3. Remove R75 and R76.

6.5.3.3 Differential input for +10 V at rated armature direct current

Connection

X3-1 positive (not inverting), X3-4 negative (inverting). External grounding of the measuring circuit is recommended.
The effect of the differential amplifier is as a $10 / 1$ attenuator.
Parameters, load and switches
Set as for V connection with +10 V at rated armature direct current.
Remove R75 and R76.

6.5.4 External current measurement via X21A

X21A-23 I_IST Negative current actual value via ribbon cable (e.g. of SIMADYN-D) X21A-24 M_I_IST Reference potential

Switch positions

S1 in position 2-3
S2 in position 2-3
S3 in position 1-3
The differential amplifier is active. The input signal is attenuated by a factor of $10(10 \mathrm{~V}$ to 1 V at rated direct current).

Parameter settings

U822 = Rated armature direct current
U823 = Input voltage for armature rated current / 10
U824 = 5 for bipolar actual-current signal
4 for unipolar (negative) actual-current signal

Optional offset correction via XN1

For 6QGXX Sitor sets with shunt current measurement and U/f and f/U conversion, the potentiometer (R202 on module 6QM400 for SITOR thyristor set 6QG22) must be adjusted to exactly voltage zero of the output voltage on the secondary side when the device is at zero current. See Chapter 6 of 6QG22 "Improvement of the noise immunity and drift problems of the analog current actual value in SITOR electronics". If this potentiometer is incorrectly set, not only an offset error, but also a scaling error in current measurement will occur. To allow extra adjustment of the offset for an exact current zero signal, connector XN1 on power interface A7041/A7042 must be connected to an analog output (± 10 volts) on control electronics A7001. The offset can be minimized by parameterizing the output voltage manually. However, this method does not eliminate
the scaling error mentioned above. We therefore urge you first to set the potentiometer as precisely as possible.

6.5.5 Notes on the difference input, control range limits, and grounding

The differential amplifier reduces the signal level to a tenth of the input voltage and specification of the output level is only guaranteed up to ± 10 volts.
If the output signal of the external armature current measurement is normalized to ± 10 volts at rated current, no overcurrent can be measured. If the output signal of the armature current measurement is normalized to ± 5 volts at rated current, a current of $2 x l_{\text {NOM }}$ can be measured. The user of the 6RA70 CM is urged to check whether the current measurement used provides a true image of the required overcurrent and the expected peak values within the necessary tolerance. Please ensure that image of the current in the current measurement circuit runs linearly up to the required overcurrent capability. Otherwise clipping of the actual value with current overshoots and finally a tripped fuse is to be expected.
The most common risk is that the last operational amplifier of the measuring circuit will be overdriven. The problem can usually be avoided by normalizing the external current measurement to ± 5 volts. For example, R 462 must be short-circuited in the 6QG22. For example, R 71 must be jumpered with an additional 100k in the 6QG35. This ensures a control range up to 2 x rated current (± 10 volts).
SIMOREG 6RA70 can process load signals up to ± 2.5 volts peak value ($=2.5 \times$ rated current). Using the differential input, it is therefore possible to process a level of ± 25 volts peak value. If a V connection with a load resistor without a downstream amplifier is used, it is advisable to dimension the load resistor for 1 volt at rated current. The internal resistor R76 with 10 ohms should be removed to minimize the effect of the resistance of the instrument lead and the terminal. Take care with the calculation if the resistor is left inside! Existing load resistors for 10 volts at rated current can be reduced to a tenth of their previous value and power loss. The connection is made at terminals X3-1 and X3-2, where X3-2 is the ground connection. There must be no other connections between the V connection and ground or zero potential.
If the connection of the V connection for 10 volts at rated current remains unchanged, one end of the load resistor should be grounded for EMC reasons. This can be done by directly placing a jumper between X3-1 and X3-2. If the V connection has already been grounded somewhere else, this connection must not be made. If an external measuring circuit is connected, its electronics reference potential must be grounded for EMC reasons. This can be done by directly placing a jumper between X3-1 and X3-2. If the measuring circuit has already be grounded somewhere else, the specified connection must not be made.
To avoid humming loops, the external measuring circuit or V connection must only be grounded at one point.

6.6 Connecting the firing transformer

6.6.1 General information

The 12 firing pulse drivers for the firing transformers are located on module A7041/A7042. The firing pulses for the first torque direction can be accessed by connector X21A and for the second torque direction, via connector X22A. Each firing pulse driver has its own open collector output with a parallel diode to electronics reference potential. A further diode is used to divert the opening overvoltages to P44 (plus 44 volts) internally. The 12 firing transformers (with internal 33 ohm series resistors) are located on module A7043 and are each connected between P24 and the firing circuit cable. The 12 firing pulse drivers can control a maximum of three firing transformers each (with internal 33 ohm series resistors). No short-circuit protection is provided! The user must ensure that the outputs are not overloaded. The maximum pulse current at each of these outputs is 1.5 amperes each. The whole circuit is dimensioned for long pulses.

6.6.1.1 Normal use (individual)

Connectors X21A and X22A are connected to connectors with the same designation on modules A7043 via two 26-way ribbon cables. The firing transformers on the module of the same name are then connected. If operation is in one current direction only, only the ribbon cable for X21A need be connected. If module A7043 is divided (broken), each firing transformer must be connected to the terminal row via two twisted cables.

6.6.1.2 Parallel connection of firing pulses

Up to three firing transformers (with 33 ohm series resistors installed) can be connected in parallel. They are supplemented by additional A7043 modules (firing transformers) (spare part order number 6RY1703-0CM01) connected via ribbon cable, or individual firing transformers are connected in parallel via two twisted cables each to the terminals of the same name.
a) Two or three firing transformers can be connected in parallel to increase the firing current. In addition, the secondary sides of the firing transformers are connected in parallel for each firing pulse. The resulting firing current should be tested with a current probe and an oscilloscope.
b) For operation in one current direction only (torque direction), the second half of module A7043 can be used for parallel connection of a power section or to increase the firing current. In this case, module A7043 of connector X21PAR is connected to connected X22PAR via a 26-way ribbon cable. Designations X21 and X26 on the firing pulse transformers are then no longer correct.

WARNING

Never connect more than three firing transformers to a firing pulse output!
There is a risk that the firing drivers on module A7041/A7042 (power interface) could be damaged by overloading.

Fuse on power interface (C98043- A7041/A7042) with F3 (1A medium time-lag fuse)

6.6.1.3 External amplification of firing pulses

If more than three power sections are to be connected in parallel, external firing pulse amplifiers (with PNP transistors) must be connected with a separate 24 V supply. The maximum possible load on the internal firing pulse drivers (open collectors) is 1.5 A per pulse.

Their electronics ground cables are also brought out at connectors X21A and X22A.
The P24 cables on connectors X21A and X22A must not be loaded with more than 1 A (not usually connected). The external firing pulse amplifiers must be supplied with $24 \mathrm{~V}(22 \mathrm{~V}$ to 30 V) by a separate power supply unit. The supply conductors of the external firing pulse amplifiers must be sufficiently interference-free to avoid misfiring of the thyristors under the applicable conditions.

Note 1:
Normally, pull-up resistors are installed in the external firing pulse amplifiers. If they are missing, extra pull-up resistors can be connected to increase noise immunity. However, the pulse current must not exceed 1 A per output.

Note 2:
If several firing pulse amplifiers are connected in parallel on the input side to separate power supply units (e.g. Sitor sets), the inputs must be decoupled with isolation diodes This measure is already included in the Sitor sets.

6.7 Connecting the voltage measurement

The following potentials on the power section must be connected to the voltage measurement (part of module A7044).
Power supply voltage 1U1, 1V1, and 1W1
Output voltage 1C1 and 1D1
The tabs are arranged in groups for the different power supply ranges.

Rated system voltage	Connect at	Parameters	Discharge resistor against ground
24 volts to 85 volts	85 V	$\mathrm{U} 821=85$	$134 \mathrm{k} \Omega$
86 volts to 250 volts	250 V	$\mathrm{U} 821=250$	$394 \mathrm{k} \Omega$
251 volts to 575 volts	575 V	$\mathrm{U} 821=575$	$910 \mathrm{k} \Omega$
575 volts to 1000 volts	1000 V	$\mathrm{U} 821=1000$	$1576 \mathrm{k} \Omega$

Note: Parameter P078 index. 001 must be set to the actual rated armature input voltage.
The voltage stage selected on the printed-circuit board must correspond to that in the software, otherwise the voltages measured will be grossly incorrect. External voltage transformers must be used for operation with supply voltages greater than 1000 V .
The leakage resistances against ground specified in the table are used to calculate the discharge current during hipot tests.

WARNING

The firing transformers no longer fulfill the safety requirements for supply voltages above 1000 volts.
The use of firing transformers with line isolation for higher voltages is then strongly recommended.

WARNING

Disconnect the power supply before making any connections!
The measurements might sustain serious or irreparable damage if connected incorrectly.
Non-observance of the safety instructions can result in death, severe personal injury, or substantial damage to property.

6.8 Connecting the fuse monitors

The fuses of one or more power sections can be monitored with one or more fuse monitors on the A7044. These cables must be connected in the same way as those of the voltage monitors. Each pair of adjacent tabs form a single monitor. The fuse monitors do not generate a ground leakage current.

Up to six groups of 6 fuse monitors each can be connected in parallel. This is achieved by looping through the signal of connector XS20_1 to connector XS20 on the next module. In this way, a maximum of 36 individual fuses can be monitored isolated from each other, or 72 fuses, if each pair is linked to a single phase.

Additional modules C98043-A7044 are available under spare part order number 6RY1703-0CM02.

WARNING

Disconnect the power supply before making any connections!
The monitors might sustain serious or irreparable damage if connected incorrectly.
Non-observance of the safety instructions can result in death, severe personal injury or substantial damage to property.

6.9 Parallel connection

6.9.1 Parallel connection of devices

6.9.1.1 Connection scheme for parallel connection of power sections, each with its own control electronics

with electronics power supply option, 24 V DC:

Fig. 6.9.1

1) The same phase sequence is required between $1 \mathrm{U} 1 / 1 \mathrm{~V} 1 / 1 \mathrm{~W} 1$.
2) The same phase sequence is required between 1C1/1D1.
3) The converters are connected by means of an (8-pin) shielded Patch cable of type UTP CAT5 according to ANSI/EIA/TIA 568, such as those used in PC networking.
A standard 5 m cable can be ordered directly from Siemens (order number: 6RY1707-0AA08). ($\mathrm{n}-1$) cables are needed to connect n converters in parallel.
The bus terminator must be activated (U805=1) on the converter at each end of the bus.

The terminal expansion option (CUD2) is required for each converter in a parallel connection.
A maximum of 6 converters can be connected in parallel.
When several converters are connected in parallel, the master unit should be positioned in the center to allow for signal transit times. Maximum length of paralleling interface cable between master and slave converters at each end of bus: 15 m .
For the purpose of current distribution, separate commutating reactors of the same type are required for each power section. Current distribution is determined by the differential reactor tolerance. A tolerance of 5\% or better is recommended for operation without derating (reduced current).

CAUTION

Parallel connections may only be made between converters with the same DC current rating!
6.9.1.2 Parameterization of SIMOREG converters for parallel connection

1) Standard operating mode

Master	Slaves
$\begin{array}{ll} \hline \text { U800 = 1 } & \begin{array}{l} \text { Paralleling interface active } \\ \text { if a SIMOREG CCP is } \\ \text { Used } \end{array} \end{array}$	U800 $=2 \quad \begin{aligned} & \text { Paralleling interface active } \\ & \text { Use master firing pulses }\end{aligned}$
U803 = 0 "N+1 operation" not active	
U804.01 = 30 Control word 1 U804.02 = 31 Control word 2 U804.03 $=167$ Actual speed value	U804.01 $=32$ Status word 1
U805 $=1$ (bus terminator) at the two outermost devices (at the two physical ends of the bus cable) 0 (no bus terminator) at all other devices	
U806.01 $=12$ master for one slave 13 master for 2 slaves 14 master for 3 slaves 15 master for 4 slaves 16 master for 5 slaves set U806.02 as U806.01	U806.01 $=2$ 1 slave U806.01 $=2$ and 3 2 slaves U806.01 $=2,3$ and 4 3 slaves U806.01 $=2,3,4$ and 5 4 slaves U806.01 $=2,3,4,5$ and 6 5 slaves set U806.02 as U806.01
P082 <> 0 operating mode for field	P082 $=0 \quad$ internal field is not used
Set P083 according to source of speed actual value	$\begin{array}{ll}\text { P083 }=4 & \text { Freely connected actual speed value } \\ \text { P609 }=6023 & \text { Use actual speed value of master }\end{array}$
$\mathrm{P} 100=\frac{\text { Motor_rated_current }}{\text { Number_of_SIMOREG_units }}$	$\mathrm{P} 100=\frac{\text { Motor_rated_current }}{\text { Number_of_SIMOREG_units }}$
Set P648, P649 according to source of control word	P648 $=6021$ Use control word 1 from master P649 $=6022$ Use control word 2 from master
	P821.01 = 31 Suppress alarm A031
P110 = actual armature resistance x no. of SIMOREG converters P111 = actual armature inductance x no. of SIMOREG converters The optimization run for current controller and precontrol (P051 $=25$) sets these parameters correctly.	P110 = set as on master P111 = set as on master

For further details about the operating principle of parallel connections between SIMOREG converters, please refer to Section 8, Function Diagrams, Sheet G195 (paralleling interface).

Notes:

- Control commands "Switch-on/Shutdown", "Enable operation", "Emergency stop" etc. must be connected to a group of parallel-connected SIMOREG converters via the master device. Terminals 37 and 38 must be permanently connected to terminal 34 on the slaves !
- Optimization runs must be started on the master device. All slaves must be connected and ready to run when optimization is started.

2) Operating mode "N+1 - operation" (Redundancy mode of the armature supply)

Master	Standby master	Slaves
U800 = 1 Paralleling interface active U800 $=2$ if a SIMOREG CCP is used	U800 = 2 Paralleling interface active Use master firing pulses	
U803 = 1 "N+1 operation" active		
$\begin{aligned} & \text { U804.01 }=30 \text { control word } 1 \\ & \text { U804.02 }=31 \text { control word } 2 \\ & \text { U804.02 }=167 \text { speed actual value } \\ & \text { U804.04 }=\text { any } \\ & \text { U804.05 }=\text { any } \\ & \text { U804.06 }=32 \text { status word } 1 \\ & \text { U804.07 }=\text { any } \\ & \text { U804.08 }=\text { any } \\ & \text { U804.09 }=\text { any } \\ & \text { U804.10 }=\text { any } \end{aligned}$	$\begin{aligned} & \text { U804.01 }=32 \text { status word } 1 \\ & \text { U804.02 }=\text { any } \\ & \text { U804.03 }=\text { any } \\ & \text { U804.04 }=\text { any } \\ & \text { U804.05 }=\text { any } \\ & \text { U804.06 }=30 \text { control word } 1 \\ & \text { U804.07 }=31 \text { control word } 2 \\ & \text { U804.08 }=167 \text { speed actual value } \\ & \text { U804.09 }=\text { any } \\ & \text { U804.10 }=\text { any } \end{aligned}$	$\begin{aligned} & \text { U804.01 = } 32 \text { status word } 1 \\ & \text { U804.02 = any } \\ & \text { U804.03 = any } \\ & \text { U804.04 = any } \\ & \text { U804.05 = any } \\ & \text { U804.06 = any } \\ & \text { U804.07 = any } \\ & \text { U804.08 = any } \\ & \text { U804.09 = any } \\ & \text { U804.10 = any } \end{aligned}$
U805 = 1 (bus terminator) 0 (no bus terminator)	on the two outermost devices (at the two physical ends of the bus cable) at all other devices	
$\begin{aligned} & \hline \text { U806.01 = } 12 \text { masters }+1 \text { slave } \\ & 13 \text { masters }+2 \text { slaves } \\ & 14 \text { masters }+3 \text { slaves } \\ & 15 \text { masters }+4 \text { slaves } \\ & 16 \text { masters }+5 \text { slaves } \\ & \text { U806.02 = } 2 \text { Slave } 2 \end{aligned}$	$\begin{aligned} \hline \text { U806.01 }= & 2 \text { Slave } 2 \\ \text { U806.02 }= & 12 \text { masters }+1 \text { slave } \\ & 13 \text { masters }+2 \text { slaves } \\ & 14 \text { masters }+3 \text { slaves } \\ & 15 \text { masters }+4 \text { slaves } \\ & 16 \text { masters }+5 \text { slaves } \end{aligned}$	U806.01 $=3$ 2 slaves U806.01 $=3$ and 4 3 slaves U806.01 $=3,4$ and 5 4 slaves U806.01 $=3,4,5$ and 6 5 slaves U806.02 $=$ set like U806.01
P082 <> 0 operating mode for field	$\mathrm{P} 082=0$ internal field is not used	
Set P083 according to source of	d actual value	P083 $=4 \quad$ Freely connected actual speed value P609 = 6023 Use actual speed value of master
$\mathrm{P} 100=\frac{\text { Motor_rated_current }}{\text { Number_of_SIMOREG_units }}$		
Set P648, P649 according to source of control word		P648 = 6021 Use control word 1 from master P649 = 6022 Use control word 2 from master
		$\begin{gathered} \text { P821.01 }=\text { 31 Suppress alarm } \\ \text { A031 } \end{gathered}$
U807 $=0.000$ s telegram failure does not cause a fault signal		
$\begin{aligned} & \mathrm{P} 110= \text { Actual armature } \\ & \text { resistance } \\ & \text { x no. of SIMOREG } \\ & \text { converters } \\ & \text { P111 }= \text { Actual armature } \\ & \text { inductance } \\ & \text { x no. of SIMOREG } \\ & \text { converters } \end{aligned}$ The optimization run for current controller and precontrol (P051 = 25) sets these parameters correctly.	P110 = set as on master P111 = set as on master	

Basic operating principle of the " $\mathrm{N}+1$ operation" mode:
In this mode it is possible to maintain operation with the remaining SIMOREG units if one unit should fail (e.g. fuse blown in the power section, appearance of a fault message). The functional SIMOREG units continue to run without interruption if one unit fails. During configuration, make sure that the power of only n units (instead of $n+1$ units) is sufficient for the application.
The parameters described above cause one SIMOREG unit to be defined as the "standby master". Providing the SIMOREG unit that is parameterized as the "master" functions correctly, the standby master operates as a "slave". If the master fails, the standby master assumes the "master" function (indicated by display parameter n810, segment 15 or binector B0225).
The "master" function is always transferred from the master to the standby master by sending a telegram via an intact paralleling interface. The master still has sufficient time to transfer the "master" function by sending a telegram even after its electronics supply voltage is switched off.

NOTE

An intact paralleling connection is essential for the redundancy mode of the armature supply. The "master" function cannot be transferred if the paralleling cable is interrupted.
If the electronics supply for one unit fails, the complete drive must be shut down before it is restored.

When the master is active, it sends the values set in accordance with U804.01 to 05. If a fault occurs on the master (i.e. after the "master" function has been transferred to the standby master), it sends the values set in accordance with U804.06 to 10.
When the standby master operates as a slave (i.e. when the master is active and functioning correctly), it sends the values set in accordance with U804.01 to 05 . When the standby master is operating as the master (i.e. after the "master" function has been transferred owing to a fault on the master), it sends the values set in accordance with U804.06 to 10.
For further details about the operating principle of SIMOREG units connected in parallel, see Section 8, Function diagrams, Sheet G195 (Paralleling interface).
Notes:

- Control commands "Switch-on/Shutdown", "Enable operation", "Emergency stop" etc. must be connected to a group of parallel-connected SIMOREG converters via the master device AND the "standby" master device.
Terminals 37 and 38 must be permanently connected to terminal 34 on the slaves.
- The speed setpoint and the actual speed must be connected to a group of parallel-connected SIMOREG converters via the master device AND the "standby" master device.
- All parameters except for those in the above list must be set identically on the master and the standby master.
- Optimization runs must be started on the master device. All slaves must be connected and ready to run when optimization is started.
The parameters described above enable the armature current to continue flowing without interruption if a fuse blows in the armature or field power section (on any one power section), a fault message appears on any one device or the electronics supply fails on any one device (master, standby master or slave).

CAUTION

As soon as the paralleling connection is interrupted (either by unplugging the paralleling cable or if the electronics supply voltage for the master fails), the master/slave assignment can no longer be guaranteed to function correctly.
The electronics supply voltage for the standby master must be switched off before the electronics supply voltage for the master is restored (in order to prevent two masters from being simultaneously active).

6.9.1.3 Redundancy mode of the field supply

In "N+1 operation" mode, a redundancy mode can also be defined for the field supply included in the SIMOREG unit. The 3C, 3D output of the SIMOREG field supply for the master and the standby master is connected in parallel with the motor field winding for this purpose.

In normal operation the field voltage is supplied via the master and the field firing pulses of the standby master are disabled. If the master fails, it transfers the "master" function to the standby master. At the same time, the field firing pulses of the master are disabled and the field voltage is supplied via the standby master.

Since the field voltages are connected in parallel, part of the total motor field current flows via the free-running branch of the relevant field power section with the disabled field firing pulses. The free-running current detected by the "partner" device must therefore be added to the actual internal field current K0266 with P612.02 in order to determine the total motor field current (indicated by parameter r035).
The following settings are consequently required on the master and the standby master for the redundancy mode of the field supply in addition to the parameters specified in the table in Section 6.9.1.2.2:

P082 <> $0 \quad$ (Operating mode for field)
P612.02 $=6024$ (Addition of receive word 4 to actual field current controller value)
U804.04 = $266 \quad$ (Send word 4 if master device is active, actual internal field current)
U804.09 = 266 (Send word 4 after "master" function transferred to standby master, actual internal field current)

The parameters described above enable the field current to continue flowing without interruption if one device fails (fuse blown in the armature or field power section, appearance of a fault message).

NOTE

An intact paralleling connection is essential for the redundancy mode of the field supply and the electronics supply voltage for the master and the standby master must likewise be intact.

If redundancy of the field supply needs to be maintained even if the electronics supply voltage for the master or the standby master fails, the total actual motor field current must be externally sensed. This value must be fed to the master and the standby master by means of P612.

Notes on commissioning:

- The following parameters must be identically set on the master and the standby master in addition to the above-mentioned parameters, after all the necessary connections have been made: P076.02, P078.02.
- The field supply must be optimized on the master. Optimization runs must be started on the master device for this purpose (current controller optimization run, ..., recording of field characteristics). All slaves must be connected and ready to run when optimization is started.

After the field supply for the master has been optimized, the following master parameters must be read and set to the same values on the standby master: P081, P102, P103, P112, P115 to P139, P255, P256, P275, P276 as well as all field-specific settings that may have been made (see Section 8, Function diagrams, Sheets G165 and G166).

6.9.2 Parallel connection of power sections

6.9.2.1 Current distribution / symmetry:

When connecting power sections in parallel, correct current distribution is important. None of the power sections must be overloaded in unsuitable conditions. Provision for sufficient power reduction must be made if necessary. The same type of construction and design for all parallel firing transformers / firing pulse amplifiers is therefore urgently recommended. Current distribution in the parallel connected power sections must be checked during commissioning and, if necessary, corrected by adapting the series impedances (commutating reactors, supply leads, and transformer). If there are unexpected problems, the simultaneity of the triggering pulses on the thyristors must be checked. The operating times of the firing pulses must not differ by more than 200 nanoseconds. We recommend comparing the firing currents of the thyristors with two small current probes on the oscilloscope. In the case of a galvanic connection, the power section must be safely de-energized to prevent accidents.

6.9.2.2 Comment about voltage measurement / synchronization:

The most suitable method is the connection of voltage measurements $1 \mathrm{U} 1,1 \mathrm{~V} 1$, and 1 W 1 and the branching points of the network supply. The motor voltage connections 1C1 and 1D1 are noncritical.

6.9.2.3 Comment about fuse monitoring

As far as possible, all fuses of the parallel connected devices should be monitored. Especially important is the monitoring of the fuses on the branches that are not measured by a current transformer. Here, a current splitting unbalance by the SIMOREG converters is not measurable.

NOTE:

The currents measured through the SIMOREG converters (current distribution) are only based on the values derived from the current transformer. Current distribution in the phase that is not routed through current transformers (usually 1V1), cannot be measured on the SIMOREG itself.
When only one 6RA70 closed-loop control electronics board is used, with a corresponding parallel connection of firing pulses, it is not easy to calculate the current distribution between the power sections. One possible method is to measure the current on one device and calculate the other currents, and thus the total current, on the basis of the known current distribution. Alternatively, a separate closed-loop control board can be installed for each power section, which can calculate the assigned direct current itself. These individual currents can then be added and applied.

WARNING

Disconnect the power supply before making any connections!
The measurements might sustain serious or irreparable damage if connected incorrectly.
The device must be installed in conformance with the safety regulations (e.g. DIN, VDE) and all other relevant national and regional guidelines. Correct grounding, cable dimensioning, and the relevant short-circuit protection must be provided to guarantee operational safety.

Non-observance of the safety instructions can result in death, severe personal injury or substantial damage to property .

6.10 Field supply

6.10.1 Circuit diagram of the power section

$\mathrm{a}=$ Betatherm $1456 \mathrm{~mm}^{2}$
Gating leads are Betatherm 145 1mm²

Fig. 6.10.1.1

6.10.2 Voltage measurement of the field power section

Rated supply voltage	Parameters	Ground leakage resistance
130 V (field extra-low voltage)	$\mathrm{U} 828=130$	$510 \mathrm{k} \Omega$
460 V (state as delivered)	$\mathrm{U} 828=460$	$1815 \mathrm{k} \Omega$

6.10.3 Conversion to field extra-low voltage

For a field supply of less than 130 V supply voltage, the field supply section of module A7044 must be converted.
-Insert wire jumpers acc. to Fig. 6.10.3.1
Ring cable lugs for M6, 6.3 mm Faston connectors, wire cross section $>0.75 \mathrm{~mm}^{2}$
-Set parameter U828 = 130 (field extra-low voltage).
-Set P078 index. 002 to the actual field rated input voltage

Fig. 6.10.3.1

WARNING

Disconnect the power supply before making any connections!
The measurements might sustain serious or irreparable damage if connected incorrectly.
These two wire jumpers must be removed again for operation with a higher field supply voltage.

6.11 Fuses and commutating reactors

6.11.1 Notes on commutating reactors

The line impedance including commutating reactors must be equivalent of between 4% and 10% short-circuit voltage. Commutating reactors can be provided by the customer to limit commutating voltage dips in the supply system. Commutating reactors must be dimensioned according to the regional guidelines for feedback on the network.

Please refer to Catalog LV60 regarding ordering data and selection criteria of commutating reactors.

6.11.2 Fuses for the field circuit

For technical data, configuring data and dimension drawings, please refer to Catalog DA94.1.

Recommended fuses for the field circuit

Max. permissible field current	Fuse order No.	Rated current of fuse
10 A	5 SD420	16 A
15 A	5 SD440	25 A
25 A	5 SD440	25 A
30 A	5 SD480	30 A
40 A	$3 N E 1802-0$	40 A

6.11.3 Fuses in the power interface

Board C98043-A7042:
Wickmann 198 1A / 250 V 5×20 mm slow
Wickmann 343 1A / 250 V $6.3 \times 32 \mathrm{~mm}$ slow
Schurter FSD 1A / 250 V $5 \times 20 \mathrm{~mm}$ slow, order code 0034.3987
Schurter FST 1A / 250 V $5 \times 20 \mathrm{~mm}$ slow, order code 0034.3117
Board C98043-A7041:
F 6.3A / $250 \mathrm{~V} 5 \times 20 \mathrm{~mm}$ (Fast-Acting Fuse)
e.g.. Wickmann 193, Littlefuse 217P Series

6.12 Arrangement of printed circuit boards

Fig. 6.12.1

6.13 Arrangement of customer connections

 (terminals, connectors, Faston tabs)
Module C98043-A7001 (CUD1)

Fig. 6.13.1

Module C98043-A7006 (CUD2)

Fig. 6.13.2

Module C98043-A7042

Fig. 6.13.3

Module C98043-A7043

Fig. 6.13.4

Note:
Each of the following connections are connected in parallel:

- Terminals with the same designation on terminal strips XIMP_1, XIMP_2 and XIMP_3
- Terminals with the same designation on terminal strips XIMP_4, XIMP_5 and XIMP_6
- X21A and X21PAR
- X22A and X22PAR

Module C98043-A7044

Fig. 6.13.5

Module C98043-A7041

Fig 6.13.6

6.14 Terminal assignment (terminals, Faston tabs, ribbon cables)

WARNING
The converter might sustain serious or irreparable damage if connected incorrectly.
The power cables and/or busbars must be secured mechanically with strain relief outside the converter.

Field circuit

Terminal type: European standard terminal strip (screw-type terminal) maximum conductor cross section $10 \mathrm{~mm}^{2}$

Function	Terminal XF	Connection values/remarks
Supply connection	3 U 1	$2 \mathrm{AC} 400 \mathrm{~V}(-20 \%), 2 \mathrm{AC} 460 \mathrm{~V}(+10 \%)$
	3 W 1	
Field winding connection	3 C	Rated DC voltage $325 \mathrm{~V} / 373 \mathrm{~V}$
	3 D	For $2 \mathrm{AC} 400 \mathrm{~V} / 460 \mathrm{~V}$ supply connection

Type of connection:Faston tabs, 6.3 mm

Function	Connection	Connection values/remarks
	XF_U	For conversion of supply voltage measurement (field) to
	XF_W	extra-low voltage acc. to Chapter 6.10.2.

Electronics power supply

Module C98043-A7042 power interface

Function	Connect.	$\begin{gathered} \text { Terminal } \\ \text { XP } \end{gathered}$	Connection values/remarks
Incoming supply 400V	$\begin{array}{ll} \hline & 1 \\ \hline & 2 \\ \mathrm{NC} & 3 \end{array}$	$\begin{aligned} & \hline 5 \mathrm{U} 1 \\ & 5 \mathrm{~W} 1 \\ & 5 \mathrm{~N} 1 \end{aligned}$	$\begin{array}{cl} 2 \mathrm{AC} 380 \mathrm{~V} & (-25 \%) \text { to } 460 \mathrm{~V}(+15 \%) ; \mathrm{I}_{\mathrm{n}}=1 \mathrm{~A} \\ \\ (-35 \% \text { for } 1 \mathrm{~min}) \end{array}$ Internal fusing with F1, F2 (1A medium time lag) on module C98043-A7042 (see Chapter 6.11.3) External fusing max. 6A, characteristic C
or			
Incoming supply 230 V	$\begin{array}{r} 1 \\ - \\ 2 \end{array}$	$\begin{aligned} & \hline 5 \mathrm{U} 1 \\ & 5 \mathrm{~W} 1 \\ & 5 \mathrm{~N} 1 \end{aligned}$	$\begin{gathered} \text { 1AC } 190 \mathrm{~V} \begin{array}{l} (-25 \%) \text { to } 230 \mathrm{~V}(+15 \%) ; \mathrm{I}_{\mathrm{n}}=2 \mathrm{~A} \\ (-35 \% \text { for } 1 \mathrm{~min}) \end{array} \\ \hline \end{gathered}$ Internal fusing with F1, F2 (2 x 1A medium time lag) on module C98043-A7042 (see Chapter 6.11.3) External fusing max. 6A, characteristic C

NOTE

In the case of line voltages which exceed the tolerance range specified in Section 3.4, the electronics supply voltage and the field circuit mains supply connection must be adjusted by means of transformers to the permissible value stated in Section 3.4. It is essential to use an isolating transformer for rated line voltages in excess of 460V.
The rated supply voltage for the armature circuit (index 001) and the field circuit (index 002) must be set in parameter P078.

Open-loop and closed-loop control section

Terminal type:

X171 to X175

XR_1, XL_1, XS, XT

Plug-in terminal (screw-type)
Maximum connection cross-section $1.5 \mathrm{~mm}^{2}$
MSTB2.5 plug-in terminal
Maximum connection cross-section $2.5 \mathrm{~mm}^{2}$

Analog inputs - setpoint inputs, reference voltage (see also Section 8, sheet G113)
Module C98043-A7001 (CUD1)

Function		$\begin{gathered} \hline \text { Terminal } \\ \text { X174 } \end{gathered}$	Connection values/remarks
Reference	M P10 N10	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\} \begin{aligned} & \left. \pm 1 \% \text { at } 25^{\circ} \mathrm{C} \text { (stability } 0.1 \% \text { per } 10^{\circ} \mathrm{K}\right) ; 10 \mathrm{~mA} \text { short- } \\ & \text { circuit-proof }\end{aligned}$
Select input	main setpoint + main setpoint -	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	Input type (signal type) parameterizable: - Differential input $\pm 10 \mathrm{~V} ; 150 \mathrm{k} \Omega$ - Current input $0-20 \mathrm{~mA} ; 300 \Omega$ or 4-20mA; 300Ω Resolution can be parameterized up to approx. $555 \mu \mathrm{~V}$ (± 14 bit) Common mode suppression: $\pm 15 \mathrm{~V}$
Select input	analog 1 + analog 1 -	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	

Analog inputs - actual speed inputs, tacho inputs (see also Section 8, sheet G113)
Module C98043- A7041/A7042 power interface

Function	Terminal XT	Connection values/remarks
Tacho connection 8V to 270V	103	$\pm 270 \mathrm{~V} ;>143 \mathrm{k} \Omega$
Ground analog M	104	

Pulse encoder input (see also Section 8, sheet G145)
Module C98043-A7001 (CUD1)

Function		$\begin{gathered} \hline \text { Terminal } \\ \mathbf{X 1 7 3} \end{gathered}$	Connection values/remarks	
Supply (+13.7 V to +15.2 V)		26	200mA; short-circuit-proof (electronic protection) Overload response: Fault message F018 Warning signal A018	
Ground pulse encoder M		27	Load: $\leq 5.25 \mathrm{~mA}$ at 15 V (w/o switching losses, see below for cable, cable length, shield connection)	
Track 1	Plus connection Minus connection	2829		
Track 2	Plus connection Minus connection Plus connection	30	Switching hysteresis: see below	
		31	Pulse ratio:	1:1
Zero marker		32	Level of input pulses: see below.	
	Plus connection Minus connection	33	Track offset:	Table 1 see below.
			Pulse frequency:	Table 2 see below.

Characteristic data of pulse generator evaluation electronics

Level of input pulses:

Encoder signals (symmetrical / asymmetrical) up to a max. 27V differential voltage can be processed by the analyzer electronics.
Electronic adaptation of evaluation electronics to the signal voltage of the encoder:

- Rated input voltage range 5V (P142=0):

Low level: \quad Differential voltage $<0.8 \mathrm{~V}$
High level: Differential voltage $>2.0 \mathrm{~V}$
Hysteresis: $\quad>0.2 \mathrm{~V}$
Common-mode control range: $\pm 10 \mathrm{~V}$

- Rated input voltage range 15V (P142=1):

Low level: Differential voltage $<5.0 \mathrm{~V}$
High level: Differential voltage $>8.0 \mathrm{~V}$
Restriction: See switching frequency
Hysteresis: >1V
Common-mode control range: $\pm 10 \mathrm{~V}$
If the pulse encoder does not supply symmetrical encoder signals, then its ground must be routed as a twisted-pair lead with every signal cable and connected to the negative terminals of track 1, track 2, and the zero marker.

Switching frequency:

The maximum permissible frequency of the encoder pulses is 300 kHz . To ensure correct evaluation of the encoder pulses, the minimum distance $T_{\text {min }}$ between two encoder signal edges (tracks 1 and 2) specified in the table must be observed:
Table 1:

	Rated input voltage 5V		Rated input voltage 15 V		
Differential voltage 1)	2 V	$>2.5 \mathrm{~V}$	8 V	10 V	$>14 \mathrm{~V}$
$\mathrm{~T}_{\min } 2$)	630 ns	380 ns	630 ns	430 ns	380 ns

1) Differential voltage at the terminals of the evaluation electronics
2) The phase error L_{G} (deviating from 90°), which may occur as the result of encoder and cable, can be calculated from $\mathrm{T}_{\text {min }}$:

$$
\mathrm{L}_{\mathrm{G}}= \pm\left(90^{\circ}-\mathrm{f}_{\mathrm{p}} * \mathrm{~T}_{\min } * 360^{\circ}\right)
$$

$\mathrm{L}_{\mathrm{G}}=$ phase error
$\mathrm{f}_{\mathrm{p}}=$ pulse frequency
$\mathrm{T}_{\text {min }}=$ minimum distance between edges
This formula applies only if the encoder pulse ratio is $1: 1$.

If the pulse encoder is incorrectly matched to the encoder cable, disturbing cable reflections will be produced at the receive end. These reflections must be damped so that the encoder pulses can be correctly evaluated. The limit values listed in the table below must be maintained to ensure that the resultant power loss in the adapting element of the evaluation electronics is not exceeded.
Table 2:

$\mathrm{f}_{\max }$	50 kHz	100 kHz	150 kHz	200 kHz	300 kHz
Differential voltage 3)	Up to 27 V	Up to 22 V	Up to 18 V	Up to 16 V	Up to 14 V

3) Differential voltage of encoder pulses at no load (approximate encoder power supply voltage)

Cable, cable length, shield connection:

The encoder cable capacitance must be recharged at each encoder edge change. The RMS value of this current is proportional to the cable length and the pulse frequency and must exceed the current specified by the encoder manufacturer. A suitable cable as recommended by the encoder manufacturer must be used. The maximum cable length must not be exceeded. Generally, a twisted cable pair with common pair shield is sufficient for each track. Crosstalk between the cables is thus reduced. The shielding of all pairs protects against noise pulses. The shield must be connected to the shield bar of the SIMOREG converter with a large contact surface.

Temperature sensor inputs - Motor interface (1) (see also Chapter 8, Sheet G185)
Module C98043-A7001 (CUD1)

Function	Terminal $\mathbf{X 1 7 4}$	Connection values/remarks
Motor temperature	22	Sensor acc. to P490 index 1
Connection of temperature sensor	23	The cable to the temperature sensor on the motor must be shielded and connected to ground at both ends.
Ground analog M	24	

Analog outputs (see also Section 8, sheet G115)
Module C98043-A7001 (CUD1)

Function	Terminal X175	Connection values/remarks
Actual current	12	$0 \ldots \pm 10 \mathrm{~V}$ corresponds to $0 \ldots \pm 200 \%$
Ground analog M	13	Converter rated DC current (r072.002)
		Max. load 2mA, short-circuit-proof
Select output \quad analog 1	14	$0 \ldots \pm 10 \mathrm{~V}$, max. 2mA
Ground analog M	15	Short circuit proof
Select output	analog 2	16
Ground analog M		Resolution ± 11 bit

Digital inputs (see also Section 8, sheet G110)
Module C98043-A7001 (CUD1)

Function	$\begin{gathered} \text { Terminal } \\ \text { X171 } \end{gathered}$	Connection values/remarks
Supply (output) Ground digital M	34 35	24V DC, short circuit proof max. load 200mA (terminals 34, 44, and 210 combined), internal supply with respect to internal ground Overload response: Error signal F018 Warning signal A018
Select input binary 1	36	$\begin{aligned} & \mathrm{H} \text { signal: }+13 \mathrm{~V} \text { to }+33 \mathrm{~V} \\ & \mathrm{~L} \text { signal: }-33 \mathrm{~V} \text { to }+3 \mathrm{~V} \text { or terminal open } \\ & 8.5 \mathrm{~mA} \text { at } 24 \mathrm{~V} \end{aligned}$
Power On / Shutdown H signal: Power ON Line contactor CLOSED + (with H signal at terminal 38), acceleration along rampfunction generator ramp to operating speed. L signal: Shutdown Deceleration along rampfunction generator ramp to $\mathrm{n}<$ $\mathrm{n}_{\text {min }}(\mathrm{P} 370)+$, controller disable + line contactor OPEN. See Section 9.3.3 for exact function description.	37	
Enable operation H signal: Controller enabled L signal: Controller disabled See Section 9.3.4 for exact function description	38	
Select input binary 2	39	

Monitoring inputs

Module C98043-A7041/A7042 power interface

Function	$\begin{gathered} \text { Terminal } \\ \text { XL_2 } \end{gathered}$	Connection values/remarks
Fan monitoring (L signal = interference F067)-	$\begin{aligned} & \hline 122 \\ & 123 \\ & \hline \end{aligned}$	Differential inputs Max. input voltage $\pm 50 \mathrm{~V}$ Common mode range -2 V to +50 V L signal: < 8V H signal: $>11 \mathrm{~V}$ Input resistance 30 kohms
External monitoring (L signal = interference F003)-	$\begin{aligned} & 124 \\ & 125 \end{aligned}$	

Safety shutdown (E-STOP) (see also Section 9.8 and Section 8, sheet G112)
Module C98043-A7041/A7042 power interface

Function	Terminal XS	Connection values/remarks
Supply for safety shutdown (output)	106	24V DC, max. load 50mA, short-circuit-proof Overload response: Error signal F018 Warning signal A018
Safety shutdown switch	105	$\mathrm{I}_{\mathrm{e}}=20 \mathrm{~mA}$
Safety shutdown pushbutton	107	NC contact $\mathrm{I}_{\mathrm{e}}=30 \mathrm{~mA}$
Safety shutdown Reset	108	NO contact $\mathrm{I}_{\mathrm{e}}=10 \mathrm{~mA}$

NOTICE

Both $105+106$ terminals or 106, $107+108$ terminals can be used! Combined use of terminals 105-108 will result in a malfunction.

Terminal 105 is connected to terminal 106 in the state as delivered.

Digital outputs (see also Section 8, sheet G112)
Module C98043-A7001 (CUD1)

Function	Terminal X171	Connection values/remarks
Select output binary 1	46	H signal: +20V to +26V
Ground M	47	L signal: 0 to +2V
Short-circuit-proof 100mA		
Select output binary 2	48	Internal snubber circuit (free-wheeling diode)
Ground M	54	Overload response: Error signal F018

Control outputs (isolated relay outputs)
Module C98043-A7041/A7042 power interface

Function	Terminal XR_1	Connection values/remarks
Relay for line contactor	109	Load capability:
	110	$\leq 250 \mathrm{~V}$ AC, $4 \mathrm{~A} ; \cos \Phi=1$
		$\leq 250 \mathrm{AC}, 2 \mathrm{~A} ; \cos \Phi=0,4$
		External fusing max. 4A, characteristic C recommended

Module C98043-A7041/A7042 power interface

Function	Terminal XL_2	Connection values/remarks
Relay for fan protection	120	Load capability:
	121	$\leq 250 \mathrm{~V}$ AC, $4 \mathrm{~A} ; \cos \Phi=1$
		$\leq 250 \mathrm{VAC}, 2 \mathrm{~A} ; \cos \Phi=0,4$
		$\leq 30 \mathrm{~V}$ DC, 2 A
		External fusing max. 4A, characteristic C recommended

Serial interface 1 RS232 (9-pin SUBMIN D socket connector) (G-SST1)
X300
Use a shielded connecting cable! Ground shield at both ends!
Module C98043-A7005 PMU

Con. pin X300	Function
1	Housing ground
2	Receive cable to RS232 (V.24) standard
3	Send and receive cables to RS485, two-wire, positive differential input/output
4	Input: Reserved for later use
5	Ground
6	5 V voltage supply for OP1S
7	Send cable to RS232 (V.24) standard
8	Send and receive cables to RS485, two-wire, positive differential input/output
9	Ground

Cable length: Up to 15 m according to EIA Standard RS232C
Up to 30 m capacitive load, max. 2.5 nF (cable and receiver)
A serial connection can be made to a PLC or PC with cable connector X300 on the PMU. The device can then be controlled and operated from a central control center or control room.

Serial interface 2 RS485 (G-SST2)
Module C98043-A7001 (CUD1)

Function	Terminal X172	Connection values/remarks
TX+	56	RS485, 4-wire send cable, positive differential output
TX-	57	RS485, 4-wire send cable, negative differential output
RX+/TX+	58	RS485, 4-wire receive cable, positive differential input, 2-wire send/receive cable, positive differential input
RX-/TX-	59	RS485, 4-wire receive cable, negative differential input, 2-wire send/receive cable, negative differential input
M	60	Ground

Cable length: For transmission rate $=187.5 \mathrm{kBd} \Rightarrow 600 \mathrm{~m}$
For transmission rate $\leq 93.75 \mathrm{kBd} \Rightarrow 1200 \mathrm{~m}$
The following must be observed: DIN 19245 Part 1
In particular, the difference in potential between the data reference potentials M of all interfaces must not exceed $-7 \mathrm{~V} /+12 \mathrm{~V}$. If this cannot be guaranteed, equipotential bonding must be provided.

Activation of interface 1 or 2 :

- Set the baud rate in parameter P783 or P793.
- Set the protocol in parameter P780 or P790.

Temperature sensor inputs

Type of connection:Faston tabs, 2.8 mm
Module C98043-A7041/A7042 power interface

Function	Connection	Connection values/remarks
Heat sink temperature	X6	Sensor acc. to U830
Connection of temperature sensor	X7	

Current transformer connections

Terminal type: Cage clamp terminal maximum connection cross-section $1.5 \mathrm{~mm}^{2}$

Module C98043-A7041/A7042 power interface

Function	Terminal X3	Connection values/remarks	
Current transf.T1	Connect. k1	4	see Chapter 6.3
	Connect. I1 (M)	3	Configuration of current transformer acc. to U824
Current transf.T2	Connect. I2 (M)	2	
	Connect. k2	1	

Balance actual current measurement

Type of connection:Faston tabs, 2.8 mm
Module C98043-A7041/A7042 power interface

Function	Connection	Connection values/remarks
Feed-in point for balance actual current measurement	XN1	see Chapter 6.5

Monitoring, field supply

Voltage measurement

Type of connection: Faston tabs, 6.3 mm
Module C98043-A7044 voltage measurement

Function	Connection	Connection values/remarks
Meas. of the supply voltage Phases U-V-W (1000V)	$\begin{aligned} & \hline \mathrm{XU1} \\ & \mathrm{xV} 1 \\ & \mathrm{xW} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Rated voltage network (armature) }=>575 \text { to } 1000 \mathrm{~V} \\ & (\text { (U821 }=1000) \end{aligned}$
Meas. of armature voltage (1000V)	$\begin{aligned} & \hline \mathrm{XC1} \\ & \mathrm{XD} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Rated voltage network (armature) }=>575 \text { to } 1000 \mathrm{~V} \\ & (\text { (U821 = 1000) } \end{aligned}$
Meas. of the supply voltage Phases U-V-W (575V)	$\begin{aligned} & \mathrm{XU} 2 \\ & \mathrm{XV2} \\ & \mathrm{XW} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Rated voltage network (armature) }=>250 \text { to } 600 \mathrm{~V} \\ & \text { (U821 = 575) } \end{aligned}$
Meas. of armature voltage (575V)	$\begin{array}{r} \mathrm{XC2} \\ \mathrm{XD} 2 \\ \hline \end{array}$	$\begin{array}{\|l} \begin{array}{l} \text { Rated voltage network (armature) }=>250 \text { to } 600 \mathrm{~V} \\ \text { (U821 = 575) } \end{array} \\ \hline \end{array}$
Meas. of the supply voltage Phases U-V-W (250V)	$\begin{aligned} & \hline \text { XU3 } \\ & \text { XV3 } \\ & \text { XW3 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Rated voltage network (armature) }=>85 \text { to } 250 \mathrm{~V} \\ & \text { (U821 = 250) } \end{aligned}$
Meas. of armature voltage (250V)	$\begin{aligned} & \mathrm{XC3} \\ & \text { XD3 } \end{aligned}$	$\begin{aligned} & \text { Rated voltage network (armature) }=>85 \text { to } 250 \mathrm{~V} \\ & (\text { U821 = 250) } \end{aligned}$
Meas. of the supply voltage Phases U-V-W (85V)	$\begin{array}{r} \mathrm{XU4} \\ \mathrm{XV4} \\ \mathrm{XW} 4 \\ \hline \end{array}$	$\begin{aligned} & \text { Rated voltage network (armature) }=\leq 85 \mathrm{~V} \\ & \text { (U821 = 85) } \end{aligned}$
Meas. of armature voltage (85V)	$\begin{aligned} & \hline \mathrm{XC4} \\ & \mathrm{XD} 4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { Rated voltage network (armature) }=\leq 85 \mathrm{~V} \\ \text { (U821 = 85) } \end{array} \end{aligned}$

Fuse monitoring

Type of connection: Faston tabs, 6.3 mm
Module C98043-A7044 fuse monitoring

Function	Connection	Connection values/remarks
$\begin{array}{\|l} \hline \text { Fuse 1 } \\ (1000 \mathrm{~V}) \end{array}$	$\begin{aligned} & \hline \text { XS1_1 } \\ & \text { XS2_1 } \\ & \hline \end{aligned}$	Measuring cables for the monitored fuses at network rated voltage $=>575$ to 1000 V *)
$\begin{aligned} & \text { Fuse 2 } \\ & (1000 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { XS3_1 } \\ & \text { XS4_1 } \end{aligned}$	
$\begin{array}{\|l\|} \hline \text { Fuse } 3 \\ \text { (1000V) } \end{array}$	$\begin{aligned} & \hline \text { XS5_1 } \\ & \text { XS6_1 } \end{aligned}$	
$\begin{aligned} & \hline \text { Fuse 4 } \\ & (1000 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { XS7_1 } \\ & \text { XS8_1 } \\ & \hline \end{aligned}$	
$\begin{array}{\|l} \hline \text { Fuse 5 } \\ (1000 \mathrm{~V}) \\ \hline \end{array}$	$\begin{aligned} & \text { XS9_1 } \\ & \text { XS10_1 } \end{aligned}$	
$\begin{aligned} & \text { Fuse 6 } \\ & (1000 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { XS11_1 } \\ & \text { XS12_1 } \end{aligned}$	
$\begin{aligned} & \text { Fuse } 1 \\ & (575 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { XS1_2 } \\ & \text { XS2_2 } \end{aligned}$	Measuring cables for the monitored fuses at network rated voltage > 250 to 600 V *)
$\begin{aligned} & \text { Fuse } 2 \\ & (575 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { XS3_2 } \\ & \text { XS4_2 } \end{aligned}$	
$\begin{aligned} & \text { Fuse 3 } \\ & (575 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { XS5_2 } \\ & \text { XS6_2 } \end{aligned}$	
$\begin{aligned} & \text { Fuse } 4 \\ & (575 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { XS7_2 } \\ & \text { XS8_2 } \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { Fuse 5 } \\ & (575 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { XS9_2 } \\ & \text { XS10_2 } \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { Fuse 6 } \\ & (575 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { XS11_2 } \\ & \text { XS12_2 } \end{aligned}$	
$\begin{aligned} & \text { Fuse } 1 \\ & (250 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{XS} 1 _3 \\ & \mathrm{XS} 2 _3 \\ & \hline \end{aligned}$	Measuring cables for the monitored fuses at network rated voltage >85 to 250 V *)
$\begin{aligned} & \text { Fuse 2 } \\ & (250 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \hline \text { XS3_3 } \\ & \text { XS4_3 } \\ & \hline \end{aligned}$	
$\begin{aligned} & \hline \text { Fuse } 3 \\ & (250 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { XS5_3 } \\ & \text { XS6_3 } \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { Fuse } 4 \\ & (250 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { XS7_3 } \\ & \text { XS8_3 } \\ & \hline \end{aligned}$	
$\begin{aligned} & \hline \text { Fuse } 5 \\ & (250 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { XS9_3 } \\ \text { XS10_3 } \\ \hline \end{gathered}$	
$\begin{array}{\|l\|} \hline \text { Fuse } 6 \\ (250 \mathrm{~V}) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { XS11_3 } \\ & \text { XS12_3 } \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { Fuse } 1 \\ & (85 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \text { XS1_4 } \\ & \text { XS2_4 } \end{aligned}$	Measuring cables for the monitored fuses at network rated voltage $=20$ to 85 V *)
$\begin{aligned} & \hline \begin{array}{l} \text { Fuse } 2 \\ (85 \mathrm{~V}) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { XS3_4 } \\ & \text { XS4_4 } \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { Fuse } 3 \\ & \text { (85V) } \end{aligned}$	$\begin{aligned} & \text { XS5_4 } \\ & \text { XS6_4 } \end{aligned}$	
$\begin{array}{\|l} \hline \text { Fuse } 4 \\ (85 \mathrm{~V}) \\ \hline \end{array}$		
$\begin{aligned} & \hline \text { Fuse } 5 \\ & (85 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { XS9_4 } \\ & \text { XS10_4 } \\ & \hline \end{aligned}$	
$\begin{aligned} & \hline \text { Fuse } 6 \\ & (85 \mathrm{~V}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { XS11_4 } \\ & \text { XS12_4 } \end{aligned}$	

*) The fuse monitoring device us usually connected to the armature current circuit but can also be used for the field circuit, fan circuit, or the primary circuit of a heavy current transformer. The connections of the fuse monitoring used are based on the voltage applied to a tripped fuse.

The fuse monitor is switched on and off in parameter U831 ($0=$ OFF, $1=\mathrm{ON}$).

Firing pulse transformer (C98043-A7043)

Terminal type: $\begin{aligned} & \text { Cage clamp terminal } \\ & \text { maximum connection cross-section } 1.5 \mathrm{~mm}^{2}\end{aligned}$
Fuse of P24 on power interface (C98043-A7041/A7042) with F3 (1A medium time-lag fuse)
Module C98043-A7043 firing pulse module

Function	Terminal XIMP_1	Connection values/remarks
Gate control for firing pulse transformer for thyristor V11	$\begin{gathered} \hline \text { IMP11 } \\ \text { P24 } \end{gathered}$	When the firing pulse transformer module is divided (see Chapter 6.4), the gate controls for the firing pulse transformers are led through these terminal connections The following connections must be implemented for this: XIMP_1-IMP11 \rightarrow XIMP11 - IMP11 (for thyristor V11) XIMP_1-P24 \rightarrow XIMP11-P24 (for thyristor V11) XIMP_1-IMP12 \rightarrow XIMP12 - IMP12 (for thyristor V12) XIMP_1-P24 \rightarrow XIMP12 - P24 (for thyristor V12) etc.
Gate control for firing pulse transformer for thyristor V12	$\begin{gathered} \text { IMP12 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V13	$\begin{gathered} \hline \text { IMP13 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V14	$\begin{gathered} \hline \text { IMP14 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V15	$\begin{gathered} \hline \text { IMP15 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V16	$\begin{gathered} \text { IMP16 } \\ \text { P24 } \end{gathered}$	

Module C98043-A7043 firing pulse module

Function	Terminal XIMP_2	Connection values/remarks
Gate control for firing pulse transformer for thyristor V11	$\begin{gathered} \text { IMP11 } \\ \text { P24 } \end{gathered}$	The terminals of terminal strip IMP_2 are parallel to the terminals of the same designation of terminal strip XIMP_1.
Gate control for firing pulse transformer for thyristor V12	$\begin{gathered} \text { IMP12 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V13	$\begin{gathered} \text { IMP13 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V14	$\begin{gathered} \hline \text { IMP14 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V15	$\begin{gathered} \text { IMP15 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V16	$\begin{gathered} \text { IMP16 } \\ \text { P24 } \end{gathered}$	

Module C98043-A7043 firing pulse module

Function	$\begin{aligned} & \text { Terminal } \\ & \text { XIMP_3 } \end{aligned}$	Connection values/remarks
Gate control for firing pulse transformer for thyristor V11	$\begin{gathered} \hline \text { IMP11 } \\ \text { P24 } \end{gathered}$	The terminals of terminal strip IMP_3 are parallel to the terminals of the same designation of terminal strip XIMP_1.
Gate control for firing pulse transformer for thyristor V12	$\begin{gathered} \hline \text { IMP12 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V13	$\begin{gathered} \hline \text { IMP13 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V14	$\begin{gathered} \hline \text { IMP14 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V15	$\begin{gathered} \text { IMP15 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V16	$\begin{gathered} \text { IMP16 } \\ \text { P24 } \end{gathered}$	

Module C98043-A7043 firing pulse module

Function	Terminal XIMP_4	Connection values/remarks
Gate control for firing pulse transformer for thyristor V21	$\begin{gathered} \hline \text { IMP21 } \\ \text { P24 } \end{gathered}$	When the firing pulse transformer module is divided (see Chapter 6.4), the gate controls for the firing pulse transformers are led through these terminal connections The following connections must be implemented for this: XIMP_4-IMP21 \rightarrow XIMP21-IMP21 (for thyristor V21) XIMP_4-P24 \rightarrow XIMP21 - P24 (for thyristor V11) XIMP_4 - IMP22 \rightarrow XIMP22 - IMP22 (for thyristor V22) XIMP_4-P24 \rightarrow XIMP22 - P24 (for thyristor V12) etc.
Gate control for firing pulse transformer for thyristor V22	$\begin{gathered} \hline \text { IMP22 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V23	$\begin{gathered} \hline \text { IMP23 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V24	$\begin{gathered} \hline \text { IMP24 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V25	$\begin{gathered} \text { IMP25 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V26	$\begin{gathered} \text { IMP26 } \\ \text { P24 } \\ \hline \end{gathered}$	

Module C98043-A7043 firing pulse module

Function	Terminal XIMP 5 XIMP_5	Connection values/remarks
Gate control for firing pulse transformer for thyristor V21	$\begin{gathered} \hline \text { IMP21 } \\ \text { P24 } \end{gathered}$	The terminals of terminal strip IMP_5 are parallel to the terminals of the same designation of terminal strip XIMP_4.
Gate control for firing pulse transformer for thyristor V22	$\begin{gathered} \text { IMP22 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V23	$\begin{gathered} \hline \text { IMP23 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V24	$\begin{gathered} \hline \text { IMP24 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V25	$\begin{gathered} \hline \text { IMP25 } \\ \text { P24 } \end{gathered}$	
Gate control for firing pulse transformer for thyristor V26	$\begin{gathered} \text { IMP26 } \\ \text { P24 } \end{gathered}$	

Module C98043-A7043 firing pulse module

Function	Terminal XIMP_6	Connection values/remarks
Gate control for firing pulse transformer for thyristor V21	IMP21	The terminals of terminal strip IMP_6 are parallel to the terminals of the same designation of terminal strip
Gate control for firing pulse transformer for thyristor V22	PMP22	XIMP_4.
Gate control for firing pulse transformer for thyristor V23	P24	
Gate control for firing pulse transformer for thyristor V24	P24	
Gate control for firing pulse transformer for thyristor V25	IMP24	
Gate control for firing pulse transformer for thyristor V26	IMP25	

Module C98043-A7043 firing pulse module

Function	Terminal XIMP11	Connection values/remarks
Gate control for firing pulse transformer for thyristor V11	IMP11	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_1)

Function	Terminal X11	Connection values/remarks
Firing cable thyristor V11	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Function	Terminal XIMP12	Connection values/remarks
Gate control for firing pulse transformer for thyristor V12	IMP12	only connect if the firing pulse transformer module is divided (see terminal strip IMP_1)

Function	Terminal X12	Connection values/remarks
Firing cable thyristor V12	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Function	Terminal XIMP13	Connection values/remarks
Gate control for firing pulse transformer for thyristor V13	IMP13	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_1)

Function	Terminal $\mathbf{X 1 3}$	Connection values/remarks
Firing cable thyristor V13	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Function	Terminal XIMP143	Connection values/remarks
Gate control for firing pulse transformer for thyristor V14	IMP14	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_1)

Function	Terminal X14	Connection values/remarks
Firing cable thyristor V14	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Function	Terminal XIMP15	Connection values/remarks
Gate control for firing pulse transformer for thyristor V15	IMP15	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_1)

Function	Terminal X15	Connection values/remarks
Firing cable thyristor V15	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Function	Terminal XIMP16	Connection values/remarks
Gate control for firing pulse transformer for thyristor V16	IMP16	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_1)

Function	Terminal X16	Connection values/remarks
Firing cable thyristor V16	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Function	Terminal XIMP21	Connection values/remarks
Gate control for firing pulse transformer for thyristor V21	IMP21	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_4)

Function	Terminal X21	Connection values/remarks
Firing cable thyristor V21	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Function	Terminal XIMP22	Connection values/remarks
Gate control for firing pulse transformer for thyristor V22	IMP22	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_4)

Function	Terminal X22	Connection values/remarks
Firing cable thyristor V22	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Function	Terminal XIMP23	Connection values/remarks
Gate control for firing pulse transformer for thyristor V23	IMP23	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_4)

Function	Terminal X23	Connection values/remarks
Firing cable thyristor V23	G	Firing pulse (see below) gate (G) against auxiliary cathode (K) K

Function	Terminal XIMP24	Connection values/remarks
Gate control for firing pulse transformer for thyristor V24	IMP24	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_4)

Function	Terminal X24	Connection values/remarks
Firing cable thyristor V24	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Function	Terminal XIMP25	Connection values/remarks
Gate control for firing pulse transformer for thyristor V25	IMP25	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_4)

Function	Terminal X25	Connection values/remarks
Firing cable thyristor V25	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Function	Terminal XIMP26	Connection values/remarks
Gate control for firing pulse transformer for thyristor V26	IMP26	Only connect if the firing pulse transformer module is divided (see terminal strip IMP_4)

Function	Terminal X26	Connection values/remarks
Firing cable thyristor V26	G	Firing pulse (see below)
	K	gate (G) against auxiliary cathode (K)

Firing pulse:

Time characteristic:

The time characteristic of the firing pulses is set via parameter U826:
Parameter U826 Index i001: Length of first pulse (factory setting $=50 \mu \mathrm{~s}$)
Index i002: Length of subsequent pulses (factory setting $=35 \mu \mathrm{~s}$)

Notes:

- If U826.001 = $105 \mu \mathrm{~s}$ or U826.002 $=105 \mu \mathrm{~s}$:

Block pulse (without pulse chopping)

- If U826.001 is set to \leq U826.002, then U826.001 is ignored and the first pulse is output with the same length as all other pulses
- The choice between short pulses or long pulses is made in P079 P079 = 0: Short pulses (pulse length $890 \mu \mathrm{~s}$) P079 = 1: Long pulses (pulse duration up to approx. 0.1 ms before next pulse)

The pulse shape of the current depends on the length of the cable to the thyristor (cathode / gate). Because of the cable inductance, the rising edge of the current pulse slows down as the cable length increases.

Relationship between firing current and output voltage (incl. tolerances):

Open-circuit voltage $=7.8$ to 8.4 V
Short circuit current $=1.15$ to 1.25 A

Application:

The firing condition for the thyristor used (minimum firing current) must be to the left of the characteristic of the firing circuit. The firing current can be derived graphically by intersecting the input characteristic of the thyristor with the output characteristic of the firing circuit. In this respect it is important to consider that as the temperature decreases, the voltage drop gate / cathode of the thyristor increases.

Examples of oscillograms

Firing voltage = voltage gate $/$ cathode with 1 m twisted cable from the firing circuit firing current in the gate connection of the thyristor

2 diodes || 20 ohm (1.8V and 950 mA)

4 diodes || 20 ohm (3.5 V and 700 mA)

Outputs of the voltage measurement

Type of connection:Faston tabs, 6.3 mm
Module C98043-A7043 firing pulse module

Function		Connection	Connection values/remarks
Armature supply voltage	W	$\mathrm{X} 12 _1$	When the firing cables are connected to the thyristors in
Armature supply voltage	U	$\mathrm{X} 14 _1$	the power section, the supply voltage and armature
Armature voltage	1 C 1	$\mathrm{X} 15 _1$	voltage are automatically available on the firing pulse
Armature supply voltage	V	$\mathrm{X} 16 _1$	module (C98043-A7043).
Armature voltage	1D1	$\mathrm{X} 25 _1$	These voltage can then be led from there (connections
			A12_1 etc.) to the voltage measurement (C98043- A7044) without connecting additional cables to the power section. See also Chapter 6.3

Ribbon cables

Firing pulse cable torque direction 1, connector X21A, X21PAR
Ribbon cable 26-way
C98043-A7041/A7042 power interface / C98043-A7043 firing pulse module

Function	$\begin{gathered} \text { Pin } \\ \times 21 A / \\ \times 21 P A R \end{gathered}$	Signal name	Connection values/remarks
Free	1		
Free	2		
Free	3		
Electronics ground	4	M	
Firing pulse thyristor armature 2	5	IMP_12	$24 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	6	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	7	M	
Firing pulse thyristor armature 6	8	IMP_16	$24 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	9	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	10	M	
Firing pulse thyristor armature 4	11	IMP_14	$24 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	12	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	13	M	
Firing pulse thyristor armature 5	14	IMP_15	$4 \mathrm{~V} / 2 \mathrm{~A}$ pulse
Firing 24 V supply	15	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	16	M	
Firing pulse thyristor armature 3	17	IMP_13	$24 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	18	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	19	M	
Firing pulse thyristor armature 1	20	IMP_11	$24 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	21	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	22	M	
Actual current	23	I_IST	analog $\pm 10 \mathrm{~V}$
Reference ground to actual current	24	M_I_IST	analog $\pm 10 \mathrm{~V}$
Electronics ground	25	M	
Free	26		

Connectors X21A and X21PAR are connected in parallel on module C98043-A7043

- except I_IST (pin 23) and M_I_IST (pin 24)

Firing pulse cable torque direction 2, connector X22A, X22PAR
Ribbon cable 26-way
C98043- A7041/A7042 power interface / C98043-A7043 firing pulse module

Function	$\begin{gathered} \text { Pin } \\ \text { X22A/ } \\ \text { X22PAR } \end{gathered}$	Signal name	Connection values/remarks
Free	1		
Free	2		
Free	3		
Electronics ground	4	M	
Firing pulse thyristor armature 2	5	IMP_22	$24 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	6	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	7	M	
Firing pulse thyristor armature 6	8	IMP_26	$24 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	9	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	10	M	
Firing pulse thyristor armature 4	11	IMP_24	$24 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	12	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	13	M	
Firing pulse thyristor armature 5	14	IMP_25	$4 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	15	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	16	M	
Firing pulse thyristor armature 3	17	IMP_23	$24 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	18	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	19	M	
Firing pulse thyristor armature 1	20	IMP_21	$24 \mathrm{~V} / 2$ A pulse
Firing 24 V supply	21	P24_Z	$24 \mathrm{VDC} / 2 \mathrm{~A}$
Electronics ground	22	M	
Free	23		
Free	24		
Electronics ground	25	M	
Free	26		

Connectors X22A and X22PAR are connected in parallel on module C98043-A7043

Connecting cable power interface - fuse monitoring

Ribbon cable 10-way
C98043- A7041/A7042 power interface / C98043-A7044 firing pulse module

Function	Pin XS20	Signal name	Connection values/remarks
24 V supply	1	P24	$22 \ldots . .26 \mathrm{~V}$
24 V supply	2	P24	$22 \ldots . .26 \mathrm{~V}$
Fuse monitoring	3	SICHERUNG_OK	CMOS 5V
Electronics ground	4	M	
Free	5		
Electronics ground	6	M	
Fuse monitoring	7	SICHERUNG_OK	CMOS 5V
Electronic ground	8	M	
Free	9		
Free	10		

Connecting cable power interface - voltage measurement

Ribbon cable 10-way
C98043- A7041/A7042 power interface / C98043-A7044 voltage measurement

Function	Pin XS21	Signal name	Connection values/remarks
15 V vers. of voltage measurement	1	P15_MESS	$15 \mathrm{~V} / 20 \mathrm{~mA}$
15 V vers. of voltage measurement	2	P15_MESS	$15 \mathrm{~V} / 20 \mathrm{~mA}$
Supply voltage V-U signal	3	NETZ_VU	Analog $\pm 5 \mathrm{~V}$
Ground of voltage meas.	4	M_MESS	
Armature voltage signal	5	ANKERSPG	Analog $\pm 10 \mathrm{~V}$
Ground of voltage meas.	6	M_MESS	
Supply voltage V-U signal	7	NETZ_VW	Analog $\pm 5 \mathrm{~V}$
Ground of voltage meas.	8	M_MESS	
-15 V vers. Of voltage	9	N15_MESS	$-15 \mathrm{~V} / 20 \mathrm{~mA}$
measurement			
-15 V vers. Of voltage	10	N15_MESS	$-15 \mathrm{~V} / 20 \mathrm{~mA}$
measurement			

Connecting cable power interface - field supply

Ribbon cable 20-way
C98043-A7041/A7042 power interface / C98043-A7044 field supply

Function	$\begin{gathered} \hline \text { Pin } \\ \text { X102 } \end{gathered}$	Signal name	Connection values/remarks
Electronics ground	1	M	
Field current measurement supply	2	HF_16	$\pm 16 \mathrm{~V} \mathrm{HF}$
Electronics ground	3	M	
Firing pulse thyristor field 1	4	IMP_F1	CMOS 5V
24 V supply	5	P24	22... 26 V
Firing pulse thyristor field 2	6	IMP_F2	CMOS 5V
24 V supply	7	P24	22... 26 V
Field current amplification	8	FELD_VERST	CMOS 5V
Electronics ground	9	M	
Field current frequency coded	10	FELD_STROM	CMOS 5V
Electronic ground	11	M	
Fuse monitoring	12	SICHERUNG_OK	CMOS 5V
15 V supply of voltage meas.	13	P15_MESS	$15 \mathrm{~V} / 7 \mathrm{~mA}$
Fan monitoring	14	LUEFTER_OK	Open collector
Ground voltage measurement	15	M_MESS	
Fan control	16	LUEFTER_EIN	CMOS 5V
Ground voltage measurement	17	M_MESS	
Signal supply voltage field	18	NETZ_FELD	Analog
-15 V supply of voltage meas.	19	N15_MESS	-15 V / 7 mA
Electronics ground	20	M	

Options:

Terminal expansion CUD2

Terminal type: Plug-in terminal (screw-type) max. connection cross-section $1.5 \mathrm{~mm}^{2}$

Motor interface (see also function diagrams, Section 8, sheets G185 and G186)
Module C98043-A7006 (CUD2)

Function	Terminal X164	Connection values/remarks
Motor temperature (temperature sensor input)	204	Sensor acc. to P490 index 2
	205	The cable to the temperature sensor on the motor must be shielded and connected to ground at both ends.

Module C98043-A7006 (CUD2)

Function	$\begin{gathered} \text { Terminal } \\ \text { X161 } \end{gathered}$	Connection values/remarks
Supply for digital inputs	210	24V DC, short circuit proof with respect to internal ground max. load 200mA (terminals 34, 44, and 210 combined), Overload response: Error signal F018 Warning signal A018
Binary input	211	
Binary input	212	H signal: +13 V to +33 V
Binary input	213	\} L signal: -33 V to +3 V or terminal open
Binary input	214] Input resistance $=2.8 \mathrm{k} \Omega$
Ground for binary inputs	215	can be isolated from internal ground
Ground for binary inputs	216	(Open wire jumper between terminal 216 and 217)
M	217	

Analog inputs (see also Section 8, sheet G114)
Module C98043-A7006 (CUD2)

Function	Terminal $\mathbf{X 1 6 4}$	Connection values/remarks
Select input analog 2	8	$\pm 10 \mathrm{~V}, 52 \mathrm{k} \Omega$
Ground analog	9	Resolution: ± 10 bit
Select input analog 3	10	Common mode suppression: $\pm 15 \mathrm{~V}$
Ground analog	11	

Analog outputs (see also Section 8, sheet G116)
Module C98043-A7006 (CUD2)

Function	Terminal X164	Connection values/remarks	
Select output \quad analog 3	18	$0 \ldots \pm 10 \mathrm{~V}$, max. 2mA	
Ground analog M		19	Short-circuit-proof
Select output	analog 4	20	Resolution ± 11 bit
Ground analog M		21	

Digital inputs (see also Section 8, sheet G111)
Module C98043-A7006 (CUD2)

Function	Terminal X163	Connection values/remarks
Supply (output)	44	24V DC, short circuit proof max. load 200 mA (terminals 34, 44, and 210 combined), internal supply with respect to internal ground Overload response: Fault signal F018 Ground digital M
Select input	binary 3	45

Digital outputs (see also Section 8, sheet G112)
Module C98043-A7006 (CUD2)

Function	Terminal X163	Connection values/remarks
Select output binary 3	50	H signal: +20 to +26V Ground M signal: 0 to +2V
Select output binary 4	51	52
short circuit proof 100mA		
Ground M	53	Overload response: Fault signal F018 Warning signal A018

Serial interface 3 RS485 (G-SST3)

Module C98043-A7006 (CUD2)

Function	Terminal X162	Connection values/remarks
TX+	61	RS485, 4-wire send cable, positive differential output
TX-	62	RS485, 4-wire send cable, negative differential output
RX+/TX+	63	RS485, 4-wire receive cable, positive differential input, 2-wire send/receive cable, positive differential input
RX-/TX-	64	RS485, 4-wire receive cable, negative differential input, 2-wire send/receive cable, negative differential input
M	65	Ground

Cable length: For transmission rate $=187.5 \mathrm{kBd} \Rightarrow 600 \mathrm{~m}$
For transmission rate $=93.75 \mathrm{kBd} \Rightarrow 1200 \mathrm{~m}$
The following must be observed: DIN 19245 Part 1
The potential difference between the data reference potentials M of all interfaces must not exceed $-7 \mathrm{~V} /+12 \mathrm{~V}$. If this cannot be guaranteed, then equipotential bonding must be provided.

Activate interface 3:

- Set the baud rate in parameter P803.
- Set the protocol in parameter P800.

Power Interface with electronics power supply 24V DC

Terminal type: Cage clamp terminal maximum connection cross-section $1.5 \mathrm{~mm}^{2}$

Module C98043-A7041 Power Interface

Function	Terminal XP24V	Connection values/remarks
Electronics power supply	+	18 V to 30 V DC
Incoming supply 24 V	-	External fusing max. 4A

Terminal type: Cage clamp terminal
maximum connection cross-section $1.5 \mathrm{~mm}^{2}$
Module C98043-A7041 Power Interface

Function	Terminal XM	Connection values/remarks
Electronic ground	M	

Terminal type: Cage clamp terminal
maximum connection cross-section $1.5 \mathrm{~mm}^{2}$
Module C98043-A7041 Power Interface

Function	Terminal X_I_IST	Connection values/remarks
Actual current	I_I_IST	analog $\pm 10 \mathrm{~V}$
Reference ground to actual current	M_I_IST	

7 Start-Up

7.1 General safety information for start-up

DANGER

Before you commission the units, please make sure that all transparent covers are mounted at the correct position in the unt (see Section 5.1).

WARNING

The manufacturer can only provide a warranty for correct functioning of the SIMOREG CM converter and accept liability for any damage if the device is installed and started up by qualified personnel and the instructions in this manual are correctly observed. The converters are operated at high voltages.

CAUTION

Before handling any boards (in particular, the A7001 electronics board), please make sure that your body is electrostatically discharged to protect electronic components against high voltages caused by electrostatic charges. The simplest way of doing this is to touch a conductive, grounded object (e.g. bare metal cabinet component immediately beforehand).

PCBs must not be allowed to come into contact with highly insulating materials (e.g. plastic foil, insulating table tops or clothing made of synthetic fibers).

PCBs may only be set down on electrically conducting surfaces.

WARNING

These converters contain hazardous voltages and control rotating mechanical components (drives). Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.

Hazardous voltage may be present at the signaling relays in the customer's installation.
The converters must not be connected to a supply with earth-leakage circuit-breaker (VDE 0160, Section 6.5) since, in the event of a fault to frame or ground, the fault current may contain a DC component that will either prevent or hinder a higher-level e.l.c.b. from tripping. In this case, all loads connected to this e.l.c.b. have no protection either.

Only qualified personnel who are thoroughly familiar with all safety notices contained in the operating instructions as well as erection, installation, operating and maintenance instructions should be allowed to work on these devices.

The successful and safe operation of this equipment is dependent on careful transportation, proper storage and installation as well as correct operation and maintenance.

The converter is at a hazardous voltage level even when the line contactor is open. The gating board (board mounted directly to lower part of housing) has many circuits at hazardous voltage levels. Before carrying out any maintenance or repair work, all converter power sources must be disconnected and locked out.

These instructions do not claim to list all of the measures required to ensure safe and reliable operation of the converter. For special applications, additional, supplementary information or instructions might be required. If problems do occur and you feel in any way uncertain, please contact your local Siemens office or representative.

The use of unauthorized parts in the repair of this converter and handling of the equipment by unqualified personnel can give rise to hazardous conditions which may cause death, severe personal injury or substantial property damage. All safety notices contained in this instruction manual and attached to the converter itself must be carefully observed.

Please read the safety information given in Section 1 of this instruction manual.

7.2 Operator control panels

The basic converter is equipped with a simple operator panel (PMU) as standard. A user-friendly panel with plaintext display (OP1S) can be connected as an option.

7.2.1 Simple operator control panel (PMU "Parameterization Unit")

The simple operator control panel is mounted in the converter door and consists of a 5-digit, 7segment display with three status display LEDs and three parameterization keys below.

All adjustments and settings that need to be undertaken for the purpose of start-up can be made on the simple control panel.

- P key
- Switches over between parameter number (parameter mode), parameter value (value mode) and index number (index mode) on indexed parameters.
- Acknowledges active fault messages.
- P and RAISE keys to switch a fault message and alarm to the background (see Section 10, Fault Messages and Alarms)
- P and LOWER key to switch a fault message and alarm from the background back to the foreground display on the PMU (see Section 10, Fault Messages and Alarms)
- UP key ($\mathbf{\Delta}$)
- Selects a higher parameter number in parameter mode. When the highest number is displayed, the key can be pressed again to return to the other end of the number range (i.e. the highest number is thus adjacent to the lowest number).
- Increases the selected and displayed parameter value in value mode.
- Increases the index in index mode (for indexed parameters)
- Accelerates an adjustment process activated with the DOWN key (if both keys are pressed at the same time).
- DOWN key ($\boldsymbol{\nabla}$)
- Selects a lower parameter number in parameter mode. When the lowest number is displayed, the key can be pressed again to return to the other end of the number range (i.e. the lowest number is thus adjacent to the highest number).
- Decreases the selected and displayed parameter value in value mode.
- Decreases the index in index mode (for indexed parameters)
- Accelerates an adjustment process activated with the UP key (if both keys are pressed at the same time).

LED displays

Run green LED	
LED illuminated	in "Torque direction active" state (MI, MII, M0).
	(see r000 in Section 11)
Ready yellow LED	
LED illuminated	in "Ready" state (01 .. o7).
	(see r000 in Section 11)
Fault red LED	
LED illuminated	in "Fault signal present" state (o11)
	(see r000 in Section 11 and Faults and Alarms (Section 10))
LED flashing	An alarm is active (see Faults and Alarms in Section 10).

7.2.2 User-friendly operator control panel (OP1S)

The optional, user-friendly, operator control panel with plaintext display (order no.: 6SE7090$0 X X 84-2 F K 0$) is mounted in the special location provided in the converter door.

This location provides a connection to the serial basic converter interface SST1.
Parameters can be selected directly through input of the parameter number via the keyboard of the OP1S. The following interrelationships apply:

	Displayed number	Number to be keyed in on OP1S
Basic converter parameter	rxxx, Pxxx	(0) x xx
	Uxxx, nxxx	2xxx
Technology board parameter	Hxxx, dxxx	1xxx
	Lxxx, cxxx	3xxx

If the RAISE or LOWER key on the OP1S is used to select adjacent parameter numbers, then any missing numbers in the range of basic converter parameters are skipped.

This automatic skipping over missing numbers does not work for technology board parameters. In this case, the numbers of existing parameters must be entered directly.
The OP1S switches to operational display a few seconds after initialization.

By pressing the <P> key, you can switch from the operating display to the Basic Menu in which you can either select "Free access" to all parameters or a variety of functions. Details of these functions can be found in the function diagram "OP1S operational display" (Section 8, Sheet Z123) and the OP1S operating instructions.

The converter parameters can be set in "Free access" status.

You can return to the operating status display by pressing the <R> key (several times if necessary).

Control bits from OP1S operator panel:

(see also function diagram "OP1S operational display" (Section 8, Sheet Z123) and the OP1S operating instructions)
Data are exchanged between the OP1S and SIMOREG 6RA70 converter via the G-SST1 interface (RS485) and USS protocol.

The OP1S operator panel transfers the following control bits in process data word 1 in the USS message:

Key on OP1S	Function *)	Bit in PZD word1 (connector K2001)	Binector
ON key / OFF key (I / 0)	ON / OFF1	Bit 0	B2100
Reset	Acknowledge	Bit 7	B2107
Jog	Jog (inch)	Bit 8	B2108
Reverse	Enable positive direction of rotation	Bit 11	B2111
	Enable negative direction of rotation	Bit 12	B2112
	Increase motorized potentiometer	Bit 13	B2113
	Decrease motorized potentiometer	Bit 14	B2114

*) Suggested functions. Since binectors can be freely wired up to any selector switch, the control signals from the OP1S can be used for any type of control task in the SIMOREG 6RA70.

Connection of control signals from the OP1S for the suggested functions:
Functions can be implemented via the OP1S only if the following conditions are fulfilled:

1) Bit-by-bit input of control bits in control word 1 (P648 = 9), see also Section 8, Function Diagrams, Sheet G180
2) OP1S in "Operational display" status

ON / OFF1:
Parameterization of switch-on/shutdown via OP1S by setting
P654 = 2100
Please also note AND operation with "Switch-on/Shutdown" from terminal 37 (see also Function Diagrams, Sheet G130 in Section 8 and Section "Switch-on/Shutdown (ON / OFF) terminal 37" in Section 9)
Acknowledge:
Parameterization of fault message acknowledgements via OP1S by setting
P665, P666 or P667 = 2107
Faults can always be acknowledged by pressing the <P> key on the PMU.
Inching:
Parameterization of inching via OP1S by setting
P668 or P669 = 2108
Selection of source of inching setpoint via the corresponding index of P436 (see "Inching setpoint"
function diagram)
Direction of rotation enable:
Parameterization of direction of rotation enabling via OP1S by setting
P671 = 2111 (positive direction of rotation)
P672 = 2112 (negative direction of rotation)
Motorized potentiometer:
Parameterization of motorized potentiometer via OP1S by setting
P673 = 2113 (higher)
P674 = 2114 (lower)
P644 = 240 (main setpoint from motorized potentiometer)

7.3 Parameterization procedure

Parameterization is the process of changing setting values (parameters) via the operator panel, activating converter functions or displaying measured values.
Parameters for the basic converter are called $\mathrm{P}, \mathrm{r}, \mathrm{U}$ or n parameters. Parameters for an optional supplementary board are called $\mathrm{H}, \mathrm{d}, \mathrm{L}$ or c parameters.

The basic unit parameters are displayed first on the PMU, followed by the technology board parameters (if such a board is installed). It is important not to confuse the parameters of the optional SOO technology software of the basic unit with the parameters of an optional supplementary board (T100, T300 or T400).
Depending on how parameter P052 is set, only some parameter numbers (see Section 11, Parameter List) are displayed.

7.3.1 Parameter types

Display parameters are used to display current quantities such as the main setpoint, armature voltage, setpoint/actual value difference of speed controller, etc. The values of display parameters are read-only values and cannot be changed.
Setting parameters are used to both display and change quantities such as the rated motor current, thermal motor time constant, speed controller P gain, etc.
Indexed parameters are used to both display and change several parameter values which are all assigned to the same parameter number.

7.3.2 Parameterization at the simple operator control panel

After the electronics supply voltage has been switched on, the PMU is either in the operational display state and indicating the current operating status of the SIMOREG 6RA70 (e.g. o7.0), or in the fault/alarm display state and indicating a fault or alarm (e.g. F021).

Operational states are described under parameter r000 in Section 11 and the fault and alarm messages in Section 10.

1. To reach the parameter number level from the operational display state (e.g. o7.0), press the P key and then the <Up> or <Down> key to select individual parameter numbers.
2. To reach the parameter index level (for indexed parameters) from the parameter number level, press P and then the <Up> or <Down> key to select individual indices.
If you press P when a non-indexed parameter is displayed, you go directly to the parameter value level.
3. To reach the parameter value level from the parameter index level (for indexed parameters), press P .
4. On the parameter value level, you can change the setting of a parameter value by pressing the <Up> or <Down> key.

NOTE

Parameters can be altered only if the following conditions are fulfilled:
The appropriate access authorization is set in key parameter P051, e.g. "40" (see Section 11, "Parameter List").
The converter is the correct operational state. Parameters with characteristic "offline" cannot be changed when the converter is in the "Run" (online) state. To change parameters with this characteristic, switch the converter to the ≥ 01.0 status ("Ready").
The values of display parameters can never be changed (read only).

5．Manual shifting

If the 5 existing digits on the 7－segment display are not sufficient to display a parameter value，the display first shows just 5 digits（see Fig．7．1）．To indicate that digits are concealed to the right or left of this＂window＂，the right－hand or left－hand digit flashes．By pressing the＜P＞＋＜Down＞or ＜P＞＋＜Up＞key，you can shift the window over the remaining digits of the parameter value．
As an orientation guide，the position of the right－hand digit within the overall parameter value is displayed briefly during manual shifting．

Example：Parameter value＂208．173＂
＂208．17＂is displayed when the parameter is selected．When the P and LOWER keys are pressed，＂ 1 ＂appears briefly followed by ＂ 08.173 ＂，i．e．the right－hand digit 3 is the $1^{\text {st }}$ position in the parameter value．
When the P and RAISE keys are pressed，＂2＂appears briefly followed by＂208．17＂，i．e．the right－hand digit 7 is the $2^{\text {nd }}$ position in the parameter value．

Fig．7．1 Shifting the PMU display for parameter values with more than 5 digits

6．Press the P key to return to the parameter number level from the parameter value level．

Tables 7.1 and 7.2 below show an overview of displays which may appear on the PMU：

Table7．1 Display of visualization and setting parameters on the PMU

	Actual value	Parameter value not（currently） possible	Alarm	Fault
Display	－П．	---- ----	Пワココ	「凸ワ■

Table 7.2 Status displays on the PMU

NOTE

Parameters are described in the Parameter List in Section 11 and faults and alarms in Section 10.

7.4 Reset to default value and adjust offset

Restoring parameters values to defaults (works settings) and performing an internal converter offset adjustment.
The "Restore factory setting" function must be executed after every software update if the converter software has been updated from version 1.0 or 1.1.

With converter SW version 1.2 and later, it is no longer necessary to execute "Restore factory settings" after a software update because the parameter settings prior to the update remain valid.
The "Restore to default" function can be executed if a defined basic setting is to be established, e.g. in order to carry out a complete new start-up operation.

NOTICE

When the "Restore to default" function is activated, all parameters set for a specific installation are overwritten (deleted). We therefore recommend that all old settings be read out beforehand with DriveMonitor and stored on a PC or programmer.
"Restore to default" must be followed by a completely new start-up operation or else the converter will not be "ready" with respect to safety.

Execution of function:

1. Set parameter $\mathbf{P 0 5 1}=\mathbf{2 1}$
2. Transfer parameter values to the non-volatile memory.

The parameter values are stored in non-volatile storage (EEPROM) so that they will still be available when the converter is switched off. This operation takes at least 5 s (but may also last several minutes). The number of the parameter currently being processed is displayed on the PMU during the process. The electronics power supply must remain connected while this operation is in progress.
3. Offset adjustments Parameter P825.ii is set (takes approx. 10 s).
The offset adjustment can also be activated as an individual function by means of parameter P051 $=22$.

7.5 Start-up procedure

WARNING

The converter is at a hazardous voltage level even when the line contactor is open. The gating board (board mounted directly to lower part of housing) has many circuits at hazardous voltage levels.

Non-observance of the safety instructions given in this manual can result in death, severe personal injury or substantial property damage.

Access authorization

P051 . . . Key parameter
0 Parameter cannot be changed
40 Parameter can be changed
P052 . . . Selection of parameters to be displayed
0 Only parameters that are not set to default are visible
3 All parameters are visible
P927. . . Enter an odd number if parameters are to be entered via CB (PROFIBUS)

Definition of the external power section

The external power section must be defined with parameters U820 to U833 (see Section 11)

Adjustment of converter rated currents

The rated converter armature DC current must be adapted by the setting in parameter P076.001
(in \%) or parameter P067, if:

$$
\frac{\text { Max. armature current }}{\text { Rated armature DC current }}<0,5
$$

The rated converter field DC current must be adjusted by the setting in parameter P076.002 (in \%) if:

$$
\frac{\text { Max. field current }}{\text { Rated converter field DC current }}<0,5
$$

Adjustment to actual converter supply voltage

P078.001 . . . Rated input voltage converter armature (in volts)
P078.002 . . . Rated input voltage converter field (in volts)

Input of motor data

In the parameters below, the motor data must be entered as specified on the motor rating plate.
P100 . . . Rated armature current (in amps)
P101 . . . Rated armature voltage (in volts)
P102 . . . Rated field current (in amps)
P104 . . Speed n_{1} (in rpm) see also Section 9.16
P105 . . . Armature current I_{1} (in amperes) see also Section 9.16
P106 . . . Speed n_{2} (in rpm)
see also Section 9.16
P107 . . . Armature current I_{2} (in amperes)
see also Section 9.16
P108 . . . Maximum operating speed n_{3} (in rpm)
see also Section 9.16
P109 . . . 1 = speed-dependent current limitation active
see also Section 9.16
P114 . . . Thermal time constant of motor (in minutes)
see also Section 9.14

Actual speed sensing data

Operation with analog tacho
P083 = 1: \quad The actual speed is supplied from the "Main actual value" channel (K0013) (terminals XT.103, XT.104)

P741 Tacho voltage at maximum speed (-270,00V to +270,00V)

6.2 Operation with pulse encoder

P083 = 2: \quad The actual speed is supplied by the pulse encoder (K0040)
P140 Selecting a pulse encoder type (pulse encoder types see below)
0 No encoder/"Speed sensing with pulse encoder" function not selected
1 Pulse encoder type 1
2 Pulse encoder type 1a
3 Pulse encoder type 2
4 Pulse encoder type 3

1. Pulse encoder type 1

Encoder with two pulse tracks mutually displaced by 90° (with/without zero marker)

2. Pulse encoder type 1a

Encoder with two pulse tracks mutually displaced by 90° (with/without zero marker). The zero marker is converted internally to a signal in the same way as on encoder type 1.

3. Pulse encoder type 2

Encoder with one pulse track per direction of rotation (with/without zero marker).

4. Pulse encoder type 3

Encoder with one pulse track and one output for direction of rotation (with/without zero marker).

P141 Number of pulses of pulse encoder (in pulses/rev)

P142 Matching to pulse encoder signal voltage
0 Pulse encoder outputs 5 V signals
1 Pulse encoder outputs 15 V signals
Matching of internal operating points to signal voltage of incoming pulse encoder signals.

NOTICE

Resetting parameter P142 to the alternative setting does not switch over the supply voltage for the pulse encoder (terminals X173.26 and 27).
Terminal X173.26 always supplies +15 V . An external voltage supply must be provided for pulse encoders requiring a 5 V supply.

P143 Setting the maximum speed for pulse encoder operation (in pulses/rev)
The speed set in this parameter corresponds to an actual speed (K0040) of 100\%.
6.3 Operation without tacho (EMF control)

P083 = 3: The actual speed is supplied from the "Actual EMF" channel (K0287), but weighted with P115.

P115 EMF at maximum speed (1.00 to 140.00% of rated converter supply voltage (r078.001)).
6.4 Freely wired actual value

P083 = 4: The actual value input is defined with P609.
P609 Number of connector which is connected to controller actual value input.

Field data

Field control
P082 = 0: Internal field is not used (e.g. with permanent-field motors)

P082 = 1: \quad The field is switched together with the line contactor (field pulses are enabled/disabled when line contactor closes/opens)

P082 = 2: Automatic connection of standstill field set via P257 after a delay parameterized via P258, after operating status of or higher has been reached

P082 = 3: \quad Field current permanently connected

Field weakening

P081 $=0$: No field weakening as a function of speed or EMF
P081 = 1: Field weakening operation as a function of internal EMF control so that, in the field weakening range, i.e. at speeds above rated motor speed (= "threshold speed"), the motor EMF is maintained constantly at setpoint EMFset $(\mathrm{K} 289)=$ P101 - P100 * P110.

Selection of basic technological functions

P171 Motor current limit in torque direction I (in\% of P100)
P172 Motor current limit in torque direction II (in\% of P100)

Torque limits
P180 Torque limit 1 in torque direction I (in \% of rated motor torque)
P181 Torque limit 1 in torque direction II (in \% of rated motor torque)

8.3

Ramp-function generator

P303 Acceleration time 1 (in seconds)
P304 Deceleration time 1 (in seconds)
P305 Initial rounding 1 (in seconds)
P306 Final rounding 1 (in seconds)

Execution of optimization runs

The drive must be in operating state o7.0 or o7.1 (enter SHUTDOWN!).

Select one of the following optimization runs in key parameter P051:
P051 = 25 Optimization run for precontrol and current controller for armature and field
P051 = 26 Speed controller optimization run
can be preceded by selection of the degree of dynamic response of the speed control loop with P236, where lower values produce a softer controller setting.
P051 = 27 Optimization run for field weakening
P051 = 28 Optimization run for compensation of friction moment and moment of inertia
P051 = 29 Speed controller optimization run for drives with oscillating mechanical system.

The SIMOREG converter switches to operating state o7.4 for several seconds and then to o7.0 or o7.1 and waits for the input of SWITCH-ON and OPERATING ENABLE..

Enter the commands SWITCH-ON and OPERATING ENABLE.
The flashing of the decimal point in the operational status display on the PMU (simple operator control panel) indicates that an optimization run will be performed after the switch-on command.
If the switch-on command is not given within 30 s , this waiting status is terminated and fault message F052 displayed.

As soon as the converter reaches operating status <01.0 (RUN), the optimization run is executed.
An activity display appears on the PMU, consisting of two 2-digit numbers, separated by a bar that moves up and down. These two numbers indicate (for SIEMENS personnel) the current status of the optimization run.

P051 = $\mathbf{2 5}$ Optimization run for precontrol and current controller for armature and field (process lasts approximately 40s)
The current controller optimization run may be executed without a mechanical load coupled to the motor; it may be necessary to lock the rotor.
The following parameters are set automatically: P110, P111, P112, P155, P156, P255, P256, P826.

CAUTION

Permanent-field motors (and motors with an extremely high residual flux) must be mechanically locked during this optimization run.

CAUTION

In order to avoid rotation in the case of separately excited motors with a very high field circuit time constant, the motor field current must be zero before starting this optimization run. The value $1(11,21)$ must therefore be set at P082 instead of 3 $(13,23)$ for the duration of this optimization run. The standstill field P257 is to be set to 0.0 percent if P082 $=2(12,22)$.

4
 WARNING

The set current limits are not effective during the current controller optimization run. 75% of the rated motor armature current flows for approximately 0.7 s . Furthermore, individual current spikes of approximately 120% of the motor rated armature current are generated.

Abstract

P051 = 26 Speed controller optimization run (process lasts approximately 6s) The degree of dynamic response of the speed control loop can be selected with P236, where lower values produce a softer control loop. P236 must be set before the speed controller is optimized, and affects the settings of P225, P226, and P228. For the purpose of speed controller optimization, the ultimate mechanical load should be connected to the motor where possible, since the parameter settings are determined by the measured moment of inertia. The following parameters are set automatically: P225, P226 and P228. Note: The speed controller optimization run takes only the filtering of the actual speed controller value parameterized in P200 into account and, if P083=1, filtering of the main actual value parameterized in P745. When P200 < 20ms, P225 (gain) is limited to a value of 30.00 . The speed controller optimization run sets P228 (speed setpoint filter) to the same value as P226 (speed controller integration time) (for the purpose of achieving an optimum control response to abrupt setpoint changes).

NOTICE

In the case of separately excited motors with a very high field circuit time constant, a motor field current approximately equal to the rated field current of the motor according to P 102 should be flowing before this optimization run starts. The value $3(13,23)$ must therefore be set at P082 instead of $1(11,21), 2(12$, $22)$ or $4(14,24)$ for the duration of this optimization run.

WARNING
During the speed controller optimization run, the motor is accelerated at a maximum of 45% of its rated armature current. The motor may reach speeds of up to approximately 20% of maximum speed.

If field weakening is selected (P081 = 1), if closed-loop torque control $(\mathrm{P} 170=1)$ or torque limiting ($\mathrm{P} 169=1$) is selected or if a variable field current setpoint is applied:

P051 = $27 \quad$ Optimization run for field weakening (process lasts approx. 1 min)
This optimization run may also be started without a mechanical load. The following parameters are set automatically: P117 to P139, P275 and P276.

Note:

In order to determine the magnetization characteristic, the field current setpoint is reduced during the optimization run from 100\% of the motor rated field current as set in P102 down to a minimum of 8%. The field current setpoint is limited to a minimum according to P103 by parameterizing P103 to values < 50% of P102 for the duration of the run. This might be necessary in the case of uncompensated motors with a very high armature reaction.
The magnetizing characteristic is approximated linearly to 0 , starting from the measuring point, at a minimum field current setpoint.
To execute this optimization run, the minimum field current (P103) must be parameterized to less than 50% of the rated motor field current (P102).

WARNING

During this optimization run, the drive accelerates to approximately 80% of rated motor speed (the armature voltage corresponds to maximum 80% of the rated motor armature voltage (P 101)).

P051 = 28 Optimization run for compensation of friction moment and moment of inertia (if desired) (process lasts approx. 40s)

The following parameters are set automatically: P520 to P530, P540

WARNING

The drive accelerates up to maximum speed during this optimization run.

On completion of this run, the friction and inertia moment compensation function must be activated manually by setting P223=1.

When the operating mode is switched from current control to torque control with P170, the optimization run for friction and inertia moment compensation must be repeated.

Note:
The speed controller may not be parameterized as a pure P controller or as a controller with droop when this optimization run is executed.

P051 = 29 Speed controller optimization run on drives with oscillating mechanical components (takes up to 10 minutes)
The following parameters are set automatically: P225, P226 and P228.
The frequency response of the controlled system for frequencies of 1 to 100 Hz are recorded during this optimization run.
The drive is first accelerated up to a base speed (P565, FS=20\%). A sinusoidal speed setpoint with low amplitude ($\mathrm{P} 566, \mathrm{FS}=1 \%$) is then injected. The frequency of this supplementary setpoint is changed in steps of 1 Hz from 1 Hz to 100 Hz . An average is calculated from a programmable number of current peaks (P567, $W E=300$) for each frequency.
[The value set in P567 is significant in determining the time taken to perform the run. With a setting of 300 , the run can take about 3 to 4 minutes.]

The optimum speed controller setting for the controlled system is calculated on the basis of the frequency response measured for the system.

WARNING

This optimization run must not be carried out if the motor is coupled to a mechanical load which is capable of moving the torque-free motor (e.g. a vertical load).

At the end of the optimization run, P051 is displayed on the operator panel and the drive switches to operating state 07.2.

NOTICE

In the case of drives with a limited travel path, the optimization run for field weakening (P051=27) may not be interrupted by the SHUTDOWN command until the 1st field weakening measuring point has been plotted. Likewise, the optimization run for the friction moment and moment of inertia compensation function (P051=28) may not be interrupted by SHUTDOWN until the measuring point at 10% of maximum speed has been determined. Premature interruption in both cases will lead to activation of fault message F052. When either of these optimization runs is restarted ($\mathrm{P} 051=27$ or $\mathrm{P} 051=28$), it will be continued at a more advanced position. In this way, the respective run can be completed in several stages, even if the travel path is limited.
Note:
The respective optimization run is executed completely after a restart if a) a fault message is activated during the optimization run, b) if the electronics supply is disconnected before the relevant optimization run is restarted, c) if another function dataset than the one before is selected or d) if another optimization run is started in-between.
The parameters of the function data set selected in each case are optimized.
While optimization runs are being executed, the function data set selection must not be changed or else a fault message will be activated.

NOTE

Optimization runs should be executed in the order listed above (precontrol and current controller, speed controller, field weakening control, friction moment and moment of inertial compensation).
The determined parameters are dependent on the motor temperature. Values set automatically when the motor is cold can be used as effective defaults.

For highly dynamic drives, the optimization run $\mathrm{P} 051=25$ should be repeated after the drive has been operated under load (i.e. when motor is warm).

Checking and possible fine adjustment of maximum speed

After the optimization runs have been executed, the maximum speed must be checked and it's setting corrected if necessary.
If it is necessary to change the maximum speed setting by more than about 10%, the control response of the speed control loop must be checked. It may be necessary to repeat the speed controller optimization run or re-optimize the controller manually.

The optimization runs for field weakening and friction motor and moment of inertial compensation must be repeated every time the maximum speed setting is altered.

Checking the drive settings

The optimization runs do not provide optimum results for every application. The controller settings must therefore be checked by suitable means (oscilloscope, DriveMonitor, Trace etc.). In some cases, manual re-optimization will be necessary.

Manual (post-)optimization (if necessary)

Precontrol and current controller for armature and field

Instructions on how to manually set parameters for the precontrol function can be found in Section 7.2
"Manual optimization".

Speed controller

P200 Actual speed filtering
P225 Speed controller P gain
P226 Speed controller integration time
P227 Speed controller droop
P228 Speed setpoint filtering
Note:
P228 is set to the same value as P226 (speed controller integration time) during the speed controller optimization run ($\mathrm{P} 051=26$) (for the purpose of achieving an optimum control response to abrupt setpoint changes). When the ramp-function generator is used, it may be better to parameterize a lower speed setpoint filtering value (P228).

Setting of empirical values or optimization using setpoint control boxes according to generally applicable optimization guidelines.

EMF controller

P275 EMF controller P gain
P276 EMF controller integration time
Setting of empirical values or optimization using setpoint control boxes according to generally applicable optimization guidelines.

Setting of supplementary functions

e.g. activating monitoring functions

NOTE

In the factory setting, the following fault signals are deactivated with parameters P820.01 to P820.06:

F007 (overvoltage)
F018 (short circuit at the binary outputs)
F031 (controller monitoring speed controller)
F035 (drive blocked)
F036 (no armature current can flow)
F037 (i^{2} t monitoring of motor)
Activate the monitoring functions required in your applications by replacing the fault number in question with the value 0 .
e.g. activating the free function blocks

NOTE

Freely assignable function blocks are enabled in parameter U977.
For enabling instructions, please refer to Section 11, Parameter List, description of parameters U977 and n978.

14
 Documentation of setting values

- Read out parameters with DriveMonitor (see Section 15 "DriveMonitor") or
- Document parameters If P052=0, only parameters that are not set to the default setting are displayed on the operator control panel.

7.6 Manual optimization (if required)

7.6.1 Manual setting of armature resistance RA (P110) and armature inductance LA (P111)

- Setting of armature circuit parameters according to motor list

Disadvantage: The data is very inaccurate and/or the actual values deviate significantly.
The feeder resistances are not taken into account in the armature circuit resistance.
Additional smoothing reactors and feeder resistances are not taken into account in the armature circuit inductance.

- Rough estimation of armature circuit parameters from motor and supply data Armature circuit resistance P110
$\operatorname{RA}[\Omega]=\frac{\text { Rated motor armature voltage }[\mathrm{V}](\mathrm{P} 101)}{10 * \text { Rated motor armature current }[\mathrm{A}](\mathrm{P} 100)}$
The basis for this formula is that 10% of the rated armature voltage drops across armature circuit resistor R_{A} at rated armature current.

Armature circuit inductance P111

$$
\mathrm{LA}[\mathrm{mH}]=\frac{1.4 * \text { Rated converter supply voltage of armature power section }[\mathrm{V}](\mathrm{P} 071)}{\text { Rated motor armature current }[\mathrm{A}](\mathrm{P} 100)}
$$

The basis for this formula is the empirical value: The transition from discontinuous to continuous current is at approx. 30\% of the rated motor armature current.

- Calculation of armature circuit parameters based on current/voltage measurement
- Select current-controlled operation: P084=2
- Set parameter P153=0 (precontrol deactivated)
- The field must be switched off by setting P082=0 and, in the case of excessively high residual flux, the rotor of the DC motor locked so that it cannot rotate.
- Set the overspeed protection threshold P354=5\%
- Enter a main setpoint of 0
- If "ENABLE OPERATION" is applied and the "SWITCH ON" command entered, an armature current of approximately 0% now flows.

Calculation of armature circuit resistance P110 from measured armature current and armature voltage values

- Increase the main setpoint (displayed at r001) slowly until the actual armature current value (r019 in \% of rated converter armature current) reaches approximately 70\% of the rated motor armature current.
- Read out r019 (actual armature current value) and convert to amps (using P100)
- Read out r038 (actual armature voltage in volts)
- Calculate the armature circuit resistance:
$\mathrm{RA}[\mathrm{W}]=\frac{\mathrm{rO38}}{\mathrm{r} 019 \text { (converted to } \mathrm{amps} \text {) }}$
- Set the armature circuit resistance in parameter P110

Calculation of armature circuit inductance P111 from measured armature current at transition from discontinuous to continuous current

- Make an oscilloscope trace of the armature current (e.g. at terminal 12) Increase the main setpoint (displayed at r001) slowly starting from 0 until the armature current reaches the transition from discontinuous to continuous current.
- Measure armature current at transition (at standstill EMF=0) ILG, EMF=0 or read out the value of r019 and convert to amps using P100.
- Measure the phase-to-phase voltage of the armature power section $U_{\text {supply }}$ or read out the value of r015.
- Calculate the armature circuit inductance using the following formula:
$\mathrm{LA}[\mathrm{mH}]=\frac{0.4 * \text { Usupply [V] }}{\text { ILG, EMF }=[\mathrm{A}]}$
- Set the armature circuit inductance in parameter P111.

7.6.2 Manual setting of field circuit resistance RF (P112)

- Rough estimation of field circuit resistance $R_{F}(P 112)$ from motor rated field data

$$
R F=\frac{\text { Rated motor field voltage }}{\text { Rated motor field current (P102) }}
$$

- Adapt the field circuit resistance $R_{F}(P 112)$ using a field current setpoint/actual value comparison
- Set parameter P112=0 to produce a 180° field precontrol output, and thus an actual field current value $=0$
- Set parameter P082=3 to ensure that the field remains permanently energized, even when the line contactor has dropped out
- Set parameters P254=0 and P264=0, i.e. only field precontrol active and field current controller disabled
- Set parameter P102 to the rated field current
- Increase parameter P112 until the actual field current (r035 converted to amps be means of r073.002) is equal to the required setpoint (P102).
- Reset parameter P082 to the plant operating value.

7.7 Starting up optional supplementary boards

For board mounting instructions, see Section 5.3.2, Mounting Optional Supplementary Boards. This section also contains details on the number of supplementary boards that can be installed and in which slots they may be inserted.
The basic converter automatically detects all installed supplementary boards during power-up.
All communications-related settings must be made by means of parameters. The function diagrams in Section 8 show a general overview of the parameters provided for this purpose.
If two boards of the same type (e.g. two EB1s) are installed in a converter, the slots in which they are installed determine the parameter settings. The board in the slot with the lower slot letter is the $1^{\text {st }}$ board (e.g. the $1^{\text {st }}$ EB1) of this particular type and the board with the higher letter the $2^{\text {nd }}$ board (e.g. $2^{\text {nd }} E B 1$).

The $1^{\text {st }}$ board is parameterized via index 1 and the $2^{\text {nd }}$ board via index 2 of the corresponding parameter (e.g. to define the signal type of the analog inputs of boards of type EB1, parameter U755.001 is used for the $1^{\text {st }}$ EB1 and parameter U755.002 for the $2^{\text {nd }} E B 1$).

7.7.1 Procedure for starting up technology boards (T100, T300, T400):

NOTE

Freely configurable technology boards T300 and T400 are guaranteed to operate correctly (board run up and data exchange with the SIMOREG 6RA70). The user, however, must bear responsibility for ensuring that the system is properly configured.

Disconnect the power supply and insert the board in location 2.

Power up the system again to gain access to the parameters of the technology board (d and H parameters, as well as c and L parameters if programmed).

The process data are interconnected at the basic converter end by means of the appropriate connectors and binectors (see Section 8, function diagram Z110)
For meaning of bits of control and status words, please see Section 8, Sheets G180 to G183.

If a communication board is used in addition to a technology board, then data are exchanged with the basic converter via the technology board. The basic converter cannot directly access the data of the communication board. The connections of the transfer data are then determined by the configuration or parameter settings of the technology board.
Module T100 comprising software submodule MS100 already contains several technology functions and arithmetic, control, and logic modules, which are freely configurable using parameters. This software can be expanded with customized components, if required.

As module T300 has already been replaced by T400, T300 should only be used in special circumstances.

Only one communication module (CBC, CBD, CBP2, SCB1) is permitted in slot G in addition to the technology modules T100 and T300 in slot 2.
Module T400 is already available with standard configurations for frequent applications. They permit the use of several functions (e.g. inputs/outputs, serial interfaces, link to a communications module) without any additional configuration.

As from configuration software D7-SYS V4.0 R07/98, it is possible to configure not only one, but two communications modules (CBC, CBD, CBP2) for module T400. These modules are then located on an ADB in slots $G(1 . C B)$ and $F(2 . C B)$.
In this case, the $2^{\text {nd }} C B$ is not configured with parameters of the basic device, but the $C B$ parameters must be configured as modifiable parameters of the T400.
Possible communications paths are shown in the figure below. For details of how to configure a T400, please consult the relevant documentation (e.g. SIMADYN D Configuring Instructions T400, 6DD1903-0EA0 etc.).

The SIMOREG CM 6RA70 does not permit direct evaluation of the signals of a pulse generator connected to the terminals of the CUD1 by the T400.

7.7.2 Sequence of operations for starting up PROFIBUS boards (CBP2):

Switch off the power supply and insert the board or adapter with board. For board mounting instructions, see Section 5.3.2, Mounting Optional Supplementary Boards.

The following are important communication parameters. Index 1 of each parameter is set for the $1^{\text {st }}$ communication board ($1^{\text {st }} \mathrm{CB}$) and index 2 for the $2^{\text {nd }}$ communication board ($2^{\text {nd }} \mathrm{CB}$):

- U712 PPO type, definition of the number of words in the parameter and process data section of the telegram (required only if the PPO type cannot be set via PROFIBUSDP master)
- U722 Telegram failure time for process data ($0=$ deactivated) The DP master configuring data determine whether the slave (CBP2) must monitor telegram traffic with the master. If this monitoring function is activated, the DP master passes a time value (watchdog time) to the slave when the link is set up. If no data are exchanged within this period, the slave terminates the process data exchange with the SIMOREG converter. The latter can monitor the process data as a function of U722 and activate fault message F082.
- P918 Bus address
- P927 Parametrization enable (need only be set if parameters are to be assigned via PROFIBUS)
-The process data of the $1^{\text {st }}$ or $2^{\text {nd }}$ communication board are connected by means of the appropriate connectors and binectors (see Section 8, function diagrams Z110 and Z111) For meaning of bits of control and status words, please see Section 8, Sheets G180 to G183.

Turn the electronics supply voltage off and on again or set U710.001 or U710.002 to "0" to transfer the values of parameters U712, U722 and P918 to the supplementary board.

WARNING

This initialization process will interrupt the communication of any supplementary board that has already been started up.

WARNING

Note the setting of parameter U722. In the factory setting of U722 (monitoring deactivated) the drive continues to run with the last received setpoints in case of a PROFIBUS failure and can only be stopped by an OFF signal from the terminal. For details, see Section 11, Parameter list.

The CBP2 (Communication Board PROFIBUS) serves to link drives and higher-level automation systems via the PROFIBUS-DP. For the purpose of PROFIBUS, it is necessary to distinguish between master and slave converters.

Masters control the data traffic via the bus and are also referred to as active nodes. There are two classes of master:
DP masters of class 1 (DPM1) are central stations (e.g. SIMATIC S5, SIMATIC S7 or SIMADYN D) which exchange data with slaves in predefined message cycles. DPM1s support both a cyclic channel (transmission of process data and parameter data) and an acyclic channel (transmission of parameter data and diagnostic data). DP masters of class 2 (DPM2) are programming, configuring or operator control/visualization devices (e.g. DriveMonitor) which are used in operation to configure,
start up or monitor the installation.
DPM2s support only an acyclic channel for transferring parameter data.
The contents of the data frames transferred via these channels are identical to the structure of the parameter section (PKW) as defined by the USS specification.

The following diagram shows the services and channels supported by a CBP2:

Slaves (e.g. CBP2) may only respond to received messages and are referred to as passive nodes.

PROFIBUS (Process Field Bus) combines high baud rates (to RS485 standard) with simple, lowcost installation. The PROFIBUS baud rate can be selected within a range of 9.6 kbaud to 12 Mbaud and is set for all devices connected to the bus when the bus system is started up. The bus is accessed according to the token-passing method, i.e. permission to transmit for a defined time window is granted to the active stations (masters) in a "logical ring". The master can communicate with other masters, or with slaves in a subordinate master-slave process, within this time window.
PROFIBUS-DP (Distributed Peripherals) predominantly utilizes the master-slave method and data is exchanged cyclically with the drives in most cases.

The user data structure for the cyclic channel MSCY_C1 (see picture above) is referred to as a Parameter Process(data) Object (PPO) in the PROFIBUS profile for variable-speed drives. This channel is also frequently referred to as the STANDARD channel.
The user data structure is divided into two different sections which can be transferred in each telegram:

PZD section

The process data (PZD) section contains control words, setpoints, status words and actual values.

PKW section

The parameter section (PKW - Parameter ID Value) is used to read and write parameter values.

When the bus system is started up, the type of PPO used by the PROFIBUS master to address the drive is selected. The type of PPO selected depends on what functions the drive has to perform in the automation network.

Process data are always transferred and processed as priority data in the drive.
Process data are "wired up" by means of connectors of the basic unit (drive) or via technology board parameters, if these are configured.

Parameter data allow all parameters of the drive to be accessed, allowing parameter values, diagnostic quantities, fault messages, etc. to be called by a higher-level system without impairing the performance of the PZD transmission.

A total of five PPO types are defined:

PKW section					PZD section									
	PKE $1^{\text {st }}$ word	IND $2^{\text {nd }}$ word	P $3^{\text {rd }}$ word	E $4^{\text {th }}$ word	$\begin{gathered} \text { PZD1 } \\ \text { STW } \\ 1 \\ \text { ZSW } \\ 1 \\ 1^{\text {st }} \\ \text { word }^{2} \end{gathered}$	PZD2 HSW HIW $2^{\text {nd }}$ word	PZD3 $3^{\text {rd }}$ word	PZD4 $4^{\text {th }}$ word	PZD5 $5^{\text {th }}$ word	PZD6 $6^{\text {th }}$ word	PZD7 $7^{\text {th }}$ word	PZD8 $8^{\text {th }}$ word	PZD9 $9^{\text {th }}$ word	$\begin{gathered} \text { PZD } \\ 10 \end{gathered}$ $10^{\text {th }}$ word
PPO1														
PPO2														
PPO3														
PPO4														
PPO5														
PKW:	Param	ter ID	lue		IND:	Index				ZSW	Status	word		
PZD:	Proces	data			PWE:	Param	ter valu			HSW:	Main s	tpoint		
PKE:	Param	ter ide	ifier		STW:	Control	word			ISW:	Main a	tual va		

The acyclic channel MSCY_C2 (see diagram above) is used exclusively for the start-up and servicing of DriveMonitor.

7.7.2.1 Mechanisms for processing parameters via the PROFIBUS:

The PKW mechanism (with PPO types 1, 2 and 5 and for the two acyclic channels MSAC_C1 and MSAC_C2) can be used to read and write parameters. A parameter request job is sent to the drive for this purpose. When the job has been executed, the drive sends back a response. Until it receives this response, the master must not issue any new requests, i.e. any job with different contents, but must repeat the old job.
The parameter section in the telegram always contains at least 4 words:

	Parameter identifier PKE	Index IND	Parameter value 1 PWE1 (H word)	Paramter value 2 PWE2 (L word)	

Details about the telegram structure can be found in Section 7.7.9, "Structure of request/response telegrams", and in the PROFIBUS profile "PROFIBUS Profile, Drive technology" of the user's organization PROFIBUS International (http://www.profibus.com).

The parameter identifier PKE contains the number of the relevant parameter and an identifier which determines the action to be taken (e.g. "read value").

The index IND contains the number of the relevant index value (equals 0 in the case of nonindexed parameters). The IND structure differs depending on the communication mode:

- Definition in the PPOs (structure of IND with cyclical communication via PPOs)
- Definition for acyclical channels MSAC_C1 and MSAC_C2 (structure of IND with acyclical communication)

The array subindex (referred to simply as "subindex" in the PROFIBUS profile) is an 8-bit value which is transferred in the high-order byte (bits 8 to 15) of the index (IND) when data are transferred cyclically via PPOs. The low-order byte (bits 0 to 7) is not defined in the DVA profile. The low-order byte of the index word is used in the PPO of CBP2 to select the correct number range (bit7 = Page Select bit) in the case of parameter numbers of > 1999.
In the case of acyclical data traffic (MSAC_C1, MSAC_C2) the number of the index is transferred in the low-order byte (bits 0 to 7). Bit 15 in the high-order byte is used as the Page Select bit. This assignment complies with the USS specification.

Index value 255 (request applies to all index values) is meaningful only for acyclical transmission via MSAC_C1. The maximum data block length is 206 bytes with this transmission mode.

The parameter value PWE is always transferred as double word (32-bit value) PWE1 and PWE2. The high-order word is entered as PWE1 and the low-order word as PWE2. In the case of 16-bit values, PWE1 must be set to 0 by the master.

Example (acyclical data traffic):

Read parameter P101.004 (for details, see Section 7.7.9, "Structure of request/response telegrams"):

Request identifier PKE = 0x6065 (request parameter value (array) P101),
Index IND = 0004h = 4d
Parameter value PWE1 $=$ PWE2 $=0$
SIMOREG response:
Response identifier PKE $=0 \times 4065$,
Index IND = 0004h = 4d
Value of P101.004 $=0190 \mathrm{~h}=400 \mathrm{~d}(\mathrm{PWE} 1=0$, because it is not a double word parameter $)$

Rules for job/response processing:

A job or a response can only ever refer to one parameter.
The master must send the job repeatedly until it receives an appropriate response from the slave. The master recognizes the response to the job it has sent by analyzing the response identifier, the parameter number, the parameter index and the parameter value.
The complete job must be sent in one telegram. The same applies to the response.
The actual values in repeats of response telegrams are always up-to-date values.
If no information needs to be fetched via the PKW interface (but only PZD) in cyclic operation, then a "No job" job must be issued.

PROFIBUS devices have a variety of difference performance features. In order to ensure that all master systems can correctly address each supplementary board, the characteristic features of each board are stored in a separate device master file (GSD).
You need file <siem8045.gsd> for CBP2.
The appropriate file can be chosen in the selection menu for the SIMOVERT MASTER DRIVES files in later versions of the configuring tool.
If a device master file is not available in the menu, it can be collected from an Internet site. The Internet address is http://www4.ad.siemens.de/view/cs/en/4647098.
Product Support/PROFIBUS GSD files/Drives/ . Have all entries displayed using the search function and click on the search results.

SIMOVERT/SIMOREG/SIMADYN CBP

File: siem8045.gsd
The communication boards can only be operated on a non-Siemens master as a DP standard slave, the corresponding GSD file containing all necessary information for this mode.
Detailed information about communication via PROFIBUS can be found in Section 8.2 of the compendium for SIMOVERT MASTER DRIVES Motion Control (order no. 6SE7080-0QX50). The description in this document is fully applicable in every respect, except that the specified parameter numbers differ from those used on the SIMOREG CM 6RA70.

7.7.2.2 Diagnostic tools:

LED displays of CBP2 (flashing LEDs mean normal operation):

Red LED	Status of CBP2
Yellow LED	Communication between SIMOREG and CBP2
Green LED	Communication between CBP2 and PROFIBUS

As a start-up support tool, the PROFIBUS board supplies data which can be displayed in n 732.001 to n 732.032 ($1^{\text {st }} \mathrm{CB}$) or n 732.033 to n 732.064 ($2^{\text {nd }} \mathrm{CB}$).
The values of the indices are as follows:

Index	Meaning for CBP2
001/033	CBP_Status Bit0: "CBP Init", CBP is being initialized or waiting to be initialized by the basic unit (not set in normal operation) Bit1: "CBP Online", CBP is selected by basic unit (set in normal operation) Bit2: "CBP Offline", CBP not selected by basic unit (not set in normal operation) Bit3: Illegal bus address (P918) (not set in normal operation) Bit4: Diagnostic mode activated (U711 <> 0) (not set in normal operation) Bit8: Incorrect identifier bytes transferred (incorrect configuring message from PROFIBUS Master) (not set in normal operation) Bit9: Incorrect PPO type (incorrect configuring message from PROFIBUS Master) (not set in normal operation) Bit10: Correct configuring data received from PROFIBUS_DP Master (set in normal operation) Bit12: Fatal error detected by DPS Manager software (not set in normal operation) Bit13: Program in endless loop in main.c (loop can only be exited by a Reset) Bit15: Program in communications online loop (loop can only be exited through re-initialization by basic unit)
002/034	SPC3_Status Bit0: Offline/Passive Idle ($0=$ SPC3 is operating in normal mode (offline) $1=$ SPC3 is operating in Passive Idle) Bit2: Diag flag ($0=$ diagnostic buffer has been picked up by master $1=$ diagnostic buffer has not been picked up by master) Bit3: RAM Access Violation, memory access $>1.5 \mathrm{kB}$ ($0=$ no address violation, $1=$ for addresses >1536 bytes, 1024 is subtracted from address and access made to the new address) Bit4+5: DP state ($00=$ Wait_Prm, $01=$ Wait_Cfg, $10=$ Data_Ex, $11=$ not possible) Bit6+7: WD state ($00=$ Baud search, $01=$ Baud_Control, $\overline{10}=$ DP_Control, $11=$ not possible) Bit8-11: Baud rate $(0000=12 \mathrm{MBd}, 0001=6 \mathrm{MB} \overline{\mathrm{d}}, 0010=3 \mathrm{MBd}, 0011=1,5 \mathrm{MBd}, 0100=500 \mathrm{kBd}, 0101=187.5 \mathrm{kBd}$, $0110=93.75 \mathrm{kBd}, 0111=45.45 \mathrm{kBd}, 1000=19.2 \mathrm{kBd}, 1001=9.6 \mathrm{kBd})$ Bit12-15: SPC3-Release (0000=Release 0)
003/035	SPC3_Global_Controls Bits remain set until the next DP global command Bit1: 1=Clear_Data message received Bit2: 1=Unfreeze message received Bit3: 1=Freeze message received Bit4: 1=Unsync message received Bit5: 1=Sync message received
004/036	L byte: No. of received error-free messages (DP Standard only) H byte: Reserved
005/037	L byte: "Timeout" counter H byte: Reserved
006/038	L byte: "Clear Data" counter H byte: Reserved
007/039	L byte: "Heartbeat counter error" counter H byte: Reserved
008/040	L byte: No. bytes for special diagnosis H byte: Reserved
009/041	L byte: Mirroring of slot identifier 2 H byte: Mirroring of slot identifier 3
010/042	L byte: Mirroring of P918 (CB bus addr.) H byte: Reserved
011/043	L byte: "Re-config. by CUD" counter H byte: "Initialization runs" counter
012/044	L byte: Error ID DPS manager error H byte: Reserved
013/045	L byte: PPO type found H byte: Reserved
014/046	L byte: Mirroring of "DWord specifier ref"

Index	
$015 / 047$	H byte: Mirroring of "DWord specifier act"
$016 / 048$	L byte: DPV1:DS_Write, pos. ack. counter H byte: Reserved
$017 / 049$	L byte: DPV1:DS_Write, neg. ack. counter H byte: Reserved
$018 / 050$	L byte: DPV1:DS_Read, pos. ack. counter H byte: Reserved
$019 / 051$	L byte: DPV1:DS_Read, neg. ack. counter H byte: Reserved
$020 / 052$	L byte: DP/T:GET DB99 pos. ack. counter H byte: DP/T:PUT DB99 pos. ack. counter
$021 / 053$	L byte: DP/T:GET DB100 ps. ack. counter H byte: DP/T:PUT DB100 ps. ack. counter
$022 / 054$	L byte: DP/T:GET DB101 ps. ack. counter H byte: DP/T:PUT DB101 ps. ack. counter
$023 / 055$	L byte: DP/T service neg. acknow. counter H byte: DP/T:Application association pos. acknow. counter
$024 / 056$	Reserved
$025 / 057$	Date of creation: Day, month
$026 / 058$	Date of creation: Year
$027 / 059$	Software version (Vx.yz, display x)
$028 / 060$	Software version (Vx.yz, display yz)
$029 / 061$	Software version: Flash-EPROM checks.
$030 / 062$	Reserved $031 / 063$
$032 / 064$	Reserved

Fault and alarm messages:

For details about fault messages, see Section 10.

Fault F080

An error occurred as board CBP2 was being initialized, e.g. incorrect value of a CB parameter, incorrect bus address or defective module.

Fault F081

The heartbeat counter (counter on CBP2) which is monitored by SIMOREG for "signs of life" from the board has not changed for at least 800 ms .
Fault F082
Failure of PZD telegrams or a fault in the transmission channel.

Alarm A081 (1 $1^{\text {st }} \mathrm{CB}$) or alarm A089 ($2^{\text {nd }} \mathrm{CB}$)
The identifier byte combinations transmitted by the DP master in the configuration telegram do not match the permitted identifier byte combinations (configuring error on DP master) Effect: No link can be established with the DP master, reconfiguration necessary.
Alarm A082 ($1^{\text {st }} \mathrm{CB}$) or alarm A090 (2nd CB)
No valid PPO type can be determined from the configuration telegram from the DP master. Effect: No link can be established with the DP master, reconfiguration necessary.
Alarm A083 ($1^{\text {st }} \mathrm{CB}$) or alarm A091 ($2^{\text {nd }} \mathrm{CB}$)
No user data, or only invalid data, are being received from the DP master.
Effect:The process data are not transferred to the basic unit. When the telegram failure
monitoring function is active (U722 set to value other than 0), this disturbance generates fault message F082 with fault value 10.

Alarm A084 ($1^{\text {st }} \mathrm{CB}$) or alarm A092 (2 $2^{\text {nd }} \mathrm{CB}$)
The exchange of data between the communication board and DP master has been interrupted (e.g. cable break, bus connector removed or DP master switched off).
Effect: When the telegram failure monitoring function is active (U722 set to value other than 0), this disturbance generates fault message F082 with fault value 10.

Alarm A085 ($1^{\text {st }} \mathrm{CB}$) or alarm A093 (2 $2^{\text {nd }} \mathrm{CB}$)
Error in the DPS software of the communication board.
Effect: Fault message F081 is generated.
Alarm A086 (1st CB) or alarm A094 (2 ${ }^{\text {nd }} \mathrm{CB}$)
Failure of heartbeat counter detected by SIMOREG CM.
Effect: Interruption in communication with PROFIBUS.
Alarm A087 ($1^{\text {st }} \mathrm{CB}$) or alarm A095 ($2^{\text {nd }} \mathrm{CB}$)
DP slave software has detected serious fault, fault number in diagnostic parameter n 732.08 . Effect:Total communication failure (secondary fault F082).
Alarm A088 (1 $1^{\text {st }} \mathrm{CB}$) or alarm A096 (2 $2^{\text {nd }} \mathrm{CB}$)
At least 1 configurable internode transmitter is not yet active or has failed again (for details, see diagnostic parameter n732).
Effect:If a transmitter is not yet active, the associated setpoints are set to "0" as an alternative. If an internode transmitter fails again, transmission of the setpoints to the SIMOREG may be interrupted depending on the setting of U715 (with secondary fault F082).

7.7.3 Sequence of operations for starting up CAN bus boards (CBC):

With the power supply switched off, insert the board with adapter board (ADB) into the slot. For board mounting instructions, see Section 5.3.2, Mounting Optional Supplementary Boards.

The following are important communication parameters. Index 1 of each parameter is set for the $1^{\text {st }}$ communication board ($1^{\text {st }} \mathrm{CB}$) and index 2 for the $2^{\text {nd }}$ communication board ($2^{\text {nd }} \mathrm{CB}$): Exception: In parameter U721, i 001 to i 005 are applicable to the $1^{\text {st }} \mathrm{CB}$ and i006 to i 010 to the $2^{\text {nd }} \mathrm{CB}$ (indices 3 to 5 and 8 to 10 are reserved).
The meaning of the parameters also differs depending on the setting of U721, i.e. CANLayer $2(\mathrm{U} 721=0)$ and CANopen (U721=1):

	CAN-Layer 2	CANopen
U711	Basic identifier for PKW Request/PKW Response	$1{ }^{\text {st }}$ Receive-PDO
U712	Basic identifier for PZD Receive	$2^{\text {nd }}$ Receive-PDO
U713	Basic identifier for PZD Send	$3{ }^{\text {rd }}$ Receive-PDO
U714	Number of PZD for PZD Send	$4^{\text {th }}$ Receive-PDO
U715	Updating rate for PZD Send	$1{ }^{\text {st }}$ Transmit-PDO
U716	Basic identifier for PZD Receive-Broadcast	$2^{\text {nd }}$ Transmit-PDO
U717	Basic identifier for PZD Receive-Multicast	$3{ }^{\text {rd }}$ Transmit-PDO
U718	Basic identifier for PZD Receive-Internode	$4^{\text {th }}$ Transmit-PDO
U719	Basic identifier for PKW Request-Broadcast	Response to Life Time Event
U720	Baud rate when U721.002 or U721.007 = 0: $0=10 \mathrm{kbit} / \mathrm{s}, 1=20 \mathrm{kbit} / \mathrm{s}, 2=50 \mathrm{kbit} / \mathrm{s}, 3=100 \mathrm{kbit} / \mathrm{s}$, $4=125 \mathrm{kbit} / \mathrm{s}, 5=250 \mathrm{kbit} / \mathrm{s}, 6=500 \mathrm{kbit} / \mathrm{s}$, 7=Reserved, 8=1Mbit/s	Baud rate when U721.002 or U721.007 = 0: $0=10 \mathrm{kbit} / \mathrm{s}, 1=20 \mathrm{kbit} / \mathrm{s}, 2=50 \mathrm{kbit} / \mathrm{s}, 3=100 \mathrm{kbit} / \mathrm{s}$, $4=125 \mathrm{kbit} / \mathrm{s}, 5=250 \mathrm{kbit} / \mathrm{s}, 6=500 \mathrm{kbit} / \mathrm{s}$, 7=Reserved, 8=1Mbit/s
$\begin{aligned} & \text { U721.01 } \\ & \text { or } \\ & \text { U721.06 } \end{aligned}$	0 = Functionality according to Layer 2 of ISO-OSI7 Layer Model	1 = Functionality according to Layer 7 of ISO-OSI7 Layer Model (CANopen)
$\begin{gathered} \hline \text { U721.02 } \\ \text { or } \\ \text { U721.07 } \end{gathered}$	Bus timing (this should not be changed)	Bus timing (this should not be changed)
U722	Telegram failure time (0 = deactivated)	Telegram failure time (0 = deactivated)
P918	Bus address (node ID)	Bus address (node ID)
P927	Parameterizing enable (required only in cases where parameter values must be altered via the CAN Bus)	Parameterizing enable (required only in cases where parameter values must be altered via the CAN Bus)

The process data of the $1^{\text {st }}$ or $2^{\text {nd }}$ communication board are connected by means of the appropriate connectors and binectors (see Section 8, function diagrams Z110 and Z111) For meaning of bits of control and status words, please see Section 8, Sheets G180 to G183.

Turn the electronics supply voltage off and on again or set U710.001 or U710.002 to "0" to transfer the values of parameters U711 to U721 and P918 to the supplementary board. Note: The initialization process may interrupt the communication link to a supplementary board which is already operational.

WARNING

This initialization process will interrupt the communication of any supplementary board that has already been started up.

The CAN (Controller Area Network) fieldbus is being used increasingly for industrial applications in spite of its limited network length (max. 40 m with a data transmission rate of 1 Mbaud).
Data are transferred by means of telegrams. Each data message, the so-called COBs (Communication Objects), has its own individual identifier and contains a maximum of 8 bytes of user data. The CBC board uses the Standard Message Format with 11-bit identifier.
Simultaneous use by other nodes of Extended Message Format with 29-bit identifiers is tolerated, but messages with this format are not evaluated.
Nodes on the bus determine from the identifier which telegrams apply to them. The COBs to be sent and received by each node must be defined before data transmission commences.
The identifiers also determine bus accessing priority. Low identifiers gain faster access to the bus, i.e. they have higher priority then high identifiers.

Errored telegrams can be reliably detected by means of a number of interactive error detection mechanisms. A transmission is automatically repeated when errors are detected.
The figure below shows a diagram of the CAN architecture model that is oriented toward the ISO-OSI-7 layer reference model. The CBC supports the functionalities provided by layers 2 and 7 of this model.

Functionality according to layer 2
The user data from the user software (as COBs on byte level) must be transferred directly to layer 2 (see also the examples of PZD and PKW data exchange given further down).

Functionality according to layer 7 (CANopen)
Process data are exchanged rapidly by means of so-called PDOs (Process Data Objects) analogous to the transmission method used for layer 2.
Parameter data are exchanged by means of so-called SDOs (Service Data Objects).

			CAN protocol	Device net
Application		Device profile		Device net specification includes: - Device profile - Communication profile - Application layer
		Communication profile	$\begin{gathered} \text { CIA } \\ \text { DS } 301 \end{gathered}$	
Communication	Layer 7	Application layer	CIA CAL DS 201 .. 205, 207 CANopen CAL	
	Layer 3-6			
	Layer 2	Data link layer	ISO-DIS 11898	
	Layer 1	Physical layer, electrical		
		Physical layer, mechanical	CIA DS 102-1	Device Net ODVA

7.7.3.1 Description of CBC with CAN Layer 2

User data are exchanged between the CAN master and the CAN boards on the drives, i.e. the slaves. User data are categorized as either process data (control and status information, setpoints and actual values) or data which relate to parameters.
Process data (PZDs) are time-critical and therefore processed faster by the drive (every 3.3 ms at system frequency of 50 Hz) than the non-time-critical PKW data (parameter identifier value), which is processed by the drive every 20 ms .
All settings required to operate the communication board are made in drive parameters (see Section 8, function diagrams Z110 and Z111).
Process data (PZD) are categorized as either data received by the drive (control words and setpoints: PZD Receive) or data transmitted by the drive (status words and actual values: PZD
Send). A maximum of 16 PZDs can be transferred in either direction; these are divided into COBs with 4 data words each by the communication board. In other words, 4 COBs are required to transfer 4 PZD words, with each COB requiring its own separate identifier. Identifiers are assigned in the CB parameters as shown in the following diagram:

Example of PZD Receive:

P918 $=1$	This settings assigns identifier 100 to the first 4 receive PZDs,
U712 $=96$	identifier 101 to the second 4 receive PZDs, etc.

Example of PZD Send:

$$
\begin{array}{ll}
\text { P918 }=1 & \text { This setting assigns identifier } 200 \text { to the first } 4 \text { send PZDs, } \\
\text { U713 }=196 & \text { identifier } 201 \text { to the second } 4 \text { send PZDs, etc. }
\end{array}
$$

How received data are utilized by the drive or which data are to be sent by the drive is determined by connectors (see Section 8, function diagrams Z110 and Z111).

3 different modes of COB transmission can be selected in CB parameter 5 (U715):

$$
\begin{array}{ll}
\text { U715 }=0 & \begin{array}{l}
\text { Actual values are transmitted only on request (Remote Transmission } \\
\text { Requests) }
\end{array}
\end{array}
$$

U715 = 1 to 65534 Actual values are transmitted after the set time [ms] or on request (Remote Transmission Requests)
U715 $=65535 \quad$ Actual values are transmitted if the values have changed (event) or on request (Remote Transmission Requests). This option should only be used in cases where values seldom change so as to prevent excessive bus loading.

Structure of a telegram for PZD data exchange:

The telegram consists of the following data words:

Identifier ID	Process data word 1 PZD1	Process data word 2 PZD2	Process data word 3 PZD3	Process data word 4 PZD4

ID is the CAN identifier that is defined for the COB in question by parameterization.
PZDx are process data words

Example of a PZD setpoint telegram:
Using the receive identifier of the above example
Receive identifier 100d 0064h

1. Setpoint $\quad 40063_{d} \quad 9 C 7 F_{h} \quad$ control word 1
2. Setpoint $8192_{d} \quad 2000_{h} \quad$ speed setpoint 50%
3. Setpoint $\quad 123_{d} \quad 007 B_{h}$
4. Setpoint $\quad 0_{d} \quad 0_{h}$

Using the CAN BusAnalyser++ from Steinbeis, the setpoint data appear as follows (data field length $=8$ bytes, low and high bytes are shown swapped round):

Identifier	Data field			
6400	$7 F 9 C$	0020	$7 B 00$	PZD3
ID	PZD1	PZD2	PZD4	

The following functions are also available, each allowing a maximum of 16 process data to be transferred:

PZD Receive Broadcast

This function is used to send setpoints and control words from the master to all slaves on the bus simultaneously. With this option, an identical identifier must be set on all slaves utilizing the function. This common identifier is set in CB parameter 6 (U716). The first 4 PZDs are transferred with the value set in U716 and the second 4 PZDs with the value in U716+1, etc.

PZD Receive Multicast

This function is used to send setpoints and control words from the master to a group of slaves on the bus simultaneously. With this option, all slaves within the group using the function must be set to an identical identifier. This group identifier is set in CB parameter 7 (U717). The first 4 PZDs are transferred with the value set in U717 and the second 4 PZDs with the value in U717+1, etc

PZD Receive Internode

This function is used to receive setpoints and control words from another slave, allowing PZDs to be exchanged between drives without intervention by a CAN master. For this purpose, the identifier of PZD Receive Internode on the receiving slave must be set to the identifier of PZD Send on the transmitting slave. This identifier is set in CB parameter 8 (U718). The first 4 PZDs are transferred with the value set in U718 and the second 4 PZDs with the value in U718+1, etc.

Notes regarding PZD transmission:

Control word 1 must always be transferred as the first PZD word for setpoints. If control word 2 is needed, then it must be transferred as the fourth PZD word

Bit 10 (control by PLC) must always be set in control word 1 or else the drives will not accept setpoints and control words.

The consistency of process data can only be guaranteed within a COB. If more than 4 data words are needed, these must be divided among several COBs. Since drives accept the data asynchronously, the data transferred in several COBs may not always be accepted and processed in the same processing cycle.
For this reason, interrelated data should be transferred within the same COB. If this is not possible, data consistency can be assured by means of control word bit 10 (control by PLC), i.e. by setting the bit to "off" in the first COB to temporarily prevent the drive from accepting the data from the communications board. The remaining data are then transmitted. Finally, a COB containing a control word bit 10 set to "on" is transmitted. Since a drive can accept up to 16 PZDs simultaneously from the communication board, data consistency is assured.

Since a variety of different functions can be used to transfer PZDs simultaneously, data are overlayed in the drive. For example, the first PZD from PZD Receive and PZD Receive Broadcast are always interpreted as the same control word 1. For this reason, care should be taken to ensure that data are transferred in meaningful combinations.

Two CAN identifiers are required for the purpose of processing parameters, i.e. one CAN identifier for PKW Request (parameter request job to drive) and one CAN identifier for PKW Response (parameter response by drive). These assignments are made in CB parameters as shown in the following diagram:

Example of PKW data exchange:

$$
\begin{array}{ll}
\text { P918 }=1 & \text { This setting assigns identifier } 300 \text { to the parameter job (request) } \\
\text { U711 }=298 & \text { and identifier } 301 \text { to the parameter response. }
\end{array}
$$

Structure of a telegram for PKW data exchange:

The telegram consists of the following data words:

Identifier	Parameter identifier ID	Parameter index PKE	Parameter value 1 PWE1	Parameter value 2 PWE2

ID is the CAN identifier that is defined for the COB in question by parameterization.
PKE contains the request or response ID and the parameter number

Request or response ID		Parameter number

Bit 0 to bit 10 contain the number of the parameter concerned. Bit 12 to bit 15 contain the request or response ID.

The index IND contains the value 0 for unindexed parameters, for indexed parameters it contains the corresponding index value. Bit15 also has a special function as the page select bit for parameter numbers greater than 1999.
The index value 255 means that the request concerns all indices of the parameter in question. For a change request, the parameter values must then be passed on for all indices of the parameter. Because a COB can only contain up to 4 data words (8 bytes) of net data, use of this request is only possible for parameters with (up to) 2 indices. In the other direction, the drive supplies all index values in the response telegram to a read request.

Details about the telegram structure can be found in Section 7.7.9, "Structure of request/response telegrams".

Example of a PKW request:

Changing the parameter value of the indexed parameter P301.02 (in the RAM) to -95.00\%.
The example telegram therefore contains the following values:

Request identifier	300_{d}	$012 C_{h}$
Request code	7_{d}	7_{h}
Parameter number	301_{d}	$012 D_{h}$
Index	2_{d}	0002_{h}
Parameter value	9500_{d}	$D A E 4_{h}$

For use of the IDs of the example above
"Change parameter value (array word)"
$=>$ PKE $=712 D_{h}$

Using the CAN BusAnalyser++ from Steinbeis, the transmit data appear as follows (data field length $=8$ bytes, low and high bytes are shown swapped round):

Identifier	Data field			
2 C 01	2D 71	0200	E4 DA	0000
ID	PKE	IND	PWE1	

The following transfer function is also available:

PKW Request Broadcast

A parameter job (request) is processed simultaneously by all slaves on the bus. The node address is not used to generate the CAN identifier because this must be set identically on all slaves utilizing the PKW Request Broadcast function. This common identifier is set in CB parameter 9 (U719). The corresponding parameter response is made with the CAN identifier for PKW Response described above.

Notes regarding PKW transmission:

The length of the job and the response is always 4 words. Jobs which apply to all indices of a parameter (e.g. "Request all indices") are not possible.

As a general rule, the low-order byte (in words) or the low-order word (in double words) is transferred first. SIMOREG 6RA70 does not use double word parameters itself, these jobs can only be executed where access is available to technology board parameters (e.g. T400).

The CBC does not respond to a parameter request job until the drive data are available. This normally takes 20 ms . The response times will be longer only if change (write) jobs including storage of the value in the EEPROM are received from other sources (e.g. serial basic converter interface), resulting in a delay in job execution.

In certain system states (e.g. initialization states), parameter processing is greatly delayed or does not take place at all.

The master may not issue a new parameter request job until any current parameter job has been acknowledged

7.7.3.2 Description of CBC with CANopen

7.7.3.2.1 Introduction to CANopen

CANopen is a standardized application for distributed, industrial automation systems based on CAN and the CAL communication standard. CANopen is a standard of CAN in Automation (CiA) and was in widespread use shortly after it became available.

CANopen can be regarded in Europe as the definitive standard for the implementation of industrial CAN-based system solutions.

CANopen is based on a so-called "communication profile" which specifies the underlying communication mechanisms and their definition [CiA DS-301].

The main types of device deployed for automating industrial systems, such as digital and analog input/output modules [CiA DS-401], drives [CiA DS-402], control panels [CiA DS-403], controllers [CiA DS-404], PLCs [CiA DS-405] or encoders [CiA DS-406], are described in so-called "device profiles". These profiles define the functionality of standard equipment of the relevant type.

A central component of the CANopen standard is the definition of device functionality using an "Object Directory" (OD). This object directory is subdivided into two sections, one which contains general information about the device, such as identification, manufacturer's name, etc. and the communication parameters, and the other describing the scope of device functions. An entry ("object") in the object directory is identified by means of a 16-bit index and an 8 -bit subindex.

The "application objects" of a device, such as input and output signals, device parameters, device functions or network variables, are made accessible in standardized form via the network by means of the entries in the object directory.

Similar to other field bus systems, CANopen employs two basic data transmission mechanisms: The rapid exchange of short process data via so-called "process data objects" (PDOs) and the accessing of entries in the object directory via so-called "service data objects" (SDOs). Process data objects are generally transferred either event-oriented, cyclically or on request as broadcast objects without an additional protocol overhead. SDOs are used mainly to transmit parameters during the device configuring process and generally for the transmission of longer data areas.
A total of 8 bytes of data can be transferred in a PDO. The assignment between application objects and a PDO (transfer object) can be set by means of a structure definition ("PDO mapping") stored in the OD and is thus adaptable to the individual operating requirements of a device.

SDOs are transmitted as a confirmed data transfer with two CAN objects in each case between two network nodes. The relevant object directory entry is addressed through the specification of index and subindex. Messages of unrestricted length can be transferred in principle. The transmission of SDO messages involves an additional overhead.

Standardized, event-oriented, high priority alarm messages ("Emergency Messages") are available for signaling device malfunctions.
The functionality required for the preparation and coordinated starting of a distributed automation system corresponds to the mechanisms defined under CAL Network Management (NMT); this also applies to the "Node Guarding" principle underpinning the cyclical node monitoring function.

Identifiers can be entered directly into the data structures of the object directory to assign CAN message identifiers to PDOs and SDOs; predefined identifiers can be used for simple system structures.

7.7.3.2.2 Functionality of CBC with CANopen

The CBC with CANopen supports only minimal boot-up as defined in communication profile CiaA DS-301 (Application Layer and Communication Profile).

Up to four Receive PDOs and four Transmit PDOs are available. Parameters U711 to U714 can be programmed to select the mapping and communication properties of the Receive PDOs and parameters U715 to U718 to set the mapping and communication properties of the Transmit PDOs.
Dynamic mapping, i.e. changing the assignment between the objects from the object directory and a PDO in operation, is not supported by the CBC. Transmission type and identifier of the communication objects (PDO, SDO, SYNC, EMCY and Node Guarding Object) can, however, be set via SDOs in operation. These settings override the settings of the CP parameters and are erased when the supply voltage is switched off.
One server SDO is available.
Another available communication object is the SYNC object. Using a synchronization message, the CAN master can synchronize the transmission and reception of PDOs for the whole network ("synchronous PDOs").
The EMCY object (Emergency Object) is implemented. This telegram is used to signal all faults and alarms generated in the SIMOREG system via the CAN Bus.
The network functionality is monitored via the Node Guarding Telegram with which the master addresses the slaves cyclically. Each slave must individually respond to this telegram within a parameterizable time frame.

If the master does not receive a response to its request, the communication link to the slave must be malfunctioning in some way (e.g. cable break, bus connector removed, etc.).
If the slave does not receive a Node Guarding Telegram from the master within a particular time period (Life Time Event), it can assume that there is error in the communication link. The reaction of the slave to this event can be parameterized in parameter U719.
Canopen modes Velocity Mode (speed control) and Profile Torque Mode (torque control), both in accordance with CiA DS-401 (Device Profile for Drives and Motion Control), and the manufacturerspecific Current Mode (current control) are implemented.

7.7.3.2.3 Requirements for operating the CBC with CANopen

To be able to operate the CBC with CANopen, the following two conditions must be fulfilled:

- SIMOREG firmware, V1.9 and later
- CBC firmware, V2.2 and later

To be able to operate the individual CANopen profiles, certain parameter settings must be made in the SIMOREG.

7.7.3.3 Diagnostic tools:

LED displays on the CBC (flashing LEDs indicate normal operation):
Red LED
Yellow LED
Status of CBC
Green LED
Communication between SIMOREG and CBC
Communication between CBC and CAN Bus

red	yellow	green	
flashing	flashing	flashing	Normal operation
flashing	off	on	CBC waiting for commencement of initialization by SIMOREG
flashing	on	off	CBC waiting for end of initialization by SIMOREG
flashing	flashing	off	No PZD data exchange via CAN Bus
flashing	on	on	CBC defective

Diagnostic parameter n732:

Indices i001 to i032 apply to a CBC as the first communication board; indices i033 to i064 apply to a CBC as the second communication board.

	Value	Meaning
$\begin{gathered} \mathrm{n} 732.001 \\ \text { or } \\ \mathrm{n} 732.033 \end{gathered}$	0 1 2 5 7 13 14 15 20 21 22 23 35 36 48 49 50 51 52 53 54 55 56 57 58 59 60 61 785 786 1025 1026 1041 1042 1092 63 64 65 66 67 68 68 514 274 273 257 23 25	No fault Fault F080/fault value 5 is displayed under fault conditions: Fault values for CAN layer 2: Incorrect address on CAN Bus (P918 / slave address) Incorrect CAN identifier with PKW Request (U711) Incorrect CAN identifier with PKW Request-Broadcast (U719) Incorrect CAN identifier with PZD Receive (U712) Incorrect CAN identifier with PZD Transmit (U713) PZD transmit length $=0$ (U714) PZD transmit length > 16 , i.e. too long (U714) Incorrect CAN identifier with PZD Receive-Broadcast (U716) Incorrect CAN identifier with PZD Receive-Multicast (U717) Incorrect CAN identifier with PZD Receive-Internode (U718) Invalid baud rate (U720) Incorrect CAN protocol type (U721) PKW Request-Broadcast (U719) without PKW Request (U711) Overlap between CAN identifier PKW and PKW Broadcast Overlap between CAN identifier PKW and PZD Receive Overlap between CAN identifier PKW and PZD Transmit Overlap between CAN identifier PKW and PZD Receive-Broadcast Overlap between CAN identifier PKW and PZD Receive-Multicast Overlap between CAN identifier PKW and PZD Receive-Internode Overlap between CAN identifier PKW Broadcast and PZD Receive Overlap between CAN identifier PKW Broadcast and PZD Transmit Overlap between CAN identifier PKW Broadcast and PZD Receive-Broadcast Overlap between CAN identifier PKW Broadcast and PZD Receive-Multicast Overlap between CAN identifier PKW Broadcast and PZD Receive-Internode Overlap between CAN identifier PZD Receive and PZD Transmit Overlap between CAN identifier PZD Receive and PZD Receive-Broadcast Overlap between CAN identifier PZD Receive and PZD Receive-Multicast Overlap between CAN identifier PZD Receive and PZD Receive-Internode Overlap between CAN identifier PZD Transmit and PZD Receive-Broadcast Overlap between CAN identifier PZD Transmit and PZD Receive-Multicast Overlap between CAN identifier PZD Transmit and PZD Receive Internode Overlap between CAN identifier PZD Receive-Broadcast and PZD Receive-Multicast Overlap between CAN identifier PZD Receive-Broadcast and PZD Receive-Internode Overlap between CAN identifier PZD Receive-Multicast and PZD Receive-Internode Fault values for CANopen: Incorrect bus address (P918) Invalid baud rate (U720) Incorrect CAN protocol type (U721) Invalid mapping of 1st Receive PDO (U711) Invalid transmission type of $1^{\text {st }}$ Receive PDO (U711) Invalid mapping of $1^{\text {st }}$ Transmit PDO (U715) Invalid transmission type of $1^{\text {st }}$ Transmit PDO (U715) Invalid mapping of $2^{\text {nd }}$ Receive PDO (U712) Invalid transmission type of $2^{\text {nd }}$ Receive PDO (U712) Invalid mapping of $2^{\text {nd }}$ Transmit PDO (U716) Invalid transmission type of $2^{\text {nd }}$ Transmit PDO (U716) Invalid mapping of $3^{\text {rd }}$ Receive PDO (U713) Invalid transmission type of $3^{\text {rd }}$ Receive PDO (U713) Invalid mapping of $3^{\text {rd }}$ Transmit PDO (U717) Invalid transmission type of $3^{\text {rd }}$ Transmit PDO (U717) Invalid mapping of $4{ }^{\text {th }}$ Receive PDO (U714) Invalid transmission type of $4^{\text {th }}$ Receive PDO (U714) Invalid mapping of $4^{\text {th }}$ Transmit PDO (U718) Invalid transmission type of $4^{\text {th }}$ Transmit PDO (U718) Invalid Life Time Event or incorrect basic unit parameterized (U719)
$\begin{gathered} \mathrm{n} 732.002 \\ \text { or } \\ \mathrm{n} 732.034 \end{gathered}$		Number of correctly received PZD CAN telegrams since Power ON Irrelevant for CANopen
$\begin{gathered} \text { n732.003 } \\ \text { or } \\ \text { n732.035 } \end{gathered}$		Number of PZD telegrams lost since Power ON Telegrams will be lost if the CAN Bus master sends PZD telegrams faster than they can be processed by the slave. Irrelevant for CANopen

	Value	Meaning
$\begin{gathered} \text { n732.004 } \\ \text { or } \\ \text { n732.036 } \end{gathered}$		Counter of Bus Off states since Power ON (alarm A084)
$\begin{gathered} \text { n732.005 } \\ \text { or } \\ \text { n732.037 } \end{gathered}$		Counter of Error Warning states since Power ON (alarm A083)
$\begin{gathered} \mathrm{n} 732.006 \\ \text { or } \\ \mathrm{n} 732.038 \end{gathered}$		Status of the CAN controller
$\begin{aligned} & \text { n732.007 } \\ & \text { or } \\ & \text { n732.039 } \end{aligned}$		Number of errors occurring during reception of PCD frames
$\begin{gathered} \text { n732.008 } \\ \text { or } \\ \text { n732.040 } \end{gathered}$		Type of error occurring during reception of PCD frames
$\begin{gathered} \text { n732.009 } \\ \text { or } \\ \text { n732.041 } \end{gathered}$		Value of error occurring during reception of PCD frames
$\begin{gathered} \mathrm{n} 732.010 \\ \text { or } \\ \mathrm{n} 732.042 \end{gathered}$		Number of correctly transmitted PZD CAN telegrams since Power ON Irrelevant for CANopen
$\begin{gathered} \mathrm{n} 732.011 \\ \text { or } \\ \mathrm{n} 732.043 \end{gathered}$		Number of errors during transmission of PZD telegrams PZD telegrams cannot be transmitted when the bus is overloaded Irrelevant for CANopen
$\begin{gathered} \mathrm{n} 732.012 \\ \text { or } \\ \mathrm{n} 732.044 \end{gathered}$		Type of error occurring during transmission of PCD frames
$\begin{gathered} \mathrm{n} 732.013 \\ \text { or } \\ \mathrm{n} 732.045 \end{gathered}$		Value of error occurring during transmission of PCD frames
$\begin{gathered} \mathrm{n} 732.014 \\ \text { or } \\ \mathrm{n} 732.046 \end{gathered}$		Number of correctly processed PKW requests and responses since Power ON Irrelevant for CANopen
$\begin{gathered} \mathrm{n} 732.015 \\ \text { or } \\ \mathrm{n} 732.047 \end{gathered}$		Number of PKW request processing errors, e.g. owing to bus overload or missing responses from CUD1 (see below for error type) Irrelevant for CANopen
$\begin{gathered} \text { n732.016 } \\ \text { or } \\ \text { n732.048 } \end{gathered}$	$\begin{gathered} 0 \\ 9 \\ 11 \\ 12 \end{gathered}$	Type of PKW request processing error: No error Error transmitting the PKW response (while waiting for a free channel) Timeout waiting for the PKW response from the CUD1 Timeout waiting for a free channel (bus overload) Irrelevant for CANopen
$\begin{gathered} \mathrm{n} 732.017 \\ \text { or } \\ \mathrm{n} 732.049 \end{gathered}$		Value of error occurring while processing PKW requests
$\begin{gathered} \mathrm{n} 732.018 \\ \text { or } \\ \mathrm{n} 732.050 \end{gathered}$		Number of lost PKW requests Irrelevant for CANopen
$\begin{gathered} \mathrm{n} 732.026 \\ \text { or } \\ \mathrm{n} 732.058 \end{gathered}$		Software version of CBC (e.g. "12" = version 1.2, see also r060)
$\begin{gathered} \mathrm{n} 732.027 \\ \text { or } \\ \mathrm{n} 732.059 \end{gathered}$		Software identifier (extended software version identifier, see also r065)
$\begin{gathered} \mathrm{n} 732.028 \\ \text { or } \\ \mathrm{n} 732.060 \end{gathered}$		Date of generation of CBC software Day (H byte) and month (L byte)
$\begin{gathered} \text { n732.029 } \\ \text { or } \\ \text { n732.061 } \end{gathered}$		Date of generation of CBC software Year

Fault and alarm messages:

Detailed information about fault messages can be found in Section 10.

Fault F080

An error occurred during initialization of the CBC board, e.g. incorrect setting of a CB parameter, incorrect bus address or defective board.

Fault F081

The heartbeat counter (counter on CBC) which is monitored by SIMOREG for "signs of life" from the board has not changed for at least 800 ms .

Fault F082

Failure of PZD telegrams or a fault in the transmission channel

Alarm A083 (Error Warning)
Errored telegrams are being received or sent and the error counter on the supplementary board has exceeded the alarm limit.
Errored telegrams are ignored. The data most recently transferred remain valid. If the errored telegrams contain process data, fault message F082 with fault value 10 may be activated as a function of the telegram failure time set in U722. No fault message is generated for PKW data.

Alarm A084 (Bus Off)
Errored telegrams are being received or sent and the error counter on the supplementary board has exceeded the fault limit.
Errored telegrams are ignored. The data most recently transferred remain valid. If the errored telegrams contain process data, fault message F082 with fault value 10 may be activated as a function of the telegram failure time set in U722. No fault message is generated for PKW data.

7.7.4 Procedure for starting up the SIMOLINK board (SLB):

Disconnect the power supply and insert adapter board (ADB) containing SLB in a location. Please remember to insert a board in location 2 before you use location 3. .

The SLBs must be connected up using fiber optics in such a manner as to avoid long distances between two units (max. 40 m with plastic fiber optics and max. 300 m with glass fiber optics). Please also note that the transmitter (in center of SLB) on one unit is connected to the receiver (at corner of SLB) on the next unit. These connections must be made on all units until they are linked in a closed circuit.

The following are important communication parameters. Index 1 of each parameter is set for the $1^{\text {st }}$ SIMOLINK board ($1^{\text {st }}$ SLB) and index 2 for the $2^{\text {nd }}$ SIMOLINK board ($2^{\text {nd }}$ SLB) (the use of a $2^{\text {nd }}$ SLB is planned for future software versions):

- U740 Node address (address 0 identifies the dispatcher)

Node addresses must be assigned consecutively unless a SIMOLINK master is being used.

- U741 Telegram failure time ($0=$ deactivated)
- U742 Transmitter power

The output of the fiber optic transmitter module can be set on each active bus node.

- U744 Reserved for SLB selection (leave at 0 setting)
- U745 Number of channels (telegrams) used per node

The SLB with dispatcher function assigns the same number of channels to all nodes

- U746 Traffic cycle time

In contrast to converters of the SIMOVERT series, the line-synchronous SIMOREG converter cannot be synchronized with the cycle time of the SIMOLINK bus in order to minimize the data interchange time.
The user data in the telegrams are exchanged cyclically ($6 x$ per mains period, ie. every 3.3 ms at 50 HZ) between the SIMOREG converter and the SLB, irrespective of the cycle time on the bus (U746). A shorter cycle time still means, however, that the data are transferred more quickly after they have been made available by the converter or more up-to-date information for the converter.

U745 and U746 together determine the number of addressable nodes (this can be checked with diagnostic parameter n748.4 in the converter with the dispatcher board).

$$
\text { No. of addressable nodes }=\quad\left(\frac{U 746[u s]+3,18 u s}{6,36 u s}-2\right) * \frac{1}{U 745}
$$

The number of nodes serves only to check whether data can be exchanged with the values set in U745 and U746. These parameters must otherwise be corrected.
A maximum of 201 nodes (dispatcher and 200 transceivers) can be connected to the SIMOLINK bus. Node addresses 201 to 255 are reserved for special telegrams and others. Consequently, with 8 channels per node, a bus cycle can be a maximum of 6.4 ms in duration.

Process data are connected to the SIMOLINK board through assignment of the corresponding connectors and/or binectors to telegram addresses and channel numbers (see Section 8, Sheet Z122).

Example:

U749.01 $=0.2$	means that the values of node $0 /$ channel 2 are read as word1 (K7001) and word2 (K7002)
U740.01 = 1	means that node 1 in channel 0 transmits status word 1 (K0032) as
U751.01 $=32$	word1 and status word 2 (K0033) as word2
U751.02 = 33	

Changes to the settings of the receive data parameters do not take effect until the electronics power supply is switched on again.

WARNING
Changing parameters U740, U745, U746 and U749 causes re-initialization, resulting in an interruption in communication with all drives linked to the SIMOLINK bus.

SIMOLINK (Siemens Motion Link) is a digital, serial data transmission protocol which uses fiber optics as a transmission medium. The SIMOLINK drive link has been developed to allow a fast, cyclic exchange of process data (control information, setpoints, status information and actual values) via a closed ring bus.
Parameter data cannot be transferred via SIMOLINK.
SIMOLINK consists of the following components:
SIMOLINK Master
Active bus node as interface to higher-level automation systems (e.g. SIMATIC M7 or SIMADYN)
SIMOLINK Board (SLB)
Active bus node as interface for drives on SIMOLINK
SIMOLINK Switch
Passive bus node with switching function between two SIMOLINK ring busses. The separating filter and concentrator are identical in terms of hardware, but perform different functions. Separating filters are used to reverse the signal flow, e.g. in order to link the nodes on one ring bus to another ring bus after the failure of their master. Concentrators allow ring segments to be star-connected to form a complete ring.

Fiber optic cables

Transmission medium between the SIMOLINK nodes. Glass or plastic fiber optic cables can be used. The permissible maximum distances between adjacent nodes in the ring differs depending on the type of fiber optic used (plastic: max 40m, glass: max. 300m).
SIMOLINK is a closed fiber optic ring. One of the nodes on the bus has a dispatcher function (SIMOLINK master or SLB parameterized as the dispatcher). This dispatcher node is identified by node address 0 and controls communication on the bus. Using SYNC telegrams, it supplies the common system clock cycle for all nodes and sends telegrams in ascending sequence of telegram addresses and channel numbers in the task table. The task table contains all telegrams which are transmitted cyclically in normal data interchange.

When an SLB is employed as the dispatcher, the task table is configured solely on the basis of drive parameters. The following restrictions apply as compared to the use of a SIMOLINK master as the dispatcher:

Flexible address lists with gaps in address sequence are not allowed on the bus. Addresses are assigned consecutively to the nodes, starting with address 0 .
The number of telegrams (channels) used per node is identical for all nodes.
It is not possible to use application-specific special data.
All other active bus nodes apart from the dispatcher are transceivers. These simply forward telegrams (with updated contents in some cases) along the bus.
Active bus nodes receive and/or send telegrams (SIMOLINK master, dispatcher, transceivers). Passive bus nodes simply forward received telegrams along the bus without changing their contents (separating filters, concentrators).
A separate address is assigned to each active bus node; the dispatcher is always assigned node address 0.
A maximum of 8 telegrams can be transferred per active node. The number of telegrams used per node is a parameterizable quantity.
Telegrams are identified by the node address and distinguished by their channel number of between 0 and 7 , with 2 data words transferred as user data in each telegram. The first channel number starts with 0 and is counted in ascending sequence.

The assignment between connector values to be transferred and individual telegrams and channels is also parameterized (see Section 8, Sheet Z122).

Transmission of double-word connectors:
The values of double-word connectors can be transmitted in the first four channels (selected with U749.01 to U749.04 in the receive direction or with U751.01 to U751.08 in the transmission direction). In the receive direction, the values of any two adjacent connectors (K) are combined to form a double-word connector (KK) (e.g. K7001 and K7002 to KK7031). These double-word connectors can be connected to other function blocks in the usual way. For details of how to connect with double-word connectors, see Section 9.1 , subsection, " The following rules apply to the selection of double-word connectors ".
In the transmission direction, a double-word connector is applied by entering the same doubleword connector at two contiguous indices of selection parameter U751.
Examples:

Apart from these data, a SIMOLINK master can also send special telegrams with applicationspecific data (addresses 201 to 204 and channel number 0). An SLB as dispatcher does not support these special telegrams.
If a transceiver stops receiving telegrams due to an interruption, it automatically transmits special telegram "Time Out".

The transmission rate is $\mathbf{1 1} \mathbf{~ M b i t s} / \mathbf{s}$. The data telegrams are transmitted in direct succession, followed by a SYNC telegram and a pause telegram, within one bus cycle. Transferring the data telegrams without pauses ensures a higher data throughput. At a data transmission rate of 11 $\mathrm{Mbit} / \mathrm{s}$, the transmission time for one telegram is $6.36 \mu \mathrm{~s}$.

The assignment of telegrams to nodes is determined by the type of SIMOLINK application, i.e. peer-to-peer functionality or master-slave functionality.
When an SLB is configured as the dispatcher, only the peer-to-peer functionality is available.
Peer-to-peer functionality
In this mode, there is no defined logical master for distributing information. The drives have equal status in logical terms and exchange data with one another via the ring bus. One node (SLB) specifies the bus cycle in its dispatcher role to keep the transmission alive. All nodes receive and/or send user data. Dispatcher and transceivers can read any telegram, but may only write information in the telegrams specifically assigned to them (node address = address in telegram).

Master-slave functionality

A logical master (e.g. SIMATIC) supplies all nodes with information on the one hand and, on the other, specifies the bus clock cycle (dispatcher function). All other nodes behave as described above under peer-to-peer functionality, i.e. they receive and/or send user data, but are only permitted to read or write telegrams containing their address.
In contrast to peer-to-peer functionality, the restrictions described above (no gaps in address sequence, uniform number of used channels, no special data) do not apply. The master has its own 8 channels for transferring data, but can also use telegrams with the address and channel numbers of the transceivers for its data transmissions.

NOTE

An external 24 V power supply to the SIMOLINK modules ensures that communication with the other bus nodes continues if a device fails.
However, this power supply does not prevent the short interruption in communication when the device is switched on again when establishing communication is forced.

7.7.5 Procedure for starting up expansion boards (EB1 and EB2)

Remove connector X480 from the EB1 board for safety reasons. A short circuit could otherwise occur should the signal direction of the bidirectional binary inputs/outputs be incorrectly parameterized (see also point 3).
This risk of short circuits does not exist on EB2 boards.

The analog inputs on the EB1 can be used either as current or voltage inputs, the mode being selected by setting jumpers (X486, X487, X488) appropriately (see Function Diagrams, Section 8). The same applies to EB2 (X498); on this board, the analog output can also be configured as a current or voltage source (X499).

Parameterize the desired functions for the inputs and outputs (see Function Diagrams, Section 8). If you wish to operate a bidirectional binary input/output on an EB1 as an input, please note that the output circuit must be deactivated in the corresponding parameter (e.g. U769.01=0). A short circuit will otherwise occur if the signal levels of the external input and output signals are opposed.
Switch off the device.

With the power supply disconnected, insert the adapter board with expansion board in a location. Please remember to insert a board in location 2 before you use location 3.

EB1 boards only: Plug connector X480 back into board.

Expansion boards EB1 and EB2 expand the range of terminals on the basic converter. A total of 2 EB1 boards and 2 EB2 boards may be installed in one SIMOREG CM 6RA70. The EB1 and/or EB2 are plugged into adapter (carrier) boards (ADB). 2 boards may be mounted on each ADB.
The EB1 provides the following expansion terminals:
3 binary inputs
4 bidirectional binary inputs/outputs
1 analog input for differential signal (current or voltage input)
2 analog inputs (single ended), can also be used as binary inputs
2 analog outputs
1 connector for external 24 V voltage supply to binary outputs

The EB2 provides the following expansion terminals:
2 binary inputs
1 connector for external 24 V voltage supply to binary outputs
1 relay output with changeover contacts
3 relay outputs with NO contacts
1 analog input for differential signal (current or voltage input)
1 analog output (current or voltage output)

For further details, see Section 8, function diagrams for expansion boards EB1 and EB2.

7.7.6 Procedure for starting up the pulse encoder board (SBP)

Set the switches (for encoder supply and bus terminating resistors) on the SBP board:
If one pulse encoder is connected to one SBP board, then the three switches for bus terminating resistors must be switched to ON.
If one pulse encoder is connected to several SBP boards, then the three switches for bus terminating resistors must be switched to ON only on the last SBP.
The fourth switch connects and disconnects the supply voltage for the encoder.
(Caution: Switch open means supply voltage connected)

Disconnect power supply and insert adapter with board into location. Please remember to insert a board in location 2 before you use location 3.

Connect the terminals on strips X400, X401 on the pulse encoder board to the appropriate terminals on the encoder (for circuit example, refer to operating instructions for pulse encoder board). If you connect unipolar signals, a ground connection for all signals to terminal 75 (CTRL-) is sufficient. For very long lines or high interference irradiation, we recommend jumpering terminals 69, 71, and 75 (A-, B-, and CTRL-) and connecting to encoder ground. The zero track of the pulse encoder is not evaluated by SIMOREG and need not therefore be connected.
The terminals designated coarse pulse, coarse pulse 2 and fine pulse 2 can be used as digital inputs for any function (see Function Diagrams in Section 8)

Please make the following settings:

- U790 Voltage level of inputs

0: HTL unipolar
TTL unipolar
HTL differential input
TTL/RS422 differential input

- U791 Level of encoder supply
$0: \quad 5 \mathrm{~V}$ voltage supply
1: $\quad 15 \mathrm{~V}$ voltage supply
- U792 Pulse encoder resolution
- U793 Type of pulse encoder

0: Encoder with A/B track (two tracks displaced by 90 degrees)
1: Encoder with separate forward and reverse track

- U794 Reference speed
(For further details, see Section 11, description of parameters U790- U794)

The pulse encoder board SBP (Sensor Board Pulse) supports commercially available pulse encoders with pulse frequencies up to 410 kHz . The voltage level of the encoder signals can be parameterized. TTL or HTL level pulses, bipolar or unipolar, can be used.

A voltage supply for 5 V and 15 V encoders is provided on the board.
Evaluation of a temperature sensor is not supported on SIMOREG CM 6RA70 converters.

7.7.7 Sequence of operations for starting up DeviceNet boards (CBD):

With the power supply switched off, insert the board or adapter board with board in the slot. Please note that slot 2 (on right) must always be occupied before slot 3 (in center) can be used.

Wire up the DeviceNet using appropriate cabling (see below for details of cables).

The following parameters are relevant with respect to communications. Index 1 of the relevant parameter applies to the $1^{\text {st }}$ communication board ($1^{\text {st }} \mathrm{CBx}$) and index 2 to the $2^{\text {nd }}$ communication board ($2^{\text {nd }} \mathrm{CBx}$):

- U711 CB parameter

Definition of number of words in the process data area that the SIMOREG sends as a response to a request by the master (produced data). The following options can be selected:
U711 = 170 ... 4 PZD (status word and actual values)
U711 = 171 ... 8 PZD (status word and actual values)
U711 = 172 ... 16 PZD (status word and actual values)

- -U712CB parameter2

Definition of number of words in the process data area that SIMOREG expects to receive after a request from the master (consumed data). The following options can be selected:
U712 = 120 ... 4 PZD (control word and setpoints)
U712 = $121 \ldots 8$ PZD (control word and setpoints)
U712 = 122 ... 16 PZD (control word and setpoints)
U711 and U712 can be parameterized independently of one another. The first 4 PED words (produced data) are always sent after a request from the master.

- -U72 0CB parameter10

Definition of the DeviceNet transmission rate. The following options can be selected:
U720 $=0$....... 125kbaud
U720 $=1 \ldots . . .250 \mathrm{~kb}$.
U720 = 2 500kbaud

- U722 CB/TB telegram failure time

Definition of the time period within which at least 1 telegram with PODs must be exchanged before a fault message is generated.
This parameter should be set to " 0 " first (monitoring function deactivated). Once the network is operating correctly, a time value can be set within which PZDs are normally exchanged.

- P918 Bus address

Definition of DeviceNet MAC ID for the CBD in the 0 to 63 range.

- P927 Parameterizing enable (necessary only if parameter values need to be altered via DeviceNet)
- The process data of the $1^{\text {st }}$ or $2^{\text {nd }}$ communication board are wired up by means of the appropriate connectors or binectors (see Section 8, function diagrams Z110 and Z111). For meaning of the control and status word bits, see Section 8, Sheets G180 to G183.

Switch the electronics power supply off and on again or set U710.001 or U710.002 to "0" to transfer the values of parameters U712, U720, U722 and P918 to the supplementary board.

WARNING

4
This initialization process will interrupt the communication of any supplementary board that has already been started up.

The CBD board supports "DeviceNet Explicit Messages" for the transfer of process data, as well as "DeviceNet I/O Messages" for the transmission of parameter data. The meaning of the data within an I/O message is determined by the corresponding "Connection ID".

The CBD supports the "Predefined Master/Slave Connection Set" defined in the DeviceNet Specification. Both "poll" and "bit strobe I/O messages" are supported.
The CBD adheres to the "DeviceNet Device Profile for Communication Adapter" (Device Type 12). This profile has been selected to allow the DeviceNetMaster to utilize all the options and extended functions provided by the SIMOREG.
DeviceNet messages can be divided roughly into 3 groups:

- DeviceNet configuration data, e.g. channel assignment, timeouts and I/O messages, for which explicit messages are used
- Process data, e.g. control/status word and setpoints/actual values, for which I/O messages are used
- Parameter data, for which manufacturer-specific PKW objects and explicit messages are used, to read or modify drive parameter settings
The drive is controlled by process data. The number of process data words is determined either by the value of particular CB parameters (U711 and U712) after booting, or dynamically by the DeviceNet.

The master uses a manufacturer-specific PKW object to read or modify drive parameters via DeviceNet, utilizing the explicit messaging channel. The user thus has access via DeviceNet to all SIMOREG parameters and any installed technology board (e.g. detailed diagnostic information and fault messages).

DeviceNet specifies a shielded cable with 2 individually screened two-wire conductors for signal transmission and power supply. 2 types of different cross-sections may be used, i.e. "Thin Cable" and "Thick Cable".
Thick cables are used in networks of $>100 \mathrm{~m}$ in length and thin cables for spur lines and networks of $<100 \mathrm{~m}$.
The following cable types are recommended for use as DeviceNet bus cables:
Thin cable:Belden 3084A
Thick cable:Belden 3082A, 3083A or 3085A
Pin assignment and color coding are defined as follows:

Pin	Function	Color of wire in DeviceNet cable
X438.1	V-	Black (power supply ground)
X438.2	CAN-	Blue
X438.3	Shield	
X438.4	CAN+	White
X438.5	V+	Red (+24V supply $+/-1 \%$)

Recommended bus connector:Phoenix Combicon MSTB 2.5/5-ST-5.08-AU

Transmission rates and bus cable lengths:

Transmission rate	Max. cable length (thick cable)	Spur line length (thin cable) Maximum	
	500 m	6 m	Cumulative
250 kbaud	250 m	6 m	156 m
500 kbaud	100 m	6 m	78 m

To ensure proper functioning, both ends of the bus cable must be terminated by a terminating resistor (121Ω metal film resistor, $+/-1 \%, 0.25 \mathrm{~W}$).

The DeviceNet cable screen should be earthed at ONE point (e.g. at the power supply). Earthing the screen at several locations can produce ground loops and cause malfunctions.
Telegrams transmitted via DeviceNet have the same useful data structure as those used in CAN Bus communication.

A CAN telegram comprises the protocol header, CAN identifier, up to 8 bytes of useful data and the protocol trailer.

The methods applied for DeviceNet transmissions allow useful data of any length to be transferred. Data which are longer than 8 bytes can be transmitted in fragmented form (in several consecutive telegrams).

PZD object (process data)

Both control words and setpoints as well as status words and actual values (process data) are transmitted by means of DeviceNet I/O message connections. The number of process data to be transferred (4, 8 or 16) depends on which DeviceNet I/O assembly instance has been selected. The quantity of process data transmitted by the drive can differ from the quantity received.
Options for defining the number of PZD:

- "Consumed Connection Path" with "Poll I/O" (direction: Master -> drive)

U712 = 120 ... 4 PZD (control word and setpoints)
U712 = $121 \ldots 8$ PZD (control word and setpoints)
U712 = $122 \ldots 16$ PZD (control word and setpoints)

- "Produced Connection Path" with "Poll I/O" (direction: Drive -> master) U711 = 170 ... 4 PZD (status word and actual values)
U711 = $171 \ldots 8$ PZD (status word and actual values)
U711 = $172 \ldots 16$ PZD (status word and actual values)
- "Produced Connection Path" with "Bit Strobe I/O" U711 = 170 ... 4 PZD (status word and actual values); cannot be changed

The meaning of each process data word is determined by the assignment of connectors parameterized in the drive (see function diagrams in Section 8, particularly "Data exchange with $1^{\text {st }}$ and $2^{\text {nd }}$ CB"). Process data can be exchanged between the SIMOREG and CBD $6 x$ per line period, i.e. every 3.3 ms at 50 Hz , but is dependent on the data exchange mode via DeviceNet. For further details, see also "Information about PZD transmission" in Section 7, "Sequence of operations for starting up CAN Bus boards".

Information about PZD transmission:

The low-order byte or word is always transferred before the high-order byte or word.
Control word 1 must always be sent as the first PZD word. If control word 2 is also used, this must always be sent as the $4^{\text {th }}$ PZD word.
Bit10 in control word 1 ("control requested") must always be set or else no new setpoints will be accepted from the drive.

The second PZD word should normally contain the main setpoint.

The consistency of a block of data words is guaranteed within a DeviceNet I/O message connection even in cases where more than 4 PZD words are used and the transmission data is distributed among several telegrams. The data are not transferred from the CBD to the drive until all data words have been received.

PKW object (parameter data)

The manufacturer-specific PKW object (class 100) is used to read and modify parameters of the drive or a technology board by means of the DeviceNet master (PKW = parameter identifier value).
Explicit messaging mode is used for this purpose.
Only two instances are implemented for the PKW object: Instance 0 permits access to class attributes and instance 1 (always set to "1") access to all parameter numbers (see DeviceNet objects below).
Apart from the protocol header and trailer specific to DeviceNet, the structure of a telegram is follows:

Parameter identifier	Parameter index PKE	Parameter value1 PWE1	Parameter value2 PWE2

For details about this telegram area, see also Section 7.7.9, Structure of request/response telegrams. The useful data area of PROFIBUS, CAN Bus and DeviceNet telegrams is structured identically.

DeviceNet GET Single

This object is used to read parameter values and 9 bytes in length.

Byte	DeviceNet identification		
1	[FRAG] [XID] [SRC/DST MAC ID]		
2	[R/R] [Service]	$0 \times 0 \mathrm{E}$	[Get_Attribute_Single]
3	Class	100	[PKW object] manufacturer-specific
4	Instance	1	[Instance number] always set to 1
5	Attribute	1	[Attribute number] always set to 1
6	PKE		Parameter ID, L byte
7			Parameter ID, H byte
8	IND		Parameter index, L byte
9			Parameter index, H byte

DeviceNet SET Single

This object is used to modify parameter values and 14 bytes in length

Byte DeviceNet identification			
1	[FRAG] [XID] [SRC/DST MAC ID]		
2	[Fragmentation Protocol]		
3	[R/R] [Service]	0x10	[Set_Attribute_Single]
4	Class	100	[PKW object] manufacturer-specific
5	Instance	1	[Instance number] always set to 1
6	Attribute	1	[Attribute number] always set to 1
7	PKE		Parameter ID, L byte
8	PKE		Parameter ID, H byte
9	IND		Parameter index, L byte
10	IND		Parameter index, H byte
11	PWE1		Parameter value, L word, L byte
12	PWE1		Parameter value, L word, H byte
13	PWE2		Parameter value, H word, L byte
14	PWE2		Parameter value, H word, H byte

DeviceNet Response

This object is used to respond to requests of the above type and 8 bytes in length.

Byte	DeviceNet identification			
1	$[$ [FRAG] [XID] [SRC/DST MAC ID]			
2		$0 \times 8 \mathrm{E} / \mathrm{R}][$ Service $]$	\quad	[Get/Set_Attribute_Single]
:---				
3				

Examples

Read parameter P101.004 using GET Single (for details in the shaded data area, see also Section 7, Starting up PROFIBUS boards):

Byte	DeviceNet identification		
1	$[F R A G][\mathrm{XID}][\mathrm{SRC} / \mathrm{DST}$ MAC ID]		
2	$[\mathrm{R} / \mathrm{R}][$ Service $]$	$0 \times 0 \mathrm{E}$	[Get_Attribute_Single]
3	Class	100	[PKW object] manufacturer-specific
4	Instance	1	[Instance number] always set to 1
5	Attribute	1	[Attribute number] always set to 1
6	PKE	0×65	Parameter ID, L byte
7		0×60	Parameter ID, H byte
8	IND	4	Parameter index, L byte
9		0	Parameter index, H byte

Request identifier $=0 x 6065$ (request parameter value (array) P101), Index $=0004 \mathrm{~h}=4 \mathrm{~d}$

Response by SIMOREG:

Byte	DeviceNet identification		
1	$[$ FRAG $[\mathrm{XID}][$ SRC/DST MAC ID]		
2	$[\mathrm{R} / \mathrm{R}][$ Service $]$	$0 \times 8 \mathrm{E}$	[Get_Attribute_Single]
3	PKE	0×65	Parameter ID, L byte
4		0×40	Parameter ID, H byte
5	PWE1	0×90	Parameter value, L word, L byte
6		0×01	Parameter value, L word, H byte
7	PWE2	0×00	Parameter value, H word, L byte
8		0×00	Parameter value, H word, H byte

Response identifier $=0 \times 4065$, value of P101.004 $=0190 \mathrm{~h}=400 \mathrm{~d}$ (PWE2 remains unused because it is not a double word parameter)

Modify parameter U099.001 using SET Single (for details in the shaded data area, see also Section 7, Starting up PROFIBUS boards):

Byte	DeviceNet identification		
1	$[F R A G][X I D][$ SRC/DST MAC ID]		
2	[Fragmentation Protocol]		
3	$[R / R][$ Service $]$	0×10	[Set_Attribute_Single]
4	Class	100	[PKW object] manufacturer-specific
5	Instance	1	[Instance number] always set to 1
6	Attribute	1	[Attribute number] always set to 1
7	PKE	0×63	Parameter ID, L byte
8		0×70	Parameter ID, H byte
9	IND	0×01	Parameter Index, L byte
10		0×80	Parameter Index, H byte
11	PWE1	$0 \times C 8$	Parameter value, L word, L byte
12		0×00	Parameter value, L word, H byte
13	PWE2	0×00	Parameter value, H word, L byte
14		0×00	Parameter value, H word, H byte

Request identifier $=7063 \mathrm{~h}$ (modify parameter value (array) U099), index $=0001 \mathrm{~h}=1 \mathrm{~d}$ (bit 15 is also set in the H byte in order to address the parameter number range from 2000 to 4000), value = $00 C 8 h=200 \mathrm{~d}$

Response by SIMOREG:

Byte	DeviceNet identification		
1	$[$ FRAG [XID] [SRC/DST MAC ID]		
2	[R/R] [Service]	0×90	[Set_Attribute_Single]
3	PKE	0×63	Parameter ID, L byte
4		0×40	Parameter ID, H byte
5	PWE1	$0 \times C 8$	Parameter value, L word, L byte
6		0×00	Parameter value, L word, H byte
7	PWE2	0×00	Parameter value, H word, L byte
8		0×00	Parameter value, H word, H byte

Response identifier $=0 \times 4063$, value of U099.001 $=00 C 8 h=200 d$ (PWE2 remains unused because SIMOREG 6RA70 has no double word parameters)

Information about PKW transmission:

The length of a request from the master is two words (for GET Single) or 4 words (SET Single). The length of a SIMOREG response is always 3 words.

The low-order byte or word is always sent before the high-order byte or word.
The master may generate a new PKW request only after it has received a response from the slave to the previous request.

The master identifies the response to the transmitted request by evaluating the response identifier evaluating the parameter number evaluating the parameter value (if further identification is needed)
The CBD slave does not respond to a parameter request until it has received the relevant data from the drive. The time delay depends on the type of request, but is at least 20 ms . During the initialization phase after Power ON or a re-initialization operation due to a change in a CB parameter setting, requests may not be processed at all, in which case the ensuing delay could be as much as 40 s .

7.7.7.1 Diagnostic tools:

LED displays on the CBD (steadily flashing LEDs indicate normal operation):

Red	Status of CBD (software working correctly)
Yellow	Communication between SIMOREG and CBD
Green	PZD data exchange between CBD and DeviceNet

LED			
red	yellow	green	
flashing	flashing	flashing	Normal operation
flashing	off	on	CBD waiting for commencement of initialization by SIMOREG
flashing	on	off	CBD waiting for end of initialization by SIMOREG
flashing	flashing	off	No PZD data exchange via DeviceNet
flashing	on	on	CBD defective

Diagnostic parameter n 732 :
Indices i001 to i032 apply to a CBD as the first communication board, while indices i033 to i064 apply to a CBD as the second communication board.

	Value	Meaning
n 732.027 or n 732.059		Software identifier (extended software version identifier, see also r065)
n732.028 or n 732.060		Date of generation of CBD software (day and month) (e.g. "2508" $=25^{\text {th }}$ August)
n 732.029 or n 732.061	Date of generation of CBD software (year)	

Fault and alarm messages:

For details about fault messages, see Section 10.

Fault F080

An error occurred as board CBD was being initialized, e.g. incorrect value of a CB parameter, incorrect bus address or defective board.

Fault F081

The heartbeat counter (counter on CBD) which is monitored by SIMOREG for "signs of life" from the board has not changed for at least 800 ms .

Fault F082

Failure of PZD telegrams or a fault in the transmission channel.

Alarm A081

Idle condition alarm; a PZD telegram of length $=0$ has been received either in the "poll" or "bit strobe I/O message channel". The alarm is reset when a PZD telegram of normal length is received.
Faulty CAN messages of this type are ignored. The last transmitted data remain valid.
Alarm A083 (error alarm)
Telegrams containing errors are being received or transmitted and the error counter on the supplementary board has exceeded the alarm limit.
The faulty telegrams are ignored. The last transmitted data remain valid. If the faulty telegrams contain process data, fault message F082 with fault value 10 may be generated as a function of the telegram failure time set in U722.

[^0]
7.7.8 Sequence of operations for starting up the serial I/O board (SCB1):

With the power supply disconnected, insert the SCB1 board into slot 2 (or, if you have installed a technology board, into slot 3).

Set bus address on SCl using DIP-Fix switch S 1 (each SCl slave requires its own address number):

	Slave 1	Slave 2
Address number	1	2
Switch setting S1	open	closed

Mount the interface board(s) on the rail, make the connection to the 24 V power supply and the fiber optic connection between SCB1 and SCI.

The SCB1 board is used in conjunction with the SIMOREG CM only as the master for SCl slaves.
Depending on the type of SCI slaves used and the functions required, the following parameters are relevant with respect to board operation (for details, see function diagrams in Section 7, and parameter list in Section 11):

- U690 Configuration of analog inputs of SCI1

The type of input signal for each input is parameterized via the indices.

- U691 Smoothing time constant of analog inputs of SCI1

Filtering of the input signal for each input is parameterized via the indices.

- U692 Zero calibration of analog inputs of SCI1

The input signal for each input is zero calibrated via the indices.

- U693 Actual value output via analog outputs of SCI1

A connector number is selected via the indices to define the output quantity at each output.

- U694 Gain of analog outputs of SCI1

The gain for each output is parameterized via the indices.

- U695 Zero calibration of analog outputs of SCl1

The output signal for each output is zero calibrated via the indices.

- U698 Binector selection for binary outputs of SCI1

Selection of binectors whose states are output via the binary outputs of the SCIs.

- Display parameters n697 (diagnostic information) and n699 (display of input/output data)
facilitate troubleshooting during start-up.
Switch the electronics power supply off and on again or set U710.001 or U710.002 to "0" to transfer the values of parameters U690 to U698 to the supplementary board.
Note: This initialization process will interrupt the communication of any supplementary board that has already been started up.

Option board SCB1 (Serial Communication Board 1) is used to link the 6RA70 SIMOREG CM to board SCI1 or SCI2 (Serial Communication Interface) using a fiber optic connection (recommendation: Siemens plastic fiber optic cable, CA-1V2YP980/1000,200A or Siemens glassfiber cable, CLY-1V01S200/230,10A). These boards can be used if the CUD2 terminal expansion module is not large enough or safe electrical isolation via fiber optics is an absolute necessity. This board only allows the SCB1 master to exchange data with the SCI slaves. Data cannot be exchanged between the SCI slaves themselves.

A maximum of 2 SCls, of either the same or different types, can be connected to the SCB1.
SCI1 or SCI2 are terminal expansion boards which are mounted on a rail outside the SIMOREG CM and supplied with 24 V DC voltage $(-17 \%+25 \%, 1 \mathrm{~A})$ from an external source.

The interface boards extend the converter by the following additional inputs/outputs:

SCI1	SCI2
10 binary inputs	16 binary inputs
8 binary outputs	12 binary outputs
3 analog inputs	
3 analog outputs	

Reception of SCI data by the SCB1 or transmission to the SCls is synchronized, i.e. the data of two slaves is received simultaneously or transmitted simultaneously.

Details about the functions and connections of inputs and outputs are shown in the function diagrams in Section 8.

CAUTION

SCI boards have no external enclosure to protect them against direct contact or ingress of pollutants. To protect them against damage, they must be installed in a housing or in the control cabinet of a higher-level system.
The maximum permissible length of fiber optic cables is 10 m .
An input filter must be fitted for the external power supply of the interface boards.
Ground SCI at X80 using a short lead.
Analog inputs on SCI1: Only the voltage input or the current input may be used for each channel.

Analog outputs on SCI1: Only the voltage input or the current input may be used for each channel. The outputs are short-circuit-proof.

The binary driver outputs are short-circuit-proof. Relays may only be connected to these outputs in conjunction with an external power supply.
The binary relay outputs are not designed for protective separation.
To protect them against static discharge, the boards may only be placed on conductive surfaces.

Recommended circuit for connecting SCB1 to SCI1 and SCI2 using fiber optic cables:

WARNING

If the 24 V voltage supply for an SCl slave fails which data are being exchanged between the SCB1 and an SCI, then the "1" signal applied at a binary input is sent to the SCB1 or SIMOREG as an "0" shortly before the power finally fails. In contrast, the "1" remains applied in the SIMOREG in the event of an interruption in the fiber optic connection.

If an external voltage (logical "1") has already been applied to a binary input when the electronics supply voltage is switched on, this status will not be registered until the external voltage is disconnected and reconnected again.

7.7.8.1 Diagnostic tools:

LED display on SCB1:

LED on	Reset state
LED flashing	Normal operation
LED off	Error

LED display on SCI1 or SCI2 slave:

LED on	
LED flashing	Reset state 12 Hz frequency
	No telegram traffic (e.g. fiber optic cable not connected)
LED frequencyFaulty telegram traffic (e.g. fiber optic ring interrupted or other slave has no supply voltage)	
	0.5 Hz frequency
Error	

Details about fault or alarm messages which may occur in relation to SCB1 or SCI (F070 to F079 and A049 and A050) can be found in Section 10.

7.7.9 Structure of request/response telegrams

There is no basic difference between the useful data area in the request and response telegrams for PROFIBUS and CAN Bus. There are differences, for example, in the protocol frame and in the sequence in which H and L bytes are transmitted. The structures shown here are those of a SIMOREG CM, i.e. the values are displayed in the same way as they would be for parameters n733 and n735, for example. The structure of the protocol frame and the transmission sequence of bytes are therefore described where necessary in the sections containing the start-up description for the appropriate board.

Each request and each response basically comprises three areas apart from the telegram frame with header and trailer:

Header	Parameter identifier PKE	Index IND	Parameter value PWE	Trailer

The parameter identifier (PKE) contains a request or response identifier (i.e. type of request or response) and the number of the addressed parameter. The spontaneous signaling bit SPM (bit11) is not used on the SIMOREG CM.

Bits 0 to 10 contain the number of the parameter specified in the request.
Owing to the length restriction of the bit field (11 bits), a parameter number (PNU) higher than 1999 must be converted to another code for use in the parameter identifier; the Page Select Bit in the index is used for this purpose:

Parameter area	Displayed number	Input on OP1S	PNU in parameter identifier	Page Select Bit (index bit 15)
Basic unit	Pxxx, $\mathbf{r x x x}$	$0-999$	$0-999$	0
	Uxxx, nxxx	$2000-2999$	$0-999$	1
Technology board	$\mathbf{H x x x}, \mathbf{d x x x}$	$1000-1999$	$1000-1999$	0
	Lxxx, $\mathbf{c x x x}$	$3000-3999$	$1000-1999$	1

In the case of a request, for example, which specifies parameter U280 (2280), therefore, PNU = 280 must be entered in the parameter identifier and bit 15 set in the index.

Bits 12 to 15 contain the request identifier or the associated response identifier as shown in the following list:

Request identifier	Meaning	Response identifier	
		positive	negative
0	No request	0	7 or 8
1	Request parameter value (word or double word)	1 or 2	
2	Modify parameter value (word)	1	
3	Modify parameter value (double word)	2	
4	Request descriptive element	3	
5	Reserved	-	
6	Request parameter value (array) (word or double word)	4 or 5	
7	Modify parameter value (array - word)	4	
8	Modify parameter value (array-double word)	5	
9	Request number of array elements	6	
10	Reserved	-	
11	Modify parameter value (array-double word) and store in EEPROM	5	
12	Modify parameter value (array-word) and store in EEPROM	4	
13	Modify parameter value (double word) and store in EEPROM	2	
14	Modify parameter value (word) and store in EEPROM	1	
15	Request text	15	

If the drive has been unable to process the request, it does not return the associated response identifier, but error identifier 7 (or 8) instead.
In this case, an error code defining the error in more detail as shown in the following list is returned as a parameter value:

Error code	Meaning	
0	Illegal parameter number (PNU)	No PNU specified
1	Parameter value cannot be modified	Visualization parameter
2	Lower or upper value limit violated	
3	Faulty subindex	
4	Parameter is not indexed (no array)	
5	Incorrect data type	
6	Parameter value can only be reset	
7	Descriptive element cannot be modified	
8	PPO Write (acc. to "Information Report") is not available	
9	Parameter description is not available	
10	Incorrect access level	
11	No parameterizing enable (P927)	
12	Keyword missing	Key parameter P051 incorrectly set
13	Text cannot be read cyclically	
15	No text	
16	PPO Write missing	
17	Incorrect operating state	
19	Value cannot be read cyclically	
101	Parameter number currently deactivated	
102	Channel not wide enough	

Error code	Meaning	
103	PKW number incorrect	Applies only to serial interfaces
104	Illegal parameter value	Applies to BiCo selection parameters
105	Indexed parameter	
106	Request not implemented in drive	
107	Text cannot be modified	
108	Incorrect number of parameter values	Applies to "Change all indices" request

The index IND contains a " 0 " for non-indexed parameters; a 8-bit long index value is entered (in the low-order byte) for indexed parameters.
Bit 15 (Page Select bit) has a special function. This is used to identify parameter numbers higher than 1999 (see above for details of recoding parameter numbers).
Exception: In the case of cyclical PROFIBUS services, the L and H byte sequence is reversed (see "Start-up of PROFIBUS boards").

An index value of 255 means that the request applies to all indices of the relevant parameter. In the case of a modification request, the parameter values for all indices of the parameter must be transferred. Conversely, the drive supplies all index values in its response to a read request.

The parameter value PWE is treated like a double word (PWE1 and PWE2). The high word is set to 0 when a single word is transferred.

7.7.10 Transmission of double-word connectors for technology and communication modules

In the receive direction, the values of two adjacent connectors (K) are combined to form a single double-word connector (KK) (e.g. K3002 and K3003 to KK3032). These double-word connectors can themselves be connected to other function blocks in the usual way. For details of how to connect double-word connectors, see Section 9.1, subsection, " The following rules apply to the selection of double-word connectors ".
In the transmit direction, a double-word connector is applied by entering the same double-word connector in two contiguous indices of the selection parameter.
Example:

$2 x$ the same KK - number

2 different KKs !

8 Function diagrams

General Page
Key to symbols 8-5
Basic functions
G100 Overview 8-6
G101 Hardware configuration 8-7
Inputs and outputs
G110 Binary inputs terminals 36 to 39 (CUD1) 8-8
Binary inputs terminals $122 / 123$ and 124/125 (power interface) 8-8
G111 Binary inputs terminals 40 to 43 (CUD2) 8-9
G112 Binary outputs terminals 46/47 and 48/54 (CUD1) 8-10
Binary outputs terminals 50/51 and 52/53 (CUD2) 8-10
G113 Analog inputs terminals 4/5, 6/7 (CUD1), and 103/104 (power interface) 8-11
G114 Analog inputs terminals 8/9 and 10/11 (CUD2) and X6/X7 (power interface) 8-12
G115 Analog outputs terminals 12/13, 14/15, and 16/17 (CUD1) 8-13
G116 Analog outputs terminals 18/19 and 20/21 (CUD2) 8-14
G117 E-Stop, relay outputs line contactor and fan ON (power interface) 8-15
Setpoint generation
G120 Fixed values 8-16
Fixed control bits 8-16
Constant fixed values and control bits. 8-16
G121 Connector and binector displays 8-17
G124 Connector selector switch 8-18
G125 Evaluation of a 4-step master switch 8-19
G126 Motorized potentiometer 8-20
G127 Fixed setpoint 8-21
G128 Oscillation / square-wave generator 8-22
G129 Inching setpoint 8-23
G130 Crawling setpoint / terminal 37 8-24
G135 Setpoint processing 8-25
G136 Ramp-function generator (1) 8-26
G137 Ramp-function generator (2) 8-27
Internal control
G140 Brake control 8-28
Actual speed value
G145 Pulse generator evaluation 8-29
Controllers
G150 Starting pulse - speed controller 8-30
G151 Speed controller (1) 8-31
G152 Speed controller (2) 8-32
G153 Friction compensation 8-33
Compensation of moment of inertia (dv/dt injection) 8-33
G160 Torque limitation, speed limit controller 8-34
G161 Current limitation 8-35
G162 Closed-loop armature current control 8-36
G163 Auto-reversing stage, armature gating unit 8-37
G165 Closed-loop EMF control 8-38
G166 Closed-loop field current control, field gating unit 8-39
G167 Field current monitoring 8-40
Function diagrams
Serial interfaces
G169 Serial interfaces: connector-type converters 8-41
G170 USS interface 1 (PMU) 8-42
G171 USS interface 2 (CUD1) 8-43
G172 USS interface 3 (CUD2) 8-44
G173 Peer-to-peer interface 2 (CUD1) 8-45
G174 Peer-to-peer interface 3 (CUD2). 8-46
Program structure
G175 Data sets 8-47
Control words, status words
G180 Control word 1 8-48
G181 Control word 2 8-49
G182 Status word 1 8-50
G183 Status word 2 8-51
Miscellaneous
G185 Motor interface (1) 8-52
G186 Motor interface (2) / binary inputs, terminals 211 to 214 8-53
G187 Messages (1) 8-54
G188 Messages (2) 8-55
G189 Fault memory 8-56
G195 Paralleling interface 8-57
G200 Field reversal with SIMOREG single-quadrant device 8-58

Freely assignable function blocks

(Technology software in the basic converter, S00 option) Page
B100 Table of contents... 8-60
B101 Startup of the technology software (option S00)... 8-61
Monitoring
B110 Voltage monitor for electronics power supply ... 8-62
Fixed values
B110 100 Fixed values .. 8-62
Alarm, fault messages
B115 32 Fault message triggers.. 8-63
8 Alarm message triggers ... 8-63
Connector / binector converters
B120 3 Connector / binector converters .. 8-64
B121 3 Binector / connector converters .. 8-65
Mathematical functions
B125 15 Adders / subtractors .. 8-66
4 Sign inverters.. 8-66
2 Switchable sign inverters.. 8-66
B130 12 Multipliers .. 8-67
B131 6 Dividers... 8-68
3 High-resolution multipliers / dividers ... 8-68
B135 4 Absolute-value generators with filter... 8-70
Limiters, limit-value monitors
B134 3 Limiters ... 8-69
B135 3 Limiters .. 8-70
B136 3 Limit-value monitors with filter... 8-71
B137,B1387 Limit-value monitors without filter .. 8- 72,73
Processing of connectors
B139 4 Averagers ... 8-74
B140 4 Maximum selections... 8-75
4 Minimum selections... 8-75
B145 2 Tracking / storage elements .. 8-76
2 Connector memories ... 8-76
B150 15 Connector changeover switches .. 8-77
High-resolution blocks
B151 2 limit-value monitors (for double-word connectors).. 8-78
2 connector-type converters.. 8-78
2 adders/subtractors (for double-word connectors) .. 8-78
Position/positional deviation acquisition, Root extractor
B152 1 Position/positional deviation acquisition.. 8-79

Control elements
B155 3 Integrators .. 8-81
3 DT1 elements ... 8-81
B156... 10 Derivative / delay elements (LEAD / LAG blocks).. 8-82... 84
B158
Characteristics
B160 9 Characteristic blocks ... 8-85
B161 3 Dead zones ... 8-86
1 Setpoint branching .. 8-86
Ramp-function generator
B165 1 Simple ramp-function generator.. 8-87
Controllers
B170 1 Technology controller.. 8-88
B180... 10 Pl controllers.. 8-89... 98
B189
SIEMENS AG 6RX1700-0BD76
Velocity / speed calculators, variable inertia
B190 1 Velocity / speed calculator 8-99
1 Speed / velocity calculator 8-99
B191 1 Calculation variable inertia 8-100
Multiplexers for connectors
B195 3 Multiplexer 8-101
CounterB196 1 16-bit software counter ... 8-102
Logical functions
B200 2 Decoders / demultiplexers, binary to 1 of 8 8-103
B205 28 AND elements with 3 inputs each 8-104
B206 20 OR elements with 3 inputs each 8-105
4 EXCLUSIVE OR elements with 2 inputs each 8-105
B207 16 Inverters 8-106
12 NAND elements with 3 inputs each 8-106
B210 14 RS flipflops 8-107
B211 4 D flipflops 8-108
B215 6 Timers (0.000...60.000s) 8-109
B216 4 Timers (0.00...600.00s) 8-110
5 Binary signal selector switches 8-110
NOTE
Freely assignable function blocks are enabled in parameter U977.
For enabling instructions, please refer to Section 11, Parameter List, description of parametersU977 and n978.
Optional supplementary boards Page
Z100 Table of contents 8-111
Z110 Data exchange with a technology board (TB) or the $1^{\text {st }}$ communications board (CB) 8-112
Z111 Data exchange with the $2^{\text {nd }}$ communications board (CB) 8-113
Z112 $1^{\text {st }}$ EB1: Analog inputs 8-114
Z113 $1^{\text {st }}$ EB1: Analog outputs 8-115
Z114 $1^{\text {st }}$ EB1: 4 bidirectional inputs- / outputs, 3 digital inputs 8-116
Z115 $2^{\text {nd }} E B 1$: Analog inputs 8-117
Z116 $2^{\text {nd }}$ EB1: Analog outputs 8-118
Z117 $2^{\text {nd }} E B 1: 4$ bidirectional inputs- / outputs, 3 digital inputs 8-119
Z118 $1^{\text {st }}$ EB2: Analog input, Analog output, 2 digital inputs, 4 relay outputs 8-120
$2^{\text {nd }}$ EB2: Analog input, Analog output, 2 digital inputs, 4 relay outputs 8-121
Z120 SBP pulse encoder evaluation 8-122
Z121 SIMOLINK board: Configuration, diagnosis 8-123
Z122 SIMOLINK board: Receiving, transmitting 8-124
Z123 OP1S operator panel 8-125
Z124 Interfaces: connector-type converters 8-126
Z130 SCB1 with SCI1 as slave 1: binary inputs 8-127
Z131 SCB1 with SCI1 as slave 2: binary inputs 8-128
Z135 SCB1 with SCI1 as slave 1: binary outputs 8-129
Z136 SCB1 with SCI1 as slave 2: binary outputs 8-130
Z140 SCB1 with SCI2 as slave 1: binary inputs 8-131
Z141 SCB1 with SCI2 as slave 2: binary inputs 8-132
Z145 SCB1 with SCI2 as slave 1: binary outputs 8-133
Z146 SCB1 with SCI2 as slave 2: binary outputs 8-134
Z150 SCB1 with SCI1 as slave 1: analog inputs 8-135
Z151 SCB1 with SCI1 as slave 2: analog inputs 8-136
Z155 SCB1 with SCI1 as slave 1: analog outputs 8-137
Z156 SCB1 with SCI1 as slave 2: analog outputs 8-138

Basic functions Sheets G100 to G200

Sheet G100 Overview

Sheet G110 Binary inputs terminals 36 to 39
Binary inputs terminals 122/123 and 124/125

Sheet G113 Analog inputs terminals 4/5, 6/7, and 103/104

Sheet G114 Analog inputs terminals 8/9, 10/11 and X6/X7

Sheet G116 Analog outputs terminals 18/19 and 20/21

Sheet G124 Connector selector switch

Sheet G128 Oscillation, square-wave generator

Sheet G130 Crawling setpoint / terminal 37

Sheet G136 Ramp-function generator (1)

Sheet G137 Ramp-function generator (2)

Sheet G140 Brake control

Sheet G151 Speed controller (1)

Sheet G152 Speed controller (2)

Sheet G153 Friction compensation,
Compensation of moment of inertia (dv/dt injection)

Sheet G160 Torque limitation, speed limit controller

Sheet G161 Current limitation

Sheet G162 Closed-loop armature current control

Sheet G165 Closed-Ioop EMF control

Sheet G167 Field current monitoring

Sheet G170 USS interface 1

Sheet G171 USS interface 2

Sheet G174 Peer-to-peer interface 3

Sheet G185 Motor interface (1)

Sheet G187 Messages (1)

Sheet G188 Messages (2)

Sheet G189 Fault memory

Sheet G195 Paralleling interface

Sheet G200 Field reversal with SIMOREG single-quadrant device

Free function blocks Sheets B100 to B216
Technology software in the basic converter, S00 option

NOTE

Freely assignable function blocks are enabled in parameter U977.
For enabling instructions, please refer to Section 11, Parameter List, description of parameters U977 and n978.

The setting for the sequence in which these function blocks are executed is made using parameters U960, U961, U962, and U963.

Sheet B101 Startup of the technology software (option S00)

Sheet B110 Voltage monitor for electronics power supply, fixed values

Sheet B115 Fault message triggers, alarm message triggers

Sheet B120 Connector / binector converters

Sheet B125 Adders / subtractors, sign inverters

Sheet B131 Dividers, High-resolution multipliers / dividers

Sheet B135 Absolute-value generators with filter, limiters

Sheet B136 Limit-value monitors with filter

Sheet B138 Limit-value monitors without filter

Sheet B139 Averagers

Sheet B140 Maximum selections, minimum selections

Sheet B145 Tracking / storage elements, connector memories

Sheet B151 High-resolution blocks

Sheet B153 Root extractor

Sheet B156 Derivative / delay elements (LEAD / LAG blocks)

Sheet B158 Derivative / delay elements (LEAD / LAG blocks)

Sheet B161 Dead zones, Setpoint branching

Sheet B170 Technology controller

Sheet B181 PI controller 2

Sheet B183 PI controller 4

Sheet B185 PI controller 6

Sheet B186 PI controller 7

Sheet B187 PI controller 8

Sheet B189 PI controller 10

Sheet B191 Calculation variable inertia

Sheet B200 Decoders / demultiplexers, binary to 1 of 8

$\mathrm{U} 388(0)$	
B	-188

$U 389(0)$	
B	189

1	$\left.\begin{array}{c}190 \\ \hline 89460 \\ \hline\end{array}\right)$

(후)

(珰)

1

1	2	3	4
16 inverters			

Sheet B210 RS flipflops

Sheet B211 D flipflops

Sheet B215 Timers (0.000...60.000s)

Sheet B216 Timers (0.00...600.00s), Binary signal selector switches

Sheet Z110 Data exchange with a technology board (TB) or the $1^{\text {st }}$ communications board (CB)

Sheet Z114 $1^{\text {st }}$ EB1: 4 bidirectional inputs-/ outputs, 3 digital inputs

Sheet Z116 $2^{\text {nd }}$ EB1: Analog outputs

Sheet Z118 $1^{\text {st }}$ EB2: Analog input, Analog output, 2 digital inputs, 4 relay outputs

Sheet Z120 SBP pulse encoder evaluation

Sheet Z121 SIMOLINK board: Configuration, diagnosis

Sheet Z122 SIMOLINK board: Receiving, transmitting

Sheet Z130 SCB1 with SCI1 as slave 1: binary inputs

Sheet Z131 SCB1 with SCI1 as slave 2: binary inputs

Sheet Z135 SCB1 with SCI1 as slave 1: binary outputs

Sheet Z136 SCB1 with SCI1 as slave 2: binary outputs

Sheet Z145 SCB1 with SCI2 as slave 1: binary outputs

Sheet Z146 SCB1 with SCI2 as slave 2: binary outputs

Sheet Z150 SCB1 with SCI1 as slave 1: analog inputs

Sheet Z151 SCB1 with SCI1 as slave 2: analog inputs

Sheet Z155 SCB1 with SCI1 as slave 1: analog outputs

Sheet Z156 SCB1 with SCI1 as slave 2: analog outputs

9 Function descriptions

NOTE

The available scope of converter functions is shown in the function diagrams (block diagrams) in Section 8.
Section 9 does not attempt to provide a complete description of all these functions, but to explain in further detail certain individual features, which cannot be adequately illustrated in graphic form, and provide examples of their application.

9.1 General explanations of terms and functionality

Function blocks

Although the illustrated function blocks have been implemented in digital form (as software modules), the function diagrams can be "read" in a similar way to the circuit diagrams of analog equipment.

Configurability

The converter is characterized by the optional configurability of the function blocks provided. "Optional configurability" means that the connections between individual function blocks can be selected by means of parameters.

Connectors

All output variables and important computation quantities within the function blocks are available in the form of "connectors" (e.g. for further processing as input signals to other function blocks). The quantities accessed via connectors correspond to output signals or measuring points in an analog circuit and are identified by their "connector number" (e.g. K0003 = connector 3).
Special cases: K0000 to K0008 are fixed values with signal levels corresponding to $0,100,200,-100$, $-200,50,150,-50$ and -150%.
K0009 is assigned to different signal quantities. Which signal quantity it actually refers to is dependent on the selector switch (parameter) at which connector number 9 is set. A description can be found under the relevant parameter number in the Parameter List. If the Parameter List or block diagram does not contain any reference to a special function in relation to selection of connector K0009, then the selector switch (parameter) concerned must not be set to " 9 ".
The internal numerical representation of connectors in the software is generally as follows:
100% corresponds to 4000 hexadecimal = 16384 decimal. The resolution is 0.006% (step change).
Connectors have a value range of -200% to $+199.99 \%$.
For a list of available connectors, please refer to Section 12.
Example: The data received via peer-to-peer 2 are available at connectors K6001 to K6005
(Section 8, Sheet G173)

Double-word connectors (SW 1.9 and later)

Double-word connectors are connectors with a 32-bit value range (i.e. LOW word and HIGH word with a double-word value range of 00000000 Hex to FFFFFFFFHex).
-100 \% to +100 \% corresponds to connector values of C0000000 Hex to 40000000 Hex (= -1073741824 to +1073741824 decimal). This means that the value range in the upper 16 bits (HIGH word) of a double-word connector is the same as for a "normal" connector (C000 Hex to 4000 Hex or -16384 to +16384 decimal for -100% to $+100 \%$). The extra 16 bits in the LOW word as compared to a "normal connector" afford, therefore, an improved resolution of the connector value by a factor of 65536 . For information about how to use double-word connectors see also the section in "The following rules apply to the selection of double-word connectors" below.

Double-word connector symbol in function diagrams:
KK9498

Binectors

All binary output quantities and important binary output signals of the function blocks are available as "Binectors" (connectors for binary signals). Binectors can assume states log. "0" and log."1". The quantities accessed via binectors correspond to output signals or measuring points in a digital circuit and are identified by their "Binector number" (e. g. B0003 = binector 3).

Special cases: B0000 = Fixed value log."0"
B0001 = Fixed value log."1"
A list of available binectors can be found in Section 12.
Example: The status of terminal 36 is available at B 0010 and, in inverted form, at binector B0011 (Section 8, Sheet G110)

Selection switches, connections

(see also Section "Data sets")
The inputs of function blocks are defined at "selection switches" by setting the appropriate selection parameters. The input is defined by entering the number of the connector or binector to be applied as the input quantity in the parameter for the relevant selection switch.
Representation in function diagrams (examples):

Selection of a connector
Parameter number $=$ P750, factory setting $=0$ (i. e. fixed value 0\%)

Selection of a binector
Parameter number $=$ P704, factory setting $=0$ (i. e. fixed value 0)

Selection of connectors ("indexed" parameter with 4 indices)
Parameter number $=$ P613, factory setting $=1$ (i. e. fixed value 100\%; this factory setting applies to all the indices of P613)

P611	FS	.01
$\sum \mathrm{~K}$	277	.01
$\sum \mathrm{~K}$	0	.02
K	0	.03
K	0	.04

Selection of connectors ("indexed" parameter with 4 indices)
Parameter number = P611
Factory setting for index $.01=277$ (i. e. connection with connector K0277)
Factory setting for indices .02 to $.04=0$ (i. e. fixed value 0%)

Selection of binectors ("indexed" parameter with 4 indices)
Parameter number $=$ P046, factory setting $=0$ (i. e. fixed value 0 , this factory setting applies to all the indices of P046)

Selection of a double-word connector (SW 1.9 and later)
Parameter number $=U 181$, factory setting $=0$ (i.e. fixed value 0%)

The selected setting can be entered in the empty field (fields). The value in brackets next to the parameter number is the factory setting of the selection parameter.

The following rules apply to the selection of double-word connectors (SW 1.9 and later):

Connector to double-word connector selection:
The double word for subsequent processing comprises:
LOW word $=0$
HIGH word = selected connector (K0401)

Double-word connector to connector selection:
HIGH word of the double-word connector (KK9498) is connected to another block, the LOW word of the double-word connector (KK9498) is not used
There are exceptions in the selection of transmission data for the serial interfaces and in the transmission of optional expansion modules (technology and communications modules, SIMOLINK module): If the same double-word connector is entered in two contiguous indices of the selection parameter, the entire value (the LOW and HIGH word) will be used.

If different double-word connectors are entered in two contiguous indices of the selection parameter, in both cases only the HIGH word of the two double-word connectors will be used.

Examples: Some examples of how to handle connectors and binectors are given below.
Example 1: As a function of the status of terminal 36 (B0010-see Section 8, Sheet G110), analog selectable input 1 (terminals 6 and 7) must be made available, either with the correct sign or inverted sign, at the function block output (= connector K0015).
This output value must then be injected as an additional setpoint and output simultaneously at analog output terminal 14.
The following settings need to be made to create the correct links:

1. $P 714=10:$ Selects binector B0010 (status of terminal 36) as the control signal for sign reversal. Parameter P716 remains set at 1 (= fixed value 1, delivery state), thereby ensuring that the analog input is switched in continuously.

Section 8, Sheet G113:

2. P645 = 15: Applies connector K0015 to the additional setpoint input when the setpoint is processed Section 8, Sheet G135:

3. $\mathrm{P} 750=15$: Applies connector K0015 to the input of the function block for the analog output terminal 14. This example of K0015 illustrates how it is possible to apply a connector as an input signal to any number of function blocks.
Section 8, Sheet G115:

Example 2: The contents of connectors K0401 and K0402 must be output on the connector displays (parameter r043)
The following settings need to be made to create the correct links:
P044.index01 = 401: Links connector K0401 to the $1^{\text {st }}$ connector display
P044.index02 $=402$: Links connector K0402 to the $2^{\text {nd }}$ connector display
Section 8, Sheet G121:

The following values are now displayed in parameter r043:

> r043.index01: Contents of connector K0401
> r043.index02: Contents of connector K0402
> r043.index03
to
r043.index07: Parameter P044.index. 03 to 07 remain at the works setting (0) (value in brackets next to parameter number) in this example, i. e. the contents of connector K0000 (=fixed value 0) are displayed on r043.index. 03 to . 07.

Setting parameters

(see also Section "Data sets")
In addition to the parameters that are used to select a signal (connector, binector), there are also parameters which define an operating mode or the parameter value of some function.
Representation in function diagrams:
Apart from parameter numbers, the function diagrams may also contain the factory setting, function and value range of parameters as supplementary information.

P109 (0)	Setting parameter
∇	Parameter number $=P 109$, factory setting $=0$

P462.F(10.00s) (0.01...300.00s) Ramp-up time

Setting parameter in function parameter set (".F" after parameter number)
Parameter number $=P 462$, factory setting $=10.00$ s
Value range $=0.01 \ldots 300.00 \mathrm{~s}$
Parameter for setting ramp-up time

Examples: P700 in Section 8, Sheet G113 defines the signal type of the analog input (voltage input $\pm 10 \mathrm{~V}$, current input $0 \ldots 20 \mathrm{~mA}$, current input $4 \ldots 20 \mathrm{~mA}$).
P705 in Section 8, Sheet G113 defines the filter time for the analog input (adjustable in ms).
Parameters P520 to P530 in Section 8, Sheet G153 determine the shape of the friction characteristic.

P465 in Section 8, Sheet G126 determines whether the time settings must be multiplied by a factor of 1 or 60.

Data sets

See also Section "Switch over parameter sets"
Switch over function parameters (function data sets):
4 different sets of some parameters (function parameters) are available and can be selected by means of the "Switch over function parameters" function. The switchover operation is controlled by control word 2 (bits 16 and 17, see Section 8, Sheets G181 and G175). Index .01, . 02 , .03 or .04 of these parameters is operative depending on the status of the control bit.
The parameters of this parameter set are identified by an ".F" next to the parameter number in the function diagrams and by "FDS" under the parameter number in the tabulated parameter list. The parameters belonging to the function parameter set must not be confused with other parameters which, by chance, also have 4 indices. The latter parameters are not affected by the "Switch over function parameters" function.

Switch over binector and connector parameters (Bico data sets):

2 different sets of some selection switches are available and can be selected by means of the "Switch over binector and connector parameters" function. The switchover function is controlled by control word 2 (bit 30, see Section 8, Sheets G181 and G175). The status of the control bit determines whether index. 01 or index .02 of the parameter is operative.
The parameters of the Bico data set are identified by a ".B" next to the parameter number in the function diagrams and by "BDS" under the parameter number in the tabulated parameter list. The parameters belonging to the Bico data set must not be confused with other parameters which, by chance, also have 2 indices. The latter parameters are not affected by the "Switch over binector and connector parameters" function.

Display parameters

The values of certain signals can be output using display parameters (r parameters, n parameters). Connector displays (Section 8, Sheet G121) can be used to link all connectors with display parameters so that they can be displayed.

Representation in function diagrams:
Apart from the parameter number, the function diagrams may also include a function description for the parameter as supplementary information.

RFG status $\frac{\text { r316 }}{4}$	Display parameter
	Parameter number $=$ r316
	Display of RFG (ramp-function generator) status

9.2 Computation cycles, time delay

Functions associated with analog inputs, analog outputs, binary inputs, binary outputs and interfaces, as well as function blocks associated with the motorized potentiometer, setpoint generation, rampfunction generator and closed-loop speed and armature current controls, are called up and calculated in synchronism with the armature firing pulses (i.e. every 3.333 ms at a line frequency of 50 Hz).
Function blocks associated with the closed-loop EMF and field current controls (shown in Section 8, Sheets G165 and G166) are called and calculated in synchronism with the field firing pulses (i.e. every 10 ms at a line frequency of 50 Hz).

The parameter settings are processed in a further computation cycle with a cycle time of 20 ms . The execution of optimization runs is also controlled from this cycle.
With regard to the transfer of parameter values via interfaces, it is important to remember that some transferred parameters must be converted to this 20 ms cycle before they can be applied, for example, in the armature firing pulse cycle.

9.3 Switch-on, shutdown, enabling

9.3.1 OFF2 (voltage disconnection) - control word 1, bit 1

The OFF2 signal is low active (log."0" state = voltage disconnection).
The following operating modes are possible:
P648 = 9: \quad The control bits in control word 1 are input bit-serially. OFF2 is generated from the AND operation between the binectors selected with P655, P656 and P657 (see Section 8, Sheet G180).
P648 \neq 9: The connector selected via P648 is used as control word 1. Bit 1 of this word then controls the OFF2 function.

Sequence of operations for "Disconnect voltage":

1. Input "Disconnect voltage" command
2. Disable ramp-function generator, n and I controllers
3. $I_{\text {set }}=0$ is applied
4. The pulses are disabled when $I=0$
5. Output signal "Close operating brake" (binector B0250 $=0$, when P080 $=2$)
6. Converter reaches operating state o10.0 or higher
7. An "older" actual field current value (K0265) is input as the field current setpoint upper limit (function is "released" in operating states of ≤ 05)
8. The "Line contactor closed" relay drops out
9. Drive coasts to a standstill (or is braked by the operating brake)
10. Parameterizable delay time (P258) runs down
11. The field is reduced to a parameterizable value (P257)
12. When $n<n_{\text {min }}$ (P370, P371) has been reached, the "Close holding brake" signal is output (binector B0250 = 0, when P080 = 1)

9.3.2 OFF3 (Fast stop) - control word 1, bit 2

The OFF3 signal is LOW active (log."0" state = fast stop).
The following operating modes are possible:
P648 = 9: The control bits in control word 1 are input bit-serially. OFF3 is generated from the AND operation between the binectors selected with P658, P659 and P660 (see Section 8, Sheet G180).
$P 648 \neq 9$: The connector selected via P648 is used as control word 1. Bit 2 of this word then controls the OFF3 function.

Sequence of operations for "Fast stop":

1. Input "Fast stop" command (e.g. binary input wired up to "Fast stop")
2. Ramp-function generator is disabled
3. Enter $\mathrm{n}_{\text {set }}=0$
4. up to SW 1.84: Decelerate along current limit
from SW 1.90: Decelerate along reversal ramp acc. to P296, P297, P298
5. Wait until $n<n_{\min }$ (P370, P371)
6. Output signal "Close operating or holding brake" (binector B0250 = 0)
7. Wait for brake closing time (P088) to run down
8. Enter $I_{\text {set }}=0$
9. Ramp-function generator and n controller are disabled
10. The pulses are disabled when $I=0$
11. The "Line contactor closed" relay drops out
12. Converter reaches operating state 09.0 or higher
13. Delay time for field current reduction (P258) runs down
14. The field is reduced to a parameterizable value in P257

Sequence of operations for cancellation of "Fast stop":

1. Stop applying "Fast stop" command
2. Enter "Standstill" command (e.g. via "Switch-on/shutdown" terminal)
3. Converter exits operating state 08

P087 Brake release time (positive in this example)
P088 Brake closing time
P258 Delay for automatic field current reduction

- The "Fast stop" command need only be applied as a short pulse (> 10 ms). It is then stored internally. The memory can be reset only by applying the "Shutdown" command.
- All "Fast stop" commands are ANDed by the SIMOREG CM, i.e. all commands must be set to "No fast stop" before the function can be deactivated.
- When $n<n_{\text {min }}$ (P370, P371) is reached for the first time, an internal interlock is activated which prevents the drive from attempting to brake again if the motor is turned by external forces. The $\mathrm{n}<\mathrm{n}_{\text {min }}$ signal then disappears again.

9.3.3 Switch-on / shutdown (ON / OFF) terminal 37 - control word 1, bit 0

The "Switch-on / shutdown" (ON / OFF) function is controlled via the "Switch-on command of ON / OFF1" (= ANDing between signal from terminal 37 and binector selected in parameter P654, level- or edge-triggered, see below) and bit 0 of connector selected as the control word in P648.

The following operating modes are possible:
P648 = 9: The control bits in control word 1 are input bit-serially. "ON / OFF" is controlled via the "Switch-on command of ON / OFF1".
$\mathrm{P} 648 \neq 9$: The connector selected in P648 is used as control word 1. Bit 0 of the control word is ANDed with the "Switch-on command of ON / OFF1" to produce the "ON / OFF" command (ON only if both signals are log. "1").
P445 = 0: The "Switch-on command of ON / OFF1" is generated as an AND operation between the signal from terminal 37 and the binector selected in P654 (level-triggered, $0=$ shutdown, 1 = switch-on).
P445 = 1: Edge triggering of "Switch-on command of ON / OFF1":
The switch-on command is stored on the $0 \rightarrow 1$ transition (see Section 8, Sheet G130). The binector selected in P444 must be in the log. "1" state. The memory is reset when this binector switches to the log. "0" state.

In the following example circuit, the ON key (NO contact) is connected to terminal 37 and the shutdown key (NC contact) to terminal 36. Connector K3003 (= Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3) is used as control word 1.

The following parameter values must be set:
P444=10 Connects binector 10 (= status of terminal 36) to the reset input of the memory for the ON signal (and to the reset input of the memory for the CRAWL command)

P445=1 Selects edge triggering of "Switch-on command of ON / OFF1" (and injection of the crawling setpoint)
P648=3003 Connector K3003 is assigned status of control word 1.
The combination of the control bit for ON/OFF from the DPRAM control word (K3003.bit0 in this example) and the switch-on command from the converter terminal is shown in the boxes with dot-dash line borders.

Sequence of operations for switching on drive:

1. Enter the "Switch-on" command (e.g. via terminal "Switch-on/shutdown")
2. The converter exits operating state 07
3. The "Line contactor closed" relay picks up
4. The field current reduction command is cancelled

If "Enable operation" signal is applied:
5. With a positive brake release time (P087), output signal "Release holding or operating brake" (binector $\mathrm{B} 0250=1$) and wait for P 087 in operating state 01.0 , with a negative brake release time (PO87 negative), go to step 6 immediately, brake remains closed (binector B0250 = 0)
6. Ramp-function generator, n controller and I controller are enabled
7. When a negative brake release time (P087) has run down, output signal "Release holding or operating brake" (binector B0250 = 1).

Sequence of operations for shutting down drive:

1. Enter the "Shutdown" command (e.g. via terminal "Switch-on / shutdown")
2. Decelerate along ramp-function generator ramp
3. Wait until $\mathrm{n}<\mathrm{n}_{\text {min }}$ (P370, P371)
4. Output signal "Close holding or operating brake" (binector B0250 = 0)
5. Wait for brake closing time (P088) to run down
6. Input $\mathrm{i}_{\text {set }}=0$
7. Ramp-function generator and n controller are disabled
8. The pulses are disabled when $\mathrm{I}=0$
9. The "Line contactor closed" relay drops out
10. The converter reaches operating state o7.0 or higher
11. Delay for field current reduction (P258) runs down
12. The field is reduced to a parameterizable value (P257)

P087 Brake release time (positive in this example)
P088 Brake closing time
P258 Delay for automatic field current reduction

- When $n<n_{\text {min }}(P 370, P 371)$ is reached for the first time, an internal interlock is activated which prevents the drive from attempting to brake again if the motor is turned by external forces. The $\mathrm{n}<\mathrm{n}_{\text {min }}$ signal then disappears again.
- Changing the parameter setting between level and edge triggering affects the "Switch-on", "Shutdown" and "Crawl" commands.
- The "Switch-on" and "Crawl" commands are applied alternately when edge triggering is selected, i.e. a "Switch-on" edge at terminal 37 cancels a "Crawl" function triggered beforehand, and a "Crawl" edge at a binector selected in P440 cancels an active "Switch-on" edge.
- The converter cannot be restarted automatically after a brief failure of the electronics power supply when edge triggering is selected.
- In order to ensure that "Shutdown" still works after "rewiring of parameters", if lower current or torque limits are applied or when additional setpoints are injected, certain functions are automatically deactivated when the "Shutdown" command is entered.
All torque limits are made inoperative while the drive brakes down to $n<n_{\min }$. Of all the current limits, only the system current limit (P171 and P172) and the speed-dependent current limit remain operative.

9.3.4 Operating enable (enable) terminal 38 - control word 1, bit 3

The Enable signal is HIGH active (log."1" state = Enable).
The following operating modes are possible:
P648 = 9: The control bits in control word 1 are input bit-serially. The operating enable command is generated from the AND operation between the enable signal from terminal 38 and the binector selected in P661 (see Section 8, Sheet G180).
$\mathrm{P} 648 \neq 9$: The connector selected in P648 is used as control word 1. Bit 3 of this connector is ANDed with the signal that is generated as for $\mathrm{P} 648=9$ to produce the operating enable signal.

To ensure that the "Operating enable" function can be activated, the conditions defined in the following diagram must be fulfilled:

Sequence of operations for enabling operation (if a switch-on command is applied):

1. Enter the "Enable operation" command
2. With a positive brake release time (P087), output a "Release holding or operating brake" signal (binector B0250 = 1) and wait for P087 to run down in operating state 01.0, with a negative brake release time (P087 negative), go to step 3 immediately, brake remains closed (binector B0250 = 0)
3. Ramp-function generator, n and I controllers are enabled
4. Converter reaches operating state I, II or --
5. When a negative brake release time (P087) has run down, output signal "Release holding or operating brake" (binector B0250 = 1).

Sequence of operations for cancellation of operating enable:

1. Cancel "Enable operation" command
2. Disable ramp-function generator, n and I controllers
3. Enter $I_{\text {set }}=0$
4. The pulses are disabled when $I=0$
5. Output signal "Close operating brake" (binector B0250 $=0$, when $\mathrm{P} 080=2$)
6. The converter reaches operating state 0.10 or higher
7. Drive coasts to a standstill (or is braked by the operating brake)
8. When $\mathrm{n}<\mathrm{n}_{\min }$ (P370, P371) is reached, the signal "Close holding brake" is output (binector $B 0250$, when $\mathrm{P} 080=1$)

9.4 Ramp-function generator

See also Section 8, Sheet G136

NOTICE

The following conditions must be fulfilled for the ramp-function generator to work:

- Ramp-function generator enable $=1 \quad$ (control word 1.bit $4=1$)
- Enable setpoint = 1
(control word 1.bit $6=1$)

9.4.1 Definitions

Ramp-up $=$ Acceleration from low, positive to high, positive speeds (e.g. from 10% to 90%) or from low, negative to high, negative speeds (e.g. from -10\% to -90\%)
 high, negative to low, negative speeds (e.g. from -90\% to -10\%)

On transition from negative to positive speeds, e.g. -10% to $+50 \%$:
From -10% to $0=$ ramp-down and
From 0 to $+50 \%=$ ramp-up and vice versa

Ramp-up time refers to the time required by the ramp-function generator to reach the 100% output value, with a lower and upper transition rounding of 0 and a step change in the input quantity from 0 to 100% or from 0 to -100%. The rate of rise at the output is the same in response to smaller step changes in the input quantity.

Ramp-down time refers to the time required by the ramp-function generator to reach the 100% output value, with a lower and upper transition rounding of 0 and a step change in the input quantity from 100% to 0 or from -100% to 0 . The rate of rise at the output is the same in response to smaller step changes in the input quantity.

9.4.2 Operating principle of ramp-function generator

HLZ ... Ramp-up time (H303, H307, H311),
RLZ ... Ramp-down time (H304, H308, H312)
AR ... Lower transition rounding (H305, H309, H313), ER ... Upper transition rounding (H306, H310, H314)

1) Transition from ramp-down gradient to ramp-up gradient
2) The lower rounding switches to the upper rounding before the maximum ramp-down gradient is reached
3) Due to the input step change, only the last part of the upper transition rounding is executed here

9.4.3 Control signals for ramp-function generator

The ramp-function generator operating mode can be preset by the following control signals:
Ramp-function generator start (control word 1.bit 5):
$1=$ Setpoint is injected at ramp-function generator input
$0=$ Ramp-function generator is stopped at current value (generator output is injected as generator input).

Enable setpoint (control word 1.bit 6):
$1=$ Setpoint enabled at ramp-function generator input
$0=$ Ramp-function generator setting 1 is activated and 0 applied at the input (generator output is reduced to 0)

Set ramp-function generator:
$1=$ The ramp-function generator output is set to the setting value (selected in P639)
Enable ramp-function generator (control word 1.bit 4):
$0=$ Ramp generator disabled, generator output is set to 0
$1=$ Ramp-function generator enabled
Ramp-up integrator operation (parameter P302):
See below and Section 11, Parameter List, parameter P302
Enable switchover of ramp-up integrator (select via P646):
See below
Ramp-function generator settings 2 and 3
See below
Ramp-function generator tracking ON (parameter P317):
See below and Section 11, Parameter List, parameter P317
Set ramp-function generator on shutdown (parameter P318):
See Section 11, Parameter List, parameter P318
Bypass ramp-function generator:
$1=$ Ramp-function generator operates with ramp-up/ramp-down time of 0
The function is controlled via the binector selected in P641.
The ramp generator can also be bypassed in INCHING, CRAWLING and INJECTION OF FIXED SETPOINT modes.

9.4.4 Ramp-function generator settings 1, 2 and 3

Selection via binectors selected in parameters P637 and P638

Stat Selecte P637	ctor ameter P638	R-F generator setting	Effective ramp-up time	Effective rampdown time	Effective Iower rounding	Effective upper rounding
0	0	1	P303	P304	P305	P306
1	0	2	P307	P308	P309	P310
0	1	3	P311	P312	P313	P314
1	1	Not permitted, activates fault message F041 (selection not clear)				

The ramp-function generator settings preset via the binectors selected in P637 and P638 have priority over the generator setting specified via the ramp-up integrator.

9.4.5 Ramp-up integrator

The ramp-up integrator is activated by setting P302 = 1, 2 or 3. After an "ON" command ("Switch-on", "Inching", "Crawling"), ramp-function generator setting 1 (P303 to P306) is applied until the rampfunction generator output reaches the required setpoint for the first time.
The remaining sequence of operations is controlled by the "Enable switchover of ramp-up integrator" function (binector selected in P646).
Enable switchover of ramp-up integrator $=1$:
As soon as the ramp-function generator output reaches the required setpoint for the first time after the "ON" command, the ramp generator setting selected in P302 is activated automatically.

Enable switchover of ramp-up integrator $=0$:
Ramp-function generator setting 1 (P303 to P306) remains active after the generator output has reached its setpoint until the "Enable switchover of ramp-up integrator" function is switched to 1. The ramp-function generator setting selected in P302 is then activated.

When the enable signal for ramp-up integrator switchover is cancelled ($\rightarrow 0$), ramp-function generator setting 1 is activated again and, with a new enable command ($\rightarrow 1$), this setting continues to remain active until the generator output has reached its setpoint again. The ramp generator setting selected in P302 is then activated again.

When a "Shutdown" command is given, the drive is shut down according to setting 1 .
Note:
Activation of "Ramp-function generator setting 2" (P307 to P310, selected in P637), or "Ramp-function generator setting 3" (P311 to P314, selected in P368), has priority over the generator setting selected by means of the "Ramp-up integrator" function.

9.4.6 Ramp-function generator tracking

The ramp-function generator output (K0190) is limited to the following values when ramp-function generator tracking is activated:

$$
\frac{- \text { Mlimit } * 1.25}{\mathrm{Kp}}+\text { nact }<\text { RFG output }<\frac{+ \text { Mlimit } * 1.25}{\mathrm{Kp}}+\text { nact }
$$

When P170 = 1 (torque control), the following equation applies:

$$
\frac{-\mathrm{IA}, \text { limit } * \Phi \text { motor } * 1.25}{\mathrm{Kp}}+\text { nact }<\text { RFG output }<\frac{+\mathrm{IA}, \text { limit } * \Phi \text { motor } * 1.25}{\mathrm{Kp}}+\text { nact }
$$

When P170 = 0 (current control), the following equation applies:

$$
\frac{-\mathrm{IA}, \text { limit } * 1.25}{\mathrm{Kp}}+\text { nact }<\text { RFG output }<\frac{+\mathrm{IA}, \text { limit } * 1.25}{\mathrm{Kp}}+\text { nact }
$$

Фmotor	Normalized motor flux (1 at rated field current)
$\mathrm{n}_{\text {act }}$	Actual speed value (K0167)
+ Mlimit	Lowest positive torque limit (K0143)
- Mlimit	Lower negative torque limit (K0144)
+ IA, limit	Lowest positive current limit (K0131)
- IA, limit	Lowest negative current limit (K0132)
K_{p}	Effective speed controller gain

However, if the value added to nact were to correspond to less than 1%, then $+1 \%$ or -1% would be added.

The purpose of the "Ramp-function generator tracking" function is to ensure that the ramp generator value cannot deviate excessively from the actual speed value once the torque or current limit has been reached.

Note:
When ramp-function generator tracking is selected, the filter time for the speed setpoint should be set to a low value in P228 (preferably to 0).

9.4.7 Limitation after ramp-function generator

Since the input signal can be freely selected, this limiter stage can be used completely independently of the ramp-function generator.
A special feature of this limiter is that the lower limit can also be set to positive values and the upper limit to negative values (see P300 and P301). This type of limit setting then acts as a lower limit (minimum value) for the ramp generator output signal in the other sign direction.
Example: P632.01-04 = 1 ($=100.00 \%$)
P300 = 100.00 (\%)
P301 = 10.00 (\%)
P633.01-04 = 9 (= -100.00\%)
results in a limitation of the value range for K0170 to between $+10.00 \%$ and $+100.00 \%$

9.4.8 Velocity signal dv/dt (K0191)

This signal specifies the change in the ramp-function generator output K0190 in the time period set in P542.

9.5 Inching

See also Section 8, Sheet G129

The INCHING function can be preset via the binectors selected with indices .01 to .08 of parameter P435 or via bits 8 and 9 of control word 1 (logic operation, see function diagram in Section 8).

When the control word option is used, the following operating modes are possible (see also Section 8, Sheet 33):
P648 = 9: The control bits in control word 1 are input bit-serially. The binectors selected in P668 and P669 determine bits 8 and 9 of control word 1 and thus the input of the INCH command.
$\mathrm{P} 648 \neq 9$: The connector selected in P648 is used as control word 1. Bits 8 and 9 of this word control the input of the INCH command.

The "Inching" function can be executed only if "Shutdown" and "Operating enable" are applied.
The "Inch" command is input when one or several of the named sources (binectors, bits in control word) change to the log. "1" state. In this case, a setpoint selected in parameter P436 is assigned to each source.
An inching setpoint of 0 is applied if the inch command is input by two or more sources simultaneously.
Parameter P437 can be set to define for each possible inch command source (binector, bit in control word - logic operation, see block diagram in Section 8) whether or not the ramp-function generator must be bypassed. When the ramp generator is bypassed, it operates with ramp-up/down times of 0 .

Sequence of operations for entering Inching command:

If the "Inch" command is entered, the line contactor is energized via the "Line contactor closed" relay and the inching setpoint applied via the ramp-function generator (for exact sequence, see the description of "Switch-on / Shutdown" in Section 9.3.3).

Sequence of operations for cancellation of Inching:

After the "Inch" command has been cancelled, the sequence of operations commences in the same way as for "Shutdown" (see Section 9.3.3). After $\mathrm{n}<\mathrm{n}_{\text {min }}$ has been reached, the controllers are disabled and the line contactor opened after a parameterizable delay (P085) of between 0 and 60 s (operating state 07.0 or higher). The drive remains in operating state 01.3 while the parameterizable delay period (max. 60.0 s) runs down.

9.6 Crawling

See also Section 8, Sheet G130

The "Crawling" function can be activated in operating state o7 and, with "Operation enabled", in the Run state.

The "Crawl" command is entered when one or several of the binectors selected in P440 switches to the log. "1" state. A setpoint selected in parameter P441 is assigned to each binector. If the "Crawl" command is entered via several binectors, the setpoint values are added (limited to $\pm 200 \%$).
Parameter P442 can be set to define for each possible crawl command source (binector) whether or not the ramp-function generator must be bypassed. When the ramp generator is bypassed, it operates with ramp-up/down times of 0 .

Level / edge

P445 = 0: Level-triggered

Binector selected in P440 = 0: No crawl Binector selected in P440 = 1: Crawl
P445 = 1: \quad Edge-triggered The input of "Crawl" is stored when the binector state changes from $0 \rightarrow 1$ (see Section 8 , Sheet G130). The binector selected in P444 must be in the log. "1" state at the same time. The memory is reset when the latter binector changes state to log. "0" (see also example circuit in Section 9.3.3, Switch-on / Shutdown).

Sequence of operations for entering Crawl command:

If the "Crawl" command is entered in operating state 07, the line contactor is energized via the "Line contactor closed" relay and the crawling setpoint applied via the ramp-function generator. If the "Crawl" command is entered in the "Run" state, the drive decelerates from the operating speed to the crawling setpoint via the ramp-function generator.

Sequence of operations for cancellation of Crawling:

With "Crawling" active, but no "Switch-on" command applied:
If all bits which activate the "Crawling" function switch to log. " 0 ", the controllers are disabled after $\mathrm{n}<\mathrm{n}_{\text {min }}$ is reached and the line contactor de-energized (operating state 07.0 or higher).
With "Crawling" active from "Run" operating state:
If all bits which activate the "Crawling" function switch to log. "0" and if the conditions for the "Run" operating state are still fulfilled, then the drive accelerates from the set crawling speed to the operating speed via the ramp-function generator.

See also Section 9.3 .3 (switch-on / shutdown) with regard to edge triggering, automatic restart and the effect of the current and torque limits during braking.

9.7 Fixed setpoint

See also Section 8, Sheet G127

The "Fixed setpoint" function can be activated in the "Run" state with the "Enable controllers" signal applied.

The "Fixed setpoint" function can be input via the binectors selected via indices .01 to .08 of parameter P430 and via bits 4 and 5 of control word 2 (= bits 20 and 21 of complete control word) (see function diagram in Section 8 for logic operation).

When the control word method is used, the following operating modes are possible (see also Section 8, Sheet G181):
P649 = 9: The control bits in control word 2 are input bit-serially. The binectors selected via P680 and P681 determine bits 4 and 5 of control word 2 (= bits 20 and 21 of complete control word), and thus input of the "Fixed setpoint" function.
$\mathrm{P} 649 \neq 9$: The connector selected via P649 is used as control word 2 . Bits 4 and 5 of this word control the input of "Fixed setpoint".

The "Fixed setpoint" function is input when one or several of the named sources (binectors, bits in control word) switch to the log. "1" state. In this case, a setpoint selected in parameter P431 is assigned to each source. If "Fixed setpoint" is input via several sources simultaneously, the associated setpoints are added (limited to $\pm 200 \%$).

Parameter P432 can be set to define for each possible fixed setpoint source (binector, bit in control word - logic operation, see block diagram in Section 8) whether or not the ramp-function generator must be bypassed. When the ramp generator is bypassed, it operates with ramp-up/down times of 0 .

Sequence for entering Fixed Setpoint function:

The fixed setpoint is injected instead of the main setpoint.

Sequence for cancellation of Fixed Setpoint function:

When all the possible sources for injecting the fixed setpoint (binectors, bits in control word) have changed back to log. " 0 ", the setpoint selected in parameter P433 (main setpoint) is switched through again.

9.8 Safety shutdown (E-Stop)

The task of the E-STOP function is to open the relay contacts (terminals 109/110) for energizing the main contactor within about 15 ms , independently of semiconductor components and the functional status of the microprocessor board (basic electronics). If the basic electronics are operating correctly, the closed-loop control outputs an I = 0 command to de-energize the main contactor. When an ESTOP command is given, the drive coasts to a standstill.

The E-STOP function can be triggered by one of the following methods:

- Switch operation:
(switch between terminals XS-105 and XS-106; XS-107 open; XS-108 open)
E-STOP is activated when the switch between terminals XS-105 and XS-106 opens.
- Pushbutton operation:
(Stop pushbutton with NC contact between terminals XS-107 and XS-106; Reset pushbutton with NO contact between terminals XS-108 and XS-106; XS-105 open)
Opening an NC contact between terminals XS-106 and XS-107 triggers the E-STOP function and stores the shutdown operation. Closing an NO contact between terminals XS-106 and XS-108 resets the function.

When the E-STOP function is reset, the drive switches to the "Starting lockout" state. This status needs to be acknowledged through activation of the "Shutdown" function, e.g. by opening terminal 37.

Note

The E-STOP function is not an EMERGENCY STOP function according to EN 60204-1

Sequence of operations for entering E-STOP command:

1. Enter "E-STOP" command
2. Disable ramp-function generator, n and I controllers
3. $\mathrm{I}_{\text {set }}=0$ is applied
4. a) U616 $=0$: E-Stop has same effect as OFF2 (as soon as I $=0$, the firing pulses are disabled)
b) U616 = 1: E-Stop disables the output of firing pulses immediately (without waiting for I = 0)
5. Output signal "Close operating brake" (binector B0250 $=0$, when $\mathrm{P} 080=2$)
6. Converter reaches operating state o10.0 or higher
7. An "older" actual field current value (K0265) is input as the field current setpoint upper limit (function is "released" in operating states of ≤ 05)
8. Relay "Power contactor on" (terminal 109/110) drops out
9. Drive coasts to a standstill (or is braked by the operating brake)
10. Parameterizable delay time (P258) runs down
11. The field is reduced to a parameterizable value (P257)
12. When $\mathrm{n}<\mathrm{n}_{\text {min }}$ (P370, P371) has been reached, the "Close holding brake" signal is output (binector B0250 = 0, when P080 = 1)

Note:
15 ms after entry of "E Stop" the hardware causes relay "Power contactor on" (terminal 109/110).to drop out (even if Item 8 of this sequence has not yet been reached).

9.9 Activation command for holding or operating brake (low active)

The signal for controlling the brake is available at binector B0250:
log. "0" state $=$ Close brake
log. "1" state = Release brake
In order to drive a brake, this binector must be "wired up" to a binary output, e.g. by setting P771 to 250 for connection to output terminals $46 / 47$ (see Section 8, Sheet G112, for other possible settings).

The following parameters influence the action of the brake control signal:

$\mathrm{P} 080=1$	The brake is a holding brake: "Close brake" command is entered only when $\mathrm{n}<\mathrm{n}_{\min }$ (P370, P371)
$\mathrm{P} 080=2$	The brake is an operating brake: The "Close brake" command is entered even when the motor is running
P087	Brake release time: A positive value prevents the motor from acting against the brake as it is released A negative value causes the motor to act against the brake while it is still closed in order to prevent the occurrence of a brief, torque-free interval
P088	Brake closing time: Causes the motor to produce a torque while the brake is closing
P319	Delay time for enabling ramp-function generator After the controllers have been enabled, a setpoint of 0 is input for the time set here. This time should be set such that the brake has actually been released when the timer runs down. This is of particular importance when P087 is set to a negative value.

The following diagrams illustrate the chronological sequence of the brake control function with a signal level change at inputs "Switch-on / Shutdown" (e.g. terminal 37) and "Operating enable " (terminal 38). With respect to the brake control, input commands "Inching", "Crawling" or "Fast stop" have the same affect as "Switch-on / Shutdown", and input commands "Voltage disconnection" or "E-Stop" the same affect as cancelling the "Operating enable" command.
The command "Close brake" is output during the optimization run for precontrol and current controller (P051 = 25).

Operating brake (P080 = 2), positive brake release time (P 087)

Holding brake (P080 = 1), positive brake release time (P087)

*1) Drive is braked mechanically by means of operating brake
*2) Drive coasts to standstill, "Close holding brake" not output until $n<n_{\text {min }}$
*3) Time for the brake to open before the motor produces a torque (P087 positive)
*5) Time for the brake to close while the motor is still producing a torque (P088)

Operating brake (P080 = 2), negative brake release time (P087)

Holding brake (P080 = 1), negative brake release time (P087)

*1) Drive is braked mechanically by means of operating brake
*2) Drive coasts to standstill, "Close holding brake" not output until $n<n_{\text {min }}$
*4) In this case, the motor is still rotating against the closed brake (P087 negative)
*5) Time for the brake to close while the motor is still producing torque (P088)

9.10 Switch on auxiliaries

The function acts as a switch-on command for auxiliaries (e.g. motor fan).
The "Switch on auxiliaries" signal is available at binector B0251:

> log. " 0 " state = Auxiliaries OFF
> log. "1" state = Auxiliaries ON

To act as the auxiliaries drive signal, this binector must be "wired up" to a binary output, e.g. by setting P771 to 251 for connection to output terminals 46 / 47 (see Section 8, Sheet G112, for other possible settings).

The "Switch on auxiliaries" signal switches to "high" at the same time as the "Switch on" command. The converter then waits in operating state 06.0 for a parameterizable delay period (P093). The line contactor is closed on expiry of the delay.
When the "Shutdown" command is entered, the firing pulses are disabled when $\mathrm{n}<\mathrm{n}_{\text {min }}$ is reached and the line contactor drops out. The "Switch on auxiliaries" signal switches to "low" after a parameterizable delay period (P094). However, if the "Switch on" command is entered again before this delay has expired, then the converter does not stay in operating state 06.0, but the line contactor is closed immediately instead.

9.11 Switch over parameter sets

See also in Section 9.1 under heading "Data sets"

WARNING

Parameter sets can be switched over while the converter is in operation (online). As a result, $\sqrt{7}$ depending on the setting of the control bits when the motor is running, the configuration or functions may be altered in such a way as to produce dangerous operating conditions.

For this reason, we strongly recommend that a "basic" parameter set containing all basic parameter settings is created first and then copied into the other parameter sets. The intentional changes vis-à-vis the "basic" version should then be entered in each parameter set.

The "Switch over parameter sets" function affects function parameters (identified by an ".F" next to parameter number in block diagrams in Section 8) and Bico parameters (identified by a ".B" next to parameter number in block diagrams in Section 8).

The following operating modes are possible (see also Section 8, Sheet G181):
P649 = 9: The control bits in control word 2 are input bit-serially.
The binectors selected in P676 and P677 determine bits 0 and 1 of control word 2 (= bits 16 and 17 of complete control word), and thus the input of the function data set. The binector selected in P690 determines bit 14 of control word 2 (= bit 30 of complete control word), and thus the input of the Bico data set.

P649 $\neq 9$: The connector selected in P649 is used as control word 2.
Bits 0 and 1 of control word 2 (bits 16 and 17 of complete control word) control the input of the function data set. Bit 14 (= bit 30 of complete control word) controls the input of the Bico data set.

Control word Bit 16		Active function data set (active index)
0	0	1
1	0	2
0	1	3
1	1	4

Control word Bit30	Active Bico data set (active index)
0	1
1	2

Caution:

The parameter set selection must not be changed while the optimization run is in progress.
Error message F041 will otherwise be output after 0.5 s .
When the "Switch over parameter sets" function is activated, a time delay of up to 25 ms may occur before the newly selected parameter set actually becomes operative.
For information about copying parameter sets, please see Section 11 (Parameter List), parameters P055 and P057.

9.12 Speed controller

See also Section 8, Sheets G151 and G152

Control signals for speed controller

The control signals for "Enable speed controller droop", "Enable speed controller" and "Switch over master/slave drive" are supplied by control word 2 . The following operating modes are possible (see also Section 8, Sheet G181):
P649 = 9: The control bits in control word 2 are input bit-serially.
The binectors selected in P684, P685 and P687 determine bits 8, 9 and 11 of control word 2 (= bits 24, 25 and 27 of complete control word), and thus the functions "Enable speed controller droop", "Enable speed controller" and "Switch over master/slave drive".

P649 $\neq 9$: The connector selected in P649 is used as control word 2.
Bits 8, 9 and 11 control the functions "Enable speed controller droop", "Enable speed controller" and "Switch over master/slave drive".

Enable speed controller:

$0=$ Disable controller, controller output $(\mathrm{K} 0160)=0, \mathrm{P}$ component $(\mathrm{K0161})=0, \mathrm{I}$ component (K0162) $=$ value of connector selected in P631
1 = Enable controller
Enable droop:
$0=$ Droop is not active
$1=$ Droop is active

Switch over master/slave drive:
$0=$ Master drive
1 = Slave drive
When "Slave drive" is selected, the I component of the speed controller is made to "track" such that M (set, n contr.) = M (set,limit.), the speed setpoint is set to equal the actual speed (K0179) (enable tracking with P229).

Set I component (selection of control signal via parameter P695):
When $0 \Rightarrow 1$ signal transition of selected binector, the I component is set to the setting value (selected in parameter P631)

Stop I component (selection of control signal via parameter P696):
$0=I$ component enabled
1 = Stop I component

Limitation active:

This signal is in the log. "1" state when the upper or lower torque limitation is violated, the speed limiting controller is active, the current limitation is active or when the firing angle for the armature circuit reaches the α_{G}-limit.
In this case, the I component of the speed controller is stopped.

Switch over to P controller:

The P controller function is activated $(I$ component $=0)$ when the speed drops to below the changeover value.

D component in actual value channel or setpoint/actual value deviation channel

As a basis for selecting the correct derivative action time, it is necessary to calculate the maximum possible rate of rise at the derivative action element input, i.e. the period of time required by the input signal to change from 0 to 100% at this maximum rate of rise. The derivative action time should preferably be set to a shorter value than this period.

9.13 Serial interfaces

The SIMOREG CM is equipped with the following serial interfaces:

- G-SST1 (serial interface 1) Connector X300 on board A7005 (operator panel) USS ${ }^{\circledR}$ protocol provided for the purpose of connection the OP1S operator panel
- G-SST2 (serial interface 2)

Terminal strip X172 (terminals 56 to 60) on board A7001
USS ${ }^{\circledR}$ and peer-to-peer protocol, parameterizable
Additionally if board A7006 (terminal expansion) is installed:

- G-SST3 (serial interface 3)

Terminal strip X162 (terminals 61 to 65)
USS ${ }^{\circledR}$ and peer-to-peer protocol, parameterizable

Interface hardware

The hardware of G-SST1 is designed to operate in RS232 and RS485 standard / two-wire mode, and G-SST2 and G-SST3 in RS485 standard / two and four-wire mode. For connectors and terminal assignments, see Section 8, Sheets G170 to G174.
The maximum cable length for a peer-to-peer connection from the transmitter to the last receiver connected to the same transmission output is 1000 m . The same maximum cable length applies to the bus cable of a USS connection. The maximum cable length is only 500 m for both types of connection if a baud rate of 187500 bd is selected.

USS:

A maximum of 32 nodes can be connected in the bus configuration (i.e. 1 master and max. 31 slaves). The bus connector must be activated on the two bus nodes which form each end of the bus circuit.

Peer-to-peer:
Up to 31 other drives can be connected in parallel to the transmit cable of one drive. With a "parallel connection", the bus connector must be activated on the last connected drive.

9.13.1 Serial interfaces with USS ${ }^{\circledR}$ protocol

Specification for the USS ${ }^{\circledR}$ protocol: Order No. E20125-D0001-S302-A1
The SIEMENS USS ${ }^{\circledR}$ protocol is implemented in all digital converter devices supplied by SIEMENS. It can be used to provide a point-to-point or bus-type link to a master station. Any mixture of converter types can be connected up to the same bus line. The USS protocol makes it possible to access all relevant process data, diagnostic information and parameters of the SIMOREG CM.

The USS protocol is a pure master-slave protocol. In this case, a converter device can only ever function as slave. Converter devices will transmit a telegram to the master only if they have received one from it first. In other words, converters linked via the USS protocol cannot exchange data directly with one another (they can do this only via a peer-to-peer link).

Useful data which can be transferred via the USS protocol

Sheets G170 to G172 in Section 8 show how useful data can be interconnected and list the parameters relevant for configuring USS interfaces.

If parameters need to be read and/or written via the USS interface, then "Parameter data length" (P782, P792, P802) must be set to 3,4 or 127 (select setting 4 only if double word parameters need to be transferred). If parameters do not need to be transferred, the "Parameter data length" must be set to 0 .

The number of process data words to be transferred is basically identical for the transmit and receive directions and can be set in "Process data length" (P781, P791, P801). Numeric representation "100\% equals $4000 \mathrm{~h}=16384 \mathrm{~d}$ " applies to all connectors.

Transfer of double-word connectors:
In the receive direction, the values of any two adjacent connectors (K) are combined to form a doubleword connector (KK) (e.g. K2002 and K2003 to KK2032). These double-word connectors can be connected in the usual way to other function blocks. For details of how to connect with double-word connectors, see Section 9.1, subsection "The following rules apply to the selection of double-word connectors".
In the transmission direction, a double-word connector is applied by entering the same double-word connector at two contiguous indices of the selection parameter.

Examples:

Numeric representation of parameter numbers and values on serial interfaces

The mode of numeric representation of a parameter value is determined by the parameter "type" assigned to each parameter in the Parameter List. The different types of parameter are explained at the beginning of the list. Parameters are always transmitted in the form specified in the "Value range" column of the Parameter List; any decimal point, however, is omitted (example: display value $123.45 \rightarrow$ the number $12345 d=3039 \mathrm{~h}$ is transferred via the serial interface).

Diagnostics and monitoring functions for USS interfaces

All transmitted and received useful data words can be checked (directly at the internal software transfer point from/to USS driver) by means of display parameters r810 / r811, r812 / r813 or r814 / r815.

Diagnostic parameters r789, r799 or r809 provide information about the chronological distribution of errored and error-free telegrams, as well as the nature of any communication errors that have occurred.

A watchdog can be set in P787, P797 or P807 which can initiate a shutdown on faults (F011, F012 or F013) in the case of timeout. By connecting binectors B2031, B6031 or B9031 to the fault message triggers (using P788=2031 / P798=6031 / P808=9031), it is possible to acknowledge these fault messages even if the fault is active continuously, thereby ensuring that the drive can still be operated manually after the USS interface has failed.

Important !
The serial interfaces for the USS protocol are parameterized with the same parameters used to configure the peer-to-peer protocol, although the setting ranges are different in some cases (see Notes for relevant parameters in Parameter List, Section 11).

USS protocol: Brief start-up guide for SIMOREG 6RA70 converters

	$\begin{gathered} \text { G-SST1 } \\ \text { RS232 / RS485 } \end{gathered}$	$\begin{gathered} \text { G-SST1 } \\ \text { RS485 } \end{gathered}$ for connection of an OP1S	$\begin{gathered} \text { G-SST2 / G-SST3 } \\ \text { RS485 } \end{gathered}$
Select USS protocol	P780 = 2	P780 = 2	P790 / P800 = 2
Baud rate	P783 = 1 to 13, corresponding to 300 to 187500 baud	$\begin{aligned} & P 783= 6(9600 \mathrm{Bd}) \text { or } \\ & 7(19200 \mathrm{Bd}) \end{aligned}$ The baud rate setting must be identical for every node in bus operation	P793 / P803 = 1 to 13, corresponding to 300 to 187500 baud
No. of process data (PZD No.) (applies to Receive and Send)	P781 = 0 to 16	P781 = 2	P791 / P801 = 0 to 16
PZD assignment for control word and setpoints (received process data)	All received process data are taken to connectors and must be wired up as required	If the control bits from the OP1S are to be used: Word 1 (connector K2001): Wiring up of control bits from OP1S, see Sec. 7.2.2 Word 2 (connector K2002): Not used	All received process data are taken to connectors and must be wired up as required
No. of PKW	\| P782 = 0: \quad No PKW data 3/4: 3 / 4 PKW data words 127: Variable data length for slave \rightarrow master	P782 = 127 variable data length	P792 / P802 = 0: \quad No PKW data 3/4: 3/4 PKW data words 127: Variable data length for slave \rightarrow master
PZD assignment for actual values (transmitted process data)	Selection of transmitted values via P784	Word 1: P784.i01=32 (stat. word 1 K0032) Word 2: P784.i02=0	Selection of transmitted values via P794 / P804
Node address	$\mathrm{P} 786=0$ to 30	$\text { P786 = } 0 \text { to } 30$ Every node must have its own, unique address for bus operation	P796 / P806 = 0 to 30
Telegram failure time	P787 $=0.000$ to 65.000s	P787 $=0.000 \mathrm{~s}$	P797 / P807 = 0.000 to 65.000s
Bus termination	P785 = 0: Bus term. OFF 1: Bus term. ON	$\begin{aligned} \mathrm{P} 785= & 0: \text { Bus term. OFF } \\ & \text { 1: Bus term. ON } \end{aligned}$	$\begin{array}{\|l} \text { P795 / P805 = } \\ \text { 0: Bus term. OFF } \\ \text { 1: Bus term. ON } \end{array}$
Bus / point-to-point communication	RS232: Only point-to-point operation possible RS485: Bus operation possible	Bus operation possible	Bus operation possible
2-wire / 4-wire transmission via RS485 interface	2-wire operation is selected automatically	2-wire operation is selected automatically	2-wire operation is selected automatically
Cable	Connector assignments, see Sect. 6.8 or Sheet G170 in Sect. 8	See operating instructions for OP1S operator panel	Connector assignments, see Sect. 6.8 or Sheets G171, G172 in Sect. 8

Connection example for a USS bus

Master
(Bus terminating resistors activated)

Slave 1
(Bus terminating resistors deactivated)

Slave 2
(Bus terminating resistors deactivated)

Slave \mathbf{n} ($\mathrm{n}<=31$)) (Bus terminating resistors activated)

1) The interface cable shields must be connected directly on the converter with the lowest possible impedance to converter or cubicle earth (e.g. via clamp).
2) Twisted cable, e.g. LIYCY 2×0.5 sqmm; with longer cables, an equipotential bonding conductor must be used to ensure that the difference in frame potentials between nodes stays below 7 V .

9.13.2 Serial interfaces with peer-to-peer protocol

The term "Peer-to-peer link" refers to a "Link between partners of equal status". In contrast to the classic master/slave bus system (e.g. USS and PROFIBUS), the same converter can function as both the master (setpoint source) and the slave (setpoint receiver) in a peer-to-peer link.

Signals can be transferred in fully digital form from one converter to another via the peer-to-peer link, for example:

- Velocity setpoints for producing a setpoint cascade, e.g. on paper, foil and wire-drawing machines and on fiber-drawing machinery.
- Torque setpoints for closed-loop load distribution controls on drives that are coupled mechanically or via the material, e.g. longitudinal-shaft drives on printing presses or S-roll drives
- Acceleration setpoints (dv/dt) for acceleration precontrol on multi-motor drives.
- Control commands

Useful data which can be transferred via the peer-to-peer link

Sheets G173 and G174 in Section 8 show how useful data can be interconnected and list the parameters relevant for configuring peer-to-peer links. Any connectors can be parameterized as transmit data (numeric representation: 100% equals $4000 \mathrm{~h}=16384 \mathrm{~d}$).
Parameters cannot be transferred via the peer-to-peer link.
Transfer of double-word connectors:
In the receive direction, the values of any two adjacent connectors (K) are combined to form a doubleword connector (KK) (e.g. K6001 and K6002 to KK6081). These double-word connectors can be connected in the usual way to other function blocks. For details of how to connect with double-word connectors, see Section 9.1, subsection "The following rules apply to the selection of double-word connectors".
In the transmission direction, a double-word connector is applied by entering the same double-word connector at two contiguous indices of the selection parameter.

Examples:

	P794	
KK9498	\K 9498	
KK9498	K K 9498	. 02
K0401	K K 401	. 03
K0402	SK402	. 04

Diagnostics and monitoring functions for peer-to-peer link

All transmitted and received useful data words can be checked (directly at the internal software transfer point from/to peer driver) by means of display parameters r812 / r813 or r814 / r815. Diagnostic parameters r799 or r809 provide information about the chronological distribution of errored and error-free telegrams, as well as the nature of any communication errors that have occurred. A watchdog can be set in P797 or P807 which can initiate a shutdown on faults (F012 or F013) in the case of timeout. By connecting binectors B6031 or B9031 to the fault message triggers (using P798=6031 / P808=9031), it is possible to acknowledge these fault messages even if the fault is active continuously, thereby ensuring that the drive can still be operated manually after the peer-topeer interface has failed.

Important!

The serial interfaces for the peer-to-peer protocol are parameterized with the same parameters used to configure the USS protocol, although the setting ranges are different in some cases (see Notes for relevant parameters in Parameter List, Section 11).

Peer-to-peer communication, 4-wire operation

Serial linking of converter to converter (partners of equal status).
The signal flow can pass through the drives, for example, in a series connection. In this case, each drive forwards the data after processing only to the next drive (classic setpoint cascade).

Brief start-up guide for SIMOREG 6RA70 converters

	$\begin{aligned} & \text { G-SST2 } \\ & \text { RS485 } \end{aligned}$	$\begin{gathered} \text { G-SST3 } \\ \text { RS485 } \end{gathered}$
Select peer-to-peer protocol	P790 = 5	P800 $=5$
Baud rate	P793 = 1 to 13 corresponding to 300 to 187500 baud	P803 = 1 to 13 corresponding to 300 to 187500 baud
No. of process data (PZD No.) (applies to Receive and Send)	$\mathrm{P} 791=1$ to 5	P801 $=1$ to 5
PZD assignment for control word and setpoints (received process data)	All received process data are taken to connectors and must be wired up as required	All received process data are taken to connectors and must be wired up as required
No. of PKW	No parameters can be transferred	No parameters can be transferred
PZD assignment for actual values (transmitted process data)	Selection of transmitted values via P794 (indices .01 to .05)	Selection of transmitted values via P804 (indices 01 to .05)
Telegram failure time	P797 $=0.000$ to 65.000s	P807 $=0.000$ to 65.000s
Bus termination	P795 = 0: Bus term. OFF 1: Bus term. ON (depending on type of link)	P805 = 0: Bus term. OFF 1: Bus term. ON (depending on type of link)
2-wire / 4-wire transmission via RS485 interface	"4-wire" operation is automatically selected	"4-wire" operation is automatically selected
Cable	Terminal assignments, see Section 6.8 or Sheet G173 in Section 8	Terminal assignments, see Section 6.8 or Sheet G174 in Section 8

Examples of peer-to-peer links

Drive 1
(Activate bus terminating resistors when a data feedback loop is used)

Drive 2
(Bus terminating resistors activated)

Drive 3
(Bus terminating resistors activated)

Drive n
$\mathrm{n}=$ any number (Bus terminating resistors activated)

Data feedback loop 3

Peer link type "Bus connection"
Up to 31 drives receive identical setpoints from one drive. The setpoint source drive is selected with "Enable transmit" $=1$. "Enable transmit" $=0$ must be preset for all other drives.

1) The interface cable sheilds must be connected directly on the converter with the lowest possible impedance to converter or or cubicle earth (e.g. via a clamp).
2) Twisted cable, e.g. LIYCY 2×0.5 sqmm; with longer cables, an equipotential bonding conductor must be used to ensure that the difference in frame potentials between nodes stays below 7 V .

9.14 Thermal overload protection of DC motor (12 t monitoring of motor)

The $12 t$ monitoring function is parameterized in parameters P100, P113 and P114. If these parameters are adapted correctly, the motor is protected against overloading (not all-round motor protection). This monitoring function is disabled in the factory setting of the parameters ($\mathrm{P} 820 \mathrm{i} 006=37$).

Adaptation

P114: A time constant $T_{\text {motor }}$ in minutes for the $12 t$ monitoring function must be entered in parameter P114.

P113, P100: The permissible continuous current of the motor must be defined by parameters P100 and P113.
The permissible continuous current is the product of the calculation P113 * P100.

Warning characteristic / switch-off characteristic

If the motor is loaded constantly, for example, with about 125% of the permissible continuous motor current, then alarm A037 is triggered after a time constant (P114) has elapsed. If the load is not reduced, then the drive is shut down when the switch-off characteristic is reached and fault message F037 displayed.
Warning/switch-off times for other loads can be calculated from the diagram.

Alarm message triggering by motor $\mathbf{I 2 t}$ monitoring function

This diagram shows how long it takes for an alarm message to be triggered if, after a long preloading period (>5 * T_th), a new constant load value is injected abruptly.
T_th $=$ P114 .. thermal time constant of motor

Fault message triggering by motor $\mathrm{I}^{\mathbf{2} t}$ monitoring function

This diagram shows how long it takes for a fault message to be triggered if, after a long preloading period (>5 * T_th), a new constant load value is injected abruptly.
T_th = P114 .. thermal time constant of motor

CAUTION

When the electronics power supply fails for longer than 2 s , the calculated motor preloading value is lost. When the supply is reconnected, the system assumes that the connected motor has not been loaded at all!
If the electronics power supply fails and the converter is switched on again within 2 s (e.g. via the "Automatic restart" function), then the temperature calculation is based on the last calculated 12 t value of the motor..

The $\mathrm{I}^{2 \mathrm{t}}$ monitoring function reproduces only a rough thermal image of the motor, i.e. it does not provide all-round motor protection.

If P114 ($\mathrm{T}_{\text {motor }}$) is set to zero, then the I2t monitoring function is deactivated.

Calculation of thermal equivalent time constant (P114)

It must be noted that the thermal equivalent time constant is dependent on the maximum overcurrent.
Thermal equivalent time constant of $1 \mathrm{G} .5 / 1 \mathrm{H} .5 \mathrm{DC}$ motors according to Catalog DA12.

$I_{\text {rated }} .$. Rated motor armature current (=P100)
I ... Maximum overcurrent at which motor is operated

NOTES

- When other motor types are connected, the manufacturer's specifications apply.
- If you are using DC motors 1G.5 / 1H. 5 as specified in catalog DA12, parameter P113 must be set to 1.00

9.15 Speed-dependent current limitation

The speed-dependent current limitation protects the commutator and brushes of the DC motor at high speeds.
The necessary parameter settings (P 104 to P 107) can be taken from the motor rating plate.
The maximum operating speed of the motor (P 108) must also be entered. This must be the same as the actual maximum operating speed.

The actual maximum operating speed is determined by:

- P143 with actual speed supplied by a pulse encoder,
- P741 with actual speed supplied by an analog tacho,
- P115 in operation without a tachometer.

Furthermore, the speed-dependent current limitation must be activated by setting P109 = 1!

CAUTION

Setting the speed-dependent current limitation function to the wrong value may cause excessive loading of the commutator and brushes, resulting in a drastic reduction in brush life!

9.15.1 Setting the speed-dependent current limitation for motors with commutation

 transitionMotor rating plate data
$\mathrm{n}_{\mathrm{E}}=$ Point at which speed-dependent current limitation intervenes

- Permissible limit values
n_{3} = Maximum operating speed
$\mathrm{l}_{10}=1.4 * \mathrm{l}_{1}$
$\mathrm{I}_{20}=1.2 * \mathrm{I}_{2}$
The current limitation curve is determined by $\mathrm{n}_{1}, \mathrm{I}_{10}, \mathrm{n}_{2}$ and I_{20}.
Parameters:
P104 = n_{1}
P105 $=l_{1}$ (used by unit to calculate l_{10})
P106 $=\mathrm{n}_{2}$
$\mathrm{P} 107=\mathrm{I}_{2}$ (used by unit to calculate I_{20})
P108 $=\mathrm{n}_{3}$ (defines speed normalization)
P109 = 0 ... speed-dependent current limitation deactivated
1 ... speed-dependent current limitation activated
Example of a motor rating plate:

S H U N T -MOT.NRE $\quad 1 \mathrm{GG5162-0GG4.-6HU7-Z}$				
V	$\mathrm{n}_{1} 1 / \mathrm{MIN} \quad \mathrm{n}_{2}$		$1 . \quad A$	KW
46-380	50-1490		78.0-78.5	0.880-26.0
380			REG. 80.0/58.0	26.0 / 19.0
ERR.	V	A	THYR.: B6C LV=	0MH 380V/ 50HZ
SEP.	310	2.85	IP 23	IM B3
	77/51	0.87/0.60		I.CL.F
Z: A11 G18 K0	1 K 20			
SEP. VENTIL.				

9.15.2 Setting of speed-dependent current limitation for motors without commutation transition

- Permissible limit values
$n_{3}=$ Maximum operating speed
$I_{20}=1.2 * I_{2}$

Example of a motor rating plate:

9.16 Automatic restart

The "Automatic restart" function is controlled by the setting in parameter P086:

```
P086 = 0 No automatic restart
P086 = 0.1s to 2.0s "Automatic restart" in seconds
```

The purpose of the "Automatic restart" function is to prevent the SIMOREG CM from switching immediately to the "FAULT" state, but allow it to return to the "Run" state after the elimination of certain fault conditions such as brief failures in supply voltages, brief undervoltage or overvoltage, very high or very low line frequencies or in the case of an excessive deviation between the field current actual value and setpoint.

The appropriate fault message is output only if one of the following fault conditions prevails continuously for longer than the "Automatic restart time" set in P086 (maximum time delay within which fault condition must be eliminated for "Automatic restart"):
F001 Failure of electronics supply in operation (5U1, 5W1)
F004 Armature supply phase failure (1U1, 1V1, 1W1)
F005 Fault in field circuit (field supply phase failure (3U1, 3W1) or
$\left.I_{\text {field act }}<50 \% I_{\text {field set }}\right)$

F006 Undervoltage (armature or field supply)
F007 Overvoltage (armature or field supply)
F008 Line frequency (armature or field supply) less than 45 Hz
F009 Line frequency (armature or field supply) greater than 65 Hz
When one of the fault conditions associated with faults F003 to F006, F008, F009 is active and the automatic restart time delay is still running, the converter dwells in operating state 04.0 (with armature line voltage faults) or 05.0 (with field line voltage or field current faults).

Failures in the electronics supply lasting up to several 100 ms are bridged by the back-up power supply. With longer failures, the failure time is measured by measuring the voltage across one "discharge capacitor" and, if the failure has not lasted as long as the "Restart time" set in P086, the converter restarted again immediately provided that the corresponding control signals (e.g. "Switchon", "Operating enable") are still applied.

When the "Switch-on", "Shutdown" and "Crawl" functions are edge-triggered (see P445 = 1), the converter cannot be restarted automatically after the power supply backup has been used.

9.17 Field reversal (also refer to Section 8 "Function diagrams" Sheet G200)

By reversing the current polarity in the field winding of the DC motor (i.e. through field reversal), a drive which incorporates a SIMOREG 6RA70 single-quadrant converter (with only a single armature conduction direction) will be able to operate in other quadrants of the speed/torque characteristic (reversal of rotational direction and braking). Two contactors in the field circuit $(1,2)$ are required to reverse the polarity of the field voltage.

The signal level of binectors B0260 ("Close field contactor 1") and B0261 ("Close field contactor 2") are defined in an internal operating sequence involving functions "Direction of rotation reversal using field reversal" and "Braking with field reversal". These binectors are used to control the two reversing contactors for changing the field polarity. A snubber circuit must be installed in the field circuit.

Level of B0260:
0 No contactor control
1 Control for one contactor for switching through positive field direction.
Level of B0261: 0 No contactor control
1 Control for one contactor for switching through negative field direction.

9.17.1 Direction of rotation reversal using field reversal

This function is controlled by the binector selected in P580.
The "Direction of rotation reversal using field reversal" has a switch function and defines the field direction and, if a positive speed setpoint is applied, also the direction of rotation.

Level: 0
Positive field direction is selected
("Close field contactor 1" (B0260) = 1, "Close field contactor 2" (B0261) = 0)

1
Negative field direction is selected
("Close field contactor 1" (B0260) $=0$, " Close field contactor 2" (B0261) = 1)
Changing the logic level of the binector controlling the "Direction of rotation reversal using field reversal" function initiates an internal sequence which brakes the motor and accelerates it in the opposite direction.

While the field reversal process is in progress, the logic level of the controlling binector is irrelevant, i.e. once the function has commenced, it is completed without interruption. Only on completion is another check made to establish whether the logic level of the controlling binector actually coincides with the currently selected field direction.

Note:
Only positive speed setpoints are meaningful.

Sequence of control operations when "Direction of rotation reversal using field reversal" is applied:

1. Drive is rotating in rotational direction 1 (or is at standstill)
2. Logic level of binector controlling the "Direction of rotation reversal using field reversal" changes
3. Internal field reversal process takes place (only if a braking operation has not already been activated by pushbutton function "Braking with field reversal"):
3.1 Wait for armature current $\mathrm{I}_{\mathrm{A}}=0$ and then armature pulse disable
(drive then dwells in operating state ≥ 01.4)
3.2 Disable field firing pulses (also causes K0268=0)
3.3 Wait for $I_{\text {field }}(K 0265)$ < $I_{\text {field min }}$ (P394)
3.4 Waiting time according to P092.i001 (0.0 to 10.0 s, factory setting 3.0 s)
3.5 Open current field contactor (B0260 = 0 or B0261 = 0)
3.6 Waiting time according to P092.i002 (0,0 to $10,0 \mathrm{~s}$, factory setting $0,2 \mathrm{~s}$)
3.7 Close new field contactor (B0261 = 1 or B0260 = 1)
3.8 Reverse polarity of actual speed value (except when P083 = 3 ... EMF as actual speed value)
3.9 Waiting time according to P092.i003 (0,0 to $10,0 \mathrm{~s}$, factory setting $0,1 \mathrm{~s}$)
3.10 Enable field firing pulses
3.11 Wait for $I_{\text {field }}(\mathrm{K} 0265)>I_{\text {field set }}(\mathrm{K} 0268)^{*} \mathrm{P} 398 / 100 \%$
3.12 Waiting time according to P092.i004 (0,0 to $10,0 \mathrm{~s}$, factory setting $3,0 \mathrm{~s}$)
3.13 Enable armature firing pulses
(It is possible to exit operating mode o1.4)
4. Drive brakes and then accelerates in rotational direction 2 (or remains at standstill)

Note:
If the actual speed value polarity is reversed internally as a result of field reversal, P083 (but not P083=3) is supplied with inverted signal values (see Section 8, Sheet G152). When the ramp-function generator is in use, it is advisable to set P228=0 (no speed controller setpoint filtering). Otherwise, initial braking along the current limit may occur in connection with the actual speed value polarity reversal and setting of the ramp-function generator output (to (reversed) actual speed value (or to value set in P639) in operating state o1.4).

9.17.2 Braking with field reversal

This function is controlled by the binector selected in P581.
"Braking with field reversal" has a pushbutton function.
If the logic level of the binector controlling the "Braking with field reversal" function $=1$ (for at least 30 ms) and the converter is in an operating state ≤ 05 (line contactor closed), an internal process is activated for braking the drive down to $\mathrm{n}<\mathrm{n}_{\min }$ The original field direction is then selected.
The motor cannot accelerate again in the original rotational direction until the braking command has been cancelled (binector level = 0) and an acknowledgement given with "Shutdown" and "Switch-on".

Sequence of control operations when "Braking with field reversal" is applied:

1. Drive rotates in direction 1

2. The binector controlling the "Braking with field reversal" function $=1$ for more than 30 ms
3. Internal field reversal process takes place (only if the line contactor is closed (in operating state of ≤ 05) and the drive is not already in braking mode. Braking is detected by a negative internal actual speed (resulting from reversal of the real actual speed polarity in the negative field direction):
3.1 Wait for armature current $\mathrm{I}_{\mathrm{A}}=0$ and then armature pulse disable (drive then dwells in operating state ≥ 01.4)
3.2 Disable field firing pulses (also causes K0268=0)
3.3 Wait for Ifield (K0265) < Ifield min (P394)
3.4 Waiting time according to P092.i001 (0,0 to $10,0 \mathrm{~s}$, factory setting $3,0 \mathrm{~s}$)
3.5 Open current field contactor (B0260 = 0 or B0261 = 0)
3.6 Waiting time according to P092.i002 (0,0 to $10,0 \mathrm{~s}$, factory setting $0,2 \mathrm{~s}$)
3.7 Close new field contactor (B0261 = 1 or B0260 = 1)
3.8 Reverse polarity of actual speed value (except when P083 $=3 \ldots$ EMF as actual speed value)
3.9 Waiting time according to P092.i003 (0,0 to $10,0 \mathrm{~s}$, factory setting $0,1 \mathrm{~s}$)
3.10 Enable field firing pulses
3.11 Wait for $I_{\text {field }}(K 0265)>I_{\text {field set }}(K 0268) * P 398 / 100 \%$
3.12 Waiting time according to P092.i004 (0,0 to $10,0 \mathrm{~s}$, factory setting $3,0 \mathrm{~s}$)
3.13 Enable armature firing pulses (It is possible to exit operating mode o1.4)
4. Internal sequence for braking the drive:
4.1 Internal setting of $n_{\text {set }}=0$ at the ramp function generator input, the drive brakes
4.2 Wait for $\mathrm{n}<\mathrm{n}_{\text {min }}$ (P370)
4.3 Wait for armature current $\mathrm{I}_{\mathrm{A}}=0$ and thus armature pulse disable (drive then switches to operating state o7.2)
4.4 Wait for cancellation of braking command through binector level $=0$ (as long as level $=1$, drive is held in operating state o7.2)
5. Internal sequence for switching over to original field direction (only if the current field direction is not the same as the direction requested by the "Direction of rotation reversal using field reversal" function):
5.1 Wait for armature current $\mathrm{I}_{\mathrm{A}}=0$ and then armature pulse disable (drive then dwells in operating state ≥ 01.4)
5.2 Disable field firing pulses (also causes K0268=0)
5.3 Wait for $I_{\text {field }}(K 0265)<I_{\text {field }}$ min (P394)
5.4 Waiting time according to P092.i001 (0,0 to $10,0 \mathrm{~s}$, factory setting $3,0 \mathrm{~s}$)
5.5 Open current field contactor (B0260 = 0 or B0261 = 0)
5.6 Waiting time according to P092.i002 (0,0 to $10,0 \mathrm{~s}$, factory setting $0,2 \mathrm{~s}$)
5.7 Close new field contactor (B0261 = 1 or $\mathrm{B} 0260=1$)
5.8 Reverse polarity of actual speed value (except when P083 = 3 ... EMF as actual speed value)
5.9 Waiting time according to P092.i003 (0,0 to $10,0 \mathrm{~s}$, factory setting $0,1 \mathrm{~s}$)
5.10 Enable field firing pulses

5.12 Waiting time according to P092.i004 (0,0 to $10,0 \mathrm{~s}$, factory setting $3,0 \mathrm{~s}$)
5.13 Armature firing pulses are possible again
6. Drive is in operating state o7.2

Drive can be accelerated in original rotational direction after acknowledgement by an external "Shutdown" and "Switch-on" command.

Please also read the Note at the end of the section 9.17.1.

Delay times for field reversal (parameter P092)

Bild 9.17.1

9.18 Status description of some bits of status word ZSW1

9.19 12-pulse series connection

This function is facilitated by the parameter setting P079 = 2 and is available in SW 2.1 and later.
Two SIMOREG units with identical power are connected in series on the output side and supply a DC motor.
These two units, which are parameterized as a 12-pulse series master and a 12-pulse series slave, are coupled via the paralleling interface and fed with electrically isolated line voltages of identical magnitude with a 30 degree phase displacement.
The power sections of both converters must be supplied with a clockwise phase sequence. The threephase system connected on the slave device must lag the system on the master device by 30 degrees.
Balancing resistors must be connected in parallel with the two series-connected single converters. This is essential to ensure that with low armature currents, or if the armature current $=0$, the total armature voltage is symmetrically divided between the two individual units. It also enables the armature voltage and the EMF to be correctly calculated internally.
The parameter setting P079 = 2 has the following effect:

- The firing pulses of the 12-pulse series slave device are output 30 degrees later than the firing pulses of the master device. Long pulses (pulse duration up to approx. 0.1 ms before next pulse) are output every 30 degrees on the armature gating unit of both devices, to enable current to flow if the armature current pulsates.
- Precontrol for the armature current controller is switched over from 6-pulse operation to 12pulse series connection operation. The EMF input value for precontrol (K0122, selection with P162, P193) must contain half the "total EMF" of the motor.
- P110 and P111 only have an effect on half the set total motor value. The resistive + inductive total armature voltage drop is automatically halved for the internal EMF calculation (K0123, K0124, K0287). If the total armature voltage is symmetrically divided between the two individual units, then half the total EMF of the motor is calculated. Since the EMF setpoint for field weakening control (K0289) is also calculated with half the armature circuit resistance P110/2 (K0289 = P101 - P100*P110 / 2), half the actual rated armature voltage of the motor must be parameterized at P101.

The slave device must be disconnected from the line and bridged on the output side in order to perform an optimization run for the current controller and precontrol (P051 = 25) on the 12-pulse series master device. U800 $=0$ must be set on the master device for the duration of the current controller and precontrol optimization run. The total armature circuit values P110 and P111 for the motor are set correctly after the current controller and precontrol have been optimized. P156 is also correct. Only the automatically calculated current controller P gain P155 still needs to be "manually" halved. In addition, P826.01 to 06 must be set to 0 .

For details of the 12-pulse series connection, see the description of applications entitled "12-pulse operation" (see Section 17).

10 Faults and alarms

When a fault or alarm message is activated, it is displayed both on the simple operator control panel (PMU) and on the OP1S user-friendly operator control panel (see also Section 7.2, Operator control panels).
An alarm stops being displayed immediately the cause of the alarm signal has been eliminated. A fault message must be cancelled by pressing the P key on the PMU or Reset key on the OP1S (panel must be in "Operational display" status) as soon as the cause has been eliminated.

NOTE

Setting parameters when fault or alarm message is active

On the PMU:
You can shift an active fault message or alarm "to the background" by pressing the P key and Higher key simultaneously on the PMU.
If you do not press any key on the PMU within a 30 s period, the fault message or active alarm in the background is automatically displayed again.
You can fetch a message back to the foreground earlier by pressing the P key and Lower key simultaneously on the PMU when the parameter number level is selected.

On the OP1S:

You can set parameters normally even if a fault message or alarm is active.

10.1 Fault messages

10.1.1 General information about faults

Fault message display:
On the PMU: F (fault) and a three-digit number. The red LED (Fault) lights up.
On the OP1S: On bottom line of operational display: The red LED (Fault) lights up.
Only one current fault message can be displayed at a time, i.e. other simultaneously active faults are ignored.

Many fault messages (see List of Fault Messages) can only be active in certain operating states.

The system responses to a fault are as follows:

- The armature current is reduced, the firing pulses are disabled and the SIMOREG unit switches to operating state 011.0 (fault)
- Fault message is displayed on the operator panel (PMU, OP1S)
- B0106 (= status word 1, bit 3) is set and B0107 cancelled (see also alarm bits for special faults such as undervoltage, overtemperature, external faults, etc.)
- The following parameters are refreshed:
r047 fault diagnostic memory
(The displayed values are decimal. For bit-serial evaluation, the values must be converted from decimal to binary notation, e.g. to be able to determine the relevant terminal in the case of F018)
r049 Fault time
r947 fault memory, see also r947 in Section 11, Parameter List
r949 fault value
(The displayed values are decimal. For bit-serial evaluation, the values must be converted from decimal to binary notation, e.g. to be able to determine the relevant terminal in the case of F018)
P952 number of faults

A text is also displayed for each individual fault in parameter r951 (fault text list). These texts can, for example, be displayed on the OP1S.

If a fault is not acknowledged before the electronics supply voltage is switched off, then fault message F040 will be displayed when the supply is next switched on.

10.1.2 List of fault messages

NOTE

Further information about the causes of fault messages
When a fault message is activated, values providing more information about the fault cause are stored in parameter r047. Where the values can be interpreted by the user, they are included in the following list of fault messages.
The value in r047.001 is referred to as the "fault value". This is also stored in r949 which also contains the fault values belonging to older fault messages. The values in r047 are overwritten when the next fault message occurs.
Values for r047 which are not included in the list below can help a SIEMENS specialist to locate a fault cause. For this reason, all indices of parameter r047 should be read out whenever a fault message occurs, even if the meaning of the individual indices of parameter r047 is not specified for every fault message listed below.

Please note: Before you contact SIEMENS with any query regarding a fault message, please make a note of the contents of all indices of parameter r047.

Fault	Description		
No.	Cause as a function of fault value	Further information (r047.002 to r047.016)	
	(r047.001, r949.001 or r949.009 with acknowledged error)		

10.1.2.1 Supply faults

F001 \quad Failure of electronics power supply
(active in all operating states)
Failure of the electronics supply voltage (terminals $5 \mathrm{U} 1,5 \mathrm{~W} 1,5 \mathrm{~N} 1$) in "RUN" state for longer than the "restart" time set in parameter P086 or the electronics are operating on undervoltage.

Possible fault causes:

- Line contactor has opened in "RUN" state
- Brief supply failure
- Supply voltage too low

Fault value:		r047 Index 002 to 016:
1	Electronics supply voltage in "RUN" has been interrupted for longer than setting in P086	i002 Duration of actual supply failure in $1 / 10$ seconds
2	Supply failure prewarning responds periodically	-
3	Supply failure prewarning is active for longer than 1.28 s	-

10.1.2.2 External fault

F003 \quad External fault

(active in operating states of ≤ 04)
This fault message is triggered by the signal at term. 124/125.
Fault value:
1 When U833= 1: LOW signal at term. 124/125
When U833= 2: HIGH signal at term. 124/125
4 When U833= 1: LOW signal at term. 124/125 longer than set in P086 (if this is >0)
When U833 = 2: HIGH signal at term. 124/125 longer than set in P086 (if this is >0)

10.1.2.3 Supply faults

F004 \quad Phase failure in armature supply
(active in operating states of ≤ 04)
The supply voltage RMS value, calculated from the area of each supply half-wave (rectified average value * peak factor), must be greater than the response value for phase failure monitoring

$$
P 078.001 * \frac{P 353}{100 \%}
$$

The distance between two identical supply zero passages of a phase must not exceed 450 degrees.
If one of these two conditions remains unfulfilled for longer than the "restart time" set in P086, a fault message is activated. After switch-on, the converter waits in operating states 04 and 05 together for a period not exceeding the setting in P089 for voltage to appear at the power terminals (and for field current) before activating the fault message.

Possible fault causes:

- Parameter P353 is incorrectly set
- Armature phase has failed
- Line contactor opened in operation
- Fuse has blown on three-phase side in armature circuit
- Fuse has blown in power section
- Interruption in a thyristor firing pulse cable (auxiliary cathodes at connectors $\mathrm{X} 12, \mathrm{X} 14, \mathrm{X} 16$ are voltage carriers).

Fault value:
1 Voltage failure has occurred in armature supply (1U1, 1V1, 1W1) (when P086=0)
2 Delay time set in parameter P089 has expired in operating state o4
3 Fuse has blown in power section
$4 \quad$ Voltage failure has lasted longer than period set in P086 (if this is >0)
6 The "Main contactor checkback" (control word 2 bit 31) [see also P691] did not switch to "1" before the time set in P095 ran out, or switched back to " 0 " during operation

Fault No.	Cause as a function of fault value Description (r047.001, r949.001 or r949.009 with acknowledged error) \quad Further information (r047.002 to r047.016)
F005	Fault in the field circuit (active in operating states of ≤ 05) The line voltage RMS value calculated from the area of each network half-wave (rectification average value * peak factor) must be greater than the response value for phase failure monitoring $P 078.002 * \frac{P 353}{100 \%}$ The distance between two identical network zero passages of the voltage for the field converter must not exceed 450 degrees. The actual field current K0265 equals < 50% of the required field current setpoint K0268 for more than 500 ms . This monitoring function is effective only if the field current setpoint corresponds to $>2 \%$ of the converter rated field current. [In SW 1.9 and later, the percentage (50\%) and time (500ms) can be altered in P396 and P397 respectively] If one of the fault conditions described persists in operation (or ≤ 04) for longer than the "restart" time set in P086, the fault message is output. After the converter is switched on, it waits in operating state o5 for a period not exceeding the setting in P089 for the field supply voltage or sufficiently high field current before this fault message is activated. Monitoring for timeout for during field reduction or build-up is performed after field reversal has been initiated (fault value 6 and 7). Possible fault causes - Threshold for phase failure (P353) set incorrectly - Undervoltage / overvoltage threshold (P351, P352) set incorrectly - Field phase failed - Line contactor opened during operation - Fuse blown in the field circuit - Field current controller and/or field current precontrol not optimized or badly optimized (check P112, P253 to P256; possibly execute current controller optimization) - Check P396 (field current monitoring threshold) and P397 (field current monitoring time) - If the fault value is 6: Offset fault in the actual field current value sensing, relevant parameter: P825.i01-i03 (Offset depends on P076.i02) or P394, P395 (Threshold and hysteresis for message I_field < I_field_min) must be checked - If the fault value is 7: Circuit for the "new" field direction is interrupted (e.g. because the contactor for "new" field direction does not pick up), P398, P399 (Threshold and hysteresis for message I_field < I_field_x) must be checked Fault value:
	1 Voltage failure occurred in the field supply (terminals 3U1 and 3W1) (if P086 = 0) 2 Delay time according to P089 elapsed in state 05.1. Wait until the voltage and frequency at the field power section are within the tolerance range (P351, P352, P353, P363, P364). 3 Delay time according to P089 elapsed in state 05.0 Wait until $\mathrm{I}_{\text {Field }}$ act $(\mathrm{K} 0265)>50 \%$ of the instantaneous field current setpoint K0268 [as of SW 1.9, can be altered by means of P396] and until "I Field extern $>$ I f min" (see P265) 4 After P086>0 has elapsed (time for automatic restart) in operating state ≤ 04 : Voltage failure in the field supply or ${ }^{\prime}$ Field act (K0265) < 50\% I ${ }_{\text {Field set }}$ (K0268) for longer than 500 ms [as of SW 1.9, can be altered by means of P396 or P397] or "I Field extern > I f min" (see P265) 5 When P086 $=0$ (no automatic restart) in operating state ≤ 04 : ${ }^{\prime}$ Field act (K0265) < 50\% I Field set (K0268) for longer than 500 ms [as of SW 1.9, can be altered by means of P396 or P397] or "I Field extern > I f min" (see P265) 6 If field reduction before field reversal, I_field \leq I_field_min (P394) is not reached within 30 s 7 If field build-up after field reversal, I_field > I_field_x (P398) is not reached within 30 s

	Description	
No.	Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error)	Further information (r047.002 to r047.016)
F006	Undervoltage (active in operating states of ≤ 04) The voltage across terminals $1 \mathrm{U} 1,1 \mathrm{~V} 1$ or 1 W 1 and $3 \mathrm{U} 1,3 \mathrm{~W} 1$ time" set at P086 and the delay time according to P361 has expir Response threshold for armature supply voltage: $P 078.001 *\left(1+\frac{P 351}{100 \%}\right)$ Response threshold for field supply voltage: $P 078.002 *\left(1+\frac{P 351}{100 \%}\right)$ Possible fault causes - Line undervoltage - Monitoring values set too sensitively or incorrectly (P351, Fault value:	as lower than the response threshold for longer than the "restart ed. 78) r047 Index 002 to 016:
	1 Undervoltage has occurred (when P086=0)	i002 Number of phase that has activated fault message $0 . .$. Phase UV 1....Phase VW 2....Phase WU 3....Phase field i003 Incorrect voltage value (normalized to 16384)
	4 Undervoltage persists for longer than time set in parameter P086 (if this is set to >0)	-
F007	Overvoltage (active in operating states of ≤ 04) The voltage across terminals $1 \mathrm{U} 1,1 \mathrm{~V} 1$ or 1 W 1 and $3 \mathrm{U} 1,3 \mathrm{~W} 1$ time" set at P086 and the delay time according to P362 has expir Response threshold for armature supply voltage: $P 078.001 *\left(1+\frac{P 352}{100 \%}\right)$ Response threshold for field supply voltage: $P 078.002 *\left(1+\frac{P 352}{100 \%}\right)$ Possible fault causes - Line overvoltage - Monitoring values set too sensitively or incorrectly (P352,	as higher than the response threshold for longer than the "restart ed. 78)
	NOTICE This monitoring function is deactivated in the delivery state. It can be activated via parameter P820.	
	Fault value:	r047 Index 002 to 016:
	1 Overvoltage has occurred	002 Number of phase that has activated fault message 0Phase UV 1Phase VW 2....Phase WU 3....Phase field i003 Incorrect voltage value (normalized to 16384)
	4 Undervoltage persists for longer than time set in parameter P086 (if this is >0)	-

10.1.2.4 Interface error

F011	Telegram failure at GSST1 when $\underline{P 780=2}$: USS telegram failure at G-SST1 (active from the first receipt of a valid protocol in all operating states) After the receipt of the first valid protocol, no further telegrams have been received within the time period set in parameter P787. Possible fault causes - Cable break - Error in USS master
F012	Telegram failure at GSST2 when $\underline{P 790=2}$: USS telegram failure at G-SST2 (active from the first receipt of a valid protocol in all operating states) After the receipt of the first valid protocol, no further telegrams have been received within the time period set in parameter P797. Possible fault causes - Cable break - Error in USS master when $\underline{P 790=4 \text { or 5: }}$ Peer-to-peer telegram failure at G-SST2 (active in operating states of ≤ 06) After the receipt of the first valid protocol, no further telegrams have been received within the time period set in parameter P797. Possible fault causes - Interruption in connecting cable - EMC interference on connecting cable - P797 is set too low

Fault		iption
No.	Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error)	Further information (r047.002 to r047.016)
F018	Short circuit or overloading of binary outputs (active in all operating states) Possible fault causes - Short circuit or overload at terminals $46,48,50$ or 52 and 26 or 34 Fault value: r047 Index 002 to 016:	
	1 Short circuit or overload at binary outputs	i002 Bit $8=1$: Overload at terminal 46 Bit $9=1$: \quad Overload at terminal 48 Bit $10=1$: Overload at terminal 50 Bit $11=1$: Overload at terminal 52 Bit $12=1: \quad$ Overload at terminal 26 (15 V output) Bit $13=1$: Overload at terminal 34,44 and/or 210 (24 V output)
	NOTICE This monitoring function is deactivated in the delivery state. It	be activated via parameter P820.

10.1.2.5 External faults

F019	Fault message from free function block FB286 (active in all operating states) Fault value:
	1 the binector wired via parameter U100 Index. 005 is in the state log."1" 2 the binector wired via parameter U100 Index. 006 is in the state log."1" 3 the binector wired via parameter U100 Index. 007 is in the state log."1" 4 the binector wired via parameter U100 Index. 008 is in the state log."1"
F020	Fault message from free function block FB287 (active in all operating states) Fault value:
	1 the binector wired via parameter U101 Index. 005 is in the state log."1" 2 the binector wired via parameter U101 Index. 006 is in the state log."1" 3 the binector wired via parameter U101 Index. 007 is in the state log."1" 4 the binector wired via parameter U101 Index. 008 is in the state log."1"
F021	External fault 1 (active in all operating states) Bit 15 in control word 1 was in the log. "0" state for longer than the time set in P360 index 001
F022	External fault 2 (active in all operating states) Bit 26 in control word 2 was in the log. "0" state for longer than the time set in P360 index 002
F023	Fault message from free function block FB2 (active in all operating states) Fault value:
	1 the binector wired via parameter U100 Index. 001 is in the state log."1" 2 the binector wired via parameter U100 Index.002 is in the state log."1" 3 the binector wired via parameter U100 Index.003 is in the state log."1" 4 the binector wired via parameter U100 Index. 004 is in the state log."1"
F024	Fault message from free function block FB3 (active in all operating states) Fault value:
	1 the binector wired via parameter U101 Index. 001 is in the state log."1" 2 the binector wired via parameter U101 Index.002 is in the state log."1" 3 the binector wired via parameter U101 Index.003 is in the state log."1" 4 the binector wired via parameter U101 Index. 004 is in the state log." $1 "$

Fault	Description		
No.	Cause as a function of fault value	Further information (r047.002 to r047.016)	
	(r047.001, r949.001 or r949.009 with acknowledged error)		

10.1.2.6 Fault messages from motor sensors

F025	Brush length too short (active in operating states of ≤ 03) When parameter P495=2 (binary sensing of brush length), fault message at log."0" signal (longer than 10s) at terminal 211 Possible fault causes - Encoder for brush length has responded - Open circuit in encoder cable
F026	Bearings in bad condition (active in operating states of ≤ 06) When parameter P496=2 (bearing condition sensing) fault message at log. " 1 " signal (longer than 2 s) at terminal 212 Possible fault causes - Encoder for bearing condition has responded
F027	Air-flow monitoring of motor fan (active in operating states of <06) When parameter P497=2 (air-flow monitoring), fault message at log "0" signal (longer than 40s) at terminal 213 Possible fault causes - Encoder for fan monitoring has responded - Open circuit in encoder cable
F028	Motor overtemperature (active in operating states of ≤ 06) When parameter P498=2 (thermostat connected), fault message at log. " 0 " signal (longer than 10s) at terminal 214 Possible fault causes - Thermostat for monitoring motor temperature has responded - Open circuit in encoder cable
F029	Motor overtemperature (active in all operating states) Select via P493=2 or 3 (temperature sensor at terminals 22 / 23) or P494=2 or 3 (temperature sensor at terminals 204 / 205) When parameter P490.01=1 (KTY84 at terminals $22 / 23$) or P490.02=1 (KTY84 at terminals 204 / 205): The fault message is activated if the motor temperature reaches or exceeds the value set in parameter P492. When parameter P490.01 $=2,3,4$ or 5 (PTC thermistor at terminals $22 / 23$) or $\mathrm{P} 490.02=2,3,4$ or 5 (PTC thermistor at terminals 204/ 205): The fault message is activated if the motor temperature reaches or exceeds the response value of the selected PTC thermistor. Fault value:
	1 Fault activation through temperature sensor at terminals 22 / 23 2 Fault activation through temperature sensor at terminals 204 / 205

Fault	Description		
No.	Cause as a function of fault value		

10.1.2.7 Drive faults

NOTICE

The monitoring functions F031, F035, F036 and F037 are deactivated in the delivery state.
They can be activated via parameter P820.

F030	Commutation failure or overcurrent has occurred or test com (active in all operating states) Possible error causes - Mains voltage dip in regenerative feedback mode - Current control loop not optimized Fault value:	Possible error causes - Mains voltage dip in regenerative feedback mode - Current control loop not optimized
	1 The blocking voltage time area for the commutating thyristor pair was too small	for i001= 1 to 3 and 5, i002 to i006 are valid for $\mathrm{i} 001=4$, i 002 to i 015 is invalid i002 Delay angle (K0100) in case of error i003 Actual EMF (K0287) in case of error i004 Trigger circuitry diagnostics (K0989) in case of error i005 Actual field current (K0265) in case of error i006 Number of pulses (K0105) in case of error
	2 The current crest curve breaks upwards	
	3 The maximum current value was higher than 250% of the actual rated device current according to r072i002	
	4 A paralleled SIMOREG DC-MASTER has detected a commutation failure or overcurrent	
	5 test command has been issued via U583	
F031	Speed controller monitoring (active in operating states of,-- I, II) The monitor responds when the difference between the connect value difference of speed controller) exceeds the limit set in para Possible fault causes - Open control loop - Controller not optimized - P590 or P591 is not correctly parameterized	rs selected in P590 and P591 (factory setting: Setpoint/actual meter P388 for longer than the time set in parameter P390.

Fault	Des	iption
No.	Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error)	Further information (r047.002 to r047.016)
F032	SIMOREG CCP not ready (active in operating states of <04.0) Possible error causes - No connection or cable break at X172 (G-SST2) - No connection or cable break at X165 (paralleling interface - No connection or cable break at X29_PAR or X30_PAR (ext - Hardware defective in charging circuit of extinguishing capac - Blown fuse in the line-side or motor-side armature circuit - Blown fuse in the precharging circuit for the chopper capacit - Required cooling phase for chopper resistors still in progress - MLFB (order number) data of the SIMOREG CCP (n570, n5 Fault value:	master) in a parallel connection inction-pulse interface) in a parallel connection itors rs 1, n572) are invalid or nonexistent r047 Index 002 to 016:
	1 No voltage at U, V, W terminals of SIMOREG CCP	for i001= 1 to 12, i002 to i006 are valid
	2 Voltage at C-D on CCP does not match voltage at C-D on SIMOREG DC-MASTER	for $\mathrm{i} 001=20$, only i 002 is valid
	3 Surge absorbing capacitors of SIMOREG CCP have not reached setpoint voltage	i002 SIMOREG CCP status (K0574) in case of error
	$4 \quad$ Paralleling interface cable is not connected to SIMOREG CCP assigned to paralleling master	i004 12t value of chopper 2 (K0576) in case of error
	5 No connection between SIMOREG DC-MASTER and SIMOREG CCP via G-SST2 serial interface (r799.i001 is not incremented)	i005 Actual armature voltage (r038) in case of error in 0.1 V for $\mathbf{0 0 0 5}>32767: U_{\text {ARMATURE }}[\mathrm{V}]=(65536-\mathrm{r} 047 \mathrm{iO} 05) / 10$
	6 No connection between parallel SIMOREG CCPs	
	$7 \begin{array}{ll}\text { Contents of technical data memory on SIMOREG CCP } \\ \text { (MLFB, rated values, serial number) invalid }\end{array}$	
	11 I2t value (n575) of voltage chopper 1 is too high (> 100\%)	
	12 I2t value (n576) of voltage chopper 2 is too high (>50\%)	
	20 Chopper capacitors not completely precharged in time set with P089 or the condition in accordance with fault value 5 is satisfied	

10.1.2.8 External faults

F033	Fault message from free function block FB4 (active in all operating states) Fault value:
	1 the binector wired via parameter U102 Index. 001 is in the state log."1" 2 the binector wired via parameter U102 Index. 002 is in the state log."1" 3 the binector wired via parameter U102 Index. 003 is in the state log."1" 4 the binector wired via parameter U102 Index. 004 is in the state log."1"
F034	Fault message from free function block FB5 (active in all operating states) Fault value:
	1 the binector wired via parameter U103 Index. 001 is in the state log."1" 2 the binector wired via parameter U103 Index.002 is in the state log."1" 3 the binector wired via parameter U103 Index.003 is in the state log."1" 4 the binector wired via parameter U103 Index.004 is in the state log."1"

10.1.2.9 Drive faults

F035 \quad Drive is blocked
(active in operating states of,-- I, II)
This monitoring function responds if the following conditions are fulfilled for longer than the period set in parameter P355:

- Positive or negative torque or armature current limit
- The armature current is higher than 1% of the converter rated armature DC current
- The actual speed is less than 0.4% of maximum speed

Possible fault causes

- Drive is blocked

Fault No.	Cause as a function of fault value Description (r047.001, r949.001 or r949.009 with acknowledged error) \quad Further information (r047.002 to r047.016)
F036	No armature current is flowing (active in operating states of --, I, II) This monitoring function responds if the armature firing angle is at the rectifier stability limit for more than 500 ms and the armature current is less than 1% of the converter rated armature DC current. Possible fault causes - Armature circuit is open (e.g. DC fuses have blown, open circuit, etc.) - Rectifier stability limit α_{G} (P150) is incorrectly set - Drive is operating at α_{G} limit (e.g. due to supply undervoltage) - EMF is too high because maximum speed setting is too high, refer to P083, P115, P143, P741) - EMF is too high because field weakening is not selected (refer to P082) - EMF is too high because field current is set too high (refer to P102) - EMF is too high because transition speed for field weakening is set too high (refer to P101) ??
F037	$\mathbf{I}^{\mathbf{2} t}$ motor monitor has responded (active in operating states of,-- I, II) This monitoring function responds when an 12 t value is reached which corresponds to the final temperature at 110% of the rated motor armature current. Possible fault causes - Parameter P114 is incorrectly set - Drive has been operating for too long at $>110 \%$ of rated motor armature current
F038	Overspeed (active in operating states of --, I, II) This fault message is activated if the actual speed value (selected in P595) exceeds the positive (P380) or negative (P381) threshold by 0.5%. Possible fault causes - Lower current limit has been input - Current-controlled operation - P512, P513 are set too low - Tachometer cable contact fault in operation close to maximum speed
F039	Reserved
F040	Electronics supply disconnected in active fault status (active in all operating states) This fault message is activated if the electronics power supply has been disconnected, even though a fault was displayed and not yet acknowledged. Possible fault causes - Not all fault messages have been acknowledged Fault value:
F041	Ambiguous selection of parameter set or ramp-function generator (active in all operating states) - While an optimization run is in progress, the function data set selection must not be changed. Fault F041 is displayed if another, different function data set is selected while an optimization run is being executed. - Check whether ramp-function generator parameter set 1 or 2 or 3 (parameters P303 to P314) is clearly selected. If parameter sets 2 and 3 are selected simultaneously for more than 0.5 s , then fault message F041 is displayed. While the parameter set selection is ambiguous, the system continues to apply the last clearly identified ramp-function generator parameters. Possible fault causes - P676 or P677 (selection of binectors which determine the active function data set in control word 2, bits 16 and 17) is incorrectly set - P637 or P638 (selection of binectors which determine ramp-function generator setting) is incorrectly set Fault value:
	2 The selection of the function data set has been changed during an optimization run 3 Ambiguous selection of ramp-function generator parameter set

Fault No.	Description	
	Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged er	Further information (r047.002 to r047.016)
F042	Tachometer fault (active in operating states of,-- I, II) A check is performed every 20 ms to ensure that $\frac{\text { Actual speed }}{\text { Actual EMF }}$ If the check result is incorrect for 4 times in succession, the fau The following rule applies: 100% actual speed = maximum speed 100% actual EMF $\quad=$ ideal average DC voltage at α The ideal DC voltage average value at $\alpha=0$ is $P 078.001 *$ The monitoring function is effective only if the EMF > a \% of P "a" is a percentage that can be set in parameter P357 (default The monitoring function is effective only if the armature curren Possible fault causes - Open circuit in tachometer or pulse encoder cable. - Tachometer of pulse encoder cable incorrectly connected. - Pulse encoder supply has failed. - Polarity for actual speed value (P743) is incorrectly set. - Armature circuit data (P110 und P111) are incorrectly set - Tachometer or pulse encoder defective - Pulse encoder supply voltage is incorrectly set (P140) - The field polarity is not reversed by the external hardware Fault value:	K0179) is $>+5 \%$ 0287) message is activated. 0 , i.e. when the thyristor bridge is fully gated $\frac{\sqrt{2}}{\pi}$ $8.001 * \frac{3 * \sqrt{2}}{\pi}$ tting 10\%). $>2 \%$ of the converter rated DC current set in r072.002. ecute current controller optimization run). en the field is reversed. r047 Index 002 to 016:
	1 Open circuit in tachometer or pulse encoder cable	i002 Actual speed value (K0179) in case of fault i003 Actual EMF value (K0287) in case of fault
	2 Polarity of tachometer or pulse encoder is incorrect	
F043	EMF too high for braking operation (active in operating states of --, I, II) This fault message is activated if the following 5 conditions are MI or MII): - P272=0 (fault message is parameterized and not alarm + - A parameterized, additional, torque-free interval ($\mathrm{P} 160 \neq 0$ - Parallel drive is ready for engagement of the new torque d - The absolute value of the armature current (K0118, filtere P072.002 - The calculated firing angle (K0101) for the armature curre when P192=1 Possible fault causes - No "speed-dependent field weakening" (P081=0) is param needed for the requested maximum speed Note: In motor operation, it is possible to reach EMF values corr firing angle of $\alpha_{G}=30^{\circ}$ (rectifier stability limit P150) and low - Setpoint EMF for field weakening operation too high (para - Supply voltage dip - EMF controller or field current controller is not optimized, Fault value:	ulfilled when a torque direction reversal is requested (selection of d weakening) as expired ction with P 190) requested in the new torque direction is $>1 \%$ of equested for the new torque direction is >165 degrees or $>$ P151 rized even though operation in the field weakening range is ponding to the peak of the phase-to-phase supply voltage at a rmature currents. ter P101 is set too high) sibly resulting in excessive EMF on power-up. r047 Index 002 to 016:
	Calculated firing angle (armature) before limitation (K0101)	i002 Instantaneously measured actual EMF (K0287) i003 Armature current controller setpoint (K0118)

10.1.2.10 Start-up faults

F050	Optimization run not possible (active in all operating states) A fault has occurred during an optimization run.
NOTE The contents of r047, Index 002 to 016, can provide specialists with more detailed information about fault causes. For this reason, please read out and document all the indices associated with this fault and pass them on when you contact Siemens for help.	

Fault No.	Description		
	Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error)		Further information (r047.002 to r047.016)
	Fault value:		
	1 Armature current is too low when $\alpha=30^{\circ}$ and $E M F=0$. (average armature current $<75 \%$ of I_{A}, motor or $<75 \%$ of I_{A}, rated) Possible cause: - Armature circuit interrupted - High-resistance load - P150 (Alpha G limit) has been set to excessively high value		

2 It was not possible to determine the armature circuit resistance (P110) because the armature current was $\geq 37.5 \%$ of P100 in fewer than 20 of the 150 firing cycles of the measuring phase.
Possible cause:

- Armature current of 37.5% of P100 (1 A , motor) is no longer possible (although a current of 75% of P100 was already flowing, maybe a fuse has blown).

3 Armature current peaks are too small at $\alpha=30^{\circ}$ and EMF $=0$
(armature current peak value $<50 \%$ of I_{A}, motor or $<50 \%$ of $\mathrm{I}_{\mathrm{A}, \text { rated }}$)
Possible cause:

- Armature circuit inductance is too high (field supply from armature terminals)
- P150 (Alpha G limit) has been set to excessively high value

Possible remedy:

- Reduce P100 (IA,motor) while this optimization run is in progress

4 The armature circuit inductance (P111) cannot be determined from the sampled values of the armature current and line voltage of the armature current crest last generated
Possible cause:

- P100 ($\mathrm{I}_{\mathrm{A}, \text { motor }}$) or r072.i002 ($\mathrm{I}_{\mathrm{A}, \text { rated }}$) very much smaller than actual motor rated current of the armature
- $\mathrm{L}_{\mathrm{A}}>327.67 \mathrm{mH}$ (armature circuit inductance too large)
- P100 (IA,motor) very much smaller than r072.i002 (IA,rated)
- Armature circuit short-circuited

5 Offset adjustment of actual field current sensing is not possible
(value detected for P825 is outside permissible value range)
Possible cause:

- Fault in actual field current sensing circuit
(defective A7004 gating board or A7001 electronics board)
$7 \quad$ The field circuit resistance (P112) is indeterminable
(the actual field current does not reach the internally specified setpoint of 95% of P102 as a result of P112 variation)
Possible cause:
- $\mathrm{R}_{\mathrm{A}}>3276.7 \Omega$
- Fault in actual field current sensing circuit (defective gating board or A7001 electronics board)
- The command "Inject standstill field" is applied
- P102 is set too high
- A thyristor in the field bridge is not firing
$8 \quad 80 \%$ of rated EMF (K287=P101 - P100 * P110) cannot be reached within 15s (or maximum of the three set acceleration times)
Possible cause:
- Acceleration time (P303, P307, P311) is set too low
- P101 does not match the set maximum speed (U_{A} at $n_{\max }<P 101$) or setting for P102 is too low
- The command "Ramp-function generator enable"=0 or "Ramp-function generator stop"=1

9 Field current control loop is not stable enough to record field characteristics
(30s after injection of internal field current setpoint, actual field current is deviating by more than (0.39% of P102 + 0.15% of r073.002) from the setpoint)
Possible cause:

- Field current controller or field current precontrol is not optimized or optimized badly (check P112, P253 to P256 or execute a current controller optimization run (P051=25))

10 Field characteristic is not uniform
(i.e. in spite of field current setpoint reduction, the flux values of this measuring point calculated from EMF and actual speed are rising)
Possible cause:

- High armature reaction and sharp load variations during recording of field characteristics
- Field current controller or field current precontrol is not optimized or optimized badly (check P112, P253 to P256 or execute a current controller optimization run (P051=25))

22 With speed controller optimization run:
With an acceleration current equaling 20% or 30% of P 100 (I A, motor) + armature current required for zero speed or With optimization run for friction moment and moment of inertia compensation:
With an acceleration current equaling the current required to achieve a steady-state speed of 10% of maximum speed + 20% of P100 (IA, motor), the maximum speed cannot be reached within $45 \mathrm{~s}+7 \%$
Possible cause:

- Centrifugal mass is too large
- Drive is blocked, heavily speed-dependent or excessively high load torque
- "Active" load is attempting to maintain a certain speed

Possible remedy:

- Increase P100 while the optimization run is in progress in order to raise the applied acceleration current during optimization (during the speed controller optimization run, a maximum of 45% of I_{A}, motor ${ }^{+}$armature current for zero speed) is applied as the armature current setpoint, $\mathrm{I}_{\mathrm{A}, \text { motor }}(\mathrm{P} 100)$ can thus be increased to 2.2 times the value at maximum without exceeding $100 \% \mathrm{I}_{\mathrm{A}}$, motor during optimization)

23 With speed controller optimization run:
With an acceleration current equaling 20% or 30% of P100 (IA motor) + armature current required for zero speed or With optimization run for friction moment and moment of inertia compensation:
With an acceleration current equaling the current required to achieve a steady-state speed of 10% of maximum speed + 20% of P100 (I_{A}, motor), the maximum speed or 100% of setpoint EMF cannot be reached within $90 \mathrm{~s}+13 \%$
Possible cause:

- Flywheel mass is too large
- Drive is blocked, heavily speed-dependent or excessively high load torque
- "Active" load is attempting to maintain a certain speed

Possible remedy:

- Increase P100 while the optimization run is in progress in order to raise the applied acceleration current during optimization (during the speed controller optimization run, a maximum of 45% of I_{A}, motor (+ armature current for zero speed) is applied as the armature current setpoint, $\mathrm{I}_{\mathrm{A}, \text { motor }}$ (P100) can thus be increased to 2.2 times the value at maximum without exceeding $100 \% \mathrm{I}_{\mathrm{A}}$, motor during optimization)

24 With speed controller optimization run:
The actual speed does not drop to below $+2 \%$ of maximum speed or to below the speed threshold $n_{\text {min }}$ set in P370 within 2 minutes
With optimization run for field weakening:
The actual speed does not drop to below $+2 \%$ of maximum speed or to below the speed threshold $\mathrm{n}_{\min }$ set in P370 within 10 minutes
With optimization run for friction moment and moment of inertia compensation:
The actual speed does not drop to below $+2 \%$ of maximum speed or to below the speed threshold $n_{\text {min }}$ set in P370 within 11 or 2 minutes
Possible cause:

- Single-quadrant drive coasts to a standstill too slowly

25 The average armature current required for the speed range from $+7 \%$ to approximately $+13 \%$ of maximum speed to cover the friction and/or steady-state load torque cannot be calculated
Possible cause:

- Drive with very little friction or very small integral-action time and, as a result of the very short measuring time, computational inaccuracies during evaluation
- Distorted or disturbed actual speed value
- Large flywheel mass that is coupled to the drive via long shaft with high torsion, possibly via a coupling with large amount of play
Possible remedy:
- Reduce P100 for duration of the optimization run to decrease the acceleration current applied during optimization and thus to lengthen the measuring time

10.1.2.11 External faults

F053 \quad Fault message from free function block FB288
(active in all operating states)
Fault value:
1 the binector wired via parameter U102 Index. 005 is in the state log."1"
2 the binector wired via parameter U102 Index. 006 is in the state log."1"
3 the binector wired via parameter U102 Index. 007 is in the state log."1"
4 the binector wired via parameter U102 Index. 008 is in the state log."1"
F054 \quad Fault message from free function block FB289
(active in all operating states)
Fault value:

Fault No.	Description (r047.001, r949.001 or r949.009 with acknowledged error)	
	1the binector wired via parameter U103 Index.005 is in the state log."1" 2 the binector wired via parameter U103 Index.006 is in the state log."1" 3 the binector wired via parameter U103 Index.007 is in the state log."1" the binector wired via parameter U103 Index.008 is in the state log."1"	

10.1.2.12 Start-up faults

F055	No field characteristic recorded (active in operating states of --, I, II) Possible fault causes - The optimization run for field weakening $(\mathrm{P} 051=27)$ has not yet been executed. Fault value:
	$1 \quad$ P170 = 1 ("torque control") selected, but "no valid field characteristic has been recorded" (P117=0) yet $2 \quad \mathrm{P} 081=1$ ("speed-dependent field weakening") selected, but "no valid field characteristic has been recorded" (P117=0) yet
F056	Important parameter is not set (active in operating states of ≤ 06) This fault message is activated if certain parameters are still set to 0 . Fault value:
	1 Speed controller actual value selection in P083 is still set to 0 2 Rated motor armature current in P100 is still set to 0.0 3 Rated motor field current in P102 is still set to 0.00 (fault message only when P082 $\neq 0$) 4 Rated direct current of external field device in U838 still at 0.00 (fault message only when P082 >=21) 10 Connection of measuring leads for line voltage not yet set (U821.001 still set to 0) 14 Rated armature direct current not yet set (U822 still set to 0.0)
F058	Parameter settings are not consistent (active in operating states of ≤ 06) Inconsistent values have been set in mutually dependent parameters. Fault value:
	2 The parameters for speed-dependent current limitation are not set correctly (the following applies: P105>P107 (I1>12) and P104 < P106 (n1<n2)) 3 The field characteristic is not uniform 4 The first threshold for P gain adaptation of the speed controller set in parameter P556 is higher than the second threshold setting in parameter P559 $5 \quad$ P557 is set to greater than P560 $6 \quad \mathrm{P} 558$ is set to greater than P561 7 If P083=1 (analog tachometer), then P746 may not equal 0 (main actual value is not connected) 8 If P083=2 (pulse encoder), then P140 may not equal $x 0$ (no pulse encoder installed) 9 If P083=3 (EMF control) then P082 may not equal x1x (field weakening operation) 10 P090 (stabilization time for supply voltage) \geq P086 (time for automatic restart) 11 P 090 (stabilization time for supply voltage) \geq P089 (waiting time in state 04 or o5) $12 \mathrm{P} 445=1$ is set (switch-on, shutdown and crawl act as a pushbutton) although no binector is parameterized as a shudown button (P444=0) 14 Parameter U673 > U674 (this setting is not permitted; see function diagram B152) 15 Parameter P169 = 1 and P170 = 1 (impermissible setting)
F059	Technology option $\mathbf{S 0 0}$ is disabled/will be disabled soon (active in all operating statuses)

10.1.2.13 Hardware faults

F061 \quad Fault message from thyristor check function

(active in operating state o3)
This fault message can be activated only if the thyristor check is activated via parameter P830.
If "Thyristor defective" or "Thyristor unable to block" is signaled, then the relevant thyristor module must be replaced.
Possible causes for irreparable damage to thyristors:

- Interruption in snubber circuit
- Current controller and precontrol are not optimized (excessive current peaks)
- Inadequate cooling (e.g. fan is not operating, ambient temperature is too high, fan is rotating in wrong direction (incorrect phase sequence), inadequate air supply, heatsink is very dirty)
- Excessive voltage peaks in incoming supply system
- External short circuit or fault to ground (check armature circuit)

If "Thyristor unable to block" is signaled, the cause can generally be attributed to a firing circuit fault, rather than to a defective thyristor.
Possible causes:

- Firing pulse cable to relevant thyristor is interrupted
- Ribbon cable X101, X21A or X22A is incorrectly inserted or interrupted
- Defective electronics or gating board
- Internal interruption in gating cable in thyristor module

The designation of the firing leads and the associated thyristors is to be found in Chapter 6.3 (Connection of the external power section).

10.1.2.14 Internal faults

F062	Fault in parameter memory

(active in all operating states)
Software monitoring of correct functioning of the EEPROM module (non-volatile memory) on the A7009 board.
The EEPROM values contains all data which must be protected in the case of a power failure (i.e. parameter values and process data which must remain stored during power failures).

The following are monitored:

- Connection between the A7001 electronics board and the EEPROM on the A7009 backplane wiring assembly
- Whether the parameter values stored on the EEPROM are within the permissible value range
- Whether data are being correctly stored on the EEPROM. For this purpose, values are read and checked for correctness after they are transferred to the module
- Whether the checksum of the non-volatile process data in the EEPROM is correct

Possible causes for all fault types:
Excessive EMC-related interference is present (e.g. due to unprotected contactors, unscreened cables, loose shield connections)

Fault No.	Description	
	Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error)	Further information (r047.002 to r047.016)
	Fault value:	r047 Index 002 to 016:
	1 Connection to EEPROM is faulty Possible fault causes - A7001 electronics board is defective - A7009 backplane wiring assembly is defective - Plug-in connection X109 is defective	
	2 Parameter value is outside permissible value range Possible fault causes - "Restore to default value" has never been executed with this software (e.g. after software replacement) - A7009 backplane wiring assembly is defective Possible remedy: - Acknowledge fault, execute "Restore to default value" and start up the drive again	i002 Number of faulty parameter i003 Index of faulty parameter i004 Faulty parameter value
	3 Parameter value cannot be stored on EEPROM Possible fault causes - A7001 electronics board is defective - A7009 backplane wiring assembly is defective - Plug-in connection X109 is defective	i002 Address of fault memory location i003 Faulty value in EEPROM i004 Correct parameter value
	11 Checksum of non-volatile data (part 1) is not correct 12 Checksum of non-volatile data (part 2) is not correct 13 Checksum of non-volatile data (part 3) is not correct 20 Checksum of configuring table of parameter values is not correct Possible fault causes - Defective EEPROM - "Restore to default value" has never been executed with this software (e.g. after software replacement) Possible remedy: - Acknowledge fault, execute "Restore to default value" and start up the drive again! Check interference suppression measures and improve if necessary. In the case of fault value 20, the factory setting is restored automatically	i002 Calculate checksum i003 Checksum found in EEPROM
F063	This function monitors whether the factory-set compensation data for the analog inputs and outputs are plausible Possible fault cause: - Defective A7001 or A7006 electronics board	
	11 Incorrect number of words in compensation values for analog inputs and outputs of A7001	i002 Incorrect number of words
	12 Checksum error in compensation values for analog inputs and outputs of A7001	i002 Calculated checksum i003 Errored checksum
	13 Incorrect value among compensation values for analog inputs and outputs of A7001	i002 Incorrect value
	23 Incorrect value among compensation values for analog inputs and outputs of A7006	i002 Incorrect value
	41 A7041/A7042 not present or defective 42 A7041/A7042 not present or defective	

Fault	Description	
No.	Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error)	Further information (r047.002 to r047.016)
F064	Watchdog timer has initiated a reset (active in all operating states) An internal microprocessor hardware counter monitors whether th every 14 ms (program is executed on average every 2.7 to 3.3 ms). then displayed. Possible fault causes - A7001 electronics board is defective - Excessive EMC-related interference is present (e.g. due to un connections)	he program for calculating the firing pulses runs at least once s). If this is not the case, the counter initiates a reset, F064 is nprotected contactors, unscreened cables, loose shield
F065	Illegal microprocessor status (active in all operating states) An internal microprocessor hardware function monitors the microp Possible fault causes - A7001 electronics board is defective - Excessive EMC-related interference is present (e.g. due to un connections)	processor for illegal operating states. nprotected contactors, unscreened cables, loose shield
F067	Converter cooling faulty (active in operating states of ≤ 013) The heatsink temperature monitoring function is activated 6s after (The current heat sink temperature is indicated at parameter r013 Fault value:	connection of the electronics supply. 3 and on connector K050) r047 Index 002 to 016:
	1 Heatsink temperature > permissible heatsink temperature	i002 Measured heatsink temperature (16384 .. $100^{\circ} \mathrm{C}$)
	2 Heatsink temperature sensor is defective	i003 Measured ADC value
	3 Device fan faulty When U832= 1: LOW signal at term. 120/121 When U832= 2: HIGH signal at term. 120/121	
F068	Analog measuring channel faulty (main setpoint, main actual (active in all operating states) Hardware monitoring of measuring circuits Possible fault causes - A7001 module defective - Measuring circuit saturated (input voltage at terminals 4 Fault value:	value or analog select input) 4 and 5 or 6 and 7 higher than approx. 11.3V)
	1 Measuring channel for main setpoint / analog select input 1 faulty (terminals 4 and 5) 2 Measuring channel for main actual value faulty (terminals 103 and 104) 3 Measuring channel for analog select input 1 faulty (terminals 6 and 7)	
F069	MLFB data are faulty (active in all operating states) Possible fault causes - Excessive EMC-related interference is present (e.g. due to unprotected contactors, unscreened cables, loose - A7009 backplane wiring assembly is defective Fault value:	e shield connections) r047 Index 002 to 016:
	1 MLFB code number (r070) = MLFB code number (r070) is illegal	i002 Incorrect MLFB code number
	2 MLFB data checksum error	-
	3 Works number checksum error	-
	4 Number of words of MLFB data is incorrect	-

10.1.2.15 Communication errors with supplementary boards

```
F070 SCB1: Serious initialization error
    (active in all operating states)
    SCB1 and SCI cannot power up correctly (see diagnostic parameter n697 for details)
```

Fault No.	Description		
	Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error)	Further information (r047.002 to r047.016)	
	Fault value:		
	12 No connection to slave 1 22 No connection to slave 2		
F073	SCB1: Current below 4mA minimum value at analog input1 of slave 1 (active in all operating states) The cause of the fault may be a cable break		
F074	SCB1: Current below 4mA minimum value at analog input2 of slave 1 (active in all operating states) The cause of the fault may be a cable break		
F075	SCB1: Current below 4mA minimum value at analog input3 of slave 1 (active in all operating states) The cause of the fault may be a cable break		
F076	SCB1: Current below 4mA minimum value at analog input1 of slave 2 (active in all operating states) The cause of the fault may be a cable break		
F077	SCB1: Current below 4mA minimum value at analog input2 of slave 2 (active in all operating states) The cause of the fault may be a cable break		
F078	SCB1: Current below 4mA minimum value at analog input3 of slave 2 (active in all operating states) The cause of the fault may be a cable break		
F079	SCB1: Telegram failure (active in all operating states) Check function of SCB1 (activity LEDs) and connection to SCI slaves (fiber optics)		
F080	Error in initialization of a CB/TB board Possible causes for fault values 1 and 6: - $\quad C B / T B$ board is defective - $\mathrm{CB} / \mathrm{TB}$ board is not installed correctly - $\quad \mathrm{CB} / \mathrm{TB}$ board is taking too long to run up (e.g. due to very complex TB configuration) Fault value (r949 index 001): r047 index 002 to 016 :		
	1 The "Heartbeat counter" of the CB/TB has not started to count within 20 s	$\begin{array}{\|ll\|} \hline \text { i015 } & \text { Co } \\ & 1 \\ & 2 \end{array}$	number of board: TB or $1^{\text {st }} \mathrm{CB}$ $2^{\text {nd }} \mathrm{CB}$
	2 The product version of the installed CT/TB board is not compatible with the SIMOREG 6RA70 converter	$\begin{array}{ll} \hline \text { i002 } & \text { Co } \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{array}$	number of slot con Slot D Slot E Slot F Slot G CB when configur
	5 Parameters P918, U711 to U721 are not correctly set or not accepted after a change by means of $\mathrm{U} 710=0$ setting. (The meanings of these parameters are defined in the manual for the relevant CB board, see also function diagrams, Section 8, Sheets Z110 and Z111)	$\begin{array}{\|ll\|} \hline \text { i015 } & \text { Co } \\ & 1 \\ & 2 \end{array}$	number of board: TB or $1^{\text {st }} \mathrm{CB}$ $2^{\text {nd }} C B$
	6 The initialization run for a CB/TB board has not been completed within 40 s	$\begin{array}{ll} \hline \mathrm{i} 015 & \mathrm{Co} \\ & 1 \\ & 2 \end{array}$	number of board: TB or $1^{\text {st }} \mathrm{CB}$ $2^{\text {nd }} \mathrm{CB}$
F081	$C B / T B$ has not incremented the monitoring counter for a period of 800 ms Possible causes of fault - $\mathrm{CB} /$ TB board is defective - $\mathrm{CB} / \mathrm{TB}$ board is not correctly installed	$\begin{array}{\|cc\|} \hline \text { i015 } & \text { Co } \\ & 1 \\ & 2 \end{array}$	number of board: TB or $1^{\text {st }} \mathrm{CB}$ $2^{\text {nd }} C B$

Fault No.	Description	
	Cause as a function of fault value (r047.001, r949.001 or r949.009 with acknowledged error)	Further information (r047.002 to r047.016)
F082	CB/TB message timeout or error in data exchange Possible causes of fault - CB/TB PZD message timeout (with fault value 10) - Excessive EMC-related interference (e.g. due to unprotected contactors, unscreened cables, loose screen connections) - $\mathrm{CB} / T \mathrm{~B}$ board is defective - $\mathrm{CB} / \mathrm{TB}$ board is not correctly inserted Fault value (r949 index 001): r047 Index 002 to 016:	
	1 Fault in alarm channel from CB to basic unit	i015 Code number of board: $\begin{array}{ll} 1 & \text { TB or } 1^{\text {st }} \mathrm{CB} \\ 2 & 2^{\text {nd }} \mathrm{CB} \end{array}$
	2 Fault in alarm channel from TB to basic unit	
	3 Fault in fault channel from TB to basic unit	
	5 Fault in parameter job channel from CB to basic unit	i015 Code number of board: $\begin{array}{ll} 1 & \text { TB or } 1^{\text {st }} \\ 2 & 2^{\text {nd }} \\ C B \end{array}$
	6 Fault in parameter response channel from basic unit to CB	i015 Code number of board: $1 \quad 1^{\text {st }} \mathrm{TB} \text { or } 1^{\text {st }} \mathrm{CB}$ $2 \quad 2^{\text {nd }} \mathrm{CB}$
	$7 \quad$ Fault in parameter job channel from TB to basic unit	
	$8 \quad$ Fault in parameter response channel from basic unit to TB	
	$10 \quad \mathrm{CB} / \mathrm{TB}$ process data failure (message timeout period set in U722)	i015 Code number of board: 1 TB or 1 ${ }^{\text {st }} \mathrm{CB}$ 2 $2^{\text {nd }} \mathrm{CB}$
	11 Fault in parameter job channel from PMU to TB	
	12 Fault in parameter response channel from TB to PMU	
	15 Fault in setpoint channel from CB/TB to basic unit	$\begin{array}{ll} \text { i015 } & \text { Code number of board: } \\ 1 & \text { TB or } 1^{\text {st }} \mathrm{CB} \\ 2 & 2^{\text {nd }} \mathrm{CB} \end{array}$
	16 Fault in actual value channel from basic unit to CB/TB	$\begin{array}{ll} \text { i015 } & \text { Code number of board: } \\ 1 & \text { TB or } 1^{\text {st }} \mathrm{CB} \\ 2 & 2^{\text {nd }} \mathrm{CB} \end{array}$

10.1.2.16 Fault messages from supplementary boards

F101 \quad This group of fault messages is activated by supplementary boards

10.2 Alarm messages

Alarm message display:
On the PMU: A (Alarm) and a three-digit number. The red LED (Fault) flashes.
On the OP1S: On the bottom line of the operational display. The red LED (Fault) flashes.
An alarm message cannot be acknowledged, but disappears automatically when the cause has been eliminated.

Several alarm messages can be active at the same time, these are then displayed in succession. Many alarms (see List of Alarm Messages) can only be active in certain operating states.

The system responses to an alarm are as follows:

- Alarm message is displayed on the operator panel (PMU, OP1S)
- B0114 (= status word 1, bit 7) is set and B0115 is cancelled (see also special alarm bits in status word 2, e.g. for an external alarm, overload, etc.)
- The corresponding bit in one of the alarm words r953 (K9801) to r960 (K9808) is set

Alarm No.	Description
A015	Simolink start (active in all operating states) Although the board has been initialized, it cannot yet exchange telegrams (parameters have not yet been correctly configured on all nodes or the boards have not yet been linked via fiber optics to form a closed ring).
A018	Short circuit at binary outputs (active in all operating states) Hardware monitoring function to check for short circuit at one of the binary select outputs (see also F018 and r011).
A019	Alarm message from free function block FB256 (active in all operating states) The binector wired via parameter U104 Index. 002 is in the state log."1"
A020	Alarm message from free function block FB257 (active in all operating states) The binector wired via parameter U105 Index. 002 is in the state log." 1 "
A021	External alarm 1 (active in all operating states) Bit 28 in control word 2 was in the log. " 0 " state for longer than the time set in P360 index 003.
A022	External alarm 2 (active in all operating states) Bit 29 in control word 2 was in the log. "0" state for longer than the time set in P360 index 004.
A023	Alarm message from free function block FB6 (active in all operating states) The binector wired via parameter U104 Index. 001 is in the state log." 1 "
A024	Alarm message from free function block FB7 (active in all operating states) The binector wired via parameter U105 Index. 001 is in the state log." 1 "
A025	Brush length too short (active in all operating states) When parameter P495=1 (binary sensing of brush length): Alarm in response to log. "0" signal (longer than 10s) at terminal 211 Possible causes - Encoder for brush length has responded - Interruption in encoder cable

Alarm No.	Description
A026	Poor bearing condition (active in all operating states) When parameter P496=1 (bearing condition sensing): Alarm in response to log. "0" signal (longer than 2s) at terminal 212 Possible causes - Encoder for bearing condition has responded
A027	Air flow monitoring (active in operating states of <06) When parameter P497=1 (air flow monitoring): Alarm in response to log. " 0 " signal (longer than 40s) at terminal 213 Possible causes - Encoder for fan monitoring has responded - Interruption in encoder cable
A028	Motor overtemperature (active in all operating states) When parameter $\mathrm{P} 498=1$ (thermostat connected): Alarm in response to log. " 0 " signal (longer than 10s) at terminal 214 Possible causes - Thermostat for monitoring motor temperature has responded - Interruption in encoder cable
A029	Motor overtemperature (active in all operating states) Selection via P493=1 or 3 (thermostat at terminals 22 / 23) or P494=1 or 3 (thermostat at terminals 204 / 205) When parameter P490.01=1 (KTY84 at terminals $22 / 23$) or P490.02=1 (KTY84 at terminals $204 / 205$): The alarm is activated if the motor temperature reaches or exceeds the values set in parameter P492. When parameter P490.01=2,3,4 or 5 (PTC thermistor at terminals $22 / 23$) or P490.02 $=2,3,4$ or 5 (PTC thermistor at terminals 204 / 205): The alarm is activated if the motor temperature reaches or exceeds the trip value of the selected PTC.
A030	Commutation failure or overcurrent has occurred (active in operating states of --, I, II) Possible error causes - Mains voltage dip in regenerative feedback mode - Current control loop not optimized
A031	Speed controller monitoring (active in operating states of --, I, II) The monitor responds when the difference between the connectors selected in P590 and P591 (factory setting: Setpoint/actual value difference of speed controller) exceeds the limit set in parameter P388 for longer than the time set in parameter P390. Possible causes - Control loop interrupted - Controller is not optimized - P590 or P591 is not correctly parameterized
A032	SIMOREG CCP not ready (active in operating states of < 04.0) Possible causes - No voltage at U, V, W terminals of SIMOREG CCP - Voltage at C-D on CCP does not match voltage at C-D on SIMOREG DC-MASTER - Surge absorbing capacitors of SIMOREG CCP have not reached setpoint voltage - Paralleling interface cable is not connected to SIMOREG CCP assigned to paralleling master - No connection between SIMOREG DC-MASTER and SIMOREG CCP via G-SST2 serial interface - No connection between parallel SIMIOREG CCPs - Contents of technical data memory on SIMOREG CCP (MLFB, rated values, serial number) invalid - I2t value of voltage chopper 1 is too high (>100\%) - \quad I2t value of voltage chopper 2 is too high (>50\%)

Alarm No.	Description
A033	Alarm message from free function block FB8 (active in all operating states) The binector connected via parameter U106 Index. 001 is in the log. "1" state
A034	Alarm message from free function block FB9 (active in all operating states) The binector connected via parameter U107 Index. 001 is in the log. "1" state
A035	Drive blocked (active in operating states of,-- I, II) The monitoring function responds if the following conditions are fulfilled for longer than the time set in parameter P355: - Positive or negative torque or armature current limit reached - Armature current is greater than 1% of converter rated armature DC current - The actual speed value is less than 0.4% of maximum speed
A036	No armature current can flow (active in operating states of --, I, II) This monitoring function responds if the armature firing angle is at the rectifier stability limit for more than 500 ms and the armature current is less than 1% of the converter rated armature DC current.
A037	$\mathbf{I}^{\mathbf{2}}$ motor monitor has responded (active in operating states of --, I, II) The alarm is activated when the calculated $\mathrm{I}^{2} \mathrm{t}$ value of the motor reaches the value which corresponds to the final temperature at 100% of permissible continuous motor current ($=$ P113*P100).
A038	Overspeed (active in operating states of,-- I, II) The monitoring function responds if the actual speed value (selected in P595) exceeds the positive (P512) or negative (P513) threshold by 0.5%. Possible causes - Lower current limit has been input - Current-controlled operation - P512, P513 are set too low - Tachometer cable contact fault in operation close to maximum speed
A039	Reserved
A043	Automatic field current reduction if EMF is too high in operation (active in operating states of,-- I, II) This alarm is active only when parameter P272=1 and activated if the following equation applies to firing angle α (armature) before limitation (K101): $\alpha>(\alpha W$ (inverter stability limit acc. to P151) - 5 degrees) or, at a low (pulsating) current $\alpha>$ (165 degrees -5 degrees) AND armature current setpoint K0118 filtered with P190.F is > 1\% of r072.002 The field is reduced simultaneously with A043, implemented through control of the armature firing angle to ($\alpha \mathrm{W}$ (or 165 degrees) - 5 degrees) using a P controller whose output reduces the EMF controller setpoint. For this reason, "Field weakening operation through internal EMF control" (PO81=1) must be parameterized. When a change in torque direction is requested, both torque directions are inhibited until the calculated control angle (K101) is <165 degrees for the armature current requested in the new torque direction, i.e. until the field, and thus the EMF, have been reduced accordingly. See also parameter P082.
A044	An alarm is active on one slave connected to the paralleling interface (active in all operating states)
A046	Analog select input for main setpoint (terminals 4 and 5) faulty (active in operating states of ≤ 06) This alarm is activated when $\mathrm{P} 700=2$ (current input 4 to 20 mA) and the input current is less than 3 mA .
A047	Analog select input 1 (terminals 6 and 7) faulty (active in operating states of ≤ 06) This alarm is activated when $\mathrm{P} 710=2$ (current input 4 to 20 mA) and the input current is less than 3 mA .
A049	SCB1: No SCI slave connected (active in all operating states)
A050	SCB1: Not all required SCI slaves are available (active in all operating states) The SCI slave required to perform the parameterized functions is not available

Alarm No.	Description
A053	Alarm message from free function block FB258 (active in all operating states) The binector connected via parameter U106 Index. 002 is in the log. "1" state
A054	Alarm message from free function block FB259 (active in all operating states) The binector connected via parameter U107 Index. 002 is in the log. "1" state
A059	Remaining time for temporary enabling of the $\mathbf{S 0 0}$ technology option is now less than $\mathbf{1 0 0}$ operating hours (active in all operating statuses) Remaining time for temporary enabling of the $S 00$ technology option is now less than 100 operating hours. The functions will soon be unavailable. If you wish to continue using technology option S00, please contact to your nearest Siemens Regional Office for a PIN number for permanent enabling of technology option S00. You will need to know the serial number of your SIMOREG CM. For further details, please refer to the description of parameters U977 and n978 in Chapter 11 of the Parameter List.
A060	Current total processor utilization (n009.i001, K9990) > 95.5\% (active in all operating states)
A067	Converter cooling faulty (active in all operating states) The heat sink temperature is higher than the permissible value. The monitoring function is activated 6 s after the electronics supply is connected. (The current heat sink temperature is indicated at parameter r013 and on connector K050)
A081 to A088	CB alarm of $1^{\text {st }} \mathbf{C B}$ (active in all operating states ≤ 011) The meaning of these alarms depends on the type of board used. For further information, refer to Section 7.7, Start-Up of Optional Supplementary Boards, in the relevant board description.
A089 to A096	CB alarm of $2^{\text {nd }} \mathbf{C B}$ (active in all operating states ≤ 011) The meaning of these alarms depends on the type of board used. For further information, refer to Section 7.7, Start-Up of Optional Supplementary Boards, in the relevant board description.
A097 to A128	TB alarms (active in operating states ≤ 011) For more information about TECH BOARD alarms, please refer to Operating Instructions or Configuring Guide of the relevant board.

11 Parameter list

Overview

Range of parameter numbers	Function
r000	Operating display
r001-P050	General visualization parameters
P051-r059	Access authorization levels
r060-r065	Definition of SIMOREG CM
r067-P079	Definition of SIMOREG CM power section
P080 - P098	Setting values for converter control
P100-P139	Definition of motor
P140-P148	Definition of pulse encoder, speed sensing using pulse encoder
P150-P165	Closed-loop armature current control, auto-reversing stage, armature gating unit
P169 - P191	Current limitation, torque limitation
P192-P193	Auto-reversing stage, armature gating unit
P200 - P236	Speed controller (further parameters for the speed controller P550-P567)
P250 - P265	Closed-loop field current control, field gating unit
P272-P284	Closed-loop EMF control
P295 - P319	Ramp-function generator
P320 - P323	Setpoint processing
P330	Ramp-function generator
P351-P364	Setting values for monitoring functions and limits
P370 - P399	Setting values for limit-value monitors
P401-P416	Settable fixed values
P421-P428	Fixed control bits
P430 - P445	Digital setpoint input (fixed setpoint, inching and crawling setpoints)
P450 - P453	Position sensing with pulse encoder
P455 - P458	Connector selector switches
P460 - P473	Motorized potentiometer
P480 - P485	Oscillation
P490 - P498	Definition of "Motor interface"
P500 - P503	Configuring of torque shell input
P509 - P515	Speed limiting controller
P519 - P530	Friction compensation
P540-P546	Compensation of moment of inertia (dv/dt injection)
P550 - P567	Speed controller (further parameters for the speed controller P200-P236)
P580 - P583	Field reversal
P590 - P597	Input quantities for signals
P600 - P647	Configuring of closed-loop control
P648-P691	Control word, status word
P692-P698	Further configuring measures
P700 - P746	Analog inputs (main actual value, main setpoint, selectable inputs)
P749 - P769	Analog outputs
P770 - P778	Binary outputs
P780 - P819	Configuration of serial interfaces on basic converter
P820-P821	Deactivation of monitoring functions
r824-r829	Compensation values
P830	Thyristor diagnosis
P831-P899	Parameters for DriveMonitor and OP1S
P918-P927	Profile parameters
r947-P952	Fault memory
r953-r960	Visualization parameters: Alarms

Range of parameter numbers	Function
r964	Device identification
r967 - r968	Visualization parameters: Control and status word
P970 - r999	Resetting and storing parameters, list of existing and modified P and r parameters
U005 - U007	Password protection, key/lock mechanism
n009	Processor utilization
n024 - U098	Miscellaneous
U116 - U118	Binector / connector converter for the serial interfaces
U607 - U608	Setpoint reduction
U616	Definition of the function of inputs and outputs
U619	Definition of the function of the relay output at terminals 109 / 110
U651 - U657	Starting pulse speed controller
n560 - U583	Commutation monitoring
U660 - U668	Evaluation of a 4-step master switch for cranes
U690 - n699	Configuration of SCB1 with SCI
U710 - n739	Configuration of supplementary boards in board locations 2 and 3
U740 - U753	Configuration of the SIMOLINK board
U755 - n770	Configuration of the EB1 expansion board
U773 - n788	Configuration of the EB2 expansion board
U790 - U796	Configuration of the SBP pulse encoder board
U800 - n813	Configuration of paralleling interface
U819 - U825	Definition of the external power section
U826 - U835	Miscellaneous
U838	Rated DC current of external field device
U840	Simulation operation
n845 - n909	Parameters for DriveMonitor
U910	Slot deactivation
U911 - n949	P959
n953 - n959	Parameters for DriveMonitor

Parameters for technology software in the basic converter, S00 option ("freely assignable function blocks")

Range of parameter numbers	Function
n010 - n023	Displays
U099	Settable fixed values
U100 - U107	Triggering of faults and alarms
U110 - U115	Connector/binector converters, binector/connector converters
U120 - U171	Mathematical functions
U172 - U173	Processing of connectors (averager)
U175 - U218	Limiter, limit-value monitors
U220 - U259	Processing of connectors
U260 - U299	Integrators, DT1 elements, characteristics, dead zones, setpoint branching
U300 - U303	Simple ramp-function generator
U310 - U313	Multiplexer
n314 - U317	Counter
U318 - U411	Logic functions
U415 - U474	Storage elements, timers and binary signal selector switches
U480 - U512	Technology controller
U515 - U523	Velocity/speed calculators
U525 - U529	Variable moment of inertia
U530 - U545	Pl controller
U550 - U554	Closed-loop control elements
U670 - U677	Position/positional deviation acquisition
U680 - U684	Root extractor
U950 - U952	Sampling times
U960 - U969	Altering the processing sequence of function blocks
U977 - n978	Enabling of technology software in basic unit, s00 option ("freely assignable function blocks")

Overview of abbreviations

Example:

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \text { P520 } \\ & * \quad 1) \\ & \text { FDS } 2) \\ & 8) 9 \text { 9) } \\ & \left(\begin{array}{r} \text { G153) } \\ 10) \end{array}\right. \end{aligned}$	Friction at 0\% speed Setting as \% of converter rated DC current or converter rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% 4) \end{aligned}$	Ind: 4 $\left.F S=0.0^{5}\right)$ Type: O2 ${ }^{3)}$	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 } \geq 20 \\ & \text { Online }{ }^{\mathbf{6}} \end{aligned}$

1) An * under the parameter number means that the parameter requires confirmation, i.e. the altered value does not take effect until the P key is pressed.
2) Abbreviation indicating that the parameter belongs to a data set (refers only to indexed parameters) (see Section 9.11 "Switch over parameter sets")

FDS Parameter belongs to the function data set (see Section 9.1, subsection "Data sets") BDS Parameter belongs to the BICO data set (see Section 9.1, subsection "Data sets")
3) Specification of parameter type

O2 Unsigned 16-bit value
I2 Signed 16-bit value
$04 \quad$ Unsigned 32-bit value
14 Signed 32-bit value
V2 Bit-coded quantity
L2 Nibble-coded quantity
4) Setting steps for access via PKW mechanism
5) Factory setting
6) Minimum setting required (P052) to allow display of the relevant parameter Minimum access level required (P051) to allow modification of the relevant parameter Online: The parameter can be changed in all converter operating states Offline: The parameter can only be changed in converter operating states of ≥ 01.0
8)

S00 Parameter belongs to the technology software in the basic converter, S00 option
9) The "OP parameter number" (i.e. the number to be entered via the OP1S operator panel) is specified in brackets in the "PNU" column for all parameters which are not "P parameters" or "r parameters": e.g. (2010) under n010 or (2100) under U100.
10) The parameter is shown in the specified function diagram in Section 8 (here G153).

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.1 Operating status display

11.2 General visualization parameters

$\begin{aligned} & \text { r001 } \\ & \text { (G113) } \end{aligned}$	Display of terminals 4 and 5 (main setpoint)	$\begin{aligned} & \hline-200.0 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \\ & \hline \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r002 (G113)	Analog input, terminals 103 and 104 (main actual value)	$\begin{aligned} & -200.0 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
	Analog input, terminals 6 and 7 (selectable input 1)	$\begin{array}{\|l} \hline-200.0 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \\ \hline \end{array}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r004 (G114)	Analog input, terminals 8 and 9 (selectable input 2)	$\begin{aligned} & \hline-200.0 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \\ & \hline \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r005 (G114)	Analog input, terminals 10 and 11 (selectable input 3)	$\begin{array}{\|l} \hline-200.0 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \\ \hline \end{array}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r006 (G115)	Analog output, terminals 14 and 15 Display of output value before normalization and offset	$\begin{array}{\|l} \hline-200.0 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \\ \hline \end{array}$	Ind: None Type: I2	$\mathrm{P} 052=3$
	Analog output, terminals 16 and 17 Display of output value before normalization and offset	$\begin{aligned} & -200.0 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \\ & \hline \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r008 (G116)	Analog output, terminals 18 and 19 Display of output value before normalization and offset	$\begin{aligned} & -200.0 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \\ & \hline \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r009 (G116)	Analog output, terminals 20 and 21 Display of output value before normalization and offset	$\begin{aligned} & -200.0 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \mathbf{r 0 1 0} \\ & (\mathrm{G} 110) \end{aligned}$	Display of status of binary inputs Representation on operator panel (PMU): Segment ON: Corresponding terminal is activated (HIGH level is applied) Segment OFF: Corresponding terminal is not activated (LOW level is applied) Segment or bit 0 Terminal 36 1 Terminal 37 (switch-on) 2 Terminal 38 (operating enable) 3 Terminal 39 4 Terminal 40 5 Terminal 41 6 Terminal 42 7 Terminal 43 8 Terminal 211 9 Terminal 212 10 Terminal 213 11 Terminal 214 12 Safety shutdown (E-Stop is applied) 1) 13 Terminal 122/123 14 Terminal 124/125 [SW 1.9 and later] 15 \qquad (not used) 1) The safety shutdown command is applied (segment dark) if - terminal XS-105 is open (switch operation, see also Section 9) or - terminal XS-107 (Stop pushbutton) is opened briefly and terminal XS108 (Reset pushbutton) is not yet activated (pushbutton operation, see also Section 9)		Ind: None Type: V2	P052 = 3
r011	Display of status of binary outputs Representation on operator panel (PMU): Segment ON: Corresponding terminal is activated (HIGH level is applied) or overloaded or short-circuited Segment OFF: Corresponding terminal is not activated (LOW level is applied) or not overloaded or not shortcircuited Display of status of binary output terminals: Segment or bit 0 Terminal 46 1 Terminal 48 2 Terminal 50 3 Terminal 52 6 Terminal 120/121 (relay contact for fan) [SW 1.9 and later] 7 Terminal 109/110 (relay contact for line contactor) Display of overloading of binary outputs: Segment or bit 8 Terminal 46 9 Terminal 48 10 Terminal 50 11 Terminal 52 12 Terminal 26 (15V output) 13 Terminal 34,44 and/or 210 (24 V output)		Ind: None Type: V2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { r012 } \\ & \text { (G185) } \end{aligned}$	Motor temperature Display of motor temperature when a KTY 84 temperature sensor is connected (P490.x=1). A value of " 0 " is always output in r012 when a PTC thermistor or no temperature sensor is installed. i001: Motor temperature 1 (sensor at terminals 22 / 23) i002: Motor temperature 2 (sensor at terminals 204 / 205)	$\begin{aligned} & -58 \text { to }+318 \\ & {\left[{ }^{\circ} \mathrm{C}\right]} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	Ind: 2 Type: 12	P052 = 3
r013 (G114)	Heatsink temperature Display of heatsink temperature (temperature sensor according to U830 to terminal $\mathrm{X} 6, \mathrm{X} 7$ of the power interface)	$\begin{aligned} & -47 \text { to }+200 \\ & {\left[{ }^{\circ} \mathrm{C}\right]} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r014	Temperature rise i001: Calculated motor temperature rise (see P114) i002: no meaning	$\begin{aligned} & 0.0 \text { to } 200.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 2 Type: O2	P052 = 3
r015	Display of line voltage (armature) (generated as arithmetic rectification average, RMS value display applies to sinusoidal voltage, average over 3 line-to-line voltages)	$\begin{array}{\|l\|} \hline 0.0 \text { to } 2800.0 \\ {[\mathrm{~V}]} \\ 0.1 \mathrm{~V} \end{array}$	Ind: None Type: O2	P052 = 3
r016	Display of line voltage (field) (generated as arithmetic rectification average, RMS value display applies to sinusoidal voltage)	$\begin{array}{\|l} \hline 0.0 \text { to } 800.0 \\ {[\mathrm{~V}]} \\ 0.1 \mathrm{~V} \end{array}$	Ind: None Type: O2	P052 = 3
r017	Display of line frequency	$\begin{aligned} & \hline 0.00 \text { to } 120.00 \\ & {[\mathrm{~Hz}]} \\ & 0.01 \mathrm{~Hz} \\ & \hline \end{aligned}$	Ind: None Type: O2	P052 = 3
r018 (G163)	Display of firing angle (armature)	$\begin{array}{\|l} \hline 0.00 \text { to } 180.00 \\ \text { [degrees] } \\ \text { 0.01degrees } \\ \hline \end{array}$	Ind: None Type: O2	$\mathrm{P} 052=3$
r019 (G162)	Display of actual armature current The internal actual armature current value is displayed (arithmetic average over the last 6 current peaks in each case)	$\begin{aligned} & -400.0 \text { to } 400.0 \\ & \text { [\% of P100] } \\ & 0.1 \% \text { of P100 } \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r020 (G162)	Display of the absolute value of armature current setpoint	$\begin{array}{\|l\|} \hline 0.0 \text { to } 300.0 \\ \text { [\% of P100] } \\ 0.1 \% \text { of P100 } \\ \hline \end{array}$	Ind: None Type: 12	P052 = 3
$\begin{aligned} & \hline \text { r021 } \\ & (\mathrm{G} 160) \end{aligned}$	Display of torque setpoint after torque limitation Steps: $1 \triangleq 0.1 \%$ of rated motor torque (=rated motor armature current (P100) * magnetic flux at rated motor field current (P102))	```-400.0 to 400.0 [%] 0.1% (see column on left)```	Ind: None Type: 12	P052 = 3
$\begin{aligned} & \text { r022 } \\ & \text { (G160) } \end{aligned}$	Display of torque setpoint before torque limitation Steps: $1 \triangleq 0.1 \%$ of rated motor torque (=rated motor armature current (P100) * magnetic flux at rated motor field current (P102))	```-400.0 to 400.0 [%] 0.1% (see column on left)```	Ind: None Type: 12	P052 = 3
r023 (G152)	Display of speed controller setpoint/actual value deviation	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None Type: 12	P052 = 3
$\mathrm{r} 024$ (G145)	Display of actual speed value from pulse encoder	$\begin{array}{\|l} \hline-200.00 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \\ \hline \end{array}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r025 (G151)	Display of actual speed controller value	$\begin{aligned} & -200.0 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \\ & \hline \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \mathbf{r 0 2 6} \\ & \text { (G152) } \\ & \hline \end{aligned}$	Display of speed controller setpoint	$\begin{array}{\|l} \hline-200.0 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \\ \hline \end{array}$	Ind: None Type: I2	$\mathrm{P} 052=3$
$\begin{aligned} & \mathrm{r} 027 \\ & (\mathrm{G} 136) \\ & \hline \end{aligned}$	Display of ramp-function generator output	$\begin{array}{\|l\|} \hline-200.00 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \\ \hline \end{array}$	Ind: None Type: 12	$\mathrm{P} 052=3$
$\begin{aligned} & \text { r028 } \\ & (\mathrm{G} 136) \end{aligned}$	Display of ramp-function generator input	$\begin{array}{\|l\|} \hline-200.00 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \\ \hline \end{array}$	Ind: None Type: 12	P052 = 3
$\begin{aligned} & \text { r029 } \\ & \text { (G135) } \\ & \hline \end{aligned}$	Display of main setpoint before limitation	$\begin{array}{\|l\|} \hline-200.00 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \\ \hline \end{array}$	Ind: None Type: 12	P052 = 3
r034 (G166)	Display of firing angle (field)	$\begin{array}{\|l} \hline 0.00 \text { to } 180.00 \\ \text { [degrees] } \\ 0.01 \text { degrees } \\ \hline \end{array}$	Ind: None Type: O2	P052 = 3

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { r035 } \\ & (\mathrm{G} 166) \end{aligned}$	Display of field current controller actual value	$\begin{array}{\|l\|} \hline \hline 0.0 \text { to } 199.9 \\ \text { [\% of P102] } \\ 0.1 \% \text { of P102 } \\ \hline \end{array}$	Ind: None Type: O2	P052 = 3
$\begin{aligned} & \hline \text { r036 } \\ & (\mathrm{G} 166) \end{aligned}$	Display of field current controller setpoint	$\begin{aligned} & \hline 0.0 \text { to } 199.9 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \\ & \hline \end{aligned}$	Ind: None Type: O2	$\mathrm{P} 052=3$
r037 (G165)	Display of actual EMF value	$\begin{aligned} & -1500.0 \text { to } 1500.0 \\ & \text { [V] } \\ & 0.1 \mathrm{~V} \\ & \hline \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r038	Display of actual armature voltage value	$\begin{aligned} & -1500.0 \text { to } 1500.0 \\ & {[\mathrm{~V}]} \\ & 0.1 \mathrm{~V} \\ & \hline \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
r039 (G165)	Display of EMF setpoint This parameter displays the EMF setpoint which is applied as the control quantity in the field-weakening range. This value is calculated from: Umotor $_{\text {rated }}$ - Imotor $r_{\text {rated }}$ * RA (= P101 - P100 * P110)	$\begin{aligned} & 0.0 \text { to } 1500.0 \\ & {[\mathrm{~V}]} \\ & 0.1 \mathrm{~V} \end{aligned}$	Ind: None Type: O2	$\mathrm{P} 052=3$
r040	Display of limitations: Representation on operator panel (PMU): Segment ON: Corresponding limitation is reached Segment OFF: Corresponding limitation is not reached Segment or bit $0 \quad \alpha W$ limit (field) reached (P251) 1 Negative current limit (field) reached (K0274) $2 \alpha{ }^{2}$ limit (armature) reached (αw acc. to P151 for continuous current, 165° for discontinuous current) 3 \qquad Negative current limit (armature) reached (K0132) 4 \qquad Negative maximum speed reached (P513) Speed limiting controller responds (B0201) 5 \qquad Negative torque limit reached (B0203) 6 Neg. limitation at ramp generator output reached (K0182) \qquad Neg. limitation at ramp generator input reached (K0197) 8 \qquad 9 Positive current limit (field) reached (K0273) $10 \ldots . . . \alpha_{\mathrm{G}}$ limit (armature) reached (P150) 11 Positive current limit (armature) reached (K0131) 12 Positive maximum speed reached (P512) Speed limiting controller responds (B0201) 13 Positive torque limit reached (B0202) 14 Pos. limitation at ramp generator output reached (K0181) 15 Pos. limitation at ramp generator input reached (K0196) Note: This parameter has the same bit assignments as connector K0810.		Ind: None Type: V2	$\mathrm{P} 052=3$

Connector and binector displays				
r041 (G121)	High-resolution connector display: i001: Display of connector selected in P042.01 i002: Display of connector selected in P042.02 The display value is filtered with a time constant of 300 ms (see Section 8 , Sheet G121)	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 2 Type: I2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { P042 } \\ & * \\ & \text { (G121) } \end{aligned}$	High-resolution connector display: i001: Selection of connector to be displayed in r041.01 i002: Selection of connector to be displayed in r041.02 The display value is filtered with a time constant of 300 ms (see Section 8, Sheet G121)	All connector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
r043 (G121)	Connector display: i001: Display of connector selected in P044.01 i002: Display of connector selected in P044.02 i003: Display of connector selected in P044.03 i004: Display of connector selected in P044.04 i005: Display of connector selected in P044.05 i006: Display of connector selected in P044.06 i007: Display of connector selected in P044.07	$\begin{aligned} & \hline-200.0 \text { to } 199.9 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 7 Type: I2	P052 = 3
$\begin{aligned} & \hline \text { P044 } \\ & * \\ & (\mathrm{G} 121) \end{aligned}$	Connector display: i001: Selection of connector displayed in r043.01 i002: Selection of connector displayed in r043.02 i003: Selection of connector displayed in r043.03 i004: Selection of connector displayed in r043.04 i005: Selection of connector displayed in r043.05 i006: Selection of connector displayed in r043.06 i007: Selection of connector displayed in r043.07	All connector numbers 1	Ind: 7 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
r045 (G121)	Binector display: i001: Display of binector selected in P046.01 i002: Display of binector selected in P046.02 i003: Display of binector selected in P046.03 i004: Display of binector selected in P046.04	0 to 1	Ind: 4 Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \begin{array}{l} \text { P046 } \\ * \end{array} \\ & (\mathrm{G} 121) \end{aligned}$	Binector display: i001: Selection of binector displayed in r045.01 i002: Selection of binector displayed in r045.02 i003: Selection of binector displayed in r045.03 i004: Selection of binector displayed in r045.04	All binector numbers 1	$\begin{array}{\|l\|} \hline \text { Ind: } 4 \\ \text { FS=0 } \\ \text { Type: L2 } \end{array}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

r047	Display of fault diagnostic memory Provides more detailed information about the cause of a fault after activation of a fault message (see Section 10).	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 16 Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { r048 } \\ & (\mathrm{G} 189) \end{aligned}$	Hours run Display of time (hours) in which drive has been operating in states I, II or --. All times of \geq approx. 0.1 s are included in the count.	0 to 65535 [hours] 1 hour	Ind: None Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { r049 } \\ & \text { (G189) } \end{aligned}$	Fault time Display of time at which the current fault, and the last 7 acknowledged faults, were activated.	0 to 65535 [hours] 1 hour	Ind: 8 Type: O2	$\mathrm{P} 052=3$
P050	Language Language of plaintext display on optional OP1S operator panel and in DriveMonitor PC service routine German English Spanish French Italian	$\begin{aligned} & 0 \text { to } 4 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051 \geq 0 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.3 Access authorization levels

P051	Key parameters	see column on left	Ind: None FS=40 Type: O2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051 \geq 0 \\ & \text { Online } \end{aligned}$
P052	Selection of display parameters $0 \quad 0 \quad$ Display only parameters that are not set to original factory settings 1 Display only parameters for simple applications 3 Display all parameters used	0, 1, 3	Ind: None FS=3 Type: O2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051 \geq 0 \\ & \text { Online } \end{aligned}$
P053	Control word for the permanent memory Disabling or enabling write accesses to the permanent memory i001: Disabling or enabling write accesses to the parameter memory 0 Only save parameter P053 in the permanent memory; parameter changes are active immediately but the changed values are only stored temporarily and are lost when the electronics supply voltage is switched off 1 Save all parameter values in the permanent memory i002: Disabling or enabling write accesses to the memory of the nonvolatile process data 0 Do not save nonvolatile process data in the permanent memory 1 Save all nonvolatile process data in the permanent memory If the nonvolatile process data are not stored (P053.002=0), data are lost when the electronics supply of the SIMOREG CM is switched off, i.e. they have the value 0 after the electronics supply is switched on again: K0240: Setpoint of the motor potentiometer K0309: Motor heating K9195: Output of the 1st tracking/storage element K9196: Output of the 2nd tracking/storage element	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 2 FS=1 Type: O2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051=0 \\ & \text { on-line } \end{aligned}$
P054	OP1S - Background lighting 0 ON continuously 1 ON when panel is in use	0, 1	Ind: None FS=0 Type: O2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051 \geq 0 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P055 } \\ & * \\ & \text { (G175) } \end{aligned}$	Copy function data set This parameter allows parameter set $1,2,3$ or 4 to be copied to parameter set $1,2,3$ or 4 . This function is applicable only to parameters with 4 indices in the function data set (see also Section 9.1, Data sets and Section 9.11, and Section 8, Sheet G175). 0xy Do nothing, automatic resetting value at the end of a copy operation. $1 x y \quad$ The contents of parameter set x (source data set, $x=1,2,3$ or 4) are copied to parameter set y (target data set, $\mathrm{y}=1,2,3$ or 4) (parameter set x remains unchanged, the original contents of parameter set y are overwritten). x and y are the respective parameter set numbers (1,2,3 or 4) of the source and target parameter sets. The copy operation is started by switching P055 over into parameter mode when P055=1xy. During the copy operation, the numbers of the parameters being copied are displayed on the operator panel (PMU). At the end of the copy operation, P055 is reset to P055=0xy.	$\begin{aligned} & 011 \text { to } 143 \\ & 1 \end{aligned}$	Ind: None FS=012 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{r 0 5 6} \\ & \text { (G175) } \end{aligned}$	Display of active function data set	$\begin{aligned} & 1 \text { to } 4 \\ & 1 \end{aligned}$	Ind: None Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { P057 } \\ & * \\ & \text { (G175) } \end{aligned}$	Copy Bico data set This parameter allows parameter set 1 or 2 to be copied to parameter set 1 or 2. This function is applicable only to parameters with 2 indices in the Bico data set (see also Section 9.1, Data sets and Section 9.11, and Section 8, Sheet G175). 0xy Do nothing, automatic resetting value at the end of a copy operation. 1xy The contents of parameter set x (source data set, $x=1$ or 2) are copied to parameter set y (target data set, $\mathrm{y}=1$ or 2) (parameter set x remains unchanged, the original contents of parameter set y are overwritten). x and y are the respective parameter set numbers (1 or 2) of the source and target parameter sets. The copy operation is started by switching P057 over into parameter mode when P057=1xy. During the copy operation, the numbers of the parameters being copied are displayed on the operator panel (PMU). At the end of the copy operation, P057 is reset to $\mathrm{P} 057=0 \mathrm{xy}$.	$\begin{aligned} & 011 \text { to } 121 \\ & 1 \end{aligned}$	Ind: None FS=012 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { r058 } \\ \text { (G175) } \\ \hline \end{array}$	Display of active Bico data set	$\begin{array}{\|l} \hline 1 \text { to } 2 \\ 1 \end{array}$	Ind: None Type: O2	$\mathrm{P} 052=3$
r059	Display of operating state Meaning as for r000	$\begin{aligned} & 0.0 \text { to } 14.5 \\ & 0.1 \end{aligned}$	Ind: None Type: O2	$\mathrm{P} 052=3$

11.4 Definition of SIMOREG CM converter

	Software version Converter software release i001: CUD i002: Slot D (board location 2) i003: Slot E (board location 2) i004: Slot F (board location 3) i005: Slot G (board location 3)	$\begin{aligned} & 0.0 \text { to } 9.9 \\ & 0.1 \end{aligned}$	Ind: 5 Type: O2	P052 = 3
r061 (G101)	Creation date of software i001: Year i002: Month i003: Day i004: Hour i005: Minute		Ind: 5 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { r062 } \\ & \text { (G101) } \end{aligned}$	Checksum i001: Converter firmware checksum i002: Boot sector checksum		Ind: 2 Type: L2	P052 $=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
r063 (G101)	Board code Identification code of boards mounted in locations 1 to 3 of electronics box. Arrangement of board locations 1 to 3 and slots D to G in electronics box i001: Board in location 1 71: CUD1 72: CUD1 + CUD2 i002: Board in slot D (upper slot of location 2) 111: Pulse encoder board (SBP) [SW 1.8 and later] 131 to 139: Technology board 141 to 149: Communications board 151, 152, 161: Special board (EB1, EB2, SLB) i003: Board in slot E (lower slot of location 2) 111: Pulse encoder board (SBP) [SW 1.8 and later] 131 to 139: Technology board 141 to 149: Communications board 151, 152, 161: Special board (EB1, EB2, SLB) i004: Board in slot F (upper slot of location 3) 111: Pulse encoder board (SBP) [SW 1.8 and later] 141 to 149: Communications board 151, 152, 161: Special board (EB1, EB2, SLB) i005: Board in slot G (lower slot of location 3) 111: Pulse encoder board (SBP) [SW 1.8 and later] 141 to 149: Communications board 151, 152, 161: Special board (EB1, EB2, SLB)		Ind: 5 Type: O2	P052 = 3
	Board compatibility Compatibility identifier of boards in locations 1 to 3 of electronics box. The compatibility identifier is bit-coded. To ensure the compatibility of a board, it must have a "1" setting at the same bit location of the parameter value as the CUD (in location 1 / index i001). Indices: i001: Compatibility identifier of board in location 1 i002: Compatibility identifier of board in slot D i003: Compatibility identifier of board in slot E i004: Compatibility identifier of board in slot F i005: Compatibility identifier of board in slot G		Ind: 5 Type: O2	$\mathrm{P} 052=3$
	Software identifiers Extended software version identifiers in locations 1, 2, and 3 of the electronics box Indices: i001: Software identifier of the board in location 1 i002: Software identifier of the board in slot D i003: Software identifier of the board in slot E i004: Software identifier of the board in slot F i005: Software identifier of the board in slot G		Ind: 5 Type: O2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.5 Definition of SIMOREG CM power section

P067	No meaning [SW 1.8 and later]	$\begin{aligned} & 1 \text { to } 5 \\ & 1 \end{aligned}$	Ind: None FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \\ & \hline \end{aligned}$
r068 (G101)	Options according to rating plate 0 No option 2 Option K00 (terminal expansion)		Ind: None Type: 02	$\mathrm{P} 052=3$
r069 (G101)	Serial number of SIMOREG CM i001: $1^{\text {st }}$ and $2^{\text {nd }}$ places of serial number i002: $3^{\text {rd }}$ and $4^{\text {th }}$ places of serial number i003: $5^{\text {th }}$ and $6^{\text {th }}$ places of serial number i004: $7^{\text {th }}$ and $8^{\text {th }}$ places of serial number i005: $9^{\text {th }}$ and $10^{\text {th }}$ places of serial number i006: $11^{\text {th }}$ and $12^{\text {th }}$ places of serial number i007: $13^{\text {th }}$ and $14^{\text {th }}$ places of serial number i008 to i015:0 i016: Checksum for serial number The serial number ASCII code is displayed in this parameter. The number is output in plaintext on the OP1S panel.		Ind: 16 Type: L2	$\mathrm{P} 052=3$
r070 (G101)	MLFB (order number) of SIMOREG CM converter The MLFB (60) is displayed in encoded form in this parameter. The MLFB is displayed in plaintext on the OP1S panel.		Ind: None Type: O2	$\mathrm{P} 052=3$
r071 (G101)	Rated converter connection voltage (armature) Rated converter connection voltage (armature) acc. to parameter U820	$\begin{aligned} & \hline 10 \text { to } 2000 \\ & \text { [V] } \\ & 1 \mathrm{~V} \\ & \hline \end{aligned}$	Ind: None Type: O2	$\mathrm{P} 052=3$
r072 (G101)	Converter rated DC current (armature) i001: Converter rated DC current (armature) according to setting in parameter U822 (output DC current at power terminals 1C1 and 1D1) i002: Actual converter rated DC current (armature) according to setting in parameter P076.001	$\begin{aligned} & 0.0 \text { to } 6553.5 \\ & {[\mathrm{~A}]} \\ & 0.1 \mathrm{~A} \end{aligned}$	Ind: 2 Type: O2	$\mathrm{P} 052=3$
r073 (G101)	Converter rated DC current (field) i001: Converter rated DC current (field) as specified on rating plate (output DC current at power terminals 3C and 3D) i002: Actual converter rated DC current (field) as set in parameter P076.002	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\mathrm{~A}]} \\ & 0.01 \mathrm{~A} \end{aligned}$	Ind: 2 Type: O2	$\mathrm{P} 052=3$
r074 (G101)	Converter rated supply voltage (field) Converter rated supply voltage (field) as specified on rating plate	$\begin{aligned} & 10 \text { to } 460 \\ & \text { [V] } \\ & \text { 1V } \end{aligned}$	Ind: None Type: O2	$\mathrm{P} 052=3$
P075	No function			
$\begin{aligned} & \begin{array}{l} \text { P076 } \\ * \end{array} \\ & \text { (G101) } \end{aligned}$	Reduction of converter rated DC current i001: Reduction of converter rated DC current (armature) i002: Reduction of converter rated DC current (field) For the purpose of achieving a close match between the converter and motor, the converter rated DC current is reduced to the value entered here. The current value of the device rated DC is indicated in parameter r072.002. The following values can be set: $10.0 \%, 20.0 \%, 33.3 \%, 40.0 \%, 50.0 \%, 60.0 \%, 66.6 \% 70.0 \%, 80.0 \%, 90.0 \%$ and 100.0\%	see column on left	Ind: 2 FS=100.0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
P077	No function			

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P078 } \\ & \text { (G101) } \end{aligned}$	Reduction of converter rated supply voltage i001: Rated input voltage converter armature i002: Rated input voltage converter field The rated voltage value of the power system actually used to supply the power section must be set in this parameter. This setting acts as the reference for the undervoltage, overvoltage and phase failure monitoring functions (see also P351, P352 and P353) as well as for connectors K0285 to K0289, K0291, K0292, K0301 K0302, K0303 and K0305	$\begin{aligned} & \text { i001: } 10 \text { to r071 } \\ & \text { i002: } 10 \text { to r074 } \\ & \text { [V] } \\ & \text { 1V } \end{aligned}$	Ind: 2 FS= i001: r071 i002: 400V except when r071 $=460 \mathrm{~V}$ then 460V Type: O2	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P079 } \\ & * \\ & \text { (G162) } \\ & \text { (G163) } \end{aligned}$	Short pulses / long pulses, armature gating unit Short pulses ($0.89 \mathrm{~ms}=$ approx. 16 degrees at 50 Hz) are output on the armature gating unit. Long pulses (pulse duration up to approx. 0.1 ms before next pulse) are output on the armature gating unit (e.g. required in cases where field is supplied via armature terminals). 2 Must be set on the 12-pulse series master and the 12-pulse series slave in a 12-pulse series connection (if two units are fed with two line voltages with a 30 degree phase displacement) [can only be set in SW 2.1 and later]. This setting has the following effect: - Long pulses (pulse duration up to approx. 0.1 ms before next pulse) are output every 30 degrees on the armature gating unit. - Precontrol for the armature current controller is switched over from 6-pulse operation to 12-pulse series connection operation (half the total motor EMF must be fed in P162). - P110 and P111 only have an effect on half the set total motor value (Sheets G162, G165) Must only be set on the paralleling device of the 12-pulse series master in a 12-pulse series connection (if two units are fed with line voltages with a 30 degree phase displacement). Long pulses (pulse duration up to approx. 0.1 ms before next pulse) are output every 30 degrees on the armature gating unit [can only be set in SW 2.1 and later].	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

11.6 Setting values for converter control

$\begin{aligned} & \text { P080 } \\ & * \\ & \text { (G140) } \end{aligned}$	Control word for brake control 1 The brake is a holding brake When the "Operating enable" command is cancelled or when the "Voltage disconnection" or "E-Stop" command is input, the "Close brake" command is not input until $n<n_{\min }$ (P370, P371) is reached. 2 The brake is an operating brake When the "Operating enable" command is cancelled or when the "Voltage disconnection" or "E-Stop" command is input, the "Close brake" command is input immediately, i.e. while the motor is still rotating.	1 to 2	$\begin{aligned} & \text { Ind: None } \\ & \text { FS=1 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P081 } \\ & \text { * } \\ & \text { (G165) } \end{aligned}$	EMF-dependent field weakening No field-weakening operation as a function of speed or EMF (100\% of rated motor field current is applied constantly as the internal field current setpoint). 1 Field-weakening operation by internal closed-loop EMF control to ensure that in field-weakening operation, i.e. at speeds above the motor rated speed (="field-weakening activation limit speed"), the motor EMF is maintained constantly at the setpoint $\mathrm{EMF}_{\text {set }}(\mathrm{K} 0289)=\mathrm{P} 101-\mathrm{P} 100$ * P110 (field current setpoint is the product of the EMF controller output and the precontrol component determined by the actual speed according to the field characteristic). NOTICE When P081=1, a valid field characteristic must be available (P117=1), otherwise the optimization run for field weakening (P051=27) must be executed.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \text { P082 } \\ & \text { * } \\ & (\mathrm{G} 166) \end{aligned}$	Operating mode for field	$\begin{aligned} & 0 \text { to } 24 \\ & 1 \end{aligned}$	Ind: None FS=2 Type: O2	$\begin{aligned} & \hline \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
	No field			
	$0 \quad$ No field is used (e.g. in the case of permanent-field motors). The field gating pulses are disabled. Unlike all other cases, the motor flux (K0290) is not calculated according to the field characteristic (P120 to P139) as a function of the actual field current (K0265), but set to the value for 100% rated flux.			
	Internal field power module			
	1 The field is switched with the line contactor - this setting must be selected if the mains supplies for the field and armature power sections are connected or disconnected simultaneously (field gating pulses are enabled/disabled at the same time as the line contactor is closed/opened, the field current decays with the field time constant).			
	2 Automatic injection of standstill field set in P257 after expiry of a time period set in P258, after converter has reached operating state o7 or higher.			
	3 Field ACTIVE continuously.			
	4 The field is switched with the "Auxiliaries ON" (B0251) signal			
	11 As setting 1			
	12 As setting 2			
	13 As setting 3			
	14 As setting 4			
	External field device			
	21 An external field device is used. The setpoint for the external field device is supplied via connector K0268 (e.g. via an analog output or the peer-to-peer interface).			
	The rated DC current of the external field device is set in parameter U838. This value is also displayed in parameter			
	r073.001. P076.002 is inoperative. If the external field device supplies an actual field current signal,			
	then this can be fed in at P612. If not, then P263 should be set to 1 or 2 .			
	If the external field device supplies an "I field < I field min" signal, then this can be fed in at P265. The field is controlled as described in para. 1.			
	22 As described in para. 21, but the field is controlled as described in para. 2.			
	23 As described in para. 21, but the field is controlled as described in para. 3.			
	24 As described in para. 21, but the field is controlled as described in para. 4.			
	[Values 11 to 24 can be set only in SW 1.9 and later]			
	NOTICE Even though changes to the parameter value from >0 to $=0$ are accepted in operating states of ≥ 01.0, they do not take effect until the converter reaches an operating state of ≥ 07.0.			

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P083 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G151) } \end{aligned}$	Selection of actual speed value 0 Actual speed value is not yet selected (fixed value 0\%) 1\quadActual speed value supplied by "Main actual value" channel (K0013) (terminals XT.103, XT.104) 2 Actual speed value supplied by "Actual speed from pulse encoder" channel (K0040) 3 Actual speed value supplied by "Actual EMF" channel (K0287), but weighted with P115 (operation without tacho) Note: The effectiveness of the overspeed monitoring function (see Section 8, function diagram G188) is restricted, since very high motor speeds can be reached if the EMF is utilized as the actual speed value when the actual field current value is too low. 4 Actual speed value is wired up freely (selected in P609)	$\begin{aligned} & \hline 0 \text { to } 4 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = 40 } \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P084 } \\ & * \\ & \text { (G160) } \end{aligned}$	Selection of closed-loop speed / current or torque control 1 Operation under closed-loop speed control 2 Operation under closed-loop current / torque control The setpoint supplied by the ramp-function generator output is input as a current or torque setpoint (speed controller is bypassed).	$\begin{aligned} & 1 \text { to } 2 \\ & 1 \end{aligned}$	Ind: None $F S=1$ Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
P085	Wait period after cancellation of inching command After an inching command has been cancelled, the drive dwells in operating state 01.3 for the time period set in this parameter with the controllers disabled, but the line contactor closed. This wait period does not commence until $n<n_{\text {min }}$ (P370, P371) is reached. If a new inching command is input within this period, then the drive switches to the next operating state (01.2 or lower). However, if the time runs out without a new inching command being entered, then the line contactor drops out and the drive switches to operating state o7 (see also Section 9).	$\begin{aligned} & 0.0 \text { to } 60.0 \\ & {[\mathrm{~s}]} \\ & 0.1 \mathrm{~s} \end{aligned}$	Ind: None FS=10.0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P086	Voltage failure period for automatic restart If the voltage fails (F001, F004) at one of the terminals $1 \mathrm{U} 1,1 \mathrm{~V} 1,1 \mathrm{~W} 1,3 \mathrm{U} 1$, $3 \mathrm{~W} 1,5 \mathrm{U} 1$ or 5W1, or if it drops below a certain threshold (F006 undervoltage) or exceeds a certain threshold (F007 overvoltage), or its frequency is too low (F008 frequency < P363) or too high (F009 frequency > P364), or if the actual field current drops to below 50% of the field current setpoint for more than 0.5 s (F005), then the corresponding fault message is activated only if the fault condition has not been eliminated within the "Automatic restart" period set in this parameter. The gating pulses and controllers are disabled while the fault conditions are present. The converter dwells in operating state o4 (in the case of armature line voltage fault) or o5 (in the case of field line voltage or field current fault) or in o13. Setting this parameter to 0.00 s deactivates the "Automatic restart" function. NOTE: Setting values higher than 2.00 s are effective only in relation to the voltages at terminals $1 \mathrm{U} 1,1 \mathrm{~V} 1,1 \mathrm{~W} 1,3 \mathrm{U} 1$ and 3 W 1 . A "restart time" of 2.00 s is operative in this case for the voltage at terminals 5 U 1 and 5W1 (electronics power supply).	$\begin{aligned} & \hline 0.00 \text { to } 10.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \end{aligned}$	Ind: None FS=0.40 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P087 } \\ & \text { (G140) } \end{aligned}$	Brake release time -10.00 to -0.01 s The "Release brake" command is delayed in relation to enabling of the gating pulses for thyristors and controllers (i.e. operating state I, II or --) by the delay time set in this parameter. During this period, the motor rotates against the closed brake. This setting is useful, for example, for vertical loads. $0.00 \text { to }+10.00 \mathrm{~s}$ When a "Switch-on" or "Inching" or "Crawling" command is input with "Operating enable", the drive dwells in operating state o1.0 for the delay period set in this parameter; the internal controller enabling signal, and thus enabling of the thyristor gating pulses, do not take effect until the delay period has elapsed so as to give the holding brake time to open.	$\begin{aligned} & -10.00 \text { to } 10.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)						
$\begin{aligned} & \hline \hline \text { P088 } \\ & \text { (G140) } \\ & \text { (G187) } \end{aligned}$	Brake closing time When the "Switch-on" or "Inching" or "Crawling" command is cancelled, or when the "Switch-on" command is not applied, or when the "Fast stop" command is input, the internal controller disabling signal, and thus the thyristor gating pulse disabling signal, is not actually activated after $n<n_{\text {min }}$ has been reached until the time delay set in this parameter has elapsed. During this period, the drive continues to produce a torque (operating state I, II or --), so as to give the holding brake enough time to close.	$\begin{aligned} & 0.00 \text { to } 10.00 \\ & \text { [s] } \\ & 0.01 \mathrm{~s} \end{aligned}$	Ind: None FS=0.00 Type: 02	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$						
P089	Maximum wait time for voltage to appear at power section When the line contactor has dropped out and the "Switch-on" or "Inching" or "Crawling" command is applied, the converter waits in operating states o4 and 05 for voltage to appear at the power section, for the actual field current value (K0265) to reach > 50\% of the field current setpoint (K0268). The corresponding fault message is activated if no power section voltage and no field current is detected. This parameter specifies the maximum total delay period in which the drive may dwell in operating states o4 and o5 (response threshold for function which checks for voltage at power section, see parameter P353).	$\begin{aligned} & 0.0 \text { to } 60.0 \\ & {[\mathrm{~s}]} \\ & 0.1 \mathrm{~s} \end{aligned}$	Ind: None FS=2.0 Type: 02	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$						
P090	Stabilization time for line voltage When the line contactor has dropped out and the "Switch-on" or "Inching" or "Crawling" command is applied, or after a phase failure has been detected in the armature or field mains supply with active "Automatic restart" function (P086>0), the converter dwells in operating state 04 and o5 until voltage appears at the power section. Line voltage is not assumed to be applied to the power terminals until the amplitude, frequency and phase symmetry have remained within the permissible tolerance for a period exceeding the setting in this parameter. The parameter applies to both the armature and field power connections. Caution: The setting in P090 must be lower than the settings in P086 (except when P086=0.0) and P089!	$\begin{aligned} & 0.01 \text { to } 1.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \end{aligned}$	Ind: None FS=0.02 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$						
P091	Setpoint threshold i001: Threshold for function "Switch on only if setpoint is low" The converter can be switched on only if a setpoint \|K0193	\leq P091.001 is applied to the ramp-function generator input. If the applied setpoint is higher, the converter dwells in state 06 after "switch-on" until the absolute setpoint value is \leq P091.001. i002: Threshold for function "Automatic pulse disable if setpoint is low" [SW 2.0 and later] If \|n-set	(K0193) and	n-act	(K0166) are less than P091.002, the firing pulses are disabled and the drive goes into state o2.0.	$\begin{aligned} & \hline 0.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 2 FS= i001: 199.99 i002: 0.00 Type: 02	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
P092 (G200)	Delay times for field reversal These times are used to control a reversing contactor for reversing the field polarity on a 1-quadrant converter with field reversal. i001: Delay time for the field reduction before opening of the current field contactor When field polarity reversal is initiated, the delay time set in P092.i001 elapsed after reaching $I_{\text {field }}$ (K0265) < I $I_{\text {field }}$ min (P394) before the current field contactor is opened. i002: Delay time before actuation of the new field contactor After opening the current field contactor the delay time set in P092.i002 elapsed before the field contactor for the "new" field direction is actuated (drop-out delay time of the contactor use is usually longer then the pick-up delay time). i003: Delay time for enabling the field firing pulses After actuation of the field contactor for the "new" field direction, the delay time acc. to P092.i003 elapses before the field firing pulses are enabled. This time must be longer than the pick-up delay time of the contactor used. i004: Delay time after the field build-up before armature enable After - directly following the field firing pulse enable - the actual field current value $l_{\text {field }}$ in the "new" field direction has reached the value $I_{\text {field }}(K 0265)>I_{\text {field }}$ set $(K 0268) * P 398 / 100 \%$, the delay time acc. to P092.i004 elapses. Then the internal (armature) "Operating enable of field reversal" is issued, i.e. the Stopping of the drive in operating state ≥ 01.4 is canceled. This delay time permits waiting of the end of overshooting of the actual field current value and therefore overshooting of the EMF of the DC machine straight after the field current has been built up again, before the "armature operating enable" is issued. This is intended to prevent armature overcurrents due to excessive EMF during overshooting.	$\begin{aligned} & \hline 0.0 \text { to } 10.0 \\ & {[\mathrm{~s}]} \\ & 0.1 \mathrm{~s} \end{aligned}$	Ind: 4 FS= i001: 3.0 i002: 0.2 i003: 0.1 i004: 3.0 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
P093	Pick-up delay for line contactor Pick-up of the line contactor is delayed in relation to "Switch on auxiliaries" by the time delay set in this parameter.	$\begin{aligned} & \hline 0.0 \text { to } 120.0 \\ & {[\mathrm{~s}]} \\ & 0.1 \mathrm{~s} \end{aligned}$	Ind: None FS=0.0 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P094	Switch-off delay for auxiliaries Switch-off of the auxiliaries is delayed in relation to dropout of the line contactor by the time delay set in this parameter.	$\begin{aligned} & \hline 0.0 \text { to } 6500.0 \\ & \text { [s] } \\ & 0.1 \mathrm{~s} \end{aligned}$	Ind: None FS=0.0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P095	Pick-up time for a contactor in the DC circuit If the DC output (terminals 1C1 and 1D1) is switched through to the motor via a contactor, and if this contactor is controlled by the "Relay for line contactor" (terminals 109 and 110), then the gating pulses may not be enabled until the contactor has safely picked up. For this purpose, it may be necessary to parameterize an additional delay time for the pick-up operation. The timer set in P095 commences during a pick-up operation when the converter reaches operating state 05 . If the timer has still not run down by the time the converter exits state o4, then the converter dwells in state o3.2 until the timer has finished. During the time period set in P095, the "Main contactor checkback" signal must also switch to "1" if this function is activated (see P691). Otherwise the converter dwells in state o3.3 until the timer has finished and fault message F004 is then output with fault value 6.	$\begin{aligned} & 0.00 \text { to } 1.00 \\ & \text { [s] } \\ & 0.01 \mathrm{~s} \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P096 (G117)	After-running time for the device fan After the drive has been shut down (operating state ≥ 7.0 reached) the device fan continues to run until the power section has cooled down. With this parameter you can set the minimum duration for the after-running time. Note: If the field current is not switched off after the drive is shut down (see P082), the field current can prevent cooling of the power section. In this case, the equipment blower is never switched off.	$\begin{aligned} & \hline 0.0 \text { to } 60.0 \\ & \text { [min] } \\ & 0.1 \mathrm{~min} \end{aligned}$	Ind: None FS=4.0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { P097 } \\ & * \\ & (\mathrm{G} 166) \end{aligned}$	Response of field current to fault messages [SW 2.1 and later] $0 \quad$ Field pulses are blocked when a fault message is activated 1 Field pulses are not blocked when a fault message is activated, but the field current setpoint cannot be increased above its current setting.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: none FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
P098	Contactor in DC circuit [SW 2.1 and later] $0 \quad$ The DC circuit does not include a contactor 1 The DC circuit contains a contactor which is controlled by the "relay for the line contactor" (terminals 109 and 110). The values for the armature voltage Ua and for EMF (K0123, K0124, K0286, K0287, K0291, K0292, r037, r038) are set to 0\% whenever B0124 = 0 (request main contactor not active). This is because the motor terminals are separated in this case from output terminals 1C and 1D and it is then impossible to measure the armature voltage Ua (or the EMF).	$\begin{aligned} & \hline 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: none FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { online } \end{aligned}$

11.7 Definition of motor

$\begin{aligned} & \hline \text { P100 } \\ & * \\ & \text { FDS } \\ & \text { (G165) } \\ & \hline \end{aligned}$	Rated motor armature current (acc. to motor rating plate) 0.0 Parameter not yet set	0.0 to 6553.0 [A] 0.1A	Ind: 4 FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P101 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	Rated motor armature voltage (acc. to motor rating plate) Notes: One of the functions of this parameter is to determine the point at which field-weakening operation commences. If possible, the rated motor armature voltage + the voltage drop in the motor feeder cable (for a current setting acc. to P100) should be set in P101.	$\begin{aligned} & 10 \text { to } 2800 \\ & \text { [V] } \\ & 1 \mathrm{~V} \end{aligned}$	Ind: 4 FS=400 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P102 } \\ & * \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	Rated motor field current (acc. to motor rating plate) 0.00 Parameter not yet set	$\begin{aligned} & 0.00 \text { to } 600.00 \\ & {[\mathrm{~A}]} \\ & 0.01 \mathrm{~A} \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P103 } \\ & * \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	Minimum motor field current Note: P103 must be set to $<50 \%$ of P102 to execute the optimization run for field weakening (P051=27).	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\mathrm{~A}]} \\ & 0.01 \mathrm{~A} \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P104 } \\ & * \\ & \text { FDS } \\ & \text { (G161) } \end{aligned}$	Speed $\mathbf{n 1}$ (acc. to motor rating plate) $1^{\text {st }}$ point (speed value) in speed-dependent current limitation. This parameter is used together with P105, P106, P107 and P108 to define the characteristic of the current limiting value as a function of actual speed.	1 to 10000 [rev/min] $1 \mathrm{rev} / \mathrm{min}$	$\begin{array}{\|l\|} \hline \text { Ind: } 4 \\ \text { FS=5000 } \\ \text { Type: O2 } \end{array}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P105 } \\ & * \\ & \text { FDS } \\ & \text { (G161) } \end{aligned}$	Armature current I1 (acc. to motor rating plate) $1^{\text {st }}$ point (current value) in speed-dependent current limitation. This parameter is used together with P104, P106, P107 and P108 to define the characteristic of the current limiting value as a function of actual speed.	$\begin{aligned} & 0.1 \text { to } 6553.0 \\ & {[A]} \\ & 0.1 \mathrm{~A} \end{aligned}$	Ind: 4 FS=0.1 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P106 } \\ & { }_{*} \\ & \text { FDS } \\ & \text { (G161) } \end{aligned}$	Speed n2 (acc. to motor rating plate) $2^{\text {nd }}$ point (speed value) in speed-dependent current limitation. This parameter is used together with P104, P105, P107 and P108 to define the characteristic of the current limiting value as a function of actual speed.	1 to 10000 [rev/min] 1rev/min	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=5000 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P107 } \\ & * \\ & \text { FDS } \\ & \text { (G161) } \end{aligned}$	Armature current l2 (acc. to motor rating plate) $2^{\text {nd }}$ point (current value) in speed-dependent current limitation. This parameter is used together with P104, P105, P106 and P108 to define the characteristic of the current limiting value as a function of actual speed.	$\begin{aligned} & 0.1 \text { to } 6553.0 \\ & {[A]} \\ & 0.1 \mathrm{~A} \end{aligned}$	Ind: 4 FS=0.1 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P108 } \\ & * \\ & \text { FDS } \\ & \text { (G161) } \end{aligned}$	Maximum operating speed n3 When the speed-dependent current limitation is in use, the maximum speed which is defined by the selection of the actual speed source as set in P083, must be entered in this parameter: When P083=1 (analog tacho): Speed at which a tacho voltage as set in P741 is reached When P083=2 (pulse encoder): Same value as maximum speed set in P143 When P083=3 (operation without tacho): Speed at which EMF as set in P115 is reached	$\begin{aligned} & 1.0 \text { to } 10000 \\ & {[\mathrm{rev} / \mathrm{min}]} \\ & 1 \mathrm{rev} / \mathrm{min} \end{aligned}$	Ind: 4 FS=5000 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P109 } \\ & * \\ & \text { FDS } \\ & \text { (G161) } \end{aligned}$	Control word for speed-dependent current limitation	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
P110 FDS (G162) (G165) P111	Armature circuit resistance This parameter is set automatically during the optimization run for precontrol and current controller (armature and field) (P051=25).	$\begin{aligned} & \hline 0.000 \text { to } 32.767 \\ & {[\Omega]} \\ & 0.001 \Omega \end{aligned}$	Ind: 4 FS=0.000 Type: O2	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P111 FDS (G162) (G165)	Armature circuit inductance This parameter is set automatically during the optimization run for precontrol and current controller (armature and field) (P051=25).	$\begin{array}{\|l} \hline 0.000 \text { to } 327.67 \\ {[\mathrm{mH}]} \\ 0.01 \mathrm{mH} \end{array}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P112 } \\ & \text { FDS } \\ & (\text { G166 }) \end{aligned}$	Field circuit resistance This parameter is set automatically during the optimization run for precontrol and current controller (armature and field) (P051=25).	$\begin{aligned} & 0.0 \text { to } 3276.7 \\ & {[\Omega]} \\ & 0.1 \Omega \end{aligned}$	Ind: 4 FS=0.0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P113 } \\ & \text { * } \\ & \text { FDS } \end{aligned}$	Continuous current factor torque control / current control This parameter defines the current to be permitted as a continuous current by the $\mathrm{I}^{2} \mathrm{t}$ motor monitoring function without activation of alarm message A037 or fault message F037. This current is the product of calculation P113 * P100.	$\begin{aligned} & 0.50 \text { to } 2.00 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=1.00 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P114 } \\ & \text { FDS } \end{aligned}$	Thermal time constant of motor (see Section 9.14) $0.0 \quad 12 \mathrm{t}$ monitoring deactivated	$\begin{aligned} & 0.0 \text { to } 80.0 \\ & \text { [min] } \\ & 0.1 \mathrm{~min} \end{aligned}$	Ind: 4 FS=10.0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P115 } \\ & \text { FDS } \\ & (\mathrm{G} 151) \\ & \hline \end{aligned}$	EMF at maximum speed in operation without tachometer This parameter is used to adjust the speed in cases where the internal actual EMF value is applied as the actual speed value. P115 defines the EMF which corresponds to maximum speed as a percentage of P078.001.	$\begin{aligned} & 1.00 \text { to } 140.00 \\ & \text { [\% of P078.001] } \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=100.00 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P117 } \\ & * \\ & \text { FDS } \end{aligned}$	Control word for field characteristic 0 No valid field characteristic has yet been recorded $1 \quad$ Valid field characteristic (P118 to P139 valid) The parameter is set automatically during the field-weakening optimization run (P051=27).	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P118 } \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	Rated EMF value EMF that is reached with a full field (according to parameter P102) and a speed as set in parameter P119. The parameter is set automatically during the field-weakening optimization run (P051=27) and specifies in this case the setpoint EMF in the fieldweakening range. Note: As regards the closed-loop field-weakening control, only the ratio between P118 and P119 is relevant. The EMF setpoint in the field-weakening range is determined by (P101-P100 * P110). When the setting in P100, P101 or P110 is changed subsequently, the field-weakening optimization run need not be repeated. However, P118 then no longer defines the setpoint EMF in the field-weakening range. When the setting in parameter P102 is changed subsequently, the fieldweakening optimization run must be repeated, the same applies if the maximum speed setting is subsequently re-adjusted.	$\begin{aligned} & \hline 0 \text { to } 2800 \\ & \text { [V] } \\ & 1 \mathrm{~V} \end{aligned}$	Ind: 4 FS=340 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P119 } \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	Rated speed Speed at which an actual EMF value as set in parameter P118 is reached at full field (according to parameter P102). This parameter is set automatically during the optimization run for field weakening (P051=27) and specifies in this case the field-weakening activation limit speed. Note: As regards the closed-loop field-weakening control, only the ratio between P118 and P119 is relevant. When the setting in P100, P101 or P110 is changed subsequently, the field-weakening optimization run need not be repeated. However, P119 then no longer defines the field-weakening activation limit speed. When the setting in parameter P102 is changed subsequently, the fieldweakening optimization run must be repeated, the same applies if the maximum speed setting is subsequently re-adjusted.	$\begin{aligned} & 0.0 \text { to } 199.9 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS=100.0 Type: O 2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

Magnetization characteristic (field characteristic)

Parameters P120 to P139 determine the curve shape of the magnetization characteristic (field characteristic) in normalized representation (see example field characteristic below for further details).

Note:
When the setting in parameter P102 is changed subsequently, the field-weakening optimization run must be repeated, because this alters the degree of saturation and thus the shape of the magnetization characteristic. (When parameter P100, P101 or P110, or the maximum speed adjustment, is subsequently altered, the settings in P120 to P139 remain the same, but the values in P118 and/or P119 are changed).

$\begin{aligned} & \hline \text { r120 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \end{aligned}$	Field current for 0\% motor flux (field characteristic, point no. 0)	$\begin{array}{\|l\|} \hline 0.0 \\ \text { [\% of P102] } \\ 0.1 \% \text { of P102 } \end{array}$	Ind: 4 Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { P121 } \\ & \text { FDS } \\ & \text { (G165) } \\ & (\text { G166 }) \\ & \hline \end{aligned}$	Field current for 5\% motor flux (field characteristic, point no. 1)	$\begin{array}{\|l} \hline 0.0 \text { to } 100.0 \\ \text { [\%] } \\ 0.1 \% \text { of P102 } \end{array}$	Ind: 4 FS=3.7 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P122 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 10\% motor flux (field characteristic, point no. 2)	$\begin{array}{\|l\|} \hline 0.0 \text { to } 100.0 \\ \text { [\% of P102] } \\ 0.1 \% \text { of P102 } \end{array}$	Ind: 4 FS=7.3 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P123 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 15\% motor flux (field characteristic, point no. 3)	$\begin{array}{\|l\|} \hline 0.0 \text { to } 100.0 \\ \text { [\% of P102] } \\ 0.1 \% \text { of P102 } \end{array}$	Ind: 4 FS=11.0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P124 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 20\% motor flux (field characteristic, point no. 4)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=14.7 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P125 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 25\% motor flux (field characteristic, point no. 5)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=18.4 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P126 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 30\% motor flux (field characteristic, point no. 6)	$\begin{array}{\|l} \hline 0.0 \text { to } 100.0 \\ \text { [\% of P102] } \\ 0.1 \% \text { of P102 } \end{array}$	Ind: 4 FS=22.0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P127 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 35\% motor flux (field characteristic, point no. 7)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=25.7 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P128 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 40\% motor flux (field characteristic, point no. 8)	$\begin{array}{\|l\|} \hline 0.0 \text { to } 100.0 \\ \text { [\% of P102] } \\ 0.1 \% \text { of P102 } \end{array}$	Ind: 4 FS=29.4 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P129 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 45\% motor flux (field characteristic, point no. 9)	$\begin{array}{\|l} \hline 0.0 \text { to } 100.0 \\ \text { [\% of P102] } \\ 0.1 \% \text { of P102 } \end{array}$	Ind: 4 FS=33.1 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P130 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 50\% motor flux (field characteristic, point no. 10)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=36.8 Type: 02	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P131 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \end{aligned}$	Field current for 55\% motor flux (field characteristic, point no. 11)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=40.6 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P132 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \end{aligned}$	Field current for 60\% motor flux (field characteristic, point no. 12)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=44.6 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P133 } \\ \text { FDS } \\ \text { (G165) } \\ \text { (G166) } \end{array}$	Field current for 65\% motor flux (field characteristic, point no. 13)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=48.9 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P134 } \\ \text { FDS } \\ \text { (G165) } \\ \text { (G166) } \end{array}$	Field current for 70\% motor flux (field characteristic, point no. 14)	$\begin{array}{\|l\|} \hline 0.0 \text { to } 100.0 \\ \text { [\% of P102] } \\ 0.1 \% \text { of P102 } \end{array}$	Ind: 4 FS=53.6 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P135 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 75\% motor flux (field characteristic, point no. 15)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=58.9 Type: O 2	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P136 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 80\% motor flux (field characteristic, point no. 16)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=64.9 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P137 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 85\% motor flux (field characteristic, point no. 17)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=71.8 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P138 } \\ & \text { FDS } \\ & \text { (G165) } \\ & \text { (G166) } \\ & \hline \end{aligned}$	Field current for 90\% motor flux (field characteristic, point no. 18)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=79.8 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
P139 FDS (G165) (G166)	Field current for 95\% motor flux (field characteristic, point no. 19)	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & \text { [\% of P102] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=89.1 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

Example of a field characteristic

The example characteristic exhibits a sharper curvature (i.e. a lower degree of saturation) than the field characteristic produced by the factory setting
Φ

Motor flux in \% of ratet flux

90

85

80

Field current in \% of P102

1) For actual field currents I_{f} of $>100 \%$ of $P 102$, the characteristic is extended linearly for internal calculation of the motor flux.

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.8 Definition of pulse encoder, speed sensing using pulse encoder

The following types of pulse encoder can be used (type selection in P140):

1. Pulse encoder type 1

Encoder with two pulse tracks mutually displaced by 90° (with/without zero marker)

2. Pulse encoder type 1a

Encoder with two pulse tracks mutually displaced by 90° (with/without zero marker). The zero marker is converted internally to a signal
in the same way as on encoder type 1.

3. Pulse encoder type 2

Encoder with one pulse track per direction of rotation (with/without zero marker).

4. Pulse encoder type 3

Encoder with one pulse track and one output for direction of rotation (with/without zero marker)

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

Notes on selecting a pulse encoder (number of pulses):
The lowest speed which can be measured by a pulse encoder is calculated with the following equation:

$$
n \min [\mathrm{rev} / \mathrm{min}]=21973 * \frac{1}{X * P 141} \quad \text { Formula applies with a nominal measuring time of } 1 \mathrm{~ms} \text { when } \mathrm{P} 146=0 \text { and } \mathrm{P} 147=0
$$

The following applies:
$X=1$ for $1 x$ evaluation of pulse encoder signals (P144=0)
2 for $2 x$ evaluation of pulse encoder signals (P144=1)
4 for $4 x$ evaluation of pulse encoder signals (P144=2)
see also "Single/multiple evaluation of encoder pulses"
Lower speeds are interpreted as $\mathrm{n}=0$.
The frequency of the pulse encoder signals at terminals 28 and 29 or 30 and 31 must not be higher than 300 kHz . The highest speed which can be measured by a pulse encoder is calculated with the following equation:
$n \max [\mathrm{rev} / \mathrm{min}]=\frac{18000000}{P 141}$

When selecting a pulse encoder, therefore, it is important to ensure that the lowest possible speed $\neq 0$ is significantly higher than $\mathrm{n}_{\text {min }}$ and the highest possible speed does not exceed $n_{\text {max }}$

$$
\begin{array}{|l}
\hline I M \gg \frac{21973}{X * n \min [r e v / \min]} \\
\hline I M \leq \frac{18000000}{n \max [r e v / \min]}
\end{array}
$$

Equations for selection of pulses per revolution IM of pulse encoder

Single/multiple evaluation of encoder pulses:

The setting for single/multiple evaluation of encoder pulses is applicable for both the speed and position sensing functions.
1x evaluation: Only the rising edges of one pulse track are evaluated (applies to all encoder types).
$2 x$ evaluation: The rising and falling edges of one pulse track are evaluated (can be set for encoder types 1, 1a and 2).
$4 x$ evaluation: The rising and falling edges of both pulse tracks are evaluated (can be set for encoder types 1 and 1a)

See parameters P450 and P451 for position sensing function

$\begin{aligned} & \hline \text { P140 } \\ & \text { (G145) } \end{aligned}$	Selection of pulse encoder type See beginning of this Section (11.8) for pulse encoder types	$\begin{aligned} & 0 \text { to } 4 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P141 } \\ & (\mathrm{G} 145) \end{aligned}$	Number of pulses of pulse encoder	1 to 32767 [pulses/rev] 1 pulse/rev	Ind: None FS=500 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { P142 } \\ & \text { (G145) } \end{aligned}$	Matching to pulse encoder signal voltage $0 \quad$ Pulse encoder outputs 5 V signals 1 Pulse encoder outputs 15 V signals Matching of internal operating points to signal voltage of incoming pulse encoder signals. NOTICE Resetting parameter P142 to the alternative setting does not switch over the supply voltage for the pulse encoder (terminals X173.26 and 27). Terminal X173.26 always supplies +15 V . An external voltage supply is must be provided for pulse encoders requiring a 5 V supply.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=1 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

| PNU | Description | Value range
 $[$ Unit $]$
 Steps | No. indices
 Factory
 setting
 Type |
| :--- | :--- | :--- | :--- | :--- |
| P143
 FDS
 (G145) | Setting the maximum speed for pulse encoder operation
 Change
 (Access $/$
 Status) | | |
| 100%. | | | |

Control parameters for speed sensing with pulse encoder P144 to P147: P144 and P147 determine the basic setting for actual speed sensing by means of pulse encoder (single or multiple evaluation of pulse encoder signals and nominal measuring time) and thus also define the lowest possible measurable speed (minimum speed). P145 and P146 can be used in special cases to extend the measurable speed range down to even lower speeds, on the basis of the minimum speed defined by the settings in P144 and P147.				
$\begin{aligned} & \hline \text { P144 } \\ & * \\ & \text { FDS } \\ & \text { (G145) } \end{aligned}$	Multiple evaluation of encoder signals $\begin{array}{ll} 0 & \underline{1 x} \text { evaluation of pulse encoder signals } \\ 1 & \underline{2 x} \text { evaluation of pulse encoder signals (for encoder types } 1,1 \mathrm{a}, 2 \text {) } \\ 2 & \underline{4 x} \text { evaluation of pulse encoder signals (for encoder types } 1,1 \mathrm{a}) \end{array}$ Note: In contrast to the 1 x evaluation method, 2 x or 4 x evaluation reduces the minimum measurable speed by a factor of 2 or 4 respectively, but may produce an "unsteady" actual speed value on encoders with unequal pulse/pause ratio or without an exact 90° displacement between encoder signals.	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	Ind: 4 FS=2 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P145 } \\ * \\ \text { FDS } \\ (\mathrm{G} 145) \end{array}$	Automatic measuring range switchover for measurement of low speeds - switchover of multiple evaluation 0 Automatic switchover of multiple evaluation of pulse encoder signals OFF (i.e. P144 is always active) 1 Automatic switchover of multiple evaluation of pulse encoder signals ON (i.e. when P144 $=0,2 x$ evaluation is selected for low speeds and $4 x$ evaluation for very low speeds. When P144 $=1$, $4 x$ evaluation is selected for low speeds) As opposed to P145 $=0$, this setting reduces the minimum measurable speed by up to a factor of 4 . Caution: Switching over the multiple evaluation method for encoder pulses also affects the position sensing function in the measuring channel. For this reason, this setting may not be used in conjunction with positioning operations. Connectors K0042 to K0044 are inoperative when P145 = 1 .	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P146 } \\ & * \\ & \text { FDS } \\ & \text { (G145) } \end{aligned}$	Automatic measuring range switchover for measurement of low speeds - switchover of measuring time 0 Automatic switchover of measuring time OFF (i.e. P147 is always active) 1 Automatic switchover of measuring time ON This setting extends the measuring time for low speeds (based on the measuring time set in P147, i.e. when P147 = 0, the nominal measuring time is switched over to 2 ms for low speeds and to 4 ms for very low speeds. When P147 = 1, the nominal measuring time is switched over to 4 ms for low speeds) Caution: When P146=1, the minimum measurable speed can be reduced by up to a factor of 4 as opposed to a 0 setting. However, this setting results in a longer actual speed sensing delay in the extended minimum speed range.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \text { P147 } \\ & * \\ & \text { FDS } \\ & \text { (G145) } \end{aligned}$	Nominal measuring time of pulse encoder signal evaluation Notice: When P147=1 or 2 the minimum measurable speed can be reduced by a factor of 2 or 4 respectively as opposed to 0 or 12 to 20 . However, these settings increase the actual speed sensing delay. For this reason, P200 should be parameterized to at least 5 ms before the optimization run for the speed controller is executed.	$\begin{aligned} & \hline 0 \text { to } 20 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P148 } \\ & * \\ & \text { FDS } \\ & \text { (G145) } \end{aligned}$	Pulse encoder monitoring function $0 \quad$ Pulse encoder monitoring OFF (activation of F048 in response to a defective pulse encoder is disabled) 1 Pulse encoder monitoring ON (hardware monitoring of pulse encoder signals for implausible behaviour (i.e. frequent speed changes, distance between edges too short, encoder cable defect or short between two encoder cables) may cause activation of F048)	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=1 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { Offline } \end{aligned}$

11.9 Closed-loop armature current control, auto-reversing stage, armature gating unit

$\begin{aligned} & \text { P150 } \\ & \text { FDS } \\ & \text { (G163) } \end{aligned}$	Alpha G limit (armature) Rectifier stability limit for firing angle of armature converter.	$\begin{array}{\|l} \hline 0 \text { to } 165 \\ \text { [degrees] } \\ 1 \text { degrees } \end{array}$	Ind: 4 $\mathrm{FS}=5 / 30$ (for 1Q / 4Q converters) Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P151 } \\ & \text { FDS } \\ & \text { (G163) } \end{aligned}$	Alpha W limit (armature) Inverter stability limit for firing angle of armature converter. See also parameter P192 (Control word for the Alpha W limit)	$\begin{aligned} & 120 \text { to } 165 \\ & \text { [degrees] } \\ & 1 \text { degrees } \end{aligned}$	Ind: 4 FS=150 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 1 5 2} \\ & * \\ & \text { FDS } \\ & \text { (G163) } \end{aligned}$	Line frequency correction (armature) The internal line synchronization for the armature gating pulses derived from the power terminals (armature mains infeed) is averaged over the number of line periods set in this parameter. In operation on "weak" power supplies with unstable frequencies, for example, on a diesel-driven generator (isolated operation), this parameter must be set lower than for operation on "constant V / Hz " systems in order to achieve a higher frequency correction speed.	1 to 20	Ind: 4 FS=20 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P153 } \\ & * \\ & \text { FDS } \\ & \text { (G162) } \end{aligned}$	Control word for the armature precontrol 0 Armature precontrol disabled, output of the precontrol $=165^{\circ}$ 1 Armature precontrol active 2 Armature precontrol active but EMF influence only active on change in torque direction 3 Armature precontrol active but without EMF influence., i.e. for precontrol, the EMF is assumed to be 0. (recommended setting for supplying large inductance from armature terminals, e.g. solenoids, field supply)	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l\|} \hline \hline \text { P154 } \\ * \\ \text { FDS } \\ \text { (G162) } \end{array}$	Set armature current controller I component to zero $0 \quad$ Set controller I component to zero (i.e. to obtain pure P controller) 1 Controller I component is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P155 } \\ & \text { FDS } \\ & \text { (G162) } \end{aligned}$	Armature current controller P gain Proportional gain of armature current controller This parameter is automatically set during the optimization run for precontrol and current controller (armature and field) (P051=25). See also parameters P175	$\begin{array}{\|l\|} \hline 0.01 \text { to } 200.00 \\ 0.01 \end{array}$	Ind: 4 FS=0.10 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P156 } \\ & \text { FDS } \\ & \text { (G162) } \end{aligned}$	Armature current controller reset time This parameter is automatically set during the optimization run for precontrol and current controller (armature and field) (P051=25). See also parameters P176	$\begin{aligned} & 0.001 \text { to } 10.000 \\ & \text { [s] } \\ & 0.001 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0.200 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P157 } \\ & * \\ & \text { FDS } \\ & \text { (G162) } \end{aligned}$	Control word for current setpoint integrator 0 Reduced gearbox stressing The integrator is active only after a change in torque direction (acts as ramp-function generator for armature current setpoint only until the output reaches the setpoint at the integrator input for the $1^{\text {st }}$ time after a change in torque direction). 1 Current setpoint integrator The integrator is always active (acts as ramp-function generator for the armature current setpoint)	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P158 } \\ & \text { FDS } \\ & \text { (G162) } \end{aligned}$	Ramp-up time for current setpoint integrator (reduced gearbox stressing) Period of an acceleration ramp with a setpoint step change from 0% to 100% at r072.002. For older DC machines (i.e. unsuitable for steep rates of current rise), $P 157=1$ and $P 158=0.040$ must be set.	$\begin{aligned} & \hline 0.000 \text { to } 1.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0.000 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P159 } \\ & \text { FDS } \\ & \text { (G163) } \end{aligned}$	Switchover threshold for auto-reversing stage (armature)	```0.00 to 100.00 [%] 0.01% of n controller output```	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0.01 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P160 FDS (G163)	Additional torque-free interval Additional torque-free interval for torque direction change in $4 Q$ operation. It is particularly important to set this parameter to values of >0 for converter armatures which supply large inductances (e.g. lifting solenoids).	$\begin{aligned} & 0.000 \text { to } 2.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0.000 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 1 6 1} \\ & \text { FDS } \\ & \text { (G163) } \end{aligned}$	Additional Alpha W pulses with disabled second pulses Number of additional Alpha W pulses with disabled second pulses after detection of $\mathrm{I}=0$ message prior to a change in torque direction. It is particularly important to set this parameter to values of >0 for converter armatures which supply large inductances (e.g. lifting solenoids). These pulses cause the current to decay prior to a change in torque direction. When it drops below the thyristor holding current value, the current is suddenly chopped by the unfired second thyristor and the residual energy stored in the load inductor must be dissipated via a suppressor circuit (e.g. a varistor) to prevent the load inductor from producing a surge voltage. See also P179.	$\begin{aligned} & 0 \text { to } 100 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P162 } \\ & * \\ & \text { FDS } \\ & \text { (G162) } \end{aligned}$	EMF calculation method for armature precontrol $0 \quad$ The EMF derived from the measured armature voltage (K0123) is applied 1 The EMF derived from the calculated armature voltage (K0124) is applied (the purpose of this setting is to prevent the occurrence of any low-frequency ($<15 \mathrm{~Hz}$) armature current fluctuations) 2 The EMF for armature current precontrol is calculated from the armature voltage selected with P193 (the resistive + inductive armature voltage drop is subtracted internally; if P079 = 2, then P110 and P111 only have an effect on half the value) [can only be set in SW 2.1 and later] 3 The connector selected with P193 serves as the EMF for armature current precontrol. This setting also facilitates DC link voltage control [can only be set in SW 2.1 and later]	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P163 } \\ & * \\ & \text { FDS } \\ & \text { (G162) } \end{aligned}$	EMF filtering method for armature precontrol	$\begin{aligned} & 0 \text { to } 7 \\ & 1 \end{aligned}$	Ind: 4 $\mathrm{FS}=3$ Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P164 } \\ & * \\ & \text { FDS } \\ & \text { (G162) } \end{aligned}$	Set armature current controller P component to zero 0 Set controller P component to zero (i.e. to obtain pure I controller) 1 Controller P component is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P165 } \\ & * \\ & \text { BDS } \\ & \text { (G163) } \end{aligned}$	Select the binector to control the "Enable a torque direction for torque direction change" function 0 = Binector B0000 1 = Binector B0001 etc. Binector status = 0 ... Enable for M0 or MII 1 ... Enable for M0 or MI	All binector numbers 1	Ind: 2 FS=220 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.10 Current limitation, torque limitation

P169	Select closed-loop torque / current control	0 to 1	Ind: 4 $*$ FDS (G160)	See parameter P170

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P170 } \\ & * \\ & \text { FDS } \\ & \text { (G160) } \end{aligned}$	Select closed-loop torque / current control Note: A valid field characteristic (P117=1) must be available when P169 or $\mathrm{P} 170=1$. If one is not, the optimization run for field weakening ($\mathrm{P} 051=27$) must be executed. P263 determines the input quantity for the motor flux calculation.	$\begin{aligned} & \hline 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P171 } \\ \text { FDS } \\ \text { (G160) } \\ \text { (G161) } \\ \hline \end{array}$	System current limit in torque direction I	$\begin{aligned} & 0.0 \text { to } 300.0 \\ & \text { [\% of P100] } \\ & 0.1 \% \text { of P100 } \end{aligned}$	Ind: 4 FS=100.0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P172 FDS (G160) (G161)	System current limit in torque direction II	$\begin{aligned} & -300.0 \text { to } 0.0 \\ & \text { [\% of P100] } \\ & 0.1 \% \text { of P100 } \end{aligned}$	Ind: 4 FS=-100.0 Type: 12	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P173 } \\ & * \\ & \text { BDS } \\ & \text { (G160) } \end{aligned}$	Source for "Torque control / Current control" switchover [SW 1.9 and later] The binector selected here has the same effect as parameter P170. $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P175 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G162) } \end{aligned}$	Source for variable P gain [SW 1.8 and later] The content of the selected connector acts as the P gain for the armature current controller after multiplication with P155.	All connector numbers 1	Ind: 4 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { P176 } \\ * \\ \text { FDS } \\ \text { (G162) } \end{array}$	Source for variable Integration time [SW 1.8 and later] The content of the selected connector acts as the integration time for the armature current controller after multiplication with P156.	All connector numbers 1	Ind: 4 FS=1 Type: L2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \text { P177 } \\ & * \\ & \text { BDS } \\ & \text { (G163) } \end{aligned}$	Source for the command "no immediate pulse disable" [SW 1.8 and later] A low signal causes the armature firing pulses to be disabled immediately without waiting for the $\mathrm{I}=0$ signal or without outputting alpha-W pulses for current reduction. The additional alpha-W pulses (acc. to parameters P179 and P161) are not output either. As long as this command is pending, it is not possible to fall below operating state o1.6. This command can be used, for example, if it is not a motor that is supplied by the SIMOREG CM but a field and the current is to be reduced via an external parallel-connected de-excitation resistance.	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 1 7 8} \\ & * \\ & \text { BDS } \\ & (\mathrm{G} 163) \end{aligned}$	Source for the command "fire all thyristors simultaneously" [SW 1.8 and later] Setting this command (high signal) causes all six thyristors of the thyristor bridge I to be fired continuously and simultaneously. Switchover to long pulses is automatic. This command is only active if no line voltage is applied to the armature power section.	All binector numbers 1	Ind: 2 $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \text { P179 } \\ & \text { FDS } \\ & \text { (G163) } \end{aligned}$	Additional Alpha W pulses with enabled second pulses [SW 1.9 and later] Number of additional Alpha W pulses with enabled second pulses after detection of $I=0$ message prior to a change in torque direction. It is particularly important to set this parameter to values of >0 for converter armatures which supply large inductances (e.g. lifting solenoids). These pulses cause the current to decay before a change in torque direction; the thyristors are fired in pairs to prevent sudden chopping, and the generation of a surge voltage by the load inductor, when the current drops below the thyristor holding current. When a change in torque direction is required, the current in the existing direction must be reduced. This is achieved in the following ways: If P179>0: 1) Alpha W pulses with enabled second pulses until the I=0 signal arrives 2) Additional Alpha W pulses with enabled second pulses (number as set in P179.F) 3) Additional Alpha W pulses with disabled second pulses (number as set in P161.F) 4) Additional torque-free interval (period as set in P160.F) If P179 $=0$: 1) Alpha W pulses with disabled second pulses until the I=0 signal arrives 2) Additional Alpha W pulses with disabled second pulses (number as set in P161.F) 3) Additional torque-free interval (period as set in P160.F)	$\begin{aligned} & 0 \text { to } 100 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P180 } \\ \text { FDS } \\ \text { (G160) } \end{array}$	Positive torque limit 1	```-300.00 to 300.00 [%] 0.01% of rated motor torque```	$\begin{array}{\|l\|} \hline \text { Ind: } 4 \\ \text { FS=300.00 } \\ \text { Type: } 12 \end{array}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P181 } \\ & \text { FDS } \\ & \text { (G160) } \end{aligned}$	Negative torque limit 1	```-300.00 to 300.00 [%] 0.01% of rated motor torque```	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=-300.00 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$
$\begin{aligned} & \text { P182 } \\ & \text { FDS } \\ & \text { (G160) } \end{aligned}$	Positive torque limit 2 If "Torque limit switchover" is selected (state of binector selected in P694 $=1$) and the speed is higher than the threshold speed set in parameter P184, then torque limit 2 is activated in place of torque limit 1.	```-300.00 to 300.00 [%] 0.01% of rated motor torque```	Ind: 4 FS=300.00 Type: 12	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P183 } \\ \text { FDS } \\ \text { (G160) } \end{array}$	Negative torque limit 2 If "Torque limit switchover" is selected (state of binector selected in P694 $=1$) and the speed is higher than the threshold speed set in parameter P184, then torque limit 2 is activated in place of torque limit 1.	```-300.00 to 300.00 [%] 0.01% of rated motor torque```	$\begin{array}{\|l\|} \hline \text { Ind: } 4 \\ \text { FS=-300.00 } \\ \text { Type: } 12 \end{array}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P184 } \\ & \text { FDS } \\ & \text { (G160) } \end{aligned}$	Threshold speed for torque limits If "Torque limit switchover" is selected (state of binector selected in P694 $=1$) and the speed (K0166) is higher than the threshold speed set in parameter P184, then torque limit 2 ($\mathrm{P} 182, \mathrm{P} 183$) is activated in place of torque limit 1 (P180, P181).	```0.00 to 120.00 [%] 0.01% of maximum speed```	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

$\begin{aligned} & \hline \text { P190 } \\ & \text { FDS } \\ & \text { (G162) } \end{aligned}$	Filter time for setpoint for armature current precontrol [SW 1.9 and later] Filtering of the armature current setpoint at the input of the precontrol for the armature current controller. The purpose of this filter is to decouple the armature current precontrol from the armature current controller.	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
P191 FDS (G162)	Filter time for setpoint for armature current controller [SW 1.9 and later] Filtering of the armature current setpoint at the input of the armature current controller. The purpose of this filter is to decouple the armature current precontrol from the armature current controller.	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P193 } \\ & * \\ & \text { (G162) } \end{aligned}$	Source for the actual armature voltage or EMF value for armature current precontrol [SW 2.1 and later] The connector which is used as the actual armature voltage (if P162.F = 2) or EMF (if P162.F = 3) value for armature current precontrol is selected. The selected connector value must correspond to half the motor armature voltage or half the motor EMF in a 12-pulse series connection (P079 = 2). 0 = Connector K0000 1 = Connector K0001 etc.	All connector numbers 1	Ind: None FS=287 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.11 Auto-reversing stage, armature gating unit

$\begin{aligned} & \hline \text { P192 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G163) } \end{aligned}$	Control word for the Alpha W limit (armature)	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4	$\mathrm{P} 052=3$
	Continuous current:		FS=0 Type: O2	$\text { P051 = } 40$ Online
	Inverter stability limit for the delay angle of the armature converter (Alpha W) = value according to parameter P151 Intermittent current: $\text { Alpha W = } 165^{\circ}$			
	1 Inverter stability limit for the delay angle of the armature converter (Alpha W) = value according to parameter P151			

11.12 Speed controller

(further parameters for the speed controller P550-P567)

Setting values for speed controller - actual value/setpoint processing				
P200 FDS (G152)	Filter time for actual speed controller value Filtering of the actual speed value by means of a PT1 element. This filter setting is taken into account by the speed controller optimization run (P051=26).	$\begin{array}{\|l} \hline 0 \text { to } 10000 \\ {[\mathrm{~ms}]} \\ 1 \mathrm{~ms} \end{array}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P201 } \\ \text { FDS } \\ \text { (G152) } \\ \hline \end{array}$	Band-stop 1: Resonant frequency	$\begin{aligned} & \hline 1 \text { to } 140 \\ & {[\mathrm{~Hz}]} \\ & 1 \mathrm{~Hz} \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{array}{\|l\|} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \\ \hline \end{array}$
$\begin{aligned} & \text { P202 } \\ & \text { FDS } \\ & \text { (G152) } \end{aligned}$	Band-stop 1: Quality $\begin{array}{ll} 0 & \text { Quality }=0.5 \\ 1 & \text { Quality }=1 \\ 2 & \text { Quality }=2 \\ 3 & \text { Quality }=3 \end{array}$	$\begin{array}{\|l} \hline 0 \text { to } 3 \\ 1 \end{array}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { P203 } \\ \text { FDS } \\ \text { (G152) } \\ \hline \end{array}$	Band-stop 2: Resonant frequency	$\begin{array}{\|l\|} \hline 1 \text { to } 140 \\ {[\mathrm{~Hz}]} \\ 1 \mathrm{~Hz} \\ \hline \end{array}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { P204 } \\ & \text { FDS } \\ & \text { (G152) } \end{aligned}$	Band-stop 2: Quality $\begin{array}{ll} 0 & \text { Quality }=0.5 \\ 1 & \text { Quality }=1 \\ 2 & \text { Quality }=2 \\ 3 & \text { Quality }=3 \end{array}$	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 2 0 5} \\ & \text { FDS } \\ & (\mathrm{G} 152) \\ & \hline \end{aligned}$	D element: Derivative-action time	$\begin{array}{\|l} \hline 0 \text { to } 1000 \\ {[\mathrm{~ms}]} \\ 1 \mathrm{~ms} \\ \hline \end{array}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P206 } \\ & \text { FDS } \\ & (\mathrm{G} 152) \\ & \hline \end{aligned}$	D element: Filter time	$\begin{aligned} & \hline 0 \text { to } 100 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
r217 (G151)	Indication of the active droop of the speed controller	$\begin{array}{\|l\|} \hline 0.0 \text { to } 10.0 \\ {[\%]} \\ 0.1 \% \\ \hline \end{array}$	Ind: None Type: O2	$\mathrm{P} 052=3$
$\begin{array}{\|l} \hline \text { r218 } \\ \text { (G151) } \\ \text { (G152) } \\ \hline \end{array}$	Indication of the active integration time of the speed controller	0.010 to 10.000 [s] 0.001s	Ind: None Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { r219 } \\ & \text { (G151) } \\ & \text { (G152) } \\ & \hline \end{aligned}$	Display of effective P gain of speed controller	$\begin{aligned} & 0.01 \text { to } 200.00 \\ & 0.01 \end{aligned}$	Ind: None Type: O2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l\|} \hline \hline \text { P221 } \\ \text { FDS } \\ (\mathrm{G} 152) \\ \hline \end{array}$	Speed controller: Hysteresis for speed-dependent PI/P controller switchover [SW 1.9 and later] See P222 for further details.	```0.00 to 100.00 [%] 0.01% of maximum speed```	Ind: 4 FS=2.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P222 } \\ & \text { FDS } \\ & \text { (G152) } \end{aligned}$	Speed controller: Speed-dependent switchover threshold for PI / P controller 0.00 Automatic switchover from PI to P controller deactivated. > 0.00 Depending on the actual speed (K0166), the PI controller switches over to a P controller if the speed drops below the threshold set in parameter P222. The integrator is not switched in again (with value of 0) until the actual speed is > P222 + P221. This function allows the drive to be stopped without overshoot using a zero setpoint with the controllers enabled. This function is active only if the binector selected in P698 is in the log. "1" state.	```0.00 to 10.00 [%] 0.01% of maximum speed```	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

Setting values for speed controller				
$\begin{array}{\|l} \hline \text { P223 } \\ * \\ \text { FDS } \\ \text { (G152) } \end{array}$	Control word for speed controller precontrol $0 \quad$ Speed controller precontrol disabled 1 Speed controller precontrol acts as torque setpoint (is added to n controller output)	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \mathbf{P 2 2 4} \\ * \\ \text { FDS } \\ \text { (G152) } \end{array}$	Control word for speed controller I component $0 \quad$ Set controller I component to 0 (i.e. to achieve a pure P controller) 1 Controller I component is active The I component is stopped when a torque or current limit is reached 2 Controller I component is active The I component is stopped when a torque limit is reached 3 Controller I component is active The I component is stopped only when $\pm 199.99 \%$ is reached	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P225 } \\ & \text { FDS } \\ & \text { (G151) } \end{aligned}$	Speed controller P gain See also setting values for "Speed controller adaptation" function (P550 to P559). This parameter is set automatically during the speed controller optimization run (P051=26).	$\begin{aligned} & 0.10 \text { to } 200.00 \\ & 0.01 \end{aligned}$	Ind: 4 FS=3.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 2 2 6} \\ & \text { FDS } \\ & \text { (G151) } \end{aligned}$	Speed controller reset time This parameter is set automatically during the speed controller optimization run (P051=26).	$\begin{aligned} & \hline 0.010 \text { to } 10.000 \\ & \text { [s] } \\ & 0.001 \mathrm{~s} \end{aligned}$	Ind: 4 FS=0.650 Type: O 2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

Speed controller droop

Function: A parameterizable feedback loop can be connected in parallel to the I and P components of the speed controller (acts on summation point of setpoint and actual value)
Speed controller droop
A 10\% speed droop setting causes a 10\% deviation in the speed from the
setpoint at a 100\% controller output (100\% torque or armature current
setpoint) ("softening" of closed-loop control).
See also P562, P563, P630 and P684

0.0 to 10.0	Ind: 4	$\mathrm{P} 052=3$
$[\%]$	FS=0.0	P051 $=40$
0.1%	Type: O2	Online

$\begin{aligned} & \hline \mathbf{P 2 2 8} \\ & \text { FDS } \\ & \text { (G152) } \end{aligned}$	Filter time for speed setpoint Filtering of setpoint by means of a PT1 element. This parameter is automatically set to the same value as the speed controller reset time during the speed controller optimization run (P051=26). It may be useful to parameterize lower values when the ramp-function generator is in use.	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 2 2 9} \\ & * \\ & \text { FDS } \\ & \text { (G152) } \end{aligned}$	Control of I component tracking for slave drive $0 \quad$ On a slave drive, the I component of the speed controller is made to follow such that M(set, ncontr.) = M(set, limit), the speed setpoint is set to the actual speed value 1 Tracking deactivated	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P230 } \\ & \text { FDS } \\ & \text { (G152) } \end{aligned}$	Setting period of speed controller integrator [SW 1.9 and later] After a positive edge at the binector set in P695, the integrator of the speed controller is set to the instantaneous value of the connector set in P631. If a time of >0 is set on P230, this setting operation is not performed just once, but the speed controller integrator is set continually to the setting value for the parameterized time period.	$\begin{aligned} & \hline 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 2 3 4} \\ & * \\ & \text { FDS } \\ & \text { (G152) } \end{aligned}$	Set speed controller \mathbf{P} component to zero $0 \quad$ Set controller P component to zero (i.e. to obtain a pure I controller) 1 Controller P component is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=1 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P236 } \\ & * \\ & \text { FDS } \\ & \text { G151 } \end{aligned}$	Specifying the dynamic response of the speed control loop [SW 2.0 and later] The parameter value is used as the optimization criterion for the speed control loop. Note: Changes to this value do not take effect until the speed controller optimization run ($\mathrm{P} 051=26$, see Section 7.5) has been executed. Setting instructions: - For drives, for example, with gear backlash, optimization should be started with low dynamic response values (from 10\%). - For drives with top synchronism and dynamic response requirements, values up to 100% should be used.	$\begin{aligned} & 10 \text { to } 100 \\ & {[\%]} \\ & 1 \end{aligned}$	Ind: 4 FS=75 Type: O2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { online } \end{aligned}$

11.13 Closed-loop field current control, field gating unit

$\begin{aligned} & \hline \text { P250 } \\ & \text { FDS } \\ & \text { (G166) } \end{aligned}$	Alpha G limit (field) Rectifier stability limit for firing angle of field converter	0 to 180 [degrees] 1 degree	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { P251 } \\ \text { FDS } \\ \text { (G166) } \end{array}$	Alpha W limit (field) Inverter stability limit for firing angle of field converter	0 to 180 [degrees] 1 degree	Ind: 4 FS=180 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { P252 } \\ \text { * } \\ \text { FDS } \\ \text { (G166) } \end{array}$	Filtering of line frequency correction (field) The internal line synchronization for the field gating pulses derived from the field mains infeed terminals is filtered with this time constant. In operation on "weak" power supplies with unstable frequencies, for example, on a diesel-driven generator (isolated operation), the filter time constant must be set lower than for operation on "constant V/Hz" systems in order to achieve a higher frequency correction speed. Using the units position, the line synchronization function can be altered additionally as follows: When the parameter is set to an uneven number, the measured line zero crossings for line synchronization are subjected to an extra "filter", may improve performance in the case of difficulties with brief mains interruptions (e.g. power supply via sliding current collectors), but may only be set for constant V / Hz power supplies (not for weak isolated supply systems).	$\begin{aligned} & \hline 0 \text { to } 200 \\ & \text { [ms] } \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=200 Type: O 2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P253 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G166) } \end{aligned}$	Control word for field precontrol 0 Field precontrol disabled, precontrol output $=180^{\circ}$ 1 Field precontrol active, output is dependent on field current setpoint, field line voltage, P112	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P254 } \\ \text { * } \\ \text { FDS } \\ \text { (G166) } \end{array}$	Set field current controller I component to zero 0 Set controller I component to zero (i.e. to obtain pure P controller) 1 Controller I component is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P255 } \\ \text { FDS } \\ (\text { G166 }) \end{array}$	Field current controller \mathbf{P} gain This parameter is set automatically during the optimization run for precontrol and current controller (armature and field) (P051=25).	$\begin{aligned} & 0.01 \text { to } 100.00 \\ & 0.01 \end{aligned}$	Ind: 4 FS=5.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P256 } \\ & \text { FDS } \\ & \text { (G166) } \end{aligned}$	Field current controller reset time This parameter is set automatically during the optimization run for precontrol and current controller (armature and field) (P051=25).	$\begin{aligned} & \hline 0.001 \text { to } 10.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0.200 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P257 } \\ & \text { FDS } \\ & (\mathrm{G} 166) \end{aligned}$	Standstill field Value to which the field current is reduced when "Automatic field current reduction" function is parameterized (by means of $P 082=2$) or with signaldriven selection of "Standstill excitation" function (selected in P692).	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & \text { [\%] } \\ & 0.1 \% \text { of P102 } \end{aligned}$	Ind: 4 FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P258 } \\ & \text { FDS } \\ & \text { (G166) } \end{aligned}$	Delay time with automatic field current reduction Delay after which the field current is reduced to the value set in parameter P257 with automatic or signal-driven "Field current reduction" function when the drive is stopped after operating state 07.0 or higher is reached.	$\begin{aligned} & 0.0 \text { to } 60.0 \\ & {[\mathrm{~s}]} \\ & 0.1 \mathrm{~s} \end{aligned}$	Ind: 4 FS=10.0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P260 } \\ & \text { FDS } \\ & (\mathrm{G} 166) \end{aligned}$	Filter time for setpoint for field current precontrol [SW 1.9 and later] Filtering of the field current setpoint at the input of the precontrol for the field current controller. The purpose of this filter is to decouple the field current precontrol from the field current controller.	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { P261 } \\ & \text { FDS } \\ & (\mathrm{G} 166) \end{aligned}$	Filter time for setpoint for field current controller [SW 1.9 and later] Filtering of the field current setpoint at the input of the field current controller. The purpose of this filter is to decouple the field current precontrol from the field current controller.	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { P263 } \\ & * \\ & \text { FDS } \\ & \text { (G166) } \end{aligned}$	Input quantity for motor flux calculation 0 The input quantity for the motor flux calculation is the field current controller actual value according to P612 (K0265), to be used in connection with a fully compensated DC machine 1 The input quantity for the motor flux calculation is the precontrol output for the EMF controller (K0293) (exception: Field current controller setpoint (K0268) with active standstill field or with disabled field pulses), to be used in connection with an non-compensated DC machine. The EMF controller must be active when this setting is selected (EMF controller compensates the armature reaction). 2 The input quantity for the motor flux calculation is the field current controller setpoint (K0268). Advantage: Quantities derived from the setpoint are generally "steadier" than those derived from actual values.	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P264 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G166) } \end{aligned}$	Set field current controller P component to zero $0 \quad$ Set controller P component to zero (i.e. to obtain pure I controller) 1 Controller P component is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 2 6 5} \\ & * \\ & \text { BDS } \\ & \text { (G167) } \end{aligned}$	Source for selection of external field current monitoring signal [SW 1.9 and later] Selection of the binector to supply the field monitoring signal when an external field device is used. (status "1" = field current is o.k., If > If-min) The converter waits for this signal in state 05.0 as part of the power ON routine. If this signal disappears during operation, the drive is shut down with fault message F005 with fault value 4 (in the case of P086>0) or with fault value 5 (in the case of P086=0). $0=$ binector B 0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.14 Closed-Ioop EMF control

$\begin{aligned} & \hline \text { P272 } \\ & * \\ & (\mathrm{G} 165) \end{aligned}$	Operating mode of closed-loop EMF control 0 Fault message F043 ("EMF for braking mode too high") is active: If a change in the torque direction is requested (MI or MII is to be started) and the EMF is too high, both torque directions are blocked. Criterion for EMF too high: The calculated control angle (K0101) for the armature current requested in the new torque direction is >165 degrees (when P192=0) or > P151 (when P192=1). If the armature current requested in the new torque direction (value from K0118 filtered by means of P190) is $>1 \%$ of the device's rated direct current (r072.i02), fault message F043 is also triggered. For possible causes, see section 10 Alarm A043 and automatic field reduction, if EMF in braking mode is too high: If the EMF is too high during braking and the requested armature current (value from K0118 filtered by means of P190) is > 1\% of the device's rated direct current (r072.i02), alarm A043 is emitted. Criterion for EMF too high: For the armature control angle α before limitation (K0101), the following applies: $\alpha>(\alpha W-5$ degrees). αW is the inverter impact limit according to P 151 (in the case of continuous armature current or when P192=1) or 165 degrees (when P192=0 in the case of non-continuous armature current) At the same time as A043, field reduction takes place. This field reduction is achieved by changing the armature control angle to ($\alpha W-5$ degrees) by means of a P controller whose output reduces the EMF controller setpoint. It is therefore necessary to parmaterize "Field weakening mode by internal EMF control" (P081=1) so that field weakening can have an effect. If a change in the torque direction is requested (MI or MII is to be started) and the EMF is too high, both torque directions are blocked until the field and therefore the EMF have been lowered accordingly. This is the case if the calculated control angle (K0101) for the armature current requested in the new torque direction is <165 degrees (when P192=0) or < P151 (when P192=1).	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P273 } \\ & * \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	Control word for EMF controller precontrol$0 \quad$EMF controller precontrol disabled, precontrol output = rated 1motor field current (P102) EMF controller precontrol is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 2 7 4} \\ & * \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	Set EMF controller I component to zero $0 \quad$ Set controller I component to zero (i.e. to obtain pure P controller) 1 Controller I component is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=1 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 2 7 5} \\ & * \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	EMF controller P gain This parameter is automatically set during the field weakening optimization run (P051=27).	$\begin{aligned} & 0.10 \text { to } 100.00 \\ & 0.01 \end{aligned}$	Ind: 4 FS=0.60 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 2 7 6} \\ & * \\ & \text { FDS } \\ & \text { (G165) } \\ & \hline \end{aligned}$	EMF controller reset time This parameter is automatically set during the field weakening optimization run (P051=27).	$\begin{aligned} & \hline 0.010 \text { to } 10.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0.200 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P277 } \\ & * \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	EMF controller droop	$\begin{aligned} & 0.0 \text { to } 10.0 \\ & \text { [\%] } \\ & 0.1 \% \end{aligned}$	Ind: 4 $\mathrm{FS}=0.0$ Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P280 } \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	Filter time for setpoint for EMF controller precontrol [SW 1.9 and later] Filtering of the EMF setpoint at the input of the EMF controller precontrol. The purpose of this filter is to decouple the EMF controller precontrol from the EMF controller.	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
P281 FDS (G165)	Filter time for setpoint for EMF controller [SW 1.9 and later] Filtering of the EMF setpoint at the input of the EMF controller. The purpose of this filter is to decouple the EMF controller precontrol from the EMF controller.	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 2 8 2} \\ & \text { FDS } \\ & (\mathrm{G} 165) \end{aligned}$	Filter time for actual value for EMF controller [SW 1.9 and later] Filtering of actual EMF value at the input of the EMF controller.	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { P283 } \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	Filter time for actual value for EMF controller precontrol [SW 1.9 and later] Filtering of actual speed value at the input of the EMF controller precontrol. The purpose of this filter is to stabilize the EMF controller precontrol, even when the actual speed signal is unsteady or distorted by harmonics.	$\begin{aligned} & \hline 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { P284 } \\ & * \\ & \text { FDS } \\ & \text { (G165) } \end{aligned}$	Set EMF controller P component to zero 0 Set controller P component to zero (i.e. to obtain pure I controller) 1 Controller P component is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.15 Ramp-function generator

(see also Section 8, Sheet G136 and Section 9)
See P639 and P640 for ramp-function generator setting parameters

$\begin{aligned} & \hline \text { P295 } \\ & \text { FDS } \\ & \text { (G136) } \end{aligned}$	Mode for rounding the ramp-function generator 0 If the setpoint is reversed during ramp-up (or ramp-down), acceleration (deceleration) is aborted and initial rounding of the deceleration (acceleration) process begins immediately. The setpoint is not increased (decreased) any further, but the signal at the ramp-function generator output has a breakpoint (i.e. a step change in the acceleration rate). 1 If the setpoint is reversed during ramp-up or ramp-down, acceleration/deceleration gradually changes to deceleration/acceleration. The setpoint increases/decreases further, but there is no breakpoint in the signal at the generator output (i.e. there is no step change in the acceleration rate).	$0 \text { to } 1$ 1	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \text { P296 } \\ & \text { FDS } \\ & \text { (G136) } \end{aligned}$	Ramp-down time of ramp generator with emergency stop (OFF3) [SW 1.9 and later] When the "Emergency stop" command is issued, the drive must normally brake down to 0 speed along the current limit. If the mechanical design of the drive makes this option impermissible or undesirable, then a value of >0 can be set here. In this case, the drive brakes along the deceleration ramp programmed here when the "Emergency stop" command is issued. see also parameter P330	$\begin{aligned} & 0.00 \text { to } 650.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
P297 FDS (G136)	Lower transition rounding of ramp generator with emergency stop (OFF3) [SW 1.9 and later] see also parameter P330	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \text { P298 } \\ & \text { FDS } \\ & \text { (G136) } \\ & \hline \end{aligned}$	Upper transition rounding of ramp generator with emergency stop (OFF3) [SW 1.9 and later] see also parameter P330	$\begin{array}{\|l} \hline 0.00 \text { to } 100.00 \\ {[\mathrm{~s}]} \\ 0.01 \mathrm{~s} \end{array}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

Limitation at ramp-function generator output (setpoint limiting))

The effective limitations are:
Upper limit: \quad Minimum value of P300 and the four connectors selected with P632
Lower limit: Maximum value of P301 and the four connectors selected with P633
Note: \quad The limiting values for both the positive and negative setpoint limits can have a positive or negative sign. The negative setpoint limit, for example, can therefore be parameterized to a positive value and the positive setpoint limit to a negative value.

$\begin{aligned} & \hline \text { P300 } \\ & \text { FDS } \\ & \text { (G137) } \end{aligned}$	Positive limitation at ramp-function generator output	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=100.00 Type: I2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P301 } \\ & \text { FDS } \\ & \text { (G137) } \\ & \hline \end{aligned}$	Negative limitation at ramp-function generator output	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	$\begin{array}{\|l} \hline \text { Ind: } 4 \\ \text { FS=-100.00 } \\ \text { Type: } 12 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \\ \hline \end{array}$
$\begin{aligned} & \hline \text { P302 } \\ & * \\ & \text { FDS } \\ & \text { (G136) } \end{aligned}$	Select ramp-function generator / ramp-up integrator mode 0 Normal ramp-function generator operation: Ramp-function generator setting 1 (P303 to P306) is applied. When a binary selectable input parameterized as "Rampfunction generator setting 2" (P307 to P310)" (selected in P637) or "Ramp-function generator setting 3" (P311 to P314)" (selected in P638), generator setting 2 or 3 is applied as appropriate. 1 Ramp-up integrator operation: When the setpoint is reached for the first time, ramp-function generator setting 1 is switched over to a ramp-up/down times $=0$ 2 Ramp-up integrator operation: When the setpoint is reached for the first time, ramp-function generator setting 1 is switched over to generator setting 2 (P307 to P310) 3 Ramp-up integrator operation: When the setpoint is reached for the first time, ramp-function generator setting 1 is switched over to generator setting 3 (P311 to P314)	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Ramp-function generator parameter set 1 (see also parameter P330)				
P303 FDS (G136)	Ramp-up time 1	$\begin{aligned} & 0.00 \text { to } 650.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \\ & \hline \end{aligned}$	Ind: 4 FS=10.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P304 FDS (G136)	Ramp-down time 1	$\begin{aligned} & \hline 0.00 \text { to } 650.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \\ & \hline \end{aligned}$	Ind: 4 FS=10.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P305 } \\ & \text { FDS } \\ & \text { (G136) } \\ & \hline \end{aligned}$	Lower transition rounding 1	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \\ & \hline \end{aligned}$	Ind: 4 FS=0.00 Type: 02	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P306 } \\ & \text { FDS } \\ & \text { (G136) } \end{aligned}$	Upper transition rounding 1	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \\ & \hline \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

Ramp-function generator parameter set 2 (see also parameter P330)
Ramp-function generator parameter set 2 is selected via the binector parameterized in P637.

$\begin{aligned} & \hline \text { P307 } \\ & \text { FDS } \\ & \text { (G136) } \end{aligned}$	Ramp-up time 2	$\begin{aligned} & 0.00 \text { to } 650.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \\ & \hline \end{aligned}$	Ind: 4 FS=10.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P308 } \\ & \text { FDS } \\ & \text { (G136) } \\ & \hline \end{aligned}$	Ramp-down time 2	$\begin{aligned} & \hline 0.00 \text { to } 650.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \\ & \hline \end{aligned}$	Ind: 4 FS=10.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P309 FDS (G136)	Lower transition rounding 2	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \\ & \hline \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
	Upper transition rounding 2	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \\ & \hline \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { Online } \\ & \hline \end{aligned}$

Ramp-function generator parameter set 3 (see also parameter P330)
Ramp-function generator parameter set 3 is selected via the binector parameterized in P638.

P311 FDS (G136)	Ramp-up time 3	$\begin{aligned} & \hline 0.00 \text { to } 650.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \\ & \hline \end{aligned}$	Ind: 4 FS=10.00 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \\ & \hline \end{aligned}$
P312 FDS (G136)	Ramp-down time 3	$\begin{array}{\|l} \hline 0.00 \text { to } 650.00 \\ \text { [s] } \\ 0.01 \mathrm{~s} \\ \hline \end{array}$	Ind: 4 FS=10.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P313 FDS (G136)	Lower transition rounding 3	$\begin{array}{\|l} \hline 0.00 \text { to } 100.00 \\ \text { [s] } \\ 0.01 \mathrm{~s} \\ \hline \end{array}$	Ind: 4 FS=0.00 Type: 02	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
P314 FDS (G136)	Upper transition rounding 3	$\begin{array}{\|l} \hline 0.00 \text { to } 100.00 \\ {[\mathrm{~s}]} \\ 0.01 \mathrm{~s} \\ \hline \end{array}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

Displays				
$\begin{aligned} & \hline \text { r315 } \\ & (\mathrm{G} 136) \end{aligned}$	Display of effective times i001: Display of effective ramp-up time i002: Display of effective ramp-down time i003: Display of effective lower transition rounding i004: Display of effective upper transition rounding	$\begin{aligned} & 0.00 \text { to } \\ & 650.00 / 10.00 \\ & \text { [s] } \\ & 0.01 \mathrm{~s} \end{aligned}$	Ind: 4 Type: O2	P052 = 3
$\begin{aligned} & \text { r316 } \\ & (\mathrm{G} 136) \end{aligned}$	Display of ramp-function generator status Mode of representation on operator panel (PMU): Segment: 0 RFG enable 1 RFG start 2 Setpoint enable \& /OFF1 3 Set RFG 4 RFG tracking 5 Bypass RFG 7 Ramp-down 15 Ramp-up		Ind: None Type: V2	$\mathrm{P} 052=3$

$\begin{array}{\|l\|} \hline \text { P317 } \\ * \\ \text { FDS } \\ \text { (G136) } \\ \hline \end{array}$	Ramp-function generator tracking $0 \quad$ Ramp-function generator tracking is not active 1 Ramp-function generator tracking is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 $F S=0$ Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P318 } \\ * \\ \text { FDS } \\ \text { (G136) } \end{array}$	Set ramp-function generator output This parameter determines how the ramp-function generator output is set at the commencement of a "Shutdown" process: 0 The ramp-function generator output is not set at the commencement of a "Shutdown" process" 1 At the commencement of "Shutdown", the output is set to the actual speed value K0167 (actual speed value K0167 is "unfiltered") 2 At the commencement of "Shutdown", the output is set to the actual speed value K0179 (value is filtered by PT1 in P200, other filters may also be active) (setting may not be used in conjunction with P205 > 0) During a "Shutdown" process, the limitation at the ramp-function generator output is not effective. P318 must be set to 1 or 2 to prevent any (temporary) excess speed during "Shutdown" when the generator output is limited.	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	Ind: 4 $F S=0$ Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	
P319	Delay time for enabling ramp-function generator	See Change (Access $/$ Status)		
FDS		0.00 to 10.00	[s]	Ind: 4 (G136)

11.16 Setpoint processing

$\begin{array}{\|l} \hline \text { P320 } \\ \text { FDS } \\ \text { (G135) } \end{array}$	Multiplier for main setpoint	$\begin{aligned} & \hline-300.00 \text { to } 300.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=100.00 Type: I2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P321 } \\ \text { FDS } \\ \text { (G135) } \\ \hline \end{array}$	Multiplier for additional setpoint	$\begin{aligned} & \hline-300.00 \text { to } 300.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=100.00 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P322 } \\ & * \\ & \text { FDS } \\ & \text { (G135) } \end{aligned}$	Source for multiplier for main setpoint $\begin{aligned} & 0=\text { Connector K0000 } \\ & 1=\text { Connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 4 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P323 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G135) } \end{aligned}$	Source for multiplier for additional setpoint $\begin{aligned} & 0=\text { Connector K0000 } \\ & 1=\text { Connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 4 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

11.17 Ramp-function generator

$\begin{aligned} & \text { P330 } \\ & * \\ & \text { FDS } \\ & \text { (G136) } \end{aligned}$	Factor for ramp-function generator times [SW 2.1 and later] Selection of a factor for the values set in parameters P296, P297, P298, P303 to P314 and P542 (ramp-function generator times).	$\begin{aligned} & 0 \text { bis } 1 \\ & 1 \end{aligned}$	Ind: 4 WE=0 Typ: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

11.18 Setting values for monitoring functions and limits

Setting values for monitoring functions				
$\begin{aligned} & \text { P351 } \\ & \text { FDS } \end{aligned}$	Threshold for undervoltage trip If the line voltage drops below a specific value (P078) and does not return to the permissible tolerance range within the "Restart time" set in P086, fault message F006 is activated. The drive dwells in operating state o4 or o5 while the line undervoltage persists.	$\begin{array}{\|l\|} \hline-90 \text { to } 0 \\ \text { [\%] } \\ \text { Armature: } \\ 1 \% \text { of P078.001 } \\ \text { Field: } \\ 1 \% \text { of P078.002 } \\ \hline \end{array}$	Ind: 4 FS=-20 Type: I2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P352 } \\ & \text { FDS } \end{aligned}$	Source for overvoltage trip If the line voltage exceeds a specific value (P078) and does not return to the permissible tolerance range within the "Restart time" set in P086, fault message F007 is activated.	0 to 99 [\%] Armature: 1\% of P078.001 Field: 1\% of P078.002	Ind: 4 FS=20 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P353 FDS	Response threshold for phase failure monitoring If the line voltage drops below the permissible value in operating states of $\leqq 04$ and does not return to an "acceptable" value within the "Restart time" set in P086, fault message F004 or F005 is activated. The drive dwells in operating state o4 or o5 for the period that the line voltage remains below the threshold and during the subsequent voltage stabilization period set in P090. When a switch-on command is entered, the converter dwells in operating states 04 and 05 for a maximum total delay period for both states set in P089 until the voltages in all phases exceed the threshold set in this parameter before fault message F004 or F005 is activated.	10 to 100 [\%] Armature: 1\% of P078.001 Field: 1\% of P078.002	Ind: 4 FS=40 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
P355 FDS	Stall protection time F035 is activated if the conditions for the "Stall protection" fault message are fulfilled for longer than the period set in P355. When P355=0.0, the "Drive blocked" monitoring function (F035) is deactivated and alarm A035 is likewise suppressed.	$\begin{aligned} & \hline 0.0 \text { to } 600.0 \\ & {[\mathrm{~s}]} \\ & 0.1 \mathrm{~s} \end{aligned}$	Ind: 4 FS=0.5 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P357 } \\ & \text { FDS } \end{aligned}$	Threshold for tachometer interruption monitoring F042 is suppressed if the actual EMF value is lower than the value set in P357. The setting is entered as a \% of the ideal mean DC voltage value at $\alpha=0$, i.e. as a \% of P078.001 * 1.35	$\begin{aligned} & 10 \text { to } 70 \\ & \text { [\%] } \\ & 1 \% \end{aligned}$	Ind: 4 FS=10 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P360 } \\ & \text { (G180) } \\ & \text { (G181) } \end{aligned}$	Response delay for external faults and alarms The fault message or alarm is not activated on the converter until the appropriate input or corresponding control word bit (as selected in P675, P686, P688 or P689) has been in the LOW state for at least the time period set in this parameter (see also Section 8, Sheets G180 and G181). i001: Delay for external fault 1 i002: Delay for external fault 2 i003: Delay for external alarm 1 i004: Delay for external alarm 2	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P361 } \\ & \text { FDS } \end{aligned}$	Delay time for the undervoltage monitoring Activation of the fault message F006 (line undervoltage) is delayed by the time that can be set in this parameter. During this delay time firing pulses are output! Another time which is parameterized for automatic restarting (P086) only begins after the time set here has elapsed.	$\begin{aligned} & 0 \text { to } 60000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
P362 FDS	Delay time for the overvoltage monitoring Activation of the fault message F007 (line overvoltage) is delayed by the time that can be set in this parameter. During this delay time firing pulses are output! Another time which is parameterized for automatic restarting (P086) only begins after the time set here has elapsed.	$\begin{aligned} & 0 \text { to } 60000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=10000 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \text { P363 } \\ & \text { FDS } \end{aligned}$	Threshold for the minimum line frequency [SW 1.8 and later] If the line frequency falls below the value set here and does not rise above it again within the "restart" time set in P086, the fault message F008 is activated. As long as the line frequency is below the value set here, the drive is kept in operating state 04 or o5. [values $<45.0 \mathrm{~Hz}$ can be set in SW 1.9 and later] CAUTION Operation in the extended frequency range between 23 Hz and 110 Hz is available on request.	$\begin{aligned} & 23.0 \text { to } 60.0 \\ & {[\mathrm{~Hz}]} \\ & 0.1 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=45.0 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
P364 FDS	Threshold for the maximum line frequency If the line frequency rises above the value set here and does not fall below it again within the "restart" time set in P086, the fault message F009 is activated. As long as the line frequency is above the value set here, the drive is kept in operating state o4 or o5. CAUTION Operation in the extended frequency range between 23 Hz and 110 Hz is available on request.	$\begin{aligned} & \hline 50.0 \text { to } 110.0 \\ & {[\mathrm{~Hz}]} \\ & 0.1 \mathrm{~Hz} \end{aligned}$	Ind: 4 FS=65.0 Type: O 2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.19 Setting values for limit-value monitors

(see also Section 8, Sheet G187 und G188)

$\mathrm{n}<\mathrm{n}_{\text {min }}$ signal				
$\begin{aligned} & \text { P370 } \\ & \text { FDS } \\ & \text { (G187) } \end{aligned}$	Speed threshold $\mathbf{n}_{\text {min }}$ Speed threshold for $\mathrm{n}<\mathrm{n}_{\text {min }}$ limit-value monitor. Note: This threshold also affects the sequence of control operations for "Shutdown", "Fast stop", cancellation of the "Inching" or "Crawling" command, the "Braking with field reversal" function and the brake control operation (see Section 9).	```0.00 to 199.99 [%] 0.01% of maximum speed```	Ind: 4 FS=0.50 Type: O 2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { P371 } \\ \text { FDS } \\ \text { (G187) } \\ \hline \end{array}$	Hysteresis for $\mathbf{n}<\mathbf{n}_{\min }$ signal This value is added to the response threshold if $\mathrm{n}<\mathrm{n}_{\min }$ is active.	```0.00 to 199.99 [%] 0.01% of maximum speed```	Ind: 4 FS=0.50 Type: O2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$

n< $\mathbf{n}_{\text {comp. }}$ signal				
$\begin{array}{\|l\|} \hline \mathbf{P 3 7 3} \\ \text { FDS } \\ \text { (G187) } \\ \hline \end{array}$	Speed threshold $\mathbf{n}_{\text {comp. }}$ Speed threshold for $\mathrm{n}<\mathrm{n}_{\text {comp. }}$. signal	```0.00 to 199.99 [%] 0.01% of maximum speed```	$\begin{array}{\|l\|} \hline \text { Ind: } 4 \\ \text { FS=100.00 } \\ \text { Type: O2 } \end{array}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P374 FDS (G187)	Hysteresis for $<\mathbf{n}_{\text {comp }}$. signal ($\mathbf{n}<\mathbf{n}_{\text {comp }}$. signal $)$ This value is added to the response threshold if $\mathrm{n}<\mathrm{n}_{\text {comp }}$. is active.	```0.00 to 199.99 [%] 0.01% of maximum speed```	Ind: 4 FS=3.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { P375 } \\ \text { FDS } \\ \text { (G187) } \end{array}$	OFF delay for n < $\mathrm{n}_{\text {comp }}$. signal	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\mathrm{~s}]} \\ & 0.1 \mathrm{~s} \end{aligned}$	Ind: 4 FS=3.0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

Setpoint/actual value deviation 2				
P376 FDS (G187)	Permissible setpoint/actual value deviation 2 [SW 1.9 and later]	```0.00 to 199.99 [%] 0.01% of maximum speed```	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FD=3.00 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { P377 } \\ & \text { FDS } \\ & \text { (G187) } \end{aligned}$	Hysteresis for setpoint/actual value deviation 2 signal [SW 1.9 and later] This value is added to the response threshold if a setpoint/actual value deviation signal is active	```0.00 to 199.99 [%] 0.01% of maximum speed```	Ind: 4 FS=1.00 Type: O2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { on-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { P378 } \\ \text { FDS } \\ \text { (G187) } \\ \hline \end{array}$	Response delay for setpoint/actual value deviation signal 2 [SW 1.9 and later]	$\begin{aligned} & \hline 0.0 \text { to } 100.0 \\ & {[\mathrm{~s}]} \\ & 0.1 \mathrm{~s} \end{aligned}$	Ind: 4 FS=3.0 Type: O2	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { on-line } \\ & \hline \end{aligned}$

Overspeed				
P380 FDS (G188)	Maximum speed in positive direction of rotation	```0.0 to 199.9 [%] 0.1% of maximum speed```	Ind: 4 FS=120.0 Type: O 2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P381 FDS (G188)	Maximum speed in negative direction of rotation	$\begin{aligned} & \hline-199.9 \text { to } 0.0 \\ & \text { [\%] } \\ & 0.1 \% \text { of maximum } \\ & \text { speed } \\ & \hline \end{aligned}$	Ind: 4 FS=-120.0 Type: 12	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$

Setpoint/actual value deviation 1				
$\begin{aligned} & \hline \text { P388 } \\ & \text { FDS } \\ & \text { (G187) } \end{aligned}$	Permissible deviation between setpoint and actual value 1	```0.00 to 199.99 [%] 0.01% of maximum speed```	Ind: 4 FS=3.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P389 } \\ & \text { FDS } \\ & \text { (G187) } \end{aligned}$	Hysteresis for setpoint/actual value deviation signal 1 This value is added to the response threshold if a setpoint/actual value deviation signal is active	```0.00 to 199.99 [%] 0.01% of maximum speed```	Ind: 4 FS=1.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	
P390	Response delay for setpoint/actual value deviation signal 1	See Change (Access / Status)		
FDS (G187)		0.0 to 100.0	Ind: 4 [s] 0.1 s	FS052 $=3.0$ P051 $=30$ Type: O2

$\mathrm{I}_{\mathbf{f}}<\mathrm{l}_{\mathbf{f} \boldsymbol{m i n}}$ signal				
$\begin{aligned} & \text { P394 } \\ & \text { FDS } \\ & \text { (G188) } \end{aligned}$	Field current threshold $I_{f} \mathbf{m i n}$ Field current threshold for $\mathrm{If}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}} \mathrm{min}$ limit-value monitor. Note: This threshold affects the sequence of control operations for the "Direction of rotation reversal using field reversal" and "Braking with field reversal" functions (see Section 9). The $\mathrm{I}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}}$ min signal is connected to binector B0215, the actual value at field current controller input K0265 is applied as I_{f}. B0215 $=0$ when K0265 > threshold set in P394 B0215 = 1 when K0265 < threshold set in P394 + hysteresis set in P395 $0 \rightarrow 1$ transition takes place when K0265 < P394 $1 \rightarrow 0$ transition takes place when K0265 > P394 + P395	$\begin{aligned} & \hline 0.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \text { of converter } \\ & \text { rated field DC } \\ & \text { current (r073.i02) } \end{aligned}$	Ind: 4 FS=3.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P395 } \\ & \text { FDS } \\ & \text { (G188) } \\ & \hline \end{aligned}$	Hysteresis for $\mathbf{I}_{\mathbf{f}}<\mathbf{I}_{\mathbf{f}} \mathbf{\operatorname { m i n }}$ signal This value is added to the response threshold if $\mathrm{I}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}} \min$ is active. (see also P394)	0.00 to 100.00 [\%] 0.01% of converter rated field DC current (r073.i02)	Ind: 4 FS=1.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

Field current monitoring

Fault message F005 (fault value 4) is activated if the actual field current (K0265) is lower than the percentage of the field current setpoint (K0268) set in P396 for longer than the time set in parameter P397.

F005 is also triggered if "I Field extern $<I_{\text {f min" (}}$ see P265) is the case for longer than the time set at P397.
Note:
Fault message F005 is only activated, however, if the field current setpoint is $>2 \%$ of the converter rated DC current of the field (r073.i02) ist.

$\begin{aligned} & \text { P396 } \\ & \text { FDS } \\ & \text { (G167) } \end{aligned}$	Threshold for field current monitoring	[SW 1.9 and later]	$\begin{aligned} & 1 \text { to } 100 \\ & \text { [\%] } \\ & 0.01 \% \text { of setpoint at } \\ & \text { field current con- } \\ & \text { troller input (K0268) } \end{aligned}$	Ind: 4 FS=50 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \text { P397 } \\ & \text { FDS } \\ & \text { (G167) } \\ & \hline \end{aligned}$	Field current monitoring time	[SW 1.9 and later]	$\begin{aligned} & 0.02 \text { to } 60.00 \\ & \text { [s] } \\ & 0.01 \mathrm{~s} \end{aligned}$	Ind: 4 FS=0.50 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

$\mathrm{I}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}} \mathbf{x}$ signal				
$\begin{aligned} & \text { P398 } \\ & \text { FDS } \\ & \text { (G188) } \end{aligned}$	Field current threshold $I_{f} \mathbf{x}$ Setpoint-oriented field current threshold for $\mathrm{I}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}}$ limit-value monitor. Note: This threshold affects the sequence of control operations for the "Direction of rotation reversal using field reversal" and "Braking with field reversal" functions (see Section 9). The $\mathrm{I}_{\mathrm{f}}<\mathrm{I}_{\mathrm{f}}$ signal is connected to binector B0216, the actual value at field current controller input K0265 is applied as I_{f}. B0216 $=0$ when K0265 > threshold set in P398 B0216 = 1 when K0265 < threshold set in P398 + hysteresis set in P399 $0 \rightarrow 1$ transition takes place when K0265 < P398 $1 \rightarrow 0$ transition takes place when K0265 > P398 + P399	$0.00 \text { to } 199.99$ [\%] 0.01\% of setpoint at field current controller input (K0268)	$\begin{array}{\|l\|} \hline \text { Ind: } 4 \\ \text { FS=80.00 } \\ \text { Type: O2 } \end{array}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P399 } \\ & \text { FDS } \\ & \text { (G188) } \end{aligned}$	Hysteresis for $I_{f}<I_{f} \mathbf{x}$ signal This value is added to the response threshold if $\mathrm{I}_{\mathrm{f}}<\mathrm{l}_{\mathrm{f}}$ is active. (see also P398)	0.00 to 100.00 [\%] 0.01\% of converter rated field DC current (r073.i02)	Ind: 4 FS=1.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access $/$ Status)

11.20 Settable fixed values

Function: The value set in the parameter is applied to the specified connector				
$\begin{array}{\|l} \hline \text { P401 } \\ \text { FDS } \\ \text { (G120) } \\ \hline \end{array}$	K401 fixed value is applied to connector K0401	$\begin{aligned} & \text {-199.99 to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=0.00 Type: I2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{array}{\|l} \hline \text { P402 } \\ \text { FDS } \\ (\text { G120 }) \\ \hline \end{array}$	K402 fixed value is applied to connector K0402	$\begin{aligned} & \hline-199.99 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Ind: } 4 \\ \text { FS }=0.00 \\ \text { Type: } 12 \\ \hline \end{array}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P403 } \\ \text { FDS } \\ (\text { G120 }) \\ \hline \end{array}$	K403 fixed value is applied to connector K0403	$\begin{aligned} & \hline-199.99 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \\ & \hline \end{aligned}$	Ind: 4 FS=0.00 Type: 12	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P404 } \\ & \text { FDS } \\ & (\text { G120 }) \end{aligned}$	K404 fixed value is applied to connector K0404	$\begin{aligned} & \hline-199.99 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0.00 } \\ & \text { Type: } 12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { P405 } \\ \text { FDS } \\ \text { (G120) } \\ \hline \end{array}$	K405 fixed value is applied to connector K0405	```-199.99 to 199.99 [%] 0.01%```	Ind: 4 FS=0.00 Type: 12	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P406 } \\ & \text { FDS } \\ & \text { (G120) } \end{aligned}$	K406 fixed value is applied to connector K0406	$\begin{aligned} & -199.99 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=0.00 Type: I2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P407 } \\ & \text { FDS } \\ & \text { (G120) } \end{aligned}$	K407 fixed value is applied to connector K0407	```-199.99 to 199.99 [%] 0.01%```	Ind: 4 FS=0.00 Type: I2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l\|l} \hline \text { P408 } \\ \text { FDS } \\ \text { (G120) } \\ \hline \end{array}$	K408 fixed value is applied to connector K0408	$\begin{aligned} & -199.99 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=0.00 Type: 12	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P409 } \\ & \text { FDS } \\ & \text { (G120) } \\ & \hline \end{aligned}$	K409 fixed value is applied to connector K0409	$\begin{aligned} & -199.99 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=0.00 Type: 12	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P410 FDS (G120)	K410 fixed value is applied to connector K0410	$\begin{array}{\|l} \hline-199.99 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \\ \hline \end{array}$	Ind: 4 FS=0.00 Type: 12	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P411 FDS (G120)	K411 fixed value is applied to connector K0411	$\begin{aligned} & \hline-199.99 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \\ & \hline \end{aligned}$	Ind: 4 FS=0.00 Type: 12	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{array}{\|l} \hline \text { P412 } \\ \text { FDS } \\ \text { (G120) } \\ \hline \end{array}$	K412 fixed value is applied to connector K0412	$\begin{aligned} & -32768 \text { to } 32767 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: 12	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
P413 FDS (G120)	K413 fixed value is applied to connector K0413	$\begin{aligned} & -32768 \text { to } 32767 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: I2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P414 FDS (G120)	K414 fixed value is applied to connector K0414	$\begin{aligned} & -32768 \text { to } 32767 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: I2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P415 FDS (G120)	K415 fixed value is applied to connector K0415	$\begin{aligned} & -32768 \text { to } 32767 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: I2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P416 FDS (G120)	K416 fixed value is applied to connector K0416	$\begin{aligned} & -32768 \text { to } 32767 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: 12	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

11.21 Fixed control bits

Function: The value set in the parameter is applied to the specified binector				
P421	B421 fixed bit	0 to 1	Ind: 4 FDS (G120)	is applied to binector B0421

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \text { P425 } \\ & \text { FDS } \\ & \text { (G120) } \end{aligned}$	B425 fixed bit is applied to binector B0425	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { P426 } \\ & \text { FDS } \\ & \text { (G120) } \end{aligned}$	B426 fixed bit is applied to binector B0426	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P427 } \\ & \text { FDS } \\ & \text { (G120) } \end{aligned}$	B427 fixed bit is applied to binector B0427	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P428 } \\ & \text { FDS } \\ & \text { (G120) } \end{aligned}$	B428 fixed bit is applied to binector B0428	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

11.22 Digital setpoint input (fixed setpoint, inching and crawling setpoints)

(see also Section 8, Sheets G127, G129 and G130)

Fixed setpoint

Function: Up to 8 connectors can be selected in P431 indices .01 to .08 . These can be applied as an additional fixed setpoint (K0204, K0209) via the binectors selected in P430, indices .01 to .08 (setpoint is applied when binector switches to log. "1" state). P432 indices .01 to .08 can be set to define for each setpoint individually whether the ramp-function generator must be bypassed on setpoint injection.

If fixed setpoint injection is not selected, the connector set in P433 is applied to K0209.

$\begin{array}{\|l} \hline \text { P430 } \\ * \\ (\mathrm{G} 127) \end{array}$	Source for fixed-setpoint injection Selection of binector to control injection of the fixed setpoint ("1" state = fixed setpoint injected). $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 8 $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P431 } \\ & * \\ & \text { (G127) } \end{aligned}$	Source for fixed setpoint Selection of connector to be injected as the fixed setpoint $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 8 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P432 } \\ & * \\ & \text { (G127) } \end{aligned}$	Source for selection of ramp-function generator bypass Selection as to whether or not ramp-function generator must be bypassed when the fixed setpoint is injected. The ramp-function generator is bypassed if the AND operation between the binector selected via an index of P430 and the setting in the same index of P432 produces a log. "1"	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 8 FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P433 } \\ & * \\ & \text { FDS } \\ & \text { (G127) } \end{aligned}$	Source for standard setpoint Selection of the connector to be applied if fixed-setpoint injection is not selected 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS=11 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Inching setpoint

Function: Up to 8 connectors can be selected in P436 indices .01 to .08. These can be applied as an inching setpoint (K0202, K0207) via the binectors selected in P435, indices .01 to .08 (setpoint is applied when binector switches to log. "1" state). P437 indices . 01 to .08 can be set to define for each setpoint individually whether the ramp-function generator must be bypassed on setpoint injection. If more than one inching setpoint is injected, an output value corresponding to inching setpoint $=0 \%$ is applied.

If inching setpoint injection is not selected, the connector set in P438 is applied to K0207

$\begin{aligned} & \text { P435 } \\ & * \\ & \text { (G129) } \end{aligned}$	Source for injection of inching setpoint Selection of binector to control injection of the inching setpoint ("1" state = inching setpoint injected). $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 8 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \mathbf{P 4 3 6} \\ & * \\ & (\mathrm{G} 129) \end{aligned}$	Source for inching setpoint Selection of connector to be injected as the inching setpoint $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 8 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 4 3 7} \\ & * \\ & \text { (G129) } \end{aligned}$	Source for selection of ramp-function generator bypass Selection as to whether or not ramp-function generator must be bypassed when the inching setpoint is injected. The ramp-function generator is bypassed if the AND operation between the binector selected via an index of P435 and the setting in the same index of P437 produces a log. "1".	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 8 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 4 3 8} \\ & * \\ & \text { FDS } \\ & \text { (G129) } \end{aligned}$	Source for standard setpoint Selection of the connector to be applied if inching-setpoint injection is not selected 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS=208 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Crawling setpoint

Function: Up to 8 connectors can be selected in P441 indices .01 to .08 . These can be applied as an additional crawling setpoint (K0201, K0206) via the binectors selected in P440, indices .01 to .08 . P445 can be set to define whether the setpoint must be applied when the selected binectors have reached the log. "1" state (when P445=0) or in response to a $0 \rightarrow 1$ transition (when $\mathrm{P} 445=1$). When setpoint injection in response to a $0 \rightarrow 1$ transition is selected, the setpoint injection function is reset when the binector selected in P444 switches to the log. "0" state. P442 indices .01 to .08 can be set to define for each setpoint individually whether the ramp-function generator must be bypassed on setpoint injection.

If crawling setpoint injection is not selected, the connector set in P443 is applied to K0206.

$\begin{aligned} & \hline \text { P440 } \\ & * \\ & \text { (G130) } \end{aligned}$	Source for injection of crawling setpoint Selection of binector to control injection of the crawling setpoint. $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 8 $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P441 } \\ & * \\ & \text { (G130) } \end{aligned}$	Source for crawling setpoint Selection of connector to be injected as the crawling setpoint $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 8 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P442 } \\ & * \\ & \text { (G130) } \end{aligned}$	Source for selection of ramp-function generator bypass Selection as to whether or not ramp-function generator must be bypassed when the crawling setpoint is injected. The ramp-function generator is bypassed if the AND operation between the binector selected via an index of P440 and the setting in the same index of P442 produces a log. "1".	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 8 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P443 } \\ & * \\ & \text { FDS } \\ & \text { (G130) } \end{aligned}$	Source for standard setpoint Selection of the connector to be applied if crawling-setpoint injection is not selected $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 4 FS=207 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 4 4 4} \\ & * \\ & \text { BDS } \\ & \text { (G130) } \end{aligned}$	Source for standstill command Selection of the binector to control the standstill operation (OFF1) or resetting of crawling setpoint injection when P445=1 (log. "0" state = reset). $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P445 } \\ & * \\ & (\mathrm{G} 130) \end{aligned}$	Selection of level/edge for switch-on/crawling Selection to define whether ON command must be input via terminal 37 and the crawling setpoint injected in response to a log. "1" level or to a $0 \rightarrow 1$ transition $0 \quad$ ON with log. "1" state at terminal 37 and injection of crawling setpoint with binectors selected in P440 in log. "1" state $1 \quad \mathrm{ON}$ in response to $0 \rightarrow 1$ transition at terminal 37 and injection of crawling setpoint in response to $0 \rightarrow 1$ transition of binectors selected in P440 With this setting, the ON command or injection command for the crawling setpoint is stored. The memory is reset when the binector selected in P444 switches to the log. " 0 " state.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

11.23 Position sensing with pulse encoder

See parameters P140 to P148 for pulse encoder definition and monitoring				
$\begin{aligned} & \text { P450 } \\ & * \\ & \text { FDS } \\ & \text { (G145) } \end{aligned}$	Resetting of position counter 0 Reset position counter OFF 1 Reset position counter with zero marker 2 Reset position counter with zero marker when LOW signal is applied to terminal 39 3 Reset position counter when LOW signal is applied to terminal 39 Note: Counter resetting with P450 = 2 and 3 is executed in the hardware and is not affected by how the binectors controlled by terminal 39 are interconnected	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P451 } \\ & * \\ & \text { FDS } \\ & \text { (G145) } \end{aligned}$	Position counter hysteresis $0 \quad$ Hysteresis for rotational direction reversal OFF 1 Hysteresis for rotational direction reversal ON (the first pulse encoder input pulse after a change in rotational direction is not counted)	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 4 5 2} \\ & * \\ & \text { BDS } \\ & (\mathrm{G} 145) \end{aligned}$	Source for "Reset position counter" command [SW 1.9 and later] Selection of binector to control resetting of the position counter. $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { P453 } \\ & * \\ & \text { BDS } \\ & \text { (G145) } \end{aligned}$	Source for "Enable zero marker counter" command [SW 1.9 and later] Selection of binector to control enabling of the zero marker counter $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

11.24 Connector selector switches

(see also Section 8, Function Diagram Sheet G124)

$\begin{aligned} & \text { P455 } \\ & \text { * } \\ & \text { (G124) } \end{aligned}$	Source for inputs of connector selector switch 1 [SW 1.9 and later] Selection of connectors for the input signals for connector selector switch 1. $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \text { P456 } \\ & \text { * } \\ & \text { (G124) } \end{aligned}$	Source for control of connector selector switch 1 [SW 1.9 and later] Selection of binectors to control connector selector switch 1. $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P457 } \\ & * \\ & (\mathrm{G} 124) \end{aligned}$	Source for inputs of connector selector switch 2 [SW 1.9 and later] Selection of connectors for the input signals for connector selector switch 2. $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { P458 } \\ & * \\ & (\mathrm{G} 124) \end{aligned}$	Source for control of connector selector switch 2 [SW 1.9 and later] Selection of binectors to control connector selector switch 2. $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

11.25 Motorized potentiometer

$\begin{aligned} & \hline \text { P460 } \\ & * \\ & \text { FDS } \\ & (\mathrm{G} 126) \end{aligned}$	Control word for motorized potentiometer ramp-function generator $0 \quad$ The motorized potentiometer ramp generator is bypassed in Automatic mode (same effect as for P462 and P463 $=0.01$, i.e. the generator output is made to follow the automatic setpoint without delay) 1 Motorized potentiometer ramp generator is active in Manual and Automatic modes	$\begin{aligned} & \hline 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P461 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G126) } \end{aligned}$	Source for setpoint in Automatic mode Selection of the connector to be applied as the Automatic setpoint to the ramp-function generator in the motorized potentiometer $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P462 } \\ & \text { FDS } \\ & \text { (G126) } \end{aligned}$	Ramp-up time for motorized potentiometer	$\begin{array}{\|l} \hline 0.01 \text { to } 300.00 \\ {[\mathrm{~s}]} \\ 0.01 \mathrm{~s} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Ind: } 4 \\ \text { FS=10.00 } \\ \text { Type: O2 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { P463 } \\ & \text { FDS } \\ & \text { (G126) } \end{aligned}$	Ramp-down time for motorized potentiometer	$\begin{array}{\|l} \hline 0.01 \text { to } 300.00 \\ {[\mathrm{~s}]} \\ 0.01 \mathrm{~s} \\ \hline \end{array}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=10.00 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { P464 } \\ & \text { FDS } \\ & \text { (G126) } \end{aligned}$	Time difference for $\mathbf{d y} / \mathrm{dt}$ Setting of dt for the output of $\mathrm{dy} / \mathrm{dt}$ at a connector, i.e. on K0241 the change in the output quantity (K0240) is output within the time set in P464, multiplied by the factor set in P465 (unit of time setting is [s] if P465=0 or [min] if P465=1) Example: The ramp-function generator is currently ramping up with a rampup time of $P 462=5$ s, i.e. a ramp-up operation from $y=0 \%$ to $y=100 \%$ takes 5 s . - A time difference dt of $\mathrm{P} 464=2 \mathrm{~s}$ is set. - \Rightarrow A dy/dt of 40% appears at connector K0241 since the dy within the set dt of 2 s equals $(2 \mathrm{~s} / 5 \mathrm{~s})^{*} 100 \%$.	$\begin{array}{\|l} \hline 0.01 \text { to } 300.00 \\ {[\mathrm{~s}]} \\ 0.01 \mathrm{~s} \end{array}$	Ind: 4 FS=10.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P465 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G126) } \end{aligned}$	Factor of expansion for motorized potentiometer The effective ramp-up time, ramp-down time or time difference for $\mathrm{dy} / \mathrm{dt}$ is the product of the time setting in parameter P462, P463 and P464 respectively, multiplied by the factor set in this parameter. 0 Parameters P462, P463 and P464 are multiplied by a factor of 1 1 Parameters P462, P463 and P464 are multiplied by a factor of 60	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P466 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G126) } \end{aligned}$	Source for motorized potentiometer setting value Selection of the connector to be injected as the motorized potentiometer setting value $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P467 } \\ & \text { FDS } \\ & \text { (G126) } \end{aligned}$	Motorized potentiometer starting value Starting value of motorized potentiometer after ON when P473 $=0$	$\begin{array}{\|l} \hline-199.9 \text { to } 199.9 \\ {[\%]} \\ 0.1 \% \\ \hline \end{array}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0.0 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { P468 } \\ & \text { FDS } \\ & \text { (G126) } \end{aligned}$	Setpoint for "Raise motorized potentiometer" Motorized potentiometer manual operation: Setpoint for "Raise motorized potentiometer"	$\begin{aligned} & \hline-199.99 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & F S=100.00 \\ & \text { Type: } 12 \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{P} 052=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P469 } \\ & \text { FDS } \\ & \text { (G126) } \end{aligned}$	Setpoint for "Lower motorized potentiometer " Motorized potentiometer manual operation: Setpoint for "Lower motorized potentiometer"	$\begin{aligned} & \hline-199.99 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS }=-100.00 \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P470 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G126) } \end{aligned}$	Source for clockwise/counter-clockwise switchover Selection of binector to control "Clockwise/counter-clockwise switchover" ("0" state = clockwise). 0 = binector B 0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P471 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G126) } \end{aligned}$	Source for manual/automatic switchover Selection of binector to control "Manual/automatic switchover" ("0" state = manual). $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 4 7 2} \\ & * \\ & \text { BDS } \\ & \text { (G126) } \end{aligned}$	Source for set motorized potentiometer Selection of binector to control "Set motorized potentiometer" ("0" to "1" transition = set motorized potentiometer). $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 4 7 3} \\ & * \\ & \text { FDS } \\ & \text { (G126) } \end{aligned}$	Storage of output value 0 No storage of output value: The output is set to 0 in all operating states of >05. The starting point after ON is determined by P467 (MOP starting value). $1 \quad$ Non-volatile storage of output value: The output value remains stored in all operating states and after voltage disconnection or failure. The last value stored is output again after voltage recovery/reconnection.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.26 Oscillation

Function:
Parameters P480 to P483 define the waveshape of a rectangular signal (oscillation setpoint K0203). The value set in P480 determines the signal level for the time period set in P481 and the value set in P482 the signal level for the time period set in P483

Oscillation: Selected in P485. The free-running rectangular signal is switched through to the output K0208.

$\begin{aligned} & \hline \text { P480 } \\ & \text { FDS } \\ & \text { (G128) } \\ & \hline \end{aligned}$	Oscillation setpoint 1	$\begin{array}{\|l\|} \hline-199.9 \text { to } 199.9 \\ \text { [\%] } \\ 0.1 \% \text { of maximum } \\ \text { speed } \\ \hline \end{array}$	Ind: 4 FS=0.5 Type: I2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P481 } \\ & \text { FDS } \\ & \text { (G128) } \\ & \hline \end{aligned}$	Oscillation time 1	$\begin{array}{\|l} \hline 0.1 \text { to } 300.0 \\ \text { [s] } \\ 0.1 \mathrm{~s} \\ \hline \end{array}$	Ind: 4 FS=0.1 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P482 } \\ & \text { FDS } \\ & \text { (G128) } \end{aligned}$	Oscillation setpoint 2	$\text { -199.9 to } 199.9$ [\%] 0.1\% of maximum speed	Ind: 4 FS=-0.4 Type: 12	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P483 } \\ & \text { FDS } \\ & \text { (G128) } \end{aligned}$	Oscillation time 2	$\begin{array}{\|l} \hline 0.1 \text { to } 300.0 \\ {[\mathrm{~s}]} \\ 0.1 \mathrm{~s} \\ \hline \end{array}$	Ind: 4 FS=0.1 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { P484 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G128) } \end{aligned}$	Source for standard setpoint Selection of connector to be injected as the output value when the "Oscillation" function is not selected 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS=209 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P485 } \\ & * \\ & \text { BDS } \\ & (\text { G128) } \end{aligned}$	Source for oscillation selection Selection of binector to control activation of the "Oscillation" function (log. "1" state = oscillation active) 0 = binector B 0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.27 Definition of "Motor interface"

(see also Section 8, Sheets G185 und G186)

CAUTION!
The encoders for measurement and monitoring of the brush length, bearing condition, air flow and motor temperature must be safely isolated from the power circuit.

$\begin{aligned} & \hline \text { P490 } \\ & * \\ & (G 185) \end{aligned}$	Selection of temperature sensor for analog monitoring of motor temperature i001: Temperature sensor at terminals 22 / 23: i002: Temperature sensor at terminals 204 / 205: Settings: 1) PTC thermistor according to DIN 44081 / 44082 with specified R at rated response temperature, 1330Ω on Siemens motors (setting 4 must be selected). When a PTC thermistor is selected as the temperature sensor, it is not necessary to set parameters P491 and P492 (alarm and trip temperatures). These two temperatures are predetermined by the type of PTC thermistor installed. Whether an alarm or fault is output when the operating point of the PTC thermistor is reached depends on how the relevant input is parameterized (P493.F or P494.F).	$\begin{aligned} & 0 \text { to } 5 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P491 } \\ & \text { FDS } \\ & \text { (G185) } \end{aligned}$	Analog monitoring of motor temperature: Alarm temperature Operative only when P490.x=1.	$\begin{aligned} & 0 \text { to } 200 \\ & {\left[{ }^{\circ} \mathrm{C}\right]} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P492 } \\ & \text { FDS } \\ & \text { (G185) } \end{aligned}$	Analog monitoring of motor temperature: Trip temperature Operative only when P490.x=1.	$\begin{aligned} & 0 \text { to } 200 \\ & {\left[{ }^{\circ} \mathrm{C}\right]} \\ & 1^{\circ} \mathrm{C} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P493 } \\ & * \\ & \text { FDS } \\ & \text { (G185) } \end{aligned}$	Motor temperature analog 1 (temperature sensor at terminals 22 / 23): Tripping of alarm or fault message Motor temperature grasped with KTY84 Motor temperature grasped with PTC thermistor	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Ind: } 4 \\ \text { FS=0 } \\ \text { Type: O2 } \end{array}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
P494 * FDS (G185)	Motor temperature analog 2 (temperature sensor at terminals 204 / 205): Tripping of alarm or fault message Motor temperature grasped with KTY84 Motor temperature grasped with PTC thermistor $0 \quad$ Monitoring deactivated 1 Alarm message (A029) when operating point of PTC thermistor is reached 2 Fault message (F029) when operating point of PTC thermistor is reached 3 Illegal setting	$\begin{aligned} & \hline 0 \text { to } 3 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \hline \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P495 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G186) } \end{aligned}$	Brush length sensing: Tripping of alarm or fault message	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 4 9 6} \\ & * \\ & \text { FDS } \\ & \text { (G186) } \end{aligned}$	Bearing condition: Tripping of alarm or fault message	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 4 9 7} \\ & * \\ & \text { FDS } \\ & \text { (G186) } \end{aligned}$	Air flow: Tripping of alarm or fault message	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
P498 $*$ FDS (G186)	Temperature switch: Tripping of alarm or fault message	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.28 Configuring of torque shell input

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { P500 } \\ *\end{array} & \begin{array}{l}\text { Source for torque setpoint for slave drive } \\ \text { BDS } \\ \text { (G160) } \\ \text { drive } \\ 0=\text { connector K0000 } \\ 1=\text { connector K0001 } \\ \text { etc. }\end{array} & \begin{array}{l}\text { All connector } \\ \text { numbers } \\ 1\end{array} & \begin{array}{l}\text { P052 = } \\ \text { P051 }=40\end{array} \\ \text { Offline }\end{array}\right\}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P502 } \\ & * \\ & \text { (G152) } \end{aligned}$	Source for value to be added to speed controller output Selection of connector to be injected as the value to be added to the speed controller output (in addition to friction and moment of inertia compensation) 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P503 } \\ & \text { FDS } \\ & \text { (G160) } \\ & \hline \end{aligned}$	Multiplier for torque setpoint in slave mode	$\begin{aligned} & -300.00 \text { to } 300.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=100.00 Type: I2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

11.29 Speed limiting controller

(see also Section 8, Sheet G160)

The output of the speed limiting controller comprises a positive (K0136) and a negative (K0137) torque limit. These limits are applied to the torque limitation.				
	Source for input quantity (n -act) of speed limiting controller $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=167 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P510 } \\ & * \\ & \text { (G160) } \end{aligned}$	Source for pos. torque limit of speed limiting controller Selection of the connector to be injected as the limit value for torque limitation 1 $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=2 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P511 } \\ & \text { * } \\ & \text { (G160) } \end{aligned}$	Source for neg. torque limit of speed limiting controller Selection of the connector to be injected as the limit value for torque limitation 2 $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=4 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P512 } \\ & \text { FDS } \\ & \text { (G160) } \\ & \hline \end{aligned}$	Maximum speed in positive direction of rotation	$\begin{aligned} & \hline 0.0 \text { to } 199.9 \\ & \text { [\%] } \\ & 0.1 \% \text { of rated speed } \end{aligned}$	Ind: 4 FS=105.0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
P513 FDS (G160)	Maximum speed in negative direction of rotation	$\begin{aligned} & \hline-199.9 \text { to } 0.0 \\ & \text { [\%] } \\ & 0.1 \% \text { of rated speed } \end{aligned}$	Ind: 4 FS=-105.0 Type: 12	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \\ \hline \end{array}$
$\begin{aligned} & \hline \text { P515 } \\ & \text { FDS } \\ & \text { (G160) } \\ & \hline \end{aligned}$	P gain of speed limiting controller	$\begin{aligned} & 0.10 \text { to } 200.00 \\ & 0.01 \end{aligned}$	Ind: 4 FS=3.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \\ & \hline \end{aligned}$

11.30 Friction compensation

(see also Section 8, Sheet G153)
Parameters P520 to P530 are the armature current and torque setpoint required for a stationary input signal (factory setting: speed controller actual value K 0179) of $0 \%, 10 \%$ to 100% of the maximum value (in steps of 10%).
These parameters are intermediate points along the friction curve. Depending on P170 (0 or 1) they are either an armature current or a torque setpoint and are set automatically when the friction and moment of inertia compensation (P051=28) are optimized. P520 is then set to 0.0%.
The intermediate points are interpolated linearly during which the output of the friction compensation assumes the sign of the input signal. P530 is specified by the friction compensation even for input signals $>100 \%$ of the maximum signal.
During operation in both directions we recommend leaving P520 at 0.0% in order to avoid armature current vibration at 0% of the input signal.

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \text { P519 } \\ & * \\ & \text { (G153) } \end{aligned}$	Source for input signal of the friction compensation [SW 2.0 and later] Selection of the input signals that are added and led to the input of the friction compensation. i001 Input signal, with sign i002 Input signal with absolute value generator Settings: $0=$ Connector K0000 1 = Connector K0001 etc.	All connector numbers 1	Ind: 2 FS= i001: 179 i002: 0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { offline } \end{aligned}$
$\begin{aligned} & \hline \text { P520 } \\ & \text { FDS } \\ & (\mathrm{G} 153) \\ & \hline \end{aligned}$	Friction at 0\% speed Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS $=0.0$ Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P521 } \\ & \text { FDS } \\ & (\mathrm{G} 153) \\ & \hline \end{aligned}$	Friction at 10\% speed Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P522 } \\ & \text { FDS } \\ & (\mathrm{G} 153) \\ & \hline \end{aligned}$	Friction at 20\% speed Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P523 } \\ & \text { FDS } \\ & (\mathrm{G} 153) \\ & \hline \end{aligned}$	Friction at $\mathbf{3 0 \%}$ speed Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS }=0.0 \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P524 } \\ & \text { FDS } \\ & \text { (G153) } \\ & \hline \end{aligned}$	Friction at 40\% speed Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P525 } \\ & \text { FDS } \\ & \text { (G153) } \\ & \hline \end{aligned}$	Friction at 50\% speed Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P526 } \\ & \text { FDS } \\ & \text { (G153) } \\ & \hline \end{aligned}$	Friction at 60\% speed Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0.0 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P527 } \\ & \text { FDS } \\ & (\mathrm{G} 153) \\ & \hline \end{aligned}$	Friction at 70\% speed Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS $=0.0$ Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P528 } \\ & \text { FDS } \\ & \text { (G153) } \\ & \hline \end{aligned}$	Friction at $\mathbf{8 0 \%}$ speed Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS $=0.0$ Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P529 } \\ & \text { FDS } \\ & \text { (G153) } \\ & \hline \end{aligned}$	Friction at 90\% speed Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P530 } \\ & \text { FDS } \\ & \text { (G153) } \\ & \hline \end{aligned}$	Friction at 100\% speed and higher Setting as \% of converter rated DC current or rated torque	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS }=0.0 \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

11.31 Compensation of moment of inertia (dv/dt injection)

(see also Section 8, Sheet G153)

P540 FDS (G153)	Acceleration time The acceleration time is the time that would be needed to accelerate the drive from 0% to 100% of maximum speed (with no friction) at 100\% converter rated DC current (armature) and 100\% rated motor field current (i.e. 100% flux). It is a measure of the moment of inertia on the motor shaft. This parameter is set automatically during the optimization run for friction and moment of inertia compensation (P051=28).	$\begin{aligned} & 0.00 \text { to } 650.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \mathrm{~s} \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P541 } \\ & \text { FDS } \\ & \text { (G153) } \end{aligned}$	\mathbf{P} gain of acceleration Proportional gain for "SAD-dependent acceleration" function (see also parameter P543)	$\begin{aligned} & 0.00 \text { to } 650.00 \\ & 0.01 \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P542 } \\ & \text { FDS } \\ & \text { (G136) } \end{aligned}$	Time difference for dy/dt of ramp-function generator Ramp-function generator: Setting of $\underline{d t}$ for the output of $d y / d t$ at a connector, i.e. at K0191, the change in the output quantity of the ramp-function generator (K0190) is output within the period set in P542 Example: The ramp-function generator is currently ramping up with a rampup time of $P 311=5$ s, i.e. a ramp-up operation from $y=0 \%$ to $y=100 \%$ takes 5 s . - A time difference dt of P542=2s is set. $-\Rightarrow A$ dy/dt of 40% appears at connector K0191 since the dy within the set dt of 2 s equals $(2 \mathrm{~s} / 5 \mathrm{~s})^{*} 100 \%$.. see also parameter P330	0.01 to 300.00 [s] 0.01s	Ind: 4 FS=0.01 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P543 } \\ & \text { FDS } \\ & \text { (G153) } \end{aligned}$	Threshold for SAD-dependent acceleration With respect to the SAD-dependent acceleration function, only the component of the speed controller setpoint/actual value difference which has an absolute value in excess of the threshold set in this parameter is switched through (see also parameter P541). Output (value to be multiplied by P541)	```0.00 to 100.00 [%] 0.01% of maximum speed```	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P546 } \\ & \text { FDS } \\ & \text { (G153) } \end{aligned}$	Filter time for compensation of moment of inertia	$\begin{array}{\|l\|} \hline 0 \text { to } 10000 \\ {[\mathrm{~ms}]} \\ 1 \mathrm{~ms} \\ \hline \end{array}$	Ind: 4 $F S=0$ Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.32 Speed controller

(see also Section 8, Sheet G151)
further parameters for the speed controller P200-P236

Speed controller adaptation

The parameters of the speed controller (Kp, Tn, droop) can be altered as a function of any connector to adapt the speed controller optimally to a changing controlled system
The diagrams below show the active P gain, the active Integration time and the active droop depending on the value of the set connector.
Adaptation of the P gain:

Adaptation of the integration time:

Adaptation of the droop:

For parameter pairs P225/P550, P226/P551 and P227/P552 all values can be set completely mutually independently, e.g., P550 does not have to be greater than P225. The above diagrams show only the effect of the individual parameters.

$\begin{aligned} & \hline \text { P550 } \\ & \text { FDS } \\ & \text { (G151) } \end{aligned}$	P gain in the adaptation range Value of Kp, if Influencing quantity \leq Threshold 1	$\begin{aligned} & 0.10 \text { to } 200.00 \\ & 0.01 \end{aligned}$	Ind: 4 FS=3.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
P551 FDS (G151)	Integration time in the adaptation range Value of Tn, if Influencing quantity \leq Threshold 1	$\begin{array}{\|l} \hline 0.010 \text { to } 10.000 \\ \text { [s] } \\ 0.001 \mathrm{~s} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { Ind: } 4 \\ \text { FS }=0.650 \\ \text { Type: O2 } \\ \hline \end{array}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { P552 } \\ & \text { FDS } \\ & \text { (G151) } \\ & \hline \end{aligned}$	Droop in the adaptation range Value of droop, if Influencing quantity \leq Threshold 1	$\begin{aligned} & 0.0 \text { to } 10.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { P553 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G151) } \end{aligned}$	Source for the Influencing quantity of the Kp adaptation Selection of which connector is connected at the influencing quantity for adaptation of the n controllers P gain $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 4 $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { P554 } \\ & \text { * } \\ & \text { FDS } \\ & \text { (G151) } \end{aligned}$	Source for the Influencing quantity of the Tn-adaptation Selection of which connector is connected at the influencing quantity for adaptation of the n controllers integration time 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P555 } \\ & * \\ & \text { FDS } \\ & \text { (G151) } \end{aligned}$	Source for the Influencing quantity of the droop adaptation Selection of which connector is connected at the influencing quantity for adaptation of the n controllers droop 0 = Connector K0000 1 = Connector K0001 etc.	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { P556 } \\ & \text { FDS } \\ & \text { (G151) } \end{aligned}$	Adaptation n controller P gain: Threshold 1	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & {[\%] \quad} \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0.00 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { P557 } \\ \text { FDS } \\ \text { (G151) } \end{array}$	Adaptation n controller integration time: Threshold 1	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P558 } \\ \text { FDS } \\ \text { (G151) } \end{array}$	Adaptation n controller droop: Threshold 1	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & [\%]] \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0.00 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { P559 } \\ & \text { FDS } \\ & \text { (G151) } \end{aligned}$	Adaptation n controller P gain: Threshold 2	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & [\%]] \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0.00 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P560 } \\ \text { FDS } \\ \text { (G151) } \end{array}$	Adaptation n controller integration time: Threshold 2	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & [\%]] \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0.00 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
P561 FDS (G151)	Adaptation n controller droop: Threshold 2	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & [\%]] \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

Speed controller - speed droop limitation				
$\begin{aligned} & \hline \text { P562 } \\ & \text { FDS } \\ & \text { (G151) } \end{aligned}$	Positive speed droop limitation	$\begin{aligned} & 0.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=100.00 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P563 FDS (G151)	Negative speed droop limitation	$\begin{aligned} & -199.99 \text { to } 0.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=-100.00 Type: 12	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

Speed controller optimization for drives with oscillating mechanical system

On drives with oscillating mechanical components, it can be useful to optimize the speed controller using optimization run $\mathrm{P} 051=29$. The frequency response of the controlled system for frequencies from 1 Hz to 100 Hz is recorded during optimization.

The drive is first accelerated up to a base speed (P565, FS=20\%). A sinusoidal speed setpoint with low amplitude (P566, FS=1\%) is then injected. The frequency of this supplementary setpoint is incremented in 1 Hz steps from 1 Hz up to 100 Hz . An average per frequency is calculated over a parameterizable number of current peaks (P567, FS=300).

P565	Base speed for frequency response recording [SW 1.9 and later]	$\begin{aligned} & \hline 1.0 \text { to } 30.0 \\ & {[\%]} \\ & 0.1 \% \\ & \hline \end{aligned}$	Ind: None FS=20.0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
P566	Amplitude for frequency response recording [SW 1.9 and later]	$\begin{aligned} & 0.01 \text { to } 5.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=1.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
P567	Number of current peaks for frequency response recording [SW 1.9 and later] While the frequency response is being recorded, an average over the number of current peaks set here is calculated for each measuring frequency. High values improve the result, but extend the measuring time. When P567 = 1000, the frequency response recording takes about 9 minutes.	$\begin{aligned} & 100 \text { to } 1000 \\ & 1 \end{aligned}$	Ind: None FS=300 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.33 Field reversal

(see also Section 9)

$\begin{aligned} & \hline \text { P580 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G200) } \end{aligned}$	Source for selection of "Direction of rotation reversal using field reversal" Selection of binector to control the "Direction of rotation reversal using field reversal" function $0=$ binector B 0000 1 = binector B0001 etc. Signal 0: Positive field direction is selected $(B 0260=1, B 0261=0)$, actual speed value is not inverted Signal 1: Negative field direction is selected $(B 0260=0, B 0261=1)$, actual speed value is inverted	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
P581 * BDS (G200)	Source for selection of "Braking with field reversal" Selection of binector to control the "Braking with field reversal" function $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$ Signal change $0 \rightarrow 1$: Reversal of field direction (causes braking); When $n<n-m i n$ is reached, the original field direction is selected again. The drive switches to state o7.2	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P582 } \\ & * \\ & \text { BDS } \\ & \text { (G200) } \end{aligned}$	Source for selection of "Field reversal" [SW 1.9 and later] Selection of binector to control "Field reversal" function ```0 = binector B0000 1 = binector B0001 etc.``` Signal 0: Positive field direction is selected ($\mathrm{B} 0260=1, \mathrm{~B} 0261=0$) Signal 1: Negative field direction is selected ($B 0260=0, B 0261=1$)	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { P583 } \\ & \text { (G200) } \end{aligned}$	Source for actual speed signal for field reversal logic [SW 1.9 and later] Selection of connector to be used as actual speed value for the field reversal logic. $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=167 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

11.34 Input quantities for signals

(see also Section 8, Sheet G187 and G188)

P590 (G187)	Source for setpoint of "nset = nact signal 1" Setpoint/actual value deviation signal: Selection of connector to be injected as input quantity "n set" for the $^{\text {setpoint/actual value deviation signal. }}$ $0=$ connector K0000 $1=$ connector K0001 etc.	All connector numbers 1	Ind: None FS=174 Type: L2	P052 = P051 $=40$ Offline
(G187)	Source for actual value of "n-set = n-act signal 1" Setpoint/actual value deviation signal: Selection of connector to be injected as input quantity "nact" for the setpoint/actual value deviation signal. $0=$ connector K0000 $1=$ connector K0001 etc.	All connector numbers 1	Ind: None FS=167 Type: L2	P052 = P051 = Offline

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { PNU } & \begin{array}{l}\text { Description }\end{array} & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting } \\ \text { Type }\end{array} \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]$

11.35 Configuring of closed-loop control

Setting values for configuring of torque shell				
$\begin{aligned} & \text { P600 } \\ & * \\ & (\mathrm{G} 163) \end{aligned}$	Source for gating unit input (armature) i001 to i004: Selects which connectors are applied as the gating unit input (armature). All four values are added. Settings: 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS= i001: 102 i002: 0 i003: 0 i004: 0 Typ: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l\|} \hline \hline \text { P601 } \\ * \\ \text { (G160) } \\ \text { (G161) } \\ \text { (G162) } \end{array}$	Source for armature current controller setpoint i001,i002 Speed limiting controller: Selection of connectors to be injected as input quantities for the speed limiting controller. Both values are added. i003,i004 Current limitation: Selection of connectors to be injected as armature current controller setpoint (before current limitation). Both values are added. i005,i006 Current control: [SW 1.8 and later] Selection of which connectors are connected as the armature current controller setpoint (before current controller). The two values are added. The magnitude is formed from the value selected with index 6. Settings: 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 6 FS= i001: 141 i002: 0 i003: 134 i004: 0 i005: 125 i006: 0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P602 } \\ & * \\ & \text { (G162) } \end{aligned}$	Source for armature current controller actual value Selection of connector to be injected as armature current controller actual value 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None FS=117 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P603 } \\ & * \\ & \text { (G161) } \end{aligned}$	Source for variable current limit in torque direction I i001..i004 Selection of connector to be injected as variable current limit in torque direction I Normalization: +100\% corresponds to P100*P171 i005 Selection of connector to be injected as current limit in torque direction I with Fast Stop or Shutdown Normalization: +100\% corresponds to P100*P171 i006 Selection of connector to be injected as variable current limit in torque direction I Normalization: +100\% corresponds to r072.002 [can be set in SW 1.9 and later] i007 Selection of connector to be injected as current limit in torque direction I with Emergency Stop or Shutdown Normalization: +100\% corresponds to r072.002 [can be set in SW 1.9 and later] Settings: 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 7 FS= i001: 1 i002: 1 i003: 1 i004: 1 i005: 1 i006: 2 i007: 2 Type: L2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Offline } \end{array}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P604 } \\ & * \\ & \text { (G161) } \end{aligned}$	Source for variable current limit in torque direction II i001..i004 Selection of connector to be injected as variable current limit in torque direction II Normalization: -100\% corresponds to P100*P172 i005 Selection of connector to be injected as current limit in torque direction II with Fast Stop or Shutdown Normalization: -100\% corresponds to P100*P172 i006 Selection of connector to be injected as variable current limit in torque direction II Normalization: -100\% corresponds to r072.002 [can be set in SW 1.9 and later] i007 Selection of connector to be injected as current limit in torque direction II with Emergency Stop or Shutdown Normalization: -100\% corresponds to r072.002 [can be set in SW 1.9 and later] Settings: $\begin{aligned} & 0=\text { connector K0000 } \\ & \ldots \\ & 8=\text { connector K0008 } \\ & 9=\text { value as set in parameter P603.ixx } *(-1) \\ & 10=\text { connector K0010 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 7 $F S=9$ Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P605 } \\ & * \\ & \text { (G160) } \end{aligned}$	Source for variable positive torque limit Torque limitation: Selection of connectors to be injected as the variable positive torque limit i001..i004 Normalization: 100% of the connector value corresponds to the positive system torque limit according to $\mathrm{I}_{\mathrm{a}}=\mathrm{P} 171$ and $\mathrm{I}_{\mathrm{f}}=\mathrm{P} 102$ i005 Normalization: 100% of the connector value corresponds to the positive torque limit according to la=r072.002 and If $=\mathrm{P} 102$ [can be set in SW 1.9 and later] 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 5 FS=2 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P606 } \\ & * \\ & \text { (G160) } \end{aligned}$	Source for variable negative torque limit Torque limitation: Selection of connectors to be injected as the variable negative torque limit ```i001..i004 Normalization: \(100 \%\) of the connector value corresponds to the negative system torque limit according to la=P172 and If = P102 i005 Normalization: \(100 \%\) of the connector value corresponds to the negative torque limit according to la=r072.002 and If = P102 [can be set in SW 1.9 and later] 0 = connector K0000 \(\ddot{8}=\) connector K0008 9 = value as set in parameter P605 * (-1) 10 = connector K0010 etc.```	All connector numbers 1	Ind: 5 FS=9 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P607 } \\ & * \\ & \text { BDS } \\ & \text { (G160) } \end{aligned}$	Source for torque setpoint for master drive Torque limitation: Selection of connector to be injected as the torque setpoint for a master drive 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 2 FS=148 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Speed controller				
$\begin{aligned} & \text { P609 } \\ & * \\ & \text { (G151) } \end{aligned}$	Source for actual speed controller value Selection of connector to be injected as the actual speed controller value when P083=4 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Setting values for configuring of closed-loop field and EMF control				
$\begin{aligned} & \hline \text { P610 } \\ & \text { * (G166) } \end{aligned}$	Source for gating unit input (field) Selection of connector to be applied to the gating unit input (field) $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=252 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P611 } \\ & \text { * } \\ & (\mathrm{G} 165) \end{aligned}$	Source for field current controller setpoint Limitation at EMF controller output: Selection of connectors to be injected as the field current controller setpoint. The connectors selected in the four indices are added. 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS= i001: 277 i002: 0 i003: 0 i004: 0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P612 } \\ & \text { * } \\ & \text { (G166) } \end{aligned}$	Source for actual field current controller value Selection of connectors to be injected as the field current controller actual value. The two values are added. $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 2 FS= i001: 266 i002: 0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P613 } \\ & \text { (G165) } \end{aligned}$	Source for variable field current setpoint upper limit Limitation at EMF controller output Selection of connector to be injected as the variable field current setpoint upper limit i001..i004 Normalization: 100% of the connector value corresponds to the rated excitation current of the motor (P102) i005 Normalization: 100% of the connector value corresponds to the actual converter rated DC current (field) (r073.002) [can be set in SW 1.9 and later] 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 5 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P614 } \\ & \text { * } \\ & \text { (G165) } \end{aligned}$	Source for variable field current setpoint lower limit Limitation at EMF controller output Selection of connector to be injected as the variable field current setpoint lower limit i001..i004 Normalization: 100% of the connector value corresponds to the minimum excitation current of the motor (P103) i005 Normalization: 100% of the connector value corresponds to the actual converter rated DC current (field) (r073.002) [can be set in SW 1.9 and later] 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 5 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P615 } \\ & * \\ & (\mathrm{G} 165) \end{aligned}$	Source for EMF controller setpoint Selection of connectors to be injected as the EMF controller setpoint. The connectors selected in the four indices are added. 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS= i001: 289 i002: 0 i003: 0 i004: 0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P616 } \\ * \\ \text { (G165) } \end{array}$	Source for actual EMF controller value Selection of connector to be injected as the actual EMF controller value $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=286 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Configuring of injection of acceleration value				
$\begin{aligned} & \text { P619 } \\ & * \\ & \text { (G153) } \end{aligned}$	Source for acceleration injection value Selection of connector to be applied as the acceleration injection value $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=191 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Speed controller				
Speed controller, setpoint/actual value deviation				
$\begin{aligned} & \hline \text { P620 } \\ & * \\ & \text { (G152) } \end{aligned}$	Source for speed controller setpoint/actual value deviation Selection of connector to be injected as the control deviation $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=165 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P621 } \\ & * \\ & (\mathrm{G} 152) \end{aligned}$	Source for speed controller setpoint 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None FS=176 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P622 } \\ & * \\ & \text { (G152) } \end{aligned}$	Source for speed controller setpoint $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=174 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P623 } \\ & * \\ & \text { (G152) } \end{aligned}$	Source for actual speed controller value $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=179 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P624 } \\ & \text { * } \\ & \text { (G152) } \end{aligned}$	Source for actual speed controller value $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
Speed controller: Filtering of setpoint and actual value, band-stop filters				
$\begin{aligned} & \hline \text { P625 } \\ & * \\ & \text { FDS } \\ & \text { (G152) } \end{aligned}$	Source for speed controller setpoint Selection of connector to be injected as the input signal for speed setpoint filtering 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS=170 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P626 } \\ & * \\ & \text { FDS } \\ & \text { (G152) } \end{aligned}$	Source for actual speed controller value Selection of connector to be injected as the input signal for actual speed value filtering $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 4 FS=167 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

$\left.\left.\begin{array}{|l|l|l|l|l|}\hline \text { PNU } & \begin{array}{l}\text { Description }\end{array} & \begin{array}{l}\text { Value range } \\ \text { Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting }\end{array} \\ \text { Type }\end{array}\right] \begin{array}{l}\text { See } \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]$

Setting values for configuring the setpoint processing function and ramp-function generator				
Limitation at ramp-function generator output (setpoint limitation) (see also Section 8, Sheet G136)				
The effective limitations are:				
Upper limit: Lower limit	Minimum value of P300 and the four connectors selected with P632 Maximum value of P301 and the four connectors selected with P633			
Note:	The limiting values for both the positive and negative setpoint limits can have limit, for example, can therefore be parameterized to a positive value and th	a positive or n positive setpo	gn. The a negativ	ve setpoint ue.
$\begin{aligned} & \text { P632 } \\ & * \\ & (\mathrm{G} 137) \end{aligned}$	Source for variable positive limitation at ramp-function generator output Selection of connectors to be injected at the variable positive limitation at the ramp-function generator output (setpoint limitation). 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P633 } \\ & * \\ & \text { (G137) } \end{aligned}$	Source for variable negative limitation at ramp-function generator output Selection of connectors to be injected at the variable negative limitation at the ramp-function generator output (setpoint limitation). ```0 = connector K0000 % = connector K0008 9 = value as set in parameter P632 * (-1) 10 = connector K0010 etc.```	All connector numbers 1	Ind: 4 FS=9 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P634 } \\ & \text { * } \\ & \text { (G137) } \end{aligned}$	Source for limitation input at ramp-function generator output Selection of connectors which must be added up to provide the limitation input at the ramp-function generator output (setpoint limitation). 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 2 FS= i001: 190 i002: 0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P635 } \\ & * \\ & \text { FDS } \\ & \text { (G135) } \end{aligned}$	Source for ramp-function generator setpoint Selection of connector to be injected as the ramp-function generator setpoint 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS=194 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P636 } \\ & * \\ & (\mathrm{G} 136) \end{aligned}$	Source for reduction signal for ramp-function generator times Selection of connector to be injected as the reduction signal for the rampfunction generator times i001 acts on ramp-up and ramp-down time (P303, P304) i002 acts on lower and upper transition roundings (P305, P306) i003 acts on ramp-up time (P303) i004 acts on ramp-down time (P304) i005 acts on lower transition rounding (P305) i006 acts on upper transition rounding (P306) 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 6 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P637 } \\ & * \\ & \text { BDS } \\ & (\mathrm{G} 136) \end{aligned}$	Source for selection of "Ramp-function generator setting 2" Selection of binector to control switchover to "Ramp-function generator setting 2". With a log. "1" signal at the binector, ramp-function generator parameter set 2 (P307-P310) is selected. This function has a higher priority than the ramp-up integrator function. $0=$ binector B 0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P638 } \\ \text { BDS } \\ \text { (G136) } \end{array}$	Source for selection of "Ramp-function generator setting 3" Selection of binector to control switchover to "Ramp-function generator setting 3". With a log. "1" signal at the binector, ramp-function generator parameter set 3 (P311-P314) is selected. This function has a higher priority than the ramp-up integrator function. $0=$ binector B0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
P639 (G136)	Source for the ramp-function generator setting values Selection of the connectors that are connected as the ramp-function generator setting values. i001 Setting value for the ramp-function generator output in state log. "1" of the binector selected via P640 i002 Setting value for the ramp-function generator output if the drive is not in state "Operating" (B0104=0) and the binector selected via P640 is in state log. "0" 0 = Connector K0000 1 = Connector K0001 etc.	All connector numbers 1	Ind: 2 FS=167 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \geq \text { off-line } \end{aligned}$
P640 * BDS $(G 136)$	Source for selection of "Set ramp-function generator" Selection of binector to control the "Set ramp-function generator" function $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P641 } \\ * \\ \text { BDS } \\ (\mathrm{G} 136) \end{array}$	Source for selection of "Bypass ramp-function generator" Selection of binector to control the "Bypass ramp-function generator" function $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

$\begin{aligned} & \hline \text { P642 } \\ & * \\ & \text { (G135) } \end{aligned}$	Source for variable positive limitation of main setpoint Selection of connectors to be injected at the variable positive limitation of the main setpoint. The lowest value in each case of the connectors selected via the 4 indices is applied as the limit. Note: Negative values at the selected connectors result in a negative maximum value at the output of the limitation. 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS=2 Type: L2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Offline } \end{array}$
$\begin{aligned} & \hline \text { P643 } \\ & * \\ & \text { (G135) } \end{aligned}$	Source for variable negative limitation of main setpoint Selection of connectors to be injected at the variable negative limitation of the main setpoint. The lowest value in each case of the connectors selected via the 4 indices is applied as the limit. Note: Positive values at the selected connectors result in a positive minimum value at the output of the limitation. $\begin{array}{ll} 0 & =\text { connector K0000 } \\ \ldots & \\ 8 & =\text { connector K0008 } \\ 9 & =\text { value as set in parameter P642 } *(-1) \\ 10 & =\text { connector K0010 } \\ \text { etc. } \end{array}$	All connector numbers 1	Ind: 4 FS=9 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P644 } \\ & * \\ & \text { FDS } \\ & \text { (G135) } \end{aligned}$	Source for main setpoint Selection of connector to be injected as the main setpoint $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 4 FS=206 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P645 } \\ & * \\ & \text { FDS } \\ & \text { (G135) } \end{aligned}$	Source for additional setpoint Selection of connector to be injected as an additional setpoint $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P646 } \\ & * \\ & \text { BDS } \\ & \text { (G136) } \end{aligned}$	Source for enable signal for ramp-up integrator switchover Selection of binector to control enabling of the ramp-function integrator switchover function. $0=$ binector B 0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P647 } \\ * \\ \text { BDS } \\ (\mathrm{G} 136) \end{array}$	Source for enable signal for ramp-function generator tracking [SW 2.1 and later] Selection of binector to control enabling of the ramp-function generator tracking function. $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.36 Control word, status word

Selection of sources of control words 1 and 2				
$\begin{aligned} & \hline \text { P648 } \\ & * \\ & \text { BDS } \\ & \text { (G180) } \end{aligned}$	Source for control word 1 Selection of connector to act as the source for control word 1. ```0 = connector K0000 ... 8 = connector K0008 9 = parameters P654 to P675 are effective (every individual bit of control word 1 is input by a binector) 10 = connector K0010 etc.```	All connector numbers 1	Ind: 2 FS=9 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P649 } \\ & * \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2 Selection of connector to act as the source for control word 2. ```0 = connector K0000 ... 8 = connector K0008 9 = parameters P676 to P691 are effective (every individual bit of control word 2 is input by a binector) 10 = connector K0010 etc.```	All connector numbers 1	Ind: 2 FS=9 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Display of control words 1 and 2			
$\begin{aligned} & \text { r650 } \\ & \text { (G180) } \end{aligned}$	Display of control word 1 Mode of representation on operator panel (PMU): 13 12 $11 \quad 10$ 9 8 5 3 \square Segments 0 to 15 correspond to bits 0 to 15 of the control word Segment ON: Corresponding bit is in log. "1" state Segment OFF: Corresponding bit is in log. " 0 " state	Ind: None Type: V2	$\mathrm{P} 052=3$
	Display of control word 2 Mode of representation on operator panel (PMU): $\|11\|$ 1 0 Segments 0 to 15 correspond to bits 16 to 31 of the control word	Ind: None Type: V2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Display of status words 1 and 2				
$\begin{aligned} & \hline \text { r652 } \\ & \text { (G182) } \end{aligned}$	Display of status word 1 Mode of representation on operator panel (PMU): Segments 0 to 15 correspond to bits 0 to 15 of the status word Segment ON: Corresponding bit is in log. "1" state Segment OFF: Corresponding bit is in log. "0" state		Ind: None Type: V2	$\mathrm{P} 052=3$
	Display of status word 2 Mode of representation on operator panel (PMU): Segments 0 to 15 correspond to bits 16 to 31 of the status word		Ind: None Type: V2	$\mathrm{P} 052=3$

The following parameters are used to select the binectors (some of which are gated with one another or with other signals) to be applied to the individual bits of the control word.
The settings of all these parameters are as follows:

$$
\begin{aligned}
& 0=\text { binector B0000 } \\
& 1=\text { binector B0001 } \\
& \text { etc. }
\end{aligned}
$$

The functions and logic operations are also shown on Sheets G180 and G181 in Section 8.
Control word 1

P654 $*$ BDS (G130) P655	Source for control word 1, bit0 (0=OFF1, 1=ON; ANDed with terminal 37)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
P655 $*$ BDS (G180) P656	1st source for control word 1, bit1 ($0=$ OFF2; ANDed with $2^{\text {nd }}$ and $3^{\text {rd }}$ sources for bit 1)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P656 } \\ * \\ \text { BDS } \\ \text { (G180) } \\ \hline \end{array}$	2nd source for control word 1, bit1 ($0=$ OFF2; ANDed with $1^{\text {st }}$ and $3^{\text {rd }}$ sources for bit1)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
P657 $*$ B BDS (G180) P658	3rd source for control word 1, bit1 ($0=$ OFF2; ANDed with $1^{\text {st }}$ and $2^{\text {nd }}$ sources for bit1)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
P658 $*$ BDS (G180) P655	1st source for control word 1, bit2 ($0=$ OFF3=Fast stop; ANDed with $2^{\text {nd }}$ and $3^{\text {rd }}$ sources for bit2)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
P659 * BDS (G180)	2nd source for control word 1, bit2 ($0=$ OFF3=Fast stop; ANDed with $1^{\text {st }}$ and $3^{\text {rd }}$ sources for bit2)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P660 } \\ * \\ \text { BDS } \\ (\mathrm{G} 180) \end{array}$	3rd source for control word 1, bit2 ($0=$ OFF3 $=$ Fast stop; ANDed with $1^{\text {st }}$ and $2^{\text {nd }}$ sources for bit2)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P661 } \\ * \\ \text { BDS } \\ \text { (G180) } \end{array}$	Source for control word 1, bit3 (0=pulse disable, $1=$ enable; ANDed with terminal 38)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

| PNU | Description | Value range
 [Unit]
 Steps | No. indices
 Factory
 setting
 Type |
| :--- | :--- | :--- | :--- | :--- |

Control word 2				
$\begin{aligned} & \hline \text { P676 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G181) } \\ & \hline \end{aligned}$	Source for control word 2, bit16 (select function data set bit 0)	All binector numbers 1	Ind: 2 $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P677 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2, bit17 (select function data set bit 1)	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P680 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2, bit20 (select fixed setpoint 0)	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P681 } \\ & * \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2, bit21 (select fixed setpoint 1)	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P684 } \\ & * \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2, bit24 ($0=\mathrm{n}$ controller speed droop disabled, $1=$ enabled)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P685 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2, bit25 ($0=\mathrm{n}$ controller disabled, $1=\mathrm{n}$ controller enabled)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P686 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2, bit26 ($0=$ external fault $2,1=$ no external fault 2)	All binector numbers 1	Ind: 2 $F S=1$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P687 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2, bit27 ($0=$ master drive, speed control, $1=$ slave drive, torque control)	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P688 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2, bit28 ($0=$ external alarm 1, 1=no external alarm 1)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P689 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2, bit29 ($0=$ external alarm 2, 1=no external alarm 2)	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P690 } \\ & * \\ & (\mathrm{G} 181) \end{aligned}$	Source for control word 2, bit30 ($0=$ select Bico data set $1,1=$ select Bico data set 2)	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P691 } \\ & \text { * } \\ & \text { BDS } \\ & \text { (G181) } \end{aligned}$	Source for control word 2, Bit31 Main contactor checkback signal: ($0=$ main contactor dropped out, $1=$ main contactor picked up) This control input is intended as a means of looping an auxiliary contact of the main contactor into the device control. During the Power ON routine, this signal must switch to " 1 " within the time period set in P095. If it does not, or it disappears during operation, fault message F004 with fault value 6 is activated. P691 = 0: Bit 31 of control word 2 is inoperative. (This setting of P691 is always active, regardless of whether control word 2 is input in word mode [P649 <> 9] or bit mode [P649 = 9]) P691 = 1: Bit 31 of control word 2 is inoperative. (This setting of P691 is active only when control word 2 is input in bit mode, i.e. when P649 = 9) P691 >= 2: The function of bit 31 of control word 2 has an effect in the case of P649=9.	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.37 Further configuring measures

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { P692 } \\ *\end{array} & \begin{array}{l}\text { Source for selection of injection of standstill field } \\ \text { BDS } \\ \text { (G166) }\end{array} & \begin{array}{l}\text { Selection of binector to control injection of the standstill field ("0" state }= \\ \text { inject standstill field) } \\ \text { Note: } \quad \text { The delay time set in P258 is not effective when this function is } \\ \text { active. }\end{array} & \begin{array}{l}\text { All binector numbers } \\ 0=\text { binector B0000 } \\ 1=\text { binector B0001 } \\ \text { etc. }\end{array} & \begin{array}{l}\text { Ind: } \\ \text { FS }=0 \\ \text { Type: L2 }\end{array} \\ \text { P051 = } \\ \text { Offline }\end{array}\right\}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P694 } \\ & * \\ & \text { BDS } \\ & \text { (G160) } \end{aligned}$	Source for selection of enabling command for "Torque limit switchover" Selection of binector which is to control enabling of the "Torque limit switchover" function (1=enable, see also Sheet G160 in Section 8 and P180 to P183) $0=$ binector $B 0000$ 1 = binector B0001 etc.	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
P695 * BDS (G152)	Source for selection of "Set speed controller I component" function Selection of binector to control the "Set I component" function 0 = binector B0000 1 = binector B0001 etc. When the binector selected in P695 switches from log. " 0 " to log. "1", the I component of the speed controller is set to the value of the connector selected in P631. With this function it is possible, for example, to use the same signal (binector) to control controller enabling commands and setting of the I component.	All binector numbers 1	Ind: 2 $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P696 } \\ & * \\ & \text { BDS } \\ & \text { (G152) } \end{aligned}$	Source for selection of "Stop speed controller I component" function Selection of binector to control the "Stop I component" function $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$ When the binector selected in P696 changes to the log. "1" state, the I component of the speed controller is stopped.	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P697 } \\ & * \\ & \text { BDS } \\ & \text { (G153) } \end{aligned}$	Source for selection of enabling of dv/dt injection Selection of binector to control enabling of dv/dt injection (state "1" = enable) $0=$ binector B 0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P698 } \\ & * \\ & \text { BDS } \\ & \text { (G152) } \end{aligned}$	Source for selection of enabling command for speed-dependent speed controller PI / P function switchover Selection of binector to control enabling of the PI / P controller switchover function (see also P222) $0=$ binector B0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

11.38 Analog inputs (main actual value, main setpoint, selectable inputs)

(see also Section 8, Sheets G113 and G114)

Analog input terminals 4 / 5 (main setpoint)				
$\begin{aligned} & \hline \text { P700 } \\ & * \\ & (\text { G113 }) \end{aligned}$	Signal type of "Main setpoint" analog input $0=$ Voltage input 0 to $\pm 10 \mathrm{~V}$ $1=$ Current input 0 to $\pm 20 \mathrm{~mA}$ $2=$ Current input 4 to 20 mA	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \text { P701 } \\ & \text { FDS } \\ & \text { (G113) } \end{aligned}$	Normalization of "Main setpoint" analog input This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA) at the analog input. The following generally applies: For voltage input: $P 701[\%]=10 \mathrm{~V} * \frac{Y}{X}$ X .. Input voltage in volts Y .. \% value which is generated for input voltage X With current input: $\begin{aligned} & P 701[\%]=20 m A * \frac{Y}{X} \quad \mathrm{X} . . \text { Input current in } \mathrm{mA} \\ & \mathrm{Y} . . \% \text { value which is generated for input } \\ & \text { current } \mathrm{X} \end{aligned}$	$\begin{aligned} & -1000.0 \text { to } 1000.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS=100.0 Type: I2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P702 (G113)	Offset for "Main setpoint" analog input	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{aligned} & \begin{array}{l} \text { P703 } \\ * \end{array} \\ & \text { (G113) } \end{aligned}$	Mode of signal injection at "Main setpoint" analog input $0=$ Injection of signal with sign 1 = Injection of absolute value of signal $2=$ Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P704 } \\ & * \\ & \text { (G113) } \end{aligned}$	Source for selection of sign reversal at "Main setpoint" analog input Selection of binector to control sign reversal at the analog input ("1" state = reverse sign) $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
P705 (G113)	Filtering time for "Main setpoint" analog input Note: Hardware filtering of approximately 1 ms is applied as standard.	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \\ & \hline \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \\ & \hline \end{aligned}$
	Source for enabling of "Main setpoint" analog input Selection of binector to control enabling of the analog input ("1" state = enabled) $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access I Status)
$\begin{aligned} & \hline \hline \text { P707 } \\ & \text { * } \\ & \text { (G113) } \end{aligned}$	Resolution of "Main setpoint" analog input The voltage applied to the analog input is converted to a digital value (A/D conversion) for further processing. The method used calculates an average value of the input voltage over a specific measuring time. The A/D conversion process produces a scale for the voltage range of 0 to \pm 10 V , the number of steps (divisions) along this scale can be set in P707 (i.e. the smallest possible differentiable change in the input voltage (quantization) can be set in this parameter). The number of scale steps or intervals is referred to as "Resolution". The resolution is normally specified in bits: ± 11 bits means 2 * 2048 scale divisions ± 12 bits means 2 * 4096 scale divisions ± 13 bits means 2 * 8192 scale divisions ± 14 bits means 2 * 16384 scale divisions The following applies: The higher the resolution, the longer the averaging time and thus also the delay period between the application of an analog step change and the earliest possible moment of availability of the digital value for further processing. For this reason, it is important to find a compromise between the resolution and delay period. If the analog input is operating as a current input (0 to 20 mA or 4 to 20 mA), the above applies analogously.	$\begin{aligned} & \hline 11 \text { to } 14 \\ & \text { [Bit] } \\ & 1 \text { bit } \end{aligned}$	Ind: None FS=12 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Analog input terminals 6 / 7 (analog selectable input 1)				
$\begin{aligned} & \hline \text { P710 } \\ & * \\ & \text { (G113) } \end{aligned}$	Signal type of "Analog selectable input 1" $0=$ Voltage input 0 to $\pm 10 \mathrm{~V}$ $1=$ Current input 0 to $\pm 20 \mathrm{~mA}$ 2 = Current input 4 to 20 mA	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: None } \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
P711 FDS (G113)	Normalization of "Analog selectable input 1" This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA) at the analog input. The following generally applies: For voltage input: $P 711[\%]=10 \mathrm{~V} * \frac{Y}{X}$ X.. Input voltage in volts Y .. \% value which is generated for input voltage X With current input: $P 711[\%]=20 m A * \frac{Y}{X}$ X .. Input current in mA Y .. \% value which is generated for input current X	```-1000.0 to 1000.0 [%] 0.1%```	Ind: 4 FS=100.0 Type: 12	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P712 } \\ & \text { (G113) } \end{aligned}$	Offset for "Analog selectable input 1"	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \begin{array}{l} \text { P713 } \\ * \end{array} \\ & \text { (G113) } \end{aligned}$	Mode of signal injection at "Analog selectable input 1" $0=$ Injection of signal with sign 1 = Injection of absolute value of signal $2=$ Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \begin{array}{l} \text { P714 } \\ * \end{array} \\ & \text { (G113) } \end{aligned}$	Source for selection of sign reversal at "Analog selectable input 1" Selection of binector to control sign reversal at the analog input ("1" state = reverse sign) $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \text { P715 } \\ & \text { (G113) } \end{aligned}$	Filtering time for "Analog selectable input 1" Note: Hardware filtering of approximately 1 ms is applied as standard.	$\begin{array}{\|l} \hline 0 \text { to } 10000 \\ {[\mathrm{~ms}]} \\ 1 \mathrm{~ms} \\ \hline \end{array}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \begin{array}{l} \text { P716 } \\ * \end{array} \\ & \text { (G113) } \end{aligned}$	Source for enabling of "Analog selectable input 1" Selection of binector to control enabling of the analog input ("1" state = enabled) 0 = binector B0000 1 = binector B0001 etc.	All binector numbers 1	Ind: None FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
	Resolution of "Analog selectable input 1" See P707	$\begin{aligned} & 10 \text { to } 14 \\ & \text { [Bit] } \\ & 1 \text { bit } \end{aligned}$	Ind: None FS=12 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Analog input terminals 8 / 9 (analog selectable input 2)

$\begin{aligned} & \text { P721 } \\ & \text { FDS } \\ & \text { (G114) } \end{aligned}$	Normalization of "Analog selectable input 2" This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA) at the analog input. The following generally applies: For voltage input: $P 721[\%]=10 \mathrm{~V} * \frac{Y}{X}$ X .. Input voltage in volts Y .. \% value which is generated for input voltage X With current input: $P 721[\%]=20 m A * \frac{Y}{X}$ X .. Input current in mA Y .. \% value which is generated for input current X	```-1000.0 to 1000.0 [%] 0.1%```	Ind: 4 FS=100.0 Type: 12	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { P722 } \\ \text { (G114) } \\ \hline \end{array}$	Offset for "Analog selectable input 2"	$\begin{array}{\|l} \hline-200.00 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \\ \hline \end{array}$	Ind: None FS=0.00 Type: 12	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \\ \hline \end{array}$
$\begin{aligned} & \text { P723 } \\ & * \\ & \text { (G114) } \end{aligned}$	Mode of signal injection at "Analog selectable input 2" $0=$ Injection of signal with sign $1=$ Injection of absolute value of signal $2=$ Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P724 } \\ & * \\ & \text { (G114) } \end{aligned}$	Source for selection of sign reversal at "Analog selectable input 2" Selection of binector to control sign reversal at the analog input ("1" state = reverse sign) $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P725 } \\ & \text { (G114) } \\ & \hline \end{aligned}$	Filtering time for "Analog selectable input 2" Note: Hardware filtering of approximately 1 ms is applied as standard.	$\begin{array}{\|l} \hline 0 \text { to } 10000 \\ {[\mathrm{~ms}]} \\ 1 \mathrm{~ms} \\ \hline \end{array}$	Ind: None FS=0 Type: O2	$\begin{array}{\|l\|} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \\ \hline \end{array}$
$\begin{aligned} & \text { P726 } \\ & * \\ & \text { (G114) } \end{aligned}$	Source for enabling of "Analog selectable input 2" Selection of binector to control enabling of the analog input ("1" state = enabled) $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Analog input terminals $10 / 11$ (analog selectable input 3)				
$\begin{aligned} & \text { P731 } \\ & \text { FDS } \\ & \text { (G114) } \end{aligned}$	Normalization of "Analog selectable input 3" This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA) at the analog input. The following generally applies: For voltage input: $P 731[\%]=10 \mathrm{~V} * \frac{Y}{X}$ X.. Input voltage in volts Y .. \% value which is generated for input voltage X With current input: $P 731[\%]=20 m A * \frac{Y}{X}$ X.. Input current in mA Y .. \% value which is generated for input current X	$\begin{aligned} & \hline-1000.0 \text { to } 1000.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 4 FS=100.0 Type: I2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P732 } \\ & (\mathrm{G} 114) \\ & \hline \end{aligned}$	Offset for "Analog selectable input 3"	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: 12	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { P733 } \\ & * \\ & \text { (G114) } \end{aligned}$	Mode of signal injection at "Analog selectable input 3" $0=$ Injection of signal with sign 1 = Injection of absolute value of signal $2=$ Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P734 } \\ & * \\ & \text { (G114) } \end{aligned}$	Source for selection of sign reversal at "Analog selectable input 3" Selection of binector to control sign reversal at the analog input ("1" state = reverse sign) $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P735 } \\ & (\mathrm{G} 114) \\ & \hline \end{aligned}$	Filtering time for "Analog selectable input 3" Note: Hardware filtering of approximately 1 ms is applied as standard.	$\begin{array}{\|l\|} \hline 0 \text { to } 10000 \\ {[\mathrm{~ms}]} \\ 1 \mathrm{~ms} \\ \hline \end{array}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { P736 } \\ & * \\ & \text { (G114) } \end{aligned}$	Source for enabling of "Analog selectable input 3" Selection of binector to control enabling of the analog input ("1" state = enabled) $0=$ binector B 0000 1 = binector B0001 etc.	All binector numbers 1	Ind: None FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Analog input terminals 103 / 104 (main actual value)				
$\begin{aligned} & \hline \text { P741 } \\ & \text { FDS } \\ & \text { (G113) } \end{aligned}$	Normalization for "Main actual value" Rated value of input voltage at $n_{\text {max }}$ (=tachometer voltage at maximum speed) This parameter defines the maximum speed when $\mathrm{P} 083=1$.	$\begin{aligned} & -270.00 \text { to } 270.00 \\ & \text { [V] } \\ & 0.01 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=60.00 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P742 } \\ & \text { (G113) } \end{aligned}$	Offset for "Main actual value" analog input	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { P743 } \\ & * \\ & \text { (G113) } \end{aligned}$	Mode of signal injection at "Main actual value" analog input $0=$ Injection of signal with sign $1=$ Injection of absolute value of signal $2=$ Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P744 } \\ & * \\ & \text { (G113) } \end{aligned}$	Source for selection of sign reversal at "Main actual value" analog input Selection of binector to control sign reversal at the analog input ("1" state = reverse sign) $0=$ binector $B 0000$ 1 = binector B0001 etc.	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P745 } \\ & \text { (G113) } \end{aligned}$	Filtering time for "Main actual value" analog input Note: Hardware filtering of approximately 1 ms is applied as standard.	$\begin{aligned} & \hline 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \\ & \hline \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P746 } \\ & * \\ & \text { (G113) } \end{aligned}$	Source for enabling of "Main actual value" analog input Selection of binector to control enabling of the analog input ("1" state = enabled) $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.39 Analog outputs

(see also Section 8, Sheets G115 and G116)

Analog output terminals 12 / 13 (actual current display)				
$\begin{aligned} & \hline \begin{array}{l} \text { P749 } \\ * \end{array} \\ & \text { (G115) } \end{aligned}$	Control word for terminal 12 (actual current display)	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

Analog output terminals 14 / 15				
$\begin{aligned} & \hline \text { P750 } \\ & * \\ & \text { (G115) } \end{aligned}$	Source for output value at analog output 1 Selection of connector whose value is to applied to the analog output $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P751 } \\ & * \\ & \text { (G115) } \end{aligned}$	Mode of signal injection at analog output 1 $0=$ Injection of signal with correct sign 1 = Injection of absolute value of signal 2 = Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \mathbf{P 7 5 2} \\ & (\mathrm{G} 115) \end{aligned}$	Filtering time for analog output 1	$\begin{array}{\|l\|} \hline 0 \text { to } 10000 \\ {[\mathrm{~ms}]} \\ 1 \mathrm{~ms} \\ \hline \end{array}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { P753 } \\ & (\mathrm{G} 115) \end{aligned}$	Normalization of analog output 1 $\begin{aligned} & y[\mathrm{~V}]=x * \frac{P 753}{100 \%} \\ x= & \text { Normalization input (corresponds to filtering output) } \\ y= & \text { Normalization output (corresponds to output voltage at analog output } \\ & \text { with offset }=0) \end{aligned}$	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\mathrm{~V}]} \\ & 0.01 \mathrm{~V} \end{aligned}$	Ind: None FS=10.00 Type: I2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P754 } \\ & \text { (G115) } \end{aligned}$	Offset for analog output 1	$\begin{aligned} & -10.00 \text { to } 10.00 \\ & {[\mathrm{~V}]} \\ & 0.01 \mathrm{~V} \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

Analog output terminals 16 / 17				
$\begin{aligned} & \begin{array}{l} \text { P755 } \\ * \end{array} \\ & \text { (G115) } \end{aligned}$	Source for output value at analog output 2 Selection of connector whose value is to applied to the analog output $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P756 } \\ & * \\ & \text { (G115) } \end{aligned}$	Mode of signal injection at analog output 2 $0=$ Injection of signal with correct sign 1 = Injection of absolute value of signal $2=$ Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O 2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P757 } \\ & \text { (G115) } \end{aligned}$	Filtering time for analog output 2	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: None $\mathrm{FS}=0$ Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l\|} \hline \mathbf{P 7 5 8} \\ \text { (G115) } \end{array}$	Normalization of analog output 2 $\begin{aligned} & y[V]=x * \frac{P 758}{100 \%} \\ & x= \text { Normalization input (corresponds to filtering output) } \\ & y= \text { Normalization output (corresponds to output voltage at analog output } \\ & \text { with offset }=0 \text {) } \end{aligned}$	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & \text { [V] } \\ & 0.01 \mathrm{~V} \end{aligned}$	Ind: None FS=10.00 Type: 12	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P759 } \\ \text { (G115) } \\ \hline \end{array}$	Offset for analog output 2	$\begin{aligned} & \hline-10.00 \text { to } 10.00 \\ & \text { [V] } \\ & 0.01 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Ind: None } \\ & \text { FS=0.00 } \\ & \text { Type: } 12 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$

Analog output terminals 18 / 19				
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { P760 } \\ * \end{array} \\ (\mathrm{G} 116) \end{array}$	Source for output value at analog output 3 Selection of connector whose value is to applied to the analog output $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \end{aligned}$ Online
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { P761 } \\ * \end{array} \\ (\mathrm{G} 116) \end{array}$	Mode of signal injection at analog output 3 $0=$ Injection of signal with correct sign $1=$ Injection of absolute value of signal $2=$ Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted	$\begin{aligned} & 0 \text { o to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \end{aligned}$ Online
$\begin{aligned} & \hline \text { P762 } \\ & \text { (G116) } \\ & \hline \end{aligned}$	Filtering time for analog output 3	$\begin{array}{\|l} \hline 0 \text { to } 10000 \\ {[\mathrm{~ms}]} \\ 1 \mathrm{~ms} \\ \hline \end{array}$	Ind: None FS=0 Type: O2	P052 = 3 P051 $=40$ Online
$\begin{aligned} & \hline \text { P763 } \\ & \text { (G116) } \end{aligned}$	Normalization of analog output 3 $\begin{aligned} & y[\mathrm{~V}]=x * \frac{P 763}{100 \%} \\ & x= \text { Normalization input (corresponds to filtering output) } \\ & y= \text { Normalization output (corresponds to output voltage at analog output } \\ &\text { with offset }=0) \end{aligned}$	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\mathrm{~V}]} \\ & 0.01 \mathrm{~V} \end{aligned}$	Ind: None FS=10.00 Type: 12	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \end{aligned}$ Online
$\begin{aligned} & \text { P764 } \\ & \text { (G116) } \end{aligned}$	Offset for analog output 3	$\begin{aligned} & -10.00 \text { to } 10.00 \\ & {[\mathrm{~V}]} \\ & 0.01 \mathrm{~V} \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \end{aligned}$ Online

Analog output terminals $20 / 21$				
$\begin{aligned} & { }_{*}^{\text {P765 }} \\ & (\mathrm{G} 116) \end{aligned}$	Source for output value at analog output 4 Selection of connector whose value is to applied to the analog output $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{array}{\|l} \hline \mathrm{P} 052=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$
$\begin{aligned} & \text { P766 } \\ & { }_{*}^{2} \\ & (\mathrm{G} 116) \end{aligned}$	Mode of signal injection at analog output 4 $0=$ Injection of signal with correct sign $1=$ Injection of absolute value of signal $2=$ Injection of signal with sign, inverted $3=$ Injection of absolute value of signal, inverted	$\begin{aligned} & 0 \text { o to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{array}{\|l\|} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$
$\begin{array}{\|l} \mathbf{P} 767 \\ (\mathrm{G} 116) \end{array}$	Filtering time for analog output 4	$\begin{array}{\|l} \hline 0 \text { to } 10000 \\ {[\mathrm{~ms}]} \\ 1 \mathrm{~ms} \\ \hline \end{array}$	Ind: None FS=0 Type: O2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$
$\begin{aligned} & \text { P768 } \\ & \text { (G116) } \end{aligned}$	Normalization of analog output 4 $\begin{aligned} & \quad y[V]=x * \frac{P 768}{100 \%} \\ & x=\text { Normalization input (corresponds to filtering output) } \\ & y=\begin{array}{l} \text { Normalization output (corresponds to output voltage at analog output } \\ \text { with offset }=0 \text {) } \end{array} \end{aligned}$	-200.00 to 199.99 [V] 0.01 V	Ind: None FS=10.00 Type: 12	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$
$\begin{aligned} & \hline \text { P769 } \\ & \text { (G116) } \end{aligned}$	Offset for analog output 4	$\begin{aligned} & \hline-10.00 \text { to } 10.00 \\ & \text { [V] } \\ & 0.01 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { Ind: None } \\ \text { FS }=0.00 \\ \text { Type: } 12 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \text { P051 }=40 \\ & \text { Online } \\ & \hline \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.40 Binary outputs

(see also Section 8, Sheet G112)

$\begin{aligned} & \hline \text { P770 } \\ & * \\ & \text { (G112) } \\ & \text { (G200) } \end{aligned}$	Control word for binary selectable outputs i001: 0 Binary selectable output at terminal 46 is not inverted 1 Binary selectable output at terminal 46 is inverted i002: 0 Binary selectable output at terminal 48 is not inverted 1 Binary selectable output at terminal 48 is inverted i003: 0 Binary selectable output at terminal 50 is not inverted 1 Binary selectable output at terminal 50 is inverted i004: 0 Binary selectable output at terminal 52 is not inverted 1 Binary selectable output at terminal 52 is inverted	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P771 } \\ & * \\ & \text { (G112) } \\ & \text { (G200) } \end{aligned}$	Source for output value at binary output 1 Selection of binector to be injected at binary selectable output, terminal 46 $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P772 } \\ & * \\ & \text { (G112) } \\ & \text { (G200) } \end{aligned}$	Source for output value at binary output 2 Selection of binector to be injected at binary selectable output, terminal 48 $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P773 } \\ & * \\ & \text { (G112) } \end{aligned}$	Source for output value at binary output 3 Selection of binector to be injected at binary selectable output, terminal 50 $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P774 } \\ & * \\ & \text { (G112) } \end{aligned}$	Source for output value at binary output 4 Selection of binector to be injected at binary selectable output, terminal 52 $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P775 } \\ & \text { (G112) } \\ & \text { (G200) } \end{aligned}$	Delay for output value at binary output 1 The logic level at the binary selectable output changes only if the internal signal level remains constant for the set delay period (internal signal level changes which do not last as long as this delay period are not switched through to the output)	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P776 } \\ & \\ & \text { (G112) } \\ & \text { (G200) } \end{aligned}$	Delay for output value at binary output 2 The logic level at the binary selectable output changes only if the internal signal level remains constant for the set delay period (internal signal level changes which do not last as long as this delay period are not switched through to the output)	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P777 } \\ & \text { (G112) } \end{aligned}$	Delay for output value at binary output 3 The logic level at the binary selectable output changes only if the internal signal level remains constant for the set delay period (internal signal level changes which do not last as long as this delay period are not switched through to the output)	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { P778 } \\ & (\mathrm{G} 112) \end{aligned}$	Delay for output value at binary output 4 The logic level at the binary selectable output changes only if the internal signal level remains constant for the set delay period (internal signal level changes which do not last as long as this delay period are not switched through to the output)	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.41 Configuration of serial interfaces on basic converter

G-SST 1 (RS485 / RS232 on X300) (see also Section 8, Sheet G170 and Section 9)				
$\begin{aligned} & \hline \text { P780 } \\ & * \\ & \text { (G170) } \end{aligned}$	Selection of protocol for G-SST1 basic converter interface	$\begin{aligned} & 0,2,8,9 \\ & 1 \end{aligned}$	Ind: None FS=2 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
	Number of process data for G-SST1 When P780 $=0$ or 9 is selected: Parameter is irrelevant When USS protocol (P780=2) is selected: Number of PZD elements 0 No process data are expected or sent in the USS protocol 1... 16 Number of process data words in USS protocol (same number applies to transmission and receipt) The received PZD elements (1 to max. 16) are available at connectors (K2001 to K2016) and, in some cases, bit-serially at binectors for "internal wiring" purposes. The PZD elements to be transmitted (1 to max. 16) are selected in parameters P784.01 to P784.16.	$\begin{aligned} & 0 \text { to } 16 \\ & 1 \end{aligned}$	Ind: None FS=2 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P782 } \\ & \text { * } \\ & \text { (G170) } \end{aligned}$	Length of parameter jobs for G-SST1 This parameter is effective only when $\mathrm{P} 780=2$ (USS protocol). $0 \quad$ No PKW data are expected or sent in the USS protocol. $3,4 \quad 3$ or 4 PKW data words are expected in the USS protocol and 3 or 4 PKW data words are also sent (for transmission of parameter values). 127 Number of PKWs is determined by the telegram length	$\begin{aligned} & 0,3,4,127 \\ & 1 \end{aligned}$	Ind: None FS=127 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P783 } \\ * \\ (\text { G170 }) \end{array}$	Baud rate for G-SST1 1 300 baud 2 600 baud 3 1200 baud 4 2400 baud 5 4800 baud 6 9600 baud 7 19200 baud 8 38400 baud 9 56700 baud 11 93750 baud 13 187500 baud	$\begin{aligned} & 1 \text { to } 13 \\ & 1 \end{aligned}$	Ind: None FS=6 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
	Source for transmit data for G-SST1 Selection of connectors to be transferred as transmit data to the USS master via USS interface 1. i001: Selection for word 1 i002: Selection for word 2 i016: Selection for word 16 Applicable settings: 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 16 FS= i001: 32 i002: 167 i003: 0 i004: 33 i005-i016: 0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P785 } \\ & (\mathrm{G} 170) \end{aligned}$	Options for G-SST1 i001: $0=$ Bus terminator OFF 1 = Bus terminator ON i002: $\quad 0=$ Bit 10 of the $1^{\text {st }}$ receive word does not function as "Control by PLC". $1=$ Bit 10 of the $1^{\text {st }}$ receive word does function as "Control by PLC", i.e. when bit $10=0$, all other bits of the $1^{\text {st }}$ receive word, as well as receive words 2 to 16, are not written to connectors K2001 to K2016, or to binectors B2100 to B2915. All these connectors and binectors retain their old values.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
P786 (G170)	USS bus address for G-SST1 This parameter is functional only when P780=2 (USS protocol). Address via which the unit can be addressed in USS bus operation.	$\begin{aligned} & 0 \text { to } 30 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P787 } \\ & \text { (G170) } \end{aligned}$	Telegram failure time for G-SST1 The failure time set in this parameter is valid when setting P780=2 (USS protocol) is selected. 0.000 No time monitoring 0.001...65.000 Time which may elapse between the receipt of two telegrams addressed to the unit before a fault message is activated. Fault message F011 is activated if no valid telegram is received within this time period. Note: The telegram monitoring function is active - from the receipt of the first error-free telegram after connection of the electronics power supply - from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout).	$\begin{array}{\|l} \hline 0.000 \text { to } 65.000 \\ {[\mathrm{~s}]} \\ 0.001 \mathrm{~s} \end{array}$	Ind: None FS=0.000 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
P788 (G170)	Source for activation of F011 Selection of binector which will activate fault message F011 when it switches to log. "1" $\begin{aligned} & 2030=\text { binector B2030 } \\ & 2031=\text { binector B2031 } \end{aligned}$	2030, 2031	Ind: None FS=2030 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { r789 } \\ & (\mathrm{G} 170) \end{aligned}$	Diagnostic information for G-SST1 Free-running counter, overflow at 65535 i001: Number of error-free telegrams i002: Number of errored telegrams: Byte frame, parity, overrun or BCC error i003: Number of byte frame errors i004: Number of overrun errors i005: Parity error i006: STX error: Start interval before STX not observed, telegram residual transfer time not observed, delay time of LGE character too long, erroneous STX, i.e. $\neq 02$ i007: Violation of telegram residual transfer time i008: Block check error i009: Incorrect telegram length: With P782=3 or 4 only: The length of the received telegram is $\neq \mathrm{P} 781+\mathrm{P} 782$ (Note: If the received values are correct, they will be processed even when this error has been detected) i010: Timeout error: No valid telegram has been received for a period exceeding the setting in P787. After the occurrence of a timeout error, this counter is not activated again until the next valid telegram is received.		Ind: 10 Type: O2	$\mathrm{P} 052=3$

G-SST 2 (RS485 on X172) (see also Section 8, Sheets G171 and G173 and Section 9)				
$\begin{aligned} & \hline \text { P790 } \\ & * \\ & \text { (G171) } \\ & \text { (G173) } \end{aligned}$	Selection of protocol for G-SST2 basic converter interface Setting has no function USS protocol "Peer-to-peer" communication Communication with the SIMOREG CCP For internal factory test purposes	$\begin{aligned} & 0,2,5,6,9 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P791 } \\ & \text { * } \\ & \text { (G171) } \\ & \text { (G173) } \end{aligned}$	Number of process data for G-SST2 When P790 $=0$ or 9 is selected: Parameter is irrelevant When USS protocol (P790=2) is selected: Number of PZD elements 0 No process data are expected or sent in the USS protocol 1... 16 Number of process data words in USS protocol (same number applies to transmission and receipt) The received PZD elements (1 to max. 16) are available at connectors (K6001 to K6016) and, in some cases, bit-serially at binectors for "internal wiring" purposes. The PZD elements to be transmitted (1 to max. 16) are selected in parameters P794.01 to P794.16. When peer-to-peer $(P 790=5)$ is selected: Number of transferred words $0 \quad$ Illegal setting 1... 5 Number of transferred words 6... 16 Illegal setting	$\begin{aligned} & 0 \text { to } 16 \\ & 1 \end{aligned}$	Ind: None $F S=2$ Type: O2	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
P792 (G171)	Length of parameter jobs for G-SST2 This parameter is effective only when P790=2 (USS protocol). $0 \quad$ No PKW data are expected or sent in the USS protocol. $3,4 \quad 3$ or 4 PKW data words are expected in the USS protocol and 3 or 4 PKW data words are also sent (for transmission of parameter values). 127 Number of PKWs is determined by the telegram length	$\begin{aligned} & 0,3,4,127 \\ & 1 \end{aligned}$	Ind: None FS=127 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P793 } \\ & * \\ & \text { (G171) } \\ & \text { (G173) } \end{aligned}$	Baud rate for G-SST2 1 300 baud 2 600 baud 3 1200 baud 4 2400 baud 5 4800 baud 6 9600 baud 7 19200 baud 8 38400 baud 9 56700 baud 11 93750 baud 13 187500 baud	$\begin{aligned} & 1 \text { to } 13 \\ & 1 \end{aligned}$	Ind: None $\mathrm{FS}=6$ Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P794 } \\ & \text { * } \\ & \text { (G171) } \\ & \text { (G173) } \end{aligned}$	Source for transmit data for G-SST2 Selection of connectors to be transferred as transmit data via basic converter interface 2 When USS protocol (P790=2) is selected: i001: Selection for word 1 i002: Selection for word 2 i016: Selection for word 16 When peer-to-peer $(P 790=5)$ is selected: i001: Selection for word 1 i002: Selection for word 2 i005: Selection for word 5 i006: Not used i016: Not used Applicable settings: 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 16 FS= i001: 32 i002: 167 i003: 0 i004: 33 i005-i016: 0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P795 } \\ & \text { (G171) } \\ & \text { (G173) } \end{aligned}$	Options for G-SST2 i001: $0=$ Bus terminator OFF 1 = Bus terminator ON i002: $\quad 0=$ Bit 10 of the $1^{\text {st }}$ receive word does not function as "Control by PLC". $1=$ Bit 10 of the $1^{\text {st }}$ receive word does function as "Control by PLC", i.e. when bit $10=0$, all other bits of the $1^{\text {st }}$ receive word, as well as receive words 2 to 16 , are not written to connectors K6001 to K6016, or to binectors B6100 to B6915. All these connectors and binectors retain their old values.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P796 } \end{array}$ (G171)	USS bus address for G-SST2 This parameter is functional only when P790=2 (USS protocol). Address via which the unit can be addressed in USS bus operation.	$\begin{aligned} & 0 \text { to } 30 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P797 } \\ & \text { (G171) } \\ & \text { (G173) } \end{aligned}$	Telegram failure time for G-SST2 The failure time set in this parameter is valid when setting P790=2 (USS protocol) or $\mathrm{P} 790=5$ (peer-to-peer) is selected. $0.000 \quad$ No time monitoring 0.001 ...65.000 Time which may elapse between the receipt of two telegrams addressed to the unit before a fault message is activated. Fault message F012 is activated if no valid telegram is received within this time period. Note: The telegram monitoring function is active - from the receipt of the first error-free telegram after connection of the electronics power supply - from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout). Since the telegram transfer time is dependent on the set baud rate, the following minimum setting values for P797 are recommended: Note: If the "Automatic restart" function is selected (P086>0) on the peer-to-peer communication partner, then only a parameter setting of P797>P086 (on the communication partner) is meaningful.	$\begin{aligned} & 0.000 \text { to } 65.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \mathrm{~s} \end{aligned}$	Ind: None FS=0.000 Type: O 2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { P798 } \\ * \\ (\text { G171) } \\ (\text { G173 }) \end{array}$	Source for activation of F012 Selection of binector which will activate fault message F012 when it switches to log. "1" $\begin{aligned} & 6030=\text { binector B6030 } \\ & 6031=\text { binector B6031 } \end{aligned}$	6030, 6031	Ind: None FS=6030 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { r799 } \\ & \\ & \text { (G171) } \\ & \text { (G173) } \end{aligned}$	Diagnostic information for G-SST2 Free-running counter, overflow at 65535 i001: Number of error-free telegrams i002: Number of errored telegrams: Byte frame, parity, overrun or BCC error i003: Number of byte frame errors i004: Number of overrun errors i005: Parity error i006:*) STX error: Start interval before STX not observed, telegram residual transfer time not observed, delay time of LGE character too long, erroneous STX, i.e. $\neq 02$ i007:*) Violation of telegram residual transfer time (USS prot. only) i008:*) Block check error i009:*) Incorrect telegram length: With P792=3 or 4 only: The length of the received telegram is \neq P791 + P792 (Note: If the received values are correct, they will be processed even when this error has been detected) i010: Timeout error: No valid telegram has been received for a period exceeding the setting in P797. After the occurrence of a timeout error, this counter is not activated again until the next valid telegram is received. *) Indices i 006 to i009 are irrelevant for communication with the SIMOREG CCP (P790 = 6)		Ind: 10 Type: O2	P052 = 3

$\begin{aligned} & \hline \text { P800 } \\ & * \\ & (\mathrm{G} 172) \\ & (\mathrm{G} 174) \end{aligned}$	Selection of protocol for G-SST3 basic converter interface	$\begin{aligned} & 0,2,5,9 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: None } \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P801 } \\ & \text { * } \\ & \text { (G172) } \\ & \text { (G174) } \end{aligned}$	Number of process data for G-SST3 When P800 $=0$ or 9 is selected: Parameter is irrelevant When USS protocol (P800=2) is selected: Number of PZD elements 0 No process data are expected or sent in the USS protocol 1... 16 Number of process data words in USS protocol (same number applies to transmission and receipt) The received PZD elements (1 to max. 16) are available at connectors (K6001 to K6016) and, in some cases, bit-serially at binectors for "internal wiring" purposes. The PZD elements to be transmitted (1 to max. 16) are selected in parameters P804.01 to P804.16. When peer-to-peer $(P 800=5)$ is selected: Number of transferred words $0 \quad$ Illegal setting 1... 5 Number of transferred words 6... 16 Illegal setting	$\begin{aligned} & 0 \text { to } 16 \\ & 1 \end{aligned}$	Ind: None FS=2 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P802 } \\ & \text { * } \\ & \text { (G172) } \end{aligned}$	Length of parameter jobs for G-SST3 This parameter is effective only when $\mathrm{P} 800=2$ (USS protocol). $0 \quad$ No PKW data are expected or sent in the USS protocol. $3,4 \quad 3$ or 4 PKW data words are expected in the USS protocol and 3 or 4 PKW data words are also sent (for transmission of parameter values). 127 Number of PKWs is determined by the telegram length	$0,3,4,127$	Ind: None FS=127 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P803 } \\ & * \\ & \text { (G172) } \\ & \text { (G174) } \end{aligned}$	Baud rate for G-SST3 1 300 baud 2 600 baud 3 1200 baud 4 2400 baud 5 4800 baud 6 9600 baud 7 19200 baud 8 38400 baud 9 56700 baud 11 93750 baud 13 187500 baud	$\begin{aligned} & 1 \text { to } 13 \\ & 1 \end{aligned}$	Ind: None FS=13 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { P804 } \\ * \\ \text { (G172) } \\ \text { (G174) } \end{array}$	Source for transmit data for G-SST3 Selection of connectors to be transferred as transmit data via basic converter interface 3 When USS protocol ($\mathrm{P} 800=2$) is selected: i001: Selection for word 1 i002: Selection for word 2 io16: Selection for word 16 When peer-to-peer (P800=5) is selected: i001: Selection for word 1 i002: Selection for word 2 i005: Selection for word 5 i006: Not used i016: Not used Applicable settings: 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 16 FS= i001: 32 i002: 167 i003: 0 i004: 33 i005-i016: 0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P805 } \\ & \\ & \text { (G172) } \\ & \text { (G174) } \end{aligned}$	Options for G-SST3 i001: $0=$ Bus terminator OFF 1 = Bus terminator ON i002: $\quad 0=$ Bit 10 of the $1^{\text {st }}$ receive word does not function as "Control by PLC". $1=$ Bit 10 of the $1^{\text {st }}$ receive word does function as "Control by PLC", i.e. when bit $10=0$, all other bits of the $1^{\text {st }}$ receive word, as well as receive words 2 to 16 , are not written to connectors K9001 to K9016, or to binectors B9100 to B9915. All these connectors and binectors retain their old values.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \text { P052 =3 } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
P806 (G172)	USS bus address for G-SST3 This parameter is functional only when $\mathrm{P} 800=2$ (USS protocol). Address via which the unit can be addressed in USS bus operation.	$\begin{aligned} & 0 \text { to } 30 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { P807 } \\ & \\ & \text { (G172) } \\ & \text { (G174) } \end{aligned}$	Telegram failure time for G-SST3 The failure time set in this parameter is valid when setting P800=2 (USS protocol) or P800=5 (peer-to-peer) is selected. $0.000 \quad$ No time monitoring 0.001...65.000 Time which may elapse between the receipt of two telegrams addressed to the unit before a fault message is activated. Fault message F013 is activated if no valid telegram is received within this time period. Note: The telegram monitoring function is active - from the receipt of the first error-free telegram after connection of the electronics power supply - from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout). Since the telegram transfer time is dependent on the set baud rate, the following minimum setting values for P807 are recommended: Note: If the "Automatic restart" function is selected (P086>0) on the peer-to-peer communication partner, then only a parameter setting of P807>P086 (on the communication partner) is meaningful.	$\begin{aligned} & \hline 0.000 \text { to } 65.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \mathrm{~s} \end{aligned}$	Ind: None FS=0.000 Type: O 2	$\begin{aligned} & \hline \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P808 } \\ & * \\ & \text { (G172) } \\ & \text { (G174) } \end{aligned}$	Source for activation of F013 Selection of binector which will activate fault message F013 when it switches to log. "1" $\begin{aligned} & 9030=\text { binector B9030 } \\ & 9031=\text { binector B9031 } \end{aligned}$	9030, 9031	Ind: None FS=9030 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { r809 } \\ & \\ & \text { (G172) } \\ & \text { (G174) } \end{aligned}$	Diagnostic information for G-SST3 Free-running counter, overflow at 65535 i001: Number of error-free telegrams i002: Number of errored telegrams: Byte frame, parity, overrun or BCC error i003: Number of byte frame errors i004: Number of overrun errors i005: Parity error i006: STX error: Start interval before STX not observed, telegram residual transfer time not observed, delay time of LGE character too long, erroneous STX, i.e. $\neq 02$ i007: Violation of telegram residual transfer time (USS prot. only) i008: Block check error i009: Incorrect telegram length: With PP802=3 or 4 only: The length of the received telegram is $\neq \mathrm{P} 801+\mathrm{P} 802$ (Note: If the received values are correct, they will be processed even when this error has been detected) i010: Timeout error: No valid telegram has been received for a period exceeding the setting in P807. After the occurrence of a timeout error, this counter is not activated again until the next valid telegram is received.		Ind: 10 Type: O2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { r810 } \\ & \text { (G170) } \end{aligned}$	Receive data on G-SST1 Display of data received via USS interface 1		Ind: 20 Type: L2	P052 = 3
$\begin{aligned} & \text { r811 } \\ & (\mathrm{G} 170) \end{aligned}$	Transmit data on G-SST1 Display of the data to be transmitted via USS interface 1		Ind: 20 Type: L2	$\mathrm{P} 052=3$
$\begin{aligned} & \text { r812 } \\ & \text { (G171) } \\ & \text { (G173) } \end{aligned}$	Receive data on G-SST2 When USS protocol (P790=2) is selected: Display of data received via USS interface 2 i001: Display process data word 1 io16 Display process data word 16 i017: Display parameter data word 1 i020: Display parameter data word 4 When peer-to-peer (P790=5) is selected: Display of data received via peer-to-peer interface 2 When communication with the SIMOREG CCP is selected (P790 = 6): Data received from the SIMOREG CCP via interface $\mathbf{2}$ is displayed i001: Last received 1-byte message i002: Last received header of a multibyte message i018 Free-running counter for the number of received 1-byte messages i019 Free-running counter for the number of received headers of a multibyte message i020 Free-running counter for the number of received sequence bytes of a multibyte message		Ind: 20 Type: L2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { r813 } \\ & \\ & \text { (G171) } \\ & \text { (G173) } \end{aligned}$	Transmit data on G-SST2 When USS protocol (P790=2) is selected: Display of the data to be transmitted via USS interface 2 i001: Display process data word 1 ... i016 Display process data word 16 i017: Display parameter data word 1 i020: Display parameter data word 4 When peer-to-peer $(P 790=5)$ is selected: Display of the data to be transmitted via peer-to-peer interface 2		Ind: 20 Type: L2	P052 = 3
$\begin{aligned} & \hline \text { r814 } \\ & \\ & \text { (G172) } \\ & \text { (G174) } \end{aligned}$	Receive data on G-SST3 When USS protocol ($\mathrm{P} 800=2$) is selected: Display of data received via USS interface 3 When peer-to-peer ($\mathrm{P} 800=5$) is selected: Display of data received via peer-to-peer interface 3		Ind: 20 Type: L2	P052 = 3
$\begin{aligned} & \hline \text { r815 } \\ & \\ & \text { (G172) } \\ & \text { (G174) } \end{aligned}$	Transmit data on G-SST3 When USS protocol ($\mathrm{P} 800=2$) is selected: Display of the data to be transmitted via USS interface 3 When peer-to-peer ($\mathrm{P} 800=5$) is selected: Display of the data to be transmitted via peer-to-peer interface 3 i001: Transmit data word 1 i005 Transmit data word 5 i006: Not used i020 Not used		Ind: 20 Type: L2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Peer-to-peer interfaces: Enable transmission and receipt of telegrams: If transmission on a peer-to-peer interface is disabled, the associated output drivers are connected to high impedance. If reception is disabled on a peer-to-peer interface, then the telegram failure monitoring function is deactivated.				
$\begin{aligned} & \text { P816 } \\ & \text { (G173) } \end{aligned}$	Peer-to-peer 2: Source for data reception enabling command $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { P817 } \\ & \text { (G173) } \end{aligned}$	Peer-to-peer 2: Source for data transmission enabling command $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P818 } \\ & \text { (G174) } \end{aligned}$	Peer-to-peer 3: Source for data reception enabling command $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P819 } \\ & \text { (G174) } \end{aligned}$	Peer-to-peer 3: Source for data transmission enabling command $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

11.42 Deactivation of monitoring functions

1. $\frac{1}{}$ warning

If monitoring functions are deactivated, there may be a risk to the safety of operating personnel or of substantial property damage if a fault or error actually occurs!

P820	Deactivation of fault messages The numbers of all fault messages to be deactivated must be entered in this parameter. Fault numbers can be entered in any order. 0 must be entered for any unused indices of the parameter. Factory setting:	$\begin{aligned} & 0 \text { to } 147 \\ & 1 \end{aligned}$	Ind: 99 FS= see column on left Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
P821	Deactivation of alarms The numbers of all alarm messages to be deactivated must be entered in this parameter. Alarm numbers can be entered in any order. 0 must be entered for any unused indices of the parameter.	$\begin{aligned} & 0 \text { to } 147 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Ind: } 99 \\ \text { FS=0 } \\ \text { Type: O2 } \end{array}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

11.43 Compensation values

r824	A7006 compensation values These data contain compensation values for the analog section of electronics board A7006	0 to 65535 1	Ind: 10 Type: O2	P052 = 3
P825	Offset compensation for actual field current channel These data contain compensation values for the actual field current sensing function. They are automatically set during "Restore factory settings" (P051=21) and during the automatic offset compensation run (P051=22).	13000 to 25000	Ind: 3 FS=19139 Type: O2	P052 = P051 = 40 Online

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \text { P826 } \\ & \text { (G163) } \end{aligned}$	Correction of natural commutation timing If there is a variation in the armature current peak value (in spite of a constant firing angle), it can be corrected by offsetting the firing angle reference time of the appropriate line phase in parameter P826. One line phase (UV, UW, VW, VU, WU, WV) is assigned to each parameter index (i001 to i006). Increasing the parameter setting by a value of 1 corresponds to an increase of $1.333 \mu \mathrm{~s}$ in the firing angle (0.024 degrees at 50 Hz line frequency), consequently reducing the armature current peak in the appropriate line phase. P826 is automatically set during the optimization run for precontrol and current controller (armature and field) (P051=25) (only when U800 $=0$; when U800=1 or 2, parameters P826.001 to 006 are set to 0). Caution: Even an asymmetrical system causes variations in the magnitude of armature current peaks. However, the system asymmetry may also change.	$\begin{aligned} & \hline-100 \text { to } 100 * 1.333 \\ & {[\mu \mathrm{~s}]} \\ & 1.333 \mu \mathrm{~s} \end{aligned}$	$\text { Ind: } 6$ $F S=0$ Type: I2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
r827	Internal diagnosis i001: Number of write access operations to EEPROM i002: Number of Page-Write access operations to EEPROM i003: Counter for DUAL-PORT RAM timeouts	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 3 Type: O2	$\mathrm{P} 052=3$
r828	MLFB data These data contain details about the power section design (model)	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 16 \\ & \text { Type: } 02 \end{aligned}$	$\mathrm{P} 052=3$
r829	A7001 compensation values These data contain compensation values for the analog section of electronics board A7001	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 68 \\ & \text { Type: } 02 \end{aligned}$	$\mathrm{P} 052=3$

11.44 Thyristor diagnosis

P830	Control word for thyristor diagnosis $0 \quad$ Thyristor check function deactivated 1 Thyristors are checked on initial SWITCH-ON or INCHING command after connection of the electronics supply voltage. 2 Thyristors are checked on every SWITCH-ON or INCHING command. 3 Thyristors will be checked on the next SWITCH-ON or INCHING command. Parameter P830 is set to 0 if no fault is detected. Note: The thyristor check function may not be activated (setting P830=0 must be selected) - when the "Enable a torque direction for torque direction change by parallel drive" function is in use (see also parameter P165) or - when the converter is used to supply large inductances (e.g. field supply from armature terminals, supply of lifting solenoids, etc.).	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.45 Parameters for DriveMonitor and OP1S

P831 to r849	Parameters for the Trace function of DriveMonitor These parameters are settings for the data exchange between DriveMonitor and the SIMOREG converter. They must not be changed!		P052=3
r850 to P899	Parameters for the OP1S These parameters are settings for the data exchange between OP1S and the SIMOREG converter. They must not be changed!	P052 =	

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.46 Profile parameters

P918 (Z110) (Z111)	CB bus address Protocol-dependent bus address for communication boards Note: The validity of the bus address is monitored by the communication board. (Bus addresses 0 to 2 are reserved for Master stations on PROFIBUS boards and must not therefore be set for other purposes). If the value is not accepted by the COM BOARD, fault F080 is displayed with fault value 5	$\begin{aligned} & 0 \text { to } 200 \\ & 1 \end{aligned}$	Ind: 2 FS=3 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { P927 } \\ & \text { * } \\ & \text { (G170) } \\ & \text { (G171) } \\ & \text { (G172) } \\ & (\text { Z110) } \\ & (\text { Z111) } \end{aligned}$	Parameterization enable Enabling of interfaces for parameterization. A parameter value can only be altered via an enabled interface. None Communications board (CB) Parameterizing unit (PMU) G-SST1 serial interface and OP1S Reserved Technology board (TB) G-SST2 serial interface G-SST3 serial interface Setting information: Every interface has a numeric code. The number for one specific interface, or the sum of various numbers assigned to several interfaces, must be entered in this parameter in order to enable the relevant interface(s) for use as a parameterization interface. Example: Factory setting value $6(=4+2)$ means that the PMU and G-SST1 interfaces are enabled for parameterization purposes.	$\begin{aligned} & 0 \text { to } 127 \\ & 1 \end{aligned}$	Ind: None FS=6 Type: V2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.47 Fault memory

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
P952	Number of faults Settings: $0 \quad$ Deletes the entire fault memory (r947, r949 and r049) by resetting to 0 Note: P952 cannot be reset while a fault is pending $>0 \quad$ Display of the faults stored in the fault memory (r947, r949 and r049)	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

11.48 Visualization parameters: Alarms

r953	Alarm parameter 1 Display of active alarms in bit-coded form (A001 to A016). If one of the alarms between 1 and 16 is generated, the corresponding segment in the display lights up. See Section 10.2 for meaning of individual alarms.		Ind: None Type: V2	P052 = 3
r954	Alarm parameter 2 Display of active alarms in bit-coded form (A017 to A032). If one of the alarms between 17 and 32 is generated, the corresponding segment in the display lights up. See Section 10.2 for meaning of individual alarms		Ind: None Type: V2	P052 = 3
r955	Alarm parameter 3 Parameter alarms 3 If one of the alarms between 33 and 48 is generated, the corresponding segment in the display lights up.		Ind: None Type: V2	P052 = 3
r956	Alarm parameter 4 Parameter alarms 4 If one of the alarms between 49 and 64 is generated, the corresponding segment in the display lights up.		Ind: None Type: V2	P052 = 3
r957	Alarm parameter 5 Parameter alarms 5 If one of the alarms between 65 and 80 is generated, the corresponding segment in the display lights up..		Ind: None Type: V2	P052 = 3

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
r958	Alarm parameter 6 Parameter alarms 6 (CB alarms) If one of the alarms between 81 and 96 is generated, the corresponding segment in the display lights up.		Ind: None Type: V2	P052 = 3
r959	Alarm parameter 7 Parameter alarms 7 (TB alarms 1) If one of the alarms between 97 and 112 is generated, the corresponding segment in the display lights up.		Ind: None Type: V2	P052 $=3$
r960	Alarm parameter 8 Parameter alarms 8 (TB alarms 2) If one of the alarms between 113 and 128 is generated, the corresponding segment in the display lights up.		Ind: None Type: V2	P052 = 3

11.49 Device identification

r964	Parameters for device identification on the PROFIBUS [SW 2.0 and later] Display parameters to support overview and diagnosis of all nodes on the PROFIBUS-DP during and after commissioning (coding according to PROFIBUS profile V3) i001: Display of the manufacturer of the SIMOREG CM: SIEMENS = 42 i002: Display of device type: SIMOREG CM $=4110$ i003: Display of the software version of the SIMOREG CM (see r060.001) i004: Display of year of generation of the software of the SIMOREG CM: y y y y (see r061.001) i005: Display of the month and day of generation of the software of the SIMOREG CM: d d m m (see r061.003 and r061.002) i006: Display of the controlled axes of the SIMOREG CM: 1	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 6 Type: O2	$\mathrm{P} 052=1$

11.50 Visualization parameters: Control and status word

r967	Display of control word 1 Visualization parameter for control word 1 (bits 0-15) Identical to r650 (control word 1)	Ind: None Type: V2	P052 = 3
r968	Display of status word 1 Visualization parameter for status word 1 (bits 0-15) Identical to r652 (status word 1)	Ind: None Type: V2	P052 = 3

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.51 Resetting and storing parameters, list of existing and modified P and r parameters

P970	Restore factory setting Reset parameters to factory setting (default) 0: Parameter reset: All parameters are reset to their original values (factory setting). This parameter is then automatically reset to 1. 1: No parameter reset Note: Function can also be selected by setting P051=21.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=1 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
P971	EEPROM transfer Transfer of parameter values from RAM to EERPROM on switchover from 0 to 1. It takes approximately 15 s to process all values. The PMU remains in value mode for this period.	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
r980	List of existing parameter numbers, start Visualization parameter for displaying the first 100 parameter numbers in the P or r parameter range (0 to 999). The parameter numbers are listed in ascending sequence. Repetition of a number over several indices means that there are no further parameter numbers in the 0 to 999 range. The list is continued at the parameter whose number is displayed under index 101. See also r989		Ind: 101 Type: O2	$\mathrm{P} 052=3$
r981	List of existing parameter numbers, continuation See r980.		Ind: 101 Type: O2	$\mathrm{P} 052=3$
r982	List of existing parameter numbers, continuation See r980.		Ind: 101 Type: O2	P052 = 3
r983	List of existing parameter numbers, continuation See r980.		Ind: 101 Type: O2	$\mathrm{P} 052=3$
r984	List of existing parameter numbers, continuation See r980.		Ind: 101 Type: O2	P052 = 3
r985	List of existing parameter numbers, continuation See r980.		Ind: 101 Type: O2	$\mathrm{P} 052=3$
r986	List of existing parameter numbers, continuation See r980.		Ind: 101 Type: O2	P052 = 3
r987	List of existing parameter numbers, continuation See r980.		Ind: 101 Type: O2	$\mathrm{P} 052=3$
r988	List of existing parameter numbers, continuation See r980.		Ind: 101 Type: O2	P052 = 3
r989	List of existing parameter numbers, continuation Continuation of the list can be found under index 101. Please note: $\begin{array}{ll} 860 & =\text { r860 (TECH BOARD installed) } \\ 2980 & =\text { n980 } \end{array}$ See also r980.		Ind: 101 Type: O2	P052 = 3
r990	List of modified parameter numbers, start Visualization parameter for displaying the first 100 modified parameters in the P or r parameter range (0 to 999). The parameter numbers are listed in ascending sequence. Repetition of a number over several indices means that there are no further modified parameters in the 0 to 999 range. The list is continued at the parameter whose number is displayed under index 101. See also r999.		Ind: 101 Type: O2	P052 = 3

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
r991	List of modified parameter numbers, continuation See r990.		Ind: 101 Type: O2	P052 = 3
r992	List of modified parameter numbers, continuation See r990.		$\begin{aligned} & \text { Ind: } 101 \\ & \text { Type: O2 } \end{aligned}$	$\mathrm{P} 052=3$
r993	List of modified parameter numbers, continuation See r990.		Ind: 101 Type: O2	$\mathrm{P} 052=3$
r994	List of modified parameter numbers, continuation See r990.		$\begin{aligned} & \text { Ind: } 101 \\ & \text { Type: O2 } \end{aligned}$	$\mathrm{P} 052=3$
r995	List of modified parameter numbers, continuation See r990.		Ind: 101 Type: O2	$\mathrm{P} 052=3$
r996	List of modified parameter numbers, continuation See r990.		$\begin{aligned} & \hline \text { Ind: } 101 \\ & \text { Type: O2 } \end{aligned}$	$\mathrm{P} 052=3$
r997	List of modified parameter numbers, continuation See r990.		Ind: 101 Type: O2	$\mathrm{P} 052=3$
r998	List of modified parameter numbers, continuation See r990.		$\begin{aligned} & \hline \text { Ind: } 101 \\ & \text { Type: O2 } \end{aligned}$	$\mathrm{P} 052=3$
r999	List of modified parameter numbers, continuation Continuation of the list can be found under index 101. Please note: $2990=\mathrm{n} 990$ See also r990.		$\begin{aligned} & \text { Ind: } 101 \\ & \text { Type: O2 } \end{aligned}$	$\mathrm{P} 052=3$

11.52 Password protection, key/lock mechanism

Key/lock mechanism

To prevent unintended parameterization of the devices and to protect the know-how stored in the parameterization, you can restrict access to the (basic converter) parameters and define your own passwords (=pairs of numbers that you can choose). This done in parameters:

- U005 key and
- U006 lock.

If U 005 and U 006 are parameterized differently, it is only possible to access the following parameters:

- All visualization parameters (rxxx, nxxx)
- All parameters that can be changed with P051 $=0$ (See parameter list)
- All "user parameters" (see Parameter U007)

All other parameters neither be read nor altered.
Only when U005 and U006 are parameterized to the same values, are these restrictions removed again.
When using the key-lock-mechanism you should follow this procedure:

1. Program the den lock parameter U006 in both parameter indices with your specific password.
2. Set Parameter P051 to the value 0. This activates the password you have just set (in U006).

After that, P051 can be set to 40 again and the password protection remains active.

Examples:

Lock	Key
U006.1 $=0$ (factory setting)	U005.1 $=0$ (factory setting)
U006.2 $=0$	U005.2 $=0$
U006.1 $=12345$	U005.1 $=0$
U006.2 $=54321$	U005.2 $=0$
U006.1 $=12345$	U005.1 $=12345$
U006.2 $=54321$	U005.2 $=54321$

Result

The key and lock are parameterized identically, all parameters are accessible

The key and lock are parameterized differently, only the visualization parameters, the parameters that can be altered with P051=0, and the "user parameters" are accessible

The key and lock are parameterized identically, all parameters are accessible

NOTE: If you forget or lose your password, you can only regain access to all parameters by restoring the factory setting (P051=21).

$\begin{array}{\|l\|} \hline \text { U005 } \\ (2005) \\ * \end{array}$	Key Parameter for entering the keys for the key/lock mechanism	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Ind: } 2 \\ \text { FS=0 } \\ \text { Type: O2 } \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \mathrm{P} 051=0 \\ & \text { on-line } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U006 } \\ (2006) \\ * \end{array}$	Lock Parameter for entering the password for the key/lock mechanism	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \text { U007 } \\ & (2007) \\ & \hline \end{aligned}$	Numbers of the user parameters Parameters for entering the numbers of those parameters that are to be accessible if the key and lock are set differently. NOTE: Parameters U000 to U999 must be entered as 2000 to 2999	$\begin{aligned} & \hline 0 \text { to } 999 \\ & 2000 \text { to } 2005 \\ & 2008 \text { to } 2999 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 100 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

11.53 Processor utilization

11.54 Display parameters for technology functions with S00

Only active with optional technology software S00

Binector/connector converters			
$\begin{aligned} & \hline \text { n013 } \\ & (2013) \\ & \text { S00 } \\ & \text { (B121) } \end{aligned}$	Binector/connector converter 1 (bit field 4) Displays the status of the bits in the bit field on the bars of the 7-segment display Segment ON: Corresponding bit is in log. "1" state Segment OFF: Corresponding bit is in log. "0" state	Ind: None Type: V2	P052 $=3$
n014 (2014) S00 (B121)	Binector/connector converter 2 (bit field 5) As for n013	Ind: None Type: V2	$\mathrm{P} 052=3$
SIEMENS AG 6RX1700-0BD76 SIMOREG DC-MASTER Control Module Operating Instructions			$11-9$

| PNU | Description | Value range
 [Unit]
 Steps | No. indices
 Factory
 setting
 Type |
| :--- | :--- | :--- | :--- | :--- |
| n015
 (2015)
 S00
 (B121) | Binector/connector converter 3 (bit field 6) | See
 Change
 (Access /
 Status) | |

Technology controller					
n016 (2016) S00 (B170)	Actual value display	FB 260	$\begin{aligned} & -200.0 \text { to } 199.9 \\ & {[\%]} \\ & 0.1 \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \begin{array}{l} \text { n017 } \\ (2017) \\ \text { S00 } \\ \text { (B170) } \end{array} \\ & \hline \end{aligned}$	Setpoint display	FB 260	$\begin{aligned} & -200.0 \text { to } 199.9 \\ & {[\%]} \\ & 0.1 \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
n018 (2018) S00 (B170)	Display of effective Kp factor	FB 260	$\begin{array}{\|l\|} \hline 0.00 \text { to } 30.00 \\ 0.01 \end{array}$	Ind: None Type: O2	$\mathrm{P} 052=3$
n019 (2019) SOO (B170)	Display of technology controller output	FB 260	$\begin{aligned} & -200.0 \text { to } 199.9 \\ & {[\%]} \\ & 0.1 \end{aligned}$	Ind: None Type: I2	P052 $=3$

Velocity/speed calculator					
$\begin{aligned} & \hline \text { n020 } \\ & (2020) \\ & \text { S00 } \\ & \text { (B190) } \end{aligned}$	Display of actual speed	FB 261	$\begin{aligned} & -200.0 \text { to } 199.9 \\ & {[\%]} \\ & 0.1 \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
n021 (2021) S00 (B190)	Display of actual velocity	FB 261	$\begin{aligned} & -32.768 \text { to } 32767 \\ & {[\mathrm{~m} / \mathrm{s}]} \\ & 0.001 \end{aligned}$	Ind: None Type: I2	P052 $=3$
$\begin{aligned} & \hline \text { n022 } \\ & (2022) \\ & \text { S00 } \\ & \text { (B190) } \end{aligned}$	Display of setpoint velocity	FB 261	$\begin{aligned} & -32.768 \text { to } 32767 \\ & {[\mathrm{~m} / \mathrm{s}]} \\ & 0.001 \end{aligned}$	Ind: None Type: 12	P052 $=3$
n023 (2023) S00 (B190)	Display of setpoint speed	FB 261	$\begin{aligned} & -200.0 \text { to } 199.9 \\ & {[\%]} \\ & 0.1 \end{aligned}$	Ind: None Type: 12	P052 $=3$

11.55 Miscellaneous

U040 to U041	Reserved for later use	[SW 2.0 and later]	

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { n042 } \\ & (2042) \end{aligned}$	Warning memory Warning memory for flagging warnings that have occurred since the electronics supply voltage was last switched on. The contents of the warning memory are lost when the electronics supply voltage is switched off and can be deleted with U043. The warnings are displayed in bit code as for r953 to r960 i001: Display of warnings 1 to 16 i002: Display of warnings 17 to 32 i003: Display of warnings 33 to 48 i004: Display of warnings 49 to 64 i005: Display of warnings 65 to 80 i006: Display of warnings 81 to 96 i007: Display of warnings 97 to 112 i008: Display of warnings 113 to 128 See Section 10.2 for the meaning of the individual warnings		Ind: 8 Type: V2	P052 = 2
$\begin{aligned} & \hline \text { U043 } \\ & (2043) \end{aligned}$	Deleting the warning memory Settings: [SW 2.0 and later] 0 Deletes the entire warning memory n042 by resetting it to 0. Subsequently the parameter is automatically set back to value 1. 1 Not active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: none FS=1 Type: O2	$\mathrm{P} 052=3$

$\begin{aligned} & \hline \text { U044 } \\ & (2044) \\ & * \\ & \text { (G121) } \end{aligned}$	Connector display, decimal [SW 2.0 and later] Selects those connectors whose value is to be displayed as a decimal with n045 i001: Selects the connector to be displayed with n045.01 i002: Selects the connector to be displayed with n045.02 i003: Selects the connector to be displayed with n045.03 i004: Selects the connector to be displayed with n045.04 i005: Selects the connector to be displayed with n045.05	All connector numbers 1	$\begin{aligned} & \hline \text { Ind: } 5 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { online } \end{aligned}$
$\begin{aligned} & \hline \text { n045 } \\ & (2045) \\ & (G 121) \end{aligned}$	Connector display, decimal [SW 2.0 and later] Decimal display with sign of the values of the connectors selected with U044. In the case of double-word connectors the H word is displayed. i001: Display of the connector selected with U044.01 i002: Display of the connector selected with U044.02 i003: Display of the connector selected with U044.03 i004: Display of the connector selected with U044.04 i005: Display of the connector selected with U044.05	$\begin{aligned} & -32768 \text { to } 32767 \\ & 1 \end{aligned}$	Ind:5 Type: 12	P052 = 3
$\begin{aligned} & \text { U046 } \\ & (2046) \\ & * \\ & \text { (G121) } \end{aligned}$	Connector display, hexadecimal Selection of connectors whose value is to be displayed as a hexadecimal value with n0471 i001: Selection of the connector to be displayed with n047.01 i002: Selection of the connector to be displayed with n047.02 i003: Selection of the connector to be displayed with n047.03 i004: Selection of the connector to be displayed with n047.04 i005: Selection of the connector to be displayed with n047.05	All connector numbers 1	Ind: 5 FS=0 Type: L2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 }=40 \\ & \text { online } \end{aligned}$
$\begin{aligned} & \hline \text { n047 } \\ & (2047) \\ & (G 121) \end{aligned}$	Connector display, hexadecimal [SW 2.0 and later] Hexadecimal display of values of connectors selected with U046. In the case of double-word connectors the H word is displayed. i001: Display of the connector selected with U046.01 i002: Display of the connector selected with U046.02 i003: Display of the connector selected with U046.03 i004: Display of the connector selected with U046.04 i005: Display of the connector selected with U046.05	0000h to FFFFh 1	Ind:5 Type: L2	P052 = 3

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U049 } \\ & (2049) \end{aligned}$	OP1S operating display Function parameter for selecting parameters whose values must be included in the operating display of the optional OP1S convenience operator panel. i001: $1^{\text {st }}$ line on left i002: $1^{\text {st }}$ line on right i003: $2^{\text {nd }}$ line (actual value), visualization parameter only i004: $3^{\text {rd }}$ line (setpoint) i005: $4^{\text {th }}$ line	$\begin{aligned} & 0 \text { to } 3999 \\ & 1 \end{aligned}$	Ind:5 FS= i001: 19 i002: 38 i003: 25 i004: 28 i005: 59 Type: O2	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \text { P051 =40 } \\ & \text { on-line } \end{aligned}$

Connector type converters (only active with optional technology software S00)
2 connectors are converted into one double word connector.

11.56 Settable fixed values

Only active with optional technology software S00

11.57 Activation of fault messages and alarm messages

Only active with optional technology software S00

$\begin{aligned} & \hline \text { U100 } \\ & (2100) \\ & * \\ & \text { S00 } \\ & \text { (B115) } \end{aligned}$	Source for the activation of F023 and F019 Selection of the binectors that activate fault messages F023 or F019 on log. "1" 0 = Binector B0000 1 = Binector B0001 etc. Up to SW 1.7: F023 (without fault value) if binector = 1 (FB 2) SW 1.8 and later: i001: F023 with fault value 1 (FB 2) i002: F023 with fault value 2 i003: F023 with fault value 3 i004: F023 with fault value 4 i005: F019 with fault value 1 (FB 286) i006: F019 with fault value 2 i007: F019 with fault value 3 i008: F019 with fault value 4	All binector numbers 1	Ind: 8 $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l} \hline \hline \text { U101 } \\ (2101) \\ * \\ \text { S00 } \\ \\ (B 115) \end{array}$	Source for the activation of F024 and F020 Selection of the binectors that activate fault messages F024 or F020 on log. "1" 0 = Binector B0000 1 = Binector B0001 etc. Up to SW 1.7: F024 (without fault value) if binector $=1$ (FB 3) SW 1.8 and later: i001: F024 with fault value 1 (FB 3) i002: F024 with fault value 2 i003: F024 with fault value 3 i004: F024 with fault value 4 i005: F020 with fault value 1 (FB 287) i006: F020 with fault value 2 i007: F020 with fault value 3 i008: F020 with fault value 4	All binector numbers 1	Ind: 8 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U102 } \\ & (2102) \\ & { }_{*} \\ & \text { S00 } \\ & \\ & (B 115) \end{aligned}$	Source for the activation of F033 and F053 Selection of the binectors that activate fault messages F033 or F053 on log. "1" 0 = Binector B0000 1 = Binector B0001 etc. Up to SW 1.7: F033 (without fault value) if binector = 1 (FB 4) SW 1.8 and later: i001: F033 with fault value 1 (FB 4) i002: F033 with fault value 2 i003: F033 with fault value 3 i004: F033 with fault value 4 i005: F053 with fault value 1 (FB 288) i006: F053 with fault value 2 i007: F053 with fault value 3 i008: F053 with fault value 4	All binector numbers 1	Ind: 8 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U103 } \\ & (2103) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B115) } \end{aligned}$	Source for the activation of F034 and F054 Selection of the binectors that activate fault messages F034 or F054 on log. "1" 0 = Binector B0000 1 = Binector B0001 etc. Up to SW 1.7: F034 (without Fault value) if binector $=1$ (FB 5) SW 1.8 and later: i001: F034 with fault value 1 (FB 5) i002: F034 with fault value 2 i003: F034 with fault value 3 i004: F034 with fault value 4 i005: F054 with fault value 1 (FB 289) i006: F054 with fault value 2 i007: F054 with fault value 3 i008: F054 with fault value 4	All binector numbers 1	Ind: 8 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { U104 } \\ (2104) \\ * \\ \text { S00 } \\ \\ \text { (B115) } \end{array}$	Source for the activation of A023 and A019 FB 6, FB 256 Selection of the binectors that activate alarm A023 or A019 on log. "1"	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U105 } \\ & (2105) \\ & \text { S00 } \\ & \\ & \text { (B115) } \end{aligned}$	Source for the activation of A024 and A020 Selection of the binectors that activate alarm A024 or A020 on log. "1"	All binector numbers 1	Ind: 2 $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U106 } \\ & (2106) \\ & { }_{*}^{\text {S00 }} \\ & \text { (B115) } \end{aligned}$		All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \text { U107 } \\ & (2107) \\ & { }_{*} \\ & \text { S00 } \\ & \\ & \text { (B115) } \end{aligned}$	Source for the activation of A034 and A054 Selection of the binectors that activate alarm A034 or A054 on log. "1" 0 = Binector B0000 1 = Binector B0001 etc. Up to SW 1.7: A034 (FB 9) SW 1.8 and later: i001: A034 (FB 9) i002: A054 (FB 259)	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

11.58 Connector/binector converters, binector/connector converters

Only active with optional technology software SOO

$\begin{aligned} & \hline \text { U110 } \\ & (2110) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B120) } \end{aligned}$	Source for connector/binector converter 1 Connector which must be converted to binectors B9052 (bit 0) to B9067 (bit 15) 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U111 } \\ & (2111) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B120) } \end{aligned}$	Source for connector/binector converter 2 Connector which must be converted to binectors B9068 (bit 0) to B9083 (bit 15) 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U112 } \\ & (2112) \\ & { }_{*} \\ & \text { S00 } \\ & \\ & \text { (B120) } \end{aligned}$	Source for connector/binector converter 3 Connector which must be converted to binectors B9084 (bit 0) to B9099 (bit 15) 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U113 (2113) S00 (B121)	Source for binector/connector converter 1 Binectors which must be converted to connector K9113 $\begin{array}{ll}\text { i001: } & 1^{\text {st }} \text { binector (bit } 0 \text {) } \\ \text { i002: } & 2^{\text {nd }} \text { binector (bit } 1 \text {) } \\ \ldots & \\ \text { i016: } & 16^{\text {th }} \text { binector (bit } 15 \text {) }\end{array}$ Settings: $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	$\begin{array}{\|l\|} \hline \text { Ind: } 16 \\ \text { FS=0 } \\ \text { Type: L2 } \end{array}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

$\left.\left.\begin{array}{|l|l|l|l|l|}\hline \text { PNU } & \text { Description } & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting }\end{array} \\ \text { Type }\end{array}\right] \begin{array}{l}\text { See } \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]$

11.59 Binector/connector converter for serial interfaces

$\begin{aligned} & \text { U116 } \\ & (2116) \\ & * \\ & \text { (G170) } \end{aligned}$	Source for binector/connector converter for GSST1 Binectors which must be converted to connector K2020 i001: $1^{\text {st }}$ binector (bit 0) i002: $\quad 2^{\text {nd }}$ binector (bit 1) i016: $\quad 16^{\text {th }}$ binector (bit 15) Settings: $0=$ binector B 0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 16 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U117 } \\ & (2117) \\ & * \\ & \text { (G171) } \\ & \text { (G173) } \end{aligned}$	Source for binector/connector converter for GSST2 Binectors which must be converted to connector K6020 i001: $\quad 1^{\text {st }}$ binector (bit 0) i002: $\quad 2^{\text {nd }}$ binector (bit 1) i016: $16^{\text {th }}$ binector (bit 15) Settings: $0=$ binector B0000 1 = binector B0001 etc.	All binector numbers 1	$\begin{aligned} & \text { Ind: } 16 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U118 } \\ & (2118) \\ & { }_{*} \\ & \text { (G172) } \\ & \text { (G174) } \end{aligned}$	Source for binector/connector converter for GSST3 Binectors which must be converted to connector K9020 i001: $\quad 1^{\text {st }}$ binector (bit 0) i002: $\quad 2^{\text {nd }}$ binector (bit 1) i016: $16^{\text {th }}$ binector (bit 15) Settings: $0=$ binector B0000 1 = binector B0001 etc.	All binector numbers 1	$\begin{aligned} & \text { Ind: } 16 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

U119 (2119) $*$	Parameters for the Trace function of DriveMonitor This parameter is a setting for the exchange of process data between DriveMonitor and the SIMOREG converter. It must not be changed!		

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.60 Mathematical functions

Only active with optional technology software S00

Adder / subtractor					
The 3 operands of a function block are selected by 3 indices each of a parameter.					
U120 to U131:					
The connectors selected via indices i001 and i002 are added, the connector selected via index i003 is subtracted.					
U120 to U122 [SW 1.8 and later]:					
The connectors selected via indices i004 and i005 are added, the connector selected via index i006 is subtracted.					
The result is limited to -200.00 to $+199.99 \%$ and applied to the connector stated.					
$\begin{aligned} & \hline \text { U120 } \\ & (2120) \\ & { }^{*} \\ & \text { S00 } \\ & \\ & \text { (B125) } \end{aligned}$	Operands for 1st adder / subtractor (result = K9120)	FB 20	All connector	Ind: 6	$\mathrm{P} 052=3$
	Operands for 13th adder / subtractor (result = K9132) (SW 1.8 and later)	FB 32	numbers 1	FS=0 Type: L2	$\mathrm{P} 051=40$ off-line
	0 = Connector K0000				
	1 = Connector K0001 etc.				
$\begin{array}{\|l} \hline \text { U121 } \\ (2121) \\ * \\ \text { S00 } \\ \\ \text { (B125) } \end{array}$	Operands for 2nd adder / subtractor (result = K9121)	FB 21	All connector	Ind: 6	$\mathrm{P} 052=3$
	Operands for 14th adder / subtractor (result = K9133) [SW 1.8 and later]	FB 33	numbers 1	FS=0 Type: L2	$\mathrm{P} 051=40$ off-line
	0 = Connector K0000				
	1 = Connector K0001 etc.				
$\begin{array}{\|l} \hline \text { U122 } \\ \text { (2122) } \\ { }^{*} \\ \text { S00 } \\ \\ \text { (B125) } \end{array}$	Operands for 3rd adder / subtractor (result = K9122)	FB 22	All connector	Ind: 6	P052 = 3
	Operands for 14th adder / subtractor (result = K9134) [SW 1.8 and later]	FB 34	numbers 1	FS=0 Type: L2	$P 051=40$ off-line
	[SW 1.8 and later]				
	0 = Connector K0000				
	1 = Connector K0001 etc.				
$\begin{aligned} & \hline \text { U123 } \\ & (2123) \\ & * \\ & \text { S00 } \\ & \text { (B125) } \\ & \hline \end{aligned}$	Operands for $\mathbf{4}^{\text {th }}$ adder / subtracter (result $=$ K9123)	FB 23	All connector	Ind: 3	P052 = 3
	$0=\text { connector K0000 }$		numbers	$\mathrm{FS}=0$	$\mathrm{P} 051=40$
	$1 \text { = connector K0001 }$			Type: L2	
	etc.				
$\begin{aligned} & \text { U124 } \\ & (2124) \\ & { }^{*} \\ & \text { S00 } \\ & \text { (B125) } \\ & \hline \end{aligned}$	Operands for $5^{\text {th }}$ adder / subtracter (result = K9124)	FB 24	All connector	Ind: 3	P052 $=3$
	$0 \text { = connector K0000 }$		numbers	FS=0	P051 $=40$
	1 = connector K0001			Type: L2	Offline
	etc.				
U125 (2125) \star S00 (B125)	Operands for $\mathbf{6}^{\text {th }}$ adder / subtracter (result $=$ K9125)	FB 25	All connector	Ind: 3	P052 = 3
	0 = connector K0000		numbers	FS=0	$\text { P051 = } 40$
	$1 \text { = connector K0001 }$			Type. L2	
	etc.				
$\begin{aligned} & \text { U126 } \\ & (2126) \\ & * \\ & \text { S00 } \\ & \text { (B125) } \end{aligned}$	Operands for $7^{\text {th }}$ adder $/$ subtracter (result $=$ K9126)	FB 26	All connector	Ind: 3	P052 = 3
	$0=\text { connector K0000 }$		numbers	FS=0	$P 051=40$
	1 = connector K0001			Type: L2	Offline
	etc.				
U127 (2127) ${ }^{*}$ S00 (B125) U128	Operands for $\mathbf{8}^{\text {th }}$ adder / subtracter (result $=$ K9127)	FB 27	All connector	Ind: 3	P052 = 3
	0 = connector K0000		numbers	FS=0	$\mathrm{P} 051=40$
	$1 \text { = connector K0001 }$			Type: L2	
	etc.				
U128 (2128) $*$ S00 (B125)	Operands for $\mathbf{9}^{\text {th }}$ adder $/$ subtracter (result $=$ K9128)	FB 28	All connector	Ind: 3	P052 = 3
	$0=\text { connector } K 0000$		numbers	FS=0	P051 $=40$
	1 = connector K0001		1	Type: L2	Offline
	etc.				
$\begin{array}{\|l\|} \hline \text { U129 } \\ (2129) \\ { }^{*} \\ \text { S00 } \\ \text { (B125) } \end{array}$	Operands for $10^{\text {th }}$ adder / subtracter (result $=$ K9129)	FB 29	All connector	Ind: 3	P052 $=3$
	0 = connector K0000		numbers	FS=0	$\mathrm{P} 051=40$
	1 = connector K0001		1	Type: L2	Offline
	etc.				

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
 U130 (2130) $*$ S00 (B125) U	Operands for $11^{\text {th }}$ adder / subtracter (result = K9130) 0 = connector K0000 1 = connector K0001 etc.	FB 30	All connector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U131 } \\ (2131) \\ * \\ \text { S00 } \\ \text { (B125) } \\ \hline \end{array}$	Operands for $\mathbf{1 2}^{\text {th }}$ adder / subtracter (result = K9131) 0 = connector K0000 1 = connector K0001 etc.	FB 31	All connector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Adders / subtracters for double word connectors

The 3 operands of a function block are selected in each case via the three indices of a parameter.
The result is switched to a double word connector and a connector.
The double word connector is limited to between -200.00 and $+199.99 \%$.
The connector is limited to between -0.003052 and $+0.003052 \%$ ($=$ value range of LOW word of a double word connector
$= \pm 200 \% / 65536$)

$$	Operands for $1^{\text {st }}$ adder / subtracter Operands for $2^{\text {nd }}$ adder / subtracter $1^{\text {st }}$ adder / subtracter: result $=$ KK9490 and K9491 $2^{\text {nd }}$ adder / subtracter: result $=$ KK9492 and K9493 i001: Addition value for $1^{\text {st }}$ adder/subtracter i002: Addition value for $1^{\text {st }}$ adder/subtracter i003: Subtraction value for $1^{\text {st }}$ adder/subtracter i004: Addition value for $2^{\text {nd }}$ adder/subtracter i005: Addition value for $2^{\text {nd }}$ adder/subtracter i006: Subtraction value for $2^{\text {nd }}$ adder/subtracter Settings: $0=$ connector K0000 1 = connector K0001 etc.	FB 48 FB 49 [SW 1.9 and later]	All connector numbers 1	Ind: 6 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

Sign inverters

The contents of the connector selected in the parameter are negated (two's complement). The result is applied to the specified connector.

U135 (2135) $*$ S00 (B125)	Source for $1^{\text {st }}$ sign inverter (result $=$ K9135) 0 = connector K0000 1 = connector K0001 etc.	FB 35	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U136 } \\ & (2136) \\ & * \\ & \text { S00 } \\ & \text { (B125) } \\ & \hline \end{aligned}$	Source for $\mathbf{2}^{\text {nd }}$ sign inverter (result $=$ K9136) 0 = connector K0000 1 = connector K0001 etc.	FB 36	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U137 } \\ & (2137) \\ & * \\ & \text { S00 } \\ & \text { (B125) } \end{aligned}$	Source for $3^{\text {rd }}$ sign inverter (result $=$ K9137) 0 = connector K0000 1 = connector K0001 etc.	FB 37	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
U138 (2138) ${ }^{*}$ S00 (B125)	Source for $4^{\text {th }}$ sign inverter $($ result $=$ K9138) 0 = connector K0000 1 = connector K0001 etc.	FB 38	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Switchable sign inverters

The contents of the connector entered in the parameter for selection of a source is switched through, depending on the state of the binector entered in the parameter for control bit selection, as an unchanged value (when control bit $=0$) or as a negated value (two's complement, when control bit $=1$). The result is applied to the specified connector.

$\begin{aligned} & \hline \text { U140 } \\ & (2140) \\ & * \\ & \text { S00 } \\ & \text { (B125) } \end{aligned}$	Source for $1^{\text {st }}$ switchable sign inverter $\begin{aligned} & \text { Result }=\text { K9140 } \\ & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	FB 40	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l} \hline \hline \text { U141 } \\ (2141) \\ { }^{*} \\ \text { S00 } \\ \text { (B125) } \\ \hline \end{array}$	Control bit for $1^{\text {st }}$ switchable sign inverter ```0 = binector B0000 1 = binector B0001 etc.```	FB 40	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U142 } \\ (2142) \\ * \\ \text { S00 } \\ \text { (B125) } \end{array}$	Source for $\mathbf{2 ~}^{\text {nd }}$ switchable sign inverter $\begin{aligned} & \text { Result }=\text { K9141 } \\ & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	FB 41	All connector numbers 1	Ind: None $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U143 } \\ & (2143) \\ & * \\ & \text { S00 } \\ & \text { (B125) } \end{aligned}$	Control bit for $\mathbf{2}^{\text {nd }}$ switchable sign inverter ```0 = binector B0000 1 = binector B0001 etc.```	FB 41	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Divider

The two operands ($\mathrm{x} 1, \mathrm{x} 2$) for each divider are selected via 2 indices each of the parameter:
Index i001 = x1, index i002 = x2
Index i003 $=x 1$, index $0004=x 2$ [SW 1.8 and later]

$$
\begin{array}{ll}
\text { Formula: } y=\frac{x 1 * 100 \%}{x 2} & \text { For division by } 0(x 2=0) \text { the } \\
& \text { for } x 1>0: y=+199.99 \% \\
& \text { for } x 1=0: y=0.00 \% \\
& \text { for } x 1<0: y=-200.00 \%
\end{array}
$$

For division by $0(x 2=0)$ the following applies:
y is limited to -200.00 to $+199.99 \%$ and applied to the connector stated.

$\begin{aligned} & \hline \text { U145 } \\ & (2145) \\ & { }_{*} \\ & \text { S00 } \\ & \text { (B131) } \end{aligned}$	Operands for 1st divider (result = K9145) Operands for 4th divider (result = K9142) 0 = Connector K0000 1 = Connector K0001 etc.	$\begin{aligned} & \text { FB } 45 \\ & \text { FB } 42 \end{aligned}$	All connector numbers 1	Ind: 4 FS=1 Type: L2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { off-line } \end{array}$
$\begin{aligned} & \text { U146 } \\ & (2146) \\ & * \\ & \text { S00 } \\ & \text { (B131) } \end{aligned}$	Operands for 2nd divider (result = K9146) Operands for 5th divider (result $=$ K9143) 0 = Connector K0000 1 = Connector K0001 etc.	$\begin{aligned} & \text { FB } 46 \\ & \text { FB } 43 \end{aligned}$	All connector numbers 1	Ind: 4 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U147 } \\ & (2147) \\ & { }_{*} \\ & \text { S00 } \\ & \text { (B131) } \end{aligned}$	Operands for 3rd divider (result = K9147) Operands for 6th divider (result = K9144) 0 = Connector K0000 1 = Connector K0001 etc.	$\begin{aligned} & \text { FB } 47 \\ & \text { FB } 44 \end{aligned}$	All connector numbers 1	Ind: 4 FS=1 Type: L2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { off-line } \end{array}$

Multiplier

The two operands ($x 1, x 2$) for each multiplier are selected via 2 indices of the parameter each:
Index i001 = x1, Index i002 = x2
Index $\mathrm{i} 003=\mathrm{x} 1$, Index $\mathrm{i} 004=\mathrm{x} 2$ [SW 1.8 and later]
Index i005 = x1, Index i006 = x2 [SW 1.8 and later]
Formula: $y=\frac{x 1 * x 2}{100 \%}$
y is limited to -200.00 to $+199.99 \%$ and applied to the connector stated.

$\begin{array}{\|l} \hline \text { U150 } \\ (2150) \\ * \\ \text { S00 } \\ \\ \text { (B130) } \end{array}$	Operands for 1st multiplier (result = K9150) Operands for 5th multiplier (result $=$ K9430) Operands for 9th multiplier (result $=$ K9431) 0 = Connector K0000 1 = Connector K0001 etc.	FB 50 FB 290 FB 291	All connector numbers 1	Ind: 6 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { U151 } \\ (2151) \\ * \\ \text { S00 } \\ \\ \text { (B130) } \end{array}$	Operands for 2nd multiplier (result = K9151) Operands for 6th multiplier (result $=$ K9432) Operands for 10th multiplier $($ result $=\mathrm{K} 9433$) 0 = Connector K0000 1 = Connector K0001 etc.	FB 51 FB 292 FB 293	All connector numbers 1	Ind: 6 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l\|} \hline \hline \text { U152 } \\ (2152) \\ * \\ \text { S00 } \\ \\ (B 130) \end{array}$	Operands for 3rd multiplier (result = K9152) Operands for 7thmultiplier (result $=$ K9434) Operands for 11th multiplier $($ result $=$ K9435) 0 = Connector K0000 1 = Connector K0001 etc.	FB 52 FB 294 FB 295	All connector numbers 1	Ind: 6 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { U153 } \\ (2153) \\ { }^{*} \\ \text { S00 } \\ \\ \text { (B130) } \end{array}$	Operands for 4th multiplier (result = K9153) Operands for 8the multiplier (result = K9436) Operands for 12th multiplier (result $=$ K9437) 0 = Connector K0000 1 = Connector K0001 etc.	FB 53 FB 296 FB 297	All connector numbers 1	Ind: 6 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

High-resolution multipliers/dividers
The three operands are selected via the three indices of the parameter, i.e. index i001 $=x 1$, index $i 002=x 2$, index $i 003=x 3$
Equations: $x 4(32$ bit $)=x 1 * x 2, y=\frac{x 4}{x 3}=\frac{x 1 * x 2}{x 3}$
Applicable for division by $0(x 2=0)$:
When x1 > 0: $y=+199.99 \%$
When $x 1=0: y=0.00 \%$
When $x 1<0: y=-200.00 \%$
y is limited to -200.00 to $+199.99 \%$ and applied to the specified connector.

$\begin{aligned} & \hline \text { U155 } \\ & (2155) \\ & * \\ & \text { S00 } \\ & \text { (B131) } \end{aligned}$	```Operands for 1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ multiplier/divider (result = K9155) 0 = connector K0000 1 = connector K0001 etc.```	FB 55	All connector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U156 } \\ & (2156) \\ & * \\ & \text { S00 } \\ & \text { (B131) } \end{aligned}$	Operands for $\mathbf{2}^{\text {nd }}$ multiplier/divider (result $=$ K9156) 0 = connector K0000 1 = connector K0001 etc.	FB 56	All connector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U157 } \\ & (2157) \\ & * \\ & \text { S00 } \\ & \text { (B131) } \end{aligned}$	Operands for $3^{\text {rd }}$ multiplier/divider (result $=$ K9157) 0 = connector K0000 1 = connector K0001 etc.	FB 57	All connector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Absolute-value generators with filtering

$\begin{aligned} & \hline \text { U160 } \\ & (2160) \\ & * \\ & \text { S00 } \\ & \text { (B135) } \\ & \hline \end{aligned}$	Source for input quantity for $1^{\text {st }}$ abs.-value generator with filter $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	$\text { FB } 60$	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
U161 (2161) S00 (B135)	Signal injection mode for $1^{\text {st }}$ abs.-value generator with filter	FB 60	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U162 } \\ & (2162) \\ & \text { S00 } \\ & \text { (B135) } \\ & \hline \end{aligned}$	Filter time for $1^{\text {st }}$ abs.-value generator with filter	FB 60	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

$\begin{array}{\|l\|l} \hline \text { U163 } \\ (2163) \\ * \\ \text { S00 } \\ \text { (B135) } \\ \hline \end{array}$	Source for input quantity for $\mathbf{2}^{\text {nd }}$ abs.-value generator with filter $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	$\text { FB } 61$	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U164 } \\ & (2164) \\ & * \\ & \text { S00 } \\ & \text { (B135) } \end{aligned}$	Signal injection mode for $2^{\text {nd }}$ abs.-value generator with filter	FB 61	$0 \text { to } 3$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U165 } \\ (2165) \\ \text { S00 } \\ \text { (B135) } \\ \hline \end{array}$	Filter time for $\mathbf{2}^{\text {nd }}$ abs.-value generator with filter	FB 61	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \text { U166 } \\ & (2166) \\ & { }_{*} \\ & \text { S00 } \\ & \text { (B135) } \end{aligned}$	Source for input quantity for $3^{\text {rd }}$ abs.-value generator with filter FB62 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U167 } \\ & (2167) \\ & * \\ & \text { S00 } \\ & \text { (B135) } \end{aligned}$	Signal injection mode for $3^{\text {rd }}$ abs.-value generator with filter	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U168 } \\ & (2168) \\ & \text { S00 } \\ & \text { (B135) } \\ & \hline \end{aligned}$	Filter time for $3^{\text {rd }}$ abs.-value generator with filter \quad FB 62	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

$\begin{aligned} & \hline \text { U169 } \\ & (2169) \\ & * \\ & \text { S00 } \\ & \text { (B135) } \end{aligned}$	Source for input quantity for $4^{\text {th }}$ abs.-value generator with filter $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	$\text { FB } 63$	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U170 } \\ (2170) \\ * \\ \text { S00 } \\ \text { (B135) } \end{array}$	Signal injection mode for $4^{\text {th }}$ abs.-value generator with filter	FB 63	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U171 } \\ (2171) \\ \text { S00 } \\ \text { (B135) } \\ \hline \end{array}$	Filter time for $4^{\text {th }}$ abs.-value generator with filter	FB 63	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

11.61 Processing of connectors

Only active with optional technology software SOO

Averager [SW 1.8 and later]		FB 16, FB 17, FB 18, FB 19			
$\begin{aligned} & \hline \text { U172 } \\ & (2172) \\ & { }_{*} \\ & \text { S00 } \\ & \\ & \text { (B139) } \end{aligned}$	Source for input signal i001: 1st averager (FB 16) i002: 2nd averager (FB 17) i003: 3rd averager (FB 18) i004: 4. averager (FB 19) Settings: 0 = Connector K0000 1 = Connector K0001 etc.	[SW 1.8 and later]	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U173 } \\ (2173) \\ \\ \text { S00 } \\ \text { (B139) } \end{array}$	Number of sampling cycles i001: 1st averager (FB 16) i002: 2nd averager (FB 17) i003: 3rd averager (FB 18) i004: 4. averager (FB 19)	[SW 1.8 and later]	$\begin{aligned} & 1 \text { to } 100 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.62 Limiters, limit-value monitors

Only active with optional technology software S00

Limiters

The input variable selected with index i001 or i004 of the $1^{\text {st }}$ parameter is limited to the limit values selected with indices i002 and i003 or i005 and i006 and applied to the specified connector. Violation of the limit values is signaled by means of two binectors.

$\begin{aligned} & \hline \text { U175 } \\ & (2175) \\ & * \\ & \text { S00 } \\ & \text { (B134) } \\ & \text { (B135) } \end{aligned}$	Source for input signal and limits for limiter 1 Output = connector K9167 i001: Input signal i002: Upper limiting value (L+) i003: Lower limiting value (L-) Source for input signal and limits for limiter 4 Output = connector K9176 i004: Input signal i005: Upper limiting value (L+) i006: Lower limiting value (L-) Settings: 0 = connector K0000 1 = connector K0001 etc.	$\text { FB } 65$ FB 212 [SW 2.0 and later]	All connector numbers 1	Ind: 6 FS= i001: 0 i002: 9165 i003: 9166 i004: 0 i005: 9174 i006: 9175 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U176 } \\ & (2176) \\ & \text { S00 } \\ & \text { (B134) } \\ & \text { (B135) } \\ & \hline \end{aligned}$	Limit value for limiter i001: Applied to connector K9165 (FB 65) i002: Applied to connector K9174 (FB 212)	FB 65, FB212 [SW 2.0 and later]	$\begin{aligned} & -199.99 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 2 \\ & F S=100.00 \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

$\begin{array}{\|l\|} \hline \text { U177 } \\ (2177) \\ { }^{*} \\ \text { S00 } \\ \text { (B134) } \\ \text { (B135) } \end{array}$	Source for input signal and limits for limiter 2 Output = connector K9170 i001: Input signal i002: Upper limiting value (L+) i003: Lower limiting value (L-) Source for input signal and limits for limiter 5 Output = connector K9179 i004: Input signal i005: Upper limiting value (L+) i006: Lower limiting value (L-) Settings: 0 = connector K0000 1 = connector K0001 etc.	$\text { FB } 66$ FB 213 [SW 2.0 and later]	All connector numbers 1	Ind: 6 FS= i001: 0 i002: 9168 i003: 9169 i004: 0 i005: 9177 i006: 9178 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U178 } \\ (2178) \\ \text { S00 } \\ \text { (B134) } \\ \text { (B135) } \\ \hline \end{array}$	Limit value for limiter i001: Applied to connector K9168 (FB 66) i002: Applied to connector K9177 (FB 213)	FB 66, FB213 [SW 2.0 and later]	$\begin{aligned} & \text {-199.99 to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	Ind: 2 FS=100.00 Type: 12	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l} \hline \hline \text { U179 } \\ (2179) \\ * \\ \text { S00 } \\ \text { (B134) } \\ \text { (B135) } \end{array}$	Source for input signal and limits for limiter 3 Output = connector K9173 i001: Input signal i002: Upper limiting value (L+) i003: Lower limiting value (L-) Source for input signal and limits for limiter 6 Output = connector K9262 i004: Input signal i005: Upper limiting value (L+) i006: Lower limiting value (L-) Settings: 0 = connector K0000 1 = connector K0001 etc.	$\overline{\text { FB } 67}$ FB 214 [SW 2.0 and later]	All connector numbers 1	Ind: 6 FS= i001: 0 i002: 9171 i003: 9172 i004: 0 i005: 9260 i006: 9261 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U180 } \\ (2180) \\ \text { S00 } \\ \text { (B134) } \\ \text { (B135) } \\ \hline \end{array}$	Limit value for limiter i001: Applied to connector K9171 (FB 67) i002: Applied to connector K9260 (FB 214)	FB 67, FB214 [SW 2.0 and later]	$\begin{aligned} & \hline-199.99 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 2 \\ & \text { FS=100.00 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Limit-value monitors for double word connectors				
$\begin{aligned} & \hline \text { U181 } \\ & (2181) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B151) } \end{aligned}$	Source for input signal (A) and operating threshold (B) for $1^{\text {st }}$ limit-value monitor for double word connectors for $2^{\text {nd }}$ limit-value monitor for double word connectors i001: Input signal for $1^{\text {st }}$ limit-value monitor i002: Operating threshold for $1^{\text {st }}$ limit-value monitor i003: Input signal for $2^{\text {nd }}$ limit-value monitor i004: Operating threshold for $2^{\text {nd }}$ limit-value monitor Settings: 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \text { U182 } \\ & (2182) \\ & \text { S00 } \\ & \text { (B151) } \end{aligned}$	Hysteresis for $1^{\text {st }}$ limit-value monitor for double word connectors FB 68 Hysteresis for $\mathbf{2}^{\text {nd }}$ limit-value monitor for double word connectors FB69 [SW 1.9 and later] i001: Hysteresis for $1^{\text {st }}$ limit-value monitor i002: Hysteresis for $2^{\text {nd }}$ limit-value monitor The hysteresis relates to the HIGH word of the double word connector	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 2 FS=0.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

Limit-value monitors with filtering					
$\begin{array}{\|l\|} \hline \text { U185 } \\ (2185) \\ { }^{2} \\ \text { S00 } \\ \text { (B136) } \end{array}$	Source for input signal (A) and operating point (B) for $1^{\text {st }}$ limit-value monitor with filtering i001: Input signal i002: Operating point Settings: 0 = connector K0000 1 = connector K0001 etc.	FB 70	All connector numbers 1	Ind: 2 FS= i001: 0 i002: 9181 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U186 } \\ (2186) \\ \text { S00 } \\ \text { (B136) } \\ \hline \end{array}$	Settable operating point for limit-value monitor Applied to connector K9181	FB 70	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: 12	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U187 } \\ & \text { (2187) } \\ & \text { S00 } \\ & \text { (B136) } \\ & \hline \end{aligned}$	Filter time for $1^{\text {st }}$ limit-value monitor with filtering	FB 70	$\begin{aligned} & \hline 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U188 } \\ & \text { (2188) } \\ & \text { S00 } \\ & \text { (B136) } \\ & \hline \end{aligned}$	Hysteresis for $1^{\text {st }}$ limit-value monitor with filtering	FB 70	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U189 } \\ & (2189) \\ & * \\ & \text { S00 } \\ & \text { (B136) } \end{aligned}$	Source for input signal (A) and operating point (B) for $\mathbf{2}^{\text {nd }}$ limit-value monitor with filtering i001: Input signal i002: Operating point Settings: 0 = connector K0000 1 = connector K0001 etc.	FB 71	All connector numbers 1	Ind: 2 FS= i001: 0 i002: 9183 Type: L2	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U190 } \\ & (2190) \\ & \text { S00 } \\ & \text { (B136) } \\ & \hline \end{aligned}$	Settable operating point for limit-value monitor Applied to connector K9183	FB 71	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U191 } \\ & (2191) \\ & \text { S00 } \\ & \text { (B136) } \\ & \hline \end{aligned}$	Filter time for $2^{\text {nd }}$ limit-value monitor with filtering	FB 71	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U192 } \\ & (2192) \\ & \text { S00 } \\ & \text { (B136) } \\ & \hline \end{aligned}$	Hysteresis for $\mathbf{2}^{\text {nd }}$ limit-value monitor with filtering	FB 71	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

$\begin{aligned} & \hline \text { U193 } \\ & (2193) \\ & * \\ & \text { S00 } \\ & \text { (B136) } \end{aligned}$	Source for input signal (A) and operating point (B) for $3^{\text {rd }}$ limit-value monitor with filtering i001: Input signal i002: Operating point Settings: 0 = connector K0000 1 = connector K0001 etc.	$\text { FB } 72$	All connector numbers 1	Ind: 2 FS= i001: 0 i002: 9185 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U194 } \\ & (2194) \\ & \text { S00 } \\ & \text { (B136) } \\ & \hline \end{aligned}$	Settable operating point for limit-value monitor Applied to connector K9185	FB 72	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U195 } \\ & (2195) \\ & \text { S00 } \\ & \text { (B136) } \\ & \hline \end{aligned}$	Filter time for $3^{\text {rd }}$ limit-value monitor with filtering	FB 72	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U196 } \\ & (2196) \\ & \text { S00 } \\ & \text { (B136) } \\ & \hline \end{aligned}$	Hysteresis for $3^{\text {rd }}$ limit-value monitor with filtering	FB 72	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Limit-value monitors without filtering					
U197 (2197) (B137)	Source for input signal (A) and operating point (B) for $1^{\text {st }}$ limit-value monitor without filtering i001: Input signal i002: Operating point Settings: 0 = connector K0000 1 = connector K0001 etc.	FB 73	All connector numbers 1	Ind: 2 FS= i001: 0 i002: 9186 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U198 } \\ (2198) \\ \text { S00 } \\ \text { (B137) } \\ \hline \end{array}$	Settable operating point for limit-value monitor Applied to connector K9186	FB 73	$\begin{aligned} & \text {-200.00 to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: 12	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U199 } \\ (2199) \\ \text { S00 } \\ \text { (B137) } \\ \hline \end{array}$	Hysteresis for $1^{\text {st }}$ limit-value monitor without filtering	FB 73	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: O 2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l} \hline \hline \text { U200 } \\ (2200) \\ { }_{*} \\ \text { S00 } \\ \text { (B137) } \end{array}$	Source for input signal (A) and operating point (B) for $2^{\text {nd }}$ limit-value monitor without filtering i001: Input signal i002: Operating point Settings: 0 = connector K0000 1 = connector K0001 etc.	FB 74	All connector numbers 1	Ind: 2 FS= i001: 0 i002: 9187 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U201 } \\ \text { (2201) } \\ \text { S00 } \\ \text { (B137) } \\ \hline \end{array}$	Settable operating point for limit-value monitor Applied to connector K9187	FB 74	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: 12	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U202 } \\ & (2202) \\ & \text { S00 } \\ & \text { (B137) } \\ & \hline \end{aligned}$	Hysteresis for $2^{\text {nd }}$ limit-value monitor without filtering	FB 74	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

$\begin{array}{\|l\|l} \hline \text { U203 } \\ (2203) \\ * \\ \text { S00 } \\ \text { (B137) } \end{array}$	Source for input signal (A) and operating point (B) for $3^{\text {rd }}$ limit-value monitor without filtering i001: Input signal i002: Operating point Settings: 0 = connector K0000 1 = connector K0001 etc.	FB 75	All connector numbers 1	Ind: 2 FS= i001: 0 i002: 9188 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U204 } \\ (2204) \\ \text { S00 } \\ \text { (B137) } \\ \hline \end{array}$	Settable operating point for limit-value monitor Applied to connector K9188	FB 75	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U205 } \\ & (2205) \\ & \text { S00 } \\ & \text { (B137) } \\ & \hline \end{aligned}$	Hysteresis for $3^{\text {rd }}$ limit-value monitor without filtering	FB 75	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

$\begin{array}{\|l\|} \hline \text { U206 } \\ (2206) \\ * \\ \text { S00 } \\ \text { (B137) } \end{array}$	Source for input signal (A) and operating point (B) for $4^{\text {th }}$ limit-value monitor without filtering i001: Input signal i002: Operating point Settings: 0 = connector K0000 1 = connector K0001 etc.	FB 76	All connector numbers 1	```Ind: 2 FS= i001: 0 i002:}918 Type: L2```	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U207 } \\ (2207) \\ \text { S00 } \\ \text { (B137) } \\ \hline \end{array}$	Settable operating point for limit-value monitor Applied to connector K9189	FB 76	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: 12	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U208 } \\ (2208) \\ \text { S00 } \\ \text { (B137) } \\ \hline \end{array}$	Hysteresis for $4^{\text {th }}$ limit-value monitor without filtering	FB 76	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & [\%]] \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

$\begin{array}{\|l} \hline \text { U210 } \\ (2210) \\ * \\ \text { S00 } \\ \text { (B138) } \end{array}$	Source for input signal (A) and operating point (B) for $5^{\text {th }}$ limit-value monitor without filtering i001: Input signal i002: Operating point Settings: 0 = connector K0000 1 = connector K0001 etc.	FB 77	All connector numbers 1	Ind: 2 FS= i001: 0 i002: 9190 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U211 } \\ (2211) \\ \text { S00 } \\ \text { (B138) } \\ \hline \end{array}$	Settable operating point for limit-value monitor Applied to connector K9190	FB 77	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U212 } \\ & (2212) \\ & \text { S00 } \\ & \text { (B138) } \\ & \hline \end{aligned}$	Hysteresis for $5^{\text {th }}$ limit-value monitor without filtering	FB 77	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

$\begin{aligned} & \hline \text { U213 } \\ & (2213) \\ & * \\ & \text { S00 } \\ & \text { (B138) } \end{aligned}$	Source for input signal (A) and operating point (B) for $6{ }^{\text {th }}$ limit-value monitor without filtering i001: Input signal i002: Operating point Settings: 0 = connector K0000 1 = connector K0001 etc.	FB 78	All connector numbers 1	Ind: 2 FS= i001: 0 i002: 9191 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U214 } \\ & (2214) \\ & \text { S00 } \\ & \text { (B138) } \\ & \hline \end{aligned}$	Settable operating point for limit-value monitor Applied to connector K9191	FB 78	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: 12	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U215 } \\ & (2215) \\ & \text { S00 } \\ & \text { (B138) } \\ & \hline \end{aligned}$	Hysteresis for $6^{\text {th }}$ limit-value monitor without filtering	FB 78	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

$\begin{array}{\|l\|} \hline \text { U216 } \\ (2216) \\ { }^{2} \\ \text { S00 } \\ \text { (B138) } \end{array}$	Source for input signal (A) and operating point (B) for $7^{\text {th }}$ limit-value monitor without filtering i001: Input signal i002: Operating point Settings: 0 = connector K0000 1 = connector K0001 etc.	FB 79	All connector numbers 1	Ind: 2 FS= i001: 0 i002: 9192 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U217 } \\ \text { (2217) } \\ \text { S00 } \\ \text { (B138) } \\ \hline \end{array}$	Settable operating point for limit-value monitor Applied to connector K9192	FB 79	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: I2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U218 } \\ (2218) \\ \text { S00 } \\ \text { (B138) } \\ \hline \end{array}$	Hysteresis for $7^{\text {th }}$ limit-value monitor without filtering	FB 79	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%] \quad} \\ & 0.01 \% \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

11.63 Processing of connectors

Only active with optional technology software S00

Maximum selection

The largest of the input values selected by 3 indices each of the parameter ($x 1, x 2, x 3$) is applied to the output.

$\begin{aligned} & \hline \text { U220 } \\ & (2220) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B140) } \end{aligned}$	Source for maximum selection 0 = Connector K0000 1 = Connector K0001 etc. i001: x1 Maximum selection 1 (FB 80, Output = K9193) i002: x2 Maximum selection 1 i003: x3 Maximum selection 1 SW 1.8 and later: i004: x1 Maximum selection 2 $($ FB 174, Output $=$ K9460 $)$ i005: x2 Maximum selection 2 i006: x3 Maximum selection 2 i007: x1 Maximum selection 3 $($ FB 175, Output $=$ K9461 $)$ i008: x2 Maximum selection 3 i009: x3 Maximum selection 3 i010: x1 Maximum selection 4 (FB 176, Output $=$ K9462 $)$ i011: x2 Maximum selection 4 i012: x3 Maximum selection 4	All connector numbers 1	$\begin{aligned} & \hline \text { Ind: } 12 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Minimum selection FB 81, FB 177, FB 178, FB 179 The smallest of the input values selected by 3 indices each of the parameter ($x 1, x 2, x 3$) is applied to the output.				
$\begin{array}{\|l} \hline \text { U221 } \\ (2221) \\ * \\ \text { S00 } \\ \\ (B 140) \end{array}$	Source for minimum selection $0=$ Connector K0000 1 = Connector K0001 etc. i001: x1 Minimum selection 1 (FB 81, Output $=$ K9194 $)$ i002: x2 Minimum selection 1 i003: x3 Minimum selection 1 SW 1.8 and later: i004: x1 Minimum selection 2 $($ FB 177, Output $=$ K9463 $)$ i005: x2 Minimum selection 2 i006: x3 Minimum selection 2 i007: x1 Minimum selection 3 $($ FB 178, Output $=$ K9464 $)$ i008: x2 Minimum selection 3 i009: x3 Minimum selection 3 i010: x1 Minimum selection 4 $($ FB 179, Output $=$ K9465 $)$ i011: x2 Minimum selection 4 i012: x3 Minimum selection 4	All connector numbers 1	$\begin{aligned} & \text { Ind: } 12 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

Tracking/storage elements

The tracking/storage elements are storage elements for the parameterized input quantity. The outputs are linked to connectors.
Transfer of the input quantity is controlled via the RESET, TRACK and STORE functions:
RESET: When the controlling binector reaches log. "1", the output is set to $0.00 \%(y=0)$
TRACK: When the controlling binector reaches log. " 1 ", the output is set to the input value and then tracks it continuously ($y=x$). If the TRACK signal switches from " 1 " to " 0 ", the last value applied to the y output is "frozen"
STORE: With a " 0 " to " 1 " transition of the controlling binector signal, the output is permanently set to the current input value $(y=x)$. This value then remains stored
Priority 1. RESET, 2. TRACK, 3. STORE

Tracking/storage element 1

$\begin{array}{\|l} \hline \text { U222 } \\ (2222) \\ * \\ \text { S00 } \\ \text { (B145) } \end{array}$	```Source for input quantity (x) 0 = connector K0000 1 = connector K0001 etc.```	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U223 (2223) * S00 (B145)	Source for control signals RESET, TRACK and STORE i001: TRACK i002: STORE i003: RESET Settings: $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \end{aligned}$ etc.	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U224 } \\ & (2224) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B145) } \end{aligned}$	Control word for Power On Mode $0 \quad$ Volatile storage: Zero appears at output when voltage recovers 1 Non-volatile storage: When the voltage is disconnected or fails, the current output value is stored and then output when the voltage recovers/is reconnected	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Tracking/storage element 2					
$\begin{aligned} & \hline \text { U225 } \\ & (2225) \\ & { }^{*} \\ & \text { S00 } \\ & \text { (B145) } \end{aligned}$	Source for input quantity (x) 0 = connector K0000 1 = connector K0001 etc.	FB 83	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U226 } \\ & (2226) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B145) } \end{aligned}$	Source for control signals RESET, TRACK and STORE i001: TRACK i002: STORE i003: RESET Settings: $0=$ binector B 0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U227 } \\ & (2227) \\ & { }^{*} \\ & \text { S00 } \\ & \\ & \text { (B145) } \end{aligned}$	Control word for Power On Mode FB 83 0 Volatile storage: 1 Zero appears at output when voltage recovers Non-volatile storage: When the voltage is disconnected or fails, the current output value is stored and then output when the voltage recovers/is reconnected	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Connector memories

The connector memories are memory elements for the input quantities selected via the parameters. The outputs are linked to connectors. While the SET input is in the log. "1" state, output quantity y tracks input quantity x continuously. If the SET input changes state from log. " 1 " to log. " 0 ", the current value of x is stored and output continuously at y.
Output (y) $=0$ is set on POWER ON.

Connector memory 1					
$\begin{array}{\|l} \hline \text { U228 } \\ (2228) \\ * \\ \text { S00 } \\ \text { (B145) } \\ \hline \end{array}$	Source for input quantity (x) 0 = connector K0000 1 = connector K0001 etc.	FB 84	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U229 } \\ (2229) \\ * \\ \text { S00 } \\ \text { (B145) } \\ \hline \end{array}$	Source for control signal SET 0 = binector B0000 1 = binector B0001 etc.	FB 84	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Connector memory 2					
$\begin{aligned} & \hline \text { U230 } \\ & (2230) \\ & * \\ & \text { S00 } \\ & \text { (B145) } \\ & \hline \end{aligned}$	Source for input quantity (x) 0 = connector K0000 1 = connector K0001 etc.	FB 85	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U231 } \\ & (2231) \\ & { }^{*} \\ & \text { S00 } \\ & \text { (B145) } \end{aligned}$	Source for control signal SET $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 85	All binector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Connector changeover switches

Depending on the state of the control signal, one of the two input quantities is applied to the output (connector):
Control signal $=0$:The input quantity selected in index i001 is applied to the output
Control signal $=1$: The input quantity selected in index 0002 is applied to the output
Connector changeover switch 1 (output = K9210)

$\begin{array}{\|l\|} \hline \mathbf{U 2 4 0} \\ (2240) \\ * \\ \text { S00 } \\ \text { (B150) } \\ \hline \end{array}$	Source for input quantities 0 = connector K0000 1 = connector K0001 etc.	FB 90	All connector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U241 } \\ & (2241) \\ & * \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for control signal $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 90	All binector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Offline } \end{array}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Connector changeover switch 2 (output = K9211)					
$\begin{array}{\|l} \hline \text { U242 } \\ (2242) \\ * \\ \text { S00 } \\ \text { (B150) } \end{array}$	Source for input quantities 0 = connector K0000 1 = connector K0001 etc.	FB 91	All connector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Offline } \end{array}$
$\begin{array}{\|l\|} \hline \mathrm{U} 243 \\ (2243) \\ { }^{2} \\ \text { S00 } \\ \text { (B150) } \end{array}$	Source for control signal $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	FB 91	All binector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Connector changeover switch 3 (output = K9212)					
$\begin{array}{\|l\|} \hline \text { U244 } \\ (2244) \\ * \\ \text { S00 } \\ \text { (B150) } \end{array}$	Source for input quantities 0 = connector K0000 1 = connector K0001 etc.	FB 92	All connector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U245 } \\ (2245) \\ \star \\ \text { S00 } \\ \text { (B150) } \end{array}$	Source for control signal $0=$ binector B 0000 1 = binector B0001 etc.	FB 92	All binector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Connector changeover switch 4 (output = K9213)					
$\begin{aligned} & \hline \text { U246 } \\ & (2246) \\ & { }^{2} \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for input quantities 0 = connector K0000 1 = connector K0001 etc.	FB 93	All connector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U247 } \\ & (2247) \\ & * \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for control signal $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 93	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Connector changeover switch 5 (output = K9214)					
$\begin{array}{\|l} \hline \text { U248 } \\ (2248) \\ * \\ \text { S00 } \\ \text { (B150) } \end{array}$	Source for input quantities 0 = connector K0000 1 = connector K0001 etc.	FB 94	All connector numbers 1	Ind: 2 $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U249 } \\ (2249) \\ * \\ \text { S00 } \\ \text { (B150) } \end{array}$	Source for control signal $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 94	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Connector changeover switches 6 and 11					
$\begin{array}{\|l} \hline \text { U250 } \\ (2250) \\ * \\ \text { S00 } \\ \text { (B150) } \end{array}$	Source for input quantities Output 6 = Connector K9215 i001: 1st input signal i002: 2nd input signal Output 11 = Connector K9265 i003: 1st input signal i004: 2nd input signal Settings: 0 = Connector K0000 1 = Connector K0001 etc.	FB 95 and FB 196 [SW 2.0 and later]	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U251 } \\ & (2251) \\ & * \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for control signal i001: Switchover for output 6 i002: Switchover for output 11 Settings: $\begin{aligned} & 0=\text { Binector B0000 } \\ & 1=\text { Binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 95 and FB 196 [SW 2.0 and later]	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Connector changeover switches 7 and 12

$\begin{aligned} & \hline \text { U252 } \\ & (2252) \\ & { }^{*} \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for input quantities Output 7 = Connector K9216 i001: 1st input signal i002: 2nd input signal Output 12 = Connector K9266 i003: 1st input signal i004: 2nd input signal Settings: 0 = Connector K0000 1 = Connector K0001 etc.	FB 96 and FB 197 [SW 2.0 and later]	All connector numbers 1	Ind: 4 $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U253 } \\ & (2253) \\ & * \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for control signal i001: Switchover for output 7 i002: Switchover for output 12 Settings: 0 = Binector B0000 1 = Binector B0001 etc.	FB 96 and FB 197 [SW 2.0 and later]	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Connector changeover switches 8 and 13					
$\begin{array}{\|l} \hline \text { U254 } \\ (2254) \\ * \\ \text { S00 } \\ \text { (B150) } \end{array}$	Source for input quantities Output 8 = Connector K9217 i001: 1st input signal i002: 2nd input signal Output 13 = Connector K9267 i003: 1st input signal i004: 2nd input signal Settings: 0 = Connector K0000 1 = Connector K0001 etc.	FB 97 and FB 198 [SW 2.0 and later]	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U255 } \\ & (2255) \\ & * \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for control signal i001: Switchover for output 8 i002: Switchover for output 13 Settings: 0 = Binector B0000 1 = Binector B0001 etc.	FB 97 and FB 198 [SW 2.0 and later]	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Connector changeover switches 9 and 14					
$\begin{aligned} & \text { U256 } \\ & (2256) \\ & * \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for input quantities Output 9 = Connector K9218 i001: 1st input signal i002: 2nd input signal Output 14 = Connector K9268 i003: 1st input signal i004: 2nd input signal Settings: $0=$ Connector K0000 1 = Connector K0001 etc.	FB 98 and FB 199 [SW 2.0 and later]	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U257 } \\ & (2257) \\ & { }_{*} \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for control signal i001: Switchover for output 9 i002: Switchover for output 14 Settings: $0=$ Binector B0000 1 = Binector B0001 etc.	FB 98 and FB 199 [SW 2.0 and later]	All binector numbers 1	$\begin{aligned} & \hline \text { Ind: } 2 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Connector changeover switches 10 and 15					
$\begin{aligned} & \hline \text { U258 } \\ & (2258) \\ & { }_{*} \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for input quantities Output 10 = Connector K9219 i001: 1st input signal i002: 2nd input signal Output 15 = Connector K9269 i003: 1st input signal i004: 2nd input signal Settings: 0 = Connector K0000 1 = Connector K0001 etc.	FB 99 and FB 229 [SW 2.0 and later]	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U259 } \\ & (2259) \\ & { }_{*} \\ & \text { S00 } \\ & \text { (B150) } \end{aligned}$	Source for control signal i001: Switchover for output 10 i002: Switchover for output 15 Settings: 0 = Binector B0000 1 = Binector B0001 etc.	FB 99 and FB 229 [SW 2.0 and later]	All binector numbers 1	Ind: 2 $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

11.64 Integrators, DT1 elements, characteristics, dead zones, setpoint branching

Only active with optional technology software S00

Integrator 1 (output = K9220)				
$\begin{aligned} & \hline \text { U260 } \\ & (2260) \\ & * \\ & \text { S00 } \\ & \text { (B155) } \end{aligned}$	Source for input quantity 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U261 } \\ (2261) \\ \text { S00 } \\ \text { (B155) } \\ \hline \end{array}$	Integral-action time FB 100	$\begin{aligned} & 10 \text { to } 65000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None $\mathrm{FS}=10$ Type: O2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$
$\begin{aligned} & \hline \text { U262 } \\ & (2262) \\ & { }^{*} \\ & \text { S00 } \\ & \\ & \text { (B155) } \end{aligned}$	Source for control signals i001 Source for "Stop integrator" signal (integrator is stopped when binector reaches log. "1" state) i002 Source for "Set integrator" signal (when binector reaches log. "1" state, the integrator is set to the value entered in parameter U263) Settings: $0=$ binector B 0000 1 = binector B0001 etc.	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{U 2 6 3} \\ & (2263) \\ & * \\ & \text { S00 } \\ & \text { (B155) } \end{aligned}$	Source for setting value FB $\mathbf{1 0 0}$ $0=$ connector K0000 $1=$ connector K0001 etc.	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Integrator 2 (output = K9221)				
$\begin{aligned} & \hline \text { U264 } \\ & (2264) \\ & * \\ & \text { S00 } \\ & \text { (B155) } \end{aligned}$	Source for input quantity 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U265 } \\ & (2265) \\ & \text { S00 } \\ & \text { (B155) } \\ & \hline \end{aligned}$	Integral-action time FB 101	$\begin{aligned} & 10 \text { to } 65000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None FS=10 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U266 } \\ & (2266) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B155) } \end{aligned}$	Source for control signals i001 Source for "Stop integrator" signal (integrator is stopped when binector reaches log. "1" state) i002 Source for "Set integrator" signal (when binector reaches log. "1" state, the integrator is set to the value entered in parameter U267) Settings: $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U267 } \\ (2267) \\ * \\ \text { S00 } \\ \text { (B155) } \\ \hline \end{array}$	Source for setting value 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

U268 (2268) ${ }^{*}$ S00 (B155) U269	Source for input quantity $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	$\begin{array}{\|l} \hline \text { All connector } \\ \text { numbers } \\ 1 \end{array}$	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U269 } \\ & (2269) \\ & \text { S00 } \\ & \text { (B155) } \\ & \hline \end{aligned}$	Integral-action time FB 102	$\begin{aligned} & 10 \text { to } 65000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None FS=10 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { U270 } \\ & (2270) \\ & * \\ & \text { S00 } \\ & \text { (B155) } \end{aligned}$	Source for control signals i001 Source for "Stop integrator" signal (integrator is stopped when binector reaches log. "1" state) i002 Source for "Set integrator" signal (when binector reaches log. "1" state, the integrator is set to the value entered in parameter U271) Settings: $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U271 } \\ (2271) \\ * \\ \text { S00 } \\ \text { (B155) } \\ \hline \end{array}$	Source for setting value 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

DT1 element 1 (output = K9223, inverted: K 9224)					
$\begin{aligned} & \hline \mathbf{U 2 7 2} \\ & (2272) \\ & * \\ & \text { S00 } \\ & \text { (B155) } \end{aligned}$	Source for input quantity 0 = connector K0000 1 = connector K0001 etc.	FB 103	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U273 } \\ & (2273) \\ & \text { S00 } \\ & \text { (B155) } \\ & \hline \end{aligned}$	Derivative-action time	FB 103	$\begin{aligned} & 0 \text { to } 1000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{array}{\|l} \hline \mathrm{P} 052=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$
$\begin{aligned} & \hline \text { U274 } \\ & (2274) \\ & \text { S00 } \\ & \text { (B155) } \end{aligned}$	Filter time	FB 103	$\begin{aligned} & \hline 0 \text { to } 1000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
DT1 element 2 (output = K9225, inverted: K 9226)					
$\begin{array}{\|l} \hline \text { U275 } \\ (2275) \\ * \\ \text { S00 } \\ \text { (B155) } \\ \hline \end{array}$	Source for input quantity 0 = connector K0000 1 = connector K0001 etc.	FB 104	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U276 } \\ & (2276) \\ & \text { S00 } \\ & \text { (B155) } \\ & \hline \end{aligned}$	Derivative-action time	FB 104	$\begin{aligned} & 0 \text { to } 1000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U277 } \\ & (2277) \\ & \text { S00 } \\ & \text { (B155) } \\ & \hline \end{aligned}$	Filter time	FB 104	$\begin{aligned} & 0 \text { to } 1000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

DT1 element 3 (output = K9227, inverted: K9228)					
$\begin{aligned} & \hline \text { U278 } \\ & (2278) \\ & \text { * } \\ & \text { S00 } \\ & \text { (B155) } \end{aligned}$	Source for input quantity 0 = connector K0000 1 = connector K0001 etc.	FB 105	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & P 052=3 \\ & \text { P051 }=40 \end{aligned}$ Offline
$\begin{array}{\|l\|} \hline \text { U279 } \\ (2279) \\ \text { S00 } \\ \text { (B155) } \\ \hline \end{array}$	Derivative-action time	FB 105	$\begin{aligned} & 0 \text { to } 1000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & P 052=3 \\ & \text { P051 }=40 \end{aligned}$ Online
$\begin{array}{\|l\|} \hline \text { U280 } \\ (2280) \\ \text { S00 } \\ \text { (B155) } \end{array}$	Filter time	FB 105	$\begin{aligned} & 0 \text { to } 1000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	P052 = 3 P051 = 40 Online

Characteristic blocks

The curve of the characteristics can be defined by 10 points each:
Index i001 to i010 of the parameters for the x values (U282, U285, U288): x values for FB 106, FB 107, FB 108 Index i001 to 0010 of the parameters for the y values (U283, U286, U289): associated y values

SW1.8 and later:
Index i011 to i 020 of the parameters for the x values (U282, U285, U288): x values for FB 280, FB 282, FB 284 Index i011 to 020 of the parameters for the y values (U283, U286, U289): associated y values

Index i021 to i030 of the parameters for the x values (U282, U285, U288): x values for FB 281, FB 283, FB 285
Index i021 to i030 of the parameters for the y values (U283, U286, U289): associated y values
for $x=-200.00 \%$ up to x value acc. to index 001 (or i011 or i021) of the parameter for the x values gilt:
$y=$ value acc. to index i001 (or i011 or i021) of the parameter for the y values

$y=$ value acc. to index i010 (or i020 or i030) of the parameter for the y values
The distance between two adjacent x or y values must not be more than 199.99% otherwise deviations from the required shape of the characteristic can arise.

Characteristic block 1 (output = K9229)					$\begin{aligned} & \text { FB } 106 \\ & \text { FB } 280 \end{aligned}$
Characteristic block 4 (output = K9410) [SW 1.8 and later] Characteristic block 5 (output = K9411) [SW 1.8 and later]					
					FB 281
U281	Source for input quantity		All connector	Ind: 3	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
(2281)			numbers	FS=0	
*			1	Type: L2	
S00					
(B160)					

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U282 } \\ & (2282) \\ & \text { S00 } \\ & \\ & \text { (B160) } \end{aligned}$	x values i001 1st characteristic point i002 2nd characteristic point \ldots i010 10th characteristic point SW 1.8 and later: i011 1st characteristic point i012 2nd characteristic point \ldots i020 10th characteristic point i021 1st characteristic point i022 2nd characteristic point \ldots i030 10th characteristic point	for FB106 for FB106 for FB106 for FB280 for FB280 for FB280 for FB281 for FB281 for FB281	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \end{aligned}$	$\begin{aligned} & \hline \text { Ind:30 } \\ & \text { FS=0.00 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { U283 } \\ & (2283) \\ & \text { S00 } \\ & \\ & \text { (B160) } \end{aligned}$	y values i001 1st characteristic point i002 2nd characteristic point \ldots i010 10th characteristic point SW 1.8 and later: i011 1st characteristic point i012 2nd characteristic point \ldots i020 10th characteristic point i021 1st characteristic point i022 2nd characteristic point \ldots i030 10th characteristic point	for FB106 for FB106 for FB106 for FB280 for FB280 for FB280 for FB281 for FB281 for FB281	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \end{aligned}$	$\begin{aligned} & \hline \text { Ind:30 } \\ & \text { FS=0.00 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

Characteristic block 2 (output = K9230) Characteristic block 6 (output $=$ K9412) [SW 1.8 and later] Characteristic block 7 (output $=$ K9413) [SW 1.8 and later]				FB 107 FB 282 FB 283
$\begin{aligned} & \hline \text { U284 } \\ & (2284) \\ & \text { © } \\ & \text { S00 } \\ & \text { (B160) } \end{aligned}$	Source for input quantity 0 = Connector K0000 1 = Connector K0001 etc. up to SW 1.7: Selected connector = input quantity for FB107 SW 1.8 and later: i001 input quantity for FB107 i002 input quantity for FB282 i003 input quantity for FB283	All connector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U285 } \\ & (2285) \\ & \text { S00 } \\ & \text { (B160) } \end{aligned}$	x values i001 1st characteristic point for FB107 i002 2nd characteristic point for FB107 \ldots i010 10th characteristic point for FB107 SW 1.8 and later: i011 1st characteristic point for FB282 i012 2nd characteristic point for FB282 \ldots i020 10th characteristic point for FB282 i021 1st characteristic point for FB283 i022 2nd characteristic point for FB283 \ldots i030 10th characteristic point for FB283.	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \end{aligned}$	$\begin{aligned} & \text { Ind: } 30 \\ & \text { FS }=0.00 \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U286 } \\ & (2286) \\ & \text { S00 } \\ & \text { (B160) } \end{aligned}$	y values i001 1st characteristic point i002 2nd characteristic point \ldots i010 10th characteristic point SW 1.8 and later: i011 1st characteristic point i012 2nd characteristic point \ldots i020 10th characteristic point i021 1st characteristic point i022 2nd characteristic point \ldots i030 10th characteristic point	for FB107 for FB107 for FB107 for FB282 for FB282 for FB282 for FB283 for FB283 for FB283	```-200.00 to 199.99 [%] 0.01```	$\begin{aligned} & \text { Ind: } 30 \\ & \text { FS }=0.00 \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

Characteristic block 3 (Output $=$ K9231) Characteristic block 8 (Output $=$ K9414) [SW 1.8 and later] Characteristic block 9 (Output $=$ K9415) [SW 1.8 and later]				FB 108 FB 284 FB 285
U287 (2287) S00 (B160)	Source for input quantity 0 = Connector K0000 1 = Connector K0001 etc. up to SW 1.7: Selected connector $=$ input quantity for FB108 SW 1.8 and later: i001 Input quantity for FB108 i002 Input quantity for FB284 i003 Input quantity for FB285	All connector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \end{aligned}$ off-line
U288 (2288) S00 (B160)	X values i001 1st characteristic point for FB108 i002 2nd characteristic point for FB108 \ldots i010 10th characteristic point for FB108 SW 1.8 and later: i011 1st characteristic point for FB284 i012 2nd characteristic point for FB284 \ldots \ldots (0th characteristic point i020 for FB284 i021 1st characteristic point for FB285 i022 2nd characteristic point for FB285 \ldots i030 10th characteristic point for FB285	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Ind: } 30 \\ \text { FS }=0.00 \\ \text { Type: } 12 \end{array}$	P052 = 3 P051 = 40 on-line
U289 (2289) S00 (B160)	y values i001 1st characteristic point for FB108 i002 2nd characteristic point for FB108 \ldots i010 10th characteristic point for FB108 SW 1.8 and later: i011 1st characteristic point for FB284 i012 2nd characteristic point for FB284 \ldots i020 10th characteristic point for FB284 i021 1st characteristic point for FB285 i022 2nd characteristic point for FB285 \ldots i030 10th characteristic point for FB285	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Ind: } 30 \\ \text { FS }=0.00 \\ \text { Type: } 12 \end{array}$	P052 $=3$ P051 $=40$ on-line

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Dead zones The component of the input quantity (x) whose absolute value exceeds the threshold for the dead zone is applied to the output (y).					
Dead zone 1 (output = K9232)					
$\begin{array}{\|l} \hline \text { U290 } \\ (2290) \\ * \\ \text { S00 } \\ \text { (B161) } \\ \hline \end{array}$	Source for input quantity 0 = connector K0000 1 = connector K0001 etc.	FB 109	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U291 } \\ & (2291) \\ & \text { S00 } \\ & \text { (B161) } \\ & \hline \end{aligned}$	Dead zone	FB 109	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \end{aligned}$	Ind: None FS=0.00 Type: 02	$\begin{array}{\|l} \hline \mathrm{P} 052=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$

Dead zone 2 (output = K9233)

$\begin{array}{\|l} \hline \text { U292 } \\ (2292) \\ * \\ \text { S00 } \\ \text { (B161) } \\ \hline \end{array}$	Source for input quantity 0 = connector K0000 1 = connector K0001 etc.	FB 110	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U293 } \\ & (2293) \\ & \text { S00 } \\ & \text { (B161) } \\ & \hline \end{aligned}$	Dead zone	FB 110	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

Dead zone 3 (output = K9234)					
$\begin{aligned} & \text { U294 } \\ & (2294) \\ & \star \\ & \text { S00 } \\ & \text { (B161) } \end{aligned}$	Source for input quantity 0 = connector K0000 1 = connector K0001 etc.	FB 111	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U295 } \\ & \text { (2295) } \\ & \text { S00 } \\ & \text { (B161) } \\ & \hline \end{aligned}$	Dead zone	FB 111	$\begin{aligned} & 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

Setpoint branching (output $=$ K9234)
The input quantity is weighted with 2 parameters:
Parameter U297 determines the output value with an input $=0 \%$
Parameter U298 determines the output value with an input $=+100 \%$
-U297 and -U298 apply in the case of negative input values.
The hysteresis set in parameter U299 is applied for transitions from negative to positive input values and vice versa

$\begin{array}{\|l} \hline \text { U296 } \\ (2296) \\ * \\ \text { S00 } \\ \text { (B161) } \\ \hline \end{array}$	Source for input quantity 0 = connector K0000 1 = connector K0001 etc.	FB 112	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U297 } \\ (2297) \\ \text { S00 } \\ \text { (B161) } \\ \hline \end{array}$	Minimum speed	FB 112	$\begin{aligned} & 0.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \end{aligned}$	Ind: None FS=0.00 Type: O 2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U298 } \\ (2298) \\ \text { S00 } \\ \text { (B161) } \\ \hline \end{array}$	Maximum speed	FB 112	$\begin{aligned} & \hline 0.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \end{aligned}$	Ind: None FS=100.00 Type: O 2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { U2999 } \\ (2299) \\ \text { S00 } \\ \text { (B161) } \end{array}$	Hysteresis	FB 112	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.65 Simple ramp-function generator

Only active with optional technology software S00

| PNU | Description | Value range
 [Unit]
 Steps | No. indices
 Factory
 setting
 Type |
| :--- | :--- | :--- | :--- | :--- |

11.66 Multiplexer

Only active with optional technology software S00

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U313 } \\ & (2313) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B195) } \end{aligned}$	Source for input quantities for 3rd multiplexer 0 = Connector K0000 1 = Connector K0001 etc. i001 Input quantity X0 i002 Input quantity X1 i003 Input quantity X2 i004 Input quantity X3 i005 Input quantity X4 i006 Input quantity X5 i007 Input quantity X6 i008 Input quantity X7	[SW 1.8 and later]	All connector numbers 1	Ind: 8 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

11.67 Counters

Only active with optional technology software S00

Software counter				$\begin{gathered} \hline \text { FB } 89 \\ \hline \text { P052 = } 3 \end{gathered}$
$\begin{aligned} & \text { n314 } \\ & (2314) \\ & \text { S00 } \\ & \text { (B196) } \\ & \hline \end{aligned}$	Display of output of software counter FB 89 [SW 1.9 and later]	0 to 65535	Ind: None Type: O2	
$\begin{aligned} & \text { U315 } \\ & (2315) \\ & { }_{*} \\ & \text { S00 } \\ & \text { (B196) } \end{aligned}$	Fixed values for setting/limiting inputs of software counter [SW 1.9 and later] i001: Minimum value i002: Maximum value i003: Setting value i004: Start value	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 4 FS= i001: 0 i002: 65535 i003: 0 i004: 0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U316 } \\ & (2316) \\ & { }_{\star} \\ & \text { S00 } \\ & \text { (B196) } \end{aligned}$	Source for setting/limiting inputs of software counter i001: Minimum value i002: Maximum value i003: Setting value i004: Start value Settings: $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: 4 FS= i001: 9441 i002: 9442 i003: 9443 i004: 9444 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U317 } \\ & (2317) \\ & { }_{*} \\ & \text { S00 } \\ & \\ & \text { (B196) } \end{aligned}$	Source for control signals of software counter i001: Positive edge: Count up i002: Positive edge: Count down i003: Stop counter i004: Set counter i005: Enable counter Settings: $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 5 FS= i001: 0 i002: 0 i003: 0 i004: 0 i005: 1 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

11.68 Logic functions

Only active with optional technology software S00

Decoders/demultiplexers, binary to 1 of 8					
$\begin{array}{\|l\|} \hline \text { U318 } \\ (2318) \\ * \\ \text { S00 } \\ \\ (B 200) \end{array}$	Source for input signals for decoder/demultiplexer 1 i001 Source for input signal, bit 0 i002 Source for input signal, bit 1 i003 Source for input signal, bit 2 Settings: $0=$ binector B 0000 1 = binector B0001 etc.	FB 118	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
 U319 (2319) $*$ S00 (B200)	Source for input signals for decoder/demultiplexer 2 i001 Source for input signal, bit 0 i002 Source for input signal, bit 1 i003 Source for input signal, bit 2 Settings: $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	$\text { FB } 119$	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

AND elements with 3 inputs each
The input signals selected via the 3 indices of the parameter are ANDed and the result of the logic operation applied to the specified binector.

$\begin{array}{\|l} \hline \text { U320 } \\ (2320) \\ * \\ \text { S00 } \\ \text { (B205) } \end{array}$	Source for input signals, AND element 1 (output = B9350) i001 Source for input 1 i002 Source for input 2 i003 Source for input 3 Settings: $0=$ binector B 0000 1 = binector B0001 etc.	$\text { FB } 120$	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U321 } \\ (2321) \\ * \\ \text { S00 } \\ \text { (B205) } \\ \hline \end{array}$	Source for input signals, AND element 2 (output = B9351) As for U320	FB 121	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U322 } \\ (2322) \\ * \\ \text { S00 } \\ \text { (B205) } \end{array}$	Source for input signals, AND element 3 (output = B9352) As for U320	FB 122	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U323 } \\ (2323) \\ * \\ \text { S00 } \\ \text { (B205) } \\ \hline \end{array}$	Source for input signals, AND element 4 (output = B9353) As for U320	FB 123	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U324 } \\ (2324) \\ * \\ \text { S00 } \\ \text { (B205) } \end{array}$	Source for input signals, AND element 5 (output = B9354) As for U320	FB 124	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U325 } \\ (2325) \\ { }^{*} \\ \text { S00 } \\ \text { (B205) } \end{array}$	Source for input signals, AND element 6 (output = B9355) As for U320	FB 125	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U326 } \\ (2326) \\ { }^{2} \\ \text { S00 } \\ \text { (B205) } \end{array}$	Source for input signals, AND element 7 (output = B9356) As for U320	$\text { FB } 126$	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U327 } \\ & (2327) \\ & { }^{2} \\ & \text { S00 } \\ & \text { (B205) } \end{aligned}$	Source for input signals, AND element 8 (output $=$ B9357) As for U320	FB 127	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U328 } \\ (2328) \\ * \\ \text { S00 } \\ \text { (B205) } \end{array}$	Source for input signals, AND element 9 (output = B9358) As for U320	FB 128	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { Offline } \end{aligned}$
U329 (2329) ${ }^{*}$ S00 (B205)	Source for input signals, AND element 10 (output = B9359) As for U320	FB 129	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U330 } \\ & (2330) \\ & { }^{*} \\ & \text { S00 } \\ & \text { (B205) } \\ & \hline \end{aligned}$	Source for input signals, AND element 11 (output = B9360) As for U320	FB 130	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U331 } \\ & (2331) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \\ & \hline \end{aligned}$	Source for input signals, AND element 12 (output = B9361) As for U320	FB 131	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U332 } \\ & (2332) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \\ & \hline \end{aligned}$	Source for input signals, AND element 13 (output = B9362) As for U320	FB 132	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
U333 (2333) $*$ S00 (B205)	Source for input signals, AND element 14 (output = B9363) As for U320	FB 133	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U334 } \\ & (2334) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \\ & \hline \end{aligned}$	Source for input signals, AND element 15 (output = B9364) As for U320	FB 134	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U335 } \\ & (2335) \\ & { }^{*} \\ & \text { S00 } \\ & \text { (B205) } \end{aligned}$	Source for input signals, AND element 16 (output = B9365) As for U320	FB 135	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U336 } \\ & (2336) \\ & { }^{*} \\ & \text { S00 } \\ & \text { (B205) } \end{aligned}$	Source for input signals, AND element 17 (output = B9366) As for U320	FB 136	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U337 } \\ & (2337) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \end{aligned}$	Source for input signals, AND element 18 (output = B9367) As for U320	FB 137	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U338 } \\ & (2338) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \\ & \hline \end{aligned}$	Source for input signals, AND element 19 (output = B9368) As for U320	FB 138	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U339 } \\ & (2339) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \end{aligned}$	Source for input signals, AND element 20 (output = B9369) As for U320	FB 139	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U340 } \\ & (2340) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \end{aligned}$	Source for input signals, AND element 21 (output = B9370) As for U320	$\text { FB } 140$	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U341 } \\ & (2341) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \end{aligned}$	Source for input signals, AND element 22 (output = B9371) As for U320	FB 141	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U342 } \\ & (2342) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \end{aligned}$	Source for input signals, AND element 23 (output = B9372) As for U320	FB 142	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U343 } \\ & (2343) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \end{aligned}$	Source for input signals, AND element 24 (output = B9373) As for U320	FB 143	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U344 } \\ & (2344) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \end{aligned}$	Source for input signals, AND element 25 (output = B9374) As for U320	FB 144	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
U345 (2345) $*$ S00 (B205) U346	Source for input signals, AND element 26 (output = B9375) As for U320	FB 145	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
U346 (2346) $*$ S00 (B205) U347	Source for input signals, AND element 27 (output = B9376) As for U320	FB 146	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U347 } \\ & (2347) \\ & * \\ & \text { S00 } \\ & \text { (B205) } \\ & \hline \end{aligned}$	Source for input signals, AND element 28 (output = B9377) As for U320	FB 147	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

OR elements with 3 inputs each
The input signals selected via the 3 indices of the parameter are ORed and the result of the logic operation applied to the specified binector.

$\begin{aligned} & \hline \text { U350 } \\ & (2350) \\ & * \\ & \text { S00 } \\ & \text { (B206) } \end{aligned}$	Source for input signals, OR element 1 (output = B9380) i001 Source for input 1 i002 Source for input 2 i003 Source for input 3 Settings: $0=$ binector B 0000 1 = binector B0001 etc.	$\text { FB } 150$	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U351 } \\ & (2351) \\ & * \\ & \text { S00 } \\ & \text { (B206) } \\ & \hline \end{aligned}$	Source for input signals, OR element 2 (output = B9381) As for U350	FB 151	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U352 } \\ & (2352) \\ & * \\ & \text { S00 } \\ & \text { (B206) } \end{aligned}$	Source for input signals, OR element 3 (output = B9382) As for U350	FB 152	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U353 } \\ & (2353) \\ & * \\ & \text { S00 } \\ & \text { (B206) } \end{aligned}$	Source for input signals, OR element 4 (output = B9383) As for U350	FB 153	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U354 (2354) $*$ S00 (B206)	Source for input signals, OR element 5 (output = B9384) As for U350	FB 154	All binector numbers 1	$\begin{aligned} & \text { Ind: } 3 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U355 } \\ & (2355) \\ & * \\ & \text { S00 } \\ & \text { (B206) } \end{aligned}$	Source for input signals, OR element 6 (output = B9385) As for U350	FB 155	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U356 } \\ & (2356) \\ & * \\ & \text { S00 } \\ & \text { (B206) } \end{aligned}$	Source for input signals, OR element 7 (output = B9386) As for U350	FB 156	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U357 (2357) $*$ S00 (B206)	Source for input signals, OR element 8 (output = B9387) As for U350	FB 157	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type

EXCLUSIVE OR elements with 2 inputs each

The input signals selected via the 2 indices of the parameter are combined in an EXCLUSIVE OR (XOR) operation and the result applied to the specified binector.

$\begin{aligned} & \hline \text { U370 } \\ & (2370) \\ & * \\ & \text { S00 } \\ & \text { (B206) } \end{aligned}$	Source for input signals, XOR element 1 (output = B9195) i001 Source for input 1 i002 Source for input 2 Settings: $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 170	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U371 } \\ & (2371) \\ & * \\ & \text { S00 } \\ & \text { (B206) } \\ & \hline \end{aligned}$	Source for input signals, XOR element 2 (output = B9196) As for U370	FB 171	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U372 } \\ & (2372) \\ & * \\ & \text { S00 } \\ & \text { (B206) } \end{aligned}$	Source for input signals, XOR element $\mathbf{3}$ (output $=$ B9197) As for U370	$\text { FB } 172$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U373 } \\ & (2373) \\ & * \\ & \text { S00 } \\ & \text { (B206) } \\ & \hline \end{aligned}$	Source for input signals, XOR element 4 (output = B9198) As for U370	FB 173	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Inverters
The input signal is inverted and the result applied to the specified binector.

$\begin{aligned} & \text { U380 } \\ & (2380) \\ & { }_{*} \\ & \text { S00 } \\ & \text { (B207) } \\ & \hline \end{aligned}$	Source for input signal, inverter 1 (output = B9450) $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 180	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U381 } \\ & (2381) \\ & * \\ & \text { S00 } \\ & \text { (B207) } \\ & \hline \end{aligned}$	Source for input signal, inverter 2 (output = B9451) As for U380	FB 181	All binector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U382 } \\ & (2382) \\ & { }^{*} \\ & \text { S00 } \\ & \text { (B207) } \\ & \hline \end{aligned}$	Source for input signal, inverter 3 (output = B9452) As for U380	FB 182	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U383 } \\ & (2383) \\ & * \\ & \text { S00 } \\ & \text { (B207) } \\ & \hline \end{aligned}$	Source for input signal, inverter 4 (output = B9453) As for U380	FB 183	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U384 (2384) $*$ S00 (B207) C385	Source for input signal, inverter 5 (output = B9454) As for U380	FB 184	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U385 (2385) $*$ S00 (B207)	Source for input signal, inverter 6 (output = B9455) As for U380	FB 185	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U386 (2386) $*$ S00 (B207)	Source for input signal, inverter 7 (output = B9456) As for U380	FB 186	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U387 } \\ & (2387) \\ & * \\ & \text { S00 } \\ & \text { (B207) } \end{aligned}$	Source for input signal, inverter 8 (output = B9457) As for U380	FB 187	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U388 } \\ & (2388) \\ & * \\ & \text { S00 } \\ & \text { (B207) } \end{aligned}$	Source for input signal, inverter 9 (output = B9458) As for U380	FB 188	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U389 (2389) $*$ S00 (B207)	Source for input signal, inverter 10 (output = B9459) As for U380	FB 189	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U390 (2390) $*$ S00 (B207)	Source for input signal, inverter 11 (output = B9460) As for U380	FB 190	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l} \hline \hline \text { U391 } \\ (2391) \\ * \\ \text { S00 } \\ \text { (B207) } \end{array}$	Source for input signal, inverter 12 (output = B9461) As for U380	FB 191	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U392 } \\ & (2392) \\ & { }^{2} \\ & \text { S00 } \\ & \text { (B207) } \\ & \hline \end{aligned}$	Source for input signal, inverter 13 (output = B9462) As for U380	$\text { FB } 192$	All binector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U393 } \\ (2393) \\ { }^{2} \\ \text { S00 } \\ \text { (B207) } \\ \hline \end{array}$	Source for input signal, inverter 14 (output = B9463) As for U380	FB 193	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U394 (2394) ${ }^{*}$ S00 (B207) U395	Source for input signal, inverter 15 (output = B9464) As for U380	FB 194	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U395 } \\ (2395) \\ * \\ \text { S00 } \\ \text { (B207) } \\ \hline \end{array}$	Source for input signal, inverter 16 (output = B9465) As for U380	FB 195	All binector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

NAND elements with 3 inputs each

The input signals selected via the 3 indices of the parameter are combined in an NAND operation and the result applied to the specified binector.

$\begin{array}{\|l\|} \hline \text { U400 } \\ (2400) \\ * \\ \text { S00 } \\ \text { (B207) } \end{array}$	Source for input signals, NAND element 1 (output = B9470) i001 Source for input 1 i002 Source for input 2 i003 Source for input 3 Settings: 0 = binector B0000 1 = binector B0001 etc.	FB 200	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U401 } \\ (2401) \\ \star \\ \text { S00 } \\ \text { (B207) } \end{array}$	Source for input signals, NAND element 2 (output = B9471) As for U400	FB 201	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U402 } \\ (2402) \\ { }^{*} \\ \text { S00 } \\ \text { (B207) } \end{array}$	Source for input signals, NAND element 3 (output = B9472) As for U400	FB 202	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U403 } \\ (2403) \\ { }^{*} \\ \text { S00 } \\ \text { (B207) } \end{array}$	Source for input signals, NAND element 4 (output = B9473) As for U400	FB 203	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U404 } \\ (2404) \\ * \\ \text { S00 } \\ \text { (B207) } \end{array}$	Source for input signals, NAND element 5 (output = B9474) As for U400	FB 204	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U405 } \\ (2405) \\ \star \\ \text { S00 } \\ \text { (B207) } \end{array}$	Source for input signals, NAND element 6 (output = B9475) As for U400	FB 205	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
U406 (2406) * S00 (B207)	Source for input signals, NAND element 7 (output = B9476) As for U400	FB 206	All binector numbers 1	Ind: 3 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

$\left.\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { PNU } & \text { Description } & & \begin{array}{l}\text { Value range } \\ \text { [Unit } \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting }\end{array} \\ \text { Type }\end{array}\right] \begin{array}{l}\text { See } \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]$

11.69 Storage elements, timers and binary signal selector switches

Only active with optional technology software S00

RS flipflops					
RS flipflops with SET (Q=1) and RESET (Q=0) (priority: ${ }^{\text {st }}$ RESET, $2^{\text {nd }}$ SET). RESET setting is enabled on POWER ON.					
$\begin{array}{\|l\|} \hline \text { U415 } \\ (2415) \\ * \\ \text { S00 } \\ \text { (B210) } \end{array}$	Source for SET and RESET for RS flipflop 1 (Outputs: Q = B9550, /Q = B9551) i001 Source for SET i002 Source for RESET Settings: $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 215	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U416 (2416) \star S00 (B210)	Source for SET and RESET for RS flipflop 2 (outputs: Q = B9552, /Q = B9553) As for U415	FB 216	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U417 } \\ (2417) \\ * \\ \text { S00 } \\ \text { (B210) } \\ \hline \end{array}$	Source for SET and RESET for RS flipflop 3 (outputs: Q = B9554, /Q = B9555) As for U415	FB 217	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U418 (2418) \star S00 (B210)	Source for SET and RESET for RS flipflop 4 (outputs: Q = B9556, /Q = B9557) As for U415	FB 218	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U419 (2419) \star S00 (B210)	Source for SET and RESET for RS flipflop 5 (outputs: Q = B9558, /Q = B9559) As for U415	FB 219	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U420 } \\ (2420) \\ * \\ \text { S00 } \\ \text { (B210) } \\ \hline \end{array}$	Source for SET and RESET for RS flipflop 6 (outputs: Q = B9560, /Q = B9561) As for U415	FB 220	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U421 } \\ (2421) \\ * \\ \text { S00 } \\ (B 210) \\ \hline \end{array}$	Source for SET and RESET for RS flipflop 7 (outputs: $\mathrm{Q}=\mathrm{B} 9562, / \mathrm{Q}=\mathrm{B} 9563$) As for U415	FB 221	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l} \hline \hline \text { U422 } \\ (2422) \\ * \\ \text { S00 } \\ (B 210) \\ \hline \end{array}$	Source for SET and RESET for RS flipflop 8 (outputs: Q = B9564, /Q = B9565) As for U415	FB 222	All binector numbers 1	Ind: 2 $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U423 } \\ (2423) \\ * \\ \text { S00 } \\ (B 210) \\ \hline \end{array}$	Source for SET and RESET for RS flipflop 9 (outputs: Q = B9566, /Q = B9567) As for U415	FB 223	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U424 } \\ (2424) \\ * \\ \text { S00 } \\ (B 210) \\ \hline \end{array}$	Source for SET and RESET for RS flipflop 10 (outputs: Q = B9568, /Q = B9569) As for U415	FB 224	All binector numbers 1	Ind: 2 $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U425 } \\ & (2425) \\ & * \\ & \text { S00 } \\ & (B 210) \end{aligned}$	Source for SET and RESET for RS flipflop 11 (outputs: Q = B9570, /Q = B9571) As for U415	FB 225	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U426 } \\ (2426) \\ * \\ \text { S00 } \\ (B 210) \\ \hline \end{array}$	Source for SET and RESET for RS flipflop 12 (outputs: Q = B9572, /Q = B9573) As for U415	FB 226	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U427 } \\ (2427) \\ * \\ \text { S00 } \\ (B 210) \\ \hline \end{array}$	Source for SET and RESET for RS flipflop 13 (outputs: Q = B9574, /Q = B9575) As for U415	FB 227	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U428 } \\ (2428) \\ * \\ \text { S00 } \\ (B 210) \\ \hline \end{array}$	Source for SET and RESET for RS flipflop 14 (outputs: Q = B9576, /Q = B9577) As for U415	FB 228	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

D flipflops					
D flipflops with RESET ($\mathrm{Q}=0$), SET ($\mathrm{Q}=1$) and STORE ($\mathrm{Q}=\mathrm{D}$ on transition from 0 to 1) (priority: $1^{\text {st }}$ RESET, $2^{\text {nd }}$ SET, $3^{\text {rd }}$ STORE). RESET setting is enabled on POWER ON.					
$\begin{aligned} & \hline \text { U430 } \\ & (2430) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B211) } \end{aligned}$	Source for SET, D, STORE and RESET for D flipflop 1 (outputs: Q = B9490, /Q = B9491) i001 Source for SET i002 Source for D i003 Source for STORE i004 Source for RESET Settings: $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 230	All binector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U431 } \\ (2431) \\ * \\ \text { S00 } \\ \text { (B211) } \\ \hline \end{array}$	Source for SET, D, STORE and RESET for D flipflop 2 (outputs: $\mathrm{Q}=\mathrm{B9} 992, / \mathrm{Q}=\mathrm{B} 9493$) As for U430	FB 231	All binector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U432 } \\ & (2432) \\ & { }_{*} \\ & \text { S00 } \\ & \text { (B211) } \\ & \hline \end{aligned}$	Source for SET, D, STORE and RESET for D flipflop 3 (outputs: $\mathrm{Q}=\mathrm{B9} 994, / \mathrm{Q}=\mathrm{B9495}$) As for U430	FB 232	All binector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U433 } \\ & (2433) \\ & * \\ & \text { S00 } \\ & \text { (B211) } \\ & \hline \end{aligned}$	Source for SET, D, STORE and RESET for D flipflop 4 (outputs: $\mathrm{Q}=\mathrm{B9496}, / \mathrm{Q}=\mathrm{B} 9497$) As for U430	FB 233	All binector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Timer 1 (0.000 to 60.000s) (output = B9580, inverted: B9581)				
$\begin{aligned} & \hline \text { U440 } \\ & (2440) \\ & * \\ & \text { S00 } \\ & \text { (B215) } \end{aligned}$	Source for input signal and reset signal for timer element 1 i001 Source for input signal i002 Source for reset signal for the pulse generator (if U442=3) (in state "1", the pulse generator is set to "0") Settings: 0 = Binector B0000 1 = Binector B0001 etc.	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U441 } \\ & (2441) \\ & \text { S00 } \\ & \text { (B215) } \\ & \hline \end{aligned}$	Time for timer 1×240	$\begin{aligned} & 0.000 \text { to } 60.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \end{aligned}$	Ind: None FS=0.000 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U442 } \\ & (2442) \\ & * \\ & \text { S00 } \\ & \text { (B215) } \end{aligned}$	Mode for timer 1 FB $\mathbf{2 4 0}$ 0 ON delay 1 OFF delay 2 ON / OFF delay 3 Pulse generator with positive edge triggering	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Timer 2 (0.000 to 60.000s) (output = B9582, inverted: B9583)					
$\begin{array}{\|l} \hline \text { U443 } \\ (2443) \\ * \\ \text { S00 } \\ \text { (B215) } \end{array}$	Source for input signal and reset signal for timer element 2 As for U440	FB 241	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U444 } \\ (2444) \\ \text { S00 } \\ \text { (B215) } \\ \hline \end{array}$	Time for timer 2	FB 241	0.000 to 60.000 [s] 0.001	Ind: None FS=0.000 Type: O 2	$\begin{aligned} & P 052=3 \\ & \text { P051 }=40 \end{aligned}$ Offline
$\begin{array}{\|l} \hline \text { U445 } \\ (2445) \\ * \\ \text { S00 } \\ (B 215) \\ \hline \end{array}$	Mode for timer 2 As for U442	FB 241	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Timer 3 (0.000 to 60.000s) (output = B9584, inverted: B9585)					
U446 (2446) ${ }^{*}$ S00 (B215) U447	Source for input signal and reset signal for timer element 3 As for U440	FB 242	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U447 } \\ (2447) \\ \text { S00 } \\ \text { (B215) } \\ \hline \end{array}$	Time for timer 3	FB 242	$\begin{aligned} & \hline 0.000 \text { to } 60.000 \\ & \text { [s] } \\ & 0.001 \end{aligned}$	Ind: None FS=0.000 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
U448 (2448) ${ }^{*}$ S00 (B215)	Mode for timer 3 As for U442	FB 242	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Timer 4 (0.000 to 60.000s) (output = B9586, inverted: B9587)					
$\begin{aligned} & \text { U449 } \\ & (2449) \\ & * \\ & \text { S00 } \\ & (\mathrm{B} 215) \end{aligned}$	Source for input signal and reset signal for timer element 4 As for U440	FB 243	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U450 } \\ & (2450) \\ & \text { S00 } \\ & \text { (B215) } \\ & \hline \end{aligned}$	Time for timer 4	FB 243	0.000 to 60.000 [s] 0.001	Ind: None FS=0.000 Type: O 2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U451 } \\ & (2451) \\ & * \\ & \text { S00 } \\ & \text { (B215) } \\ & \hline \end{aligned}$	Mode for timer 4 As for U442	FB 243	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Timer 5 (0.000 to 60.000s) (output = B9588, inverted: B9589)					
U452 (2452) ${ }^{*}$ S00 (B215) $\mathbf{U 4 5 3}$	Source for input signal and reset signal for timer element 5 As for U440	$\text { FB } 244$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U453 } \\ & (2453) \\ & \text { S00 } \\ & \text { (B215) } \\ & \hline \end{aligned}$	Time for timer 5	FB 244	$\begin{aligned} & 0.000 \text { to } 60.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \end{aligned}$	Ind: None FS=0.000 Type: O2	$\begin{aligned} & \text { P052 =3 } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
U454 (2454) $*$ S00 (B215)	Mode for timer 5 As for U442	FB 244	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Timer 6 (0.000 to 60.000s) (output = B9590, inverted: B9591)					
$\begin{array}{\|l} \hline \text { U455 } \\ (2455) \\ { }^{2} \\ \text { S00 } \\ \text { (B215) } \\ \hline \end{array}$	Source for input signal and reset signal for timer element 6 As for U440	FB 245	All binector numbers 1	Ind: 2 $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U456 } \\ & (2456) \\ & \text { S00 } \\ & (B 215) \\ & \hline \end{aligned}$	Time for timer 6	FB 245	0.000 to 60.000 [s] 0.001	Ind: None FS=0.000 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U457 } \\ (2457) \\ * \\ \text { S00 } \\ \text { (B215) } \\ \hline \end{array}$	Mode for timer 6 As for U442	FB 245	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Offline } \end{array}$

Timer 8 (0.00 to 600.00s) (output = B9594, inverted: B9595)					
$\begin{aligned} & \hline \text { U461 } \\ & (2461) \\ & * \\ & \text { S00 } \\ & \text { (B216) } \end{aligned}$	Source for input signal and reset signal for timer element 8 As for U440	FB 247	All binector numbers 1	Ind: 2 $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U462 } \\ & (2462) \\ & \text { S00 } \\ & \text { (B216) } \end{aligned}$	Time for timer 8	FB 247	$\begin{array}{\|l} \hline 0.00 \text { to } 600.00 \\ {[\mathrm{~s}]} \\ 0.01 \end{array}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U463 } \\ & (2463) \\ & * \\ & \text { S00 } \\ & \text { (B216) } \end{aligned}$	Mode for timer 8 As for U442	FB 247	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Timer 9 (0.00 to 600.00s) (output = B9596, inverted: B9597)					
U464 (2464) $*$ S00 (B216)	Source for input signal and reset signal for timer element 9 As for U440	$\text { FB } 248$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U465 } \\ & (2465) \\ & \text { S00 } \\ & \text { (B216) } \\ & \hline \end{aligned}$	Time for timer 9	FB 248	$\begin{aligned} & 0.00 \text { to } 600.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \end{aligned}$	Ind: None FS=0.00 Type: O 2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U466 } \\ (2466) \\ * \\ \text { S00 } \\ \text { (B216) } \\ \hline \end{array}$	Mode for timer 9 As for U442	FB 248	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Timer 10 (0.00 to 600.00s) (output = B9598, inverted: B9599)					
$\begin{array}{\|l} \hline \text { U467 } \\ (2467) \\ * \\ \text { S00 } \\ (B 216) \\ \hline \end{array}$	Source for input signal and reset signal for timer element 10 As for U440	FB 249	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U468 } \\ (2468) \\ \text { S00 } \\ \text { (B216) } \\ \hline \end{array}$	Time for timer 10	FB 249	$\begin{aligned} & 0.00 \text { to } 600.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U469 } \\ & (2469) \\ & * \\ & \text { S00 } \\ & (B 216) \\ & \hline \end{aligned}$	Mode for timer 10 As for U442	FB 249	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Binary signal selector switches					
The control signal (binector) is selected via index 0001 of the parameter. Control signal = 0: Binector as set in index i002 is applied to the output Control signal = 1: Binector as set in index i003 is applied to the output					
$\begin{aligned} & \hline \text { U470 } \\ & (2470) \\ & * \\ & \text { S00 } \\ & (B 216) \end{aligned}$	Source for input signals for binary signal selector switch 1 (output = B9482) i001 Source for control signal i002 Source for output signal when control signal $=0$ i003 Source for output signal when control signal =1 Settings: $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 250	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U471 } \\ & (2471) \\ & * \\ & \text { S00 } \\ & (B 216) \end{aligned}$	Source for input signals for binary signal selector switch 2 (output = B9483) As for U470	FB 251	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U472 } \\ & (2472) \\ & * \\ & \text { S00 } \\ & (B 216) \\ & \hline \end{aligned}$	Source for input signals for binary signal selector switch 3 (output = B9484) As for U470	FB 252	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U473 } \\ & (2473) \\ & * \\ & \text { S00 } \\ & \text { (B216) } \\ & \hline \end{aligned}$	Source for input signals for binary signal selector switch 4 (output = B9485) As for U470	FB 253	All binector numbers 1	Ind: 3 $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \text { U474 } \\ & (2474) \\ & * \\ & \text { S00 } \\ & (B 216) \\ & \hline \end{aligned}$	Source for input signals for binary signal selector switch 5 (output = B9486) As for U470	FB 254	All binector numbers 1	Ind: 3 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.70 Technology controller

Only active with optional technology software S00

Technology controller: Actual value					
$\begin{array}{\|l} \hline \text { U480 } \\ (2480) \\ { }^{*} \\ \text { S00 } \\ \\ (B 170) \end{array}$	Source for actual value Selection of connectors to be added as the actual value 0 = connector K0000 1 = connector K0001 etc.	$\text { FB } 114$	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U481 } \\ (2481) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \\ \hline \end{array}$	Filter time for actual value	FB 114	$\begin{aligned} & 0.00 \text { to } 600.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \end{aligned}$	Ind: 4 FS=0.00 Type: O2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { U482 } \\ (2482) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \\ \hline \end{array}$	Derivative-action time for actual value (D component) $0.000=\mathrm{D} \text { component deactivated }$ See also U483	$\text { FB } 114$	$\begin{aligned} & 0.000 \text { to } 30.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0.000 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
U483 (2483) $*$ S00 FDS (B170)	```Factor for derivative-action time D Derivative-action time = U482 * 1 1 Derivative-action time = U482 * 1000```	FB 114	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Technology controller: Setpoint				
$\begin{array}{\|l} \hline \text { U484 } \\ (2484) \\ { }^{2} \\ \text { S00 } \\ \\ \text { (B170) } \end{array}$	Source for setpoint Selection of connectors to be added as the setpoint 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: 4 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U485 } \\ (2485) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \\ \hline \end{array}$	Injectable additional setpoint This parameter setting is added to the setpoint when the binector selected in U486 changes to the log. "1" state	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0.00 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
U486 (2486) $*$ S00 (B170)	Source for control bit for injection of additional setpoint $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U487 } \\ & (2487) \\ & \text { S00 } \\ & \text { FDS } \\ & \text { (B170) } \end{aligned}$	Filter time for setpoint FB 114	$\begin{aligned} & 0.00 \text { to } 600.00 \\ & {[\mathrm{~s}]} \\ & 0.01 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0.00 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

Technology controller: Controller parameters					
$\begin{array}{\|l\|} \hline \text { U488 } \\ (2488) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \\ \hline \end{array}$	\mathbf{P} gain	FB 114	$\begin{aligned} & 0.10 \text { to } 200.00 \\ & 0.01 \end{aligned}$	Ind: 4 FS=3.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U489 } \\ & (2489) \\ & * \\ & \text { S00 } \\ & \text { (B170) } \end{aligned}$	Source for input quantity (x) for Kp adaptation 0 = connector K0000 1 = connector K0001 etc.	$\text { FB } 114$	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U490 } \\ (2490) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \\ \hline \end{array}$	Characteristic for Kp adaptation: Threshold 1 (x1)	FB 114	$\begin{aligned} & 0.00 \text { to } 200.00 \\ & {[\%]} \\ & 0.01 \end{aligned}$	Ind: 4 FS=0.00 Type: O 2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l} \hline \hline \text { U491 } \\ (2491) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \\ \hline \end{array}$	Characteristic for Kp adaptation: Threshold 2 (x2)	FB 114	$\begin{aligned} & \hline 0.00 \text { to } 200.00 \\ & {[\%]} \\ & 0.01 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=100.00 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { U492 } \\ (2492) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \\ \hline \end{array}$	Characteristic for Kp adaptation: Minimum value (y1) Minimum value of Kp factor (y) when $\mathrm{x} \leq \mathrm{x} 1$	FB 114	$\begin{aligned} & 0.10 \text { to } 30.00 \\ & 0.01 \end{aligned}$	Ind: 4 FS=1.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U493 } \\ & (2493) \\ & \text { S00 } \\ & \text { FDS } \\ & \text { (B170) } \\ & \hline \end{aligned}$	Characteristic for Kp adaptation: Maximum value (y2) Maximum value of $K p$ factor (y) when $\mathrm{x} \geq \mathrm{x} 2$	FB 114	$\begin{aligned} & 0.10 \text { to } 30.00 \\ & 0.01 \end{aligned}$	Ind: 4 FS=1.00 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { U494 } \\ (2494) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \\ \hline \end{array}$	Reset time See also U495	FB 114	$\begin{aligned} & 0.010 \text { to } 60.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \end{aligned}$	Ind: 4 FS=3.000 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U495 } \\ & (2495) \\ & * \\ & \text { S00 } \\ & \text { FDS } \\ & \text { (B170) } \\ & \hline \end{aligned}$	```Factor for reset time \(0 \quad\) Reset time \(=\) U494 * 1 1 Reset time \(=\) U494 * 1000```	FB 114	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

Technology controller: Speed droop

A parameterizable feedback loop can be connected in parallel to the I and P components of the technology controller (acts on summation point of setpoint and actual value). This loop can be activated and deactivated by settings in parameter U496 (loop can also be deactivated by setting U497 = 0).

$\begin{array}{\|l} \hline \text { U496 } \\ (2496) \\ * \\ \text { S00 } \\ \text { (B170) } \\ \hline \end{array}$	Source for control bit for speed droop injection $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U497 } \\ & (2497) \\ & \text { S00 } \\ & \text { FDS } \\ & \text { (B170) } \\ & \hline \end{aligned}$	Speed droop Example: A 10% speed droop setting causes a 10% reduction in the setpoint at a 100% controller output ("softening" of closed-loop control).	$\begin{aligned} & 0.0 \text { to } 60.0 \\ & {[\%]} \\ & 0.1 \end{aligned}$	Ind: 4 FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { U498 } \\ (2498) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \\ \hline \end{array}$	Positive limit for speed droop FB 114	$\begin{aligned} & \hline 0.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \end{aligned}$	Ind: 4 FS=100.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { U499 } \\ (2499) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \\ \hline \end{array}$	Negative limit for speed droop FB 114	$\begin{aligned} & \hline-200.00 \text { to } 0.00 \\ & {[\%]} \\ & 0.01 \end{aligned}$	Ind: 4 FS=-100.00 Type: I2	$\begin{aligned} & \text { P052=3} \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

$\begin{aligned} & \hline \text { U500 } \\ & (2500) \\ & \text { * } \\ & \text { S00 } \\ & \text { (B170) } \end{aligned}$	```Source for technology controller enabling command FB 114 0= binector B0000 1 = binector B0001 etc.```	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \end{aligned}$ Offline
$\begin{aligned} & \hline \text { U502 } \\ & (2502) \\ & { }^{*} \\ & \text { S00 } \\ & \text { FDS } \\ & \text { (B170) } \end{aligned}$	PI/PID controller switchover 0 PI controller (D component is applied only in actual-value 1 channel) 1 PID controller (D component is applied for control deviation)	$\begin{aligned} & \hline 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: } \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \end{aligned}$ Offline
U503 ${ }_{*}$ (2503) S00 FDS (B170)	Set P component to zero 0 Set controller P component to zero (i.e. to obtain pure I controller) 1 Controller P component is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{array}{\|l} \hline \mathrm{P} 052=3 \\ \text { P051 }=40 \\ \text { Offline } \end{array}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
U504 (2504) S00 FDS (B170)	Set I component to zero FB 114 0 Set controller I component to zero (i.e. to obtain pure P 1 controller) Controller I component is active	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 4 FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Technology controller: Set I component

When the state of the binector selected in U506 switches from log. " 0 " to " 1 ", the I component of the technology controller is set to the value parameterized in U505.
With this function it is possible, for example, to use the same signal (binector) to control controller enabling commands and setting of the I component.

$\begin{array}{\|l} \hline \text { U505 } \\ (2505) \\ { }^{*} \\ \text { S00 } \\ \text { (B170) } \\ \hline \end{array}$	Source for setting value for I component $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$	FB 114	All connector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U506 } \\ & (2506) \\ & * \\ & \text { S00 } \\ & \text { (B170) } \end{aligned}$	Source for control bit "Set I component" $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	FB 114	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

Technology controller: Output, limitation				
$\begin{aligned} & \hline \text { U507 } \\ & (2507) \\ & { }^{*} \\ & \text { S00 } \\ & \\ & \text { (B170) } \end{aligned}$	Source for variable positive limit After multiplication with U508, the contents of the selected connector act as a positive limit for the technology controller output. 0 = connector K0000 1 = connector K0001 etc. Note: If the selected connector contains a negative value, a negative maximum value is applied to the output of this limiter stage.	All connector numbers 1	Ind: None FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U508 } \\ \text { (2508) } \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \end{array}$	Positive limit for output of technology controller See also U507	$\begin{aligned} & 0.0 \text { to } 199.9 \\ & {[\%]} \\ & 0.1 \end{aligned}$	Ind: 4 FS=100.0 Type: O 2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{array}{\|l} \hline \text { U509 } \\ (2509) \\ * \\ \text { S00 } \\ \\ \text { (B170) } \end{array}$	Source for variable negative limit After multiplication with U510, the contents of the selected connector act as a negative limit for the technology controller output. 0 = connector K0000 1 = connector K0001 etc. Note: If the selected connector contains a positive value, a positive minimum value is applied to the output of this limiter stage. Note: Connector K9252 contains the positive limiting value with inverted sign generated by U507 and U508. By setting U509=9252 and U510=100.00, therefore, it is possible to set the negative and positive limits symmetrically.	All connector numbers 1	Ind: None FS=9252 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U510 } \\ (2510) \\ \text { S00 } \\ \text { FDS } \\ \text { (B170) } \end{array}$	Negative limit for output of technology controller See also U509	$\begin{aligned} & 0.0 \text { to } 199.9 \\ & {[\%]} \\ & 0.1 \end{aligned}$	Ind: 4 FS=100.0 Type: O 2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$
$\begin{array}{\|l} \hline \text { U5111 } \\ (2511) \\ * \\ \text { S00 } \\ \text { (B170) } \end{array}$	Source for variable weighting factor for output After multiplication with U512, the contents of the selected connector act as a weighting factor for the technology controller output. 0 = connector K0000 1 = connector K0001 etc.	All connector numbers 1	Ind: None FS=1 Type: L2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Offline } \end{array}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U512 } \\ & (2512) \\ & \text { S00 } \\ & \text { FDS } \\ & \text { (B170) } \end{aligned}$	Weighting factor for output See also U511	FB 114	$\begin{aligned} & \hline-100.0 \text { to } 100.0 \\ & {[\%]} \\ & 0.1 \end{aligned}$	Ind: 4 FS $=100.0$ Type: 12	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

11.71 Velocity/speed calculators

Only active with optional technology software S00

Velocity/speed calculator			
Function:	n_{-}set $=\frac{v _ \text {set } * i}{D * \pi * n_{-} \text {rated }} * 100 \%$		
n_set	Setpoint speed	$(\mathrm{n} 023, \mathrm{~K} 9257)$	
D	Diameter	(U517, U518, U523)	
n_rated	Rated speed	(U520)	
i	Gear ratio	(U519)	
v_set	Setpoint velocity	(U516)	

$\begin{aligned} & \hline \text { U516 } \\ & (2516) \\ & * \\ & \text { S00 } \\ & \text { (B190) } \end{aligned}$	Source for set velocity A value of 16384 in the selected connector is equivalent to the set velocity set in U522 $\begin{aligned} & 0=\text { Connector K0000 } \\ & 1=\text { Connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U517 } \\ & (2517) \\ & \star \\ & \text { S00 } \\ & \\ & \text { (B190) } \end{aligned}$	Source for diameter A value of 16384 in the selected connector is equivalent to the diameter set in U523 $0=$ Connector K0000 1 = Connector K0001 etc.	All connector numbers 1	Ind: None $\mathrm{FS}=0$ Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
U518 (2518) S00 FDS (B190)	Minimum diameter Lower limit for diameter set in U517	$\begin{aligned} & 10.0 \text { to } 6553.5 \\ & {[\mathrm{~mm}]} \\ & 0.1 \end{aligned}$	Ind: 4 FS=6500.0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
U519 (2519) S00 FDS (B190)	Gear ratio (i) FB 115	$\begin{aligned} & 1.00 \text { to } 300.00 \\ & 0.01 \end{aligned}$	Ind: 4 FS=1.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { U520 } \\ & (2520) \\ & \text { S00 } \\ & \text { FDS } \\ & \text { (B190) } \end{aligned}$	Rated speed (n_rated) FB 115	$\begin{aligned} & 100 \text { to } 4000 \\ & {[\mathrm{rev} / \mathrm{m}]} \\ & 1 \end{aligned}$	Ind: 4 FS=1450 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$

$\left.\left.\begin{array}{|l|l|l|l|l|}\hline \text { PNU } & \text { Description } & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting }\end{array} \\ \text { Type }\end{array}\right] \begin{array}{l}\text { See } \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]$

11.72 Variable moment of inertia

Only active with optional technology software S00
Calculation of the variable moment of inertia
Function: $\quad J_{V}=\frac{D^{4}-D_{\text {Hülse }}{ }^{4}}{D_{\max }{ }^{4}} * K$

J_{V}	Variable moment of inertia
D	Diameter
$D_{\text {Hülse }}$	Diameter of the sleeve
$D_{\max }$	Maximum diameter
K	Constant

$\begin{array}{\|l} \hline \text { U525 } \\ (2525) \\ * \\ \text { S00 } \\ \\ \text { (B191) } \end{array}$	Source for input quantities 0 = Connector K0000 1 = Connector K0001 etc. i001 Diameter (16384 are equivalent to set diameter U526) i002 Diameter of the sleeve (16384 are equivalent to set diameter U527) i003 Maximum diameter (16384 are equivalent to set diameter U528) i004 Constant (16384 are equivalent to set factor U529)	[SW 1.8 and later]	All connector numbers 1	Ind: 4 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U526 } \\ (2526) \\ \text { S00 } \\ \text { (B191) } \\ \hline \end{array}$	Normalization for diameter See parameter U525	[SW 1.8 and later]	$\begin{aligned} & 10 \text { to } 60000 \\ & {[\mathrm{~mm}]} \\ & 1 \end{aligned}$	Ind: None FS=10000 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { U527 } \\ & (2527) \\ & \text { S00 } \\ & \text { (B191) } \end{aligned}$	Normalization for diameter of the sleeve See parameter U525	[SW 1.8 and later]	$\begin{aligned} & 10 \text { to } 60000 \\ & {[\mathrm{~mm}]} \\ & 1 \end{aligned}$	Ind: None FS=10000 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U528 } \\ (2528) \\ \text { S00 } \\ \text { (B191) } \end{array}$	Normalization for maximum diameter See parameter U525	[SW 1.8 and later]	$\begin{aligned} & 10 \text { to } 60000 \\ & {[\mathrm{~mm}]} \\ & 1 \end{aligned}$	Ind: None FS=10000 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U529 } \\ (2529) \\ \text { S00 } \\ \text { (B191) } \end{array}$	Normalization for constant K See parameter U525	[SW 1.8 and later]	$\begin{aligned} & 0.01 \text { to } 100.00 \\ & 0.01 \end{aligned}$	Ind: None FS=1.00 Type: O2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.73 PI controller

Only active with optional technology software S00

PI controller 1 = FB260					
Pl controller 2 = FB261					
PI controller 3 = FB262					
PI controller $4=\mathrm{FB} 263$					
PI controller 5 = FB264					
PI controller $6=$ FB265					
PI controller $7=\mathrm{FB} 266$					
PI controller $8=\mathrm{FB} 267$					
PI controller $9=\mathrm{FB} 268$					
PI controller 10 = FB269					
U530	Source for input quantity	[SW 1.8 and later]	All connector	Ind: 10	$\mathrm{P} 052=3$
(2530)			numbers	FS=0	$\mathrm{P} 051=40$
	0 = Connector K0000			Type: L2	off-line
S00	$1 \text { = Connector K0001 }$			Type. L2	
(B180...					
B189)	i002. input quantity	PI controller 2			
	1002. inputquantity				
	i010: input quantity	PI controller 10			

Enable and setting of the PI controllers				
U531 (2531) S00 (B180... B189)	Source for control signals (enable PI controller) 0 = Binector B0000 1 = Binector B0001 etc. i001: $0=$ Disable controller PI controller 1 i002: $0=$ Disable controller PI controller 2 i010: $0=$ Disable controller PI controller 10 i011: 1 = Freeze I component PI controller 1 i012: 1 = Freeze I component PI controller 2 i020: 1 = Freeze I component PI controller 10 i021: 1 = Freeze output PI controller 1 i022: 1 = Freeze output PI controller 2 i030: 1 = Freeze output PI controller 10 i031: 1 = Freeze I component in pos.direction PI controller 1 i032: 1 = Freeze I component in pos.direction PI controller 2 i040: 1 = Freeze I component in pos.direction PI controller 10 i041: 1 = Freeze I component in neg.direction PI controller 1 i042: 1 = Freeze I component in neg.direction PI controller 2 i050: 1 = Stop I component in neg.direction PI controller 10	All binector numbers 1	Ind: 50 WE=0 Typ: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U532 } \\ (2532) \\ * \\ \text { S00 } \\ \\ \text { (B180... } \\ \text { B189) } \end{array}$		All binector numbers 1	Ind: 20 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U533 } \\ & (2533) \\ & { }^{*} \\ & \text { S00 } \\ & \\ & \text { (B180... } \\ & \text { B189) } \end{aligned}$	Source for Setting values 0 = Connector K0000 1 = Connector K0001 etc. i001: Setting value for I component i002: Setting value for I component i010: Setting value for I component i011: Setting value for Output i012: Setting value for Output i020: Setting value for Output	[SW 1.8 and later] PI controller 1 PI controller 2 PI controller 10 PI controller 1 PI controller 2 PI controller 10	All connector numbers 1	$\begin{aligned} & \hline \text { Ind: } 20 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

Filtering of the input signals					
U534 (2534) S00 (B180... B189)	Source for variable filtering time for The content of the selected connecto controller after multiplication with U5 0 = Connector K0000 1 = Connector K0001 etc. i001: variable filtering time i002: variable filtering time ... i010: variable filtering time	input signal [SW 1.8 and later] as filtering time for the PI PI controller 1 PI controller 2 PI controller 10	All connector numbers 1	Ind: 10 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
U535 (2535) S00 (B180... B189)	Filtering time for the input signal i001: filtering time i002: filtering time i010: filtering time	[SW 1.8 and later] PI controller 1 PI controller 2 PI controller 10	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 10 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

Controller parameters				
$\begin{aligned} & \hline \text { U536 } \\ & (2536) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B180... } \\ & \text { B189) } \end{aligned}$	Source for variable P gain [SW 1.8 and later] The content of the selected connector acts as the P gain for the PI controller after multiplication with U537. 0 = Connector K0000 1 = Connector K0001 etc.	All connector numbers 1	Ind: 10 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U537 } \\ & (2537) \\ & \text { S00 } \\ & \text { (B180... } \\ & \text { B189) } \end{aligned}$	PI controller P gain [SW 1.8 and later] i001: P gain PI controller 1 i002: P gain PI controller 2 $\ldots \ldots 10:$ P gain PI controller 10	$\begin{aligned} & \hline 0.10 \text { to } 200.00 \\ & 0.01 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Ind: } 10 \\ \text { FS=3.00 } \\ \text { Type: O2 } \end{array}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
U538 (2538) \star S00 (B180... B189)	Source for variable Integration time [SW 1.8 and later] The content of the selected connector acts as the integration time for the PI controller after multiplication with U539.	All connector numbers 1	$\begin{aligned} & \hline \text { Ind: } 10 \\ & \text { FS=1 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description		Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U539 } \\ & (2539) \\ & \text { S00 } \\ & \text { (B180... } \\ & \text { B189) } \end{aligned}$	PI controller integration time i001: Integration time i002: Integration time i010: Integration time	[SW 1.8 and later] PI controller 1 PI controller 2 PI controller 10	0.010 to 10.000 [s] 0.001	$\begin{aligned} & \hline \hline \text { Ind: } 10 \\ & \text { FS=3.000 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

Control bits				
$\begin{aligned} & \hline \text { U540 } \\ & (2540) \\ & { }_{*} \\ & \text { S00 } \\ & \\ & \text { (B180... } \\ & \text { B1899) } \end{aligned}$	```Freeze P component [SW 1.8 and later] 0 Controller P component frozen (i.e. pure I controller) 1 Controller P component active i001: PI controller 1 i002: PI controller 2 i010: PI controller 10```	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 10 \\ & \text { FS=1 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U541 } \\ & (2541) \\ & * \\ & \text { S00 } \\ & \\ & \text { (B180... } \\ & \text { B189) } \end{aligned}$	Freeze I component [SW 1.8 and later] 0 Controller I component frozen (i.e. pure P controller) 1 Controller I component active i001: PI controller 1 i002: Pl controller 2 \ldots i010: PI controller 10	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 10 \\ & \text { FS=1 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

Output, Limitation				
U542 (2542) $*$ S00 (B180... B189)	Source for variable positive limit The content of the selected connector acts as the positive limit for the output of the PI controller after multiplication with U543. 0 = Connector K0000 1 = Connector K0001 etc. i001: PI controller 1 i002: PI controller 2 i010: PI controller 10 Note: If the content of the selected connector has a negative value, this causes a negative maximum value at the output of this limiter stage.	All connector numbers 1	$\begin{aligned} & \text { Ind: } 10 \\ & \text { FS=1 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U543 } \\ & (2543) \\ & \text { S00 } \\ & \text { (B180... } \\ & \text { B189) } \\ & \hline \end{aligned}$	Positive limit for the output of the PI controller [SW 1.8 and later] See also U542	$\begin{aligned} & 0.0 \text { to } 199.9 \\ & {[\%]} \\ & 0.1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 10 \\ & \text { FS=100.0 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { on-line } \end{aligned}$
U544 (2544) $*$ S00 (B180... B189)	Source for variable negative Limit The content of the selected connector acts as the negative limit for the output of the technology controller after multiplication with U510. 0 = Connector K0000 1 = Connector K0001 etc. i001: PI controller 1 i002: PI controller 2 i010: PI controller 10 Note: If the content of the selected connector has a positive value, this causes a positive minimum value at the output of this limiter stage. Note: Connectors K9306 to K9396 contain for PI controllers 1 to 10 the positive limitation values formed by U542 and U543 with an inverted sign. In this way it is possible to set the negative limitation symmetrically to the positive limitation by setting U544= 9306 to 9396 and U545=100.0.	All connector numbers 1	Ind: 10 FS= i001: 9306 i002: 9316 i003: 9326 i004: 9336 i005: 9346 i006: 9356 i007: 9366 i008: 9376 i009: 9386 i010: 9396 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

| PNU | Description | Value range
 [Unit]
 Steps | No. indices
 Factory
 setting
 Type |
| :--- | :--- | :--- | :--- | :--- |
| U545
 (2545)
 S00
 (B180...
 B189 $)$ | Negative limit for the output of the PI controller | See
 Change
 (Access /
 Status) | |

11.74 Closed-loop control elements

Only active with optional technology software S00

Derivative / delay elements SW 1.8 and later						FB 270 to FB 279	
$\begin{aligned} & \hline \text { U550 } \\ & \text { (2550) } \\ & * \\ & \text { S00 } \\ & \\ & \text { (B156) } \\ & \text { (B157) } \\ & \text { (B158) } \end{aligned}$	Source for input quantity 0 = Connector K0000 1 = Connector K0001 etc. i001: Input quantity derivative/delay element 1 i002: Input quantity derivative/delay element 2 i003: Input quantity derivative/delay element 3 i004: Input quantity derivative/delay element 4 i005: Input quantity derivative/delay element 5 i006: Input quantity derivative/delay element 6 i007: Input quantity derivative/delay element 7 i008: Input quantity derivative/delay element 8 i009: Input quantity derivative/delay element 9 i010: Input quantity derivative/delay element 10			[SW 1.8 and later] (FB 270) (FB 271) (FB 272) (FB 273) (FB 274) (FB 275) (FB 276) (FB 277) (FB 278) (FB 279)	All connector numbers 1	$\begin{aligned} & \text { Ind: } 10 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { U551 } \\ \text { (2551) } \\ * \\ \text { S00 } \\ \\ \text { (B156) } \\ \text { (B157) } \\ \text { (B158) } \end{array}$	Source for multiplier for derivative-action time 0 = Connector K0000 1 = Connector K0001 etc. $\begin{array}{lll}\text { i001: } & \text { Multiplier } & \text { derivative/delay element 1 } \\ \text { i002: } & \text { Multiplier } & \text { derivative/delay element 2 } \\ \text { I003: } & \text { Multiplier } & \text { derivative/delay element 3 } \\ \text { i004: } & \text { Multiplier } & \text { derivative/delay element 4 } \\ \text { i005: } & \text { Multiplier } & \text { derivative/delay element 5 } \\ \text { i006: } & \text { Multiplier } & \text { derivative/delay element 6 } \\ \text { i007: } & \text { Multiplier } & \text { derivative/delay element 7 } \\ \text { i008: } & \text { Multiplier } & \text { derivative/delay element 8 } \\ \text { i009: } & \text { Multiplier } & \text { derivative/delay element 9 } \\ \text { i010: } & \text { Multiplier } & \text { derivative/delay element 10 }\end{array}$			[SW 1.8 and later] (FB 270) (FB 271) (FB 272) (FB 273) (FB 274) (FB 275) (FB 276) (FB 277) (FB 278) (FB 279)	All connector numbers 1	Ind: 10 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { U552 } \\ (2552) \\ \text { S00 } \\ \\ \text { (B156) } \\ \text { (B157) } \\ \text { (B158) } \end{array}$	Derivative-action time i001: Der.-act.time deriv./delay element 1 i002: Der.-act.time deriv./delay element 2 i003: Der.-act.time deriv./delay element 3 i004: Der.-act.time deriv./delay element 4 i005: Der.-act.time deriv./delay element 5 i006: Der.-act.time deriv./delay element 7 i008: Der.-act.time deriv./delay element 8 i009: Der.-act.time deriv./delay element 9 i010: Der.-act.time deriv./delay element 10			[SW 1.8 and later] (FB 270) (FB 271) (FB 272) (FB 273) (FB 274) (FB 276) (FB 277) (FB 278) (FB 279)	$\begin{aligned} & 0 \text { to } 10000 \\ & \text { [ms] } \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 10 \\ & \text { FS=100 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { U553 } \\ \text { (2553) } \\ * \\ \text { S00 } \\ \\ \text { (B156) } \\ \text { (B157) } \\ \text { (B158) } \end{array}$	Source for multiplier for filtering time $0=$ Connector K0000 1 = Connector K0001 etc. i001: Multiplier derivative/delay element 1 i002: Multiplier derivative/delay element 2 i003: Multiplier derivative/delay element 3 i004: Multiplier derivative/delay element 4 i005: Multiplier derivative/delay element 5 i006: Multiplier derivative/delay element 6 i007: Multiplier derivative/delay element 7 i008: Multiplier derivative/delay element 8 i009: Multiplier derivative/delay element 9 i010: Multiplier derivative/delay element 10			[SW 1.8 and later] (FB 270) (FB 271) (FB 272) (FB 273) (FB 274) (FB 275) (FB 276) (FB 277) (FB 278) (FB 279)	All connector numbers 1	Ind: 10 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

$\left.\left.\begin{array}{|l|lll|l|l|l|}\hline \text { PNU } & \text { Description } & & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { No. indices } \\ \text { Factory } \\ \text { setting }\end{array} \\ \text { Type }\end{array}\right] \begin{array}{l}\text { See } \\ \text { Change } \\ \text { (Access / } \\ \text { Status) }\end{array}\right]$

11.75 Commutation monitoring

$\begin{aligned} & \hline \text { n560 } \\ & \text { n569 } \\ & \text { n570 } \\ & \text { n571 } \\ & \text { n572 } \\ & \text { n574 } \\ & \text { n575 } \\ & \text { n576 } \\ & \text { U577 } \\ & \text { U578 } \\ & \hline \end{aligned}$	Parameters for SIMOREG DC-MASTER Converter Commutation Protector (SIMOREG CCP)			
$\begin{aligned} & \text { U580 } \\ & (2580) \end{aligned}$	Control word for commutation monitoring The commutation of the converter is constantly monitored. If a commutation failure is detected, fault message F030 is activated and the thyristor is quenched by the SIMOREG CCP (if installed). Detection of a commutation failure is based on three decision criteria. They can be individually activated/deactivated with this parameter for test purposes. 0: None of the three decision criteria are evaluated 1: Decision criterion 1 (sufficient voltage time area for commutation) is evaluated 2: Decision criterion 2 (curvature of the current crest curve) is evaluated 4: Decision criterion 3 (maximum current actual value) is evaluated Setting instruction: Each decision criterion has a numeric code. If more than one decision criterion is to be evaluated, the sum of the relevant digits must be entered. If $U 806$ is ≥ 2 (i.e. the basic unit is a slave connected in parallel), decision criterion 1 is not evaluated irrespective of the setting of U580.	$\begin{aligned} & 0 \text { to } 7 \\ & 1 \end{aligned}$	Ind: none FS=7 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { online } \end{aligned}$
$\begin{aligned} & \hline \text { U581 } \\ & (2581) \end{aligned}$	Diagnostic memory for commutation monitoring [SW 2.1 and later] This memory is updated every time fault message F030 is activated. It provides the SIEMENS specialist with more detailed information about the cause of the commutation failure.	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 68 \\ & \text { FS=0 } \\ & \text { Type: } 02 \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { online } \end{aligned}$
$\begin{aligned} & \hline \text { U582 } \\ & (\mathbf{2 5 8 2}) \end{aligned}$	Reaction of commutation monitor This parameter allows the reaction of the commutation monitor to be programmed. 1 Detection of a commutation failure or overcurrent results in immediate pulse blocking and generation of warning A030. The pulses are enabled again after approximately 20 ms and warning A030 is reset. 2 Detection of a commutation failure or overcurrent results in immediate pulse blocking and generation of fault message F030. Important: The setting U582 = 1 is not allowed when the SIMOREG CCP is selected (P790 = 6)!	$\begin{aligned} & 1 \text { to } 2 \\ & 1 \end{aligned}$	Ind: none FS=2 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { online } \end{aligned}$
$\begin{array}{\|l} \hline \text { U583 } \\ (2583) \end{array}$	Parameter for SIMOREG CCP			

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.76 Setpoint reduction

$\begin{aligned} & \text { U607 } \\ & (2607) \\ & * \\ & \text { BDS } \\ & \\ & \text { (G135) } \end{aligned}$	Source for activation of the setpoint reduction	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U608 } \\ & (2608) \\ & \text { FDS } \\ & (\text { G135 }) \\ & \hline \end{aligned}$	Multiplier for speed setpoint on activation of the setpoint reduction	$\begin{aligned} & \hline 0.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=15.00 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

11.77 Definition of the function of inputs and outputs

$\begin{aligned} & \hline \text { U616 } \\ & (2616) \end{aligned}$ (G117)	```Control word for input "E stop" (term. 105 to 108) [SW 2.0 and later] 0 = E stop has same effect as OFF2 1 = E stop immediately cancels the firing pulse chain (without waiting for I = 0 and without outputting \alphaw)```	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: none FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { online } \end{aligned}$

11.78 Definition of the function of the relay output at terminals 109 / 110

$\begin{aligned} & \hline \text { U619 } \\ & (2619) \\ & * \\ & \text { BDS } \\ & \text { (G117) } \end{aligned}$	Source for the relay output "line contactor ON" (terminals 109 / 110) 0 = Binector B0000 1 = Binector B0001 etc. $124=$ Main contactor ON	All binector numbers 1	Ind: 2 FS=124 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

11.79 Starting pulse - Speed controller

(See also Chapter 8 Function Diagram Sheet G150)

$\begin{array}{\|l} \hline \text { U651 } \\ (2651) \\ \text { FDS } \\ \text { (G150) } \\ \hline \end{array}$	Starting pulse (integrator setting value for the speed controller)	$\begin{aligned} & \text {-100.00 to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=0.00 Type: 12	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { U652 } \\ & (2652) \\ & \text { FDS } \\ & \text { (G150) } \\ & \hline \end{aligned}$	Multiplier for starting pulse with neg. setpoint if the starting pulse acc. to U651 is also used for pos. setpoint	$\begin{aligned} & \hline 0.00 \text { to } 200.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 $\mathrm{FS}=50.00$ Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { U653 } \\ & (2653) \\ & \text { FDS } \\ & \text { (G150) } \\ & \hline \end{aligned}$	Starting pulse with neg. setpoint	$\begin{aligned} & \hline-100.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 4 FS=0.00 Type: 12	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \text { U655 } \\ & (2655) \\ & * \\ & \text { (G150) } \end{aligned}$	Source for Starting pulse 0 = Connector K0000 1 = Connector K0001 etc.	All connector numbers 1	Ind: None FS=451 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U656 } \\ & (2656) \\ & * \\ & \text { (G150) } \end{aligned}$	Source for starting pulse with neg. setpoint $\begin{aligned} & 0=\text { Connector K0000 } \\ & 1=\text { Connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: None FS=452 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
U657 (2657) ${ }^{*}$ BDS (G150)	Source for switchover starting pulse for pos./neg. setp. $\begin{aligned} & 0=\text { Binector B0000 } \\ & 1=\text { Binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.80 Evaluation of a 4-step master switch for cranes

(See also Chapter 8 Function Diagram Sheet G125)

U660 (2660) $*$ (G125)	Source for travel command 1 $\begin{aligned} & 0=\text { Binector B0000 } \\ & 1=\text { Binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U661 } \\ & (2661) \\ & * \\ & (G 125) \end{aligned}$	Source for travel command 2 $\begin{aligned} & 0=\text { Binector B0000 } \\ & 1=\text { Binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None $F S=0$ Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \text { U662 } \\ & (2662) \\ & * \\ & (G 125) \end{aligned}$	Source for switchover to setpoint step S2 $\begin{aligned} & 0=\text { Binector B0000 } \\ & 1=\text { Binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
U663 (2663) $*$ (G125)	Source for switchover to setpoint step S3 $\begin{aligned} & 0=\text { Binector B0000 } \\ & 1=\text { Binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U664 } \\ & (2664) \\ & * \\ & (G 125) \end{aligned}$	Source for switchover to setpoint step S4 $\begin{aligned} & 0=\text { Binector B0000 } \\ & 1=\text { Binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \text { U665 } \\ & (2665) \\ & \text { (G125) } \end{aligned}$	Setpoint for setpoint step S1	$\begin{aligned} & 0.00 \text { to } 110.00 \\ & \text { [\%] } \\ & 0.01 \% \end{aligned}$	Ind: None FS=10.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
U666 (2666) (G125)	Setpoint for setpoint step S2	$\begin{aligned} & 0.00 \text { to } 110.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=25.00 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
U667 (2667) (G125)	Setpoint for setpoint step S3	$\begin{aligned} & \hline 0.00 \text { to } 110.00 \\ & {[\%]} \\ & 0.01 \% \\ & \hline \end{aligned}$	Ind: None FS=40.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
U668 (2668) (G125)	Setpoint for setpoint step S4	$\begin{aligned} & 0.00 \text { to } 110.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: None FS=100.00 Type: O 2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

11.81 Position/positional deviation acquisition

Only active with optional technology software S00

$\begin{aligned} & \hline \text { U670 } \\ & (2670) \\ & * \\ & \text { S00 } \\ & \text { (B152) } \end{aligned}$	Source for actual position values Selection of connector whose values are to be used as actual position values. i001: Actual position value 1 i002: Actual position value 2 Settings: 0 = Connector K0000 1 = Connector K0001 etc.	All connector numbers 1	Ind: 2 FS= i001: 46 i002: 0 Type: L2	$\begin{aligned} & \hline \text { P052 = 2 } \\ & \text { P051 = } 40 \\ & \text { offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l\|} \hline \hline \text { U671 } \\ (2671) \\ * \\ \text { S00 } \\ \text { (B152) } \end{array}$	Source for setting/resetting signal for position acquisition Selection of binector whose value is to be used as the setting or resetting signals. i001: Reset actual position value 1 i002: Set actual position value 1 i003: Reset actual position value 2 i004: Set actual position value 2 i005: Reset positional deviation i006: Set positional deviation Settings: 0 = Binector B0000 1 = Binector B0001 etc.	All binector numbers 1	$\begin{aligned} & \hline \hline \text { Ind: } 6 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 =2 } \\ & \text { P051 = 40 } \\ & \text { offline } \end{aligned}$
$\begin{aligned} & \hline \text { U672 } \\ & (2672) \\ & { }^{*} \\ & \text { S00 } \\ & \text { (B152) } \end{aligned}$	Source for setting values Selection of connectors whose values are to be used as setting values i001: Setting value for position 1 i002: Setting value for position 2 i003: Setting value for positional deviation Settings: 0 = Connector K0000 1 = Connector K0001 etc.	All connector numbers 1	Ind: 3 FS= i001: 9471 i002: 9472 i003: 9473 Type: L2	$\begin{aligned} & \text { P052 = } 2 \\ & \text { P051 = 40 } \\ & \text { offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U673 } \\ (2673) \\ * \\ \text { FDS } \\ \text { S00 } \\ \text { (B152) } \\ \hline \end{array}$	Numerator of transformation ratio FB 54 for actual position value 2 [SW 2.0 and later] U673 must be less than or equal to U674, otherwise F058 is output with fault value 14	$\begin{aligned} & -32766 \text { to } 32766 \\ & 1 \end{aligned}$	Ind: 4 FS=10000 Type: I2	$\begin{aligned} & \text { P052 }=2 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
U674 (2674) ${ }^{*}$ FDS S00 (B152) (Denominator of transformation ratio for actual position value 2 FB 54 [SW 2.0 and later]	$\begin{aligned} & 1 \text { to } 32767 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=10000 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 2 \\ & \text { P051 = 40 } \\ & \text { offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U675 } \\ (2675) \\ * \\ \text { S00 } \\ \text { (B152) } \end{array}$	Source for connecting the positional deviation offset [SW 2.0 and later] Selection of the binector whose value connects the offset of the positional deviation Settings: $\begin{aligned} & 0=\text { Binector B0000 } \\ & 1=\text { Binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	$\begin{aligned} & \text { Ind: none } \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U676 } \\ (2676) \\ * \\ \text { S00 } \\ \text { (B152) } \end{array}$	Selection of the connector whose value is to be used as the offset of the positional deviation Settings: $\begin{aligned} & 0=\text { Connector K0000 } \\ & 1=\text { Connector K0001 } \\ & \text { etc. } \end{aligned}$	All connector numbers 1	Ind: none FS=9474 Type: L2	$\begin{aligned} & \text { P052 =2 } \\ & \text { P051 = } 40 \\ & \text { offline } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U6777 } \\ (2677) \\ * \\ \text { S00 } \\ \text { (B152) } \end{array}$	Fixed values for position acquisition FB 54 i001: LOW word of double-word connector KK9471 2.0 and later] i002: HIGH word of double-word connector KK9471 i003: LOW word of double-word connector KK9472 i004: HIGH word of double-word connector KK9472 i005: LOW word of double-word connector KK9473 i006: HIGH word of double-word connector KK9473 i007: LOW word of double-word connector KK9474 i008: HIGH word of double-word connector KK9474	$\begin{aligned} & -32768 \text { to } 32767 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 8 \\ & \text { FS=0 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \text { P052 = 2 } \\ & \text { P051 = 40 } \\ & \text { offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U678 } \\ & (2678) \\ & * \\ & \text { S00 } \\ & \text { (B152) } \end{aligned}$	Memory for actual position values: Initial value at POWER ON FB 54 [SW 2.1 and later] $0 \quad$ Initial value $=0$ 1 Initial value is set such that on POWER ON KK9481 or KK9482 assumes whatever its setting value was before the electronics supply was disconnected.	$\begin{aligned} & \hline 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: none FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=2 \\ & \text { P051 }=40 \\ & \text { online } \end{aligned}$

11.82 Root extractor

$\begin{array}{\|l} \hline \text { U680 } \\ (2680) \\ * \\ \text { S00 } \\ \text { (B153) } \end{array}$	$\begin{array}{\|lr} \hline \text { Source for the input of the root extractor } 58 \\ \text { [SW } 2.0 \text { and later] } \end{array}$ Selection of the connector whose value is to be used for the root extractor input. Settings: $0=$ Connector K0000 1 = Connector K0001 etc.	All connector numbers 1	Ind: none FS=9483 Type: L2	$\begin{aligned} & \text { P052 = } 2 \\ & \text { P051 = } 40 \\ & \text { offline } \end{aligned}$
$\begin{aligned} & \hline \text { U681 } \\ & (2681) \\ & \text { S00 } \\ & \text { (B153) } \end{aligned}$	Operating point for limit monitoring indicator of the root extractor FB 58 [SW 2.0 and later] applied to connector KK9483	$\begin{aligned} & 1 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: none FS=1 Type: O2	$\begin{aligned} & \text { P052 }=2 \\ & \text { P051 }=40 \\ & \text { online } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U682 } \\ (2682) \\ \text { S00 } \\ \text { (B153) } \\ \hline \end{array}$	Hysteresis for limit monitoring indicator of the root extractor FB 58 [SW 2.0 and later]	$\begin{aligned} & 1 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: none FS=1 Type: O2	$\begin{aligned} & \text { P052 }=2 \\ & \text { P051 }=40 \\ & \text { online } \end{aligned}$
$\begin{aligned} & \hline \text { U683 } \\ & (2683) \\ & \text { S00 } \\ & \text { (B153) } \end{aligned}$	x value for root function and gradient FB 58 Definition of input values [SW 2.0 and later] i001: Distance between input value of root function and fictitious passage through zero for y value U684.001 i002: $\quad \mathrm{x}$ value of gradient for y value U684.002	$\begin{aligned} & 1 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=1000 Type: O2	$\begin{aligned} & \text { P052 }=2 \\ & \text { P051 }=40 \\ & \text { online } \end{aligned}$
$\begin{array}{\|l\|} \hline \text { U684 } \\ (2684) \\ \text { S00 } \\ \text { (B153) } \end{array}$	y value for root function and gradient FB 58 Definition of output values i001: y value of root function for distance $U 683.001$ i002: y and later] [SW of gradient for x value U683.002	$\begin{aligned} & 0.01 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \end{aligned}$	Ind: 2 FS=100.00 Type: O2	$\begin{aligned} & \text { P052 }=2 \\ & \text { P051 }=40 \\ & \text { online } \end{aligned}$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.83 Configuration of SCB1 with SCI

$\begin{aligned} & \hline \text { U690 } \\ & (2690) \\ & \\ & (\text { Z150 }) \\ & (Z 151) \end{aligned}$	Configuration of analog inputs of SCl1 Definition of type of input signals Notes: - Only one signal can be processed per input. Voltage or current signals can be evaluated. - Voltage and current signals must be connected to different terminals. - Only unipolar signals are permitted with settings 1 and 2, i.e. the internal process quantities are also unipolar. - When setting 2 is selected, an input current of $<2 \mathrm{~mA}$ causes shutdown on faults (open-circuit monitoring) - The offset compensation for the analog inputs is set in parameter U692. i001: Slave 1, analog input 1 i002: Slave 1, analog input 2 i003: Slave 1, analog input 3 i004: Slave 2, analog input 1 i005: Slave 2, analog input 2 i006: Slave 2, analog input 3	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	Ind:6 FS= 0 Type O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 =40 } \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { U691 } \\ & (2691) \\ & \\ & (Z 150) \\ & (Z 151) \end{aligned}$	Smoothing time constant for analog inputs of SCI1 [SW 1.9 and later] Formula: $\mathrm{T}=2 \mathrm{~ms}$ * 2 to the power of U691 i001: Slave 1, analog input 1 i002: Slave 1, analog input 2 i003: Slave 1, analog input 3 i004: Slave 2, analog input 1 i005: Slave 2, analog input 2 i006: Slave 2, analog input 3	$\begin{aligned} & 0 \text { to } 15 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 6 \\ & \text { FS= } 2 \\ & \text { Type O2 } \end{aligned}$	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 =40 } \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { U692 } \\ & (2692) \\ & \\ & (Z 150) \\ & (Z 151) \end{aligned}$	Offset compensation for analog inputs of SCI1 [SW 1.9 and later] Setting instructions, see Operating Instructions for SCl1 i001: Slave 1, analog input 1 i002: Slave 1, analog input 2 i003: Slave 1, analog input 3 i004: Slave 2, analog input 1 i005: Slave 2, analog input 2 i006: Slave 2, analog input 3	$\begin{aligned} & -20.00 \text { to } 20.00 \\ & {[\mathrm{~V}]} \\ & 0.01 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \text { Ind:6 } \\ & \text { FS=0 } \\ & \text { Type I2 } \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { U693 } \\ & (2693) \\ & \\ & (Z 155) \\ & (Z 156) \end{aligned}$	Actual value output via analog outputs of SCl1 [SW 1.9 and later] Selection of connectors whose values are to be output (for details, see Operating Instructions for SCI1) i001: Slave 1, analog output 1 i002: Slave 1, analog output 2 i003: Slave 1, analog output 3 i004: Slave 2, analog output 1 i005: Slave 2, analog output 2 i006: Slave 2, analog output 3	All connector numbers 1	Ind:6 $F S=0$ Type L2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 =40 } \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { U694 } \\ & (2694) \\ & \\ & (Z 155) \\ & (Z 156) \end{aligned}$	Gain for analog outputs of SCI1 [SW 1.9 and later] Setting instructions, see Operating Instructions for SCl1 i001: Slave 1, analog output 1 i002: Slave 1, analog output 2 i003: Slave 1, analog output 3 i004: Slave 2, analog output 1 i005: Slave 2, analog output 2 i006: Slave 2, analog output 3	$\begin{aligned} & -320.00 \text { to } 320.00 \\ & {[\mathrm{~V}]} \\ & 0.01 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Ind:6 } \\ & \text { FS= } 10.00 \\ & \text { Type I2 } \end{aligned}$	$\begin{aligned} & \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { on-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U695 } \\ & (2695) \\ & \\ & (Z 155) \\ & (Z 156) \end{aligned}$	Offset compensation for analog outputs of SCI1 [SW 1.9 and later] Setting instructions, see Operating Instructions for SCl1 i001: Slave 1, analog output 1 i002: Slave 1, analog output 2 i003: Slave 1, analog output 3 i004: Slave 2, analog output 1 i005: Slave 2, analog output 2 i006: Slave 2, analog output 3	$\begin{aligned} & \hline-100.00 \text { to } 100.00 \\ & \text { [V] } \\ & 0.01 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline \hline \text { Ind:6 } \\ & \text { FS= } 0 \\ & \text { Type I2 } \end{aligned}$	$\begin{aligned} & \hline \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
U696 (2696)	Telegram failure time for SCB1 [SW 1.9 and later] If no process data are exchanged with the supplementary board within the set telegram failure period, error message F079 is activated. The monitoring cycle is 20 ms and it is therefore only meaningful to set failure times that are multiples of 20 ms . Settings for telegram failure time: $0 \quad$ No time monitoring 1... 65000 Time which may elapse between 2 data exchanges before error message F079 can be output Note: The telegram monitoring function is active: - from the first error-free exchange of process data after connection of the electronics power supply - from the first error-free exchange of process data after the telegram monitor has responded (as a result of telegram monitoring timeout)	$\begin{aligned} & 0 \text { to } 65000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { n697 } \\ & (2697) \end{aligned}$	Diagnostic information of SCB1 Visualization parameter for displaying diagnostic info relating to SCB1. The displayed values overflow at "255" (e.g. the number of telegrams begins at "0" again after "255"). i001: Number of error-free telegrams i002: Number of errored telegrams i003: Number of voltage failures on slaves i004: Number of interruptions in fiber-optic connection i005: Number of missing response telegrams i006: Number of search telegrams for slave location i007: ETX error i008: Number of configuration telegrams i009: Highest terminal numbers needed according to PZD connection (parameterization of connectors or binectors) i010: Analog inputs/outputs required according to PZD connection of setpoint channel and actual value output via SCl (parameterization of appropriate connectors) i011: Reserved i012: Reserved i013: SCB1 alarm word i014: Setting defining whether slave no. 1 is needed and type if applicable 0 : No slave required 1: SCI1 2: SCl2 i015: Setting defining whether slave no. 2 is needed and type if applicable 0 : No slave required 1: SCI1 2: SCl2 i016: SCI board: Initialization error i017: SCB1 generation: Year i018: SCB1 generation: Day and month i019: SCI slave1: Software version i020: SCI slave1: Year of generation i021: SCI slave1: Day and month of generation i022: SCI slave2: Software version i023: SCI slave2: Year of generation i024: SCI slave2: Day and month of generation		$\begin{aligned} & \text { Ind:24 } \\ & \text { Type O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

$\left.\left.\begin{array}{|l|l|l|l|}\hline \text { PNU } & \begin{array}{l}\text { Description }\end{array} & \begin{array}{l}\text { Value range } \\ \text { [Unit] } \\ \text { Steps }\end{array} & \begin{array}{l}\text { Factory } \\ \text { setting }\end{array} \\ \text { Type }\end{array}\right] \begin{array}{l}\text { See } \\ \text { Change } \\ \text { (Access } / \\ \text { Status) }\end{array}\right]$

11.84 Configuration of supplementary boards in board locations 2 and 3

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l} \hline \hline \text { U711 } \\ (2711) \\ * \\ (Z 110) \\ (Z 111) \end{array}$	Communications board parameter 1 (CB parameter 1) See documentation for installed COM BOARD. This parameter is relevant only if a communications board is installed. The validity of the setting is monitored by the CB. If the CB rejects the setting, fault message F080 is displayed with fault value 5 Index 1 is used to parameterize the $1^{\text {st }} \mathrm{CB}$ (including CB behind TB) and index 2 to parameterize the $2^{\text {nd }} C B$.	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\text { P052 = } 3$ Online
$\begin{aligned} & \hline \text { U712 } \\ & (2712) \\ & * \\ & (\text { Z110 }) \\ & (Z 111) \\ & \hline \end{aligned}$	Communications board parameter 2 (CB parameter 2) See U711	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$P 052=3$ Online
$\begin{aligned} & \hline \text { U713 } \\ & (2713) \\ & * \\ & (Z 110) \\ & (Z 111) \\ & \hline \end{aligned}$	Communications board parameter 3 (CB parameter 3) See U711	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\text { P052 = } 3$ Online
$\begin{aligned} & \hline \text { U714 } \\ & (2714) \\ & * \\ & (\text { Z110 }) \\ & (Z 111) \\ & \hline \end{aligned}$	Communications board parameter 4 (CB parameter 4) See U711	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$P 052=3$ Online
$\begin{aligned} & \text { U715 } \\ & (2715) \\ & * \\ & (\text { Z110 }) \\ & (\text { Z111 }) \\ & \hline \end{aligned}$	Communications board parameter 5 (CB parameter 5) See U711	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$P 052=3$ Online
$\begin{aligned} & \hline \text { U716 } \\ & (2716) \\ & * \\ & (\text { Z110 }) \\ & (Z 111) \end{aligned}$	Communications board parameter 6 (CB parameter 6) See U711	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$P 052=3$ Online
$\begin{aligned} & \hline \mathbf{U 7 1 7} \\ & (2717) \\ & * \\ & (\text { Z110 }) \\ & (\text { Z111 }) \end{aligned}$	Communications board parameter 7 (CB parameter 7) See U711	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\text { P052 = } 3$ Online
$\begin{aligned} & \text { U718 } \\ & (2718) \\ & * \\ & (Z 110) \\ & (Z 111) \\ & \hline \end{aligned}$	Communication Board Parameter 8 (CB-Parameter 8) See U711	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\mathrm{P} 052=3$ Online
$\begin{array}{\|l} \hline \text { U719 } \\ (2719) \\ * \\ (\text { Z110 }) \\ (\text { Z111 }) \\ \hline \end{array}$	Communications board parameter 9 (CB parameter 9) See U711	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\mathrm{P} 052=3$ Online
$\begin{aligned} & \hline \text { U720 } \\ & (2720) \\ & * \\ & (Z 110) \\ & (Z 111) \\ & \hline \end{aligned}$	Communications board parameter 10 (CB parameter 10) See U711	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\text { P052 = } 3$ Online
$\begin{aligned} & \text { U721 } \\ & (2721) \\ & * \\ & (\text { Z110 }) \\ & (Z 111) \\ & \hline \end{aligned}$	Communications board parameter 11 (CB parameter 11) See U711	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 10 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\mathrm{P} 052=3$ Online

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U722 } \\ & (2722) \\ & { }_{*} \\ & \\ & \text { (Z110) } \\ & (\text { Z111 }) \end{aligned}$	Telegram failure time for CB and TB i001: Telegram failure time for board location 2 i002: Telegram failure time for board location 3 i003: Fault delay time for $1^{\text {st }} \mathrm{CB}$ or TB i004: Fault delay time for $2^{\text {nd }} C B$ Settings for telegram failure time: $0 \quad$ No time monitoring; must be parameterized for sporadic (acyclic) telegrams 1... 65500 Maximum permissible time interval between 2 data exchanges before fault message F082 can be output Settings for fault delay time: $0 \quad$ Instantaneous activation of F082 1... 65499 Fault delay time before F082 is activated. $65500 \quad$ F082 is never activated If no process data are exchanged with the supplementary board for a period in excess of the telegram failure time, fault message F082 is activated as a function of the fault delay time. Monitoring takes place in a 20 ms cycle. For this reason, it is only meaningful to set values that are multiples of 20 ms . Note: The telegram monitoring function is active - from the receipt of the first error-free telegram after connection of the electronics power supply - from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout).	$\begin{aligned} & \hline 0 \text { to } 65000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 $F S=0$ Type: O2	$\bar{P} 052=3$ Online
$\begin{aligned} & \hline \text { U723 } \\ & (2723) \end{aligned}$		$\begin{aligned} & 20 \text { to } 60 \\ & {[\mathrm{~s}]} \\ & 1 \mathrm{~s} \end{aligned}$	Ind: 2 $\mathrm{FS}=20$ Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$
$\begin{aligned} & \hline \text { U728 } \\ & \text { (2728) } \\ & \text { (Z110) } \\ & \text { (Z } \end{aligned}$	Source for binector/connector converter for $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$ [SW 1.9 and later] Binectors to be converted to connector K3020 $\begin{array}{ll} \text { i001: } & 1^{\text {st }} \text { binector (bit 0) } \\ \text { i002: } & 2^{\text {nd }} \text { binector (bit } 1 \text {) } \\ \ldots & \\ \text { i016: } & 16^{\text {th }} \text { binector (bit } 15 \text {) } \end{array}$ Settings: $\begin{aligned} & 0=\text { binector } \mathrm{B} 0000 \\ & 1=\text { binector } \mathrm{B} 0001 \\ & \text { etc. } \end{aligned}$	All binector numbers 1	$\begin{aligned} & \text { Ind: } 16 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U729 } \\ & (2729) \\ & { }_{*} \\ & (\text { Z111 }) \end{aligned}$	Source for binector/connector converter for 2 ${ }^{\text {nd }} \mathbf{C B} \quad$ [SW 1.9 and later] Binectors to be converted to connector K8020 i001: 1st binector (bit 0) i002: $2^{\text {nd }}$ binector (bit 1) ... i016: $16^{\text {th }}$ binector (bit 15) Settings: $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	$\begin{aligned} & \hline \text { Ind: } 16 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \mathbf{n 7 3 2} \\ & (2732) \\ & \\ & (\text { Z110 }) \\ & (\text { Z111 }) \end{aligned}$	CB/TB diagnostics Diagnostic information about an installed communications board (CB) or technology board (TB). i001-i032: 1. CB/TB (lower slot ID letter) i033-i064: 2. CB (higher slot ID letter) i065, i066: 1. CB/TB (internal diagnostic data) i067, i068: 2. CB (internal diagnostic data) For detailed information, please refer to operating instructions of relevant CB or TB.		Ind: 68 Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \mathbf{n 7 3 3} \\ & (2733) \\ & \\ & (\text { Z110 }) \\ & (\text { Z111 }) \end{aligned}$	CB/TB receive data Display of control words and setpoints (process data) that are transferred to the basic converter from a communications board (CB) or technology board (TB). i001: $1^{\text {st }}$ process data word from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$ … $16 \quad 16^{\text {th }}$ process data word from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$ i017: $1^{\text {st }}$ process data word from $2^{\text {nd }} \mathrm{CB}$ iO32: $\quad 16^{\text {th }}$ process data word from $2^{\text {nd }} C B$		Ind: 32 Type: L2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { U734 } \\ & (2734) \\ & * \\ & (Z 110) \end{aligned}$	Transmit data for first CB/TB (lower slot ID letter) Selection of connectors whose contents must be injected as transmit data to the first communications board (CB) or technology board (TB). 0 = connector K 0000 1 = connector K0001 etc. This parameter not only defines the transmit data, but also their position in the transmit telegram. i001: Word 1 in PZD section of telegram i002: Word 2 in PZD section of telegram ... i016: Word 16 in PZD section of telegram Status word 1 (K0032) should be linked to word 1.	All connector numbers 1	Ind: 16 FS= i001: 32 i002: 167 i003: 0 i004: 33 i005: 0 to i016: 0 Type: L2	$\mathrm{P} 052=3$ Online
$\begin{aligned} & \hline \mathbf{n 7 3 5} \\ & (2735) \\ & \\ & (\text { Z110 }) \\ & (\text { Z111 }) \end{aligned}$	Display of transmit data to CB/TB i001: $\quad 1^{\text {st }}$ process data word to $1^{\text {st }} \mathrm{CB}$ or TB ... i016 $16^{\text {th }}$ process data word to $1^{\text {st }} \mathrm{CB}$ or TB i017: $1^{\text {st }}$ process data word to $2^{\text {nd }} C B$ i032: $\quad 16^{\text {th }}$ process data word to $2^{\text {nd }} C B$		Ind: 32 Type: L2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U736 } \\ & (2736) \\ & * \\ & \\ & (Z 111) \end{aligned}$	Transmit data for second CB (higher slot letter) Selection of connectors whose contents must be injected as transmit data to a communications board (CB) with a higher slot ID letter. 0 = connector K0000 1 = connector K0001 etc. This parameter not only defines the transmit data, but also their position in the transmit telegram. i001: Word 1 in PZD section of telegram i002: Word 2 in PZD section of telegram ... i016: Word 16 in PZD section of telegram Status word 1 (K0032) should be linked to word 1.	All connector numbers 1	$\begin{aligned} & \text { Ind: } 16 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\text { P052 = } 3$ Online
$\begin{aligned} & \hline \mathbf{n 7 3 8} \\ & (2738) \end{aligned}$ (Z110) (Z111)	Display of PKW job from supplementary boards i001: $1^{\text {st }}$ word of PKW job from $1^{\text {st }} \mathrm{CB}$ iO04 $\quad 4^{\text {th }}$ word of PKW job from $1^{\text {st }} C B$ i005: $\quad 1^{\text {st }}$ word of PKW job from location $2^{\text {nd }} C B$ iO08 $\quad 4^{\text {th }}$ word of PKW job from $2^{\text {nd }} C B$ i009: $\quad 1^{\text {st }}$ word of PKW job from TB i012: $\quad 4^{\text {th }}$ word of PKW job from TB Details refer to "Function diagrams", Section 8 Sheets Z110 and Z111		Ind: 12 Type: L2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \mathbf{n 7 3 9} \\ & (2739) \end{aligned}$ (Z110) (Z111)	Display of PKW response to supplementary boards i001: $\quad 1^{\text {st }}$ word of PKW job from $1^{\text {st }} \mathrm{CB}$ iO04 $\quad 4^{\text {th }}$ word of PKW job from $1^{\text {st }}$ CB i005: $\quad 1^{\text {st }}$ word of PKW job from location $2^{\text {nd }} C B$ $\cdots{ }^{\ldots} 008 \quad 4^{\text {th }}$ word of PKW job from $2^{\text {nd }} C B$ i009: $1^{\text {st }}$ word of PKW job from TB i. 012 : $\quad 4^{\text {th }}$ word of PKW job from TB Details refer to "Function diagrams", Section 8 Sheets Z110 and Z111		Ind: 12 Type: L2	$\mathrm{P} 052=3$

11.85 Configuring the SIMOLINK board

U740 (2740) (Z121)	SLB Node address Node address of the SIMOLINK board (SLB) on the bus. The node address defines the telegrams to which the relevant board has write access. The node address also defines whether a node is to perform the additional function of dispatcher. $\begin{array}{ll} 0= & \text { Dispatcher (generates telegram circulation) } \\ \text { Not } 0= & \text { Transceiver } \end{array}$ Only one node in a SIMOLINK ring may perform the function of dispatcher. Node address 0 may not be assigned to any node if a higher-level PLC is performing the dispatcher function as the SIMOLINK master. When an SLB is selected to operate as dispatcher, all nodes must be assigned consecutive addresses, starting with address 0 for the dispatcher. i001: For first SLB in unit i002: Reserved	$\begin{aligned} & 0 \text { to } 200 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { Ind: } 2 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
U741 (2741) (Z121)	SLB Telegram failure time The telegram failure time defines the period within which a valid synchronizing telegram (SYNC telegram) must be received. Failure of any SYNC telegram to arrive within the set period indicates a communications error. The unit activates fault message F015 (see also U753) as a function of U741. $0=$ No telegram failure monitoring i001: For first SLB in unit i002: Reserved	$\begin{aligned} & \hline 0 \text { to } 6500 \\ & {[\mathrm{~ms}]} \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \hline \mathrm{P} 052=3 \\ & \mathrm{P} 051=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U742 } \\ & (2742) \\ & * \\ & (Z 121) \end{aligned}$	SLB Transmitter power Setting of power of fiber optic transmitter $1=0 \mathrm{~m}$ to 15 m (length of plastic fiber optic cable) $2=15 \mathrm{~m}$ to 25 m (length of plastic fiber optic cable) $3=25 \mathrm{~m}$ to 40 m (length of plastic fiber optic cable) Operation at a lower transmitter power increases the service life of the transmitter and receiver modules. Reducing the transmitter power also allows hidden fault sources on the transmission path (e.g. poor contacts on fiber optics) to be detected. i001: For first SLB in unit i002: Reserved	$\begin{aligned} & 1 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 2 FS=3 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 =40 } \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U744 } \\ & (2744) \end{aligned}$	SLB Selection of active SLB board Selection of the active SIMOLINK board (SLB) when two SLBs are installed in one unit. $\begin{aligned} & 0=\text { Binector B0000 } \\ & 1=\text { Binector B0001 etc. } \end{aligned}$ A binector value of 0 means "SLB in low slot is active". A binector value of 1 is reserved for "SLB in high slot is active".	All binector numbers	Ind: None FS=0 Type: L2	$\begin{array}{\|l} \hline \text { P052 }=3 \\ \text { P051 }=40 \\ \text { Online } \end{array}$
U745 (2745) $(\mathrm{Z} 121)$	SLB No. of channels Number of channels which dispatcher provides for each transceiver. Together with U746, the number of channels determines the number of addressable nodes. This parameter is relevant only for the dispatcher. i001: For first SLB in unit i002: Reserved	$\begin{aligned} & 1 \text { to } 8 \\ & 1 \end{aligned}$	Ind: 2 FS=3 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 =40 } \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U746 } \\ & (2746) \\ & * \\ & (Z 121) \end{aligned}$	SLB Cycle time The cycle time is the period required for all telegrams to be passed around the SIMOLINK ring. Together with U745, the cycle time determines the number of addressable nodes. This parameter is relevant only for the dispatcher. i001: For first SLB in unit i002: Reserved Caution: Settings 0.20 ms to 0.99 ms are permissible only if option SOO is not activated. Otherwise F059 with fault value 3 is output. If option SOO (free function blocks) is not activated and if an SLB cycle time of < 1.00 ms is set in parameter U746, connectors K7001 to K7008 are updated immediately every time a telegram is received. The other connectors (K7009 to K7016) and binectors B7100 to B7915 are updated only once in each computation cycle ($=1 / 6$ line period). In addition, the connectors selected in U751.001 to U751.008 are read with every transmit telegram and the relevant up-to-date value transmitted. The connectors selected in parameters U751.009 to U751.016 are read only once in each computation cycle and written to the transmit buffer of the SLB. [A cycle time of $<1.00 \mathrm{~ms}$ can be set in SW 1.9 and later]	$\begin{aligned} & 0.20 \text { to } 6.50 \\ & {[\mathrm{~ms}]} \\ & 0.01 \end{aligned}$	Ind:2 FS=1.20 Type: O2	$\begin{aligned} & \text { P052 = 3 } \\ & \text { P051 =40 } \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \text { n748 } \\ & (2748) \\ & (Z 121) \end{aligned}$	SLB Diagnosis Visualization parameter which displays diagnostic information for an installed SIMOLINK board (SLB) i001: Number of error-free synchronizing telegrams i002: Number of CRC errors i003: Number of timeout errors i004: Last accessible bus address i005: Address of node sending the special telegram "Timeout" i006: Implemented bus cycle time i007: Number of new configurations i008: Reserved ... i016: Reserved		Ind: 16 Type: O2	P052 = 3
U749 (2749) (Z122)	SLB Read address Definition of node addresses and channels from which the SLB must read data (a total of 8 channels can be read according to the index entries). The digits before the decimal point in the input value define the node address and those after the point the channel number (See also Chapter 7 "Startup of SIMOLINK modules" and function diagrams, Chapter 8, Sheet Z122). Example: 2.0 = address 2 channel 0	$\begin{aligned} & 0.0 \text { to } 200.7 \\ & 0.1 \end{aligned}$	Ind: 8 FS=0.0 Type: O 2	$\begin{aligned} & \text { P052 =3 } \\ & \text { P051 =40 } \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { n750 } \\ & (2750) \\ & (Z 122) \end{aligned}$	SLB Receive data Visualization parameter for data received via the SIMOLINK board (See also Chapter 7 "Startup of SIMOLINK modules" and function diagrams, Chapter 8, Sheet Z122) i001: Word 1 in PZD section of telegram ... i016: Word 16 in PZD section of telegram		Ind: 16 Type: L2	$\mathrm{P} 052=3$
U751 (2751) (Z122)	SLB Transmit data selection Selection of connectors whose contents must be transferred as transmit data by the SLB (See also Chapter 7 "Startup of SIMOLINK modules" and function diagrams, Chapter 8, Sheet Z122). 0 = connector K0000 1 = connector K0001 etc. In addition to the transmit data itself, its place in the transmit telegram is also defined. i001: Channel0, low word i002: Channel0, high word ... i015: Channel7, low word i016: Channel7, high word	All connector numbers	$\begin{aligned} & \hline \text { Ind: } 16 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 =3 } \\ & \text { P051 =40 } \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { n752 } \\ & (2752) \\ & (Z 122) \end{aligned}$	SLB Display of transmit data Process data transmitted by SLB via SIMOLINK in hexadecimal notation (See also Chapter 7 "Startup of SIMOLINK modules" and function diagrams, Chapter 8, Sheet Z122).		Ind: 16 Type: L2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { U753 } \\ & (2753) \\ & * \\ & (Z 121) \end{aligned}$	SLB Fault delay Delay in activation of fault message F015 (see also U741) 0 = fault message is activated immediately the telegram failure monitor responds	$\begin{aligned} & 0.0 \text { to } 100.0 \\ & \text { [s] } \\ & 0.1 \end{aligned}$	Ind: None FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 =40 } \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.86 Configuring the EB1 expansion board

U755 (2755) (Z112) (Z115)	Signal type of analog inputs on EB1 $0=$ Voltage input 0 to $\pm 10 \mathrm{~V}$ $1=$ Current input 0 to $\pm 20 \mathrm{~mA}$ i001: Al1 of the first EB1 i002: Al1 of the second EB1	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { U756 } \\ & (2756) \\ & \\ & (Z 112) \\ & (Z 115) \end{aligned}$	Normalization of analog inputs on EB1 This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA) at the analog input. The following general rule applies: With a voltage input: $\begin{array}{ll} U 756[\%]=10 V * \frac{Y}{X} & \mathrm{X} . . \text { input voltage in volts } \\ & \mathrm{Y} . . \% \text { value which is generated for input } \\ \text { voltage } \mathrm{X} \end{array}$ With a current input: $U 756[\%]=20 m A * \frac{Y}{X}$ X .. input current in mA Y .. \% value which is generated for input current X i001: Al1 of the first EB1 i002: AI2 of the first EB1 i003: AI3 of the first EB1 i004: Al1 of the second EB1 i005: AI2 of the second EB1 i006: AI3 of the second EB1	```-1000.0 to 1000.0 [%] 0.1%```	Ind: 6 FS=100.0 Type: I2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U757 } \\ & (2757) \\ & \\ & (Z 112) \\ & (Z 115) \end{aligned}$	Offset for analog inputs on EB1 i001: Al1 of the first EB1 i002: AI2 of the first EB1 i003: Al3 of the first EB1 i004: Al1 of the second EB1 i005: AI2 of the second EB1 i006: Al3 of the second EB1	$\begin{aligned} & -100.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	$\begin{aligned} & \text { Ind: } 6 \\ & \text { FS=0.00 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { U758 } \\ & \text { (2758) } \\ & \text { * } \\ & \text { (Z112) } \\ & (\text { Z115) } \end{aligned}$	Mode of signal injection at analog inputs on EB1 $0=$ Injection of signal with sign 1 = Injection of absolute value of signal $2=$ Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted i001: Al1 of the first EB1 i002: AI2 of the first EB1 i003: Al3 of the first EB1 i004: Al1 of the second EB1 i005: AI2 of the second EB1 i006: AI3 of the second EB1	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: } 6 \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U759 } \\ & (2759) \\ & * \\ & \\ & \text { (Z112) } \\ & (\text { Z115 }) \end{aligned}$	Source for selection of sign reversal at analog inputs on EB1 Selection of binector to control sign reversal at the analog input ("1" state = reverse sign) $0=$ binector B 0000 1 = binector B0001 etc. i001: Al1 of the first EB1 i002: Al2 of the first EB1 i003: Al3 of the first EB1 i004: Al1 of the second EB1 i005: Al2 of the second EB1 i006: AI3 of the second EB1	All binector numbers 1	Ind: 6 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U760 } \\ & (2760) \\ & * \\ & \\ & (\text { Z112 }) \\ & (Z 115) \end{aligned}$	Filtering time for analog inputs on EB1 Note: Hardware filtering of approximately 0.2 ms is applied as standard i001: Al1 of the first EB1 i002: Al2 of the first EB1 i003: AI3 of the first EB1 i004: Al1 of the second EB1 i005: Al2 of the second EB1 i006: AI3 of the second EB1	$\begin{aligned} & \hline 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 6 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U761 } \\ & (2761) \\ & * \\ & \\ & \text { (Z112) } \\ & (\text { Z115 }) \end{aligned}$	Source for enabling of analog inputs on EB1 Selection of binector to control enabling of the analog input ("1" state = enabled) $0=$ binector B 0000 1 = binector B0001 etc. i001: Al1 of the first EB1 i002: Al2 of the first EB1 i003: Al3 of the first EB1 i004: Al1 of the second EB1 i005: Al2 of the second EB1 i006: AI3 of the second EB1	All binector numbers 1	Ind: 6 FS=1 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \mathbf{n 7 6 2} \\ & (2762) \\ & \\ & (Z 112) \\ & (Z 115) \end{aligned}$	Display of analog inputs on EB1 i001: Al1 of the first EB1 i002: Al2 of the first EB1 i003: Al3 of the first EB1 i004: Al1 of the second EB1 i005: AI2 of the second EB1 i006: Al 3 of the second EB1	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 6 Type: 12	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { U763 } \\ & (2763) \\ & * \\ & (\text { Z113 }) \\ & (\text { Z116 }) \end{aligned}$	Source for output value at analog outputs on EB1 Selection of connector whose value must be output at the analog output $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$ i001: AO1 of the first EB1 i002: AO2 of the first EB1 i003: AO1 of the second EB1 i004: AO2 of the second EB1	All connector numbers 1	$\begin{aligned} & \hline \text { Ind: } 4 \\ & \text { FS=0 } \\ & \text { Type: L2 } \end{aligned}$	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U764 } \\ & (2764) \\ & * \\ & \\ & (\text { Z113 }) \\ & (Z 116) \end{aligned}$	Mode of signal injection at analog outputs on EB1 $0=$ Injection of signal with sign $1=$ Injection of absolute value of signal $2=$ Injection of signal with sign, inverted $3=$ Injection of absolute value of signal, inverted i001: AO1 of the first EB1 i002: AO2 of the first EB1 i003: AO1 of the second EB1 i004: AO2 of the second EB1	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U765 } \\ & (2765) \\ & * \\ & (Z 113) \\ & (7116) \end{aligned}$	Filtering time for analog outputs on EB1 i001: AO1 of the first EB1 i002: AO2 of the first EB1 i003: AO1 of the second EB1 i004: AO2 of the second EB1	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 4 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U766 } \\ & (2766) \\ & \\ & (Z 113) \\ & (Z 116) \end{aligned}$	Normalization of analog outputs on EB1 $y[V]=x * \frac{U 766}{100 \%}$ $x=$ normalization input (corresponds to filtering output) $y=$ normalization output (corresponds to output voltage at analog output with an offset of 0) i001: AO1 of the first EB1 i002: AO2 of the first EB1 i003: AO1 of the second EB1 i004: AO2 of the second EB1	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & \text { [V] } \\ & 0.01 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { Ind: } 4 \\ & \text { FS=10.00 } \\ & \text { Type: } 12 \end{aligned}$	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U767 } \\ & (2767) \\ & (Z 113) \\ & (\text { Z116 }) \end{aligned}$	Offset for analog outputs on EB1 i001: AO1 of the first EB1 i002: AO2 of the first EB1 i003: AO1 of the second EB1 i004: AO2 of the second EB1	$\begin{aligned} & -10.00 \text { to } 10.00 \\ & {[\mathrm{~V}]} \\ & 0.01 \mathrm{~V} \end{aligned}$	Ind: 4 FS=0.00 Type: 12	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { n768 } \\ & (2768) \\ & \\ & (Z 113) \\ & (Z 116) \end{aligned}$	Display of analog outputs on EB1 i001: AO1 of the first EB1 i002: AO2 of the first EB1 i003: AO1 of the second EB1 i004: AO2 of the second EB1	$\begin{array}{\|l} \hline-200.0 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \end{array}$	Ind: 4 Type: I2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { U769 } \\ & (2769) \\ & * \\ & \\ & (\text { Z114 }) \\ & (Z 117) \end{aligned}$	Source for output values at binary outputs on EB1 Selection of binectors to be applied to binary outputs at terminals 43-46. 0 = Binector B0000 1 = Binector B0001 etc. i001: BO1 of the first EB1 i002: BO2 of the first EB1 i003: BO3 of the first EB1 i004: BO4 of the first EB1 i005: BO1 of the second EB1 i006: BO2 of the second EB1 i007: BO3 of the second EB1 i008: BO4 of the second EB1	All binector numbers 1	Ind: 8 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = 40 } \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { n770 } \\ & (2770) \\ & \\ & (Z 114) \\ & (Z 117) \end{aligned}$	Display of status of binary inputs and outputs on EB1 Representation on operator panel (PMU): Segment ON: Corresponding terminal is activated (HIGH level is applied) Segment OFF: Corresponding terminal is not activated (LOW level is applied) Segment or bit 0 Terminal 40 1 Terminal 41 2 Terminal 42 3 Terminal 43 4 Terminal 44 5 Terminal 45 6 \qquad Terminal 46 i001: Terminal states of first EB1 i002: Terminal states of second EB1		Ind: 2 Type: V2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.87 Configuring the EB2 expansion board

$\begin{aligned} & \hline \text { n773 } \\ & (2773) \\ & \\ & (Z 118) \\ & (Z 119) \end{aligned}$	Display of status of binary inputs and outputs on EB2 Representation on operator panel (PMU): Segment ON: Corresponding terminal is activated (HIGH level is applied) Segment OFF: Corresponding terminal is not activated (LOW level is applied) Segment or bit \qquad \qquad \qquad \qquad 4 Terminal 43 5 \qquad Terminal 45 i001: Terminal states of first EB2 i002: Terminal states of second EB2		Ind: 2 Type: V2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { U774 } \\ & (2774) \\ & * \\ & (\text { Z118) } \\ & (\text { Z119 }) \end{aligned}$	Source for output values at binary outputs on EB2 Selection of binectors to be applied to binary outputs at terminals 39-46. 0 = binector B0000 1 = binector B0001 etc. i001: BO1 of the first EB2 i002: BO2 of the first EB2 i003: BO3 of the first EB2 i004: BO4 of the first EB2 i005: BO1 of the second EB2 i006: BO2 of the second EB2 i007: BO3 of the second EB2 i008: BO4 of the second EB2	All binector numbers 1	Ind: 8 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
U775 (2775) (Z118) (Z119)	Signal type of analog input on EB2 $0=$ voltage input 0 to $\pm 10 \mathrm{~V}$ $1=$ current input 0 to $\pm 20 \mathrm{~mA}$ i001: Al1 of the first EB2 i002: Al1 of the second EB2	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
U776 (2776) (Z118) (Z119)	Normalization of analog input on EB2 This parameter specifies the percentage value which is generated for an input voltage of 10 V (or an input current of 20 mA) at the analog input. The following general rule applies: With a voltage input: $U 776[\%]=10 \mathrm{~V} * \frac{Y}{X}$ X.. input voltage in volts Y .. \% value which is generated for input voltage X With a current input: $U 776[\%]=20 m A * \frac{Y}{X}$ X .. input current in mA Y .. \% value which is generated for input current X i001: Al of the first EB2 i002: Al of the second EB2	$\begin{aligned} & \hline-1000.0 \text { to } 1000.0 \\ & {[\%]} \\ & 0.1 \% \end{aligned}$	Ind: 2 FS=100.0 Type: 12	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U777 } \\ & (2777) \\ & (\text { Z118 }) \\ & (\text { Z119 }) \\ & \hline \end{aligned}$	Offset for analog input on EB2 i001: Al of the first EB2 i002: Al of the second EB2	$\begin{aligned} & \hline-100.00 \text { to } 100.00 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 2 FS=0.00 Type: I2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U778 } \\ & (2778) \\ & * \\ & \\ & \text { (Z118) } \\ & (Z 119) \end{aligned}$	Mode of signal injection at analog input on EB2 $0=$ Injection of signal with sign $1=$ Injection of absolute value of signal $2=$ Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted i001: Al of the first EB2 i002: Al of the second EB2	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U779 } \\ (2779) \\ * \\ \\ (Z 118) \\ (\text { Z119 }) \end{array}$	Source for selection of sign reversal at analog input on EB2 Selection of binector to control sign reversal at the analog input ("1" state = reverse sign) $\begin{aligned} & 0=\text { binector B0000 } \\ & 1=\text { binector B0001 } \end{aligned}$ etc. i001: Al of the first EB2 i002: AI of the second EB2	All binector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U780 } \\ & (2780) \\ & \\ & \text { (Z118) } \\ & (Z 119) \end{aligned}$	Filtering time for analog input on EB2 Note: Hardware filtering of approximately 0.2 ms is applied as standard i001: Al of the first EB2 i002: Al of the second EB2	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U781 } \\ & (2781) \\ & * \\ & \\ & (Z 118) \\ & (Z 119) \end{aligned}$	Source for enabling of analog inputs on EB2 Selection of binector to control enabling of the analog input ("1" state = enabled) $0=$ binector B 0000 1 = binector B0001 etc. i001: Al of the first EB2 i002: AI of the second EB2	All binector numbers 1	Ind: 2 FS=1 Type: L2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { n782 } \\ & (2782) \\ & (Z 118) \\ & (Z 119) \\ & \hline \end{aligned}$	Display of analog input on EB2 i001: Al of the first EB2 i002: Al of the second EB2	$\begin{array}{\|l} \hline-200.0 \text { to } 199.99 \\ {[\%]} \\ 0.01 \% \end{array}$	Ind: 2 Type: I2	P052 = 3
$\begin{aligned} & \hline \text { U783 } \\ & (2783) \\ & * \\ & \\ & (Z 118) \\ & (Z 119) \end{aligned}$	Source for output value at analog output on EB2 Selection of connector whose value must be output at the analog output $\begin{aligned} & 0=\text { connector K0000 } \\ & 1=\text { connector K0001 } \\ & \text { etc. } \end{aligned}$ i001: AO of the first EB2 i002: AO of the second EB2	All connector numbers 1	Ind: 2 FS=0 Type: L2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U784 } \\ & (2784) \\ & * \\ & \\ & \text { (Z118) } \\ & (\text { Z119 }) \end{aligned}$	Mode of signal injection at analog output on EB2 $0=$ Injection of signal with sign 1 = Injection of absolute value of signal $2=$ Injection of signal with sign, inverted 3 = Injection of absolute value of signal, inverted i001: AO of the first EB2 i002: AO of the second EB2	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U785 } \\ & (2785) \\ & (\text { Z118 }) \\ & (\text { Z119 }) \\ & \hline \end{aligned}$	Filtering time for analog outputs on EB2 i001: AO of the first EB2 i002: AO of the second EB2	$\begin{aligned} & 0 \text { to } 10000 \\ & {[\mathrm{~ms}]} \\ & 1 \mathrm{~ms} \end{aligned}$	Ind: 2 FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U786 } \\ & (2786) \\ & \\ & (\text { Z118 }) \\ & (\text { Z119) } \end{aligned}$	Normalization of analog outputs on EB2 $y[V]=x * \frac{U 786}{100 \%}$ $x=$ normalization input (corresponds to filtering output) $y=$ normalization output (corresponds to output voltage at analog output with an offset of 0) i001: AO of the first EB2 i002: AO of the second EB2	$\begin{aligned} & \hline-200.00 \text { to } 199.99 \\ & \text { [V] } \\ & 0.01 \mathrm{~V} \end{aligned}$	Ind: 2 $\mathrm{FS}=10.00$ Type: 12	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U787 } \\ & (2787) \\ & (\text { Z118) } \\ & \text { (Z119) } \end{aligned}$	Offset for analog output on EB2 i001: AO of the first EB2 i002: AO of the second EB2	$\begin{aligned} & -10.00 \text { to } 10.00 \\ & {[\mathrm{~V}]} \\ & 0.01 \mathrm{~V} \end{aligned}$	Ind: 2 FS=0.00 Type: 12	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \text { n788 } \\ & (2788) \\ & (Z 118) \\ & (Z 119) \\ & \hline \end{aligned}$	Display of analog outputs on EB2 i001: AO of the first EB2 i002: AO of the second EB2	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\%]} \\ & 0.01 \% \end{aligned}$	Ind: 2 Type: I2	$\mathrm{P} 052=3$

11.88 Configuring the SBP pulse encoder board

$\begin{array}{\|l} \hline \text { U790 } \\ (2790) \\ * \\ (Z 120) \end{array}$	Configuration of input level of A/B and CRTL tracks and Zero pulse i001: A/B and CRTL track i002: Zero pulse 0: HTL unipolar 1: TTL unipolar 2. HTL differential input 3: TTL/RS422 differential input	$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: 2 FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U791 } \\ (2791) \\ * \\ (Z 120) \end{array}$	Configuration of encoder supply voltage The supply is subject to a current limit of 250 mA Caution: Setting the parameter incorrectly can damage the encoder (i.e. 15 V voltage for an encoder which requires a 5 V supply). $0: \quad 5 \mathrm{~V}$ voltage supply 1: $\quad 15 \mathrm{~V}$ voltage supply	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U792 } \\ (2792) \\ * \\ (Z 120) \\ \hline \end{array}$	Number of pulses per revolution Number of lines on one track around circumference of disk	$\begin{aligned} & 100 \text { to } 20000 \\ & 1 \end{aligned}$	Ind: None FS=1024 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { U793 } \\ (2793) \\ * \\ (Z 120) \\ \hline \end{array}$	Encoder type 0: Encoder with A/B track (two tracks displaced by 90 degrees) 1: Encoder with separate forward and reverse tracks	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U794 } \\ & (2794) \\ & (Z 120) \end{aligned}$	Reference speed When actual speed = reference speed a value of 100% is output in the appropriate diagnostic parameter (n 795) and connector	$\begin{aligned} & \hline 50.0 \text { to } 6500.0 \\ & {[\mathrm{rev} / \mathrm{min}]} \\ & 0.1 \end{aligned}$	Ind: None FS=500.0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 = } 40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { n795 } \\ & (2795) \\ & (Z 120) \\ & \hline \end{aligned}$	Display of actual speed in \% of reference speed	$\begin{aligned} & -200.00 \text { to } 199.99 \\ & {[\%]} \end{aligned}$	Ind: None Type: I2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { U796 } \\ & (2796) \\ & * \\ & \text { S00 } \\ & (Z 120) \end{aligned}$	Resetting the position counter Setting the type of resetting for position acquisition $0=$ free-running (no reset) 1 = see function diagram Z120 2 = see function diagram Z120	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	Ind: none FS=0 Type: O2	$\begin{aligned} & \text { P052 =2 } \\ & \text { P051 = } 40 \\ & \text { online } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.89 Configuration of paralleling interface

Notes about parameterization of the paralleling interface see Chapter 6.9.2

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U807 } \\ & (2807) \\ & (\text { G195 }) \end{aligned}$	Telegram failure time on paralleling interface 0 No time monitoring 0.001...65.000 Permissible time interval between two data exchange operations before a fault message is output. Fault message F014 is displayed if no data are exchanged with the parallelconnected converter within this delay period. The monitoring function is implemented within a 20 ms cycle. For this reason, only setting values which constitute a multiple of 20 ms are meaningful. Note: The telegram monitoring function is active - from the receipt of the first error-free telegram after connection of the electronics power supply - from the receipt of the first error-free telegram after the telegram monitor has responded (i.e. monitoring timeout).	$\begin{aligned} & \hline 0.000 \text { to } 65.000 \\ & {[\mathrm{~s}]} \\ & 0.001 \mathrm{~s} \end{aligned}$	Ind: None FS=0.100 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { Online } \end{aligned}$
$\begin{aligned} & \hline \text { U808 } \\ & (2808) \\ & * \\ & (G 195) \end{aligned}$	Source for triggering of message F014 Selection of binector which must trigger message F014 when it switches to log. "1" $\begin{aligned} & 6040=\text { binector B6040 } \\ & 6041=\text { binector B6041 } \end{aligned}$	6040, 6041	Ind: None FS=6040 Type: L2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { n809 } \\ & (2809) \\ & \text { (G195) } \end{aligned}$	Diagnostic information for paralleling interface i001 to i008=Free-running counter, overflow at 65535 i001: Number of error-free telegrams i002: Number of errored telegrams i003: Transmit Error Counter i004: Receive Error Counter i005: Phase Error Counter i006: Baud rate Error Counter i007: Bad BCC Counter i008: Timeout Counter i009: Number of telegrams with unknown identifier	0 to 65535	Ind: 9 Type: O2	$\mathrm{P} 052 \geq 0$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { n810 } \\ & (2810) \\ & \\ & \text { (G195) } \end{aligned}$	Diagnostic information for the paralleling interface 15 14 $13 \quad 12$ \square 11 10 9 8\square 6 \square 3 0 Unit with active "master" function Segment 0 \qquad 1 \qquad ON: Slave with address 2 responding \qquad \qquad \qquad \qquad 7 \qquad 8 OFF 9 \qquad OFF 10 \qquad 11 \qquad 12 \qquad 13 14 15 ON: Master function active Unit with "slave" function Segment 0 \qquad \qquad 2 ON: Data for slave with address 2 are ok \qquad \qquad \qquad \qquad \qquad 8 ON: Slave function active \qquad \qquad 11 \qquad 12 \qquad 13 \qquad \qquad 15 OFF		Ind: None Type: V2	P052 = 3

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l} \hline \begin{array}{l} \text { n812 } \\ (2812) \end{array} \\ \\ \text { (G195) } \end{array}$	Receive data on paralleling interface When U806=1 (master) is selected When U806=2 to 6 (slave) is selected:	0000 to FFFFH 1	Ind: 25 Type: L2	$\mathrm{P} 052 \geq 0$
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { n813 } \\ (2813) \end{array} \\ \\ (\mathrm{G} 195) \end{array}$	Transmit data on paralleling interface When U806=1 (master) is selected i001 Transmit data to slaves, word 1 \ldots i005 Transmit data to slaves, word 5 When U806=2 to 6 (slave) is selected: i001 Transmit data to master, word 1 \ldots $\mathrm{i} 005 \quad$ Transmit data to master, word 5	0 to FFFFH	Ind: 5 Type: L2	$\mathrm{P} 052 \geq 0$

11.90 Definition of the external power section

Connection voltage (line voltage) and direct voltage armature				
$\begin{aligned} & \hline \text { U819 } \\ & (2819) \\ & * \\ & (G 101) \end{aligned}$	Transmission ratio of external voltage transformer [SW 2.0 and later] The ratio between the output and input voltage of the voltage transformer is entered here. e.g.: Input = 2000V Output $=100 \mathrm{~V}$ U819 $=100 / 2000=0.05$ i001: Transmission ratio of external voltage transformer for system voltage i002: Transmission ratio of external voltage transformer for armature voltage	$\begin{aligned} & 0.001 \text { to } 1.000 \\ & 0.001 \end{aligned}$	Ind: 2 FS=1.000 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { offline } \end{aligned}$
$\begin{aligned} & \hline \text { U820 } \\ & (2820) \\ & * \\ & (G 101) \end{aligned}$	Rated connection voltage armature Here you can set the rated connection voltage (rms value), for which the power section is suited (dielectric strength of the thyristors). The value is indicated in parameter r071. Parameter P078.001 (nominal input voltage armature) is limited to this value.	$\begin{aligned} & 85 \text { to } 2000 \\ & \text { [V] } \\ & \text { 1V } \end{aligned}$	Ind: None FS=1000 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
U821 (2821) $*$ (G101)	Connection of the measuring leads Here you can set the terminals on module A7044 to which the leads for measuring the line voltage and the armature voltage are connected. The parameter value indicates the nominal rms value of the maximum line voltage that can be measured.	$\begin{aligned} & 0, \\ & 85,250,575,1000 \\ & \text { [V] } \\ & \text { 1V } \end{aligned}$	Ind: 2 FS= i001: 1000 i002: 0 Typ: 02	$\begin{aligned} & \hline \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

Armature current				
The armature direct current is measured by evaluation of the signals of two line-side AC transformers. The two current transformers must be connected to terminals X3-1 / X3-2 and X3-4 / X3-3 on module A7041/A7042. Two load resistors of 10Ω each are mounted on module A7041/A7042.				
It is also possible to connect the two CTs externally in a V-connection through a diode rectifier. The output of the V-connection must then be routed to terminals X3-4 / X3-3 (signal / ground) on module A7041/A7042.				
$\begin{array}{\|l\|} \hline \text { U822 } \\ (2822) \\ * \\ (G 101) \\ \hline \end{array}$	Rated direct current armature Here it is necessary to set the output direct current to which the power section is suited in continuous operation.	$\begin{aligned} & 0.0 \text { to } 6500.0 \\ & {[\mathrm{~A}]} \\ & 0.1 \mathrm{~A} \end{aligned}$	Ind: None FS=0.0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{aligned} & \hline \text { U823 } \\ & \text { (2823) } \\ & \text { (G101) } \end{aligned}$	Load voltage at rated current armature The compliance voltage derived from the following arithmetic formula is set here: Calculation formula: $u_{B}=R_{B}{ }^{*} \ddot{u}^{*} I_{d}$ where: $u_{B}=$ The load voltage searched for to be set in parameter U823 $\mathrm{R}_{\mathrm{B}}=$ Load resistance (default: 10Ω) ü $=$ Transformation ratio of the current transformer $\left(I_{2} / I_{1}\right)$ $I_{d}=$ Output direct current acc. to parameter U822 Note: When using the differential amplifier to reduce the input voltage on the power interface (C98043-A7041/A7042) as described in Chapter 6.5, 1/10 of the load voltage must be set at rated direct current.	$\begin{aligned} & \hline 200.0 \text { to } 1200.0 \\ & {[\mathrm{mV}]} \\ & 0.1 \mathrm{mV} \end{aligned}$	Ind: None FS=1000.0 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { U824 } \\ (2824) \\ * \\ (G 101) \end{array}$	Configuration of the current transformers	$\begin{aligned} & 1 \text { to } 5 \\ & 1 \end{aligned}$	Ind: None FS=2 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$
$\begin{array}{\|l} \hline \text { U825 } \\ (2825) \\ * \\ (\mathrm{G} 101) \end{array}$	Type of power section: 1Q / 4Q 1 1-quadrant power section 4 4-quadrant power section Note: P 150 (rectifier impact limit) is to be set manually, it is not set automatically.	$1 \text { and } 4$ 1	Ind: None FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.91 Miscellaneous

$\begin{aligned} & \hline \text { U826 } \\ & \text { (2826) } \\ & \text { * } \\ & \text { (G163) } \end{aligned}$	Times for gating pulse chopping i001 Length of first pulse i002 Length of other pulses Notes: - If U826.001 $=105 \mu \mathrm{~s}$ or U826.002 $=105 \mu \mathrm{~s}$: Block pulse (without pulse chopping) - If U826.001 \leq U826.002 is set, then U826.001 is ignored and the first pulse is output with the same length as all other pulses - \quad Short pulses or long pulses are selected in P079 P079 = 0: Short pulses (with length $890 \mu \mathrm{~s}$) P079 = 1: Long pulses (pulse duration up to approx. 0.1 ms before next pulse) P079 = 2: Must be set on the 12-pulse series master and the 12-pulse series slave in a 12-pulse series connection (if two units are fed with two line voltages with a 30 degree phase displacement) [can only be set in SW 2.1 and later]. P079 = 3: Must only be set on the paralleling device of the 12-pulse series master in a 12-pulse series connection (if two units are fed with line voltages with a 30 degree phase displacement) [can only be set in SW 2.1 and later].	$\begin{aligned} & 1 \text { to } 105 \\ & {[\mu \mathrm{~s}]} \\ & 1 \mu \mathrm{~s} \end{aligned}$	Ind: 2 FS= i001: 50 i002: 35 Type: O2	$\begin{array}{\|l} \hline \mathrm{P} 052=3 \\ \text { P051 }=40 \\ \text { on-line } \end{array}$

Field				
$\begin{array}{\|l} \hline \text { U828 } \\ (2828) \\ * \\ (G 101) \end{array}$	Rated connection voltage field The power section for the field is suitable for a connection voltage of 460 Vrms (dielectric strength of the thyristors). The acquisition of the line voltage for the field is also dimensioned for this voltage. If the field is operated with a rated line voltage of less than 130 Vrms , it is advisable to convert the hardware for line voltage measurement for the field on module A7044 to extra-low voltage. Once this conversion has been performed, set parameter U828 to value 130 Vrms. The value of U828 is indicated in parameter r074. Parameter P078.002 (nominal input voltage field) is limited to this value. 130 Module A7044 converted to extra-low voltage 460 Module A7044 in the original state	$\begin{aligned} & 130 \text { and } 460 \\ & \text { [V] } \\ & 1 \mathrm{~V} \end{aligned}$	Ind: None FS=460 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

Measurement of the heat sink temperature

The heat sink temperature can be measured with an NTC.

U830	Sensors for measuring heat sink temperature		$\begin{aligned} & 0 \text { to } 3 \\ & 1 \end{aligned}$	Ind: None	$\mathrm{P} 052=3$
${ }_{*}^{(2830)}$	0	No sensor present		$F S=1$	$\mathrm{P} 051=40$
	1	NTC with $6.8 \mathrm{k} \Omega$		Type: O2	off-line
(G114)	2	NTC with $10 \mathrm{k} \Omega$			

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
Fuse monitoring Fuse monitoring can be used universally. For example, it can be used to monitor fu circuit, or the primary side of a heavy-current transformer. The terminals used (Faston tabs) on the fuse monitoring module (C98043-A7044) for to a tripped fuse.				
$\begin{array}{\|l} \hline \text { U831 } \\ (2831) \\ * \\ (G 101) \end{array}$	Fuse monitoring OFF / ON 0 Monitoring OFF 1 Monitoring ON Response of the fuse monitoring causes a fault message F004 with the fault value 3	$\begin{aligned} & 0 \text { to } 1 \\ & 1 \end{aligned}$	Ind: None FS=1 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

Monitoring of the device fan A "fan OK" signal from the device fan must be connected to terminals 122 and 123.				
$\begin{aligned} & \text { U832 } \\ & (2832) \\ & * \\ & \text { (G110) } \end{aligned}$	Monitoring of the converter fan OFF / ON	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	Ind: None FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 = } \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

Externa The sign	monitoring ling contact for external monitoring must be connected to terminals 124 / 125			
U833 (2833) (G110)	External monitoring OFF / ON 0 Monitoring AUS 1 A LOW signal at term. 124 / 125 in operation activates error message F003, or on power ON causes the device to dwell in operating state 04.2 2 A HIGH signal at term. 124 / 125 in operation activates error message F003, or on power ON causes the device to dwell in operating state 04.2 [settable only in SW 1.9 and later]	$\begin{aligned} & 0 \text { to } 2 \\ & 1 \end{aligned}$	Ind: None FS=1 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

Relay output "Fan"				
U834 (2834) $*$ (G117)	Source for the relay output "Fan" (terminals 120 / 121) [SW 2.1 and later] $\begin{aligned} & 0=\text { Binector B0000 } \\ & 1=\text { Binector B0001 } \\ & \text { etc. } \end{aligned}$	All binector numbers 1	Ind: None FS=104 Type: L2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

Monitoring of device fan (fault message F067, fault value 3 and warning A067)				
$\begin{aligned} & \hline \text { U835 } \\ & (2835) \\ & \text { (G110) } \end{aligned}$	Delay times [SW 2.1 and later] i001: ON delay for enabling the fault message and warning i002: ON delay for fault message i003: ON and OFF delay for warning	$\begin{aligned} & 0.0 \text { to } 60.0 \\ & \text { [s] } \\ & 0,1 \mathrm{~s} \end{aligned}$	Ind: 3 FS= i001: 15.0 i002: 5.0 i003: 2.5 Type: 02	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

11.92 Rated DC current of external field device

$\begin{aligned} & \hline \text { U838 } \\ & (2838) \end{aligned}$	Rated DC current of external field device 0.00 Parameter not yet set Note: This parameter is operative only if P082 >= 21 .	[SW 1.9 and later]	$\begin{aligned} & 0.00 \text { to } 600.00 \\ & {[\mathrm{~A}]} \\ & 0.01 \mathrm{~A} \end{aligned}$	Ind: None FS=0.00 Type: O2	$\begin{aligned} & \hline \text { P052 }=3 \\ & \text { P051 }=40 \\ & \text { on-line } \end{aligned}$

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.93 Simulation operation

Simulation operation

Simulation operation is used to test the power section (measurement of the firing pulses with a current probe). Firing pulses are output to a single thyristor (pulse distance $=20 \mathrm{~ms}$, pulse duration = approx. 1 ms , firing pulse chopping as in normal operation). The thyristor is selected with parameter U840. The line voltage does not have to be applied during simulation operation.
Simulation operation is activated by setting a value >0 in Parameter U840.
Simulation operation is then actually started when the SIMOREG CM is in an operating state ≥ 07.
As soon as the SIMOREG CM is in simulation operation, it goes into operating state 08.1 (simulation operation).
Simulation operation is exited by resetting parameter U840 to zero.

$\begin{aligned} & \hline \text { U840 } \\ & (2840) \end{aligned}$	Contro 0 0 11 \ldots 16 21 \ldots 26	rameters for simulation operation No simulation operation Firing cable 11 Firing cable 16 Firing cable 21 Firing cable 26	$\begin{aligned} & 0, \\ & 11 \text { to } 16, \\ & 21 \text { to } 26 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ind: None } \\ & \text { FS=0 } \\ & \text { Type: O2 } \end{aligned}$	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

11.94 Parameter for DriveMonitor

U845	These parameters are used by DriveMonitor		
bis			
n909			
$(2845$			
bis			
2909$)$			

11.95 Slot deactivation

$\begin{aligned} & \hline \text { U910 } \\ & (2910) \\ & \text { (G101) } \\ & \text { (G) } \end{aligned}$	Slot deactivation parameter Parameter for deactivating supplementary boards, e.g. during start-up or troubleshooting (for details of slot identification codes, see diagram under parameter r063) The deactivated slot is ignored during the search for installed supplementary boards when the supply voltage is next switched on. Likewise, activation of a slot does not take effect until the supply voltage has been switched off and on again. Note: Slot E can simply be deactivated to conceal a technology board (large format). If a communications board is installed in addition to the technology board, and the technology board is concealed, then the communications board will not be processed either.	$0 \text { and } 1$ 1	Ind: 5 FS=0 Type: O2	$\begin{aligned} & \mathrm{P} 052=3 \\ & \text { P051 }=40 \\ & \text { off-line } \end{aligned}$

11.96 Parameter for DriveMonitor

U911	These parameters are used by DriveMonitor		
bis			
n949			
$(2911$			
bis			
2949$)$			

| PNU | Description | Value range
 [Unit]
 Steps | No. indices
 Factory
 setting
 Type |
| :--- | :--- | :--- | :--- | :--- |

11.97 Technology software in the basic converter, Option S00: Sampling times

Only active with optional technology software S00

PNU	Description						Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U951 } \\ & (2951) \\ & { }_{*} \\ & \text { S00 } \end{aligned}$	Selection of time slices for function blocks FB101 to FB200						1, 2, 4, 10, 20	Ind: 100	P052 = 3
	Index	Function block	Time slice (FS)	Index	Function block	Time slice (FS)		see column on left Type: O2	off-line
	i001	FB101	1	i051	FB151	1			
	i002	FB102	1	i052	FB152	1			
	i003	FB103	1	i053	FB153	1			
	i004	FB104	1	i054	FB154	1			
	i005	FB105	1	i055	FB155	1			
	i006	FB106	1	i056	FB156	1			
	i007	FB107	1	i057	FB157	1			
	i008	FB108	1	i058	FB158	1			
	i009	FB109	1	i059	FB159	1			
	i010	FB110	1	-060	FB160	1			
	i011	FB111	1	i061	FB161	1			
	i012	FB112	1	i062	FB162	1			
	i013	FB113	1	i063	FB163	1			
	i014	FB114	1	i064	FB164	1			
	i015	FB115	1	i065	FB165	1			
	i016	FB116	2	i066	FB166	1			
	i017	FB117	20	i067	FB167	1			
	i018	FB118	1	i068	FB168	1			
	i019	FB119	1	i069	FB169	1			
	i020	FB120	1	1070	FB170	1			
	i021	FB121	1	i071	FB171	1			
	i022	FB122	1	i072	FB172	1			
	i023	FB123	1	i073	FB173	1			
	i024	FB124	1	i074	FB174	1			
	i025	FB125	1	i075	FB175	1			
	i026	FB126	1	1076	FB176	1			
	i027	FB127	1	i077	FB177	1			
	i028	FB128	1	i078	FB178	1			
	i029	FB129	1	i079	FB179	1			
	i030	FB130	1	-080	FB180	1			
	i031	FB131	1	i081	FB181	1			
	i032	FB132	1	i082	FB182	1			
	i033	FB133	1	1083	FB183	1			
	i034	FB134	1	1084	FB184	1			
	i035	FB135	1	1085	FB185	1			
	i036	FB136	1	1086	FB186	1			
	i037	FB137	1	i087	FB187	1			
	i038	FB138	1	i088	FB188	1			
	i039	FB139	1	i089	FB189	1			
	i040	FB140	1	i090	FB190	1			
	i041	FB141	1	i091	FB191	1			
	i042	FB142	1	i092	FB192	1			
	i043	FB143	1	i093	FB193	1			
	i044	FB144	1	i094	FB194	1			
	i045	FB145	1	i095	FB195	1			
	i046	FB146	1	i096	FB196	10			
	i047	FB147	1	i097	FB197	10			
	i048	FB148	20	i098	FB198	10			
	i049	FB149	20	i099	FB199	10			
	i050	FB150	1	i100	FB200	1			

PNU	Description						Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { U952 } \\ & (2952) \\ & \star \\ & \text { S00 } \end{aligned}$	Selection of time slices for function blocks FB201 to FB300						1, 2, 4, 10, 20	Ind: 100	P052 = 3
	Index	Function block	Time slice (FS)	Index	Function block	Time slice (FS)		see column on left Type: O2	off-line
	i001	FB201	1	i051	FB251	1			
	i002	FB202	1	i052	FB252	1			
	i003	FB203	1	i053	FB253	1			
	i004	FB204	1	i054	FB254	1			
	i005	FB205	1	i055	FB255	20			
	i006	FB206	1	i056	FB256	1			
	i007	FB207	1	i057	FB257	1			
	i008	FB208	1	i058	FB258	1			
	i009	FB209	1	i059	FB259	1			
	i010	FB210	1	i060	FB260	10			
	i011	FB211	1	i061	FB261	10			
	i012	FB212	10	i062	FB262	10			
	i013	FB213	10	i063	FB263	10			
	i014	FB214	10	i064	FB264	10			
	i015	FB215	1	i065	FB265	10			
	i016	FB216	1	i066	FB266	10			
	i017	FB217	1	i067	FB267	10			
	i018	FB218	1	i068	FB268	10			
	i019	FB219	1	i069	FB269	10			
	i020	FB220	1	i070	FB270	10			
	1021	FB221	1	i071	FB271	10			
	i022	FB222	1	i072	FB272	10			
	i023	FB223	1	i073	FB273	10			
	i024	FB224	1	i074	FB274	10			
	i025	FB225	1	i075	FB275	10			
	i026	FB226	1	i076	FB276	10			
	i027	FB227	1	i077	FB277	10			
	i028	FB228	1	i078	FB278	10			
	$i 029$	FB229	10	i079	FB279	10			
	i030	FB230	1	i080	FB280	10			
	i031	FB231	1	i081	FB281	10			
	i032	FB232	1	i082	FB282	10			
	i033	FB233	1	i083	FB283	10			
	i034	FB234	20	1084	FB284	10			
	i035	FB235	20	i085	FB285	10			
	i036	FB236	20	1086	FB286	10			
	i037	FB237	20	i087	FB287	10			
	i038	FB238	20	i088	FB288	10			
	i039	FB239	20	i089	FB289	10			
	i040	FB240	1	i090	FB290	10			
	i041	FB241	1	i091	FB291	10			
	i042	FB242	1	i092	FB292	10			
	i043	FB243	1	i093	FB293	10			
	i044	FB244	1	i094	FB294	10			
	i045	FB245	1	i095	FB295	10			
	i046	FB246	10	i096	FB296	10			
	i047	FB247	10	1097	FB297	10			
	i048	FB248	10	i098	FB298	10			
	i049	FB249	10	i099	FB299	10			
	i050	FB250	1	i100	FB300	20			

11.98 Parameter for DriveMonitor

n953	These parameters are used by DriveMonitor			
bis				
n959				
(2953				
bis				

PNU	Description	Value range [Unit $]$ Steps	No. indices Factory setting Type	See Change (Access / Status)

11.99 Technology software in basic unit, S00 option: Altering the processing sequence of function blocks

Only active with optional technology software S00

Processing sequence of function blocks

The function blocks of the S00 technology software are processed within the computational cycle in the sequence defined in parameters U960 to U962:

1. Function block with number set in U960 index. 001
2. Function block with number set in U960 index. 100
3. Function block with number set in U961 index. 001
4. Function block with number set in U961 index. 100
5. Function block with number set in U962 index. 001
etc.
The numbers are parameterized in ascending sequence $(1,2,3, \ldots)$ in the factory setting (standard sequence).

Altering the processing sequence:

If a new function block number is entered (i.e. moved from another location) in a certain index of parameter U960, U961 or U962, then the new processing sequence is defined such that the function block previously entered in this index will be processed after the newly entered block. The gap which may be left at the old location of the moved (newly entered) function block is closed by shifting the function block numbers behind the space forward by one position.

Example 1:

Starting with the standard sequence setting, the processing sequence must be altered such that function block 90 (analog signal selector switch) will be processed immediately after function block 83 (tracking/storage element):
Function block no. 90 must be entered in the index in which the number of the function block previously processed after block 83 (84 in U960.9065) is currently stored. Function block numbers (84 and 85) in the following indices of U960 will be shifted up to the next index automatically.

Function block
91
$\underline{90}$
85
84
83
82
81

Example 2:

Starting with the standard sequence setting, the processing sequence must be altered such that function block 38 (sign inverter) will be processed immediately after function block 45 (divider):
Function block number 38 must be entered in the index in which the number of the function block previously processed after function block 45 (46 in U960.iO35) is currently stored. The function block numbers stored in the indices immediately above this position shift up by one index, then all numbers immediately above the gap left shift down automatically by one index.

Function block	Processing sequence		Function block	Processing sequence		Function block	Processing sequence
-			47				
47	\uparrow U960.Index 036		46	\uparrow U960.Index 036		47	\uparrow U960.Index 036
46	U960.Index 035		$\underline{38}$	U960.Index 035		46	U960.Index 035
45	U960.Index 034		45	U960.Index 034	\longrightarrow	$\underline{38}$	U960.Index 034
41	U960.Index 033		41	U960.Index 033		45	U960.Index 033
40	U960.Index 032		40	U960.Index 032		41	U960.Index 032
$\underline{38}$	U960.Index 031			U960.Index 031		40	U960.Index 031
37	U960.Index 030		37	U960.Index 030		37	U960.Index 030

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{array}{\|l} \hline \hline \text { U961 } \\ (2961) \\ { }^{*} \\ \text { S00 } \end{array}$	Processing sequence of function blocks of S00 technology software (2) i001: Number of function block for $101^{\text {st }}$ place in processing sequence i002: Number of function block for $102^{\text {nd }}$ place in processing sequence etc.	Numbers of all function blocks	Ind: 100 FS= Standard sequence Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 }=40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U962 } \\ & (2962) \\ & * \\ & \text { S00 } \end{aligned}$	Processing sequence of function blocks of S00 technology software (3) i001: Number of function block for $201^{\text {st }}$ place in processing sequence i002: Number of function block for $202^{\text {nd }}$ place in processing sequence etc.	Numbers of all function blocks	Ind: 100 FS= Standard sequence Type: O2	$\begin{aligned} & \text { P052 =3 } \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{aligned} & \hline \text { U969 } \\ & (2969) \\ & { }^{*} \\ & \text { S00 } \end{aligned}$	Automatic setting and activation of the execution sequence $\begin{array}{ll}0 & \text { Return } \\ 1 & \text { Set standard sequence: }\end{array}$ The numbers of the function blocks are entered in ascending order in Parameters U960, U961 and U962. The parameter is then automatically set to value 0 . 2 Set optimum sequence: U960, U961, and U962 are set in such a way that as few deadtimes as possible occur. After that, the parameter is automatically set to value 0 again. 3 Set standard setting of the sampling times. U950, U951, and U952 are set to the factory setting. 4 Automatic activation / deactivation: U950, U951 and U952 are set in such a way that the unwired function blocks are deselected and the wired function blocks are selected (activated), if they are not yet selected. The time slice 10 (sampling time 20 ms) is set for all function blocks not previously activated, the time slice is left unchanged for all previously activated function blocks. In order to ensure that this function also functions correctly for function blocks FB261 to FB269 (PI controllers 2 to 10), the value 0 is to be set for Pl controllers 2 to 10 which are not used and this must be done at the corresponding indices U544.i002 to i 010 before this function is used.	$\begin{array}{\|l\|} \hline 0 \text { to } 4 \\ 1 \end{array}$	Ind: None FS=0 Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { off-line } \end{aligned}$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.100 Enabling of technology software in basic unit, S00 option ("freely assignable function blocks")

The S00 technology option can only be utilized on SIMOREG CM converters on which this option has been enabled by a proper PIN number. The software remains enabled after software updates, i.e. it need not be enabled again after new software has been installed.

Permanent enabling of $\mathbf{S 0 0}$ technology option (subject to charge):

Please proceed as follows if you wish to enable the S00 technology option:

1. Find out the serial number of your SIMOREG CM unit (e.g. "Q6K31253320005"):

- The serial number is specified on the delivery note
- The serial number is printed on the rating plate of the SIMOREG CM
- The serial number can be displayed in parameter r069 on the OP1S

2. Find out the PIN number (a number between 2001 and 65535) which matches the converter serial number:

* If you have ordered the SIMOREG CM with S00 option, you will find the PIN number printed on a sticker on the unit and specified on the delivery note.
* If not, please contact your local Siemens sales office to obtain the correct PIN number.

3. Enter the PIN number in parameter U977 and complete your entry by pressing button <P>. This parameter is automatically reset to 0 after the entry is made. Enter the PIN number with care as you only have five attempts.
4. Technology option S 00 is now enabled, which can be verified in $\mathrm{n} 978=2000$.

Technology option S00 can be disabled by entering U997 = PIN-1 (e.g. for test purposes). Parameter n978 then displays 500 . The option is enabled again by entering $\mathrm{U} 977=\mathrm{PIN}$.

Temporary enabling of $\mathbf{S O O}$ technology option (free of charge):

The S00 technology option can be enabled once, free of charge, on all converters for 500 hours of use by means of a special PIN number. This 500-hour period can be used for test purposes or for the operation of replacement units which have been ordered without the S00 option (i.e. to cover the period until a PIN number for permanent enabling is obtained).
The 500 hours are counted by the hours run counter (r048), i.e. only the time that the drive is actually switched on is counted. When the 500 -hour period has expired, the S00 option is disabled automatically if the PIN number for permanent enabling has not been entered in the meantime.
The special PIN number is: U977 = 1500 (identical number for all units)
Temporary enabling of the option can be interrupted with PIN U977 = 500. The remaining time credit remains valid for the next period of use with the temporarily enabling PIN number.
Alarm A059 is output if the time credit is less than 50 hours and the S 00 technology option is temporarily enabled.
Fault message F059 is displayed if the time credit of 500 hours has run out and the S00 option is still temporarily enabled.

System response when $\mathbf{S 0 0}$ technology option is not enabled:

The connectors and binectors associated with freely assignable function blocks are not updated (they are set to 0 when the electronics voltage is connected; when the time credit for temporary enabling has run out, they remain frozen at the last recorded values until the electronics voltage is disconnected again).

$\begin{array}{\|l} \hline \text { U977 } \\ (2977) \\ * \\ \text { S00 } \end{array}$	PIN number for $\mathbf{S 0 0}$ option This parameter is automatically reset to "0" after entry of the PIN number. Take care to enter the PIN number correctly. You are only allowed up to 5 attempts!	$\begin{aligned} & 0 \text { to } 65535 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { Offline } \end{aligned}$
$\begin{array}{\|l} \hline \text { n978 } \\ (2978) \\ \text { S00 } \end{array}$	"S00 enabled" display $0 \quad$ The optional S00 technology software is disabled The time credit for temporary enabling has run out $x x x \quad$ The optional S00 technology software is not enabled. xxx = number of credit hours which are still available for use under temporary enabling PIN number 1xxx The optional SOO technology software is temporarily enabled. $x x x=$ number of credit hours still available 2000 The optional S00 technology software is permanently enabled.	see column on left	Ind: None Type: O2	$\mathrm{P} 052=3$

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)

11.101 Parameter access for experts

U979 (2979)	Parameter access for experts 999 Parameter access for experts is activated. This means that even offline parameters can be modified in operation. Notes: The value of this parameter is lost when the electronics power supply is switched off. Parameters can be modified only if both P051 and P052 as well as P927 are set to the correct values.	$\begin{aligned} & 0 \text { to } 2000 \\ & 1 \end{aligned}$	Ind: None $F S=0$ Type: O2	$\begin{aligned} & \hline \text { P052 = } 3 \\ & \text { P051 = } 40 \\ & \text { on-line } \end{aligned}$

11.102 List of existing and modified U and n parameters

$\begin{aligned} & \hline \text { n980 } \\ & (2980) \end{aligned}$	List of existing parameter numbers, continuation Viewing parameter for displaying the first 100 parameter numbers in the U or n parameter range (numbers 2000 to 2999). The parameters are arranged in ascending sequence. The list is continued in the parameter whose number is displayed in index 101. This means, for example, $2981=\text { n981 }$ The first 0 to be displayed signals that no further parameter numbers are stored.		Ind: 101 Type: 02	P052 $=3$
$\begin{aligned} & \hline \text { n981 } \\ & (2981) \end{aligned}$	List of existing parameter numbers, continuation See n980.		Ind: 101 Type: 02	P052 = 3
$\begin{aligned} & \hline \text { n982 } \\ & (2982) \end{aligned}$	List of existing parameter numbers, continuation See n980.		Ind: 101 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { n983 } \\ & (2983) \end{aligned}$	List of existing parameter numbers, continuation See n980.		Ind: 101 Type: 02	P052 $=3$
$\begin{aligned} & \hline \text { n984 } \\ & (2984) \end{aligned}$	List of existing parameter numbers, continuation See n980.		Ind: 101 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { n985 } \\ & (2985) \end{aligned}$	List of existing parameter numbers, continuation See n980.		Ind: 101 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { n986 } \\ & (2986) \end{aligned}$	List of existing parameter numbers, continuation See n980.		Ind: 101 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { n987 } \\ & (2987) \end{aligned}$	List of existing parameter numbers, continuation See n980.		Ind: 101 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { n988 } \\ & (2988) \end{aligned}$	List of existing parameter numbers, continuation See n980.		Ind: 101 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { n989 } \\ & (2989) \end{aligned}$	List of existing parameter numbers, continuation See n980.		Ind: 101 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { n990 } \\ & (2990) \end{aligned}$	List of modified parameters, continuation Viewing parameter for displaying the first 100 modified parameters in the U or n parameter range (numbers 2000 to 2999). The parameters are arranged in ascending sequence. The list is continued in the parameter whose number is displayed in index 101. This means, for example, $2991=\text { n991 }$ The first 0 to be displayed signals that there are no further modified parameters.		Ind: 101 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { n991 } \\ & (2991) \end{aligned}$	List of modified parameters, continuation See n990.		Ind: 101 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { n992 } \\ & (2992) \end{aligned}$	List of modified parameters, continuation See n990.		Ind: 101 Type: O2	P052 = 3

PNU	Description	Value range [Unit] Steps	No. indices Factory setting Type	See Change (Access / Status)
$\begin{aligned} & \hline \hline \text { n993 } \\ & (2993) \end{aligned}$	List of modified parameters, continuation See n990.		Ind: 101 Type: O2	P052 = 3
$\begin{aligned} & \hline \text { n994 } \\ & (2994) \end{aligned}$	List of modified parameters, continuation See n990.		Ind: 101 Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \text { n995 } \\ & (2995) \end{aligned}$	List of modified parameters, continuation See n 990 .		Ind: 101 Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { n996 } \\ & (2996) \end{aligned}$	List of modified parameters, continuation See n990.		Ind: 101 Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \text { n997 } \\ & (2997) \end{aligned}$	List of modified parameters, continuation See n 990 .		Ind: 101 Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \hline \text { n998 } \\ & (2998) \end{aligned}$	List of modified parameters, continuation See n990.		Ind: 101 Type: O2	$\mathrm{P} 052=3$
$\begin{aligned} & \text { n999 } \\ & (2999) \end{aligned}$	List of modified parameters, continuation See n990.		Ind: 101 Type: O2	$\mathrm{P} 052=3$

12 List of connectors and binectors

12.1 Connector list

The values of connectors can be displayed via parameters r041, r042, r043 and P044.
The following numeric representation applies to all connectors:
In the internal software representation, 100\% corresponds to the number 4000 hex = 16384 dec . The value range is $-200.00 \% \ldots+199.99 \%$, corresponding to 8000 hex ... 7FFF hex. The connectors are transferred via the serial interfaces in this internal mode of representation.
100% corresponds to converter rated quantities r072.i02 (currents, armature), r073.i02 (currents, field), P078.i01 (line voltages, armature).

The following numeric representation applies to all double-word connectors:
In the internal software representation, 100% corresponds to the number 40000000 hex = $16384 * 65536$ dec.
The value range is $-200.00 \% \ldots+199.9999999 \%$, corresponding to $-2^{31} \mathrm{dec} \ldots+\left(2^{31}-1\right)$ dec or 80000000 hex ... 7FFF FFFF hex.
If a double-word connector is the input of a connector selection parameter, or if a connector is the input of a double-word connector selection parameter, this may be equivalent to division or multiplication by the value 65536. For details of the connection to double-word connectors, see Section 9.1, "The following rules apply to the selection of double-word connectors".

Connector	Description	Normalization	Function diag., Sheet
Fixed values			G120
K0000	Fixed value 0	$16384 \wedge 100 \%$	G120
K0001	Fixed value 100.00\%	$16384 \wedge 100 \%$	G120
K0002	Fixed value 200.00\%	$16384 \wedge 100 \%$	G120
K0003	Fixed value -100.00\%	$16384 \wedge 100 \%$	G120
K0004	Fixed value -200.00\%	$16384 \wedge 100 \%$	G120
K0005	Fixed value 50.00\%	$16384 \wedge 100 \%$	G120
K0006	Fixed value 150.00\%	$16384 \wedge 100 \%$	G120
K0007	Fixed value -50.00\%	$16384 \wedge 100 \%$	G120
K0008	Fixed value -150.00\%		
K0009	Fixed value 0 or special function specified in each case		

Analog inputs			$16384 \wedge 100 \%$
K0010	Analog input, terminal 4 / 5 (main setpoint) Raw value after A/D conversion (unfiltered, not normalized)	G113	
K0011	Analog input, terminal 4 / 5 (main setpoint) After normalization, offset injection, filtering	$16384 \wedge 100 \%$	G113
K0012	Analog input, terminal 103 / 104 (main actual value) Raw value after A/D conversion (unfiltered, not normalized)	$16384 \wedge 100 \%$	G113
K0013	Analog input, terminal 103 / 104 (main actual value) After normalization, offset injection, filtering	$16384 \wedge 100 \%$	G113
K0014	Analog input, terminal 6 / 7 (analog selectable input 1) Raw value after A/D conversion (unfiltered, not normalized)	$16384 \wedge 100 \%$	G113
K0015	Analog input, terminal 6 / 7 (analog selectable input 1) After normalization, offset injection, filtering	$16384 \wedge 100 \%$	G113
K0016	Analog input, terminal 8 / 9 (analog selectable input 2) Raw value after A/D conversion (unfiltered, not normalized)	$16384 \wedge 100 \%$	G114
K0017	Analog input, terminal 8 / 9 (analog selectable input 2) After normalization, offset injection, filtering	$16384 \wedge 100 \%$	G114
K0018	Analog input, terminal 10 / 11 (analog selectable input 3) Raw value after A/D conversion (unfiltered, not normalized)	$16384 \wedge 100 \%$	G114

Connector	Description	Normalization	Function diag., Sheet
K0019	Analog input, terminal 10 / 11 (analog selectable input 3) After normalization, offset injection, filtering	$16384 \wedge 100 \%$	G114

Binary inputs, binary outputs			
K0020	Binary inputs, terminals 36 to 43 and 211 to 214, E Stop Bit0 = Status of terminal 36 Bit1 = Status of terminal 37 Bit2 = Status of terminal 38 Bit3 = Status of terminal 39 Bit4 = Status of terminal 40 Bit5 = Status of terminal 41 Bit6 = Status of terminal 42 Bit7 = Status of terminal 43 Bit8 = Status of terminal 211 Bit9 = Status of terminal 212 Bit10 = Status of terminal 213 Bit11 = Status of terminal 214 Bit12 $=0 \ldots$ E Stop is active 1 ... No E Stop is active	$1 \triangleq 1$	G110
K0021	Binary outputs, terminals 46 to 52, 109/110, 120/121 Bit0 = Status of terminal 46 Bit1 = Status of terminal 48 Bit2 = Status of terminal 50 Bit3 = Status of terminal 52 Bit6 = Status of terminal 120/121 Bit7 = Status of terminal 109/110 Bit8 = Overload at terminal 46 Bit9 = Overload at terminal 48 Bit10 $=$ Overload at terminal 50 Bit11 = Overload at terminal 52 Bit12 = Overload at terminal 26 (15V output) Bit13 = Overload at terminal 34, 44 and/or 210 (24 V output)	$1 \triangleq 1$	$\begin{aligned} & \text { G112 } \\ & \text { G117 } \end{aligned}$

Analog outputs			
K0026	Analog output, terminal 14/15	$16384 \wedge 100 \%$	G115
K0027	Analog output, terminal 16 / 17	$16384 \wedge 100 \%$	G115
K0028	Analog output, terminal 18/19	$16384 \wedge 100 \%$	G116
K0029	Analog output, terminal 20 / 21	$16384 \wedge 100 \%$	G116

Control word, status word			
K0030	Control word 1	$1 \wedge 1$	G180
K0031	Control word 2	$1 \wedge 1$	G181
K0032	Status word 1	$1 \triangleq 1$	G182
K0033	Status word 2	$1 \wedge 1$	G183
K0034	Active function data set	[SW 2.0 and later]	$1 \wedge 1$
K0035 2.0 and later]	$1 \triangleq 1$	G175	

Evaluation of the pulse encoder board SBP				
KK0036	Position actual value of SBP	[SW 2.0 and later]	$1 \wedge 1$	Z120
K0038	Actual speed value of SBP in rev./min	[SW 2.0 and later]	$1 \wedge 1 \mathrm{rpm}$	Z120
K0039	Actual speed value of SBP	$16384 \wedge 100 \%$	Z120	

Connector	Description	Normalization	Function diag., Sheet

Pulse encoder evaluation

The pulse encoder evaluation function supplies an actual speed value (K0040 und K0041) and an actual position value (K0042, K0043, K0044, KK0046).
The pulses of the pulse encoder are counted according to sign to generate the actual position value (a hardware counter is used for this purpose.)
The setting in parameter P144 (multiple evaluation) is also relevant,
i.e. when P144 = 0, every positive edge of the first track of the pulse encoder is counted,
when P144 = 1, every edge of the first track of the encoder is counted,
when P144 $=2$, every edge of both tracks of the encoder is counted.
When P145 = 1 (automatic switchover of multiple evaluation), the position sensor (K0042, K0043, K0044, KK0046) produces invalid data!
K0042 and K0043 together form a signed 24-bit actual position value.
(value range: FF80 0000H to 007F FFFFH or -2^{23} to $+2^{23}-1$)

K0040	Actual speed value from pulse encoder	$16384 \wedge 100 \%$	G145
K0041	Absolute actual speed value from pulse encoder	$16384 \wedge 100 \%$	G145
K0042	Actual position value, LOW word LOW word of 24-bit actual position value	$1 \triangleq 1$	G145
K0043	Actual position value, HIGH word HIGH word of 24-bit actual position value	$1 \triangleq 1$	G145
K0044	Actual position value, number of zero markers	$1 \triangleq 1$	G145
KK0046	Actual position value [SW 1.9 and later] Actual position value extended in the software to a 32 -bit value (value range: 80000000 H to 7 FFF FFFFH or -2^{31} to $+2^{31}-1$)	$1 \triangleq 1$	G145
KK0047	Deceleration distance [SW 1.9 and later] When setpoint 0 is applied to the ramp-function generator input, the speed setpoint at the generator output is reduced to zero according to the current settings for ramp-down and transition roundings. This double-word connector specifies the requisite deceleration distance as the number of increments of the pulse encoder (defined in parameters P140 ff.). This deceleration distance calculation is correct only on the condition that the parameterized ramp-down time and transition roundings do not change during the braking operation.	$1 \triangleq 1$	G136
K0048	Actual speed value from pulse encoder in rpm [SW 2.0 and later]	$1 \triangleq 1 \mathrm{rpm}$	G145

Heatsink temperature			
K0050	Heatsink temperature	$16384 \wedge 100^{\circ} \mathrm{C}$	G114

Motor interface K0050 is always set to 0 when a PTC thermistor or no temperature sensor is connected ($\mathrm{P} 490 . \mathrm{x} \neq 1$).			
K0051	Motor temperature 1 (from sensor to terminal 22 / 23)	$16384 \wedge 100^{\circ} \mathrm{C}$	G185
K0052	Motor temperature 2 (from sensor to terminal 204 / 205)	$16384 \wedge 100^{\circ} \mathrm{C}$	G185

Closed-loop armature current control, auto-reversing stage, armature gating unit			
K0100	Firing angle (armature)	$\begin{aligned} & 16384 \triangleq 0^{\circ} \\ & 0 \triangleq 90^{\circ} \\ & -16384 \cong 180^{\circ} \end{aligned}$	G163
K0101	Firing angle (armature) before limitation	$\begin{aligned} & 16384 \wedge 0^{\circ} \\ & 0 \triangleq 90^{\circ} \\ & -16384 \triangleq 180^{\circ} \\ & \hline \end{aligned}$	G163
K0102	Precontrol value + armature current controller output (gating unit input)	$\begin{aligned} & 16384 \wedge 0^{\circ} \\ & 0 \triangleq 90^{\circ} \\ & -16384 \triangleq 180^{\circ} \\ & \hline \end{aligned}$	G162
K0103	$100 \% * \frac{\text { duration of current flow }}{\text { time between } 2 \text { firing pulses }} \quad$ [SW 2.0 and later]	$16384 \wedge 100 \%$	G162
K0105	Code of triggered thyristor pair in a thyristor bridge for switching through the corresponding line phase:	$1 \triangleq 1$	

Connector	Description	Normalization	Function diag., Sheet
K0106	Selected torque direction	$\begin{array}{\|l\|l\|} \hline 0=\text { No torque direction } \\ 1=\text { Torque direction I } \\ 2=\text { Torque direction II } \\ \hline \end{array}$	G163
K0107	Internal actual current value, signed (armature), averaged over the last 6 current peaks in each case, normalized to rated motor current [SW 1.9 and later]	$16384 \wedge 100 \%$ of P100	G162
K0109	Internal signed actual current value (armature), averaged over the last 6 current peaks in each case	$16384 \wedge 100 \%$	G162
K0110	Current controller output (armature)	$16384 \wedge 100 \%$	G162
K0111	Current controller output, P component (armature)	$16384 \wedge 100 \%$	G162
K0112	Current controller output, I component (armature)	$16384 \wedge 100 \%$	G162
K0113	Current controller actual value/setpoint deviation (armature)	$16384 \wedge 100 \%$	G162
K0114	Internal signed actual current value (armature), averaged over one firing cycle	$16384 \wedge 100 \%$	G162
K0115	Current controller actual value (armature)	$16384 \wedge 100 \%$	G162
K0116	Absolute value of internal actual current (armature)	$16384 \wedge 100 \%$	G162
K0117	Internal signed actual current value (armature)	$16384 \wedge 100 \%$	G162
K0118	Current controller setpoint (armature)	$16384 \wedge 100 \%$	G162
K0119	Current controller setpoint (armature) before absolute-value generation	$16384 \wedge 100 \%$	G162
K0120	Current setpoint (armature) before reduced gear stressing	$16384 \wedge 100 \%$	G161
K0121	Precontrol output (armature)	$\begin{aligned} & 16384 \triangleq 0^{\circ} \\ & 0 \triangleq 90^{\circ} \\ & -16384 \triangleq 180^{\circ} \end{aligned}$	G162
K0122	EMF which is applied as an input value for the armature precontrol (generated from K0123 or K0124 depending on P162, filtered acc. to P163)	$16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}$	G162
K0123	$E M F=U_{a}-l_{a}{ }^{*} R_{a}-L_{a}{ }^{*} d_{a} / d t$, where the measured armature voltage is applied as U_{a} (Note: K0287 is the result of PT1 filtering with 10 ms)	$16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}$	
K0124	EMF $=U_{a}-l_{a}{ }^{*} R_{a}-L_{a}{ }^{*} d i a_{a} / \mathrm{dt}$, where the armature voltage calculated from the delay angle, measured armature conduction interval and mean line voltage is applied as U_{a}. If this calculation cannot be made or is insufficiently accurate (e.g. with a conduction angle $<10^{\circ}$, average armature current value $<2 \%$ in r072.002), K0124 assumes the value set in K0123.	$16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}$	
K0125	Armature current setpoint after reduced gearbox stressing or current setpoint integrator		G162

Current limitation			
K0131	Lowest positive current limit (armature)	$16384 \wedge 100 \%$	G161
K0132	Highest negative current limit (armature)	$16384 \triangleq 100 \%$	G161
K0133	Current setpoint (armature) before limitation (incl. additional setpoint)	$16384 \wedge 100 \%$	G161
K0134	Current setpoint (armature) before torque limitation	$16384 \triangleq 100 \%$	G160

Torque limitation, speed limiting controller

Normalization of torque connectors:
An armature current corresponding to 100% of the converter rated DC current (r072.002) with a motor flux (K0290) corresponding to 100% of the rated motor field current (P102) produces a torque of 100%.
Note:
Whether connectors K0140, K0141, K0145 and K0147 act as the torque setpoint or the current setpoint depends on P170 (setting determines which quantity is divided by motor flux).

K0136	Speed limiting controller, active torque limit 1	$16384 \wedge 100 \%$	G160
K0137	Speed limiting controller, active torque limit 2	$16384 \wedge 100 \%$	G160
K0140	Torque setpoint (after speed limiting controller)	$16384 \wedge 100 \%$	G160
K0141	Torque setpoint (after torque limitation)	$16384 \wedge 100 \%$	G160
K0142	Actual torque value	$16384 \wedge 100 \%$	G162
K0143	Upper torque limit	$16384 \wedge 100 \%$	G160
K0144	Lower torque limit	$16384 \wedge 100 \%$	G160

Connector	Description	Normalization	Function diag., Sheet
K0145	Torque setpoint before limitation (incl. additional setpoint)	$16384 \wedge 100 \%$	G160
K0147	Torque setpoint before limitation (without additional setpoint)	$16384 \wedge 100 \%$	G160
K0148	Torque setpoint (from speed controller)	$16384 \wedge 100 \%$	G152
K0149	Torque actual value related to P100 *P102 2.0 and later]	$16384 \wedge 100 \%$	G162

Compensation of moment of inertia (dv/dt injection)			
K0150	Component of precontrol for speed controller calculated from d(K0168)/dt * P540	$16384 \wedge 100 \%$	G153
K0152	Component of precontrol for speed controller calculated from $f(K 0164)$ * P541 (= function of speed actual value/setpoint deviation in K0164)	$16384 \wedge 100 \%$	G153

Speed controller

Setpoint processing, ramp-function generator, friction and moment of inertia compensation

K0160	Speed controller output	$16384 \wedge 100 \%$	G152
K0161	P component	$16384 \wedge 100 \%$	G152
K0162	I component	$16384 \wedge 100 \%$	G152
K0164	Setpoint/actual value deviation	$16384 \wedge 100 \%$	G152
K0165	Generation of setpoint/actual value deviation output	$16384 \wedge 100 \%$	G152
K0166	Selected actual speed value (absolute value)	$16384 \wedge 100 \%$	G151
K0167	Selected actual speed value (signed)	$16384 \wedge 100 \%$	G151
K0168	D component output * (-1)	$16384 \wedge 100 \%$	G152
K0169	D component output	$16384 \wedge 100 \%$	G152
K0170	Speed setpoint from ramp-function generator after limitation	$16384 \wedge 100 \%$	G137
K0171	Precontrol for speed controller (friction and moment of inertia compensation)	$16384 \wedge 100 \%$	G153
K0172	Component of precontrol determined by friction for speed controller	$16384 \wedge 100 \%$	G153
K0173	Filtered component of precontrol determined by moment of inertia for speed controller	$16384 \wedge 100 \%$	G153
K0174	Filtering element output for nset filtering	$16384 \wedge$, 100%	G152
K0176	Speed droop	$16384 \wedge 100 \%$	G151
K0177	Band-stop output 1	$16384 \wedge 100 \%$	G152
K0178	Band-stop output 2	$16384 \wedge 100 \%$	G152
K0179	Filtering element output for nact filtering	$16384 \wedge 100 \%$	G152
K0181	Lowest positive setpoint limit	$16384 \wedge 100 \%$	G137
K0182	Highest negative setpoint limit	$16384 \wedge 100 \%$	G137
K0183	Speed setpoint before limitation	$16384 \wedge 100 \%$	G137
K0190	Ramp-function generator output (before speed setpoint limitation)	$16384 \wedge 100 \%$	G136
K0191	dv/dt (rise in ramp-function generator output in time period set in P542)	$16384 \wedge 100 \%$	G136
K0192	Effective ramp-function generator input variable	$16384 \wedge 100 \%$	G136
K0193	Setpoint input for ramp-function generator	$16384 \wedge 100 \%$	G135
K0194	Total of main setpoint (limited) + additional setpoint	$16384 \wedge 100 \%$	G135
K0195	Ramp-function generator input before the setpoint reduction	$16384 \wedge 100 \%$	G135
K0196	Effective positive limit for main setpoint	$16384 \wedge 100 \%$	G135
K0197	Effective negative limit for main setpoint	$16384 \wedge 100 \%$	G135
K0198	Main setpoint before limitation	$16384 \wedge 100 \%$	G135

Crawling setpoint, inching setpoint, oscillation, fixed setpoint			
K0201	Crawling setpoint	$16384 \wedge 100 \%$	G 130
K0202	Inching setpoint	$16384 \wedge 100 \%$	G 129

Connector	Description	Normalization	Function diag., Sheet
K0203	Oscillation setpoint	$16384 \wedge 100 \%$	G128
K0204	Fixed setpoint	$16384 \wedge 100 \%$	G127
K0206	Crawling setpoint: Output value of function block	$16384 \wedge 100 \%$	G130
K0207	Inching setpoint: Output value of function block	$16384 \wedge 100 \%$	G129
K0208	Oscillation: Output value of function block	$16384 \wedge 100 \%$	G128
K0209	Fixed setpoint: Output value of function block	$16384 \wedge 100 \%$	G127

Connector selector switches						
K0230	Output of connector selector switch 1	[SW 1.9 and later]	$1 \triangleq 1$	G124		
K0231	Output of connector selector switch 2	[SW 1.9 and later]	$1 \triangleq 1$	G124		

Motorized potentiometer					$16384 \wedge 100 \%$	G126
K0240	Motorized potentiometer output (setpoint from potentiometer)	$16384 \wedge 100 \%$	G126			
K0241	dy/dt (rise in ramp-function generator output in time period set in P542 + P465)	$16384 \wedge 100 \%$	G126			
K0242	Ramp-function generator input in motorized potentiometer (setpoint)					

Closed-loop field current control, field gating unit			
K0250	Firing angle (field)	$\begin{aligned} & 16384 \triangleq 0^{\circ} \\ & 0 \triangleq 90^{\circ} \\ & -16384 \cong 180^{\circ} \end{aligned}$	G166
K0251	Firing angle (field) before limitation	$\begin{aligned} & 16384 \triangleq 0^{\circ} \\ & 0 \triangleq 90^{\circ} \\ & -16384 \triangleq 180^{\circ} \end{aligned}$	G166
K0252	Precontrol value + field current controller output (gating unit input)	$\begin{aligned} & 16384 \triangleq 0^{\circ} \\ & 0 \triangleq 90^{\circ} \\ & -16384 \triangleq 180^{\circ} \end{aligned}$	G166
K0260	Current controller output (field)	$16384 \wedge 100 \%$	G166
K0261	Current controller P component (field)	$16384 \wedge 100 \%$	G166
K0262	Current controller I component (field)	$16384 \wedge 100 \%$	G166
K0263	Current controller setpoint/actual value deviation (field)	$16384 \wedge 100 \%$	G166
K0265	Actual value at field current controller input	$16384 \wedge$ 100\%	G166
K0266	Absolute internal actual current value (field)	$16384 \wedge 100 \%$	G166
K0268	Setpoint at field current controller input	$16384 \wedge$ 100\%	G166
K0271	Precontrol output (field)	$16384 \wedge 100 \%$	G166

Closed-loop EMF control			
K0273	Lowest positive current limit (field)	$16384 \wedge 100 \%$	G165
K0274	Lowest negative current limit (field)	$16384 \wedge 100 \%$	G165
K0275	Current controller setpoint (field) before standstill field	$16384 \wedge 100 \%$	G165
K0276	Current controller setpoint (field) before limitation	$16384 \wedge 100 \%$	G165
K0277	Current controller setpoint (field) before summing stage at limiter input	$16384 \wedge 100 \%$	G165
K0278	Precontrol value + EMF controller output	$16384 \wedge 100 \%$	G165
K0280	EMF controller output	$16384 \wedge 100 \%$	G165
K0281	P component of EMF controller	$16384 \wedge 100 \%$	G165
K0282	I component of EMF controller	$16384 \wedge 100 \%$	G165
K0283	EMF controller, setpoint/actual value deviation	$16384 \wedge 100 \%$	G165
K0284	EMF controller, setpoint/actual value deviation after droop	$16384 \wedge 100 \%$	G165
K0285	EMF controller actual value	$16384 \wedge \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}$	G165
K0286	Absolute value of actual EMF	$16384 \wedge \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}$	G165

Connector	Description	Normalization	Function diag., Sheet
K0287	Signed actual EMF value	$16384 \wedge \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}$	G165
K0288	EMF controller setpoint	$16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}$	G165
K0289	EMF setpoint	$16384 \triangleq \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}$	G165
K0290	Motor flux	$16384 \cong 100 \%$ 100% motor flux is reached at rated motor field current (P102)	G166
K0291	Absolute actual armature voltage	$16384 \wedge \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}$	
K0292	Signed actual armature voltage	$16384 \wedge \mathrm{P} 078.001 * \frac{3 \sqrt{2}}{\pi}$	
K0293	Precontrol output (EMF)	$16384 \wedge 100 \%$	G165

General connectors			
K0301	Line voltage U-V (armature)	$16384 \wedge$ P078.001	
K0302	Line voltage V-W (armature)	$16384 \wedge$ P078.001	
K0303	Line voltage W-U (armature)	$16384 \wedge$ P078.001	
K0304	Line voltage (field)	$16384 \wedge 400 \mathrm{~V}$	
K0305	Average line voltage (armature), filtered	$16384 \wedge$ P078.001	
K0306	Line frequency	$16384 \wedge 50,0 \mathrm{~Hz}$	
K0307	Motor power output Normalization: $16384 \triangleq$ P100 * (P101 - P100 * P110)	see Column 2	
K0309	Calculated motor temperature rise Normalization: $16384 \wedge$ the overtemperature which is reached at a continuous current corresponding to the rated motor armature current	see Column 2	
K0310	no meaning		
K0311	Hours run [SW 1.9 and later]	$1 \wedge 1 \mathrm{~h}$	G189
K0312	Hours run / 10 [SW 2.25 and later]	$1 \triangleq 10 \mathrm{~h}$	

Fixed setpoints			
K0401	Fixed value 1 (P401)	$16384 \wedge 100 \%$	G120
K0402	Fixed value 2 (P402)	$16384 \wedge 100 \%$	G120
K0403	Fixed value 3 (P403)	$16384 \wedge 100 \%$	G120
K0404	Fixed value 4 (P404)	$16384 \wedge 100 \%$	G120
K0405	Fixed value 5 (P405)	$16384 \wedge 100 \%$	G120
K0406	Fixed value 6 (P406)	$16384 \wedge 100 \%$	G120
K0407	Fixed value 7 (P407)	$16384 \wedge 100 \%$	G120
K0408	Fixed value 8 (P408)	$16384 \wedge 100 \%$	G120
K0409	Fixed value 9 (P409)	$16384 \wedge 100 \%$	G120
K0410	Fixed value 10 (P410)	$16384 \wedge 100 \%$	G120
K0411	Fixed value 11 (P411)	$16384 \wedge 100 \%$	G120
K0412	Fixed value 12 (P412)	$16384 \wedge 100 \%$	G120
K0413	Fixed value 13 (P413)	$16384 \wedge 100 \%$	G120
K0414	Fixed value 14 (P414)	$16384 \wedge 100 \%$	G120
K0415	Fixed value 15 (P415)	$16384 \wedge 100 \%$	G120
K0416	Fixed value 16 (P416)	$16384 \wedge 100 \%$	G120

Connector	Description	Normalization	Function diag., Sheet
Start pulse for the speed controller	$16384 \wedge 100 \%$ of P100	G150	
K0451	Fixed setting value 1 for the n controller I component	$16384 \wedge 100 \%$ of P100	G150
K0452	Setting value 1 for the n controller I component, weighted	$16384 \wedge 100 \%$ of P100	G150
K0453	Fixed setting value 2 for the n controller I component	$16384 \wedge 100 \%$ of P100	G150
K0454	Setting value for the n controller I component		

4-step master switch								
K0510	Setpoint of the 4-step master switch	$16384 \wedge 100 \%$	G125					

Connectors for SIMOREG DC-MASTER Converter Commutation Protector (SIMOREG CCP)		[SW 2.1 and later]
K0574 - K0577	See Operating Instructions SIMOREG CCP	

General connectors			
K0800	Operating status (code number) with one decimal place		
K0801	Latest fault and alarm message Low byte: Latest alarm message If several alarms are active simultaneously, the alarm with the lowest number if displayed here. Value "0" means that no alarm is active.	$\mathrm{G189}$	
$\mathbf{K 0 8 1 0}$	Limitation bits The meaning of these bits is described in Section 11, Parameter List, under Varameter r040.		

K0900	Optimization run, setpoint 0		
K0901	Optimization run, setpoint 1		
K0902	Optimization run, setpoint 2		
K0903	Optimization run, setpoint 3		
K0904	Optimization run, setpoint 4		

Connectors for raw data of pulse encoder evaluation			
K0910	Measuring time for speed evaluation of pulse encoder 1 corresponds to 41.6666 ns if K0912 = xxxx xx0x (divisor 1:1) 1 corresponds to 83.3333 ns if K0912 = xxxx x01x (divisor 1:2) 1 corresponds to 166.666 ns if K0912 = xxxx x11x (divisor 1:4) This value is always slightly higher than the measuring time set in P147.		G145
K0911	Number of pulses during measuring time set in K0910 The speed of the pulse encoder can be calculated from connectors K0910, K0911 and K0912 by the following equation: $n_{\text {act }}[\mathrm{rev} / \mathrm{s}]=\frac{K 0911 * 24000000}{\text { Pulse no. of encoder } * \text { Meas. time }}$ Pulse number of encoder $=1 * \mathrm{P} 141$, if K0912 = xx0x xxxx (1x evaluation) Pulse number of encoder $=2 *$ P141, if K0912 = x01x xxxx (2x evaluation) Pulse number of encoder $=4 *$ P141, if K0912 = x11x xxxx (4x evaluation) Meas. time $=$ 1* * K0910 if K0912 $=$ xxxx xx0x (divisor 1:1) Meas. time $=2^{*}$ K0910 if K0912 = xxxx x01x (divisor 1:2) Meas. time $=4^{*}$ K0910 if K0912 $=$ xxxx x11x (divisor 1:4)		G145

Connector	Description	Normalization	Function diag., Sheet
K0912	Status of speed evaluation of pulse encoder xxxx xxx0 = asynchronous measurement xxxx xxx1 = (gating-pulse-)synchronized measurement xxxx xx0x = divisor 1:1 xxxx x01x = divisor 1:2 xxxx x11x = divisor 1:4 xxx0 0xxx = pulse encoder type1 (P140 = 1) xxx1 0xxx = pulse encoder type1a $\quad(\mathrm{P} 140=2)$ xxx0 1xxx = pulse encoder type2 (P140 = 3) xxx1 1xxx = pulse encoder type3 $(\mathrm{P} 140=4)$ $x x 0 x \mathrm{xxxx}=1 \mathrm{x}$ evaluation $x 01 x \mathrm{xxxx}=2 \mathrm{x}$ evaluation $x 11 x \mathrm{xxxx}=4 \mathrm{x}$ evaluation $0 x x x$ xxxx = No pulse encoder error $1 x x x$ xxxx = Pulse encoder signal states occurred during the measurement which may not occur on a rotating pulse encoder. They indicate a signal short circuit or an interruption in a pulse encoder signal. When the pulse encoder is stationary or oscillating around one position, signal states of this type are perfectly normal and do not indicate a signal fault.		G145

K0960	Time interval between averaged line synchronization time reference point and "unfiltered" zero crossing of scanned and software-filtered line voltage in $1.334 \mu \mathrm{~s}$ (when P152 = 1 to 20)	$1 \triangleq 1,334 \mu \mathrm{~s}$	
K0970	Positive line zero crossing of phase U-V (as T1 instant)		
K0971	Negative line zero crossing of phase W-U (as T1 instant)		
K0972	Positive line zero crossing of phase V-W (as T1 instant)		
K0973	Negative line zero crossing of phase U-V (as T1 instant)		
K0974	Positive line zero crossing of phase W-U (as T1 instant)		
K0975	Negative line zero crossing of phase V-W (as T1 instant)		
K0976	Positive line zero crossing, field supply		
K0977	Negative line zero crossing, field supply		
K0980	Cycle time of the asynchronous part of the armature firing interrupt (at the C167 processor) and, at the same time, the cycle time of the fastest time slot (time slot 1) at the C163/C165 processor [as of SW2.22]		
K0981	Filtered C163/C165 total processor utilization K9990, which is also used to control the processor utilization through variation of the cycle time of the asynchronous part of the armature firing interrupt [as of SW2.22]		
K0982	Filtered C167 total processor utilization K0990, which is also used to control the processor utilization through variation of the cycle time of the asynchronous part of the armature firing interrupt [as of SW2.22]		
K0984	Last line zero crossing used (as T1 instant) (field)		
K0985	Field firing instant (as T1 instant)		
K0986	Last line zero crossing used (as T1 instant) (armature)		
K0987	Armature firing instant (as T1 instant)		
K0988	Firing pulse cycle time (time difference between current and previous armature firing instant) in T1 increments of $1.334 \mu \mathrm{~s}$ each		

Connector	Description	Normalization	Function diag., Sheet
K0989	Information about torque direction and firing angle Nibble 0 .. Torque direction $0 \text { = M0 (--) }$ 1 = MI 2 = MII $9=$ The master waits in M0 until all slaves have reached the RUN state Nibble 1 .. Code number for firing angle 1 = Firing angle requested by current controller+precontrol implemented 2 = Firing angle requested by current controller+precontrol was > P151. It has been implemented or limited to 165° $3=$ Alpha-W pulse at 165° 4 = Alpha-W pulse at P151 angle setting $5=$ Firing angle requested by current controller+precontrol could not be implemented due to strong pulse compression 6 = Slave connected in parallel could not adapt its computing cycle to the firing angle of the paralleling master $7=$ No firing angle received from paralleling master $8=$ The cycle time received from the paralleling master is too long $9=$ The firing angle of the paralleling master has been implemented Nibble 2 .. Code number for requested torque direction 0 : Not RUN (≥ 01.0) 1: Torque direction acc. to current setpoint K119 (==> MO, MI, MII) 2: Wait for enable from parallel drive [acc. to P165] (==> M0) 3: Firing angle of >165 degrees requested (==> M0) 4: Additional wait time in auto-reversing stage (==> M0) 5: Output 165-degree pulse without second pulse in the old torque direction (==> MI, MII) 6: Output Alpha-W pulse (as set in P151) without second pulse in the old torque direction (==> MI, MII) 7: Torque direction request during short-circuit test of thyristor check function (==> MI) 8: Torque direction request during open circuit test of thyristor check function (==> MO, MI, MII) 9: The selected thyristor pair is disabled during thyristor check (==> MO) A: No meaning B: Torque direction of paralleling is being implemented (==> MO, MI, MII) C: Simulation operation (==> MI, MII) [SW 1.8 and later] D: The command "Fire all thyristors simultaneously" is being executed (see also under P0176) [SW 1.8 and later] E: Output 165-degree pulse with second pulse in the old torque direction (==> MI, MII) (see also P0179) [SW 1.9 and later] F: Output Alpha-W pulse (as set in P151) with second pulse in the old torque direction (==> MI, MII) (see also P0179) [SW 1.9 and later] Nibble 3. Code number for zero current signal [SW 1.8 and later] 0 : The " $I=0$ " signal is not evaluated because no change in torque direction is required 1: $\mid<>0$ 2: $I=0$ for less than 0.1 msec 3: I $=0$ for more than 0.1 msec 4: I = 0 for more than 0.6 msec 5: la-act (K116) is $<1 \%$ for more than 6 current peaks		
K0990	Current total processor capacity utilization (C167)		
K0991	Projected total processor capacity utilization (C167) for line frequency $=65 \mathrm{~Hz}$		
K0992	Total processor capacity (C167) currently utilized by background routines		

Connector	Description	Normalization	Function diag., Sheet
K0993	Total processor capacity (C167) currently utilized by routines synchronized with field firing pulses		
K0994	Total processor capacity (C167) currently utilized by routines synchronized with armature firing pulses		

Serial interface 1 (USS1 on G-SST1)				
K2001	USS1 receive data, word 1		$1 \triangleq 1$	G170
K2002	USS1 receive data, word 2		$1 \wedge 1$	G170
K2003	USS1 receive data, word 3		$1 \triangleq 1$	G170
K2004	USS1 receive data, word 4		$1 \triangleq 1$	G170
K2005	USS1 receive data, word 5		$1 \triangleq 1$	G170
K2006	USS1 receive data, word 6		$1 \triangleq 1$	G170
K2007	USS1 receive data, word 7		$1 \triangleq 1$	G170
K2008	USS1 receive data, word 8		$1 \triangleq 1$	G170
K2009	USS1 receive data, word 9		$1 \triangleq 1$	G170
K2010	USS1 receive data, word 10		$1 \triangleq 1$	G170
K2011	USS1 receive data, word 11		$1 \triangleq 1$	G170
K2012	USS1 receive data, word 12		$1 \triangleq 1$	G170
K2013	USS1 receive data, word 13		$1 \wedge 1$	G170
K2014	USS1 receive data, word 14		$1 \triangleq 1$	G170
K2015	USS1 receive data, word 15		$1 \wedge 1$	G170
K2016	USS1 receive data, word 16		$1 \triangleq 1$	G170
K2020	Output of binector/connector converter for G-SST1		$1 \triangleq 1$	G170
KK2031	USS1 receive data, word 1 and 2	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2032	USS1 receive data, word 2 and 3	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2033	USS1 receive data, word 3 and 4	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2034	USS1 receive data, word 4 and 5	[SW 2.0 and later]	$1 \wedge 1$	G169
KK2035	USS1 receive data, word 5 and 6	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2036	USS1 receive data, word 6 and 7	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2037	USS1 receive data, word 7 and 8	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2038	USS1 receive data, word 8 and 9	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2039	USS1 receive data, word 9 and 10	[SW 2.0 and later]	$1 \wedge 1$	G169
KK2040	USS1 receive data, word 10 and 11	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2041	USS1 receive data, word 11 and 12	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2042	USS1 receive data, word 12 and 13	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2043	USS1 receive data, word 13 and 14	[SW 2.0 and later]	$1 \wedge 1$	G169
KK2044	USS1 receive data, word 14 and 15	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK2045	USS1 receive data, word 15 and 16	[SW 2.0 and later]	$1 \triangleq 1$	G169

Process data exchange with $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$

K3001	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1	$1 \triangleq 1$	Z110
K3002	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2	$1 \triangleq 1$	Z110
K3003	Receive data from $1^{\text {st }} \mathrm{CB} /$ TB, word 3	$1 \triangleq 1$	Z110
K3004	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4	$1 \triangleq 1$	Z110
K3005	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5	$1 \triangleq 1$	Z110
K3006	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6	$1 \triangleq 1$	Z110
K3007	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7	$1 \triangleq 1$	Z110
K3008	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8	$1 \triangleq 1$	Z110
K3009	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9	$1 \triangleq 1$	Z110
K3010	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 10	$1 \triangleq 1$	Z110
K3011	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 11	$1 \triangleq 1$	Z110

Connector	Description		Normalization	Function diag., Sheet
K3012	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 12		$1 \wedge 1$	Z110
K3013	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 13		$1 \triangleq 1$	Z110
K3014	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 14		$1 \wedge 1$	Z110
K3015	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 15		$1 \wedge 1$	Z110
K3016	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 16		$1 \triangleq 1$	Z110
K3020	Output of binector/connector converter for $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$	[SW 1.9 and later]	$1 \wedge 1$	Z110
KK3031	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1 and 2	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK3032	Receive data from $1^{\text {st }} \mathrm{CB} /$ TB, word 2 and 3	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK3033	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3 and 4	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK3034	Receive data from $1^{\text {st }} \mathrm{CB} /$ TB, word 4 and 5	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK3035	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5 and 6	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK3036	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6 and 7	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK3037	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7 and 8	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK3038	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8 and 9	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK3039	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9 and 10	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK3040	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 10 and 11	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK3041	Receive data from $1^{\text {st }} \mathrm{CB} /$ TB, word 11 and 12	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK3042	Receive data from $1^{\text {st }}$ CB/TB, word 12 and 13	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK3043	Receive data from $1^{\text {st }} \mathrm{CB} /$ TB, word 13 and 14	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK3044	Receive data from $1^{\text {st }}$ CB/TB, word 14 and 15	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK3045	Receive data from $1^{\text {st }} \mathrm{CB} /$ TB, word 15 and 16	[SW 2.0 and later]	$1 \triangleq 1$	Z124

SCB1 with SCI1				
K4101	SCI, slave 1, analog input 1	[SW 1.9 and later]	$1 \triangleq 1$	Z150
K4102	SCI, slave 1, analog input 2	[SW 1.9 and later]	$1 \triangleq 1$	Z150
K4103	SCI, slave 1, analog input 3	[SW 1.9 and later]	$1 \wedge 1$	Z150
K4201	SCI, slave 2, analog input 1	[SW 1.9 and later]	$1 \triangleq 1$	Z151
K4202	SCI, slave 2, analog input 2	[SW 1.9 and later]	$1 \wedge 1$	Z151
K4203	SCI, slave 2, analog input 3	[SW 1.9 and later]	$1 \triangleq 1$	Z151

Expansion boards			
K5101	1st analog input of 1st plugged EB1	$16384 \wedge 100 \%$	Z112
K5102	2nd analog input of 1st plugged EB1	$16384 \wedge 100 \%$	Z112
K5103	3rd analog input of 1st plugged EB1	$16384 \wedge 100 \%$	Z112
K5104	1st analog output of 1st plugged EB1	$16384 \wedge 100 \%$	Z113
K5105	2nd analog output of 1st plugged EB1	$16384 \wedge 100 \%$	Z113
K5106	Binary inputs and outputs of 1st plugged EB1	$1 \wedge 1$	Z114
K5111	Analog input of 1st plugged EB2	$16384 \wedge 100 \%$	Z118
K5112	Analog output of 1st plugged EB2	$16384 \wedge 100 \%$	Z118
K5113	Binary inputs and outputs of 1st plugged EB2	$1 \triangleq 1$	Z118
K5201	1st analog input of 2nd plugged EB1	$16384 \wedge 100 \%$	Z115
K5202	2nd analog input of 2nd plugged EB1	$16384 \wedge 100 \%$	Z115
K5203	3rd analog input of 2nd plugged EB1	$16384 \wedge 100 \%$	Z115
K5204	1st analog output of 2nd plugged EB1	$16384 \wedge 100 \%$	Z116
K5205	2nd analog output of 2nd plugged EB1	$16384 \wedge 100 \%$	Z116
K5206	Binary inputs and outputs of 2nd plugged EB1	$1 \triangleq 1$	Z117
K5211	Analog input of 2nd plugged EB2	$16384 \wedge 100 \%$	Z119
K5212	Analog output of 2nd plugged EB2	$16384 \wedge 100 \%$	Z119
K5213	Binary inputs and outputs of 2nd plugged EB2	$1 \triangleq 1$	Z119

Connector	Description	Normalization	Function diag., Sheet
Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2)			
K6001	USS2 / Peer2 receive data, word 1	$1 \triangleq 1$	G171, G173
K6002	USS2 / Peer2 receive data, word 2	$1 \triangleq 1$	G171, G173
K6003	USS2 / Peer2 receive data, word 3	$1 \triangleq 1$	G171, G173
K6004	USS2 / Peer2 receive data, word 4	$1 \triangleq 1$	G171, G173
K6005	USS2 / Peer2 receive data, word 5	$1 \triangleq 1$	G171, G173
K6006	USS2 receive data, word 6	$1 \wedge 1$	G171
K6007	USS2 receive data, word 7	$1 \wedge 1$	G171
K6008	USS2 receive data, word 8	$1 \triangleq 1$	G171
K6009	USS2 receive data, word 9	$1 \triangleq 1$	G171
K6010	USS2 receive data, word 10	$1 \triangleq 1$	G171
K6011	USS2 receive data, word 11	$1 \wedge 1$	G171
K6012	USS2 receive data, word 12	$1 \wedge 1$	G171
K6013	USS2 receive data, word 13	$1 \triangleq 1$	G171
K6014	USS2 receive data, word 14	$1 \wedge 1$	G171
K6015	USS2 receive data, word 15	$1 \wedge 1$	G171
K6016	USS2 receive data, word 16	$1 \triangleq 1$	G171
K6020	Output of binector/connector converter for G-SST2	$1 \triangleq 1$	G171, G173

Paralleling interface

K6021	Word 1 from master / Word 1 from slave with address 2	$1 \wedge 1$	G195
K6022	Word 2 from master / Word 2 from slave with address 2	$1 \triangleq 1$	G195
K6023	Word 3 from master / Word 3 from slave with address 2	$1 \triangleq 1$	G195
K6024	Word 4 from master / Word 4 from slave with address 2	$1 \triangleq 1$	G195
K6025	Word 5 from master / Word 5 from slave with address 2	$1 \triangleq 1$	G195
K6031	Word 1 from slave with address 3	$1 \triangleq 1$	G195
K6032	Word 2 from slave with address 3	$1 \wedge 1$	G195
K6033	Word 3 from slave with address 3	$1 \triangleq 1$	G195
K6034	Word 4 from slave with address 3	$1 \triangleq 1$	G195
K6035	Word 5 from slave with address 3	$1 \wedge 1$	G195
K6041	Word 1 from slave with address 4	$1 \triangleq 1$	G195
K6042	Word 2 from slave with address 4	$1 \triangleq 1$	G195
K6043	Word 3 from slave with address 4	$1 \triangleq 1$	G195
K6044	Word 4 from slave with address 4	$1 \wedge 1$	G195
K6045	Word 5 from slave with address 4	$1 \triangleq 1$	G195
K6051	Word 1 from slave with address 5	$1 \triangleq 1$	G195
K6052	Word 2 from slave with address 5	$1 \wedge 1$	G195
K6053	Word 3 from slave with address 5	$1 \triangleq 1$	G195
K6054	Word 4 from slave with address 5	$1 \triangleq 1$	G195
K6055	Word 5 from slave with address 5	$1 \triangleq 1$	G195
K6061	Word 1 from slave with address 6	$1 \triangleq 1$	G195
K6062	Word 2 from slave with address 6	$1 \triangleq 1$	G195
K6063	Word 3 from slave with address 6	$1 \triangleq 1$	G195
K6064	Word 4 from slave with address 6	$1 \triangleq 1$	G195
K6065	Word 5 from slave with address 6	$1 \triangleq 1$	G195

Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2)				
KK6081	USS2 / Peer2 receive data, word 1 and 2	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK6082	USS2 / Peer2 receive data, word 2 and 3	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK6083	USS2 / Peer2 receive data, word 3 and 4	[SW 2.0 and later]	$1 \triangleq 1$	G169

Connector	Description		Normalization	Function diag., Sheet
KK6084	USS2 / Peer2 receive data, word 4 and 5	[SW 2.0 and later]	$1 \wedge 1$	G169
KK6085	USS2 receive data, word 5 and 6	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK6086	USS2 receive data, word 6 and 7	[SW 2.0 and later]	$1 \wedge 1$	G169
KK6087	USS2 receive data, word 7 and 8	[SW 2.0 and later]	$1 \wedge 1$	G169
KK6088	USS2 receive data, word 8 and 9	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK6089	USS2 receive data, word 9 and 10	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK6090	USS2 receive data, word 10 and 11	[SW 2.0 and later]	$1 \wedge 1$	G169
KK6091	USS2 receive data, word 11 and 12	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK6092	USS2 receive data, word 12 and 13	[SW 2.0 and later]	$1 \wedge 1$	G169
KK6093	USS2 receive data, word 13 and 14	[SW 2.0 and later]	$1 \wedge 1$	G169
KK6094	USS2 receive data, word 14 and 15	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK6095	USS2 receive data, word 15 and 16	[SW 2.0 and later]	$1 \triangleq 1$	G169

Process data exchange with SIMOLINK				
K7001	Receive data from SIMOLINK, word 1		$1 \triangleq 1$	Z122
K7002	Receive data from SIMOLINK, word 2		$1 \triangleq 1$	Z122
K7003	Receive data from SIMOLINK, word 3		$1 \triangleq 1$	Z122
K7004	Receive data from SIMOLINK, word 4		$1 \wedge 1$	Z122
K7005	Receive data from SIMOLINK, word 5		$1 \wedge 1$	Z122
K7006	Receive data from SIMOLINK, word 6		$1 \triangleq 1$	Z122
K7007	Receive data from SIMOLINK, word 7		$1 \triangleq 1$	Z122
K7008	Receive data from SIMOLINK, word 8		$1 \triangleq 1$	Z122
K7009	Receive data from SIMOLINK, word 9		$1 \triangleq 1$	Z122
K7010	Receive data from SIMOLINK, word 10		$1 \triangleq 1$	Z122
K7011	Receive data from SIMOLINK, word 11		$1 \triangleq 1$	Z122
K7012	Receive data from SIMOLINK, word 12		$1 \triangleq 1$	Z122
K7013	Receive data from SIMOLINK, word 13		$1 \triangleq 1$	Z122
K7014	Receive data from SIMOLINK, word 14		$1 \triangleq 1$	Z122
K7015	Receive data from SIMOLINK, word 15		$1 \wedge 1$	Z122
K7016	Receive data from SIMOLINK, word 16		$1 \triangleq 1$	Z122
KK7031	Receive data from SIMOLINK, word 1 and 2	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK7032	Receive data from SIMOLINK, word 2 and 3	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK7033	Receive data from SIMOLINK, word 3 and 4	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK7034	Receive data from SIMOLINK, word 4 and 5	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK7035	Receive data from SIMOLINK, word 5 and 6	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK7036	Receive data from SIMOLINK, word 6 and 7	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK7037	Receive data from SIMOLINK, word 7 and 8	[SW 2.0 and later]	$1 \wedge 1$	Z124
K7101	Receive data from SIMOLINK, special data word 1		$1 \wedge 1$	Z122
K7102	Receive data from SIMOLINK, special data word 2		$1 \triangleq 1$	Z122
K7103	Receive data from SIMOLINK, special data word 3		$1 \wedge 1$	Z122
K7104	Receive data from SIMOLINK, special data word 4		$1 \triangleq 1$	Z122
K7105	Receive data from SIMOLINK, special data word 5		$1 \wedge 1$	Z122
K7106	Receive data from SIMOLINK, special data word 6		$1 \triangleq 1$	Z122
K7107	Receive data from SIMOLINK, special data word 7		$1 \triangleq 1$	Z122
K7108	Receive data from SIMOLINK, special data word 8		$1 \triangleq 1$	Z122
KK7131	Receive data from SIMOLINK, special data word 1 and 2	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK7132	Receive data from SIMOLINK, special data word 2 and 3	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK7133	Receive data from SIMOLINK, special data word 3 and 4	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK7134	Receive data from SIMOLINK, special data word 4 and 5	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK7135	Receive data from SIMOLINK, special data word 5 and 6	[SW 2.0 and later]	$1 \triangleq 1$	Z124

Connector	Description	Normalization	Function diag., Sheet
KK7136	Receive data from SIMOLINK, special data word 6 and 7	[SW 2.0 and later]	$1 \triangleq 1$
KK7137	Receive data from SIMOLINK, special data word 7 and 8	[SW 2.0 and later]	$1 \triangleq 1$

Process data exchange with $2^{\text {nd }} \mathbf{C B}$				
K8001	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1		$1 \wedge 1$	Z111
K8002	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2		$1 \triangleq 1$	Z111
K8003	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3		$1 \wedge 1$	Z111
K8004	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4		$1 \triangleq 1$	Z111
K8005	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5		$1 \triangleq 1$	Z111
K8006	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6		$1 \triangleq 1$	Z111
K8007	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7		$1 \wedge 1$	Z111
K8008	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8		$1 \triangleq 1$	Z111
K8009	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9		$1 \wedge 1$	Z111
K8010	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 10		$1 \wedge 1$	Z111
K8011	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 11		$1 \triangleq 1$	Z111
K8012	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 12		$1 \wedge 1$	Z111
K8013	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 13		$1 \wedge 1$	Z111
K8014	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 14		$1 \triangleq 1$	Z111
K8015	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 15		$1 \wedge 1$	Z111
K8016	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 16		$1 \triangleq 1$	Z111
K8020	Output of binector/connector converter for $2^{\text {nd }} \mathrm{CB}$	[SW 1.9 and later]	$1 \wedge 1$	Z111
KK8031	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1 and 2	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK8032	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2 and 3	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK8033	Receive data from $2^{\text {nd }} C B$, word 3 and 4	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK8034	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4 and 5	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK8035	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5 and 6	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK8036	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6 and 7	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK8037	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7 and 8	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK8038	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8 and 9	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK8039	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 9 and 10	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK8040	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 10 and 11	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK8041	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 11 and 12	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK8042	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 12 and 13	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK8043	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 13 and 14	[SW 2.0 and later]	$1 \triangleq 1$	Z124
KK8044	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 14 and 15	[SW 2.0 and later]	$1 \wedge 1$	Z124
KK8045	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 15 and 16	[SW 2.0 and later]	$1 \wedge 1$	Z124

Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)			
K9001	USS3 / Peer3 receive data, word 1	$1 \triangleq 1$	G172, G174
K9002	USS3 / Peer3 receive data, word 2	$1 \triangleq 1$	G172, G174
K9003	USS3 / Peer3 receive data, word 3	$1 \triangleq 1$	G172, G174
K9004	USS3 / Peer3 receive data, word 4	$1 \triangleq 1$	G172, G174
K9005	USS3 / Peer3 receive data, word 5	$1 \triangleq 1$	G172, G174
K9006	USS3 receive data, word 6	$1 \triangleq 1$	G172
K9007	USS3 receive data, word 7	$1 \triangleq 1$	G172
K9008	USS3 receive data, word 8	$1 \triangleq 1$	G172
K9009	USS3 receive data, word 9	$1 \triangleq 1$	G172
K9010	USS3 receive data, word 10	$1 \triangleq 1$	G172
K9011	USS3 receive data, word 11	$1 \triangleq 1$	G172
K9012	USS3 receive data, word 12	$1 \triangleq 1$	G172

Connector	Description		Normalization	Function diag., Sheet
K9013	USS3 receive data, word 13		$1 \wedge 1$	G172
K9014	USS3 receive data, word 14		$1 \triangleq 1$	G172
K9015	USS3 receive data, word 15		$1 \wedge 1$	G172
K9016	USS3 receive data, word 16		$1 \wedge 1$	G172
K9020	Output of binector/connector converter for G-SST3		$1 \triangleq 1$	G172, G174
KK9081	USS3 / Peer3 receive data, word 1 and 2	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9082	USS3 / Peer3 receive data, word 2 and 3	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9083	USS3 / Peer3 receive data, word 3 and 4	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9084	USS3 / Peer3 receive data, word 4 and 5	[SW 2.0 and later]	$1 \wedge 1$	G169
KK9085	USS3 receive data, word 5 and 6	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9086	USS3 receive data, word 6 and 7	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9087	USS3 receive data, word 7 and 8	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9088	USS3 receive data, word 8 and 9	[SW 2.0 and later]	$1 \wedge 1$	G169
KK9089	USS3 receive data, word 9 and 10	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9090	USS2 receive data, word 10 and 11	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9091	USS3 receive data, word 11 and 12	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9092	USS3 receive data, word 12 and 13	[SW 2.0 and later]	$1 \wedge 1$	G169
KK9093	USS3 receive data, word 13 and 14	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9094	USS3 receive data, word 14 and 15	[SW 2.0 and later]	$1 \triangleq 1$	G169
KK9095	USS3 receive data, word 15 and 16	[SW 2.0 and later]	$1 \triangleq 1$	G169

Technology software S00: Binector/connector converters				
K9113	Output of binector/connector converter 1	FB 13	$1 \triangleq 1$	B121
K9114	Output of binector/connector converter 2	FB 14	$1 \triangleq 1$	B121
K9115	Output of binector/connector converter 3	FB 15	$1 \triangleq 1$	B121

Technology software S00: Adders / Subtracters					
K9120	Output of adder/subtracter 1		FB 20	$16384 \triangleq 100 \%$	B125
K9121	Output of adder/subtracter 2		FB 21	$16384 \wedge 100 \%$	B125
K9122	Output of adder/subtracter 3		FB 22	$16384 \wedge 100 \%$	B125
K9123	Output of adder/subtracter 4		FB 23	$16384 \wedge 100 \%$	B125
K9124	Output of adder/subtracter 5		FB 24	$16384 \wedge 100 \%$	B125
K9125	Output of adder/subtracter 6		FB 25	$16384 \wedge 100 \%$	B125
K9126	Output of adder/subtracter 7		FB 26	$16384 \wedge 100 \%$	B125
K9127	Output of adder/subtracter 8		FB 27	$16384 \wedge 100 \%$	B125
K9128	Output of adder/subtracter 9		FB 28	$16384 \wedge 100 \%$	B125
K9129	Output of adder/subtracter 10		FB 29	$16384 \wedge 100 \%$	B125
K9130	Output of adder/subtracter 11		FB 30	$16384 \triangleq 100 \%$	B125
K9131	Output of adder/subtracter 12		FB 31	$16384 \wedge 100 \%$	B125
K9132	Output of adder/subtracter 13	[SW 1.8 and later]	FB 32	$16384 \wedge 100 \%$	B125
K9133	Output of adder/subtracter 14	[SW 1.8 and later]	FB 33	$16384 \wedge 100 \%$	B125
K9134	Output of adder/subtracter 15	[SW 1.8 and later]	FB 34	$16384 \wedge 100 \%$	B125

Technology software S00: Sign inverters, switchable sign inverters				
K9135	Output of sign inverter 1	FB 35	$16384 \wedge 100 \%$	
K9136	Output of sign inverter 2	FB 36	$16384 \triangleq 100 \%$	B125
K9137	Output of sign inverter 3	FB 37	$16384 \triangleq 100 \%$	B125
K9138	Output of sign inverter 4	FB 38	$16384 \triangleq 100 \%$	B125
K9140	Output of switchable sign inverter 1	FB 40	$16384 \triangleq 100 \%$	B125
K9141	Output of switchable sign inverter 2	FB 41	$16384 \triangleq 100 \%$	B125

Connector	Description	Normalization	Function diag., Sheet

Technology software S00: Dividers, multipliers, high-resolution multipliers/dividers

K9142	Output of divider 4	[SW 1.8 and later]	FB 42	$16384 \wedge 100 \%$	B131
K9143	Output of divider 5	[SW 1.8 and later]	FB 43	$16384 \wedge 100 \%$	B131
K9144	Output of divider 6	[SW 1.8 and later]	FB 44	$16384 \wedge 100 \%$	B131
K9145	Output of divider 1		FB 45	$16384 \wedge 100 \%$	B131
K9146	Output of divider 2		FB 46	$16384 \wedge 100 \%$	B131
K9147	Output of divider 3		FB 47	$16384 \wedge 100 \%$	B131
K9150	Output of multiplier 1		FB 50	$16384 \wedge 100 \%$	B130
K9151	Output of multiplier 2		FB 51	$16384 \wedge 100 \%$	B130
K9152	Output of multiplier 3		FB 52	$16384 \wedge 100 \%$	B130
K9153	Output of multiplier 4		FB 53	$16384 \wedge 100 \%$	B130
K9155	Output of high-resolution multiplier/divider 1		FB 55	$16384 \wedge 100 \%$	B131
K9156	Output of high-resolution multiplier/divider 2		FB 56	$16384 \wedge 100 \%$	B131
K9157	Output of high-resolution multiplier/divider 3		FB 57	$16384 \wedge 100 \%$	B131

Technology software S00: Absolute-value generator with filter

K9160	Output of absolute-value generator with filter 1	FB 60	$16384 \wedge 100 \%$	B135
K9161	Output of absolute-value generator with filter 2	FB 61	$16384 \wedge 100 \%$	B135
K9162	Output of absolute-value generator with filter 3	FB 62	$16384 \wedge 100 \%$	B135
K9163	Output of absolute-value generator with filter 4	FB 63	$16384 \triangleq 100 \%$	B135

Technology software S00: Limiters					
K9165	Limiter 1: Fixed limiting value		FB 65	$16384 \wedge 100 \%$	B135
K9166	Limiter 1: Positive limiting value * (-1)		FB 65	$16384 \wedge 100 \%$	B135
K9167	Limiter 1: Output		FB 65	$16384 \wedge 100 \%$	B135
K9168	Limiter 2: Fixed limiting value		FB 66	$16384 \wedge 100 \%$	B135
K9169	Limiter 2: Positive limiting value * (-1)		FB 66	$16384 \wedge 100 \%$	B135
K9170	Limiter 2: Output		FB 66	$16384 \wedge 100 \%$	B135
K9171	Limiter 3: Fixed limiting value		FB 67	$16384 \wedge 100 \%$	B135
K9172	Limiter 3: Positive limiting value * (-1)		FB 67	$16384 \wedge 100 \%$	B135
K9173	Limiter 3: Output		FB 67	$16384 \wedge 100 \%$	B135
K9174	Limiter 4: Fixed limiting value	[SW 2.0 and later]	FB 212	$16384 \wedge 100 \%$	B134
K9175	Limiter 4: Positive limiting value * (-1)	[SW 2.0 and later]	FB 212	$16384 \wedge 100 \%$	B134
K9176	Limiter 4: Output	[SW 2.0 and later]	FB 212	$16384 \wedge 100 \%$	B134
K9177	Limiter 5: Fixed limiting value	[SW 2.0 and later]	FB 213	$16384 \wedge 100 \%$	B134
K9178	Limiter 5: Positive limiting value * (-1)	[SW 2.0 and later]	FB 213	$16384 \wedge 100 \%$	B134
K9179	Limiter 5: Output	[SW 2.0 and later]	FB 213	$16384 \wedge 100 \%$	B134

Technology software S00: Limit-value monitor with filter				
K9180	Limit-value monitor with filter 1: Filtered input quantity	FB 70	$16384 \wedge 100 \%$	B136
K9181	Limit-value monitor with filter 1: Fixed operating point	FB 70	$16384 \wedge 100 \%$	B136
K9182	Limit-value monitor with filter 2: Filtered input quantity	FB 71	$16384 \wedge 100 \%$	B136
K9183	Limit-value monitor with filter 2: Fixed operating point	FB 71	$16384 \wedge 100 \%$	B136
K9184	Limit-value monitor with filter 3: Filtered input quantity	FB 72	$16384 \wedge 100 \%$	B136
K9185	Limit-value monitor with filter 3: Fixed operating point	FB 72	$16384 \wedge 100 \%$	B136

Technology software S00: Limit-value monitor without filter				
K9186	Limit-value monitor without filter 1: Fixed operating point	FB 73	$16384 \triangleq 100 \%$	B137
K9187	Limit-value monitor without filter 2: Fixed operating point	FB 74	$16384 \triangleq 100 \%$	B137

Connector	Description	Normalization	Function diag., Sheet	
K9188	Limit-value monitor without filter 3: Fixed operating point	FB 75	$16384 \triangleq 100 \%$	B137
K9189	Limit-value monitor without filter 4: Fixed operating point	FB 76	$16384 \triangleq 100 \%$	B137
K9190	Limit-value monitor without filter 5: Fixed operating point	FB 77	$16384 \triangleq 100 \%$	B138
K9191	Limit-value monitor without filter 6: Fixed operating point	FB 78	$16384 \triangleq 100 \%$	B138
K9192	Limit-value monitor without filter 7: Fixed operating point	FB 79	$16384 \triangleq 100 \%$	B138

Technology software S00: Minimum selection, maximum selection				
K9193	Minimum selection output	FB 80	$16384 \triangleq 100 \%$	B140
K9194	Maximum selection output	FB 81	$16384 \triangleq 100 \%$	B140

Technology software S00: Tracking/storage elements				
K9195	Output of tracking/storage element 1	FB 82	$16384 \wedge 100 \%$	B145
K9196	Output of tracking/storage element 2	FB 83	$16384 \triangleq 100 \%$	B145

Technology software S00: Connector memories				
K9197	Output connector memory 1	FB 84	$16384 \wedge 100 \%$	B145
K9198	Output connector memory 2	FB 85	$16384 \wedge 100 \%$	B145

Technology software S00: Connector changeover switches				
K9210	Output connector changeover switch 1	FB 90	$16384 \wedge 100 \%$	B150
K9210	Output connector changeover switch 1	FB 90	$16384 \wedge 100 \%$	B150
K9211	Output connector changeover switch 2	FB 91	$16384 \wedge 100 \%$	B150
K9212	Output connector changeover switch 3	FB 92	$16384 \wedge 100 \%$	B150
K9213	Output connector changeover switch 4	FB 93	$16384 \wedge 100 \%$	B150
K9214	Output connector changeover switch 5	FB 94	$16384 \wedge 100 \%$	B150
K9215	Output connector changeover switch 6	FB 95	$16384 \wedge 100 \%$	B150
K9216	Output connector changeover switch 7	FB 96	$16384 \wedge 100 \%$	B150
K9217	Output connector changeover switch 8	FB 97	$16384 \wedge 100 \%$	B150
K9218	Output connector changeover switch 9	FB 98	$16384 \wedge 100 \%$	B150
K9219	Output connector changeover switch 10	FB 99	$16384 \wedge 100 \%$	B150

Technology software S00: Integrators				
K9220	Output of integrator 1	FB 100	$16384 \triangleq 100 \%$	B155
K9221	Output of integrator 2	FB 101	$16384 \triangleq 100 \%$	B155
K9222	Output of integrator 3	FB 102	$16384 \triangleq 100 \%$	B155

Technology software S00: DT1 elements				
K9223	Output of DT1 element 1	FB 103	$16384 \wedge 100 \%$	
K9224	Output of DT1 element 1, inverted	FB 103	$16384 \triangleq 100 \%$	
K9225	Output of DT1 element 2	FB 104	$16384 \triangleq 100 \%$	B155
K9226	Output of DT1 element 2, inverted	FB 104	$16384 \triangleq 100 \%$	B155
K9227	Output of DT1 element 3	FB 105	$16384 \triangleq 100 \%$	B155
K9228	Output of DT1 element 3, inverted	FB 105	$16384 \triangleq 100 \%$	B155

Technology software S00: Characteristic blocks				
K9229	Output of characteristic block 1	FB 106	$16384 \wedge 100 \%$	B160
K9230	Output of characteristic block 2	FB 107	$16384 \wedge 100 \%$	B160
K9231	Output of characteristic block 3	FB 108	$16384 \triangleq 100 \%$	B160

Technology software S00: Dead zones									
K9232	Output of dead zone 1	FB 109	$16384 \wedge 100 \%$	B161					

Connector	Description	Normalization	Function diag., Sheet
K9233	Output of dead zone 2	FB 110	$16384 \wedge 100 \%$
K9234	Output of dead zone 3	FB 111	$16384 \wedge 100 \%$

Technology software S00: Setpoint branching

K9235	Setpoint branching output	FB 112	$16384 \wedge 100 \%$	B161

K9236	Simple ramp-function generator output	FB 113	$16384 \wedge 100 \%$	B165

Technology software S00: Technology controller				
K9240	Technology controller, signed actual value	FB 114	$16384 \wedge 100 \%$	B170
K9241	Technology controller, absolute actual value	FB 114	$16384 \wedge 100 \%$	B170
K9242	D component	FB 114	$16384 \wedge 100 \%$	B170
K9243	Technology controller, setpoint	FB 114	$16384 \wedge 100 \%$	B170
K9244	Technology controller, filtered setpoint	FB 114	$16384 \wedge 100 \%$	B170
K9245	Setpoint/actual value deviation	FB 114	$16384 \wedge 100 \%$	B170
K9246	Setpoint/actual value deviation after droop	FB 114	$16384 \wedge 100 \%$	B170
K9247	P component	FB 114	$16384 \wedge 100 \%$	B170
K9248	I component	FB 114	$16384 \wedge 100 \%$	B170
K9249	Technology controller output before limitation	FB 114	$16384 \wedge 100 \%$	B170
K9250	Positive limit for technology controller output	FB 114	$16384 \wedge 100 \%$	B170
K9251	Negative limit for technology controller output	FB 114	$16384 \wedge 100 \%$	B170
K9252	Positive limit for technology controller output * (-1)	FB 114	$16384 \wedge 100 \%$	B170
K9253	Technology controller output after limitation	FB 114	$16384 \wedge 100 \%$	B170
K9254	Technology controller output after multiplication with weighting factor	FB 114	$16384 \wedge 100 \%$	B170

Technology software S00: Speed/velocity calculator, velocity/speed calculator

K9256	Speed/velocity calculator: Actual velocity	FB 115	$16384 \wedge 100 \%$	B190
K9257	Velocity/speed calculator: Speed setpoint	FB 115	$16384 \wedge 100 \%$	B190

Technology software S00: Variable moment of inertia [SW 1.8 and later]
FB 116

K9258	Variable moment of inertia (output)

$16384 \xlongequal{\wedge} 100 \%$
B191

Technology software S00: Limiters

K9260	Limiter 6: Fixed limiting value	[SW 2.0 and later]	FB 214	$16384 \wedge 100 \%$	B134
K9261	Limiter 6: Positive limiting value * (-1)	[SW 2.0 and later]	FB 214	$16384 \wedge 100 \%$	B134
K9262	Limiter 6: Output	[SW 2.0 and later]	FB 214	$16384 \wedge 100 \%$	B134

Technology software S00: Connector changeover switches					
K9265	Output connector changeover switch 11	[SW 2.0 and later]	FB 196	$16384 \wedge 100 \%$	B150
K9266	Output connector changeover switch 12	[SW 2.0 and later]	FB 197	$16384 \wedge 100 \%$	B150
K9267	Output connector changeover switch 13	[SW 2.0 and later]	FB 198	$16384 \triangleq 100 \%$	B150
K9268	Output connector changeover switch 14	[SW 2.0 and later]	FB 199	$16384 \triangleq 100 \%$	B150
K9269	Output connector changeover switch 15	[SW 2.0 and later]	FB 229	$16384 \triangleq 100 \%$	B150

[SW 1.8 and later]			
K9300	Input quantity filtered	$16384 \wedge 100 \%$	B180
K9301	P component	$16384 \wedge 100 \%$	B180
K9302	I component	$16384 \wedge 100 \%$	B180
K9303	Output PI controller before limitation	$16384 \wedge 100 \%$	B180
K9304	Output PI controller after limitation	$16384 \wedge 100 \%$	B180

Connector	Description	Normalization	Function diag., Sheet
K9305	Positive limit for the output of the Pl controller	$16384 \wedge 100 \%$	B180
K9306	Positive limit for the output of the PI controller (K9305) $*-1$	$16384 \wedge 100 \%$	B180
K9307	Negative limit for the output of the PI controller	$16384 \wedge 100 \%$	B180

Technology software S00: Pl controller 2 \quad [SW 1.8 and later]	FB261		
K9310	Input quantity filtered	$16384 \triangleq 100 \%$	B181
K9311	P component	$16384 \triangleq 100 \%$	B181
K9312	I component	$16384 \triangleq 100 \%$	B181
K9313	Output PI controller before limitation	$16384 \triangleq 100 \%$	B181
K9314	Output PI controller after limitation	$16384 \triangleq 100 \%$	B181
K9315	Positive limit for the output of the PI controller	$16384 \triangleq 100 \%$	B181
K9316	Positive limit for the output of the PI controller (K9315) $*-1$	$16384 \triangleq 100 \%$	B181
K9317	Negative limit for the output of the PI controller	$16384 \triangleq 100 \%$	B181

Technology software S00: Pl controller 3 \quad [SW 1.8 and later]	FB262		
K9320	Input quantity filtered	$16384 \triangleq 100 \%$	B182
K9321	P component	$16384 \triangleq 100 \%$	B182
K9322	I component	$16384 \triangleq 100 \%$	B182
K9323	Output PI controller before limitation	$16384 \triangleq 100 \%$	B182
K9324	Output PI controller after limitation	$16384 \triangleq 100 \%$	B182
K9325	Positive limit for the output of the PI controller	$16384 \triangleq 100 \%$	B182
K9326	Positive limit for the output of the PI controller (K9325) $*-1$	$16384 \triangleq 100 \%$	B182
K9327	Negative limit for the output of the PI controller	$16384 \triangleq 100 \%$	B182

Technology software S00: PI controller 4 \quad [SW 1.8 and later]	FB263		
K9330	Input quantity filtered	$16384 \wedge 100 \%$	B183
K9331	P component	$16384 \wedge 100 \%$	B183
K9332	I component	$16384 \triangleq 100 \%$	B183
K9333	Output PI controller before limitation	$16384 \triangleq 100 \%$	B183
K9334	Output PI controller after limitation	$16384 \triangleq 100 \%$	B183
K9335	Positive limit for the output of the PI controller	$16384 \triangleq 100 \%$	B183
K9336	Positive limit for the output of the PI controller (K9335) $*-1$	$16384 \triangleq 100 \%$	B183
K9337	Negative limit for the output of the PI controller	$16384 \triangleq 100 \%$	B183

Technology software S00: PI controller 5 \quad [SW 1.8 and later]			
K9340	Input quantity filtered	$16384 \triangleq 100 \%$	B184
K9341	P component	$16384 \triangleq 100 \%$	B184
K9342	I component	$16384 \wedge 100 \%$	B184
K9343	Output PI controller before limitation	$16384 \triangleq 100 \%$	B184
K9344	Output PI controller after limitation	$16384 \triangleq 100 \%$	B184
K9345	Positive limit for the output of the PI controller	$16384 \triangleq 100 \%$	B184
K9346	Positive limit for the output of the PI controller (K9345) $*-1$	$16384 \triangleq 100 \%$	B184
K9347	Negative limit for the output of the PI controller	$16384 \triangleq 100 \%$	B184

Technology software S00: PI controller 6	FB265 1.8 and later]		
K9350	Input quantity filtered	$16384 \wedge 100 \%$	B185
K9351	P component	$16384 \wedge 100 \%$	B185
K9352	I component	$16384 \wedge 100 \%$	B185
K9353	Output PI controller before limitation	$16384 \triangleq 100 \%$	B185
K9354	Output PI controller after limitation	$16384 \wedge 100 \%$	B185

Connector	Description	Normalization	Function diag., Sheet
K9355	Positive limit for the output of the PI controller	$16384 \wedge 100 \%$	B185
K9356	Positive limit for the output of the PI controller (K9355) $*-1$	$16384 \wedge 100 \%$	B185
K9357	Negative limit for the output of the PI controller	$16384 \wedge 100 \%$	B185

Technology software S00: Pl controller 7 \quad [SW 1.8 and later]	FB266		
K9360	Input quantity filtered	$16384 \triangleq 100 \%$	B186
K9361	P component	$16384 \triangleq 100 \%$	B186
K9362	I component	$16384 \triangleq 100 \%$	B186
K9363	Output PI controller before limitation	$16384 \triangleq 100 \%$	B186
K9364	Output PI controller after limitation	$16384 \triangleq 100 \%$	B186
K9365	Positive limit for the output of the PI controller	$16384 \triangleq 100 \%$	B186
K9366	Positive limit for the output of the PI controller (K9365) $*-1$	$16384 \triangleq 100 \%$	B186
K9367	Negative limit for the output of the PI controller	$16384 \triangleq 100 \%$	B186

Technology software S00: PI controller 8 [SW 1.8 and later]			FB267
K9370	Input quantity filtered	$16384 \wedge 100 \%$	B187
K9371	P component	$16384 \wedge 100 \%$	B187
K9372	I component	$16384 \triangleq 100 \%$	B187
K9373	Output PI controller before limitation	$16384 \wedge 100 \%$	B187
K9374	Output PI controller after limitation	$16384 \triangleq 100 \%$	B187
K9375	Positive limit for the output of the PI controller	$16384 \triangleq 100 \%$	B187
K9376	Positive limit for the output of the PI controller (K9375) *-1	$16384 \wedge 100 \%$	B187
K9377	Negative limit for the output of the PI controller	$16384 \wedge 100 \%$	B187

Techno	oftware S00: PI controller 9 [SW 1.8 and later]		FB268
K9380	Input quantity filtered	$16384 \wedge 100 \%$	B188
K9381	P component	$16384 \wedge 100 \%$	B188
K9382	I component	$16384 \wedge 100 \%$	B188
K9383	Output PI controller before limitation	$16384 \wedge 100 \%$	B188
K9384	Output PI controller after limitation	$16384 \wedge 100 \%$	B188
K9385	Positive limit for the output of the PI controller	$16384 \wedge 100 \%$	B188
K9386	Positive limit for the output of the PI controller (K9385) *-1	$16384 \wedge 100 \%$	B188
K9387	Negative limit for the output of the PI controller	$16384 \wedge 100 \%$	B188

Technology software S00: Derivative/delay elements					
K9400	Derivative/delay element 1 output	[SW 1.8 and later]	FB 270	$16384 \triangleq 100 \%$	
K9401	Derivative/delay element 2 output	[SW 1.8 and later]	FB 271	$16384 \triangleq 100 \%$	
K9402	Derivative/delay element 3 output	[SW 1.8 and later]	FB 272	$16384 \triangleq 100 \%$	B156
K9403	Derivative/delay element 4 output	[SW 1.8 and later]	FB 273	$16384 \triangleq 100 \%$	B156
K9404	Derivative/delay element 5 output	[SW 1.8 and later]	FB 274	$16384 \triangleq 100 \%$	B156

Connector	Description		Normalization	Function diag., Sheet	
K9405	Derivative/delay element 6 output	[SW 1.8 and later]	FB 275	$16384 \wedge 100 \%$	B157
K9406	Derivative/delay element 7 output	[SW 1.8 and later]	FB 276	$16384 \triangleq 100 \%$	
K9407	Derivative/delay element 8 output	[SW 1.8 and later]	FB 277	$16384 \triangleq 100 \%$	B157
K9408	Derivative/delay element 9 output	[SW 1.8 and later]	FB 278	$16384 \triangleq 100 \%$	B157
K9409	Derivative/delay element 10 output	[SW 1.8 and later]	FB 279	$16384 \triangleq 100 \%$	B158

Technology software S00: Characteristic blocks					
K9410	Output characteristic block 4	[SW 1.8 and later]	FB 280	$16384 \triangleq 100 \%$	
K9411	Output characteristic block 5	[SW 1.8 and later]	FB 281	$16384 \triangleq 100 \%$	
K9412	Output characteristic block 6	[SW 1.8 and later]	FB 282	$16384 \triangleq 100 \%$	B160
K9413	Output characteristic block 7	[SW 1.8 and later]	FB 283	$16384 \triangleq 100 \%$	B160
K9414	Output characteristic block 8	[SW 1.8 and later]	FB 284	$16384 \triangleq 100 \%$	B160
K9415	Output characteristic block 9	[SW 1.8 and later]	FB 285	$16384 \triangleq 100 \%$	B160

Technology software S00: Multiplier					
K9430	Output multiplier 5	[SW 1.8 and later]	FB 290	$16384 \wedge 100 \%$	B130
K9431	Output multiplier 6	[SW 1.8 and later]	FB 291	$16384 \wedge 100 \%$	B130
K9432	Output multiplier 7	[SW 1.8 and later]	FB 292	$16384 \wedge 100 \%$	B130
K9433	Output multiplier 8	[SW 1.8 and later]	FB 293	$16384 \wedge 100 \%$	B130
K9434	Output multiplier 9	[SW 1.8 and later]	FB 294	$16384 \wedge 100 \%$	B130
K9435	Output multiplier 10	[SW 1.8 and later]	FB 295	$16384 \wedge 100 \%$	B130
K9436	Output multiplier 11	[SW 1.8 and later]	FB 296	$16384 \wedge 100 \%$	B130
K9437	Output multiplier 12	[SW 1.8 and later]	FB 297	$16384 \wedge 100 \%$	B130

S00 technology software: Software counter							
K9441	Minimum value for software counter	[SW 1.9 and later]	FB 89	$1 \triangleq 1$	B196		
K9442	Maximum value for software counter	[SW 1.9 and later]	FB 89	$1 \wedge 1$	B196		
K9443	Setting value for software counter	[SW 1.9 and later]	FB 89	$1 \triangleq 1$	B196		
K9444	Start value for software counter	[SW 1.9 and later]	FB 89	$1 \triangleq 1$	B196		
K9445	Software counter output	[SW 1.9 and later]	FB 89	$1 \triangleq 1$	B196		

Technology software S00: Multiplexer					
K9450	Output multiplexer 1	[SW 1.8 and later]	FB 86	$16384 \wedge 100 \%$	B195
K9451	Output multiplexer 2	[SW 1.8 and later]	FB 87	$16384 \triangleq 100 \%$	
K9452	Output multiplexer 3	[SW 1.8 and later]	FB 88	$16384 \triangleq 100 \%$	

Technology software S00: Averagers					
K9455	Output averager 1	[SW 1.8 and later]	FB 16	$16384 \triangleq 100 \%$	
K9456	Output averager 2	[SW 1.8 and later]	FB 17	$16384 \triangleq 100 \%$	
K9457	Output averager 3	[SW 1.8 and later]	FB 18	$16384 \triangleq 100 \%$	B139
K9458	Output averager 4	[SW 1.8 and later]	FB 19	$16384 \triangleq 100 \%$	B139

K9460	Output Maximum selection 2	[SW 1.8 and later]	FB 174	$16384 \wedge 100 \%$	B140
K9461	Output Maximum selection 3	[SW 1.8 and later]	FB 175	$16384 \triangleq 100 \%$	B140
K9462	Output Maximum selection 4	[SW 1.8 and later]	FB 176	$16384 \wedge 100 \%$	B140
K9463	Output Minimum selection 2	[SW 1.8 and later]	FB 177	$16384 \triangleq 100 \%$	B140
K9464	Output Minimum selection 3	[SW 1.8 and later]	FB 178	$16384 \wedge 100 \%$	B140
K9465	Output Minimum selection 4	[SW 1.8 and later]	FB 179	$16384 \wedge 100 \%$	B140

Connector	Description			Normalization	Function diag., Sheet
Technology software S00: position fixed value, position actual value, positional deviation					
KK9471	Position fixed value1	[SW 2.0 and later]	FB 54	$1 \triangleq 1$	B152
KK9472	Position fixed value2	[SW 2.0 and later]	FB 54	$1 \triangleq 1$	B152
KK9473	Position fixed value3	[SW 2.0 and later]	FB 54	$1 \triangleq 1$	B152
KK9474	Position fixed value4	[SW 2.0 and later]	FB 54	$1 \triangleq 1$	B152
KK9481	Position actual value 1	[SW 2.0 and later]	FB 54	$1 \wedge 1$	B152
KK9482	Position actual value 2	[SW 2.0 and later]	FB 54	$1 \wedge 1$	B152
KK9483	Positional deviation	[SW 2.0 and later]	FB 54	$1 \triangleq 1$	B152
K9484	Positional deviation limited	[SW 2.0 and later]	FB 54	$1 \triangleq 1$	B152

Technology software S00: root extractor

KK9485	Root extractor output	[SW 2.0 and later]	FB 58	$16384 \wedge 100 \%$	B153

S00 technology software: Adders / subtracters for double-word connectors

KK9490	Output of $1^{\text {st }}$ adder / subtracter	[SW 1.9 and later]	FB 48	$16384^{*} 65536 \wedge 100 \%$	B151
K9491	Output of $1^{\text {st }}$ adder / subtracter (limited)	[SW 1.9 and later]	FB 48	$16384 \wedge 100 \% / 65536$	B151
KK9492	Output of $2^{\text {nd }}$ adder / subtracter	[SW 1.9 and later]	FB 49	$16384^{*} 65536 \triangleq 100 \%$	B151
K9493	Output of $2^{\text {nd }}$ adder $/$ subtracter (limited)	[SW 1.9 and later]	FB 49	$16384 \triangleq 100 \% / 65536$	B151

S00 technology software: Connector type converters

KK9498	Output of $1^{\text {st }}$ connector type converter	[SW 1.9 and later]	FB 298	$16384^{*} 65536 \wedge 100 \%$	B151
KK9499	Output of $2^{\text {nd }}$ connector type converter	[SW 1.9 and later]	FB 299	$16384^{*} 65536 \wedge 100 \%$	B151

Connector	Description		Normalization	Function diag., Sheet
K9527	Fixed value 27 (U099.27)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9528	Fixed value 28 (U099.28)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9529	Fixed value 29 (U099.29)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9530	Fixed value 30 (U099.30)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9531	Fixed value 31 (U099.31)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9532	Fixed value 32 (U099.32)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9533	Fixed value 33 (U099.33)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9534	Fixed value 34 (U099.34)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9535	Fixed value 35 (U099.35)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9536	Fixed value 36 (U099.36)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9537	Fixed value 37 (U099.37)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9538	Fixed value 38 (U099.38)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9539	Fixed value 39 (U099.39)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9540	Fixed value 40 (U099.40)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9541	Fixed value 41 (U099.41)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9542	Fixed value 42 (U099.42)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9543	Fixed value 43 (U099.43)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9544	Fixed value 44 (U099.44)	[SW 1.8 and later]	16384 へ 100\%	B110
K9545	Fixed value 45 (U099.45)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9546	Fixed value 46 (U099.46)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9547	Fixed value 47 (U099.47)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9548	Fixed value 48 (U099.48)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9549	Fixed value 49 (U099.49)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9550	Fixed value 50 (U099.50)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9551	Fixed value 51 (U099.51)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9552	Fixed value 52 (U099.52)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9553	Fixed value 53 (U099.53)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9554	Fixed value 54 (U099.54)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9555	Fixed value 55 (U099.55)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9556	Fixed value 56 (U099.56)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9557	Fixed value 57 (U099.57)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9558	Fixed value 58 (U099.58)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9559	Fixed value 59 (U099.59)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9560	Fixed value 60 (U099.60)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9561	Fixed value 61 (U099.61)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9562	Fixed value 62 (U099.62)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9563	Fixed value 63 (U099.63)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9564	Fixed value 64 (U099.64)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9565	Fixed value 65 (U099.65)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9566	Fixed value 66 (U099.66)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9567	Fixed value 67 (U099.67)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9568	Fixed value 68 (U099.68)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9569	Fixed value 69 (U099.69)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9570	Fixed value 70 (U099.70)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9571	Fixed value 71 (U099.71)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9572	Fixed value 72 (U099.72)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9573	Fixed value 73 (U099.73)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9574	Fixed value 74 (U099.74)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9575	Fixed value 75 (U099.75)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9576	Fixed value 76 (U099.76)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110

Connector	Description		Normalization	Function diag., Sheet
K9577	Fixed value 77 (U099.77)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9578	Fixed value 78 (U099.78)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9579	Fixed value 79 (U099.79)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9580	Fixed value 80 (U099.80)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9581	Fixed value 81 (U099.81)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9582	Fixed value 82 (U099.82)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9583	Fixed value 83 (U099.83)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9584	Fixed value 84 (U099.84)	[SW 1.8 and later]	16384 ^ 100\%	B110
K9585	Fixed value 85 (U099.85)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9586	Fixed value 86 (U099.86)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9587	Fixed value 87 (U099.87)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9588	Fixed value 88 (U099.88)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9589	Fixed value 89 (U099.89)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9590	Fixed value 90 (U099.90)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110
K9591	Fixed value 91 (U099.91)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9592	Fixed value 92 (U099.92)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9593	Fixed value 93 (U099.93)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9594	Fixed value 94 (U099.94)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9595	Fixed value 95 (U099.95)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9596	Fixed value 96 (U099.96)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9597	Fixed value 97 (U099.97)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9598	Fixed value 98 (U099.98)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9599	Fixed value 99 (U099.99)	[SW 1.8 and later]	$16384 \wedge 100 \%$	B110
K9600	Fixed value 100 (U099.100)	[SW 1.8 and later]	$16384 \triangleq 100 \%$	B110

General connectors			
K9801	Alarm word 1 (= parameter r953)		
K9802	Alarm word 2 (= parameter r954)		
K9803	Alarm word 3 (= parameter r955)		
K9804	Alarm word 4 (= parameter r956)		
K9805	Alarm word 5 (= parameter r957)		
K9806	Alarm word 6 (= parameter r958)		
K9807	Alarm word 7 (= parameter r959)		G189
K9808	Alarm word 8 (= parameter r960)		G189
K9811	Fault number 1 (= parameter r947.01, current fault number)	G189	
K9812	Fault number 2 (= parameter r947.09, second last fault number)	G189	
K9813	Fault number 3 (= parameter r947.17, third last fault number)		
K9814	Fault number 4 (= parameter r947.25, fourth last fault number)		
K9815	Fault number 5 (= parameter r947.33)		G189
K9816	Fault number 6 (= parameter r947.41)		G189
K9817	Fault number 7 (= parameter r947.49)		G189
K9818	Fault number 8 (= parameter r947.57)		

K9990	Current total processor capacity utilization (C163/C165) (= parameter n009.01)		
K9991	Projected total processor capacity utilization (C163/C165) for line frequency $=65 \mathrm{~Hz} \mathrm{(=} \mathrm{parameter} \mathrm{n009.02)}$		
K9992	Current total processor capacity (C163/C165) utilized by background routines (= parameter n009.03)		
K9993	Current total processor capacity (C163/C165) utilized by routines in foreground cycle 4 (= parameter n009.04)		

Connector	Description	Normalization	Function diag., Sheet
K9994	Current total processor capacity (C163/C165) utilized by routines in foreground cycle 2 (= parameter n009.05)		
K9995	Current total processor capacity (C163/C165) utilized by routines in foreground cycle 1 (= parameter n009.06)		

12.2 Binector list

The states of binectors can be displayed via parameters r045 and P046.

Binector	Name, description	Function diag., Sheet
Fixed values	G120	
B0000	Fixed value 0	G120
B0001	Fixed value 1	

Binary inputs, terminals $\mathbf{3 6}$ to $\mathbf{4 3}$		
B0010	Status of terminal 36	G110
B0011	Status of terminal 36, inverted	G110
B0012	Status of terminal 37	G110
B0013	Status of terminal 37, inverted	G110
B0014	Status of terminal 38	G110
B0015	Status of terminal 38, inverted	G110
B0016	Status of terminal 39	G110
B0017	Status of terminal 39, inverted	G110
B0018	Status of terminal 40	G111
B0019	Status of terminal 40, inverted	G111
B0020	Status of terminal 41	G111
B0021	Status of terminal 41, inverted	G111
B0022	Status of terminal 42	G111
B0023	Status of terminal 42, inverted	G111
B0024	Status of terminal 43	G111
B0025	Status of terminal 43, inverted	G111

Binary inputs, terminals 122/123 and 124/125 on module A7041 / A7042				
B0032	Status of terminals 122/123	G110		
B0033	Status of terminals 122/123, inverted	G110		
B0034	Status of terminals 124/125	G110		
B0035	Status of terminals 124/125 inverted	G110		

Binary inputs, terminals 211 to 214 / motor interface		
B0040	Status of terminal 211 / Brush length monitor (binary) (0=fault)	G186
B0041	Status of terminal 211, inverted	G186
B0042	Status of terminal 212 / Bearing condition monitor (binary) (1=fault)	G186
B0043	Status of terminal 212, inverted	G186
B0044	Status of terminal 213 / Motor fan monitor (binary) (0=fault)	G186
B0045	Status of terminal 213, inverted	G186
B0046	Status of terminal 214 / Motor temperature monitor (binary) (0=fault)	G186
B0047	Status of terminal 214, inverted	G186

Analog inputs				
B0050	Analog input, terminal 4: $1=$ Open circuit $(\mathrm{i} \leq 2 \mathrm{~mA})$	G113		
B0051	Analog input, terminal 6: $1=$ Open circuit $(\mathrm{i} \leq 2 \mathrm{~mA})$	G113		

Pulse encoder evaluation			
B0052	Fault in digital speed sensing circuit	G145	

Binector	Name, description	Function diag., Sheet
B0053	Underflow of actual position value [SW 1.9 and later] This binector changes to 1 when connector KK0046 (actual position value extended in software to a 32-bit value) counts from value $80000000 \mathrm{H}\left(=-2^{31}\right)$ to value 7FFF FFFFH $\left(=+2^{31}-1\right)$. Binector B0053 does not change back to 0 until connector KK0046 assumes a value other than 7FFF FFFFH $\left(=+2^{31}-1\right)$ again.	G145
B0054	Overrflow of actual position value [SW 1.9 and later] This binector changes to 1 when connector KK0046 (actual position value extended in software to a 32-bit value) counts from value 7FFF FFFFH $\left(=+2^{31}-1\right)$ to value $80000000 \mathrm{H}\left(=-2^{31}\right)$. Binector B0054 does not change back to 0 until connector KK0046 assumes a value other than 80000000 H $\left(=-2^{31}\right)$ again.	G145

Evaluation of the pulse encoder board SBP					
B0055	Position acquisition of SBP, underflow	[SW 2.0 and later]	Z120		
B0056	Position acquisition of SBP, overflow	[SW 2.0 and later]	Z120		

Monitoring of the armature currents			
B0057	1 = Commutation failure or overcurrent has occurred	[SW 2.0 and later]	G162

Status word 1		
B0100	Stat.word 1, bit 0: 0=not ready to switch on, 1=ready to switch on	G182
B0101	Stat.word 1, bit 0 inverted	G182
B0102	Stat.word 1, bit 1: $0=$ not ready, 1=ready (pulses disabled)	G182
B0103	Stat.word 1, bit 1 inverted	G182
B0104	Stat.word 1, bit 2: 0=pulses disabled, 1=Run (output terminals energized)	G182
B0105	Stat.word 1, bit 2 inverted	G182
B0106	Stat.word 1, bit 3: 0=no active fault, 1=active fault (pulses disabled)	G182
B0107	Stat.word 1, bit 3 inverted	G182
B0108	Stat.word 1, bit 4: 0=OFF2 active, 1=no active OFF2	G182
B0109	Stat.word 1, bit 4 inverted	G182
B0110	Stat.word 1, bit 5: 0=OFF3 active, 1=no active OFF3	G182
B0111	Stat.word 1, bit 5 inverted	G182
B0112	Stat.word 1, bit 6: 0=no starting lockout (unit can be switched on), 1=starting lockout active	G182
B0113	Stat.word 1, bit 6 inverted	G182
B0114	Stat.word 1, bit 7: 0=no active alarm, 1=alarm active	G182
B0115	Stat.word 1, bit 7 inverted	G182
B0116	Stat.word 1, bit 8: 0=setp./act. val. deviation detected, 1=no setp./act. val. deviation	G182
B0117	Stat.word 1, bit 8 inverted	G182
B0120	Stat.word 1, bit 10: 0=comparison setpoint not reached, 1=comparison setpoint reached	G182
B0121	Stat.word 1, bit 10 inverted	G182
B0122	Stat.word 1, bit 11: $0=$ undervoltage fault not active, 1=undervoltage fault active	G182
B0123	Stat.word 1, bit11 inverted	G182
B0124	Stat.word 1, bit 12: 0=main contactor request not active, 1=request to energize main contactor active	G182
B0125	Stat.word 1, bit 12 inverted	G182
B0126	Stat.word 1, bit 13: 0=ramp-function generator not active, 1=ramp-function generator active	G182
B0127	Stat.word 1, bit 13 inverted	G182
B0128	Stat.word 1, bit 14: 0=negative speed setpoint, 1=positive speed setpoint	G182
B0129	Stat.word 1, bit 14 inverted	G182

Status word 2				
B0136	Stat.word 2, bit 18: \quad 0=overspeed, 1=no overspeed	G183		
B0137	Stat.word 2, bit 18 inverted	G183		
B0138	Stat.word 2, bit 19: $0=$ no external fault 1 active, 1=external fault 1 active	G183		
B0139	Stat.word 2, bit 19 inverted	G183		

Binector	Name, description	Function diag., Sheet
B0140	Stat.word 2, bit 20: 0=no external fault 2 active, 1=external fault 2 active	G183
B0141	Stat.word 2, bit 20 inverted	G183
B0142	Stat.word 2, bit 21: 0=no external alarm active, 1=external alarm active	G183
B0143	Stat.word 2, bit 21 inverted	G183
B0144	Stat.word 2, bit 22: 0=no overload alarm active, 1=overload alarm active	G183
B0145	Stat.word 2, bit 22 inverted	G183
B0146	Stat.word 2, bit 23: 0=no overtemperature fault active, 1=overtemperature fault active	G183
B0147	Stat.word 2, bit 23 inverted	G183
B0148	Stat.word 2, bit 24: \quad 0=no overtemperature alarm active, 1=overtemperature alarm active	G183
B0149	Stat.word 2, bit 24 inverted	G183
B0150	Stat.word 2, bit 25: \quad 0=no motor overtemperature alarm active, 1=motor overtemperature alarm active	G183
B0151	Stat.word 2, bit 25 inverted	G183
B0152	Stat.word 2, bit 26: \quad 0=no motor overtemperature fault active, 1=motor overtemperature fault active	G183
B0153	Stat.word 2, bit 26 inverted	G183
B0156	Stat.word 2, bit 28: \quad 0=no motor blocked fault active, 1=motor blocked fault active	G183
B0157	Stat.word 2, bit 28 inverted	G183

Messages		
B0160	0=AUS1 or AUS3 active, 1=no AUS1 and no AUS3 is pending	
B0161	B0160 inverted	G180
B0164	$1=\mathrm{n}<\mathrm{n}_{\text {min }}$	G180
B0165	B0164 inverted	G187
B0166	$1=$ Voltage at power section is active (armature and field supply)	G187
B0167	B0166 inverted	
B0168	$1=$ E-Stop is active	
B0169	B0168 inverted	[SW 1.9 and later]
B0172	Output of "Setpoint-actual value deviation 2" signal	G187
B0173	B0172 inverted	[SW 1.9 and later]

Acknowledgement of fault codes

B0179	Acknowledgement of control word or P key on PMU (pulse)

Motor interface			
B0180	1 = Monitoring brush length (Terminal 211=0) has responded, condition for A025 or F025 fulfilled	G186	
B0181	1 = Monitoring bearing state (terminal 212=1) has responded, condition for A026 or F026 fulfilled	G186	
B0182	1 = Monitoring motor fan (terminal 213=0) has responded, condition for A027 or F027 fulfilled	G186	
B0183	1 = Monitoring motor temperature (terminal 213=0) has responded, condition for A028 or F028 fulfilled	G186	

Temperature sensor inputs

B0184	1=Alarm motor temperature 1	G185
B0185	1=Alarm motor temperature 2	G185

Alarms	1=Alarm A037 (12t motor) is pending	
B0186	1Al\|	
B0187	no meaning	
B0188	1=Alarm A067 (heat sink temperature) is pending	G110
B0189	1=Alarm A067 (device fan) is pending	

Torque limitation, current limitation, current controller, armature gating unit

B0190	$0=$ pulsating current, $1=$ continuous current	[SW 2.0 and later]	G162
B0192	Speed limitation controller: Positive speed limit reached	[SW 1.8 and later]	G160

Binector	Name, description		Function diag., Sheet
B0193	Speed limitation controller: Negative speed limit reached	[SW 1.8 and later]	G160
B0194	Current limitation: Positive current limit reached	[SW 1.8 and later]	G161
B0195	Current limitation: Negative current limit reached	[SW 1.8 and later]	G161
B0196	α_{G} limit reached	[SW 1.8 and later]	G163
B0197	α_{W} limit reached	[SW 1.8 and later]	G163
B0198	Any positive limit (speed, torque, armature, α_{G}) reached	[SW 2.0 and later]	
B0199	Any positive limit (speed, torque, armature, α_{W}) reached	[SW 2.0 and later]	
B0200	Current limitation active		
B0201	Speed limiting controller active		
B0202	Upper torque limitation active		G161
B0203	Lower torque limitation active		G160
B0204	Torque or current limitation active or current controller at limitation	G160	

Speed controller

B0205	Speed controller enabling by sequencing control	G152

Setpoint processing, ramp-function generator		
B0206	Limitation after ramp-function generator (setpoint limitation) has responded	G 137
B0207	Ramp-function generator output $=0 \quad(\mathrm{y}=0)$	G 136
B0208	Ramp-function generator, ramp-up	G 136
B0209	Ramp-function generator, ramp-down	G 136
B0210	1 = no direction of rotation enabled	G 135
B0211	Ramp-function generator: Enable setpoint (1 = setpoint enabled)	G136

Limit-value monitor for field current				
B0215	Limit-value signal $I_{f}<I_{f} \min ($ see P394, P395)	G188		
B0216	Limit-value signal $I_{f}<I_{f x}($ see P398, P399)	G188		

Armature gating unit			
B0220	Enabled torque direction for parallel drive		
B0221	$1=$ Torque direction I active	[SW 2.1 and later]	G163
B0222	$1=$ Torque direction II active	[SW 2.1 and later]	G163
B0225	$1=$ active paralleling master	[SW 2.1 and later]	G195
B0230	$1=$ No torque direction requested	[SW 2.1 and later]	G163
B0231	$1=$ Torque direction I requested	[SW 2.1 and later]	G163
B0232	1 = Torque direction II requested	[SW 2.1 and later]	G163

Motorized potentiometer				G126
B0240	Motorized potentiometer output $=0 \quad(y=0)$	G126		
B0241	Ramp-up/ramp-down finished $(y=x)$			

Brake control		
B0250	Brake control (1=close brake, 0=release brake)	G140
B0251	1=auxiliaries ON, 0=auxiliaries OFF	s.Chap. 9.10
B0252	1=device fan on, 0=device fan off	G117
B0255	B0250 inverted	G140
B0256	B0251 inverted	

Field reversal				
B0260	1=Close field contactor 1 (control command for one contactor for connection of positive field direction)	G200		
B0261	1=Close field contactor 2 (control command for one contactor for connection of negative field direction)	G200		

Binector	Name, description	Function diag., Sheet
Fixed control bits		
B0421	Control bit 1 (P421)	G120
B0422	Control bit 2 (P422)	G120
B0423	Control bit 3 (P423)	G120
B0424	Control bit 4 (P424)	G120
B0425	Control bit 5 (P425)	G120
B0426	Control bit 6 (P426)	G120
B0427	Control bit 7 (P427)	G120
B0428	Control bit 8 (P428)	G120

Serial interface 1 (USS1 on G-SST1)

B2030	USS1 telegram monitoring timeout - maintained signal	G170
B2031	USS1 telegram monitoring timeout - 1s pulse	G170

Serial interface 1 (USS1 on G-SST1)		
B2100	USS1 receive data, word 1, bit 0	G170
B2101	USS1 receive data, word 1, bit 1	G170
B2102	USS1 receive data, word 1, bit 2	G170
B2103	USS1 receive data, word 1, bit 3	G170
B2104	USS1 receive data, word 1, bit 4	G170
B2105	USS1 receive data, word 1, bit 5	G170
B2106	USS1 receive data, word 1, bit 6	G170
B2107	USS1 receive data, word 1, bit 7	G170
B2108	USS1 receive data, word 1, bit 8	G170
B2109	USS1 receive data, word 1, bit 9	G170
B2110	USS1 receive data, word 1, bit 10	G170
B2111	USS1 receive data, word 1, bit 11	G170
B2112	USS1 receive data, word 1, bit 12	G170
B2113	USS1 receive data, word 1, bit 13	G170
B2114	USS1 receive data, word 1, bit 14	G170
B2115	USS1 receive data, word 1, bit 15	G170
B2200	USS1 receive data, word 2, bit 0	G170
B2201	USS1 receive data, word 2, bit 1	G170
B2202	USS1 receive data, word 2, bit 2	G170
B2203	USS1 receive data, word 2, bit 3	G170
B2204	USS1 receive data, word 2, bit 4	G170
B2205	USS1 receive data, word 2, bit 5	G170
B2206	USS1 receive data, word 2, bit 6	G170
B2207	USS1 receive data, word 2, bit 7	G170
B2208	USS1 receive data, word 2, bit 8	G170
B2209	USS1 receive data, word 2, bit 9	G170
B2210	USS1 receive data, word 2, bit 10	G170
B2211	USS1 receive data, word 2, bit 11	G170
B2212	USS1 receive data, word 2, bit 12	G170
B2213	USS1 receive data, word 2, bit 13	G170
B2214	USS1 receive data, word 2, bit 14	G170
B2215	USS1 receive data, word 2, bit 15	G170
B2300	USS1 receive data, word 3, bit 0	G170
B2301	USS1 receive data, word 3, bit 1	G170

Binector	Name, description	Function diag., Sheet
B2302	USS1 receive data, word 3, bit 2	G170
B2303	USS1 receive data, word 3, bit 3	G170
B2304	USS1 receive data, word 3, bit 4	G170
B2305	USS1 receive data, word 3, bit 5	G170
B2306	USS1 receive data, word 3, bit 6	G170
B2307	USS1 receive data, word 3, bit 7	G170
B2308	USS1 receive data, word 3, bit 8	G170
B2309	USS1 receive data, word 3, bit 9	G170
B2310	USS1 receive data, word 3, bit 10	G170
B2311	USS1 receive data, word 3, bit 11	G170
B2312	USS1 receive data, word 3, bit 12	G170
B2313	USS1 receive data, word 3, bit 13	G170
B2314	USS1 receive data, word 3, bit 14	G170
B2315	USS1 receive data, word 3, bit 15	G170
B2400	USS1 receive data, word 4, bit 0	G170
B2401	USS1 receive data, word 4, bit 1	G170
B2402	USS1 receive data, word 4, bit 2	G170
B2403	USS1 receive data, word 4, bit 3	G170
B2404	USS1 receive data, word 4, bit 4	G170
B2405	USS1 receive data, word 4, bit 5	G170
B2406	USS1 receive data, word 4, bit 6	G170
B2407	USS1 receive data, word 4, bit 7	G170
B2408	USS1 receive data, word 4, bit 8	G170
B2409	USS1 receive data, word 4, bit 9	G170
B2410	USS1 receive data, word 4, bit 10	G170
B2411	USS1 receive data, word 4, bit 11	G170
B2412	USS1 receive data, word 4, bit 12	G170
B2413	USS1 receive data, word 4, bit 13	G170
B2414	USS1 receive data, word 4, bit 14	G170
B2415	USS1 receive data, word 4, bit 15	G170
B2500	USS1 receive data, word 5, bit 0	G170
B2501	USS1 receive data, word 5, bit 1	G170
B2502	USS1 receive data, word 5, bit 2	G170
B2503	USS1 receive data, word 5, bit 3	G170
B2504	USS1 receive data, word 5, bit 4	G170
B2505	USS1 receive data, word 5, bit 5	G170
B2506	USS1 receive data, word 5, bit 6	G170
B2507	USS1 receive data, word 5, bit 7	G170
B2508	USS1 receive data, word 5, bit 8	G170
B2509	USS1 receive data, word 5, bit 9	G170
B2510	USS1 receive data, word 5, bit 10	G170
B2511	USS1 receive data, word 5, bit 11	G170
B2512	USS1 receive data, word 5, bit 12	G170
B2513	USS1 receive data, word 5, bit 13	G170
B2514	USS1 receive data, word 5, bit 14	G170
B2515	USS1 receive data, word 5, bit 15	G170
B2600	USS1 receive data, word 6, bit 0	G170
B2601	USS1 receive data, word 6, bit 1	G170
B2602	USS1 receive data, word 6, bit 2	G170
B2603	USS1 receive data, word 6, bit 3	G170

Binector	Name, description	Function diag., Sheet
B2604	USS1 receive data, word 6, bit 4	G170
B2605	USS1 receive data, word 6, bit 5	G170
B2606	USS1 receive data, word 6, bit 6	G170
B2607	USS1 receive data, word 6, bit 7	G170
B2608	USS1 receive data, word 6, bit 8	G170
B2609	USS1 receive data, word 6, bit 9	G170
B2610	USS1 receive data, word 6, bit 10	G170
B2611	USS1 receive data, word 6, bit 11	G170
B2612	USS1 receive data, word 6, bit 12	G170
B2613	USS1 receive data, word 6, bit 13	G170
B2614	USS1 receive data, word 6, bit 14	G170
B2615	USS1 receive data, word 6, bit 15	G170
B2700	USS1 receive data, word 7, bit 0	G170
B2701	USS1 receive data, word 7, bit 1	G170
B2702	USS1 receive data, word 7, bit 2	G170
B2703	USS1 receive data, word 7, bit 3	G170
B2704	USS1 receive data, word 7, bit 4	G170
B2705	USS1 receive data, word 7, bit 5	G170
B2706	USS1 receive data, word 7, bit 6	G170
B2707	USS1 receive data, word 7, bit 7	G170
B2708	USS1 receive data, word 7, bit 8	G170
B2709	USS1 receive data, word 7, bit 9	G170
B2710	USS1 receive data, word 7, bit 10	G170
B2711	USS1 receive data, word 7, bit 11	G170
B2712	USS1 receive data, word 7, bit 12	G170
B2713	USS1 receive data, word 7, bit 13	G170
B2714	USS1 receive data, word 7, bit 14	G170
B2715	USS1 receive data, word 7, bit 15	G170
B2800	USS1 receive data, word 8, bit 0	G170
B2801	USS1 receive data, word 8, bit 1	G170
B2802	USS1 receive data, word 8, bit 2	G170
B2803	USS1 receive data, word 8, bit 3	G170
B2804	USS1 receive data, word 8, bit 4	G170
B2805	USS1 receive data, word 8, bit 5	G170
B2806	USS1 receive data, word 8, bit 6	G170
B2807	USS1 receive data, word 8, bit 7	G170
B2808	USS1 receive data, word 8, bit 8	G170
B2809	USS1 receive data, word 8, bit 9	G170
B2810	USS1 receive data, word 8, bit 10	G170
B2811	USS1 receive data, word 8, bit 11	G170
B2812	USS1 receive data, word 8, bit 12	G170
B2813	USS1 receive data, word 8, bit 13	G170
B2814	USS1 receive data, word 8, bit 14	G170
B2815	USS1 receive data, word 8, bit 15	G170
B2900	USS1 receive data, word 9, bit 0	G170
B2901	USS1 receive data, word 9, bit 1	G170
B2902	USS1 receive data, word 9, bit 2	G170
B2903	USS1 receive data, word 9, bit 3	G170
B2904	USS1 receive data, word 9, bit 4	G170
B2905	USS1 receive data, word 9, bit 5	G170

Binector	Name, description	Function diag., Sheet
B2906	USS1 receive data, word 9, bit 6	G170
B2907	USS1 receive data, word 9, bit 7	G170
B2908	USS1 receive data, word 9, bit 8	G170
B2909	USS1 receive data, word 9, bit 9	G170
B2910	USS1 receive data, word 9, bit 10	G170
B2911	USS1 receive data, word 9, bit 11	G170
B2912	USS1 receive data, word 9, bit 12	G170
B2913	USS1 receive data, word 9, bit 13	G170
B2914	USS1 receive data, word 9, bit 14	G170
B2915	USS1 receive data, word 9, bit 15	G170

Process data exchange with $\mathbf{1}^{\text {st }} \mathrm{CB} / \mathrm{TB}$					
B3030	Fault delay timeout for $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$ - maintained signal	Z110			
B3031	Fault delay timeout for $1^{\text {st }} \mathrm{CB} / \mathrm{TB}-1 \mathrm{~s}$ pulse	Z110			
B3035	Telegram failure timeout for $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$	[SW 1.9 and later]	Z110		

Process data exchange with $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$		
B3100	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 0	Z110
B3101	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 1	Z110
B3102	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 2	Z110
B3103	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 3	Z110
B3104	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 4	Z110
B3105	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 5	Z110
B3106	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 6	Z110
B3107	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 7	Z110
B3108	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 8	Z110
B3109	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 9	Z110
B3110	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 10	Z110
B3111	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 11	Z110
B3112	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 12	Z110
B3113	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 13	Z110
B3114	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 14	Z110
B3115	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 1, bit 15	Z110
B3200	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2 , bit 0	Z110
B3201	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2 , bit 1	Z110
B3202	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2 , bit 2	Z110
B3203	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2, bit 3	Z110
B3204	Receive data from 1st CB/TB, word 2, bit 4	Z110
B3205	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2 , bit 5	Z110
B3206	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2, bit 6	Z110
B3207	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2 , bit 7	Z110
B3208	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2, bit 8	Z110
B3209	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2 , bit 9	Z110
B3210	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2, bit 10	Z110
B3211	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2, bit 11	Z110
B3212	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2 , bit 12	Z110
B3213	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2 , bit 13	Z110
B3214	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2, bit 14	Z110
B3215	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 2, bit 15	Z110
B3300	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 0	Z110

Binector	Name, description	Function diag., Sheet
B3301	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 1	Z110
B3302	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 2	Z110
B3303	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 3	Z110
B3304	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 4	Z110
B3305	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 5	Z110
B3306	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 6	Z110
B3307	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 7	Z110
B3308	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 8	Z110
B3309	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 9	Z110
B3310	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 10	Z110
B3311	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 11	Z110
B3312	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 12	Z110
B3313	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 13	Z110
B3314	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 14	Z110
B3315	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 3, bit 15	Z110
B3400	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 0	Z110
B3401	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 1	Z110
B3402	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 2	Z110
B3403	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 3	Z110
B3404	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 4	Z110
B3405	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 5	Z110
B3406	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 6	Z110
B3407	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 7	Z110
B3408	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 8	Z110
B3409	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 9	Z110
B3410	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 10	Z110
B3411	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 11	Z110
B3412	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 12	Z110
B3413	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 13	Z110
B3414	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 14	Z110
B3415	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 4, bit 15	Z110
B3500	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 0	Z110
B3501	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 1	Z110
B3502	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 2	Z110
B3503	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5 , bit 3	Z110
B3504	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5 , bit 4	Z110
B3505	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5 , bit 5	Z110
B3506	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 6	Z110
B3507	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 7	Z110
B3508	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 8	Z110
B3509	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5 , bit 9	Z110
B3510	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 10	Z110
B3511	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 11	Z110
B3512	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 12	Z110
B3513	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 13	Z110
B3514	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 14	Z110
B3515	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 5, bit 15	Z110
B3600	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6 , bit 0	Z110
B3601	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 1	Z110
B3602	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 2	Z110

Binector	Name, description	Function diag., Sheet
B3603	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 3	Z110
B3604	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 4	Z110
B3605	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 5	Z110
B3606	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 6	Z110
B3607	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 7	Z110
B3608	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 8	Z110
B3609	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 9	Z110
B3610	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 10	Z110
B3611	Receive data from $1^{\text {st }}$ CB/TB, word 6, bit 11	Z110
B3612	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 12	Z110
B3613	Receive data from $1^{\text {st }}$ CB/TB, word 6, bit 13	Z110
B3614	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 6, bit 14	Z110
B3615	Receive data from $1^{\text {st }}$ CB/TB, word 6, bit 15	Z110
B3700	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 0	Z110
B3701	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 1	Z110
B3702	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 2	Z110
B3703	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 3	Z110
B3704	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 4	Z110
B3705	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 5	Z110
B3706	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 6	Z110
B3707	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 7	Z110
B3708	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 8	Z110
B3709	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 9	Z110
B3710	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 10	Z110
B3711	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 7, bit 11	Z110
B3712	Receive data from $1^{\text {st }}$ CB/TB, word 7, bit 12	Z110
B3713	Receive data from $1^{\text {st }}$ CB/TB, word 7, bit 13	Z110
B3714	Receive data from $1^{\text {st }}$ CB/TB, word 7, bit 14	Z110
B3715	Receive data from $1^{\text {st }}$ CB/TB, word 7, bit 15	Z110
B3800	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8 , bit 0	Z110
B3801	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 1	Z110
B3802	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 2	Z110
B3803	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 3	Z110
B3804	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 4	Z110
B3805	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 5	Z110
B3806	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 6	Z110
B3807	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 7	Z110
B3808	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 8	Z110
B3809	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 9	Z110
B3810	Receive data from $1^{\text {st }}$ CB/TB, word 8, bit 10	Z110
B3811	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 11	Z110
B3812	Receive data from $1^{\text {st }}$ CB/TB, word 8, bit 12	Z110
B3813	Receive data from $1^{\text {st }}$ CB/TB, word 8, bit 13	Z110
B3814	Receive data from $1^{\text {st }}$ CB/TB, word 8, bit 14	Z110
B3815	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 8, bit 15	Z110
B3900	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 0	Z110
B3901	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 1	Z110
B3902	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 2	Z110
B3903	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 3	Z110
B3904	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 4	Z110

Binector	Name, description	Function diag., Sheet
B3905	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 5	Z110
B3906	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 6	Z110
B3907	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 7	Z110
B3908	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 8	Z110
B3909	Receive data from $1^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 9	Z110
B3910	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 10	Z110
B3911	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 11	Z110
B3912	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 12	Z110
B3913	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 13	Z110
B3914	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 14	Z110
B3915	Receive data from ${ }^{\text {st }} \mathrm{CB} / \mathrm{TB}$, word 9, bit 15	Z110

SCB1 with SCI

B4100	SCI, slave 1, binary input 1	[SW 1.9 and later]	Z130, Z140
B4101	SCI, slave 1, binary input 2	[SW 1.9 and later]	Z130, Z140
B4102	SCI, slave 1, binary input 3	[SW 1.9 and later]	Z130, Z140
B4103	SCI, slave 1, binary input 4	[SW 1.9 and later]	Z130, Z140
B4104	SCI, slave 1, binary input 5	[SW 1.9 and later]	Z130, Z140
B4105	SCI, slave 1, binary input 6	[SW 1.9 and later]	Z130, Z140
B4106	SCI, slave 1, binary input 7	[SW 1.9 and later]	Z130, Z140
B4107	SCI, slave 1, binary input 8	[SW 1.9 and later]	Z130, Z140
B4108	SCI, slave 1, binary input 9	[SW 1.9 and later]	Z130, Z140
B4109	SCI, slave 1, binary input 10	[SW 1.9 and later]	Z140
B4110	SCI, slave 1, binary input 11	[SW 1.9 and later]	Z140
B4111	SCI, slave 1, binary input 12	[SW 1.9 and later]	Z140
B4112	SCI, slave 1, binary input 13	[SW 1.9 and later]	Z140
B4113	SCI, slave 1, binary input 14	[SW 1.9 and later]	Z140
B4114	SCI, slave 1, binary input 15	[SW 1.9 and later]	Z140
B4115	SCI, slave 1, binary input 16	[SW 1.9 and later]	Z140
B4120	SCI, slave 1, binary input 1 inverted	[SW 1.9 and later]	Z130, Z140
B4121	SCI, slave 1, binary input 2 inverted	[SW 1.9 and later]	Z130, Z140
B4122	SCI, slave 1, binary input 3 inverted	[SW 1.9 and later]	Z130, Z140
B4123	SCI, slave 1, binary input 4 inverted	[SW 1.9 and later]	Z130, Z140
B4124	SCI, slave 1, binary input 5 inverted	[SW 1.9 and later]	Z130, Z140
B4125	SCI, slave 1, binary input 6 inverted	[SW 1.9 and later]	Z130, Z140
B4126	SCI, slave 1, binary input 7 inverted	[SW 1.9 and later]	Z130, Z140
B4127	SCI, slave 1 , binary input 8 inverted	[SW 1.9 and later]	Z130, Z140
B4128	SCI, slave 1 , binary input 9 inverted	[SW 1.9 and later]	Z130, Z140
B4129	SCI, slave 1, binary input 10 inverted	[SW 1.9 and later]	Z140
B4130	SCI, slave 1, binary input 11 inverted	[SW 1.9 and later]	Z140
B4131	SCI, slave 1, binary input 12 inverted	[SW 1.9 and later]	Z140
B4132	SCI, slave 1, binary input 13 inverted	[SW 1.9 and later]	Z140
B4133	SCI, slave 1, binary input 14 inverted	[SW 1.9 and later]	Z140
B4134	SCI, slave 1, binary input 15 inverted	[SW 1.9 and later]	Z140
B4135	SCI, slave 1, binary input 16 inverted	[SW 1.9 and later]	Z140
B4200	SCI, slave 2, binary input 1	[SW 1.9 and later]	Z131, Z141
B4201	SCI, slave 2 , binary input 2	[SW 1.9 and later]	Z131, Z141
B4202	SCI, slave 2, binary input 3	[SW 1.9 and later]	Z131, Z141
B4203	SCI, slave 2, binary input 4	[SW 1.9 and later]	Z131, Z141
B4204	SCI, slave 2, binary input 5	[SW 1.9 and later]	Z131, Z141

Binector	Name, description		Function diag., Sheet
B4205	SCI, slave 2 , binary input 6	[SW 1.9 and later]	Z131, Z141
B4206	SCI, slave 2 , binary input 7	[SW 1.9 and later]	Z131, Z141
B4207	SCI, slave 2, binary input 8	[SW 1.9 and later]	Z131, Z141
B4208	SCI, slave 2 , binary input 9	[SW 1.9 and later]	Z131, Z141
B4209	SCI, slave 2, binary input 10	[SW 1.9 and later]	Z141
B4210	SCI, slave 2, binary input 11	[SW 1.9 and later]	Z141
B4211	SCI, slave 2, binary input 12	[SW 1.9 and later]	Z141
B4212	SCI, slave 2, binary input 13	[SW 1.9 and later]	Z141
B4213	SCI, slave 2, binary input 14	[SW 1.9 and later]	Z141
B4214	SCI, slave 2, binary input 15	[SW 1.9 and later]	Z141
B4215	SCI, slave 2, binary input 16	[SW 1.9 and later]	Z141
B4220	SCI, slave 2 , binary input 1 inverted	[SW 1.9 and later]	Z131, Z141
B4221	SCI, slave 2, binary input 2 inverted	[SW 1.9 and later]	Z131, Z141
B4222	SCI, slave 2 , binary input 3 inverted	[SW 1.9 and later]	Z131, Z141
B4223	SCI, slave 2, binary input 4 inverted	[SW 1.9 and later]	Z131, Z141
B4224	SCI, slave 2, binary input 5 inverted	[SW 1.9 and later]	Z131, Z141
B4225	SCI, slave 2 , binary input 6 inverted	[SW 1.9 and later]	Z131, Z141
B4226	SCI, slave 2, binary input 7 inverted	[SW 1.9 and later]	Z131, Z141
B4227	SCI, slave 2, binary input 8 inverted	[SW 1.9 and later]	Z131, Z141
B4228	SCI, slave 2, binary input 9 inverted	[SW 1.9 and later]	Z131, Z141
B4229	SCI, slave 2, binary input 10 inverted	[SW 1.9 and later]	Z141
B4230	SCI, slave 2, binary input 11 inverted	[SW 1.9 and later]	Z141
B4231	SCI, slave 2, binary input 12 inverted	[SW 1.9 and later]	Z141
B4232	SCI, slave 2, binary input 13 inverted	[SW 1.9 and later]	Z141
B4233	SCI, slave 2, binary input 14 inverted	[SW 1.9 and later]	Z141
B4234	SCI, slave 2, binary input 15 inverted	[SW 1.9 and later]	Z141
B4235	SCI, slave 2, binary input 16 inverted	[SW 1.9 and later]	Z141

Optional supplementary boards: 1st expansion board EB1		
B5101	Analog input terminal 50 / 51: 1 = wire break ($\mathrm{i}=2 \mathrm{~mA}$)	
B5102	Analog input terminal 52 (use as digital input): $1=$ input voltage is > 8V (log "1")	Z112
B5103	Analog input terminal 53 (use as digital input): $1=$ input voltage is > 8V (log "1")	Z112
B5104	State terminal 43 (bidirectional input/output) inverted	Z112
B5105	State terminal 43 (bidirectional input/output)	Z114
B5106	State terminal 44 (bidirectional input/output) inverted	Z114
B5107	State terminal 44 (bidirectional input/output)	Z114
B5108	State terminal 45 (bidirectional Input/output) inverted	Z114
B5109	State terminal 45 (bidirectional input/output)	Z114
B5110	State terminal 46 (bidirectional input/output) inverted	Z114
B5111	State terminal 46 (bidirectional Input/output)	Z114
B5112	State terminal 40 (digital input) inverted	Z114
B5113	State terminal 40 (digital input)	Z114
B5114	State terminal 41 (digital input) inverted	Z114
B5115	State terminal 41 (digital input)	Z114
B5116	State terminal 42 (digital input) inverted	Z114
B5117	State terminal 42 (digital input)	Z114

Optional supplementary boards: 1st Expansion board EB2				
B5121	Analog input terminal 49 $/ 50: 1=$ wire break $(\mathrm{i} \leq 2 \mathrm{~mA})$	Z118		
B5122	State terminal 53 (digital input) inverted	Z118		

Binector	Name, description	Function diag., Sheet
B5123	State terminal 53 (digital input)	Z118
B5124	State terminal 54 (digital input) inverted	Z118
B5125	State terminal 54 (digital input)	Z118

Optional supplementary boards: 2 ${ }^{\text {nd }}$ expansion board EB1		
B5201	Analog input terminal 50 / 51: 1 = wire break ($\mathbf{i} \leq 2 \mathrm{~mA}$)	Z115
B5202	Analog input terminal 52 (use as digital input): 1 = input voltage is > 8V (log "1")	Z115
B5203	Analog input terminal 53 (use as digital input): $1=$ input voltage is > 8V (log "1")	Z115
B5204	State terminal 43 (bidirectional input/output) inverted	Z117
B5205	State terminal 43 (bidirectional input/output)	Z117
B5206	State terminal 44 (bidirectional input/output) inverted	Z117
B5207	State terminal 44 (bidirectional input/output)	Z117
B5208	State terminal 45 (bidirectional Input/output) inverted	Z117
B5209	State terminal 45 (bidirectional input/output)	Z117
B5210	State terminal 46 (bidirectional input/output) inverted	Z117
B5211	State terminal 46 (bidirectional Input/output)	Z117
B5212	State terminal 40 (digital input) inverted	Z117
B5213	State terminal 40 (digital input)	Z117
B5214	State terminal 41 (digital input) inverted	Z117
B5215	State terminal 41 (digital input)	Z117
B5216	State terminal 42 (digital input) inverted	Z117
B5217	State terminal 42 (digital input)	Z117

Optional supplementary boards: 2 ${ }^{\text {nd }}$ Expansion board EB2		
B5221	Analog input terminal 49 / 50: 1 = wire break (i $\leq 2 \mathrm{~mA}$)	Z119
B5222	State terminal 53 (digital input) inverted	Z119
B5223	State terminal 53 (digital input)	Z119
B5224	State terminal 54 (digital input) inverted	Z119
B5225	State terminal 54 (digital input)	Z119

Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2)

B6030	USS2 / Peer2 - Telegram monitoring timeout - maintained signal	G171, G173
B6031	USS2 / Peer2 - Telegram monitoring timeout - 1s pulse	G171, G173

Paralleling interface

B6040	Telegram monitoring timeout - maintained signal	G195
B6041	Telegram monitoring timeout -1 p pulse	G195

Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2)

B6100	USS2 / Peer2 receive data, word 1, bit 0	G171, G173
B6101	USS2 / Peer2 receive data, word 1, bit 1	G171, G173
B6102	USS2 / Peer2 receive data, word 1, bit 2	G171, G173
B6103	USS2 / Peer2 receive data, word 1, bit 3	G171, G173
B6104	USS2 / Peer2 receive data, word 1, bit 4	G171, G173
B6105	USS2 / Peer2 receive data, word 1, bit 5	G171, G173
B6106	USS2 / Peer2 receive data, word 1, bit 6	G171, G173
B6107	USS2 / Peer2 receive data, word 1, bit 7	G171, G173
B6108	USS2 / Peer2 receive data, word 1, bit 8	G171, G173
B6109	USS2 / Peer2 receive data, word 1, bit 9	G171, G173
B6110	USS2 / Peer2 receive data, word 1, bit 10	G171, G173
B6111	USS2 / Peer2 receive data, word 1, bit 11	G171, G173

Binector	Name, description	Function diag., Sheet
B6112	USS2 / Peer2 receive data, word 1, bit 12	G171, G173
B6113	USS2 / Peer2 receive data, word 1, bit 13	G171, G173
B6114	USS2 / Peer2 receive data, word 1, bit 14	G171, G173
B6115	USS2 / Peer2 receive data, word 1, bit 15	G171, G173
B6200	USS2 / Peer2 receive data, word 2, bit 0	G171, G173
B6201	USS2 / Peer2 receive data, word 2, bit 1	G171, G173
B6202	USS2 / Peer2 receive data, word 2, bit 2	G171, G173
B6203	USS2 / Peer2 receive data, word 2, bit 3	G171, G173
B6204	USS2 / Peer2 receive data, word 2, bit 4	G171, G173
B6205	USS2 / Peer2 receive data, word 2, bit 5	G171, G173
B6206	USS2 / Peer2 receive data, word 2, bit 6	G171, G173
B6207	USS2 / Peer2 receive data, word 2, bit 7	G171, G173
B6208	USS2 / Peer2 receive data, word 2, bit 8	G171, G173
B6209	USS2 / Peer2 receive data, word 2, bit 9	G171, G173
B6210	USS2 / Peer2 receive data, word 2, bit 10	G171, G173
B6211	USS2 / Peer2 receive data, word 2, bit 11	G171, G173
B6212	USS2 / Peer2 receive data, word 2, bit 12	G171, G173
B6213	USS2 / Peer2 receive data, word 2, bit 13	G171, G173
B6214	USS2 / Peer2 receive data, word 2, bit 14	G171, G173
B6215	USS2 / Peer2 receive data, word 2, bit 15	G171, G173

Paralleling interface		
B6220	Word 1 from master / Word 1 from slave with address 2, bit 0	
B6221	Word 1 from master / Word 1 from slave with address 2, bit 1	G195
B6222	Word 1 from master / Word 1 from slave with address 2, bit 2	G195
B6223	Word 1 from master / Word 1 from slave with address 2, bit 3	G195
B6224	Word 1 from master / Word 1 from slave with address 2, bit 4	G195
B6225	Word 1 from master / Word 1 from slave with address 2, bit 5	G195
B6226	Word 1 from master / Word 1 from slave with address 2, bit 6	G195
B6227	Word 1 from master / Word 1 from slave with address 2, bit 7	G195
B6228	Word 1 from master / Word 1 from slave with address 2, bit 8	G195
B6229	Word 1 from master / Word 1 from slave with address 2, bit 9	G195
B6230	Word 1 from master / Word 1 from slave with address 2, bit 10	G195
B6231	Word 1 from master / Word 1 from slave with address 2, bit 11	G195
B6232	Word 1 from master / Word 1 from slave with address 2, bit 12	G195
B6233	Word 1 from master / Word 1 from slave with address 2, bit 13	G195
B6234	Word 1 from master / Word 1 from slave with address 2, bit 14	G195
B6235	Word 1 from master / Word 1 from slave with address 2, bit 15	G195

Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2)		
B6300	USS2 / Peer2 receive data, word 3, bit 0	G171, G173
B6301	USS2 / Peer2 receive data, word 3, bit 1	G171, G173
B6302	USS2 / Peer2 receive data, word 3, bit 2	G171, G173
B6303	USS2 / Peer2 receive data, word 3, bit 3	G171, G173
B6304	USS2 / Peer2 receive data, word 3, bit 4	G171, G173
B6305	USS2 / Peer2 receive data, word 3, bit 5	G171, G173
B6306	USS2 / Peer2 receive data, word 3, bit 6	G171, G173
B6307	USS2 / Peer2 receive data, word 3, bit 7	G171, G173
B6308	USS2 / Peer2 receive data, word 3, bit 8	G171, G173
B6309	USS2 / Peer2 receive data, word 3, bit 9	G171, G173

Binector	Name, description	Function diag., Sheet
B6310	USS2 / Peer2 receive data, word 3, bit 10	G171, G173
B6311	USS2 / Peer2 receive data, word 3, bit 11	G171, G173
B6312	USS2 / Peer2 receive data, word 3, bit 12	G171, G173
B6313	USS2 / Peer2 receive data, word 3, bit 13	G171, G173
B6314	USS2 / Peer2 receive data, word 3, bit 14	G171, G173
B6315	USS2 / Peer2 receive data, word 3, bit 15	G171, G173

Paralleling interface		
B6320	Word 1 from slave with address 3 , bit 0	G195
B6321	Word 1 from slave with address 3, bit 1	G195
B6322	Word 1 from slave with address 3, bit 2	G195
B6323	Word 1 from slave with address 3, bit 3	G195
B6324	Word 1 from slave with address 3, bit 4	G195
B6325	Word 1 from slave with address 3, bit 5	G195
B6326	Word 1 from slave with address 3, bit 6	G195
B6327	Word 1 from slave with address 3, bit 7	G195
B6328	Word 1 from slave with address 3, bit 8	G195
B6329	Word 1 from slave with address 3, bit 9	G195
B6330	Word 1 from slave with address 3, bit 10	G195
B6331	Word 1 from slave with address 3, bit 11	G195
B6332	Word 1 from slave with address 3, bit 12	G195
B6333	Word 1 from slave with address 3, bit 13	G195
B6334	Word 1 from slave with address 3, bit 14	G195
B6335	Word 1 from slave with address 3, bit 15	G195

Serial interface $\mathbf{2}$ (USS2 / Peer-to-peer 2 on G-SST2)		
B6400	USS2 / Peer2 receive data, word 4, bit 0	G171, G173
B6401	USS2 / Peer2 receive data, word 4, bit 1	G171, G173
B6402	USS2 / Peer2 receive data, word 4, bit 2	G171, G173
B6403	USS2 / Peer2 receive data, word 4, bit 3	G171, G173
B6404	USS2 / Peer2 receive data, word 4, bit 4	G171, G173
B6405	USS2 / Peer2 receive data, word 4, bit 5	G171, G173
B6406	USS2 / Peer2 receive data, word 4, bit 6	G171, G173
B6407	USS2 / Peer2 receive data, word 4, bit 7	G171, G173
B6408	USS2 / Peer2 receive data, word 4, bit 8	G171, G173
B6409	USS2 / Peer2 receive data, word 4, bit 9	G171, G173
B6410	USS2 / Peer2 receive data, word 4, bit 10	G171, G173
B6411	USS2 / Peer2 receive data, word 4, bit 11	G171, G173
B6412	USS2 / Peer2 receive data, word 4, bit 12	G171, G173
B6413	USS2 / Peer2 receive data, word 4, bit 13	G171, G173
B6414	USS2 / Peer2 receive data, word 4, bit 14	G171, G173
B6415	USS2 / Peer2 receive data, word 4, bit 15	G171, G173

Paralleling interface		
B6420	Word 1 from slave with address 4, bit 0	G195
B6421	Word 1 from slave with address 4, bit 1	G195
B6422	Word 1 from slave with address 4, bit 2	G195
B6423	Word 1 from slave with address 4, bit 3	G195
B6424	Word 1 from slave with address 4, bit 4	G195
B6425	Word 1 from slave with address 4, bit 5	G195

Binector	Name, description	Function diag., Sheet
B6426	Word 1 from slave with address 4, bit 6	G195
B6427	Word 1 from slave with address 4, bit 7	G195
B6428	Word 1 from slave with address 4, bit 8	G195
B6429	Word 1 from slave with address 4, bit 9	G195
B6430	Word 1 from slave with address 4, bit 10	G195
B6431	Word 1 from slave with address 4, bit 11	G195
B6432	Word 1 from slave with address 4, bit 12	G195
B6433	Word 1 from slave with address 4, bit 13	G195
B6434	Word 1 from slave with address 4, bit 14	G195
B6435	Word 1 from slave with address 4, bit 15	G195

Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2)		
B6500	USS2 / Peer2 receive data, word 5, bit 0	G171, G173
B6501	USS2 / Peer2 receive data, word 5, bit 1	G171, G173
B6502	USS2 / Peer2 receive data, word 5, bit 2	G171, G173
B6503	USS2 / Peer2 receive data, word 5, bit 3	G171, G173
B6504	USS2 / Peer2 receive data, word 5, bit 4	G171, G173
B6505	USS2 / Peer2 receive data, word 5, bit 5	G171, G173
B6506	USS2 / Peer2 receive data, word 5, bit 6	G171, G173
B6507	USS2 / Peer2 receive data, word 5, bit 7	G171, G173
B6508	USS2 / Peer2 receive data, word 5, bit 8	G171, G173
B6509	USS2 / Peer2 receive data, word 5, bit 9	G171, G173
B6510	USS2 / Peer2 receive data, word 5, bit 10	G171, G173
B6511	USS2 / Peer2 receive data, word 5, bit 11	G171, G173
B6512	USS2 / Peer2 receive data, word 5, bit 12	G171, G173
B6513	USS2 / Peer2 receive data, word 5, bit 13	G171, G173
B6514	USS2 / Peer2 receive data, word 5, bit 14	G171, G173
B6515	USS2 / Peer2 receive data, word 5, bit 15	G171, G173

Paralleling interface		
B6520	Word 1 from slave with address 5, bit 0	G195
B6521	Word 1 from slave with address 5, bit 1	G195
B6522	Word 1 from slave with address 5, bit 2	G195
B6523	Word 1 from slave with address 5, bit 3	G195
B6524	Word 1 from slave with address 5, bit 4	G195
B6525	Word 1 from slave with address 5, bit 5	G195
B6526	Word 1 from slave with address 5, bit 6	G195
B6527	Word 1 from slave with address 5, bit 7	G195
B6528	Word 1 from slave with address 5, bit 8	G195
B6529	Word 1 from slave with address 5, bit 9	G195
B6530	Word 1 from slave with address 5, bit 10	G195
B6531	Word 1 from slave with address 5, bit 11	G195
B6532	Word 1 from slave with address 5, bit 12	G195
B6533	Word 1 from slave with address 5, bit 13	G195
B6534	Word 1 from slave with address 5, bit 14	G195
B6535	Word 1 from slave with address 5, bit 15	G195

Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2)				
B6600	USS2 receive data, word 6, bit 0	G171		
B6601	USS2 receive data, word 6, bit 1	G171		

Binector	Name, description	Function diag., Sheet
B6602	USS2 receive data, word 6, bit 2	G171
B6603	USS2 receive data, word 6, bit 3	G171
B6604	USS2 receive data, word 6, bit 4	G171
B6605	USS2 receive data, word 6, bit 5	G171
B6606	USS2 receive data, word 6, bit 6	G171
B6607	USS2 receive data, word 6, bit 7	G171
B6608	USS2 receive data, word 6, bit 8	G171
B6609	USS2 receive data, word 6, bit 9	G171
B6610	USS2 receive data, word 6, bit 10	G171
B6611	USS2 receive data, word 6, bit 11	G171
B6612	USS2 receive data, word 6, bit 12	G171
B6613	USS2 receive data, word 6, bit 13	G171
B6614	USS2 receive data, word 6, bit 14	G171
B6615	USS2 receive data, word 6, bit 15	G171

Paralleling interface		
B6620	Word 1 from slave with address 6, bit 0	G195
B6621	Word 1 from slave with address 6, bit 1	G195
B6622	Word 1 from slave with address 6, bit 2	G195
B6623	Word 1 from slave with address 6, bit 3	G195
B6624	Word 1 from slave with address 6, bit 4	G195
B6625	Word 1 from slave with address 6, bit 5	G195
B6626	Word 1 from slave with address 6, bit 6	G195
B6627	Word 1 from slave with address 6, bit 7	G195
B6628	Word 1 from slave with address 6, bit 8	G195
B6629	Word 1 from slave with address 6, bit 9	G195
B6630	Word 1 from slave with address 6, bit 10	G195
B6631	Word 1 from slave with address 6, bit 11	G195
B6632	Word 1 from slave with address 6, bit 12	G195
B6633	Word 1 from slave with address 6, bit 13	G195
B6634	Word 1 from slave with address 6, bit 14	G195
B6635	Word 1 from slave with address 6, bit 15	G195

Serial interface 2 (USS2 / Peer-to-peer 2 on G-SST2)

B6700	USS2 receive data, word 7, bit 0	G171
B6701	USS2 receive data, word 7, bit 1	G171
B6702	USS2 receive data, word 7, bit 2	G171
B6703	USS2 receive data, word 7, bit 3	G171
B6704	USS2 receive data, word 7, bit 4	G171
B6705	USS2 receive data, word 7, bit 5	G171
B6706	USS2 receive data, word 7, bit 6	G171
B6707	USS2 receive data, word 7, bit 7	G171
B6708	USS2 receive data, word 7, bit 8	G171
B6709	USS2 receive data, word 7, bit 9	G171
B6710	USS2 receive data, word 7, bit 10	G171
B6711	USS2 receive data, word 7, bit 11	G171
B6712	USS2 receive data, word 7, bit 12	G171
B6713	USS2 receive data, word 7, bit 13	G171
B6714	USS2 receive data, word 7, bit 14	G171
B6715	USS2 receive data, word 7, bit 15	G171

Binector	Name, description	Function diag., Sheet
B6800	USS2 receive data, word 8, bit 0	G171
B6801	USS2 receive data, word 8, bit 1	G171
B6802	USS2 receive data, word 8, bit 2	G171
B6803	USS2 receive data, word 8, bit 3	G171
B6804	USS2 receive data, word 8, bit 4	G171
B6805	USS2 receive data, word 8, bit 5	G171
B6806	USS2 receive data, word 8, bit 6	G171
B6807	USS2 receive data, word 8, bit 7	G171
B6808	USS2 receive data, word 8, bit 8	G171
B6809	USS2 receive data, word 8, bit 9	G171
B6810	USS2 receive data, word 8, bit 10	G171
B6811	USS2 receive data, word 8, bit 11	G171
B6812	USS2 receive data, word 8, bit 12	G171
B6813	USS2 receive data, word 8, bit 13	G171
B6814	USS2 receive data, word 8, bit 14	G171
B6815	USS2 receive data, word 8, bit 15	G171
B6900	USS2 receive data, word 9, bit 0	G171
B6901	USS2 receive data, word 9, bit 1	G171
B6902	USS2 receive data, word 9, bit 2	G171
B6903	USS2 receive data, word 9, bit 3	G171
B6904	USS2 receive data, word 9, bit 4	G171
B6905	USS2 receive data, word 9, bit 5	G171
B6906	USS2 receive data, word 9, bit 6	G171
B6907	USS2 receive data, word 9, bit 7	G171
B6908	USS2 receive data, word 9, bit 8	G171
B6909	USS2 receive data, word 9, bit 9	G171
B6910	USS2 receive data, word 9, bit 10	G171
B6911	USS2 receive data, word 9, bit 11	G171
B6912	USS2 receive data, word 9, bit 12	G171
B6913	USS2 receive data, word 9, bit 13	G171
B6914	USS2 receive data, word 9, bit 14	G171
B6915	USS2 receive data, word 9, bit 15	G171

Optional supplementary boards: SBP pulse encoder evaluation		
B7000	State terminal 74 / 75 (check track)	Z120
B7001	State terminal 65 (coarse pulse 1)	Z120
B7002	State terminal 66 (coarse pulse 2)	Z120
B7003	State terminal 67 (fine pulse 2)	Z120

Optional supplementary boards: SIMOLINK board		
B7030	$1=$ Telegram failure	Z121
B7040	1 = Time out	Z121
B7050	1 = Alarm start-up	Z121
B7100	Receive data from the SIMOLINK board, word 1 bit 0	Z122
B7101	Receive data from the SIMOLINK board, word 1 bit 1	Z122
B7102	Receive data from the SIMOLINK board, word 1 bit 2	Z122
B7103	Receive data from the SIMOLINK board, word 1 bit 3	Z122
B7104	Receive data from the SIMOLINK board, word 1 bit 4	Z122
B7105	Receive data from the SIMOLINK board, word 1 bit 5	Z122
B7106	Receive data from the SIMOLINK board, word 1 bit 6	Z122

Binector	Name, description	Function diag., Sheet
B7107	Receive data from the SIMOLINK board, word 1 bit 7	Z122
B7108	Receive data from the SIMOLINK board, word 1 bit 8	Z122
B7109	Receive data from the SIMOLINK board, word 1 bit 9	Z122
B7110	Receive data from the SIMOLINK board, word 1 bit 10	Z122
B7111	Receive data from the SIMOLINK board, word 1 bit 11	Z122
B7112	Receive data from the SIMOLINK board, word 1 bit 12	Z122
B7113	Receive data from the SIMOLINK board, word 1 bit 13	Z122
B7114	Receive data from the SIMOLINK board, word 1 bit 14	Z122
B7115	Receive data from the SIMOLINK board, word 1 bit 15	Z122
B7200	Receive data from the SIMOLINK board, word 2 bit 0	Z122
B7201	Receive data from the SIMOLINK board, word 2 bit 1	Z122
B7202	Receive data from the SIMOLINK board, word 2 bit 2	Z122
B7203	Receive data from the SIMOLINK board, word 2 bit 3	Z122
B7204	Receive data from the SIMOLINK board, word 2 bit 4	Z122
B7205	Receive data from the SIMOLINK board, word 2 bit 5	Z122
B7206	Receive data from the SIMOLINK board, word 2 bit 6	Z122
B7207	Receive data from the SIMOLINK board, word 2 bit 7	Z122
B7208	Receive data from the SIMOLINK board, word 2 bit 8	Z122
B7209	Receive data from the SIMOLINK board, word 2 bit 9	Z122
B7210	Receive data from the SIMOLINK board, word 2 bit 10	Z122
B7211	Receive data from the SIMOLINK board, word 2 bit 11	Z122
B7212	Receive data from the SIMOLINK board, word 2 bit 12	Z122
B7213	Receive data from the SIMOLINK board, word 2 bit 13	Z122
B7214	Receive data from the SIMOLINK board, word 2 bit 14	Z122
B7215	Receive data from the SIMOLINK board, word 2 bit 15	Z122
B7300	Receive data from the SIMOLINK board, word 3 bit 0	Z122
B7301	Receive data from the SIMOLINK board, word 3 bit 1	Z122
B7302	Receive data from the SIMOLINK board, word 3 bit 2	Z122
B7303	Receive data from the SIMOLINK board, word 3 bit 3	Z122
B7304	Receive data from the SIMOLINK board, word 3 bit 4	Z122
B7305	Receive data from the SIMOLINK board, word 3 bit 5	Z122
B7306	Receive data from the SIMOLINK board, word 3 bit 6	Z122
B7307	Receive data from the SIMOLINK board, word 3 bit 7	Z122
B7308	Receive data from the SIMOLINK board, word 3 bit 8	Z122
B7309	Receive data from the SIMOLINK board, word 3 bit 9	Z122
B7310	Receive data from the SIMOLINK board, word 3 bit 10	Z122
B7311	Receive data from the SIMOLINK board, word 3 bit 11	Z122
B7312	Receive data from the SIMOLINK board, word 3 bit 12	Z122
B7313	Receive data from the SIMOLINK board, word 3 bit 13	Z122
B7314	Receive data from the SIMOLINK board, word 3 bit 14	Z122
B7315	Receive data from the SIMOLINK board, word 3 bit 15	Z122
B7400	Receive data from the SIMOLINK board, word 4 bit 0	Z122
B7401	Receive data from the SIMOLINK board, word 4 bit 1	Z122
B7402	Receive data from the SIMOLINK board, word 4 bit 2	Z122
B7403	Receive data from the SIMOLINK board, word 4 bit 3	Z122
B7404	Receive data from the SIMOLINK board, word 4 bit 4	Z122
B7405	Receive data from the SIMOLINK board, word 4 bit 5	Z122
B7406	Receive data from the SIMOLINK board, word 4 bit 6	Z122
B7407	Receive data from the SIMOLINK board, word 4 bit 7	Z122
B7408	Receive data from the SIMOLINK board, word 4 bit 8	Z122

Binector	Name, description	Function diag., Sheet
B7409	Receive data from the SIMOLINK board, word 4 bit 9	Z122
B7410	Receive data from the SIMOLINK board, word 4 bit 10	Z122
B7411	Receive data from the SIMOLINK board, word 4 bit 11	Z122
B7412	Receive data from the SIMOLINK board, word 4 bit 12	Z122
B7413	Receive data from the SIMOLINK board, word 4 bit 13	Z122
B7414	Receive data from the SIMOLINK board, word 4 bit 14	Z122
B7415	Receive data from the SIMOLINK board, word 4 bit 15	Z122
B7500	Receive data from the SIMOLINK board, word 5 bit 0	Z122
B7501	Receive data from the SIMOLINK board, word 5 bit 1	Z122
B7502	Receive data from the SIMOLINK board, word 5 bit 2	Z122
B7503	Receive data from the SIMOLINK board, word 5 bit 3	Z122
B7504	Receive data from the SIMOLINK board, word 5 bit 4	Z122
B7505	Receive data from the SIMOLINK board, word 5 bit 5	Z122
B7506	Receive data from the SIMOLINK board, word 5 bit 6	Z122
B7507	Receive data from the SIMOLINK board, word 5 bit 7	Z122
B7508	Receive data from the SIMOLINK board, word 5 bit 8	Z122
B7509	Receive data from the SIMOLINK board, word 5 bit 9	Z122
B7510	Receive data from the SIMOLINK board, word 5 bit 10	Z122
B7511	Receive data from the SIMOLINK board, word 5 bit 11	Z122
B7512	Receive data from the SIMOLINK board, word 5 bit 12	Z122
B7513	Receive data from the SIMOLINK board, word 5 bit 13	Z122
B7514	Receive data from the SIMOLINK board, word 5 bit 14	Z122
B7515	Receive data from the SIMOLINK board, word 5 bit 15	Z122
B7600	Receive data from the SIMOLINK board, word 6 bit 0	Z122
B7601	Receive data from the SIMOLINK board, word 6 bit 1	Z122
B7602	Receive data from the SIMOLINK board, word 6 bit 2	Z122
B7603	Receive data from the SIMOLINK board, word 6 bit 3	Z122
B7604	Receive data from the SIMOLINK board, word 6 bit 4	Z122
B7605	Receive data from the SIMOLINK board, word 6 bit 5	Z122
B7606	Receive data from the SIMOLINK board, word 6 bit 6	Z122
B7607	Receive data from the SIMOLINK board, word 6 bit 7	Z122
B7608	Receive data from the SIMOLINK board, word 6 bit 8	Z122
B7609	Receive data from the SIMOLINK board, word 6 bit 9	Z122
B7610	Receive data from the SIMOLINK board, word 6 bit 10	Z122
B7611	Receive data from the SIMOLINK board, word 6 bit 11	Z122
B7612	Receive data from the SIMOLINK board, word 6 bit 12	Z122
B7613	Receive data from the SIMOLINK board, word 6 bit 13	Z122
B7614	Receive data from the SIMOLINK board, word 6 bit 14	Z122
B7615	Receive data from the SIMOLINK board, word 6 bit 15	Z122
B7700	Receive data from the SIMOLINK board, word 7 bit 0	Z122
B7701	Receive data from the SIMOLINK board, word 7 bit 1	Z122
B7702	Receive data from the SIMOLINK board, word 7 bit 2	Z122
B7703	Receive data from the SIMOLINK board, word 7 bit 3	Z122
B7704	Receive data from the SIMOLINK board, word 7 bit 4	Z122
B7705	Receive data from the SIMOLINK board, word 7 bit 5	Z122
B7706	Receive data from the SIMOLINK board, word 7 bit 6	Z122
B7707	Receive data from the SIMOLINK board, word 7 bit 7	Z122
B7708	Receive data from the SIMOLINK board, word 7 bit 8	Z122
B7709	Receive data from the SIMOLINK board, word 7 bit 9	Z122
B7710	Receive data from the SIMOLINK board, word 7 bit 10	Z122

Binector	Name, description	Function diag., Sheet
B7711	Receive data from the SIMOLINK board, word 7 bit 11	Z122
B7712	Receive data from the SIMOLINK board, word 7 bit 12	Z122
B7713	Receive data from the SIMOLINK board, word 7 bit 13	Z122
B7714	Receive data from the SIMOLINK board, word 7 bit 14	Z122
B7715	Receive data from the SIMOLINK board, word 7 bit 15	Z122
B7800	Receive data from the SIMOLINK board, word 8 bit 0	Z122
B7801	Receive data from the SIMOLINK board, word 8 bit 1	Z122
B7802	Receive data from the SIMOLINK board, word 8 bit 2	Z122
B7803	Receive data from the SIMOLINK board, word 8 bit 3	Z122
B7804	Receive data from the SIMOLINK board, word 8 bit 4	Z122
B7805	Receive data from the SIMOLINK board, word 8 bit 5	Z122
B7806	Receive data from the SIMOLINK board, word 8 bit 6	Z122
B7807	Receive data from the SIMOLINK board, word 8 bit 7	Z122
B7808	Receive data from the SIMOLINK board, word 8 bit 8	Z122
B7809	Receive data from the SIMOLINK board, word 8 bit 9	Z122
B7810	Receive data from the SIMOLINK board, word 8 bit 10	Z122
B7811	Receive data from the SIMOLINK board, word 8 bit 11	Z122
B7812	Receive data from the SIMOLINK board, word 8 bit 12	Z122
B7813	Receive data from the SIMOLINK board, word 8 bit 13	Z122
B7814	Receive data from the SIMOLINK board, word 8 bit 14	Z122
B7815	Receive data from the SIMOLINK board, word 8 bit 15	Z122
B7900	Receive data from the SIMOLINK board, word 9 bit 0	Z122
B7901	Receive data from the SIMOLINK board, word 9 bit 1	Z122
B7902	Receive data from the SIMOLINK board, word 9 bit 2	Z122
B7903	Receive data from the SIMOLINK board, word 9 bit 3	Z122
B7904	Receive data from the SIMOLINK board, word 9 bit 4	Z122
B7905	Receive data from the SIMOLINK board, word 9 bit 5	Z122
B7906	Receive data from the SIMOLINK board, word 9 bit 6	Z122
B7907	Receive data from the SIMOLINK board, word 9 bit 7	Z122
B7908	Receive data from the SIMOLINK board, word 9 bit 8	Z122
B7909	Receive data from the SIMOLINK board, word 9 bit 9	Z122
B7910	Receive data from the SIMOLINK board, word 9 bit 10	Z122
B7911	Receive data from the SIMOLINK board, word 9 bit 11	Z122
B7912	Receive data from the SIMOLINK board, word 9 bit 12	Z122
B7913	Receive data from the SIMOLINK board, word 9 bit 13	Z122
B7914	Receive data from the SIMOLINK board, word 9 bit 14	Z122
B7915	Receive data from the SIMOLINK board, word 9 bit 15	Z122

Process data exchange with $2^{\text {nd }}$ CB

B8030	Fault delay timeout for 2 ${ }^{\text {nd }} \mathrm{CB}-$ maintained signal	Z111
B8031	Fault delay timeout for 2 ${ }^{\text {nd }} \mathrm{CB}-1$ s pulse	Z111
B8035	Telegram failure timeout for 2 ${ }^{\text {nd }} \mathrm{CB}$	[SW 1.9 and later]

Process data exchange with $2^{\text {nd }} C B$

B8100	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1 , bit 0	Z111
B8101	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1, bit 1	Z111
B8102	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1, bit 2	Z111
B8103	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1, bit 3	Z111
B8104	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1, bit 4	Z111
B8105	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1, bit 5	Z111

Binector	Name, description	Function diag., Sheet
B8106	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1, bit 6	Z111
B8107	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1, bit 7	Z111
B8108	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1, bit 8	Z111
B8109	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1, bit 9	Z111
B8110	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 1, bit 10	Z111
B8111	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 1, bit 11	Z111
B8112	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 1, bit 12	Z111
B8113	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 1, bit 13	Z111
B8114	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 1, bit 14	Z111
B8115	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 1, bit 15	Z111
B8200	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2, bit 0	Z111
B8201	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2, bit 1	Z111
B8202	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2, bit 2	Z111
B8203	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2, bit 3	Z111
B8204	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2, bit 4	Z111
B8205	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2, bit 5	Z111
B8206	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2, bit 6	Z111
B8207	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2, bit 7	Z111
B8208	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2, bit 8	Z111
B8209	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 2, bit 9	Z111
B8210	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 2, bit 10	Z111
B8211	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 2, bit 11	Z111
B8212	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 2, bit 12	Z111
B8213	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 2, bit 13	Z111
B8214	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 2, bit 14	Z111
B8215	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 2, bit 15	Z111
B8300	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3, bit 0	Z111
B8301	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3, bit 1	Z111
B8302	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3, bit 2	Z111
B8303	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3, bit 3	Z111
B8304	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3, bit 4	Z111
B8305	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3, bit 5	Z111
B8306	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3, bit 6	Z111
B8307	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3, bit 7	Z111
B8308	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3, bit 8	Z111
B8309	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 3, bit 9	Z111
B8310	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 3, bit 10	Z111
B8311	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 3, bit 11	Z111
B8312	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 3, bit 12	Z111
B8313	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 3, bit 13	Z111
B8314	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 3, bit 14	Z111
B8315	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 3, bit 15	Z111
B8400	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 0	Z111
B8401	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 1	Z111
B8402	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 2	Z111
B8403	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 3	Z111
B8404	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 4	Z111
B8405	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 5	Z111
B8406	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 6	Z111
B8407	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 7	Z111

Binector	Name, description	Function diag., Sheet
B8408	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 8	Z111
B8409	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 9	Z111
B8410	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 10	Z111
B8411	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 11	Z111
B8412	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 12	Z111
B8413	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 13	Z111
B8414	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 14	Z111
B8415	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 4, bit 15	Z111
B8500	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 0	Z111
B8501	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5 , bit 1	Z111
B8502	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5 , bit 2	Z111
B8503	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 3	Z111
B8504	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 4	Z111
B8505	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 5	Z111
B8506	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 6	Z111
B8507	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 7	Z111
B8508	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5 , bit 8	Z111
B8509	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 9	Z111
B8510	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 10	Z111
B8511	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 11	Z111
B8512	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 12	Z111
B8513	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 13	Z111
B8514	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 14	Z111
B8515	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 5, bit 15	Z111
B8600	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 0	Z111
B8601	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 1	Z111
B8602	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 2	Z111
B8603	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 3	Z111
B8604	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 4	Z111
B8605	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 5	Z111
B8606	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 6	Z111
B8607	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 7	Z111
B8608	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 8	Z111
B8609	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 9	Z111
B8610	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 10	Z111
B8611	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 11	Z111
B8612	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 12	Z111
B8613	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 13	Z111
B8614	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 14	Z111
B8615	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 6, bit 15	Z111
B8700	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 0	Z111
B8701	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 1	Z111
B8702	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 2	Z111
B8703	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 3	Z111
B8704	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 4	Z111
B8705	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 5	Z111
B8706	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 6	Z111
B8707	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 7	Z111
B8708	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 8	Z111
B8709	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 9	Z111

Binector	Name, description	Function diag., Sheet
B8710	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 7, bit 10	Z111
B8711	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 7, bit 11	Z111
B8712	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 12	Z111
B8713	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 13	Z111
B8714	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 7, bit 14	Z111
B8715	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 7, bit 15	Z111
B8800	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8, bit 0	Z111
B8801	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8, bit 1	Z111
B8802	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8, bit 2	Z111
B8803	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8, bit 3	Z111
B8804	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8, bit 4	Z111
B8805	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8, bit 5	Z111
B8806	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8, bit 6	Z111
B8807	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8, bit 7	Z111
B8808	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8 , bit 8	Z111
B8809	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 8 , bit 9	Z111
B8810	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 8, bit 10	Z111
B8811	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 8, bit 11	Z111
B8812	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 8, bit 12	Z111
B8813	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 8, bit 13	Z111
B8814	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 8, bit 14	Z111
B8815	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 8, bit 15	Z111
B8900	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9, bit 0	Z111
B8901	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9, bit 1	Z111
B8902	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9, bit 2	Z111
B8903	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9, bit 3	Z111
B8904	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9, bit 4	Z111
B8905	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9, bit 5	Z111
B8906	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9 , bit 6	Z111
B8907	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9, bit 7	Z111
B8908	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9 , bit 8	Z111
B8909	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9 , bit 9	Z111
B8910	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 9, bit 10	Z111
B8911	Receive data from $2^{\text {nd }} \mathrm{CB}$, word 9, bit 11	Z111
B8912	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 9, bit 12	Z111
B8913	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 9, bit 13	Z111
B8914	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 9, bit 14	Z111
B8915	Receive data from ${ }^{\text {nd }} \mathrm{CB}$, word 9, bit 15	Z111

Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)

B9030	USS3 / Peer3 - Telegram monitoring timeout - maintained signal	G172, G174
B9031	USS3 / Peer3 - Telegram monitoring timeout - 1s pulse	G172, G174

Technology software S00: Voltage monitor for electronics power supply				B110
B9050	Power ON (100ms pulse on connection of voltage)	B110		
B9051	Power OFF (10ms pulse on disconnection of voltage)			

Technology software S00: Connector/binector converters								
B9052	Connector/binector converter 1, bit 0	FB 10	B120					
B9053	Connector/binector converter 1, bit 1	FB 10	B120					

Binector	Name, description		Function diag., Sheet
B9054	Connector/binector converter 1, bit 2	FB 10	B120
B9055	Connector/binector converter 1, bit 3	FB 10	B120
B9056	Connector/binector converter 1, bit 4	FB 10	B120
B9057	Connector/binector converter 1, bit 5	FB 10	B120
B9058	Connector/binector converter 1, bit 6	FB 10	B120
B9059	Connector/binector converter 1, bit 7	FB 10	B120
B9060	Connector/binector converter 1, bit 8	FB 10	B120
B9061	Connector/binector converter 1, bit 9	FB 10	B120
B9062	Connector/binector converter 1, bit 10	FB 10	B120
B9063	Connector/binector converter 1, bit 11	FB 10	B120
B9064	Connector/binector converter 1, bit 12	FB 10	B120
B9065	Connector/binector converter 1, bit 13	FB 10	B120
B9066	Connector/binector converter 1, bit 14	FB 10	B120
B9067	Connector/binector converter 1, bit 15	FB 10	B120
B9068	Connector/binector converter 2, bit 0	FB 11	B120
B9069	Connector/binector converter 2, bit 1	FB 11	B120
B9070	Connector/binector converter 2, bit 2	FB 11	B120
B9071	Connector/binector converter 2, bit 3	FB 11	B120
B9072	Connector/binector converter 2, bit 4	FB 11	B120
B9073	Connector/binector converter 2, bit 5	FB 11	B120
B9074	Connector/binector converter 2, bit 6	FB 11	B120
B9075	Connector/binector converter 2, bit 7	FB 11	B120
B9076	Connector/binector converter 2, bit 8	FB 11	B120
B9077	Connector/binector converter 2, bit 9	FB 11	B120
B9078	Connector/binector converter 2, bit 10	FB 11	B120
B9079	Connector/binector converter 2, bit 11	FB 11	B120
B9080	Connector/binector converter 2, bit 12	FB 11	B120
B9081	Connector/binector converter 2, bit 13	FB 11	B120
B9082	Connector/binector converter 2, bit 14	FB 11	B120
B9083	Connector/binector converter 2, bit 15	FB 11	B120
B9084	Connector/binector converter 3, bit 0	FB 12	B120
B9085	Connector/binector converter 3, bit 1	FB 12	B120
B9086	Connector/binector converter 3, bit 2	FB 12	B120
B9087	Connector/binector converter 3, bit 3	FB 12	B120
B9088	Connector/binector converter 3, bit 4	FB 12	B120
B9089	Connector/binector converter 3, bit 5	FB 12	B120
B9090	Connector/binector converter 3, bit 6	FB 12	B120
B9091	Connector/binector converter 3, bit 7	FB 12	B120
B9092	Connector/binector converter 3, bit 8	FB 12	B120
B9093	Connector/binector converter 3, bit 9	FB 12	B120
B9094	Connector/binector converter 3, bit 10	FB 12	B120
B9095	Connector/binector converter 3, bit 11	FB 12	B120
B9096	Connector/binector converter 3, bit 12	FB 12	B120
B9097	Connector/binector converter 3, bit 13	FB 12	B120
B9098	Connector/binector converter 3, bit 14	FB 12	B120
B9099	Connector/binector converter 3, bit 15	FB 12	B120

Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)

B9100	USS3 / Peer3 receive data, word 1, bit 0	G172, G174
B9101	USS3 / Peer3 receive data, word 1, bit 1	G172, G174

Binector	Name, description	Function diag., Sheet
B9102	USS3 / Peer3 receive data, word 1, bit 2	G172, G174
B9103	USS3 / Peer3 receive data, word 1, bit 3	G172, G174
B9104	USS3 / Peer3 receive data, word 1, bit 4	G172, G174
B9105	USS3 / Peer3 receive data, word 1, bit 5	G172, G174
B9106	USS3 / Peer3 receive data, word 1, bit 6	G172, G174
B9107	USS3 / Peer3 receive data, word 1, bit 7	G172, G174
B9108	USS3 / Peer3 receive data, word 1, bit 8	G172, G174
B9109	USS3 / Peer3 receive data, word 1, bit 9	G172, G174
B9110	USS3 / Peer3 receive data, word 1, bit 10	G172, G174
B9111	USS3 / Peer3 receive data, word 1, bit 11	G172, G174
B9112	USS3 / Peer3 receive data, word 1, bit 12	G172, G174
B9113	USS3 / Peer3 receive data, word 1, bit 13	G172, G174
B9114	USS3 / Peer3 receive data, word 1, bit 14	G172, G174
B9115	USS3 / Peer3 receive data, word 1, bit 15	G172, G174

Technology software S00: Limiters			
B9150	Limiter 1: Positive limitation has responded	FB 65	B135
B9151	Limiter 1: Negative limitation has responded	FB 65	B135
B9152	Limiter 2: Positive limitation has responded	FB 66	B135
B9153	Limiter 2: Negative limitation has responded	FB 66	B135
B9154	Limiter 3: Positive limitation has responded	FB 67	B135
B9155	Limiter 3: Negative limitation has responded	FB 67	B135
B9156	Limiter 4: Positive limitation has responded	[SW 2.0 and later]	FB 212
B9157	Limiter 4: Negative limitation has responded	[SW 2.0 and later]	FB 213
B9158	Limiter 5: Positive limitation has responded	B134	
B9159	Limiter 5: Negative limitation has responded	B134	

Technology software S00: Limit-value monitor with filter			
B9160	Limit-value monitor with filter 1: $\|A\|<B$ has responded	FB 70	B136
B9161	Limit-value monitor with filter 1: $A<B$ has responded	FB 70	B136
B9162	Limit-value monitor with filter 1: $\mathrm{A}=\mathrm{B}$ has responded	FB 70	B136
B9163	Limit-value monitor with filter 2: $\|A\|<B$ has responded	FB 71	B136
B9164	Limit-value monitor with filter 2: $A<B$ has responded	FB 71	B136
B9165	Limit-value monitor with filter 2: $A=B$ has responded	FB 71	B136
B9166	Limit-value monitor with filter 3: $\|A\|<B$ has responded	FB 72	B136
B9167	Limit-value monitor with filter 3: $A<B$ has responded	FB 72	B136
B9168	Limit-value monitor with filter 3: $A=B$ has responded	FB 72	B136

Technology software S00: Limit-value monitor without filter			
B9169	Limit-value monitor without filter 1: $\|A\|<B$ has responded	FB 73	B137
B9170	Limit-value monitor without filter 1: A < B has responded	FB 73	B137
B9171	Limit-value monitor without filter 1: A = B has responded	FB 73	B137
B9172	Limit-value monitor without filter 2: $\|A\|<B$ has responded	FB 74	B137
B9173	Limit-value monitor without filter 2: $A<B$ has responded	FB 74	B137
B9174	Limit-value monitor without filter 2: $A=B$ has responded	FB 74	B137
B9175	Limit-value monitor without filter 3: $\|A\|<B$ has responded	FB 75	B137
B9176	Limit-value monitor without filter 3: $A<B$ has responded	FB 75	B137
B9177	Limit-value monitor without filter 3: $A=B$ has responded	FB 75	B137
B9178	Limit-value monitor without filter 4: $\|A\|<B$ has responded	FB 76	B137
B9179	Limit-value monitor without filter 4: $A<B$ has responded	FB 76	B137

Binector	Name, description	Function diag., Sheet
B9180	Limit-value monitor without filter 4: A = B has responded	FB 76
B137		
B9181	Limit-value monitor without filter 5: $\|A\|<B$ has responded	FB 77
B138		
B9182	Limit-value monitor without filter 5: A < B has responded	FB 77
B9138		
B9184	Limit-value monitor without filter 5: A = B has responded	FB 77
B9185	Limit-value monitor without filter 6: A < B has responded	FB 78
B9138		
B9187	Limit-value monitor without filter 7: $\|A\|<B$ has responded	FB 78
B9188	Limit-value monitor without filter 7: A < B has responded	FB 78
B9189	Limit-value monitor without filter 7: A = B has responded	FB 79

Technology software S00: Simple ramp-function generator

B9190	Ramp-function generator output = ramp-function generator input $(y=x)$	FB 113	B165
B9191	$0=$ ramp-function generator initial run	FB 113	B165

Technology software S00: EXCLUSIVE OR elements with 2 inputs each					
B9195	Output of EXCLUSIVE OR element 1	FB 170	B206		
B9196	Output of EXCLUSIVE OR element 2	FB 171	B206		
B9197	Output of EXCLUSIVE OR element 3	FB 172	B206		
B9198	Output of EXCLUSIVE OR element 4	FB 173	B206		

Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)		
B9200	USS3 / Peer3 receive data, word 2, bit 0	G172, G174
B9201	USS3 / Peer3 receive data, word 2, bit 1	G172, G174
B9202	USS3 / Peer3 receive data, word 2, bit 2	G172, G174
B9203	USS3 / Peer3 receive data, word 2, bit 3	G172, G174
B9204	USS3 / Peer3 receive data, word 2, bit 4	G172, G174
B9205	USS3 / Peer3 receive data, word 2, bit 5	G172, G174
B9206	USS3 / Peer3 receive data, word 2, bit 6	G172, G174
B9207	USS3 / Peer3 receive data, word 2, bit 7	G172, G174
B9208	USS3 / Peer3 receive data, word 2, bit 8	G172, G174
B9209	USS3 / Peer3 receive data, word 2, bit 9	G172, G174
B9210	USS3 / Peer3 receive data, word 2, bit 10	G172, G174
B9211	USS3 / Peer3 receive data, word 2, bit 11	G172, G174
B9212	USS3 / Peer3 receive data, word 2, bit 12	G172, G174
B9213	USS3 / Peer3 receive data, word 2, bit 13	G172, G174
B9214	USS3 / Peer3 receive data, word 2, bit 14	G172, G174
B9215	USS3 / Peer3 receive data, word 2, bit 15	G172, G174

Technology software S00: Decoders / demultiplexers, binary to 1 of 8						
B9250	Decoder / demultiplexer 1: Q0	FB 118	B200			
B9251	Decoder / demultiplexer 1: Q1	FB 118	B200			
B9252	Decoder / demultiplexer 1: Q2	FB 118	B200			
B9253	Decoder / demultiplexer 1: Q3	FB 118	B200			
B9254	Decoder / demultiplexer 1: Q4	FB 118	B200			
B9255	Decoder / demultiplexer 1: Q5	FB 118	B200			
B9256	Decoder / demultiplexer 1: Q6	FB 118	B200			
B9257	Decoder / demultiplexer 1: Q7	FB 118	B200			
B9260	Decoder / demultiplexer 1: /Q0	FB 118	B200			
B9261	Decoder / demultiplexer 1: /Q1	FB 118	B200			
B9262	Decoder / demultiplexer 1: /Q2	FB 118	B200			

Binector	Name, description	Function diag., Sheet
B9263	Decoder / demultiplexer 1: /Q3	FB 118
B200		
B9264	Decoder / demultiplexer 1: /Q4	FB 118
B200		
B9265	Decoder / demultiplexer 1: /Q5	FB 118
B200		
B9266	Decoder / demultiplexer 1: /Q6	Decoder / demultiplexer 1: /Q7
B9270	Decoder / demultiplexer 2: Q0 118	B200
B9271	Decoder / demultiplexer 2: Q1	FB 118
B200		
B9272	Decoder / demultiplexer 2: Q2	FB 119
B200		
B9273	Decoder / demultiplexer 2: Q3	Decoder / demultiplexer 2: Q4
B9275	Decoder / demultiplexer 2: Q5 119	B200
B9276	Decoder / demultiplexer 2: Q6	FB 119
B200		
B9277	Decoder / demultiplexer 2: Q7	FB 119
B200		
B9281	Decoder / demultiplexer 2: /Q0	Decoder / demultiplexer 2: /Q1
B9282	Decoder / demultiplexer 2: /Q2	FB 119
B200		
B9283	Decoder / demultiplexer 2: /Q3	B200
B9284	Decoder / demultiplexer 2: /Q4	FB 119
B200		
B9285	Decoder / demultiplexer 2: /Q5	FB 119
B200		
B9286	Decoder / demultiplexer 2: /Q6	FB 119
B200		
B9287	Decoder / demultiplexer 2: /Q7	FB 119
B200		

S00 technology software: Software counter									
B9290	Output overflow software counter	[SW 1.9 and later]	FB 89	B196					
B9291	Output underflow software counter	[SW 1.9 and later]	FB 89	B196					

Technology software S00: Limiters							
B9295	Limiter 6: Positive limitation has responded	[SW 2.0 and later] FB 214	B134				
B9296	Limiter 6: Negative limitation has responded	[SW 2.0 and later] FB 214	B134				

Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)		
B9300	USS3 / Peer3 receive data, word 3, bit 0	G172, G174
B9301	USS3 / Peer3 receive data, word 3, bit 1	G172, G174
B9302	USS3 / Peer3 receive data, word 3, bit 2	G172, G174
B9303	USS3 / Peer3 receive data, word 3, bit 3	G172, G174
B9304	USS3 / Peer3 receive data, word 3, bit 4	G172, G174
B9305	USS3 / Peer3 receive data, word 3, bit 5	G172, G174
B9306	USS3 / Peer3 receive data, word 3, bit 6	G172, G174
B9307	USS3 / Peer3 receive data, word 3, bit 7	G1172, G174
B9308	USS3 / Peer3 receive data, word 3, bit 8	G172, G174
B9309	USS3 / Peer3 receive data, word 3, bit 9	G172, G174
B9310	USS3 / Peer3 receive data, word 3, bit 10	G1172, G174
B9311	USS3 / Peer3 receive data, word 3, bit 11	G172, G174
B9312	USS3 / Peer3 receive data, word 3, bit 12	G172, G174
B9313	USS3 / Peer3 receive data, word 3, bit 13	G172, G174
B9314	USS3 / Peer3 receive data, word 3, bit 14	G172, G174
B9315	USS3 / Peer3 receive data, word 3, bit 15	G172, G174

Technology software S00: AND elements with 3 inputs each							
B9350	Output of AND element 1	FB 120	B205				
B9351	Output of AND element 2	FB 121	B205				

Binector	Name, description		Function diag., Sheet
B9352	Output of AND element 3	FB 122	B205
B9353	Output of AND element 4	FB 123	B205
B9354	Output of AND element 5	FB 124	B205
B9355	Output of AND element 6	FB 125	B205
B9356	Output of AND element 7	FB 126	B205
B9357	Output of AND element 8	FB 127	B205
B9358	Output of AND element 9	FB 128	B205
B9359	Output of AND element 10	FB 129	B205
B9360	Output of AND element 11	FB 130	B205
B9361	Output of AND element 12	FB 131	B205
B9362	Output of AND element 13	FB 132	B205
B9363	Output of AND element 14	FB 133	B205
B9364	Output of AND element 15	FB 134	B205
B9365	Output of AND element 16	FB 135	B205
B9366	Output of AND element 17	FB 136	B205
B9367	Output of AND element 18	FB 137	B205
B9368	Output of AND element 19	FB 138	B205
B9369	Output of AND element 20	FB 139	B205
B9370	Output of AND element 21	FB 140	B205
B9371	Output of AND element 22	FB 141	B205
B9372	Output of AND element 23	FB 142	B205
B9373	Output of AND element 24	FB 143	B205
B9374	Output of AND element 25	FB 144	B205
B9375	Output of AND element 26	FB 145	B205
B9376	Output of AND element 27	FB 146	B205
B9377	Output of AND element 28	FB 147	B205

Technology software S00: OR elements with 3 inputs each			
B9380	Output of OR element 1	FB 150	B206
B9381	Output of OR element 2	FB 151	B206
B9382	Output of OR element 3	FB 152	B206
B9383	Output of OR element 4	FB 153	B206
B9384	Output of OR element 5	FB 154	B206
B9385	Output of OR element 6	FB 155	B206
B9386	Output of OR element 7	FB 156	B206
B9387	Output of OR element 8	FB 157	B206
B9388	Output of OR element 9	FB 158	B206
B9389	Output of OR element 10	FB 159	B206
B9390	Output of OR element 11	FB 160	B206
B9391	Output of OR element 12	FB 161	B206
B9392	Output of OR element 13	FB 162	B206
B9393	Output of OR element 14	FB 163	B206
B9394	Output of OR element 15	FB 164	B206
B9395	Output of OR element 16	FB 165	B206
B9396	Output of OR element 17	FB 166	B206
B9397	Output of OR element 18	FB 167	B206
B9398	Output of OR element 19	FB 168	B206
B9399	Output of OR element 20	FB 169	B206

Binector	Name, description	Function diag., Sheet
Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)	G172, G174	
B9400	USS3 / Peer3 receive data, word 4, bit 0	G172, G174
B9401	USS3 / Peer3 receive data, word 4, bit 1	G172, G174
B9402	USS3 / Peer3 receive data, word 4, bit 2	G172, G174
B9403	USS3 / Peer3 receive data, word 4, bit 3	G172, G174
B9404	USS3 / Peer3 receive data, word 4, bit 4	G172, G174
B9405	USS3 / Peer3 receive data, word 4, bit 5	G172, G174
B9406	USS3 / Peer3 receive data, word 4, bit 6	G172, G174
B9407	USS3 / Peer3 receive data, word 4, bit 7	G172, G174
B9408	USS3 / Peer3 receive data, word 4, bit 8	G172, G174
B9409	USS3 / Peer3 receive data, word 4, bit 9	G172, G174
B9410	USS3 / Peer3 receive data, word 4, bit 10	G172, G174
B9411	USS3 / Peer3 receive data, word 4, bit 11	G172, G174
B9412	USS3 / Peer3 receive data, word 4, bit 12	G172, G174
B9413	USS3 / Peer3 receive data, word 4, bit 13	G172, G174
B9414	USS3 / Peer3 receive data, word 4, bit 14	G172, G174
B9415	USS3 / Peer3 receive data, word 4, bit 15	

Technology software S00: Inverters								
B9450	Output of inverter 1	FB 180	B207					
B9451	Output of inverter 2	FB 181	B207					
B9452	Output of inverter 3	FB 182	B207					
B9453	Output of inverter 4	FB 183	B207					
B9454	Output of inverter 5	FB 184	B207					
B9455	Output of inverter 6	FB 185	B207					
B9456	Output of inverter 7	FB 186	B207					
B9457	Output of inverter 8	FB 187	B207					
B9458	Output of inverter 9	FB 188	B207					
B9459	Output of inverter 10	FB 189	B207					
B9460	Output of inverter 11	FB 190	B207					
B9461	Output of inverter 12	FB 191	B207					
B9462	Output of inverter 13	FB 192	B207					
B9463	Output of inverter 14	FB 193	B207					
B9464	Output of inverter 15	FB 194	B207					
B9465	Output of inverter 16	FB 195	B207					

Technology software S00: NAND elements with 3 inputs each							
B9470	Output of NAND element 1	FB 200	B207				
B9471	Output of NAND element 2	FB 201	B207				
B9472	Output of NAND element 3	FB 202	B207				
B9473	Output of NAND element 4	FB 203	B207				
B9474	Output of NAND element 5	FB 204	B207				
B9475	Output of NAND element 6	FB 205	B207				
B9476	Output of NAND element 7	FB 206	B207				
B9477	Output of NAND element 8	FB 207	B207				
B9478	Output of NAND element 9	FB 208	B207				
B9479	Output of NAND element 10	FB 209	B207				
B9480	Output of NAND element 11	FB 210	B207				
B9481	Output of NAND element 12	FB 211	B207				

Binector	Name, description	Function diag., Sheet	
Technology software S00: Binary signal selector switches	FB 250	B216	
B9482	Output of binary signal selector switch 1	FB 251	B216
B9483	Output of binary signal selector switch 2	FB 252	B216
B9484	Output of binary signal selector switch 3	FB 253	B216
B9485	Output of binary signal selector switch 4	FB 254	B216
B9486	Output of binary signal selector switch 5		

Technology software S00: D flipflops						
B9490	D flipflop 1: Output Q	FB 230	B211			
B9491	D flipflop 1: Output /Q	FB 230	B211			
B9492	D flipflop 2: Output Q	FB 231	B211			
B9493	D flipflop 2: Output /Q	FB 231	B211			
B9494	D flipflop 3: Output Q	FB 232	B211			
B9495	D flipflop 3: Output /Q	FB 232	B211			
B9496	D flipflop 4: Output Q	FB 233	B211			
B9497	D flipflop 4: Output /Q	FB 233	B211			

Technology software S00: Technology controller			
B9499	Ramp-function generator output = ramp-function generator input ($\mathrm{y}=\mathrm{x}$)	FB 113	B170

Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)		
B9500	USS3 / Peer3 receive data, word 5, bit 0	
B9501	USS3 / Peer3 receive data, word 5, bit 1	G172, G174
B9502	USS3 / Peer3 receive data, word 5, bit 2	G172, G174
B9503	USS3 / Peer3 receive data, word 5, bit 3	G172, G174
B9504	USS3 / Peer3 receive data, word 5, bit 4	G172, G174
B9505	USS3 / Peer3 receive data, word 5, bit 5	G172, G174
B9506	USS3 / Peer3 receive data, word 5, bit 6	G172, G174
B9507	USS3 / Peer3 receive data, word 5, bit 7	G172, G174
B9508	USS3 / Peer3 receive data, word 5, bit 8	G172, G174
B9509	USS3 / Peer3 receive data, word 5, bit 9	G172, G174
B9510	USS3 / Peer3 receive data, word 5, bit 10	G172, G174
B9511	USS3 / Peer3 receive data, word 5, bit 11	G172, G174
B9512	USS3 / Peer3 receive data, word 5, bit 12	G172, G174
B9513	USS3 / Peer3 receive data, word 5, bit 13	G172, G174
B9514	USS3 / Peer3 receive data, word 5, bit 14	G172, G174
B9515	USS3 / Peer3 receive data, word 5, bit 15	G172, G174

Technology software S00: RS flipflops							
B9550	RS flipflop 1: Output Q	FB 215	B210				
B9551	RS flipflop 1: Output /Q	FB 215	B210				
B9552	RS flipflop 2: Output Q	FB 216	B210				
B9553	RS flipflop 2: Output /Q	FB 216	B210				
B9554	RS flipflop 3: Output Q	FB 217	B210				
B9555	RS flipflop 3: Output /Q	FB 217	B210				
B9556	RS flipflop 4: Output Q	FB 218	B210				
B9557	RS flipflop 4: Output /Q	FB 218	B210				
B9558	RS flipflop 5: Output Q	FB 219	B210				
B9559	RS flipflop 5: Output /Q	FB 219	B210				
B9560	RS flipflop 6: Output Q	FB 220	B210				
B9561	RS flipflop 6: Output /Q	FB 220	B210				

Binector	Name, description	Function diag., Sheet	
B9562	RS flipflop 7: Output Q	FB 221	B210
B9563	RS flipflop 7: Output /Q	FB 221	B210
B9564	RS flipflop 8: Output Q	FB 222	B210
B9565	RS flipflop 8: Output /Q	FB 222	B210
B9566	RS flipflop 9: Output Q	FB 223	B210
B9567	RS flipflop 9: Output /Q	FB 223	B210
B9568	RS flipflop 10: Output Q	FB 224	B210
B9569	RS flipflop 10: Output /Q	FB 224	B210
B9570	RS flipflop 11: Output Q	FB 225	B210
B9571	RS flipflop 11: Output /Q	FB 225	B210
B9572	RS flipflop 12: Output Q	FB 226	B210
B9573	RS flipflop 12: Output /Q	FB 226	B210
B9574	RS flipflop 13: Output Q	FB 227	B210
B9575	RS flipflop 13: Output /Q	FB 227	B210
B9576	RS flipflop 14: Output Q	FB 228	B210
B9577	RS flipflop 14: Output /Q	FB 228	B210

Technology software S00: Timers			
B9580	Timer 1: Output	FB 240	B215
B9581	Timer 1: Output inverted	FB 240	B215
B9582	Timer 2: Output	FB 241	B215
B9583	Timer 2: Output inverted	FB 241	B215
B9584	Timer 3: Output	FB 242	B215
B9585	Timer 3: Output inverted	FB 242	B215
B9586	Timer 4: Output	FB 243	B215
B9587	Timer 4: Output inverted	FB 243	B215
B9588	Timer 5: Output	FB 244	B215
B9589	Timer 5: Output inverted	FB 244	B215
B9590	Timer 6: Output	FB 245	B215
B9591	Timer 6: Output inverted	FB 245	B215
B9592	Timer 7: Output	FB 246	B216
B9593	Timer 7: Output inverted	FB 246	B216
B9594	Timer 8: Output	FB 247	B216
B9595	Timer 8: Output inverted	FB 247	B216
B9596	Timer 9: Output	FB 248	B216
B9597	Timer 9: Output inverted	FB 248	B216
B9598	Timer 10: Output	FB 249	B216
B9599	Timer 10: Output inverted	FB 249	B216

Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)		
B9600	USS3 receive data, word 6, bit 0	G172
B9601	USS3 receive data, word 6, bit 1	G172
B9602	USS3 receive data, word 6, bit 2	G172
B9603	USS3 receive data, word 6, bit 3	G172
B9604	USS3 receive data, word 6, bit 4	G172
B9605	USS3 receive data, word 6, bit 5	G172
B9606	USS3 receive data, word 6, bit 6	G172
B9607	USS3 receive data, word 6, bit 7	G172
B9608	USS3 receive data, word 6, bit 8	G172
B9609	USS3 receive data, word 6, bit 9	G172

Binector	Name, description	Function diag., Sheet
B9610	USS3 receive data, word 6, bit 10	G172
B9611	USS3 receive data, word 6, bit 11	G172
B9612	USS3 receive data, word 6, bit 12	G172
B9613	USS3 receive data, word 6, bit 13	G172
B9614	USS3 receive data, word 6, bit 14	G172
B9615	USS3 receive data, word 6, bit 15	G172

Technology software S00: PI controller		[SW 1.8 and later]	
B9650	PI controller 1: Controller at output limitation	FB 260	B180
B9652	PI controller 3: Controller at output limitation	FB 262	B182
B9653	PI controller 4: Controller at output limitation	FB 263	B183
B9654	PI controller 5: Controller at output limitation	FB 264	B184
B9655	PI controller 6: Controller at output limitation	FB 265	B185
B9656	PI controller 7: Controller at output limitation	FB 266	B186
B9657	PI controller 8: Controller at output limitation	FB 267	B187
B9658	PI controller 9: Controller at output limitation	FB 268	B188
B9659	PI controller 10: Controller at output limitation	FB 269	B189
B9660	PI controller 1: Controller at positive output limitation	FB 260	B180
B9661	PI controller 2: Controller at positive output limitation	FB 261	B181
B9662	PI controller 3: Controller at positive output limitation	FB 262	B182
B9663	PI controller 4: Controller at positive output limitation	FB 263	B183
B9664	PI controller 5: Controller at positive output limitation	FB 264	B184
B9665	PI controller 6: Controller at positive output limitation	FB 265	B185
B9666	PI controller 7: Controller at positive output limitation	FB 266	B186
B9667	PI controller 8: Controller at positive output limitation	FB 267	B187
B9668	PI controller 9: Controller at positive output limitation	FB 268	B188
B9669	PI controller 10: Controller at positive output limitation	FB 269	B189
B9670	PI controller 1: Controller at negative output limitation	FB 260	B180
B9671	PI controller 2: Controller at negative output limitation	FB 261	B181
B9672	PI controller 3: Controller at negative output limitation	FB 262	B182
B9673	PI controller 4: Controller at negative output limitation	FB 263	B183
B9674	PI controller 5: Controller at negative output limitation	FB 264	B184
B9675	PI controller 6: Controller at negative output limitation	FB 265	B185
B9676	PI controller 7: Controller at negative output limitation	FB 266	B186
B9677	PI controller 8: Controller at negative output limitation	FB 267	B187
B9678	PI controller 9: Controller at negative output limitation	FB 268	B188
B9679	PI controller 10: Controller at negative output limitation	FB 269	B189

S00 technology software: Limit-value monitors for double-word connectors				
B9680	Limit-value monitor 1: $\|A\|<B$ has responded	[SW 1.9 and later]	FB 68	B151
B9681	Limit-value monitor 1: $\mathrm{A}<\mathrm{B}$ has responded	[SW 1.9 and later]	FB 68	B151
B9682	Limit-value monitor 1: $\mathrm{A}=\mathrm{B}$ has responded	[SW 1.9 and later]	FB 68	B151
B9683	Limit-value monitor 2: $\|A\|<B$ has responded	[SW 1.9 and later]	FB 69	B151
B9684	Limit-value monitor 2: $\mathrm{A}<\mathrm{B}$ has responded	[SW 1.9 and later]	FB 69	B151
B9685	Limit-value monitor 2: $\mathrm{A}=\mathrm{B}$ has responded	[SW 1.9 and later]	FB 69	B151

Technology software S00: root extractor										
B9686	\|root extractor input	< threshold responded	[SW 2.0 and later]	FB 58	B153					
B9687	\|root extractor input	< threshold responded (inverted)	[SW 2.0 and later]	FB 58	B153					

Binector	Name, description	Function diag., Sheet
Serial interface 3 (USS3 / Peer-to-peer 3 on G-SST3)		
B9700	USS3 receive data, word 7, bit 0	G172
B9701	USS3 receive data, word 7, bit 1	G172
B9702	USS3 receive data, word 7, bit 2	G172
B9703	USS3 receive data, word 7, bit 3	G172
B9704	USS3 receive data, word 7, bit 4	G172
B9705	USS3 receive data, word 7, bit 5	G172
B9706	USS3 receive data, word 7, bit 6	G172
B9707	USS3 receive data, word 7, bit 7	G172
B9708	USS3 receive data, word 7, bit 8	G172
B9709	USS3 receive data, word 7, bit 9	G172
B9710	USS3 receive data, word 7, bit 10	G172
B9711	USS3 receive data, word 7, bit 11	G172
B9712	USS3 receive data, word 7, bit 12	G172
B9713	USS3 receive data, word 7, bit 13	G172
B9714	USS3 receive data, word 7, bit 14	G172
B9715	USS3 receive data, word 7, bit 15	G172
B9800	USS3 receive data, word 8, bit 0	G172
B9801	USS3 receive data, word 8, bit 1	G172
B9802	USS3 receive data, word 8, bit 2	G172
B9803	USS3 receive data, word 8, bit 3	G172
B9804	USS3 receive data, word 8, bit 4	G172
B9805	USS3 receive data, word 8, bit 5	G172
B9806	USS3 receive data, word 8, bit 6	G172
B9807	USS3 receive data, word 8, bit 7	G172
B9808	USS3 receive data, word 8, bit 8	G172
B9809	USS3 receive data, word 8, bit 9	G172
B9810	USS3 receive data, word 8, bit 10	G172
B9811	USS3 receive data, word 8, bit 11	G172
B9812	USS3 receive data, word 8, bit 12	G172
B9813	USS3 receive data, word 8, bit 13	G172
B9814	USS3 receive data, word 8, bit 14	G172
B9815	USS3 receive data, word 8, bit 15	G172
B9900	USS3 receive data, word 9, bit 0	G172
B9901	USS3 receive data, word 9, bit 1	G172
B9902	USS3 receive data, word 9, bit 2	G172
B9903	USS3 receive data, word 9, bit 3	G172
B9904	USS3 receive data, word 9, bit 4	G172
B9905	USS3 receive data, word 9, bit 5	G172
B9906	USS3 receive data, word 9, bit 6	G172
B9907	USS3 receive data, word 9, bit 7	G172
B9908	USS3 receive data, word 9, bit 8	G172
B9909	USS3 receive data, word 9, bit 9	G172
B9910	USS3 receive data, word 9, bit 10	G172
B9911	USS3 receive data, word 9, bit 11	G172
B9912	USS3 receive data, word 9, bit 12	G172
B9913	USS3 receive data, word 9, bit 13	G172
B9914	USS3 receive data, word 9, bit 14	G172
B9915	USS3 receive data, word 9, bit 15	G172

Binector	Name, description	Function diag., Sheet	
Trace function			
B9999	Trigger condition of trace function is fulfilled	[SW 1.8 and later]	

13 Maintenance

WARNING

Hazardous voltage are present in this electrical equipment during operation.
A hazardous voltage may be present at the signalling relays in the customer installation.
Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.
When carrying out maintenance work on this converter, please read all safety instructions included in this section and attached to the product itself.

$\sqrt{7}$

- Maintenance work on the converter may be carried out only by qualified personnel who are thoroughly familiar with all safety notices in this manual and with the installation, operating and maintenance instructions.
- Before carrying out visual checks and maintenance work, ensure that the AC power supply is disconnected and locked out and that the converter is grounded. Before the AC supply is disconnected, both converters and motors are at hazardous voltage levels. Even when the converter contactor is open, hazardous voltages are still present.
- The snubber capacitors might still be carrying hazardous voltage after isolation from the supply. For this reason, the converter must not be opened for at least two minutes after switch-off.

Only spare parts authorized by the manufacturer may be used.

The SIMOREG CM must be thoroughly protected against the ingress of dirt so as to prevent voltage flashovers and this irreparable damage. Dust and foreign bodies, and especially contamination drawn in through the cooling air flow, must be carefully removed at regular intervals depending on the degree of pollution, but at least once every 12 months. The converter must be cleaned with dry, compressed air, max. 1 bar, or with a vacuum cleaner.

13.1Procedure for updating software

CAUTION

Before updating your software, find out the product state of your SIMOREG device. You will find this on the rating plate (field on the bottom left-hand side "Prod. State").

Prod. State = A1,A2 (devices with the CUD1 electronics board, version C98043-A7001-L1-xx): It is only permissible to load software versions 1.xx and 2.xx.

Prod. State = A3 (devices with the CUD1 electronics board, version C98043-A7001-L2-xx): It is only permissible to load software versions 3.xx.

In the Internet at http://support.automation.siemens.com/WW/view/de/10804957/133100
a WINDOWS-based version of the loading program is available (HEXLOAD_WIN.EXE). This program is started by double clicking on it in step 5 of the procedure described below for updating software.
USB-RS232 interface converters are supported.

Read out and write down all parameter contents.
(also note software version in r060.001 and r065.001!)

Switch off electronics power supply

Connect one COM port on the PC to connector X300 on the converter

Switch on electronics power supply AND press down the UP key on the PMU of the SIMOREG converter at the same time
\Rightarrow The SIMOREG converter switches to operating state 013.0

Open a DOS window on the PC and enter program call:
HEXLOAD 7001Axxx. 886 7001Bxxx. 886 COMm
Start the program by pressing Return
\Rightarrow The software update is performed automatically
\Rightarrow When the software has been updated successfully, the SIMOREG switches to operating state o13.2 for approx. 1 s
\Rightarrow The SIMOREG converter then switches to operating state o12.9 in many cases (depending on which SW version was previously installed in the converter) for approximately 15 s .

Note:

The parameter set can be transferred to a PC or programming device by means of DriveMonitor (see also Section 15).

Cable order number: 9AK1012-1AA00
(see also Section 15.3)

Note:

A software update can be started only from the PMU panel and not via an OP1S or the DriveMonitor system

Note:

HEXLOAD.EXE: Loading program
7001Axxx.H86 and 7001Bxxx.H86:
Data files which contain the SIMOREG software xxx is the SW release
COMr: COM1 or COM2

Note:

The currently programmed addressed is displayed on the PMU while the update is in progress

The current status of the update routine is displayed on the PC

Check the checksum:
Comparison of the value of parameter r062.001 with the checksum in the Internet under menu item "Info" (see the inside page of the cover sheet of the operation instructions).

Was the electronics supply disconnected while Step 6 was in progress?

?

Acknowledge any fault message that may appear on the SIMOREG device

```
Restore default setting
(see Section 7.4)
```

Start up the converter again (see Section 7.5)

Note:

The parameter set stored in Step 1 above can be loaded from a PC or programming device by means of DriveMonitor.

End

13.2 Replacement of components

13.2.1 Replacement of PCBs

WARNING

PCBs may be replaced only by properly qualified personnel.
PCBs must not be removed or inserted when the power supply is connected.
Non-observance of the safety instructions can result in death, severe personal injury or substantial property damage.

CAUTION

PCBs contains electrostatically sensitive devices. Before touching a PCB, the person carrying out the work must himself be electrostatically discharged. The simplest way of doing this is to touch an electrically conductive earthed object, e.g. socket outlet earth contact.

13.2.2 Replacement of thyristor and diode modules (field)

The modules are mounted by means of self-tapping screws. When a module is replaced, the support surfaces on the heatsink must be cleaned and a new layer of thermo-lubricant applied to the module. To fix the modules always used screws with a metric thread of the same length as the original screws and fixing elements (washer and spring lock washer). When screwing the modules to the busbars and boards, also use screws with a metric thread and the same length as the original screws and fixing elements (washer and spring lock washer).

NOTICE

The layer of thermo-lubricant (silicone-free, type H-T-C made by Electrolube) applied to the modules must be so thin and even that the baseplate is still clearly visible underneath!

Tightening torque on module: $3,5 \mathrm{Nm}$
Tightening torque of current terminals: 3 Nm

14 Servicing

Siemens supplies thoroughly tried and tested products and systems of the highest quality. To ensure maximum availability of our products and systems in your plant, we offer extensive aftersales services and support.

For further information about our services and your regional Siemens contacts, please go to our Internet website:
www.siemens.de/automation/csi en/service

14.1 Technical Support

You can obtain technical assistance with our products, systems and solutions from our Technical Support service. Whether you have a simple query, or need help in solving a more difficult, complex task, our Central Technical Support specialists will be pleased to advise you. Our Central Technical Support service is available in English and German.

Internet: http://www.siemens.com/automation/support-request

14.1.1 Time zone Europe and Africa

Tel.: +49 1805050222
Fax: +49 1805050223
mailto:ad.support@siemens.com
7:00 to 17:00 (CET)

14.1.2 Time zone America

24 Hour Hotline: +1 8003337421
Tel.: +1 4232622522
Fax: +1 4232622200
mailto:solutions.support@sea.siemens.com
8:00 to 17:00 (local time: Eastern Standard Time)

14.1.3 Time zone Asia / Australia

Tel.: +86 1064757575
Fax: +86 1064747474
mailto:adsupport.asia@siemens.com
7:30 to 17:30 (local time: Beijing)

14.2 Spare parts

Information about spare parts can be found in Catalog DA 21.1 E. You will find this catalog on the CD-ROM (order separately under order number: 6RX1700-0AD64, or with product order by specifying Z option -Z-D64) and via Internet website:
http://www4.ad.siemens.de/view/cs/en/9260805

14.3 Repairs

If you wish to have a part or unit repaired, please call or write to your regional Siemens contact for repairs.

14.4 On-site servicing

Qualified specialists can offer an on-site repair and maintenance service to increase the availability of your plant. Repair and/or maintenance support can be charged according to time and cost or provided within the scope of a service contract at a flat rate. Services charged on a time/cost basis will be available within the normal working hours of the relevant region subject to an appropriate call-out period.

For on-site servicing, please call your regional Siemens contact.

NOTE

If you contact us with a query, please specify the following converter data:

- Converter order number and serial number
- Software version
- Hardware version of basic electronics board (screen printing on component side)
- Hardware version and software version of supplementary boards (if installed)

15 DriveMonitor

The DriveMonitor software tool is available to assist the start-up, parameterization and diagnosis of SIMOREG 6RA70 units via a PC.

15.1 Scope of delivery

DriveMonitor is supplied on a CD-ROM together with the operating manual and sample applications.
Order No. 6RX1700-0AD64
It can also be ordered as an option in conjunction 6RA70 units. The relevant short code for this option is D64.

15.2 Installing the software

You can find a brief overview of the CD contents in START.HTM. If you have installed an HTML browser (e.g. Internet Explorer or Netscape Navigator) on your PC, you can open the overview by double clicking on START.HTM. If you do not have an HTML browser, you can find similar information in text format in file README.TXT.

After you have chosen an installation language by selecting links DriveMonitor - Installation of DriveMonitor- Start Installation, you can call the DriveMonitor installation routine.

Some Internet Browsers are not capable of starting programs directly. If this is the case on your PC, a "Setup.exe - Save as" dialog appears after you select Start Installation.
You can then start the Setup program manually in sub-catalog
DriveMonitorlsetuplsetup.exe
Then follow the instructions displayed by the installation routine.
The default installation path for DriveMonitor is C:\DriveMon\P7VRVISXISystem. A "DriveMonitor" icon is also placed on your desktop.

15.3 Connecting the SIMOREG to the PC

The simplest method is to link connector X300 in the front panel of the SIMOREG unit to a COM port on the PC using the connecting cable available under order no. 9AK1012-1AA00.

15.4 Setting up an online link to the SIMOREG

DriveMonitor always starts in offline mode. For this reason, you must open or create an offline file which has been set up specifically for the device and software version:

To open an existing offline file:

- File - Open <select parameter file> (if the parameter file has been created in DriveMonitor, the drive type SIMOREG DC-MASTER and the software version used must then be set. If you want to set up an online link to the drive, you must click the ONLINE button and enter the bus address set in the device)
To create a new offline file:
- File - New - Based on Factory Setting <select drive type and software version> . (If you want to set up an online link to the drive, you must click the ONLINE button and enter the bus address set in the device)
<enter file name>
- File - New - Empty Parameter Set <select drive type and software version> (If you want to set up an online link to the drive, you must click the ONLINE button and enter the bus address set in the device) <enter file name>

The data regarding drive type and software version are stored in the DNL file. You can then start the program in future by the normal Windows method, i.e. by double clicking on a DNL file, without further system queries.
You can open the ONLINE Settings screen under Options to check, and if necessary change, the interface parameters such as COM port and baud rate.

You can set the bus address and number of transmitted process data under File - Drive Settings.
To switch to online mode, select View - Online or the appropriate button on the toolbar. If the message "Device is not networked" then appears, then "Offline mode" is currently selected. You can switch to online mode under File - Drive Settings.

15.5 Further information

The engineering tool Drive ES is available for the diagnosis of complex installations containing several drives as well as Profibus-based drive communication

Several different packages of Drive ES are available:

- Drive ES Basic Data management in Step 7 projects, drive communications via Profibus or USS
Order No.: 6SW1700-5JA00-1AA0
- Drive ES Graphic Interconnection of Option S00 free functions blocks using the CFC interconnection editor Order No.: 6SW1700-5JB00-1AA0
- Drive ES Simatic Provides function blocks for SIMATIC CPUs and sample projects for communication with the SIMOREG unit Order No.: 6SW1700-5JC00-1AA0

NOTICE

DriveMonitor will run under Windows95/98/Me/XP or Windows NT4 / Windows 2000, but not under Windows 3.x.

16 Environmental compatibility

Environmental aspects of development

The number of parts has been greatly reduced through the use of highly integrated components and a modular design of the entire converter series. As a consequence, the power consumed in the production process is significantly lower.
Particular importance has been attached to reducing the volume, mass and diversity of metal and plastic parts.

Front components:	PC + ABS	Cycoloy	GE-Plastics
	ABS	Novodur	Bayer

Flame arresters containing halogen and insulating materials containing silicone have been replaced by pollutant-free materials on all major components.
Environmental compatibility was an important criterion in the selection of supplied parts.

Environmental aspects of production

Most supplied parts are shipped in reusable packaging. The packaging material itself is recyclable, consisting mainly of cardboard.

With the exception of the converter housing, surface coating materials have not been applied.
The production process is free of emissions.

Environmental aspects of disposal

The unit features screw and snap-on connections that can be separated easily to dismantle it into recyclable mechanical components.

The printed circuit boards can be disposed of by thermal processing. The percentage of components containing dangerous substances is low.

17 Applications

Descriptions of applications (e.g. Winder Application, 12-Pulse Operation, Master-Slave Operation, Operation of SIMOREG 6RA70 as Field Supply Unit and others) can be found on the CD-ROM (order separately under order number: 6RX1700-0AD64, or with product order by specifying Z option -Z-D64) and via Internet website:
http://www4.ad.siemens.de/view/cs/en/10804967

18 Appendix

18.1 Further documentation

Catalog DA21
Catalog DA21E
Catalog DA22

Converters
Spare parts
Cabinet-mounted converters

Comments sheet

We have made every effort to critically edit this Instruction Manual. However, if you still come across printing errors, we should be grateful if you would let us.

We would also be grateful if you could let us have your opinion of this Instruction Manual and the converter itself!

Contact your local Siemens office for any comments - either negative or positive!
Many thanks!
SIEMENS AG Austria, SIMEA
From: Name:
Date:
Company
Address:

Tel.:

To: SIEMENS Office
Address:

Please pass on to
SIEMENS AG Austria
SIMEA

Concerns: Comments for the SIMOREG CM Instruction Manual, Edition \qquad

The following versions have appeared so far:

Version	Internal Part No.
01	C98130-A7040-A1-01-7619
02	C98130-A7040-A1-02-7619
03	C98130-A7040-A1-03-7619
04	C98130-A7040-A1-04-7619
05	C98130-A7040-A1-05-7619
06	C98130-A7040-A1-06-7619
$\mathbf{0 7}$	C98130-A7040-A1-07-7619

Version 07 consists of the following sections

Section	Pages	Date of edition	
0	Contents	6	05.2007
1	Safety information	4	05.2007
2	Ordering Information	6	11.2007
3	Description	4	05.2007
4	Shipment, unpacking	2	05.2007
5	Installation	12	05.2007
6	Connections	78	05.2007
7	Start-up	60	05.2007
8	Function diagrams	138	05.2007
9	Function descriptions	42	05.2007
10	Faults / Alarms	30	05.2007
11	Parameter list	182	05.2007
12	List of connectors and binectors	62	05.2007
13	Maintenance	2	11.2007
14	Servicing	2	05.2007
15	DriveMonitor	2	11.2007
16	Environmental compatibility	2	05.2007
17	Applications	4	05.2007
18	Appendix		

[^0]: Alarm A084
 Faulty DeviceNet CAN telegrams have been received or transmitted, causing the internal error counter to overrun.
 Faulty CAN messages of this type are ignored. The last transmitted data remain valid.

