FANUC Robotics SYSTEM
R-30iA and R-30iB Controller
KAREL Reference Manual

MARRC75KR07091E Rev D

Applies to Version 7.50 and higher
© 2012 FANUC Robotics America Corporation

About This Manual

This manual can be used with controllers labeled R-30iA or R-J3iC. If you have a controller labeled
R-J3iC, you should read R-30iA as R-J3iC throughout this manual.

Copyrights and Trademarks

This new publication contains proprietary information of FANUC Robotics America Corporation,
furnished for customer use only. No other uses are authorized without the express written permission
of FANUC Robotics America Corporation.

FANUC Robotics America Corporation
3900 W. Hamlin Road
Rochester Hills, MI 48309-3253

The descriptions and specifications contained in this manual were in effect at the time this manual
was approved. FANUC Robotics America Corporation, hereinafter referred to as FANUC Robotics,
reserves the right to discontinue models at any time or to change specifications or design without
notice and without incurring obligations.

FANUC Robotics manuals present descriptions, specifications, drawings, schematics, bills of
material, parts, connections and/or procedures for installing, disassembling, connecting, operating and
programming FANUC Robotics’ products and/or systems. Such systems consist of robots, extended
axes, robot controllers, application software, the KAREL® programming language, INSIGHT®
vision equipment, and special tools.

FANUC Robotics recommends that only persons who have been trained in one or more approved
FANUC Robotics Training Course(s) be permitted to install, operate, use, perform procedures on,
repair, and/or maintain FANUC Robotics’ products and/or systems and their respective components.
Approved training necessitates that the courses selected be relevant to the type of system installed
and application performed at the customer site.

2 Warning

This equipment generates, uses, and can radiate radio frequency energy
and if not installed and used in accordance with the instruction manual,
may cause interference to radio communications. As temporarily
permitted by regulation, it has not been tested for compliance with the
limits for Class A computing devices pursuant to subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable protection against
such interference. Operation of the equipment in a residential area is
likely to cause interference, in which case the user, at his own expense,
will be required to take whatever measure may be required to correct
the interference.

About This Manual MARRC75KR07091E Rev D

FANUC Robotics conducts courses on its systems and products on a regularly scheduled basis at its
headquarters in Rochester Hills, Michigan. For additional information contact

FANUC Robotics America Corporation
3900 W. Hamlin Road
Rochester Hills, MI 48309-3253

www.fanucrobotics.com

For customer assistance, including Technical Support, Service, Parts & Part Repair, and
Marketing Requests, contact the Customer Resource Center, 24 hours a day, at 1-800-47-ROBOT
(1-800-477-6268). International customers should call 011-1-248-377-7159.

Send your comments and suggestions about this manual to:
product.documentation@fanucrobotics.com

The information illustrated or contained herein is not to be reproduced, copied, downloaded,
translated into another language, distributed, or published in any physical or electronic format,
including Internet, or transmitted in whole or in part in any way without the prior written consent
of FANUC Robotics America, Inc.

AccuStat®, ArcTool®, iRVision®, KAREL®, PaintTool®,PalletTool®, SOCKETS®, SpotTool®,
SpotWorks®, and TorchM ate®ar e Registered Trademarks of FANUC Roboatics.

FANUC Robotics reserves all proprietary rights, including but not limited to trademark and trade
name rights, in the following names:

AccuAir™, AccuCal™, AccuChop™, AccuFlow™, AccuPath™, AccuSeal™, ARC Mate™,

ARC Mate Sr.™, ARC Mate System 1™, ARC Mate System 2™, ARC Mate System 3™, ARC
Mate System 4™, ARC Mate System 5™, ARCWorks Pro™, AssistTool™, AutoNormal™,
AutoTCP™, BellTool™, BODY Works™, Cal Mate™, Cell Finder™, Center Finder™, Clean Wall™,
Dual ARM™, LR Tool™, MIG Eye™, MotionParts™, MultiARM™, NoBots™, Paint Stick™,
PaintPro™, PaintTool 100™, PAINT Works™, PAINT Works II™, PAINTWorks III™, PalletMate™,
PalletMate PC™, PalletTool PC™, PayloadID™, RecipTool™, RemovalTool™, Robo Chop™, Robo
Spray™, S-420i™_ S-430i™, ShapeGen™, SoftFloat™, SOFT PARTS™, SpotTool+™, SR Mate™,
SR ShotTool™, SureWeld™, SYSTEM R-J2 Controller™, SYSTEM R-J3 Controller™, SYSTEM
R-J3iB Controller™, SYSTEM R-J3iC Controller™, SYSTEM R-30iA Controller™, SYSTEM
R-30iB Controller™, TCP Mate™, TorchMate™, Triple ARM™, TurboMove™, visLOC™,
visPRO-3D™, visTRAC™, WebServer™, WebTP™, and YagTool™.

Patents

One or more of the following U.S. patents might be related to the FANUC Robotics products
described in this manual.

http://www.fanucrobotics.com
mailto:product.documentation@fanucrobotics.com

MARRC75KR07091E Rev D About This Manual

FRA Patent List

4,630,567 4,639,878 4,707,647 4,708,175 4,708,580 4,942,539 4,984,745 5,238,029 5,239,739
5,272,805 5,293,107 5,293,911 5,331,264 5,367,944 5,373,221 5,421,218 5,434,489 5,644,898
5,670,202 5,696,687 5,737,218 5,823,389 5,853,027 5,887,800 5,941,679 5,959,425 5,987,726
6,059,092 6,064,168 6,070,109 6,086,294 6,122,062 6,147,323 6,204,620 6,243,621 6,253,799
6,285,920 6,313,595 6,325,302 6,345,818 6,356,807 6,360,143 6,378,190 6,385,508 6,425,177
6,477,913 6,490,369 6,518,980 6,540,104 6,541,757 6,560,513 6,569,258 6,612,449 6,703,079
6,705,361 6,726,773 6,768,078 6,845,295 6,945,483 7,149,606 7,149,606 7,211,978 7,266,422
7,399,363

FANUC LTD Patent List

4,571,694 4,626,756 4,700,118 4,706,001 4,728,872 4,732,526 4,742,207 4,835,362 4,894,596
4,899,095 4,920,248 4,931,617 4,934,504 4,956,594 4,967,125 4,969,109 4,970,370 4,970,448
4,979,127 5,004,968 5,006,035 5,008,834 5,063,281 5,066,847 5,066,902 5,093,552 5,107,716
5,111,019 5,130,515 5,136,223 5,151,608 5,170,109 5,189,351 5,267,483 5,274,360 5,292,066
5,300,868 5,304,906 5,313,563 5,319,443 5,325,467 5,327,057 5,329,469 5,333,242 5,337,148
5,371,452 5,375,480 5,418,441 5,432,316 5,440,213 5,442,155 5,444,612 5,449,875 5,451,850
5,461,478 5,463,297 5,467,003 5,471,312 5,479,078 5,485,389 5,485,552 5,486,679 5,489,758
5,493,192 5,504,766 5,511,007 5,520,062 5,528,013 5,532,924 5,548,194 5,552,687 5,558,196
5,561,742 5,570,187 5,570,190 5,572,103 5,581,167 5,582,750 5,587,635 5,600,759 5,608,299
5,608,618 5,624,588 5,630,955 5,637,969 5,639,204 5,641,415 5,650,078 5,658,121 5,668,628
5,687,295 5,691,615 5,698,121 5,708,342 5,715,375 5,719,479 5,727,132 5,742,138 5,742,144
5,748,854 5,749,058 5,760,560 5,773,950 5,783,922 5,799,135 5,812,408 5,841,257 5,845,053
5,872,894 5,887,122 5,911,892 5,912,540 5,920,678 5,937,143 5,980,082 5,983,744 5,987,591
5,988,850 6,023,044 6,032,086 6,040,554 6,059,169 6,088,628 6,097,169 6,114,824 6,124,693
6,140,788 6,141,863 6,157,155 6,160,324 6,163,124 6,177,650 6,180,898 6,181,096 6,188,194
6,208,105 6,212,444 6,219,583 6,226,181 6,236,011 6,236,896 6,250,174 6,278,902 6,279,413
6,285,921 6,298,283 6,321,139 6,324,443 6,328,523 6,330,493 6,340,875 6,356,671 6,377,869
6,382,012 6,384,371 6,396,030 6,414,711 6,424,883 6,431,018 6,434,448 6,445,979 6,459,958
6,463,358 6,484,067 6,486,629 6,507,165 6,654,666 6,665,588 6,680,461 6,696,810 6,728,417
6,763,284 6,772,493 6,845,296 6,853,881 6,888,089 6,898,486 6,917,837 6,928,337 6,965,091
6,970,802 7,038,165 7,069,808 7,084,900 7,092,791 7,133,747 7,143,100 7,149,602 7,131,848
7,161,321 7,171,041 7,174,234 7,173,213 7,177,722 7,177,439 7,181,294 7,181,313 7,280,687
7,283,661 7,291,806 7,299,713 7,315,650 7,324,873 7,328,083 7,330,777 7,333,879 7,355,725
7,359,817 7,373,220 7,376,488 7,386,367 7,464,623 7,447,615 7,445,260 7,474,939 7,486,816
7,495,192 7,501,778 7,502,504 7,508,155 7,512,459 7,525,273 7,526,121

VersaBell, ServoBell and SpeedDock Patents Pending.

Conventions

This manual includes information essential to the safety of personnel, equipment, software, and data.
This information is indicated by headings and boxes in the text.

About This Manual MARRC75KR07091E Rev D

2 Warning
Information appearing under WARNING concerns the protection of
personnel. It is boxed and in bold type to set it apart from other text.

2 Caution
Information appearing under CAUTION concerns the protection of equipment,
software, and data. It is boxed to set it apart from other text.

Note Information appearing next to NOTE concerns related information or useful hints.

Contents

ADOUL THiS MANUAI ..ttt ettt e e et e e etea e e e ten e e e tana e eeenna s eeennaeeeennaneenennnns i
Y= 1 =31 Y/ XXvii
Chapter 1 KAREL LANGUAGE OVERVIEW .ttt ettt e e et et e ee e eeas 1-1
L. OVERVIEW ittt ettt ettt s e e s et e e ea e e taae s ean s eaneseeaans 1-2

1.2 KAREL PROGRAMMING LANGUAGE ...couiiiiiiiiiiieie ettt ettt e e e 1-2

D201 OVEIVIEW «etnieiiitnteteet et et ettt e e et et et et et e et e ea e eneeneeaneaa e eea e enastaeeensaenseanaenrenneenns 1-2

1.2.2 Creating @ PrOGIAM ...vueiuieueiiiiiiiei et et st e st e e et et st et sen et sen et senetnsensensansnnsensensensnnsensenses 14

1.2.3 Translating @ PrOZIAMc..ivuiiueeiireineetniiieiieteetneetneetnreunrenereneensesnsesnsssesesssensesnsernsennsennsenns 1-4

1.2.4 Loading Program Logic and Datacceviiuiiiiiiiiiiiiiiiiiiiiii ittt e 1-4

1.2.5 EXECULING @ PrOZIAM ..eeuinniiniiiiiieiieii ettt et et e et e et eeteene et eaueetaeeeaeenestnesenneeneensennsennsenns 1-5

1.2.6 EXCCULION HISTOTY .ivuiiuiiniiniiiiiiiiieitt ettt ettt et et ettt et senetesen et senetnsenetnsaneenseneenseneenseneennes 1-5

1.2.7 PrOGram STIUCEUIEveueeureurenreneenrenetnrenetnreneenreneteseneensensenrensensensensensensensensensensensensensensensenses 1-5

1.3 SYSTEM SOFTWARE ...ttt ettt ettt et et et et e e e e enaeeneeeneaneeneensannanns 1-7

1.3.1 SOftware COMPONENLS ...veuureunrruerueerneeenetenetuetueetneerneennrenerenrenseensesneesnsesestsnsenseenseensesnsennsenns 1-7

1.3.2 SUPPOTEEA RODOLS tueuiniiniiiiiiiiteieitti ettt et et et et ettt et e e et s e et senetnsanetnsaneenseneenseneenseneenres 1-7

1.4 CONTROLLER ...outiiiiiiieii ettt ettt s et e et e et s et e e eaa e tanseanesennesernnns 1-8

LAl MBIMIOTY tutniiniiniineintei ettt ettt ettt et s e et seu et senetasanetasenstesenstnsanstnsenstnsensensensensensensensensensennes 1-8

142 INPUL/OULPUL SYSEEIM ..eunerunerneetneeenrtenetuetueetnrerneeneeeneeeneeueesaeeensteestnnsenseensesnsennsennsenseensesnnees 1-10

1.4.3 User INterface DEVICES ..ccuueeuieuiieiiiiii ettt ettt ettt et e et e e et et et eenaeaneenneeneeeneennnens 1-10
Chapter 2 LANGUAGE ELEMENTS oottt ettt ettt e et e et e et e et e eeneeeens 2-1
2.1 LANGUAGE COMPONENTS ...ttt et et et eenetn et etneeraeerneeensenestnneenaeensennsennsenns 2-2

2,101 CRATACLET SEt ceueunieneeiete et ettt et etn e et e et etue et eraeetaeeeastaertnneenseensesnsanneanseensernsesnsennsennsennns 2-2

2,12 OPCIALOTS .eunrninieneneetneeeeeeteeneeeeneueteareeneeaensaeenenstesnsaesnseasnsasensnseesnsaesnsestnsnseasnsessnssssnsnnenses 2-5

2.1.3 RESEIVEA WOTAS ...eniiiiiiiieeii ittt ettt et et et et et et et e eea e eneeneeeneeenenaaenaseneaennns 2-6

2.1.4 User-Defined IAentifIersceeuiieiiniiiniiiiiiii ittt et et et e e et e enaes 2-7

N B T 1o 1<) PRSPPSO PPR PR 2-8

2.1.6 Predefined IAeNtIfIerScuueeueieniiiiieeie ettt et et et et et et et e et eeneeeneeenerneenaaanesenenennns 2-8

2.1.7 SYSEM VAr@iables ...cuuieuniineeineieieii ettt et e et e et et ettt etie et e eeaetne st eenetneennrenneaneenneeneennees 2-10

B B 1) 114 1S 11 PP 2-10

2.2 TRANSLATORDIRECTIVES ...ttt et 2-11

2.3 D AT A T PES ittt ettt ettt e et e et e e et et e et e et e e ta e eaaeeaaeeens 2-13

2.4 USER-DEFINED DATA TYPES AND STRUCTURES ...t 2-14

2.4.1 User-Defined Data TYPES c..uuveeuiiruiieiuiiiiriiiiiii ittt etie et e et s et e etaa e etaneenaeeeanesenns 2-14

2.4.2 User-Defined Data SIIUCTUIESceuureunriureiueetnrenrenetneeteeteeteeeaetnreneenetneeensesnrensenseensennnees 2-16

2. S AR R A S et ettt ettt e e e et et et e eaa e eaneeens 2-18

2.5.1 Multi-Dimensional ATTAYSceeuveenreuneeueetnrernrernreureuereuerteessesssesssessstseenserssenssenssensssnssssees 2-19

2.5.2 Variable-SiZed AITAYSceuuiiiuuiiiiniiiiiiiiiiitii ittt ettt e eae s et e e et e taa s eraeeanesenns 2-20
Chapter 3 USE OF OPERATORS ittt ettt ettt e et s et e e et e et s etaseannseannseasnneasnnaaens 3-1

Contents

MARRC75KR07091E Rev D

W W W
— (D
W = —

32
3.2.1
322
323
324

Chapter 4
4.1

4.2
4.2.1
422
423
424
425

Chapter 5
5.1

W b W D
N == = = =
N Nk W~

Chapter 6

6.1
6.1.1

6.2
6.2.1
6.2.2
6.2.3

6.3
6.3.1
6.3.2
6.3.3
6.3.4

Chapter 7
7.1
7.2

7.3
7.3.1
7.3.2
733

7.4

EXPRESSIONS AND ASSIGNMENTS ...ttt ettt et e e e et e et e eeee e et e eeneeens 3-2
Rule for Expressions and ASSIZNMENTSu.veuieieneireneenreeenreneenreneereneereneenseneenseneeareseseseneenses 3-2
Evaluation of EXpressions and ASSIZNMENTS ...cvuveuvenreurenrenrenreeenreneenreneenreneenreneensenserensesensenses 3-2
Variables and EXPrESSIONS ...euuveunreunreueerueerueerneturtueetneetnsernresnsensreneseneesnssssssssesnseseensesnsennsenns 34
OPERATIONS <.ttt ettt ettt et e et e et e et e e ta e e et e et e etaaeetaa e etannaetnnaaeneseenaeenneeannnns 34
ATIENMEIC OPETATIONS tuvvuirnitnienitrtnitttetttetereetereetreetreetrtetreetnseetnraneensenseereserrensenses 3-5
Relational OPETatiONS ...ce.veueeerenrenreneereetereetreetereetereetareetnrenstnresensenserensensansearensesensenses 3-6
B001EaN OPEIALIONS t.uvvurernrernreunreurtueetueereetetuertueetnsetnserssesssensrensssnsesssesssssssennsenseensesssenssenns 3-7
SPECIAL OPEIALIONS .uvvunrrunernrernrtenreuetueetueetnrerererreurenersuessnsssnsesnsennsesssenseessesssesssennsansssnessnsees 3-8
PROGRAM CONTROL ittt ettt ettt ete s e tee et s e eae e et e et s eanaeeasaseasaeasanaesnnseens 4-1
OVERVIEW L.ttt ettt et e et s et e et eeaae s et e etaa e tane e eaneenneeeenans 4-2
PROGRAM CONTROL STRUCTURES ...c.uuiiiiiiitiiiiireiieetie et eetie e et e etaeeenneeenaesesaneennnseens 4-2
Alternation Control SIIUCTUIES ...ueunieueeueeeiieii ettt et et et et et eeaeeeaeeaaetaeeeneeneensenneenns 4-2
Looping Control STAtEIMENTS ...ivuiveieuiereitteetteetereetreetereetreetreetnresetrenersenerareserseneenses 4-3
Unconditional Branch Statementveeveviiiiiiiiiieiiirtireiet et reeereetereeeseneerenseseneenses 4-3
Execution Control StAtCMENLSeuuieuerueerueeuneeurtinetretnrernreureuerenereneesnsesssssssesesenseenserssesssenns 4-3
Condition HAnAIETSeeeueieiuiiiiiiiiiiii ettt ettt e e e et e et s et e e ean e eane e 4-4
ROUTINES oottt ettt et e et e et e et e e et s e et e et e eaunsetnaseasnseasnneasaneesnnseens 5-1
ROUTINE EXECUTION ...ttt ettt ettt ettt et e et e et e et s etaa e eena e eeenseeneeeaneeeens 5-2
Declaring ROULINES tv.uevuerniernreuieietieeteeteetetuetueetnsetnsernsesnsenssenssensesnsessssnssennsenseensesnsenssenns 5-2
INVOKING ROULINES .evunernerniiiniiitiietieetieeteetetuetieetnsetnsennseunsensenssensesssssssssssennsenseenseensennsenns 5-5
Returning from ROULNESceuiieniiiiiiiie ettt et et et et e e e e st e e eenseeneennaenns 5-7
SCOPE OF VATTADIES 1uueuniniiiiiitieie et et e ere e ee e s e et s e et s e et s e et sanetnsaneansanannsanns 5-8
Parameters and ATGUITIENLS ..evuivuienienierenetrenetreetreetnreetreetreetnseeensenetnseneteseneeeseneresensenses 5-9
STACK USAZE .ueuneuinrineinteueiuteuetetetueeuetneenetueenetnsenernsenetnsenetnsenernsensrnsensensensensensensensensensenses 5-13
BUILT- IN ROUTINES ... iiiitiiiitit ettt eetieeetieeetteetansetuaeasnneesnnsatnnsesnnseessseasnseennnees 5-15
CONDITION HANDLERS Lttt ettt et e et e e et e eee e et e eea e eenans 6-1
CONDITION HANDLER OPERATIONS ...ttt s ee s ee e s ene e sens e s eneansen 6-3
Global Condition HAanAIErSceeuiieniiuriiireireiriiriieeeeeieeteeteeteeneeneetnsetnsesnsenssenssenssenessnsees 6-3
CONDITIONS ettt ettt ettt e et e et e eta e etaa e et e etae e etaa e etaaetennaaennaannneeanaeenneeannnns 66
POrt I CONAITIONS teuivnieniiniiniinieieetreetrtetrt et et et et et senetnrenstnsaneensansensansensensensensensensenses 67
Relational CONAItIONS ..v.uevurernrennreunrieeieeieetetietueetneetnsetnsennsensreneseneesnsssssssssesnsenseenseenserssenns 67
System and Program Event CONAIIONSevueiiurernrernriiriinetieeirerneenrereeenereneesnseneesssssennsennns 68
A CTTON S ittt et ettt et e et e et e et e et e etae s etaa e eaa e taa e etnaaeaaesetnaaanneanannas 6-11
ASSIGNIMENE ACLIONS +uvvurenrenrrnrenrenrtnetreneereneeereneerenrterensenreserensensesesesesensensensensansensensens 6-11
MOtion Related ACHONS ..vvuuernrernrernriirtieetieeteeteetetuetueetneeensernsesnsensenesensssnsesssessssssennsennns 6-13
ROUINE Call ACLIONS ..vvunirnernrernrenrtieeie et eteeteetetunetneetasetnserssennsennsenssensssnsesssessssnssannsennns 6-13
MISCEIIANEOUS ACHIONS .ivuirnirniinitnitntttenetettetteeteteetrtetstetrsetrsnstnsenetnseaetssnsensseeenseneens 6-14
FILE INPUT/OUTPUT OPERATIONS Lottt et et e eee e e e 7-1
OVERVIEW oottt ettt ettt et s et e e ta e e teae s et s eaa s etaaeeenaeenneaas 7-3
FILE VARIABLES ...ttt ettt et et e et e et e e et e et e etn e eena e eeaneeenneeaneaeens 7-3
OPEN FILE STATEMENT ...eiiiiiiiiiiiii ettt sttt s et e et s et e e eaa e eane e 74
Setting File and Port AtIIDULESveuuveuniiueiiueeieeireietieeieeteeteerneeneenerenereneeensesnsessssssennsannns 7-5
FLE SN «eenerieiieii ettt ettt et ettt et e e et et et etnseaneeaneenneenneensesnaasnsannsennsennsennns 7-10
USAZE SHIIME +uveuttnienttnteetteetteeteeetntenetetenetesenetesenetesenstasenetnrenetnseneensenetnreneenseneserensenranns 7-11
CLOSE FILE STATEMENT ...iiiiiiiiiiii ettt ettt ettt e et et s et e een e eeaaes 7-14

Vi

MARRC75KR07091E Rev D Contents

7.5
7.6
7.7

7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.8.6

7.9
7.9.1
7.9.2
793
794
7.9.5
7.9.6
7.9.7
7.9.8
7.9.9

7.10
7.10.1
7.10.2

Chapter 8
8.1
8.2

8.3
8.3.1
83.2
833
83.4

8.4

Chapter 9
9.1

9.2
9.2.1
922
9.23

9.3
9.3.1
932
933
9.3.4

9.4

9.5
9.5.1
952
9.53

READ STATEMENT ...ttt ettt et ettt e et e et e et e e et e eaa e etneetne e eenaeanneennnnas 7-14
WRITE STATEMENT ..ottt ettt ettt e e s et e e e s et e ena e eane e 7-16
INPUT/OUTPUT BUFFER ...ttt ettt ettt e e et e eee e et e et e eena e eenaeeeannnae 7-17
FORMATTING TEXT (ASCII) INPUT/OUTPUTuiiniiiiiiiiieiie ettt eeeie e 7-18
Formatting INTEGER Data ItemSc.uveuiiureiiriiieiiiieiineieeieenneetnreneeneeneetneernsennssssennsennes 7-19
Formatting REAL Data TteIMSuveuuiiuriiiiieiieeieeeeiietie et et e et eetneeneeeneeeneerneeraeenneenesennsennns 7-22
Formatting BOOLEAN Data IteIMS ..evuieuiiiiniiieiiiiiiiieietrenetrenetreetreetseeeseneeseneenseneens 7-25
Formatting STRING Data IteIMS ..vuvvuiinieniiiiiiiiiiiiieieieietrenete et eeetseetseetseeensanernseneens 7-27
Formatting VECTOR Data IteIMS ceuvuivnieniiniiiiiiieirieireetreiet st et reetreeereneenseneensensensensens 7-31
Formatting Positional Data [teIMScveuriiureiriiriiiiieiieeireirereeteeneenereneereereerseessennsennns 7-32
FORMATTING BINARY INPUT/OUTPUT ..ottt ettt et et etie et eeeeeeea e 7-34
Formatting INTEGER Data [teImS ...vuevuieniiiiiiiiiiiiiiieieiiiet ettt ee et se et seeenseneensenennseneens 7-35
Formatting REAL Data TtEMSvvuieniiniiiiiiiiiiieiiriieirieeteren et re et et et seneensensensensensensensensens 7-36
Formatting BOOLEAN Data IteImScveuuivurerureinrenniiieiinetieetneerrernrenerenerenseseesnsessssesennsennns 7-36
Formatting STRING Data IteMS ...c.uviuniiuiiureiireiriiiiieiieeieetnrernretneeneenreneeseernsessesssennsennns 7-36
Formatting VECTOR Data [teIMSveuureuiiniieiieiiiiieie et e et e et et et et erieenaeeneeenesenesennes 7-37
Formatting POSITION Data TteMSevuieuieniiniiieiiiiiieieeteenetre et seeeseetseeeseeensensenseneens 7-37
Formatting XYZWPR Data TtEmMS ..cvuieuienieiiiiieiiiiiieieitietrenete et eenetseeteseneeseesnsenereseneens 7-37
Formatting XYZWPREXT Data [teMSccuveuiinieiiiiiiiiriiiietreietreneereetreeereeenreneeseneens 7-38
Formatting JOINTPOS Data ItemMScveuirureiureiireiniiiiiineiretrereetnreneeenereneeseesnsessssesennsennes 7-38
USER INTERFACE TIPS ...ttt ettt ettt et e et e et e e tae e et e et e etneetne e eenneenaeennnnas 7-38
USER Menu on the Teach Pendantcco.ooeiiiiiiiiiiiiiiiiii e 7-38
USER Menu on the CRT/KB ...cuuiiiiiiiiiiiiiiii ettt ettt et s e e enaee 7-40
P O S T ON DA T A ettt et et et e et e e e s eta e eeaa e taaeeeaneeeanesenns 81
OVERVIEW ittt ettt ettt et e et e et e et e et e eeaa e etaan e etaneeaneeeenaeeenneeannnas 82
POSITIONAL DATA ...ttt ettt ettt etae e et s et s eta e eena e taaeseanesennesenns 82
FRAMES OF REFERENCEouiiiiiiiiiiiiie ettt ettt et e et e et e et e e eaeeeea e eeaeeens 8-3
WOTIA FLAME «.eniniiiei ettt et et e ettt et et e e e e et e e een e eensenaeenns 84
User Frame (UFRAME) ..uiiuiiiiiiiiiieii ittt et st e e s e et s e et s e e e s e s e sansensansansansens 85
Tool Definition (UTOOL) ..cuuiiuniiuiiieiieeieeieiietieeteetneetrennsensenestneesssesssssssenssenseensernsennsenns 85
Using Frames in the Teach Pendant Editor (TP)c.cvvuviiiiiiiiiiiiiiiiriiie et eeeeeeenneenns 85
JOG COORDINATE SYSTEMS ...ttt ettt ettt et e e et e et e et e eea e eeeaeaeenneeeneaeens 86
FILE QY ST EM ittt ettt e e e e et e et e et e e ea et e eea e eaneeens 9-1
OVERVIEW oottt ettt sttt et e et e et s etas e et e et s etaeeaansasassasnneaannseannseasnneannnees 9-2
FILE SPECIFICATION ...utiitiiiiiiie ettt ettt s et e et et e eeae e et s een e eena e eeaneseeneeeaneeeens 9-3
DEVICE NAITIE ..evniieiiiiiii ettt ettt et e et s et e e et e e taie e et s et s etaaeeenaetaneseenesennesenns 9-3
FILE NAIME «.eeniiiinieii ettt et et et e e et e eeae s et s et s eena e etaaeeeenesenneeeens 94
FALE TP etneiiiiieie et ettt ettt et et et et et et e et e et s eaeeaneeanseaneaaasaanestnnaenaenaeeneanneenns 9-5
STORAGE DEVICE ACCESS ...ttt ettt ettt et et e et e et e e eaa e e eene e een e eena e eenans 9-6
OVETVIEW eetniteiei et ettt ettt e e et e et s et e e et s e tae e et e eaae s e taaeetnaeteneseaneeennesennaetannerannnns 9-7
MEMOTY FIle DEVICES .evunrrnnernrernreunriuetueeteetieeteeueetuetneetnsetnsernsesssennrenssensssnsesssessssssssnssennns 9-13
VATTUAL DIEVICES tuivnitnitniittiitiittt ettt ettt ettt et tee et saetsaetesaastnssnstnsenstnsestnsensenseesenseneens 9-14
1 (S 53 | o 1< PP PR 9-16
FILE ACCESS ..ottt ettt et et st e et et s et e eaa s etaa e eenneeanenae 9-20
FORMATTING XML INPUT ..ottt ettt e et e et e e tee e et e et e etneetne e eenaeeenneennnnas 9-20
OVEIVIEW «.etitentiietie ettt ettt et eta et e et e eaeta et eaa e eaaetaeetaeeanseaneenaaaneenseansennesnsesasennsennns 9-20
INStallation SEQUEIICE ...ivuieuiinieniiiiiire ettt et ettt et reeereetarenstasensensenstnsensensensensensensensens 9-21
Example KAREL Program Referencing an XML Filec.ceeuviiviiniiiiiiniiiniiiriiineiieeieeieeneennes 9-22

vii

Contents

MARRC75KR07091E Rev D

9.54
9.6

Chapter 10

10.1

10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8
10.2.9

10.2.10
10.2.11
10.2.12

10.3
10.3.1
10.3.2
10.3.3
1034
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9

10.3.10
10.3.11
10.3.12
10.3.13
10.3.14
10.3.15
10.3.16
10.3.17
10.3.18
10.3.19

Chapter 11

1.1

11.2
11.2.1
11.2.2
11.2.3

11.3
11.3.1
11.3.2
11.33

11.4
11.4.1
11.4.2

Parse EITOTS euieniiniiiiiiiii ittt et e a et e et e e e e eas 9-26
MEMORY DEVICE ...ttt ettt ettt et s et s e e s etaa e e ena e eane e 9-27
DICTIONARIES AND FORMS ittt ettt st e e e e 10-1
OVERVIEW L.ttt ettt ettt et e et et e et e et e e ta e taa e een e etaeeetnaeeeaneeannaeens 10-3
CREATING USER DICTIONARIES ..ottt ettt ettt eaaes 10-3
DICHIONATY SYNEAX .eeuneeuneineetnreneenetueetueetueeteeeaeeeaetueetneetaeeensennsesnrennsenseensesnsesnsesnssnssenssennes 10-3
Dictionary Element NUMDETiuuiiiiiiiiiiiiiiiiieieeie ettt et se et sa et seneenseneensaneenseneens 104
Dictionary EIement NAMEivuiiniiniiiiiiiiiiiiiiiietereeete et et et s et et et seetnseetnsenetnsenernseneens 10-5
Dictionary CurSOT POSTHONING «.euueuneuniureneineeiriureieieeeeneeeeneeneenreneensenetnrenernsenernsensensensnnsensens 10-5
Dictionary ELEMENt TEXT evuuerurernrernriuereieeiieetieeteetnetinetueetneeensernsesssenssenssenessnsesssessssnsssnssennns 10-6
Dictionary Reserved Word COmmAandsceeuvevurerniiiniiuneineirernrernreneenreneereeseenesnesennsennes 10-8
CRATACTET COAES vuevnirnirniriteiieiuetteeteeteeteeteeteeuaeteeueeueeunsusssnsssssssnssssnsssssnsssssnsessnssnesnnsnnes 10-10
Nesting Dictionary EISIMENEScvuiuieiuriiiiiiiiiiriiiiteiietieeteeteeteeteereeteeseeuesusssssnssnssnssnssnssnnenns 10-10
DictioNary COMIMENT «.vueuuiunirnirnererneteeueueereeteeteeueueseeesesssssessssssssssssssssssssssssnsssssnsssssnssnsens 10-11
Generating a KAREL Constant Filec.ciuiuiiiiiiiiiiiiiiiiiieiree e e e ennenennennennennes 10-11
Compressing and Loading Dictionaries on the Controllercveeeveuriineineinerrennrenrenneennnns 10-11
Accessing Dictionary Elements from a KAREL Programcceueviueiiureinreineneenneiineeeennnennns 10-12
CREATING USER FORMS ..ottt ettt ettt ettt et e et e et e e ta e eeae e eaaeeaneeenes 10-13
FOTTN SYNEAX . etiiiiiiiiiii ittt ettt ettt et eaeneaeeneensannannanssnssnnsnnsnssnssnssnsennan 10-14
FOIM ATITDULES «..eieniiiiiiiit ettt ettt ettt et e et et e et e et s etaa e eenaeeanesennes 10-15
Form Title and Menu Labelc..iiuiiuiiiiiiiiriiiiiiie et ettt et eeeeteenieeaneenseneensennsannns 10-16
FOImM MENU TEXLE euiniininiiiiiieiii e ee et et et e eneeeneeaensaneneaatnsnsesnsessnssssnsnssnsnsensnnes 10-17
Form Selectable Menu Ttemc..ocueiiniiniiiieiei ettt et e een e eeaae 10-18
Edit Data TEeM ...eeniieiiieii ittt et ettt e e et e e e e et e e een e eaaae 10-19
Dynamic FOrms USING TTEE VIEW ..cvuivniuniiniiiiiiiiiiiiiieieeieeieteieneeneneneneenenenssnsenssnssnnennns 10-26
INON-SEIECLADIE TEXLE veuverniieinreiiietii ettt ettt et et et et e et s eaa s etaaeeenneeeaneeennes 10-27
Display Only Data TteIMS ev.euuieuniiuiiieeiirereeietirtieeteeteetrereetereneeeueerneeresssnsenssenseensernsennns 10-27
CUrSOT POSITION AIITDULES .evuivnirniriieiiiieeieeieeieeteeteeueeteeteereeueesasuessesuessessessessesssssssnssnesnnsnnns 10-27
Form Reserved Words and Character Codeseeuiiuieenieinieiiiiieiiieiieeie et et et e eenennne 10-28
Form Function Key Element Name or NUMDETcciuiiiiiuiiiiiiiiiriiiiiieieeireineneieeneneneennennennens 10-30
Form Function Key Using @ Variablecc.ceuiiiiiiiiiiiiiiiiiiiiiiieireieeieeieeeeeneenenenenenenennns 10-31
Form Help Element Name of NUMDET ..c..evuiieniiiniiiiiireiirernreireireneereereereeneenerenneesennsennns 10-31
Teach Pendant FOImM SCIEENc.uiiuniiuriiiriiieireireietieetieeteeteeteetetnetneeensernsenssennsenssenseens 10-32
CRT/KB FOIM SCIEEM tvuivuirniiitiuiteeieeteeueeteeteeteeueeueeusuessessessessessssssssssssssessssnssssssssnesnasnnes 10-32
Form File Naming CONVENTION tuueuuiuniuniuniretereeueueeueeueeueeueeueenessessessesnsssesssssssnsssssnsssssnssnnees 10-33
Compressing and Loading Forms on the Controllerciueeuriuriiiiiiiiniiniiniinireeeneieenenennennes 10-34
Displaying @ FOIM .ovuiuniuniiiiiiiiiiiiii ettt ettt et eneaeneenennennennansenssnssnssnssnnens 10-36
SOCKET MESSAGING ittt et et et s et eea e rane e 11-1
OVERVIEW .ottt e et et e et e e et e et e et e eta e eaa e eaneeeneeanaeaenans 112
SYSTEM REQUIREMENTS ...ttt ettt sttt rae et e e e s eeaas 112
OVETVIBW weeineitie ettt ettt e et ettt e tae e et e et s etaa e eaa e taae s etaaeeane s etaaeeraeetanesannesennnsennnns 112
SOftWare REQUITECIMENTSevuiirniiiiiniieeie et ettt et e et e et eeneen et etaeesaeenestneeeneenaeensennsenns 11-2
Hardware REQUITEIMENLS ...vuivuieniiiiiiieiteteette et reetereetreetreetseetnseetnreeenseneenseneenseneens 11-2
CONFIGURING THE SOCKET MESSAGING OPTION ...ccuitiiiiiiiiireiieireireieeiieeneeneenneannes 11-3
OVETVIEW weeeitieieieeeii ettt ettt et e et ettt e tae e et e et s etaa e eaa e taae s etaeeeane s etaaeeeraeetanesaenesennnsennnns 11-3
SEtNg UP @ SEIVET TAZ evuneiniiiiiiiiiieeie et ettt et e et e et e ettt et etaeesaeenestneetnaeenseensennsenns 11-3
Setting UP @ CHENTE TAZ tuueuninreieinrieireeieeie e eie e ee e eeetnreetneenetnsenetnsanetnsenetnsenernsenernseneenses 11-6
SOCKET MESSAGING AND KAREL ...couiiiiiiiiiiiiiiiiiie ettt sttt een e 11-9
OVETVIEW weeeitieiuietiii ettt ettt e et e et et e e et e et s etaa e eaa e taae s etaeeeaae s etaaeeraeetanesaenesennnsennnns 11-9
MSG_CONN(SENG, INTEOEE) eeuneiiinriiieetie et eetie e et e et eetieetueeesaeesneatasetnnsersnssasnseesnnses 11-9

viii

MARRC75KR07091E Rev D Contents

1143
11.4.4
11.4.5

11.5
11.5.1
11.5.2

11.6
11.6.1
11.6.2
11.6.3
11.6.4

Chapter 12
12.1
12.2

Chapter 13

13.1
13.1.1
13.1.2

13.2

13.3
13.3.1
13.3.2
13.3.3

13.4
13.4.1
13.4.2
13.4.3
13.4.4

Chapter 14

14.1
14.1.1
14.1.2
14.1.3
14.1.4

14.2
14.2.1
14.2.2
14.2.3

14.3
14.3.1

Chapter 15
15.1
15.2
15.3

15.4
15.4.1

Y SIC D) IO T (] g To T o= o = S T 11-9
Y ST LN C T g T aTe AT a1 (= e = T 11-10
Exchanging Data during a Socket Messaging CONNECtIONceuuveneueeneniunenennennenneneennennennennns 11-10
NETWORK PERFORMANCEcouiiiiiiiiiiiiiiietieeeti ettt e et e et eetieetneeenneeesnsetnnsannnsennnnns 11-10
OVEIVIEW «.etietieite ettt ettt et et et et et et e et e eaeeneeneaaeeaeeataaetneeenseeneenennsaneeannennnenns 11-10
Guidelines for a Good IMpPlementationeeeeeureuriureuniuneureueerreneeueereeueeueeneeneeneensenseneenesnnns 11-11
PROGRAMMING EXAMPLES ...ttt ettt et e e et eeae e eane e eenes 11-11
.. 11-11
A KAREL Client APPIICAION .evuivnirniunirnireteteeteeueeueeueeueeueeueesessessessssnsssssssssssnsssssnsssssnssnnses 11-11
A KAREL Server APPlICAtION ...cuuiuuiuiuiuriiiieiiieteeueeueeueeueeteeteeuesnesseeuesssessesssnsssssnsssssnssnnses 11-14
ANSI C Loopback Client EXamPle ...c..ceueeieniiiiiiiiiiiiiiiiiriieeireieeieieieeieeneneneneeneneensensennens 11-16
SYSTEM VARIABLES oottt et e e e e e e 12-1
ACCESS RIGHTS ittt ettt ettt ettt e et e et e et e e et e eaae e etaeetnneeenaeanneennnnas 12-2
STORAGE ...ttt et e et et e s et e eea s etaa e eaaeenneeeens 12-3
KAREL COMMAND LANGUAGE (KCL) ceitiiieiiiiee ettt et eeetie e ettt eeeeie s eeeenaeeees 13-1
COMMAND FORMAT ...ttt ettt et et et e e e e et e e et e et e e ta e etaa e eeaaeeaneeenaeeenaeaennns 13-2
Default PTOGIAM ..cvniiniiii ittt et et eee e e ee e s e e e sene e senetaseneanseneensansensensens 132
Variables and Data TYPES cvuevuvernierriuereieetieeteeieeuetieteetneetnsernseunseresenssensssnsesnsessssnsssnssennns 13-3
PROGRAM CONTROL COMMANDS ..eiiieiiit ettt et e e et et et e et e etn e eenaeeenaeeeennnae 13-3
ENTERING COMMANDS ..ottt ettt ettt eti et e et et e et e eaa s etaaeeenneeanenas 13-3
ADDTEVIALIONS ..evueieiniiiinetii ettt e ettt e it ettt e eai e etaeetaesetaaettaetenesetaesennesenanseannsenennnas 13-4
EITOT MESSAZES «uevuienieniiniiiiiii ittt ettt et ettt ettt ettt et e e et s e et s e et sen et senetnsensanseneens 13-4
SUDAITECTOTIES - evuttnnetneenetn ettt ettt ettt et et e ta et et eenseeaeeneeeneeenennenaaenastneeenaeeneensesnnenns 134
COMMAND PROCEDURES ..ottt ettt ettt e e e e eaaes 13-4
Command Procedure FOImMatcouuiiiiuiiiiniiiiiiiiiiieiie ettt et et eei e eeaes 13-5
Creating Command ProCeAUIEScuuveinieuieuerieiieiiie et ete et e et eean et et erneenneenesenesennns 13-6
EITOT PrOCESSING «vuitniiniiiiiiii ittt ettt et et e et e e et e e et s e et san et sanetnsanetnsanetnsaneenseneens 13-6
Executing Command PrOCEAUIESivuieuiiiiniiiiiiiiiiiiiieeete ettt et st et seeeseeensaneenseneens 13-6
INPUT/OUTPUT SYSTEM ettt sttt s e et s e et s eeetae s eeeeaeeeees 14-1
USER-DEFINED SIGNALS ...itititititiieetie ettt eetieeetueetineetuaeeasaeesasatnnsesnnsersnseasnseesnnses 14-2
DIN and DOUT SIZNAIS teutuiiniinitiiiiitetetiet ettt et ttetreetseetereaetseetesenetreneensenereseneens 14-2
GIN and GOUT SINAIS «euuiunirniniueneiieeneeueeietueeietueenetneenetneeeenseetnsenstnseetnsenernsenernsenersreneens 14-3
AIN and AOUT SIZNAIS 1eueuiiniiniiiiiiieeierieete et et et et reetreetereastrenetasensensensensensensensens 14-3
HANA SIZNALS evuiiiniiiiireireiteie ettt et et e ete et e et et et etasetnsennsennsannsenssensesnsesnsesnssnssennsennns 14-5
SYSTEM-DEFINED SIGNALS ..ottt ettt et e et et e et e et e eeneetnneeeeaeeeneaeennaeens 14-5
Robot Digital Input and Output Signals (RDI/RDO) ...c.ieuiiniiiiiiiiiiiiiiiiiiiiieieeieeieeneeieeeeneeeeneens 14-6
Operator Panel Input and Output Signals (OPIN/OPOUT)cuviuiiiiiiiiiiiiiiieieiieeieieeeereeeeeneens 14-6
Teach Pendant Input and Output Signals (TPIN/TPOUT) ...cc.ciiimiiiiiiiiiiiiiiiiiiiieie e, 14-17
Serial INPUL/OULPUL ..eunirniniiiiie ettt ete et eueeueeneeneenesaensnsnssnssnssnnsnssnnsnnenns 14-22
Serial INPUL/OULPUL ..euninninieiiieie ettt ete et eneeneneeneenesnensnssnssnssnssnssnssnnsnnanns 14-22
MULTI-TASKING ettt et e e e et e et e ee e e et e eeae s eenaeeeaneeananas 15-1
MULTI-TASKING TERMINOLOGY ..euuittiuiiiiueiiiieeiiretieetieetieeetneeesnesatnnsetnssessseasnseennnne 15-2
INTERPRETER ASSIGNMENT ...ttt et ee e ee e e ee e sene e senetnseneensensensansnnsensens 15-3
MOTION CONTROL ..coutiiiiiiiiiiti et eti et e et e et e et e etansetuaeasaetsasatansesnnsernnseasnseesnnees 15-3
TASK SCHEDULING ...utitiiiiiiiitit ettt et ettt e et e et s etae e et e eene e etnaeetnesetnaeenneeannnas 15-4
Priority SChEAUIING ...uvvuniinriiiiiiriieie ettt et et et et ete et e et setneenesennsansesnsasnsasnsssnsennsennns 15-5

Contents

MARRC75KR07091E Rev D

15.4.2

15.5
15.5.1
15.5.2

15.6
15.6.1
15.6.2
15.6.3

15.7
15.8

Appendix A
Al

A2
A2l
A22
A23
A24
A25
A26
A27
A28
A29

A2.10
A211
A212
A213
A2.14
A2.15
A2.16
A2.17
A2.18
A219
A2.20
A221
A222
A223
A224
A225
A2.26
A2.27

A3
A3l
A32
A33
A34
A35

A4
A4l
A42
A43
A44

TIME STICINE «evnetnitniiete ittt ee et e ee e eeteeueeuetnseneneaneensanetnsanstnsenetnsenernsenernsenernsenennseneens 15-6
STARTING TASKS ..ottt ettt ettt et e e s et e et et e s et e eena s eteneeennesennesenns 15-6
Running Programs from the User Operator Panel (UOP) PNS Signalcc.ccceiiiiiiiiiiiiiiininnnnnee 15-7
(0] 111 L B T PP 15-7
TASK CONTROL AND MONITORING ...cuuiiiiiiiiiiiiieetie et et eeeie et e et e et e eeeaeeenaeeeene e 15-7
From TPP PrOQramscc.eeuienieniiniiiiiieiiiet et et et et et et et et sea et senstnsensensensensansensensens 15-8
From KAREL PrOGIamsccuveuieniiniiieitiiitieetttetetetreetreetsenetnsenstsensensensensensensensens 15-8
From KCL Lottt ettt et e e e e et anea e snaanensansnsansnsnssnsnsensnsnnsnsnns 15-8
USING SEMAPHORES AND TASK SYNCHRONIZATIONuiiiuiiiiiiiiiiieiieetie et eeeieeeenenee 15-9
USING QUEUES FOR TASK COMMUNICATIONSuiiiiiiiiiritiietiieetieetieerieeenneenneennes 15-14
KAREL LANGUAGE ALPHABETICAL DESCRIPTION oottt A-1
OVERVIEW oottt ettt st et e e s et e et s eta e e eaa e tan s eeneenaesennanas A-9
- A - KAREL LANGUAGE DESCRIPTION ...ttt et et et eeeie e et eeeneeenneeeenns A-18
ABORT ACHON euutettieitiette ettt e et e et e tee e et e et e etaeetaeeetaaetsaneteanaatnnaeennaeenneannensnnns A-18
ABORT CONAITION 1tttitiniinniiniiiiiiiiiiii ittt et ettt e ea et e e eene et ernereetaesaneennnes A-18
ABORT StateIMENt ...vvuuiiniiiiiiiniiiiiiiiicii ittt ettt et et et s eaa s eaaeeaeeeneaneaneens A-19
ABORT_TASK Built-In PrOCEAUIE ..c.uvvuriinrernieiiiiiiireiieeieeieeietieeieetieetneernsennsensenseensesneees A-19
ABS BUilt-In FUNCHION ..iuiiniiiiiiiiiiiiii ittt et e et e e et s e et s e e e san e e saeenaananns A-20
ACOS BUilt-In FUNCHON .ceuniiiiiiiiiiiiiii ettt et e e e e e e e e eenaae A-20
ACT_SCREEN Built-In ProCedUIeieuiiiiniiiiiiiiiiiiiiiiieie ittt et et s e eeseeesaneensaneens A-21
ACT _TBL BUilt-In PrOCEAUIE .. cuvuieniinieeieiieiieei et et et r et r et s e et s eetnsen et sensensensensensnns A-22
ADD BYNAMEPC Built-In ProC@UIEceuuvruriinriiiiiiiieeiireireireinreieeieeneereereennsensensennes A-24
ADD _DICT Built-In PrOCEAUIE ...c.uviuniiiiiieeiireiiriieiieiieeteeteeneetnreneeneeeneeteessenssssssnnsennes A-25
ADD INTPC Built-In PrOCEUIEceuuieniiieiiieeieiiiiieie ettt e et et et et et eraeenaeenesenesennes A-26
ADD_REALPC Built-In ProCeAUIEccieiiniiiiiiiiiiiiiiiieiniiieie et et st et se et seneenseneenseneens A-27
ADD_STRINGPC Built-In ProCeAUIeccieuiiniiiiiiiiiiiiiiiiiiieieriiete et eteeeeseeenseeeseneens A-29
%ALPHABETIZE Translator DIr€CtiVec..veuuiiuiiiniiiiiiiiiiiiiiiiicineirei et et e e A-30
APPEND NODE Built-In Procedurecceeueeiureiiiiiiineireirenreireneeeieeeneeseereesesnesennsennes A-30
APPEND_ QUEUE Built-In ProCEAUIEcvuiiruriiniiiniiiiiieeiieeiretreinreieeieeneereeneesssssennsennes A-31
APPROACH Built-In FUNCHON ..euiiniiiiiiiiiiiiiiiiiiieie ettt et e et e ae e s e e e s e e s saaanaanas A-32
ARRAY Data TYPE cueeninieeniniieiiieiitieie et eiete ettt ettt seeeneeeneasenenetaenseaensestnssseasnseasnsanensans A-33
ARRAY LEN Built-In FUNCHON ..etuiiiiiiiiiiiieiieeiii ettt et et e et e et e eeaeeenaeeenae e A-34
ASIN Built-In FUNCHON ..cvutiiiiiiiiiiiiiiiiiiii ettt et e ea e e e e A-34
ASSIZNMENE ACHION teuuirunrinrernrernrennreueeeueeteerueeteeeuetunreuseenseensesssesssenssesssensssssesnssssssssssnssenns A-35
ASSIZNMENE SALCIMENT 1euuvvuertrernrernreiereuerteeteetneeuetuetueetnsetnsenssesssenssenssensssnsssssessssssssnssenns A-36
ATAN2 BUilt-In FUNCHON 1euiiniiniiiiiiiiiiii ettt e et e e et e e et s e e e s e e e sa e e aanaens A-38
ATTACH StateIMENT «.ovuieniiniiniiniiiiiiii ettt et e e et s e et s e et senetnsaneensenens A-39
ATT _WINDOW D Built-In Procedureccieieiiiiiiiiiiiiiiniiieie et et seieeseeeseeenseneensaneens A-39
ATT _WINDOW _S Built-In ProCedUIecccvvniiniiriiiiiiriiiiriiieiei i eierei et reeereeenseneenseneens A—40
AVL POS NUM Built-In ProCcedurecceeuveireuiiiiiineiineireireireieeeieeeereeseesesssennsennes A-41
- B - KAREL LANGUAGE DESCRIPTIONciuiiiiiiiiiiiiiieei et eti et e et e et e et e eeneeeenns A-42
BOOLEAN Data TYPE ceeueeuueitueetueetueetueeteeeetueetueetueaetnnretanetsneteneatnsaeennseennseesnseesnnae A-42
BYNAME Built-In FUNCLION ...cvuiiiiiiiiiiiiiiiiiiiiii ettt et e eaae A-43
BYTE Data TYPE ceueeniiniiiiiiiiiiiiete ettt et ettt et et et st et s e st sen et sen st senstnsensensansensensens A—44
BYTES_AHEAD Built-In Procedurecceeuviiiiiiiiiiiniiineireireireireieeeneeteereeneenssnnsennes A-45
BYTES LEFT Built-In FUNCHON ..euuiuiiiiiiiiiieiie ettt et e et eeteeneen et eeieenneenaeenesenesennes A-46
- C - KAREL LANGUAGE DESCRIPTIONciuiiiiiiitiiieiieeiie ettt et e een et eeeaes A-47
CALL_PROG Built-In ProCEAUIEuvvuiinieinriieiiieiieeieeietietieeteetneerneennseneeneerneesssssnssnsannns A-47
CALL_PROGLIN Built-In ProCeuIec.veuiiuriiuriiriieiiiiineieetnrernreureneeeneesneesnsessensennns A-48
CANCEL ACHON teuutttintiiitetieetisetie ittt ettueetueetuesetsaseasnetsnnsetnestussetsseassseesnsesnssernnsennnns A—49
CANCEL SEAEIMENT ..evuinniniintiniiiii ettt ettt s et s et s e et saneeasenenns A-49

MARRC75KR07091E Rev D Contents

A45

A4.6

A4

A48

A49
A4.10
A4l
A4.12
A4.13
A4.14
A4.15
A4.16
A4.17
A4.18
A.4.19
A.4.20
A421
A422
A.4.23
A4.24
A.4.25
A.4.26
A.4.27
A4.28
A429
A.4.30
A.431
A4.32
A.4.33
A4.34
A.4.35
A.4.36
A.4.37
A.4.38
A.4.39
A.4.40
A441
A.4.42
A.4.43
A4.44
A.4.45
A.4.46
A447
A.4.48
A.4.49
A.4.50
A45l1
A4.52
A.4.53
A.4.54
A.4.55
A.4.56
A.4.57

AS
A5

CANCEL FILE StateImMentcecuueeeeueeeuueitueetueetueettueeetueetueetneetnnaetnaeeesneeeneseenaeernnseennns A-50
CHECK DICT Built-In ProCeAUIEc.euiuiiuiiiiiiririeieeieeeeieeeeeeeeetseetnseeenseneensenesnseneens A-51
CHECK _EPOS BUilt-In PrOCEAUIEc.euiuiiiiiiiiieirieiieeeiie e e e teee s ee e sene e seneenseneensenens A-52
CHECK NAME Built-In ProcedUurec.eveueiiueiiriieiiiriiiineieeteerrenreneeeesneennsesssnsannns A-53
CHR Built-In FUNCHION ..evuuiiiiiiiiiiiiiiiiii ettt ettt e e eeae e e e e eaaes A-53
CLEAR BUilt-In PrOCEAUIEiuniuiiiiiiiiiiiiieiie et eee e et e e et s e et e ee e s e e e s ae e eanaens A-54
CLEAR_SEMA Built-In ProCeaUIT ...c.euniuiiuiiiiiiniirieiriieiieeie e eieteeetseeenseneensenesnsenesnsenenns A-55
CLOSE FILE StateImMeNtcccuueeeuueeteueeetueitueeetneeturettueeeeneeeneetneetneetnaeesneeenseenaeeennsennnns A-55
CLOSE HAND StatemeNt c...ceueeuniiniineinieniiiitieti ettt ettt etneeaneeanetnetneernernseresenesnnnes A-56
CLOSE_TPE Built-In ProCedureceeuuveueiiuiiineiiieiieeieiieieeieeteernsenneeneeneenneesssssnssnsennns A-56
CLR IO _STAT Built-In PrOCEAUIE ...cvuernrerniiniiieiieeieeieeirtieeteetneernrenreneeneeseesssssssnsennes A-57
CLR_PORT _SIM Built-In ProcedUrIecceuveuiiuiiiniiieiieiiriieeie et eei e et et erieenaeenaeenesennes A-57
CLR_POS _REG BUilt-In PrOCEAUIEc.oeuiuiiuiiiiiiiiiiieieiriieiieeieeeeeeeeeenseeenseneensenesnsenenns A-58
%CMOSVARS Translator DIr€CtIVEeeuieunieuiinieiiiieeie ittt et et et e e et en e eeeeneeenaee A-59
Y%CMOS2SHADOW Translator DIir€CtiVeceueeeueuniiuiiiiiiiiiieiieiieieii ettt eeaaes A-59
CNC_DYN_DISB Built-In PrOCEAUIE ...ceuveuniiuniiiiiieiiireieiiitieeteeteernreunreneeneereessessenasennes A-59
CNC_DYN_DISE Built-In Procedurec.cceueieueeiueiiriiriiiiiniieetretrennreneeeneeeeessesssnesennns A—60
CNC_DYN_DISI Built-In ProceuIec..ceuuieuiiuieiieiieeiieiieieeieeteeteeneeneeneerneenneeeeenesennee A-61
CNC _DYN_DISP Built-In ProCUIeccueeureuriuriurieiiieieiieeeeieeeeetreeenseeenseesnsenessseneens A-62
CNC _DYN_DISR BUilt-In PrOCEAUIE ...c.cuniuiuiiieinriieirieieiieieeieteeeeneeeeseeenseetsenesnseneens A-62
CNC _DYN_DISS Built-In ProCedUI®ccuveuieuriueinreeieerireeereeeneeetreetreneesensesensenseneens A-63
CNCL_STP_MTN Built-In ProCEAUIE ...cvueunrinniiiiieiieiieiiriieeieeteetneeuneeneeneerneernsessensennns A—-64
CNV_CNF_STRG Built-In ProCEAUIEvvuiiuniiiiiiriiireiieiriirieetieeiieeteeieenetieeneetnsernsennsenns A—-64
CNV_CONF_STR Built-In ProCedurec.eeuiiuiiiuiiieiieiirieiieeieeteeieeneeeieereeneenseneeennes A-65
CNV_INT_STR Built-In ProCeAUIeccuviuiiuiiniiiiiiiieireieiieeieieeieeeeeesee e seeenseneensenesnsenenns A—66
CNV_JPOS REL BUilt-In ProCeAUIEccuviuiiuiiiiiiiiieiiiieiiriieiieeieeieeie e see e seeenseneenseneensenenns A-67
CNV_REAL STR Built-In ProCedUI® ...c.cuniuiiuiinriiiieirieiriieireieteeeereetnseeenseneensenennseneens A-67
CNV_REL JPOS Built-In ProCeUIEccuviunierniiiriiiriieeieiietieeteetrernrenneeneeeneerneesssssssnnsennns A-68
CNV_STR_CONF Built-In ProCEAUIE .. cvuviunrirniiieiiieiieiieiiriineteeteetneetneeneeieerneesnsesssnsennns A-69
CNV_STR _INT Built-In ProCEAUIEcevuiiuniiniiiiiieiiieiieii et et e et e e et et erneenaeenaeenesennes A-70
CNV_STR_REAL Built-In ProCeaUI®ccuiuiuiiiiiiiiririeiriieieeieeeeeeeeetnseeenseneensenesnseneens A-T1
CNV_STR_TIME Built-In ProCeUIc.ecuiiuiiiriuiiiiiiieiriieiieeieteeeteeeeseeenseessenesnseneens A-T1
CNV_TIME_STR Built-In ProCeUIEccuviuiiuiiuiiiiiriririiriieiireieteeeereetnreeenseneensenseseneens A-T72
Y%COMMENT Translator DIF€CTIVEveuuuiienreiuiitiietieeti et eti et et eerieeene s et e eeneeeranes A-T73
COMPARE _FILE Built-in PrOCEAUIE ..c.uuvvniiiniiiiiiriiireireireieeieeieeteerieeteennetnnenneeensennsennsenns A-T73
CONDITION...ENDCONDITION StatemMeNteeeuureeeueerueerunrerueernnsersnseerneeesnesernaeesnnsesenns A-T75
CONFIG Data TYPE evuneeenntetneetneetue et etee e et e etu e eteaeeetaetaneetaeeetneretnaeesaneeensaeneeennseennns A-T77
CONNECT TIMER Stat@MENt ..cc.ueeeueeeueiineetueetueetieeetueetueetueetneeeteaeesneeenseenaeennsernnns A-T78
CONTINUE ACHON «etuuetiiietteeiu et ettt e et e et e et e eea e taa s etnaeetne s etaaeesaeeraneseenaaennneranns A-79
CONTINUE CONAILION +ttuuterniiiinnietiieeiiieiiit ettt et e et e et e etaeetaesetaaseraetanesernsesnnseranns A-79
CONT _TASK Built-In PrOCEAUIEuvvurernrirnieiiiieiiieeieeietietieeteetneernrennseneeeneseneesnsesssnnsennns A-80
COPY _FILE Built-In ProCedUrec.eeueeinieenieiiieeieeie et et et et e et eeieeene et erneenaeenasenesennes A-81
COPY _PATH BuUilt-In ProCEAUIE .cvueuniueniiiiieiieeieieee e eeeeeie e ee e seeenseetnsenetnsenesnsenesnseneens A-82
COPY_QUEUE Built-In ProCedUIEcuiuiiuiiiiiiiiriieiieiieiireie e eietseeesee e seeenseneensenesnseneens A-83
COPY _TPE Built-In ProCEAUIE ..euuiuniieiiieiiiieeie e e e ee e teee e eee e senetnseneenseneensensnnsenenns A-85
COS BUilt-In FUNCLION .eevueiiiiiiiiiiiiiiiiii ittt ettt et e eee e s et e een s eeaaes A-86
CR INPUt/OULPUL TEEM .evuiiviiiiniiiiireireieei et et ete et e et et et eeneetnsennsennsennsensssnsesssssnsannsannns A-86
CREATE_TPE Built-In ProCeAUIEccuienieiniiniiieiieeie ettt eteei e et et et eeneenaeenaeenesennes A-87
CREATE VAR Built-In ProCedurec.ceuiiuiiiiiiriiiiieiiriieiieie e eeie e see s ee e seeenseneenseneens A-88
YOCRTDEVICE ...ttt et e et et e e et e e ta e e et e e ta s eeae e eaaeeaneeeneaaenaeaenans A-90
CURIJPOS Built-In FUNCLION c..vutiiiiiiiiiiiiiiiiii ittt et et e e A-91
CURPOS BUilt-In FUNCHON «evuuiiiiiiiiiiiiiiiiiii ettt ettt e ete e e et e een s enaaes A-92
CURR_PROG BUilt-In FUNCHON ..tvuuiiireinieinieiiiieeiieeieeieeietieeteetnsernsennsensensssnsesssesnssnsennns A-93
- D - KAREL LANGUAGE DESCRIPTIONciuuiitiiiiiiiiitieeiieeetne et et eeeieeeeneeeeneeenaeeeenns A-93
DAQ_CHECKP Built-In ProCedureccceveuiiniiiiiiiiiiiiiiriiiiieieriiee et et reeeseneenseneenseneens A-93

Xi

Contents

MARRC75KR07091E Rev D

AS52

A53

AS54

ASS

AS5.6

A5

A58

A59
A5.10
A5.11
A5.12
AS5.13
A5.14
AS5.15
A5.16
A5.17
A5.18
AS5.19
A5.20
AS521
A5.22
A5.23
A5.24
AS5.25
A.5.26
AS5.27
A5.28

A6
A.6.1
A6.2
A.6.3
A6.4
A.6.5
A.6.6
A.6.7
A.6.8

AT
A1
AT72
A73
A4
A5
A7.6
A1.7

A8
A8.1
A2
A83
AB84
A8S5
A8.6
A87
A8.8
A89

DAQ REGPIPE Built-In ProCedUIE ...cuivuiiniiiiiiiiiiiiiiiiiiiein ettt et s e et seeeseneensaneenseneens A-94
DAQ_START Built-In ProCedUIeccieuiiniiiiiiiiiiiiiiiiiiieie ettt st eteseeeseeensaneensaneens A-96
DAQ _STOP Built-In ProCeAUIEceuiinieniiiiiiiiiiiiiiiieiiiei et et et et re et seetnseneenseneensensens A-98
DAQ _UNREG BUilt-In PrOCEAUIE ..vuuiiuniiiriiiriieiieiieiieetieeteeteetneeneeneeneerneerneesssssssnnsennns A-99
DAQ_WRITE Built-In PrOCEAUIE ...uvvuniiuirieiineiiiiieeiretreireireieetieeteeteeneenetnneensernsennsenns A-100
%DEFGROUP Translator DITECTIVE v.uuuiuuieieiiiiiieiieiitetetieterteteeanetersietessnetessnesessnernsanns A-102
DEF_SCREEN Built-In ProCedUIeccceeiiiniiiiiiiiiiiiiiiiieiireieiere et eeieteeeeseneesenesseneensanns A-102
DEF_WINDOW Built-In ProCeAUIeccuvvuiiniiiiiiiiiiiieieiiieie et et eeetese et seeenseeenseneeneanns A-103
%DELAY Translator DIF€CHIVEceuuiiuniiniiiniiiiiiiiiiiiiii ettt et st e e e e e A-104
DELAY Statement ..c..cuuuiuniiuniiuiiniiiiiiiiiiiii ittt reatten et et eaneeaneeanetaetaernserssenssenes A-105
DELETE_FILE Built-In PrOCEAUIE ..cvuuivuirniiiniiiiiieiireinreireieeeieeteeteetneeneenneeneeensennsennsenns A-106
DELETE NODE Built-In Procedurec.eeuuviuiiieieiiieieeieeiieeieeieeteeeeeneeeneeneeeneennaenns A-107
DELETE_QUEUE Built-In Procedurecccuuieiuiiiiiiiiiie ettt etie e et e eeie e A-107
DEL _INST TPE Built-In Procedurecccieiieiiiiiiiiiiiiiiiiiiriieierii et reieteseneeseneeseeenseeenaanns A-108
DET_WINDOW Built-In ProCeAUIEcuveuieniiniiniiriiiieeireietrtetreetreneereneenreneenseneensenns A-109
DISABLE CONDITION ACHOI teuutttuttuutetieetnretentetieetiretee ittt eteneeetnaeernesereneeernesesnseens A-109
DISABLE CONDITION Statementc..cceuviuniiuniiniiinieunieiiiniineiieieieaeieeiaernersennsenes A-110
DISCONNECT TIMER Statementceeuuueeeunrerenreruneerueretseeesnseemnseemnsernnsersseesnseesneeens A-111
DISCTRL_ALPH Built In Procedurec..ceeeuieiueieiuireieeiiie et et e et e et e et eenaeeeneeeens A-112
DISCTRL _FORM Built In Procedurec..cceeuuieiuuiiiiiiiieeeiiie ettt etie e et e e e A-114
DISCTRL_LIST Built-In PrOCEAUIE ...c.vvuiiniiniiiiiiiieiiiieie e et st et reet st et seeenseneenseneensanns A-116
DISCTRL_PLMN Built-In Procedureccceeeiuiiiriiiniinieiiieieiieeieeieeieeieeieeneeeneennsennsenns A-117
DISCTRL _SBMN Built-In ProCEAUIE ..c..vevuiirniiiiiiriiiriinieiieireieeteeieeieeieenneenneeneennsennsenns A-119
DISCTRL_TBL Built-In ProCedUIEcc.eeeuiieniiiiiieeieeiieieeieeieeieeteeeeeeeeneeneeneeenaennaenns A-122
DISMOUNT DEV Built-In Proceurecceeieiiiiiiiiiieiiiiiiiiiiiiieeereieee et seneenseneeseneensanns A-125
DISP_DAT T Data TYPE .ueeeuuretnueeenueeitueetneetneeteueetueetueeetnaeetsneteneetnaetnnsetsseeenseesneeeens A-125
DOSFILE _INF BUilt-In ProCEAUIEcuvvuieniiniiiiiiiieiriieiereetreeereetreeeseneenseneensensenseneens A-127
- E - KAREL LANGUAGE DESCRIPTIONctuuiiiiiiiiiieiiiieeiiieeetieetiretneeenneeesneenneennnseens A-128
ENABLE CONDITION ACLON t.uutttutttutetueetneeteueetueetueetueetsneteneetnneetnnsetsneesnseesneeeens A-128
ENABLE CONDITION Stat@mMeNtcceuneeeuneeenneeeeueenueetueetneeeeneteneeeneetnnseennseesnseesneeeens A-129
%ENVIRONMENT Translator DIr€CtiVe ...c..veuuveuniiniiniiiiiiiiiiiiiiiieietr et eeneeneees A-129
ERR_DATA Built-In ProCedurecc.eeuuiiiniiiiiiiiiireiiniireireieeieeteeteeteeneeneeneeensernsennsenns A-131
ERROR CONAItION 1ettuiiiiiiiiiiieiiiiieii ettt et eta et etee e et e etne s eraaeeenneeenneeeens A-132
EVAL ClaUSE .vuitniiniiniiiiiieiiite ettt ettt ettt ettt et tanetnsastesaesensaetesanstnseerensensenssneensanns A-133
EVENT CONGItION 1tttttnitiieiiiieii ettt ettt et et et e et e et et et et eeaaeraetneeeneeneensenneenns A-134
EXP Built-In FUNCHON «.uevniiiiiiiii ettt et et et e et e e e e ee e eeneenes A-134
- F - KAREL LANGUAGE DESCRIPTIONciuuiiiiiiiiiiiiiiieiieiete ettt et e eei e eni e A-135
FILE Data TYPE «eeueeutenitnienitiinititet ettt ettt ettt e e ee et een et sen et sanetnsenstnsensensensensensensenns A-135
FILE LIST Built-In Procedurecceeiiiiiiiiiiiiiiiiiriiii ittt ete st et st eeseeenseneansanas A-135
FOR...ENDFOR StatermMeEntcc.ueeeuueeeuueetneetueeteuetetueetueetueeteneteneeeneetnnaetsnseesnseeeneeeens A-137
FORCE_SPMENU Built-In Procedureccceieviiiiiiiiiiiiiiiiirieiiirieriietereneereneenreeeseneennenns A-138
FORMAT DEV Built-In ProCedurecceuveeuiiiiiiineiriiieireireieeieeteeieeneeneeneensensennsenns A-141
FRAME Built-In FUNCLION eeuuiiiiiiiiiiiiiiiiii ittt ettt et e eee e eean A-142
FROM ClaUSE ttuitniiniiniiiiiiiiii ettt ettt ettt et et et st et san sttt etnsanetnsanstnsansensensensenesnsanns A-144
- G - KAREL LANGUAGE DESCRIPTIONctuiiiiiiiiiiiiiiieiie ettt eene et e et e eeneeean A-145
GET_ATTR _PRG Built-In ProCeUIEcevuiirniiiiiiniiiriinieireiriieetieeieeieeieeneenneennennsennsenns A-145
GET_FILE POS Built-In FUNCHON ..evuuiiiiiiiiiiiiiiiireiirei et eeieeieeeieeteeteeineenneenneensernsennsenns A-147
GET _JPOS REG Built-In FUNCHION .evuuivuiiieiiiiiiiiiie ettt ettt et ee e eeneeeneenes A-148
GET _JPOS_TPE Built-In FUNCHON «e.uuiiiiiiiieiiie ettt ettt e e et e et e eeeeeens A-148
GET _PORT _ASG Built-in Procedureccieeieiiiiiiiiiiiiiiiiiiieiniiieie it eeneeneeseneenseneeneanes A-149
GET _PORT_ATR Built-In FUNCHON ..euuiuniiiiiiiieiriieieeie e e eeeeeie s ee e seeenseneenseneensanns A-151
GET _PORT _CMT Built-In ProCEAUIE ...ccuernrernriiniiiiiieiieeieeieeietineeieetieernsennrennsennseneennnees A-153
GET _PORT _MOD Built-In ProcedUrec.cceuuveuniiueiinriieeieeieiieiieeeieetneernsenrennseneseneennees A-154
GET _PORT _SIM Built-In ProcedUreccuveuuieuiiniiinieieeiieeiieiie e et et et eenneeneeneeneennnens A-155

Xii

MARRC75KR07091E Rev D Contents

A.8.10
A8.11
A8.12
A8.13
AZ8.14
A8.15
A.8.16
A8.17
A8.18
A8.19
A8.20
AB.21
A.8.22
A.8.23
A8.24
A8.25
A8.26
AB27
A.8.28

A9
A9.1
A9.2

A.10
A.10.1
A.10.2
A.103
A.10.4
A.10.5
A.10.6
A.10.7
A.10.8
A.10.9

A.10.10
A.10.11
A.10.12
A.10.13
A.10.14
A.10.15
A.10.16
A.10.17
A.10.18
A.10.19

All
All.l
A.l1.2
All3

A2
A12.1
A.12.2
A.123

A13
A13.1
A13.2
A.13.3

GET _PORT_ VAL Built-In ProCedUIe ... cuueuiuiiiieiriie e et eeie s ee e see e s ee e seneeneanes A-156
GET _POS_FRM Built-In ProCeduIec.ccuveuiiuiiuiiiiinireiriieeieiieeieiieeie e ree e seeensenesnsenesnsanns A-157
GET _POS_REG Built-In FUNCHON .euuiutiiiiiiiiiiiiriiriie e eie et eee s ee e seeenseneenseneensanns A-158
GET _POS_TPE Built-In FUNCHON .e.uiiuniiiiiiiiiiiiiiiiieiiieeie e et eeie et eeieetieetnsenneenneennseneesnnees A-158
GET _POS_TYP Built-In ProCedUIEcvureiniiiniiiiiieiieiiieeieei et etieeeieetieetnsenneenneenseneesnnees A-159
GET _PREG_CMT Built-In-Procedureccccoveunreuriuiiineeiieeiieeieiierieeeeeeneenneeneeneeeneennnens A-160
GET_QUEUE Built-In ProCedUIE ...c.ueuuiniiiieiiieiie e eie et eee s ee e s ee e s ee e seneensanes A-161
GET _REG BUilt-In ProCEAUIeccuiuiiuiiiiiiiiiiiieiiriieieeie e e teeeeeee e s ee s seneenseneenseneensanns A-162
GET REG CMT ottt ettt et ettt et e et e et e e eaa e etaae e eaneeaneeeens A-163
GET_SREG_CMT Builtin Procedurecccuveiuieinriniiieiieeieeieeietieteeteetneennseneenesnsesnnens A-163
GET_STR_REG Built-In ProCeuIec.uviuniiueiieireiriieiiieeie e et et et etnsennsennsenseneesnnens A-164
GET _TIME Built-In ProCedureceuuiiuiinieiieiieieieeie ettt et et et et e enneeneeeneenennnens A-164
GET _TPE _CMT Built-in PrOCEAUIE ..cvuiuniiiiiiiiieirieiieee e e eeee e eee e see e seneensenesnsenesnsanns A-165
GET _TPE _PRM Built-in ProCEAUIEc.ccuviuiiuiiniiiiiireriireieiieeieeieeie e eeetneeneensenesnsenesnsanns A-166
GET_TSK_INFO Built-In Procedureccoueiuiiuiiiieiiiieiiriiriieeieiieeieereeereeenseeenseneensenes A-168
GET_USEC_SUB Built-In Procedureceeuuveinreuiiuriineeieeireieeieteeteetneernsensseneesnsesnnens A-170
GET _USEC_TIM Built-In FUNCHON ...vvuiiiniiiriiiiiiieiriieeie et eie et et etieetneennsennsennsensesnnees A-171
GET VAR Built-In Procedurecceeeureiniiiriiiiiiiieeie et e et eee et et eeneeeneeeneeneennnens A-171
GO TO SEALEIMEIT ceueutinninninii ittt ettt st et s et s enetn s e tasenerasenennsanes A-175
- H - KAREL LANGUAGE DESCRIPTIONciuuiiiiiiiiiiiiieiiieiie it eteie e eei e ean e eees A-176
HOLD ACHON 11tttutetiiteiieeiis ettt et e et s ettt e et s et e e et e tane s etaeseanesetaaeeennesennesenns A-176
HOLD StatemMeEnt ..c.eeniniereniieienreeieieteieeeueteetreeeneeetneeatnenetessseasnsessnssssnssssssnssasnsessnsassnsens A-177
-1 - KAREL LANGUAGE DESCRIPTIONuitiiiiiiiiiiiieiiieiie ettt eene et et e eei e eean A-178
IF ... ENDIF Statementc.occeviiuiimiiiniiiiiiiiiiiiiiieitieinieittnetieerieaneennetaeraersserssennsenes A-178
IIN CLAUSE ..eeniiiiieiiie ettt et ettt e et e et e et s et e e et e e tane s eane s eanesetaaeeenneeenneseens A-179
%INCLUDE Translator DITECTIVE cuuiuuiueueiureueiueeueiueeeiueenetneeesneeesneenesnssnesnssnesssnesnssnesnssnns A-180
INDEX Built-In FUNCHON +.uetuiiiiiiiiiiii ettt et e et e e e ee e eeaeenes A-181
INI_ DYN _DISB Built-In ProCeaUI®cceoieuiiiiiiiiiiiieieiireietnrtnetereietrenetseneeseneensenesnsanns A-181
INI DYN_DISE Built-In PrOCEAUIE ...c.ueuniuiiiiiiieirieireeiieeieteee e eee e ree e seneenseneensenennsanns A-183
INI_ DYN_DISI BUilt-In ProCeAUIEccvuiirueiiniiiiiieireinreireieeieeteeteetneeieeneenneensennsennsenns A-184
INI_ DYN_DISP Built-In Procedurecceueieniiiiiiineiiniiieireieeieeieeieeieeieeneenneensennsennsenns A-186
INI_ DYN_DISR Built-In ProcedUrIec..ceeueeenrimiiiiiireiieireieeieeieeieeteee et eeneeneeeneennaenns A-187
INI_DYN_DISS Built-In ProCeAUIE ...cuivuiiniiiiiiiiiiiiiiie ittt seeee et st eenseeenseneeneanas A—188
INIT_QUEUE Built-In Procedurec.ccceeieiiiiiiiiiiiiiiiiiiiiieriete et et ren et seneenseneenseneensanns A-189
INIT _TBL BUilt-In ProCEAUIE ...uiuniniiiiiiiiieieiie et et e et eee e ee e s ee e sene e seneenseneensanns A-190
IN_RANGE Built-In FUNCHION euuiiuniiiiiiriieiiiiireieeieetreireteeieeeieeteetneenestnneenneensennsennsenns A-201
INSERT NODE Built-In ProCcedUurec..eeeuveeniiiniiiniiniiieirreiereieeteeteeieeieeneenneensernsennsenns A-202
INSERT QUEUE Built-In Procedurec.eeeueieiiuieieiiieieeieeiieeieeieeteeeeeneeneeeneeeneennaenns A-203
INTEGER Data TYPE ..ueeeuntetuneeiutetueetueeteeeetu e et eetuaetaneeteneetnsaetnesetnaaeennaetsneeeneesneeeens A-204
INV Built-In FUNCHON euueiniiiiiiiii ettt et et et e et e e e een e eeaeenes A-205
IO _MOD_TYPE Built-In PrOCEAUIEc.ceuiiuiiiiiiririeireeiieeieiieeieeieeetreeenseeenseneensenennsenns A-206
IO _STATUS Built-In FUNCHON teuuiiuniiiiiiriieiieiiiieeie et reteeteeieetneetneetneenetnneenneensennsennsenns A-207
-J - KAREL LANGUAGE DESCRIPTIONuituiiitiiiiiieiie et et e et e eteeeene et e et e eeneeens A-208
J IN RANGE Built-In FUNCLION ...ciuuniiiiiiiiieii ettt ettt ettt e et e eeaeeeeeeeaaeeen A-208
JOINTPOS Data TYPE vuveurenrenrenienrenrtrenetrertreeterertrenstrestrensensesesesesensensensnnsensensanns A-209
JOINT2POS Built-In FUNCHON .eeuuuiiiiiiiiiiiiiiiii ittt ettt e ere e e eeas A-209
- K- KAREL LANGUAGE DESCRIPTIONciuiiiiiiiiiiiiiieeiie et et e eteeeeie et eeeaeeeneeeen A-211
KCL BUilt-In ProCedUIec..iiueiimiiiiiiiie ettt ettt e e e ee e eeaeenes A-211
KCL_NO_WAIT Built-In ProCeAUIeceuveuiiniiiiiiiiiiiiieiiriieiri et reietrenetreneeseeeseneensenns A-212
KCL _STATUS Built-In PrOCEAUIE ..cvuuirurirneiiiiiiiieeireinreteeieeieetieeteeteeneenneeneeensernsennsenns A-213
- L - KAREL LANGUAGE DESCRIPTIONctuiiiiiiiiiiiiiie ettt ettt eteeeeie et e et e eeneeens A-213
LN Built-In FUNCHON .eentetneiiiiiii ettt et et et e e et et e e e eea e eeaeenes A-213
LOAD Built-In PrOCEUIE ...ceuviniiiniiiiiiiiiiiiiei ettt et et ee s ean e eaes A-214
LOAD_STATUS Built-In ProCEAUIEevuivniiiniiiiiiniiireiieireieeieeteeteeteeneenernneensennsennsenns A-215

Xiii

Contents

MARRC75KR07091E Rev D

A13.4
A.135

A.l4
Al4.1
A.14.2
A.143
A.14.4
A.14.5
A.14.6
A.14.7
A.14.8

A.l15
A.15.1
A15.2
A.153
Al54
A.15.5
A.15.6
A.15.7
A.15.8
A.159

A.l16
A.l6.1
A.16.2
A.16.3
A.l6.4
A.16.5

A.17
A17.1
A17.2
A.17.3
Al174
A.17.5
A.17.6
A17.7
A 178
A.17.9

A.17.10
A.17.11
A 17.12
A.17.13
A.17.14
A.17.15
A.17.16
A.17.17
A.17.18
A.17.19
A.17.20
A.17.21
A.17.22
A.17.23
A.17.24
A.17.25
A.17.26

LOCK_GROUP Built-In Procedurecceeieiiiiiiiiiiiiiiiiiniiiieieieein et eeieterenetseneenseeenseneensanns A-216
%LOCKGROUP Translator DIr€CtiVEceeureunreuiiuiiiniiiieeieeiieei et et et et eeneeneeneenennnens A-217
- M - KAREL LANGUAGE DESCRIPTIONtuuiiiiiiiiiiiriieeieiietinetinetneennrenneeneennseneesnees A-218
MIRROR Built-In FUNCION ..vuiiniiiiiiiiiiiiiiiieiiieie ettt et et et et eae e sa et saneanssnesnssnesnsanns A-218
MODIFY QUEUE Built-In Procedurecceeuuieieuiiiiuiiiiieeeiiie et et ete e et et eeeaeeeeneeens A-219
MOTION _CTL Built-In FUNCHON ..euuniiiiiiiieiiie ettt ettt e e et e et e et e eeaeeeeaeeens A-221
MOUNT _DEV Built-In ProCEAUIEceuveuiiniiniiiiiiiiiiiieiireieinreetereietreneereneenseneeseneensenns A-221
MOVE_FILE BUilt-In PrOCEAUIE ..e.uvvuniriiiieiiiiiiieeiireireieeieeieetieeteeteeneenneenneensennsennsenns A-222
MSG_CONNECT Built-In ProCeUIEcceuvieniiiiiiiniiireinieireiriieetieeieeieeieeneeeeensernsennsenns A-223
MSG_DISCO Built-In ProCeUIEccueeuiieneiiiiiiiieeieeieeieeie et et et eteeeeeneeneenaeenaennaenns A-225
MSG PING ittt ettt et et e et e et e et e et e e taa e taa e et e etae e etna e eaaeeaneeens A-225
- N - KAREL LANGUAGE DESCRIPTION ...cuitiiiiuiiiiiiieeireieiieiineteeteetnsennreneennseneennees A-226
NOABORT ACHOMN .ueitiiiiiiiiieetie ettt ettt et et eta e teie e et e et s etaaeeeanetanesennesernnseranns A-226
%NOABORT Translator DIr€CtIVE ..ivuieuiiiiiiiiiieiiieieieieieeeieteeteetereeteeeeetesenetessnesssnerasanns A-227
%NOBUSYLAMP Translator DIr€CtiVec..eeuuieuuieuiiiuiiiiiieeiieei et et e et e et e e e e eeneeeneees A-227
NODE_SIZE Built-In FUNCHION ...etuuiiiiiiiiiii ittt et e e et e e e et e eeneeenans A-227
%NOLOCKGROUP Translator DIT€CHIVEcueeuveuriureueinreieireeereneeneeetnreneenseneenseneenseneensenns A-229
NOMESSAGE ACHOMN «eeuuiitiiiiiiieiieetit ettt ettt e it e et e et s etaa e eeaaeeeaneseanesennaseranns A-230
NOPAUSE ACHON etuettuiiiieititeti ettt et et s et e eta e etaaeeta e etnesetaaeetanetanesennesesnnsernnns A-230
%NOPAUSE Translator DITECIVE ..iuuiuieueiuriueiuieieieeeiieeeteeierneteeneaeseeetnsenesnssnesessnernesnns A-231
%NOPAUSESHFT Translator DIir€CtiVec.uveuureueiiuiiiniiiiiieeiieeii et e et e e e e e eeneeeneees A-231
- O - KAREL LANGUAGE DESCRIPTION ...cuitiiiiiiiiiiiiireireieiieiietieeteennsennseneennseneesnnees A-232
OPEN FILE Statemment ..c.ueuueuneuiuneuienieneeneenetneenetneenetneenetnsenetnsensensenernsensensensensensensensensanns A-232
OPEN HAND STAtEIMENL tvuuvevunerunetuieetunrettieretineetueretnasetnaeetsneetnssesussetnsseesssessnssesnssesnnseens A-233
OPEN_TPE Built-In ProCeUIecuiuiuiiieiiiiieiieiie e e eie s ee e ee s ee e see e seneenseneansanns A-233
ORD Built-In FUNCHON «euueeuiiiiiiii ettt et e et e et e e e ee s en e en e e eenennn e A-234
ORIENT Built-In FUNCHION t.vuiiniiiiiiiiiiiiiieiiei et st et et et et et et et seetseneensensenseneenseneensanns A-235
- P - KAREL LANGUAGE DESCRIPTIONcouuiitiiiiiiiiiiinetiieeetieetieetieeennneesnsesneesnnseens A-236
PATH Data TYPE eueueeniniiiiiiiiietie ettt ettt et eete e reeeneatesnseaensaaensaensantnsnseesnseesnsanennans A-236
PATH_LEN Built-In FUNCLION «.ceuuniiiiiiiiiiiie ettt et et et et e et e eeaeeeee e eaaeeens A-238
PAUSE ACHON ttuttnitniinitnitittiiteetetrtetertetreetresenrenstnsenstnsenseranstrensensensensensensensensanns A-238
PAUSE CONAILION tttnitiiernietniiiriietieeteetettetieetueetnsetnseunsesnsenssansesssssssssssssenseensessennsenns A-239
PAUSE SEAtEIMENT ..euivniiniiniiniiniirinetttetet ettt ettt et reetereetrenstnseetarestnsensensensensensensanns A-240
PAUSE TASK Built-In ProCeUIE ...cc.uiuuieneieeiiiieeieei et ettt et et et e e et eeneeeneeeneennaenes A-241
PEND_SEMA Built-In Procedurec.ccceeiiiiiiiiiiiiiiiiiiiiiie it seeete et seeeeseeeseneaneanns A-242
PIPE_CONFIG Built-In ProCeaUI® ...ccuieuiiiiniiiiiiiiiiiieiiieiieeieteeteteeetreetseeenseeenseneensanns A-242
POP_KEY RD Built-In ProCAUIE ...evuieuiiniiniiniieiiriieiieieirei et et et reetreeeseeenseneensensensenns A-243
POt IA ACHION .uiuniiieiiteintei ettt ete et et e et et et etasetnseunsennsenseansesnsssnsssnssnnsenneensesnsennsenns A-244
POrt Id CONAItION .uvvunirnrernrerniiiriie et eieetett et etieetneernsennsannsenssansesnsssnsssnssnssenseensennsennsenns A-245
POS BUilt-In FUNCHON 1.vuiiniiiiiiiiiiiiie ettt et e e et et e e e e et ea et saeanssneansanasnaanns A-246
POS2JOINT Built-In FUNCHON «eeuuniitiiiiiieiie ettt ettt e e et e et e etaeeeeaeeeaneeens A-246
POS_REG_TYPE Built-In Procedureccciuuiiiiiiiiiiiiiiiiiiiiee ettt et s e e s ee e e A-248
POSITION Daata TYPE wueeurenrenrenrenrenrtnrenetrenrerertresenrenstresearensesenetareseasensensensnasensensanns A-249
POST _ERR Built-In ProCedUreccuueeiuiiieiiiiiniineireireireieeieeteeteenneeneeneenneensennsennsenns A-250
POST ERR L BUilt-In ProCedUre......ccuuiiuiinreiieiriiriieeieeieeieeieti et eeneetneennsennsensensesnnens A-251
POST _SEMA Built-In Procedurecceueeeueieiiniiiiiieeireieeie et eiie et eee et et eeneeeneennaenns A-253
PRINT _FILE BUilt-In PrOCEAUIE ...ccuvvuieniiiiiiiiiiiieiiiiie et et et e ee e et et seeenseneensanaenaanns A-253
%PRIORITY Translator DIr@CtiVEcueeueenieunieniiniineeie e et et et et et e eeeeneeneeneennnens A-254
PROG_BACKUP Built-In ProCedurecceveieiiiriiiiiiiiiriirinrineiereietereneereeeseneeseneensenns A-255
PROG_CLEAR Built-In ProCedurecceuuveuniinniieiineireireireieeteeteeieeieeneeneeensennsennsenns A-258
PROG_RESTORE Built-In ProCEAUIE ..c..vvuiirniiiiiiriiiriiieireireieeieeieeieeieenneenneensennsennsenns A-260
PROG_LIST Built-In PrOCEAUIE ...c.utvuniiniieieeiiiiieeie et eei e et et et ete et eeeeeneeneeneeenaennaenns A-262
PROGRAM StateIMENt ..c.veuienieniiniiniiiiiiiiiiii ettt et et et e e een et se et sen et senetnseneensanes A-263
PULSE ACHON «ttuettit ettt ettt et e et e et e et e ete e e et e et e etaaaetanetaneetnaaetnnsatnaneesnneeannaeens A-264

Xiv

MARRC75KR07091E Rev D Contents

A.17.27
A.17.28
A.17.29
A.17.30

A18
A.18.1

A.19
A19.1
A.19.2
A.193
A.194
A.19.5
A.19.6
A.19.7
A.19.8
A.19.9

A.19.10
A.19.11
A.19.12
A.19.13
A.19.14
A.19.15
A.19.16
A.19.17
A.19.18
A.19.19
A.19.20

A.20
A20.1
A.20.2
A.203
A204
A.20.5
A.20.6
A.20.7
A.20.8
A.209

A.20.10
A.20.11
A.20.12
A.20.13
A.20.14
A.20.15
A.20.16
A.20.17
A.20.18
A.20.19
A.20.20
A.20.21
A.20.22
A.20.23
A.20.24
A.20.25
A.20.26

PULSE StateImMentccuveuieniiniiniiiiiiiiiiii ettt ettt e et e et s e et s e et seneanseneensanes A-265
PURGE CONDITION StatemMeNt ...c..eeeueeeenneeenneeteueetueetueetneeeeneteneeenneeenneetsneeesnseesneeeens A-266
PURGE _DEV Built-In ProCeaUIE ...cuvvuieniiiiniiiieiiiieiieieiereieereetreeereeeseneensensensensensenns A-267
PUSH_KEY RD Built-In Procedureccuuveuniiuniiiniiniinieireireieeeieeteeieeieeneeneeensennsennsenns A-268
- Q - KAREL LANGUAGE DESCRIPTIONctuuiiiiiiiiiiiiieeiie et e et eteeeenieeeeaeeeeneenneeeens A-269
QUEUE _TYPE Data TYPE «eeeuueitunreineeitneeiteeetueetutetueetnaeettueeetueaetueetnaaeesnaeteneeenneesneeens A-269
- R - KAREL LANGUAGE DESCRIPTIONctuiiiiiiiiiiiiiiiieiieeeti ettt et eeei e eni e A-269
READ Stat@mMENT vueueniniiriniieienrieeeeteieteueteenreeeneeeenseatnsnetessseasnenesnssssnssssasnseasnsessnsansnsens A-269
READ _DICT Built-In ProCEAUIE ..vuieniiniiiiiiiiiiiietiieie et et et etese et se et seeenseneenseneensanns A-271
READ _DICT _V BUilt-In-Proceureccccieeiiiiiiiiiiiiiiiiiiriieinitietnieieterenetnseneeseneeesenesnsanns A-272
READ_KB Built-In PrOCEAUIEc.vvuiiniiniiiiiiiiiiieriieie et st et et et re et re et seneenseneenseneensanns A-273
REAL Data TYPE teueeniinitniinitiiittiettt et et ettt et st et seaetesenstesenstnsanstarenstnsensensensnnsensensanns A-277
Relational CONAIIONceuuieenereiuieiiieii ettt et et et e taaeeetneettesetaaeeerneeenneseens A-279
RELAX HAND SEAtEIMENLE 1evuuetiuniiiieiiueretueetnnreteuetetueetusetseeesnseesnseetnssernssersnseesnssssnnseens A-280
RELEASE Statementccuieuieniiiiiiiiiiiiiiiiei ettt ettt et s et s e et seneen s e et seneensanes A-281
REMOVE DICT Built-In ProCedUIecuvvuiiniiiiiiiiiiiiiiiiieiieieie et eeete et s e eeseeeseeaneanes A-281
RENAME FILE Built-In ProCeUI®ccuveuiiniiniiiiiiieeireietreetrenetreneenreneereeensensensenns A-282
RENAME VAR Built-In Procedureceeuvieniiiiiiniiiriireireiieeeiieeieeteeneeieenneensennsennsenns A-283
RENAME VARS Built-In Procedureceeeviiiiiniiiriiieiieiniieeiieeiieeieei et eeieeensennsennsenns A-283
REPEAT ... UNTIL StatemMeEntcceuueerunreruneetuneereneeerueerueerseeesnseesnssesnnsersnsersnssesnseesnnseens A-284
RESET Built-In ProCedUrec.uieuiimiiiiieiiieiii ettt et e et e e et et e e ee e eaaeenes A-285
RESUME ACHON «.ettuititiittte ettt et et e et e et e et e et e eta e e et etaneetnaeetnnaetnaneesnneennnaeens A-286
RESUME SEatemMeNT ..cc.ueeuierniiniiniiiiiiiieiietieti et ettt et eeneenetne et etneeaaetaetneenseensennsenes A-286
RETURN Statementccveuuiiuiiiniiiiiiiiiiiiiiiiiiici ittt et et can e et et eaaseanseansenns A-287
ROUND Built-In FUNCHON evuuiiiiiiiiiiiiiiieiii ittt ettt st eeae e eaa e eeas A-288
ROUTINE Stat@ImMeENt w.cueeneneueenenreneneeeeneeeeneueteenreeeneeeensesensnetessseasnsessnssssnsessssnseasnsessnssssnsens A-289
RUN_TASK BUilt-In PrOCEAUIEcvuieuiiniiiiiiiiiiieiiieieiireie sttt et e et re et seeenseneensaneensanns A-290
- S - KAREL LANGUAGE DESCRIPTIONciuuiiiiiiiiiiiiiiieiiieiie et et eeee et e een e enneeeees A-291
SAVE BUilt-In PrOCEAUIE «...uveuniiiiiiiiiiiiieiie ettt sttt et e e et e ea e eane e A-291
SAVE DRAM Built-In ProCeUIEc.ceeuiiiuiiieiiiieiiiiieeieet et et et et eeeeneenaeeneeeneeennee A-292
SELECT ... ENDSELECT Statement «....ccuueeeuueeeuueeteueeetueeeuretneeenneeteueeetueetneeennaeesnsecenns A-293
SELECT _TPE Built-In Procedurec.couviuiiiiiiiiiriiiiinneiie e eeie s ee e s ee e see e seeansaneens A-294
SEMA_ COUNT Built-In FUNCHON ..euuiuiiiiieiririieieireieiree e eeteee e seeensenennseneenseneenseneens A-294
SEMAPHORE CONAITION teuuiiiniiiiiiiiiiiiiietieeti et eeti et etie et et e et e et setnaeeenaeeanenes A-295
SEND DATAPC Built-In ProCeaUIEcvuiiuriiiiiniiiiiieiieeiieeireieeieeieeeieereeneenneennssnnsennee A-295
SEND EVENTPC Built-In Procedurecceueeeueeeueieiiiieieeieeieei et e et eeeeneeeaeeneeeneeennee A-296
SET_ATTR PRG Built-In Procedureccuveuiiiiiiiiiiiieiriieiireie et eeeenseeenseneenseneenseneens A-297
SET_CURSOR Built-In ProCedUIrecceeueeuiiiiiiiiiiiieiiriieiieeieereieteeeenseeeseneenseneenseneens A-299
SET_EPOS REG Built-In Procedurec.eeueeuriuiiiiiiiiieireieiireieireietreetnsenetreneensensnnseneens A-300
SET EPOS_TPE Built-In ProCEAUIEuvvuiiuriiriiiiiiiiniiieeiieetreireieeieeeieereenneennsennsannsennes A-301
SET FILE ATR Built-In ProcedUreccceuveureiiiiiiiiniieeiieeireireieeieeeieeeeeneenneensennsennee A-302
SET FILE POS Built-In ProCedUIEc.uveuiiuuiieiieiiiiiiieeieeteei et et et et eneenaeeneeeneeennee A-303
SET INT REG Built-In ProCeAUIEc.oiuiiuiiniiiiiiiieiiiieieeie e eeie e see e s ee e see e seneensaneens A-304
SET _JPOS REG Built-In ProCedureccoeeuviriiiiriiiieiiiiie e iieeiet et seeeeeneenseneenseneens A-304
SET_JPOS_TPE Built-In ProCeduI®c.veueiuiiueiniieiriieireeireetreieereetnseerreneensensenseneens A-305
SET LANG Built-In ProCeUIEcuuieuniiuiiieiiriiiiiiiieetieeteetnrenreieeneeeneeteensesssnsennsennes A-306
SET PERCH Built-In PrOCEAUIE ...cuuiiuniiiiiireieiieiiiiieeieeteetretneeineeneeenseeneenneennsannssnnsennns A-307
SET PORT_ASG Built-In ProCeAUIEeeunieuiineiiieiiiiieieeieei et et et et eneeraeeneeeneeennee A-308
SET PORT ATR Built-In FUNCLION ..ceuuiiiiiiiiiiiiiieiii ettt et e e et e e eeea e A-309
SET_PORT _CMT Built-In Procedurecccoeeeiiiiiiiiiiiriieiireieiireie e seieenseeeeeneenseneenseneens A-311
SET_PORT_MOD Built-In Procedureccccveueiieeiriieireeiireieereietreeenreeereeensensenseneens A-312
SET PORT _SIM Built-In Procedureceuueeuuriiiiiiiiniieeiiretreireireieeeieeeeeneennsenssnnsennes A-313
SET PORT VAL Built-In ProCeUIEccueivureiuiiiiiiiniiiniiieeiretreinreineeneeeneeeeennsennsennssnesennee A-314
SET POS_REG Built-In Procedurec.ceeueeuueieniiiiiiiiieeieeieei et eeieetieeeeeneeneeneseneeennee A-315

XV

Contents MARRC75KR07091E Rev D
A.20.27 SET POS_TPE Built-In Procedurec..ceeeuuiiiuiiiiiiiiiiieieeeiiie et ete et e e eeea e A-316
A.20.28 SET PREG CMT Built-In-Procedurecc.oeeeuuieiuuieiiniieiieeetiie et e et etneeeeeeeeae s A-317
A.20.29 SET REAL REG Built-In ProcedUrIec.ccuviuiiniiniiiiiiiiiiiieiirii et reiet et reeenseneenseneenseneens A-317
A.20.30 SET_REG_CMT Built-In-ProCedurec.cveuriurieueiieeireireieiieeieeteetrernrensereseneesneesnees A-317
A.20.31 SET _SREG_CMT Built-in ProCcedUrecuuvevniiiniiniiieiiieeiieeireii et eteetieetsensenneeneeneennnees A-318
A.20.32 SET STR REG Built-in ProCedUIE ... cc.uetueinieiiiiiiieiie et e et et et e et eeneeneeneenennnens A-319
A.20.33 SET TIME Built-In ProCedureco.cieuueieimiiiieeiie et ete et etee e et e et e eeneeeeaeeenanaes A-319
A.20.34 SET TPE CMT Built-In ProCEAUIE ..cc.uienniiiieiiieiie ettt et et e et e et e eeaeeeeeeeeae e A-321
A.20.35 SET_TRNS_TPE Built-In Procedureccceiiiiiiiiiiiiieiieieireieireietreetreeereneeseneenseneens A-321
A.20.36 SET_TSK_ATTR Built-In Procedurec.cveueveuieueiiuneireireieiirtieeteetnrennsenseneseneseneesnees A-322
A.20.37 SET_TSK _NAME Built-In ProCeAUIE ...cc.vevureuniiniiieiiireireiireieiieetieetieetrernrenneeneseneesneesnees A-323
A.20.38 SET_ VAR Built-In Procedurecceueeiuieiniiiiiiiiieiiie ettt et e et e eneene e e eeneennnees A-324
A.20.39 %SHADOWYVARS Translator DIr€CtiVece.eeeuieeurieniiniiinieiietiet et et et et eeaeereeneennes A-327
A.20.40 SHORT Data TYPE +uueeenneeenueenneetuneeetueetueetueetneeteueetueeetueaetnaaetsneteneaenaeannseenaeeesneeeennae A-327
A.20.41 SIGNAL EVENT ACHON «euuuittuiiiiniiiiiieii ettt et e et e et e et e eetieetaneeetneeeanesetnaeeennnenennnns A-328
A.20.42 SIGNAL EVENT Statement «...cceuuieeuuieiuuiiiiretiieiiretieetiieeteieetieetiesetaaeetnnerensennsesnesenns A-328
A.20.43 SIGNAL SEMAPHORE ACHON euuuiiiiiiiiiiiiiieiiieii ettt et et et et et e eene e eanseean A-329
A.20.44 SIN BUilt-In FUNCLION tuuiuiiuiiniiiiiiiiieitiie e ie e eie e ee e ee s eet s ee e ea e e saeensaatnsanesnsanesnsanns A-329
A.20.45 SQRT Built-In FUNCHON .eeuuniitiiiiiiiiieiii ettt et et e et e et e e et e etee e et e etnsetnaeeenaeennnaas A-330
A.20.46 %STACKSIZE Translator DIr€CtiVE ...c.ueeuieueuuiieiii ettt et et et et e e eeeeaeenaee A-330
A.20.47 STD PTH NODE Data TYPE .ueeeeuieunieinreinetiieeteeeetieetueetueettaeteneetneeenesetneeesnaerennnes A-331
A20.48 STOP ACHON tuuernuiiiiiiiiteti ettt ettt e et e et s et e et e taae e et e eanesetaasetanetanesennnsernnsenns A-331
A20.49 STOP StACIMENL ..euurneneinreneinrenetnreetreetreetnreetnrenetaseetasenetnsenstnsenstnsensrnsensrnsensensensensenns A-332
A.20.50 STRING Data TYPE evuueerunrerunreinnretneetuneettueetueeetuesetsneetsssetsnsesnssesnssetssseesnsessseesnnsesnsseens A-333
A.20.51 STR LEN Built-In FUNCHON eeuuiiiiiiiiiiiiteiie et ettt et e e et e et e et e et e eeeeeeean s A-334
A.20.52 STRUCTURE Data TYPE ceeueeenuetuutitueetueetueetueeteueeetueetueaetnaeeeaaeteneetnaetnesetnaeesnaeeennaes A-334
A.20.53 SUB_STR Built-In FUNCHON e.viuiiiiiiiiiiiiieiiiieiriieirie st e st et s et seneensen et seneensansensanens A-335

A21 -T-KAREL LANGUAGE DESCRIPTIONiituiiiiiiiiiiieeiiretieeeiinetieeetieetiseeneeennneannnnas A-336
A21.1 TAN BUilt-In FUNCHON ...eituiiiiiiiieeiie ettt et e et e et et e et e et e een e eenaeeenaeeeeannas A-336
A21.2 %TIMESLICE Translator DIr€CtiVeccuuieuiiuiiuiiiiiiiii e et et et e e e et et eeeeeaeeneeeneae A-337
A21.3 %TPMOTION Translator DITECTIVEceuveueenrenrinrenrireeireetreetreetreeenreneenreneensensensensenses A-337
A.21.4 TRANSLATE Built-In ProCEAUIE ...ccuvivuieuniiniiieiieeieeiieiieeineteetnrenneenneeneaneenneesnesssennsannes A-337
A.21.5 TRUNC BUilt-In FUNCLION 1iuuiiuniiiriiiiiinieiiiieiiieeieeteeietietieetneetneennsennrenesenersneesnssssennsannns A-339

A.22 -U-KAREL LANGUAGE DESCRIPTIONuittiiitiieiiieeiieeetieeti et eeeie e et e eeaeeeneeenans A-340
A22.1 UNHOLD ACHON «etuuettnettietetue et et et et ettt e et e etaeetuasetaaetaneteneseenaaennesetnaaeennaerennees A-340
A22.2 UNHOLD SEateIMENT cvuueueenieneinrenetnrenetnreetereetreetnreetnreetnrenetnrenstnsestnsensensensensenseasensenses A-340
A.22.3 UNINIT BUilt-In FUNCHON euuiiuniiieiiieinieirtieiieeieeieetetieeieetneetnsennsesssenssensrsnsesssssssnnsannes A-341
A22.4 %UNINITVARS Translator DITECHIVE ..c.iuuiiuiiiiiiieiiiieiriieieeeteetietseetranetessneeessnesnssnesnnes A-341
A.22.5 TUNLOCK GROUP Built-In ProCEAUIE ...c..eeeeuiiiiuiiiieeiiieeii et et et eeta e et e eeneeenaeeeeanaes A-342
A22.6 UNPAUSE ACHON tuuueitniitietetie et eti et e et e et e et e et e etu s eteaeetaaetaaneetnnaeannaeenaaeanneeannnns A-343
A.22.7 UNPOS BUilt-In PrOCEAUIE ...vuiiniiniiniiiiieiiiieiieieireiet et et reetreeesenetnsenetnseneenseneesensenses A-344
A.22.8 USING ... ENDUSING Statementcceuureruuieruriuueretueetireteeeerneernretneetnesereeeeneerenees A-344

A.23 -V -KAREL LANGUAGE DESCRIPTIONuiitiiiitiiiiiieeiie et et etieeeeeeeee e et e eeneeeeeans A-345
A.23.1 V_CAM_CALIB iRVision Built-In Procedureccceueiiuiiiiiiiiieiireieieieseeseieeiieeeeeneenennnas A-345
A.232 V_GET_OFFSET iRVision Built-In Procedureccccvueeiiuiiiiiieieiinieiierereeenieeenieesnneesnnns A-347
A.23.3 V_GET_PASSFL iRVision Built-In Procedurecceeevuiriiuiriiiinieiineeiierenineenisserineeenneennnnes A-348
A.234 V_GET_QUEUE iRVision Built-in Procedureccevevuiriiniririirieiineeiererineeniserioeeenneennnes A-350
A.23.5 V_INIT QUEUE iRVision Built-in Procedurecceeeuieeiuireiiniiineiieretieeetireeieeenneennnnes A-350
A.23.6 V_RALC QUEUE iRVision Built-in Procedurec.cceiiuiiiuieiireiiriieieeiiesiieeiieeeeeeeenennnas A-351
A.23.7 V_RUN_FIND iRVision Built-In Procedureccccuiiiuiiiiiiiiiiieiii e eeieeeieeve e eenennnas A-351
A.23.8 V_SET REF iRVision Built-In ProCedureccuueiiiueiiiuieiiiereiiieeeiieerieeerieeennsernoesssneessnnnes A-353
A.239 V_START VTRK iRVision Built-in ProCedurecoceuuvriiuiiiiinieiinieiererineeniererineeennesnnnnes A-354

A.23.10 V_STOP_VTRK iRVision Built-in ProCeduIeevevuriiiriiiieierineeiiereriieeeireriesennneesnnsenes A-354
A.23.11 VAR INFO Built-In ProCEAUIE ...c.eeuiieniiiiiiiiiieieeiieiiieti et et et e et eeneeeneeeneerneenaeeeaseneeennes A-355

XVi

MARRC75KR07091E Rev D Contents

A23.12
A.23.13
A.23.14
A23.15
A.23.16

A24
A24.1
A242
A243
A244
A245
A24.6
A24.7

A25
A25.1
A252
A253
A254
A255
A25.6
A25.7

A26
A27

Appendix B
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

B.10
B.11

B.12
B.12.1

B.13
B.13.1

B.14

Appendix C
C.1
C2
C3
C4

VAR _LIST BUilt-In ProCEAUIEcuvvuiiniiiiiiiiiiiiiieriieie ettt et s et st et seeaseneensenaaneanes A-357
VECTOR Data TYPE +.ueeeuneeuueetneetneetteeetue et e eteeeetueetaeeetaaetanetaaeetneaetnnsetnaeesneeanneeens A-360
VOL_SPACE BUilt-In PrOCEAUIEvuvvuieniiiiiiiiieiiieiteieie et et et et reetrenetseneensenerseneensenns A-361
VREG_FND_POS iRVision Built-in Procedureccuueiiuuiiiiiiriiiineiiereiineeriererieeenineenneenes A-362
VREG_OFFSET iRVision Built-in ProcedUureceieuueiiiueieriiriiiineiiiererineerirerieeennessnnsenes A-363
- W - KAREL LANGUAGE DESCRIPTIONeuuiiiiiiitiiiiiie ettt et etieeeieeteie e et e eeneeeens A-364
WAIT FOR StatemeNt c...ceuneuniiuniiniiiiiiiieiieti et et ettt ettt ettt et eraeeaaetaeetneeneensennsenns A-364
WHEN CIAUSE ..evueiiniiiiiieiitetie ettt ettt et e et e et e e et e tane s etaesetnesetaneennesennesenns A-364
WHILE...ENDWHILE Statementc..ceeuuieiuieiiiieiiieiiietie ettt eetneetnerereneeenneenneseens A-365
WITH CIAUSE .vuitniiniiniiiiiteii ettt ettt ettt ettt ettt et sanetesanetesaneensanetnsenstnsensensensenssneensanns A-365
WRITE STAtEMENT ..euivniiniiniiiiiiiiiiie ettt ettt e e s e et s e et e e et s eneensanes A-366
WRITE _DICT Built-In ProCeAUIEcvuiiniiiiiiiiiiiiiiiiiiiiiiieie ettt eeeetere et seeenseeaseneeneanas A-367
WRITE _DICT_V Built-In ProCeduUIrecccveiiiiiriiiiiiiiiriirinieieireietnreneeseneeseneenseneensenns A-368
- X - KAREL LANGUAGE DESCRIPTIONcouuiiiiieiiiiiiiinetiieeetieetiretneeenneetsneeesneesnnseens A-369
XML ADDTAG Built-In ProCeAUIEceuieniiiiiiiiiiiiiiiiiiireietneeiet et eeneeeseeeseneeseneensanns A-369
XML _GETDATA Built-In Procedureccuuiiiiiiiiiiiiiiiiiii ettt et s e e s e e e s e ens A-370
XML _REMTAG Built-In Procedurecccoveviiiiiiiiiieiiiiieiiiieiereietereietreeeseeeseneenseneensenns A-371
XML _SCAN Built-In PrOCEAUIE ...cvuuiiuriinreiniiiiiieeiieeieeieeieeietieetieeteetnsennsennsenssenesensesneees A-371
XML _SETVAR Built-In ProCeAUIE ...c..cevuiiuniiiiiieiiieeiireiireieeieiiretieeteetnrernsennsenarensesneesnees A-373
XYZWPR Data TYPE eueenienitniiniiiiitiiiee ettt ettt ettt et et et s e et s e et sen et seneenseneensanns A-374
XYZWPREXT Data TYPE «eeueeetnueeinueettueeetneetneeteeeetuaeetueetnaeetsneteneetnseetnnsetnneeenaeesnaeeens A-375
-Y - KAREL LANGUAGE DESCRIPTIONuitiiiiiiiiiiiiieeireieiieiietieeteetnsennrensennseneennnees A-375
-Z - KAREL LANGUAGE DESCRIPTIONctuiiiiiiiiiiiiiie ettt e et e eteeeene et e et e eeneeens A-375
KAREL EXAMPLE PROGRAMS ottt ettt e e e e et e e e eeaeeen B-1
SETTING UP DIGITAL OUTPUT PORTS FOR PROCESS MONITORINGcccceeveniiiininnininnans B-6
COPYING PATH VARIABLES ...ttt ettt ettt e et et e e e e e et e eeneeenans B-18
SAVING DATA TO THE DEFAULT DEVICEcuuiiiiiiiiiiiiiiiieieiie ettt et eeineeeeensenneanns B-28
STANDARD ROUTINES ...etiiiiiiiiiiie ettt ettt e et et e e ete e et e et e een e eeea e eeneeeneaeens B-31
USING REGISTER BUILT-INS ..ottt ettt sttt e ete et s et e eee e eeaes B-33
PATH VARIABLES AND CONDITION HANDLERS PROGRAM ...c.ciiiiiiiiiiiiiiiieiiieeiiieeeeneee B-38
LISTING FILES AND PROGRAMS AND MANIPULATING STRINGScccoviiiiiiiiiiiniiiinennnns B—44
GENERATING AND MOVING ALONG A HEXAGON PATHccocieiiiiiiiiiiiiiiieiceeeieeeeieeeen. B-49
USING THE FILE AND DEVICE BUILT-INS ..ottt et see e s ee e s e ens B-54
USING DYNAMIC DISPLAY BUILT-INS ...ttt ettt et et et e e e een e eeae e B-58
MANIPULATING VALUES OF DYNAMICALLY DISPLAYED VARIABLESccccovviiiiininan. B-68
DISPLAYING A LIST FROM A DICTIONARY FILE ...couuiiiiiiiiiieiiieeiie ettt eeeeee B-70
DICHONATY FIlES .vuieiiiniiiiiiiii ittt ettt et et s e et s e et s e et san et sansensansensansensensens B-80
USING THE DISCTRL_ALPHA BUILT-IN ..ciiuiiiiiiiiriiireiie et eetieeiieeetieetneseenieeanneennnnes B-81
DICHIONATY FIlES ivuiiniiniiiiiiiiii ittt et et s e et e et s e et s e et san et san et saneensaneens B-85
APPLYING OFFSETS TO A COPIED TEACH PENDANT PROGRAMccccivviiiiiiiiiiniiiinenenns B-85
KCL COMMAND ALPHABETICAL DESCRIPTION it eve e e eenen C-1
ABORT COMMANG ...etniiiiiiiiieii ettt ettt e et et et et et s et e enaeeneeeneeanenneeaenaaenann C-6
APPEND FILE COMMANG .euuiiuniiiiiniennieinreietieteetieeteeenetnnetneetnseensesnsesssessenessnsesnsssnsssssnnses C-6
APPEND NODE COMMANG ...euuiinniinitniiieieei ettt et et et et e et e et eeneeneeaneeneeasenaaennnns C-6
CHDIR COMMANG teutiitiiieiiiieiiieii ettt ettt e et e et s et e et etaneeetaeeetaesetaaeennesennesennes ()

XVii

Contents

MARRC75KR07091E Rev D

C5

C.6

C.7

C8

C9
C.10
C.11
C.12
C.13
C.14
C.15
C.16
C.17
C.18
C.19
C.20
C.21
C.22
C.23
C.24
C.25
C.26
C.27
C.28
C.29
C.30
C31
C32
C.33
C.34
C.35
C.36
C.37
C.38
C.39
C.40
C.41
C.42
C.43
C.44
C.45

CLEAR ALL COMMANG .evutvuirniiniiniuiueueueneteueeueeueesesueeseuessesssssssssssssnsssssnsssssssssssnssnssnnsnns c-7
CLEAR BREAK CONDITION COMMANGA ...vvuiiiniinneinnernrernrernrennrenereueereereessesnsennsenseensennsennns C-8
CLEAR BREAK PROGRAM COMMANG ..vuuivniiinirnnerieerneeuneetreuereneeeneesneesneennassassnnsenesrnesnnssnnns Cc-8
CLEAR DICT COMMANG ...tvuiinniiiiiieeiieeiietinetietietneetneennsenneennsensrenesssesnsssnsssssnnssnssensensennns Cc-9
CLEAR PROGRAM COMMANGA ttuivnitniiniiniiiiitiueneneueeueeueeueeseesesaesssssnsssssnssnssnsssssnssnnsnnsnns C-9
CLEAR VARS COMMANG ..etuiiuniiiiiieeiireiietinetietinetueetneennsenneennrenerenessnsesnsssssssssnsssnssensensennns Cc-9
COMPRESS DICT COMMANG .euivuieniiniiniinieniireetreetreetteetreetareeenseetsenetsseseensenernsensenses C-10
COMPRESS FORM COMMANG ..evuuiiuirnriinriineiieiieetneetnreneennrenetneetneesnsssnssnsennsensesnsesnsenssenns C-10
CONTINUE COMMANG ..etuiuninninnineneineeieeneeneeueetetneenetneenetneeneensenetnsenssnsenernsenesnseneensenennseneens C-11
COPY FILE COMMANG ..evuiiuniinniiiiiireiieeineiietinetieetneetnsennsennsenesensesasesnsssnssnnsennsenssensssnsennsenns C-11
CREATE VARIABLE COMMANG ..ceuuiiuiiiniiiieieiiieeieeieeieeeie et etneetneetnsennsennssnesenessnassssnnsnnnns C-12
DELETE FILE COMMANG ..c.uvtuniiiiiieiieeineiieiietieetneetnrennrennseneenessneesnsssnssnnsennsensennsesnsenssenns C-13
DELETE NODE COMMANG ..euituitniiniiiiniiiiitieetreet et eeetseetseetseetseetseneensenennseneens C-13
DELETE VARIABLE COMMANG ...uivuniiiiiiniiiniiieiieeiieernretreneeneetneereeesneennesnnsennsensennsennsennsenns C-14
DIRECTORY COMMANG ..euivniiniiniiniiiiniiteetttette et teettenetseeeseetnseetnsenetnsenernsenernsensenses C-14
DISABLE BREAK PROGRAM COMMANG ..cuuriuniinniiireinrennreinreietieetieereeneenneenneenseensernsennsenns C-15
DISABLE CONDITION COMMANG vuuevurrnirtneruerieerneetnresresesenessnessneesnessassnesssesrnesnnsesnsensenns C-15
DISMOUNT COMMANG ettiuniiiniiieiireiieetetietieeteeteeerarenerensenseneerasesnsssnssnssenssensesnsesnsennsenns C-15
EDIT COMMANA ..tuitiiiniiniiiiititiietete ettt ettt ettt et se et senetntaneensenstnsenetnsensenrenesnsenerereneens C-16
ENABLE BREAK PROGRAM ...ciiiiiiiiiiii ettt ee et e et et e et s e enea e s s e eaeanens C-16
ENABLE CONDITION COMMANG ..vuuivuirnertnernerneerneetnretresesenesanessnessnessnssnessnesrnssmnessnseenesenns C-16
FORMAT COMMANG evutivniinniinniiieeiieeteeuetuetueetueetneetnsenssennsenssenessnsesnsssnssnsssnnsensennsesnsennsenns C-17
HELP COMMANG +.tuiiniiiiiniiiiiiiii ittt ettt ettt e e et e e et et et sen et saa et saneensenetnsenetnseneensensenres C-17
HOLD COMMEANA .evttitiiiiniiiiiiiiie et ete et et et etie et eetnsennsennsensensetnsesnsssnsenssennsenseensesnsennsenns C-18
INSERT NODE COMMANG +.vuiiniiniiniiieiiiiitieeteeetreetreetseetreetseetsenetsenesnsenereseneens C-18
LOAD ALL COMMANG ..evuiitniinniiieinrerireneeinetinetneetneernsennsennsenssensssnsesssssnssnsssnnssnsssnsesnsenssenns C-18
LOAD DICT COMMANG .vuitniiniiniiniiititteetteeteteeteteetteeteseetseaetseetsenetresetnseneresensenses C-19
LOAD FORM COMMANG ...tuuiiuniiineiirerirenneitnetinetieetneetnsennsennsensensssnsesnsssnssnsssnsssnseensssnsennsenns C-19
LOAD MASTER COMMANG ..vuiiniiniiniiniiiiiiiiiieieee et teetete et reeesenetnseetnseetnsenernseneensensennes C-20
LOAD PROGRAM COMMANG .evuuivniinniiiniiieerieeiieetetinetieetueetnsennsesnsensenssensssnsssssessssssssnssennes C-20
LOAD SERVO COMMANGA tuituitniiniiniiienititetteetereetreetreetseetsestseetseneesenersenernseneens C-21
LOAD SYSTEM COMMANG ..euuevnrirniinnreierieerieetieeretunetueetneetnsennsesssennsenssensssnsssssssssssssanssenns C-21
LOAD TP COMMANG ..euitniiniiniiniiiiiiieetett et eeete et et et et seetnsenetnsenetnrenetnseneensenetnseneeesensens Cc-22
LOAD VARS COMMANG .eiuniiiiiiniiiiiiiiiiiieetieeieetetietieetneetnsetnsetnsensensenessnsesnsesssssssensennns C-23
LOGOUT COMMANG .vuitniiniinitnitnitetreeteteteteetreetreetreetseetsenetsenetreaetesesesesenseeseneens C-24
MEKDIR COMMANG ..ttuiiiniiirernrennrenreieeieeteeteeteeeuetunetneetasetnsesssesssenssenssensssnsesnsessssssssnnsenns C-24
MOUNT COMMEANG tttvnitnitniinitnitttnetere ettt et rtetereetereetreetnrertrertsestreeeeeresererenreerenenns C-24
MOVE FILE COMMANG ..evuuirnieiniinniiietiitieetieeiieetetietueetneetnsernsesnsenesenssensssnsesssessssssssnssennns C-25
PAUSE COMMANG +.ttitniiniiniiiiiiiieiete ettt ettt et ee et sen et san et sanetnsenetasenstnsenetnrenesnsenennseneens C-25
PURGE COMMANG ..euuiiiniiiiiiiiiiiiiiieeiie et etie et e et et et et et sennsatnsennsenssensssnsesnsessssssssnnsennns C-26
PRINT COMMANGA +.tnitniiniiniiiiiiiieiert ettt ettt ettt et sen et saetnsenetnsenetasenetnsenetnsenernsensenseneens C-26

XVii

MARRC75KR07091E Rev D Contents

C.46
C.47
C.48
C.49
C.50
Csl1
C.52
Cs3
C.54
C.55
C.56
C.57
C.58
C.59
C.60
C.61
C.62
C.63
C.64
C.65
C.66
C.67
C.68
C.69
C.70
C.71
C.72
C.73
C.74
C.75
C.76
C.77
C.78
C.79
C.80
C.81
C.82
C.83
C.84
C.85
C.86

RECORD COMMANGA ..tuiiniiniiniiitiiiiieetett ettt ettt et st et senetnsen et senetnsenetnseneenseneenseneeeseneens Cc-27
RENAME FILE COMMANG ..evuuirniinniiiriiiiieerieeieetnetietieetneetnsennsennsennsenssensssnsesssesssssssannsennes C-27
RENAME VARIABLE COMMANG ...uiiuuiiiiiieeiieiieeieiie et eteetneetnsetesennsenssnessnessnessnsssnssnnsnnnns C-28
RENAME VARS COMMANG 11uuiiniiiiiiiiiiiiieeiieiieeieiieetieetieetnsennsetnsennsennsensssnsesnsesssssssenssennns C-28
RESET COMMANG +.tuitniiniiiiiiiiiiieiee ettt et st et et et st et sanetnsenetnsenstasenetnseneensenernsenerseneens Cc-29
RMDIR COMMANG ..vuuiruniineinieinrenreieetieeteeteeteeuetunetneetnsetnsesnsesnsensenssensssnsesssesssssssnnssnns Cc-29
RUN COMMEANG 1.vniiiiiiiiiiiiii ittt ettt et et et et et sa et san et sanetasanetnsenetnsenesnseneenseneens C-30
RUNCEF COMMANG ..vtuiiuniineiiieinreireietieeteeteeteetetuetnetnsetnsennsesnsessenssensesssesnsesssssssanssenns C-30
SAVE MASTER COMMANG t.uiuuiuiiiiiiiiieeeiieieieeieteeetneeetneenetnsenetnsenetnsenernsenernseneenseneenses C-31
SAVE SERVO COMMANG ..evuirniiiniiiiiineieeieiinetietieetneetneennsennreneseneesnsesnsssnsensenssensesnsennsenns C-31
SAVE SYSTEM COMMANG .euueuninenineeneinreneeueeetneeetneenetnsenetnseetnsenetnsenernseneensenesnsenernseneenses C-31
SAVE TP COMMANG ..vuuirniinriinriiriieiiieeteetettetietieetneetnsetnsennreneseneesnsesssessssnnsenseensennsesnsenns C-32
SAVE VARS COMMANG ..euuiniiiiiiieiiiieieeie e et eee e eeetneenetnsenetnsenetnsenetnsenetnseesnsenernseneenses C-33
SET BREAK CONDITION COMMANG t.uevunernriiniiinriieetneernrennrennreneeneereerneesnsensenseensesnsesnsenns C-33
SET BREAK PROGRAM COMMANG ..euuivuiiniriniiiiiieerneetneetreteseneesneesneesnessassnsrnesrnsesnsennsenns C-34
SET CLOCK COMMANG ...uevuiirniennrinnetiretneetnetunetuetueetneernsesnsesssensseneesssesssssnssnssensssnsesnsennsenns C-35
SET DEFAULT COMMANG .euuiuniniiiureueineeneieeetneenetneeneenseneensenetnsenetnsenetnseneensenesnseneensenesnses C-35
SET GROUP COMMANG ...uevniiiniiiniiieiieeiieeietenetietieetieetneenneennrenseneetnsesssssnsennsenssensesnsennsenns C-35
SET LANGUAGE COMMANG ..c.uvuiiniiiiiiiiiieineieiseie i eeie e eee e e eeenseneensaneensanetnsenesnseneensaneennes C-36
SET LOCAL VARIABLE COMMANG ..vuuituiiniiiniiiniiieeiieetneernrenreneeeieereerneennsenesenneensennsernsenns C-36
SET PORT COMMANG ..euuiuniniiineeneinteieteeieeueeetneenetneenetnsenetnsenetnsenetnsenernsenernsenesnsenernseneenses Cc-37
SET TASK COMMANG .uevunirniiinriinriietieeteetetuetieteetneetnrennsesseueseneesssesssssnssnsenseensesnsesssenns C-37
SET TRACE COMMANG ..euuiuiiiiiieieinieeieeieieeetneeetneenetneenetnsenetnsenetnsenetnsenernsenernseneeseneenses C-38
SET VARIABLE COMMANA ...cuuiiuniiiniiiiiireieiietietieetieetneetnrenreneeneetnsesnsssnssnnsenseensennsenssenns C-38
SET VERIFY COMMANA .euuiuniiiiiiieiniieieeeiie et eee e eeetneenetneenetnsenesnsanetnsenernsenesnsenesnseneennes Cc-39
SHOW BREAK COMMANG ...uivuiiiniiiiiiriieeieiietietieeteetneetnrenreneeneetneesssssnsennsenseensesnsennsenns C-39
SHOW BUILTINS COMMANG c.ueuuiuiniiieiireirireeireeeeeeeneeetneeneensenetnsenetnsenernsenesnsenessenesnses C+40
SHOW CONDITION COMMANG .e.uvvuniinniiirerneeineeinetieeteernrerneenreneeeneeteesssesesennsenssensesnsernsenns C-40
SHOW CLOCK COMMANG .etuiunineuinreneeneenetneenetnreneensenetnsenetnsenetnsenetnsenetnsenernsenesnsenernsanesnses C-40
SHOW CURPOS COMMANG ..cuuiiuniiiniiieiireiieiinetietieeteetneernrenreneeneetnsesssssnssnssenseensesnserssenns Cc41
SHOW DEFAULT COMMANG .euuvuuiuninieieineeieineeetneeetneeetneeeeneenetnsenetnsenetnseneensenessenernseneenses CH41
SHOW DEVICE COMMANG ...evuiiuniiiniiireiireietineiietieetieetneetneenreneeneetsessssnnssnnssnssensesnsensenns Cc41
SHOW DICTS COMMANG .tutttitninininreieineeueeeeetneenetneenetnsenetnseetnsenetnsenernseneensenernsenersaneenses C-41
SHOW GROUP COMMANG ..uuivniiiniiiniiiiiireieiietietieetieetneernrenreneeeneetnserssssessnssenssensesnsernsenns Cc41
SHOW HISTORY COMMANA ...uiunininiiniinieinieieireeeneeetneeetneeneensenetnsenetnseeensenernsenernseneenses CcH42
SHOW LANG COMMANG ..evuirnrinnrinneiirereetetunetietieetneetnsennsenseussensrsnserssssssnsssnssssesnsennsenns c42
SHOW LANGS COMMANGA .euuiuniniiinieieineeieiueeetneeeeneeetnsenetnseetnsenetnsenetnsenesnsesesnsenerssenesnses c-42
SHOW LOCAL VARIABLE COMMANG ..ceuuivniiniiiniiieiieeinrernrenreieeeieeteeneeneenneenneensennsennsenns c42
SHOW LOCAL VARS COMMANG ...euuirnnirieeinereneeierieetneeteetrenesenessneesneesessasenasrnesrnsesnsesasenns C-44
SHOW MEMORY COMMANG ..iuuiiiniineiireineiinetineiieeteetneetnrenreneeneesneesnsssnsennsenssenseensensenns C-44
SHOW PROGRAM COMMANG ..euueunineneinreneeneeneinreetneeetnsenetneeneensenetnsenetnsenernsenesnsenernsaneenses C44

Xix

Contents

MARRC75KR07091E Rev D

C.87
C.88
C.89
C.90
CJ91
C.92
C.93
C.9%4
C.95
C.96
C97
C.98
C.99
C.100
C.101
C.102
C.103

Appendix D
D.1

Appendix E

Glossary ...

Index

SHOW PROGRAMS COMMANG .ueuuininineeneinrtieinreneeneeneenreetneeetnsenetnsenernsenernsenesnsenerseneenses CcH45
SHOW SYSTEM COMMEANG ..eeuiiuniiiniinneiireieeinetietieetneetnrernrenreueseueetsesnsssnssnnsenseensesnsenssenns C-45
SHOW TASK COMMANG .etuitniiiniiieiiiieieeieieeetneee et eeetneenetneeetnsenetnsenetnsenetnsenernsenerseneenses C-45
SHOW TASKS COMMANG .evuivniiiniiiiiieiireieeietietieeteetneetnreneeuereneetneesssssestnssnsesnsesnsensenns C-46
SHOW TRACE COMMANG ...uiuniniiniiniiieireueieeeteeetneeetneeetneenetnsenetnsenetnsenernsenernsenernsenennses C-46
SHOW TYPES COMMANG .eeuivniiiniiiiiiriiireieiieti et etieetneetneeneeneeneetneesssssestnsenssensennsennsenns C-46
SHOW VARIABLE COMMANG ..euueunininiiiieirinreeireeieeietneeetneeneensenetnsenetnsenernsenesnsenessenennses cH47
SHOW VARS COMMANG ..evtiiniiiniiiiiieeieeietinetietieeteetneennrennreueseneetnsesnsssnssnssenssesesnsensenns c-47
SHOW data type COMMANAueuiiuriniineinreieiireeineeeeneeetneeetnrenetnsenetnsenernseernsenersenerseneenses C-48
SIMULATE COMMANG .etutiiniiinieiniiietineteeteeinetietieetneetnsernsennseneseneesssesssssnssnnsenssensesnsenssenns C-48
SKIP COMMEANG 1eutitiinniniiieinteieie e ieeie e eee e eeetneeneensenetnsenetnsenetnsenetnsenstnsenernsenernseneenseneenses c-49
STEP OFF COMMANG ...evuuiiniiiniiiiiietieeteetetietietieetneetneennsennsenseneesnsesnsssnssnnsenssensesnsennsenns C-50
STEP ON COMMANA t.uiutiuiiiiieinreieireeeeeetetetneeeeneenetnsenetnreetnsenetnsenetnseneensenersenerseneenses C-50
TRANSLATE COMMANG ..evuuiiniiiniiireiireinreireietieeteeteetneetnetueeenaetnsernsennsennsensssnsesssssssnssennns C-50
TYPE COMMANG ..evniiniiiiiiiiie ittt ee et e e et e ee e e ee e e ee e s enetasanetnsaneansanesnsanennseneens C-51
UNSIMULATE COMMANG ...ttttiiiniiieinrernrenrenreieeteeteeetneennrtueetnsetnsesnsennsensenssssesssssssnssannns C-51
WAIT COMMEANG «.vuitniiniiniiniiti ittt ettt et et et et re et een et senetaseneensenstnsanetnsensenreneensensnnseneens Cc-52
CHARACTER CODES oottt et e e te et e e e e et e e et e e e et e eansannsansanenns D-1
CHARACTER CODES ...ttt ettt ettt te et e et e et e et st etnsetnsesnsasnsanssensssnsesnsesnssnnees D-2
SYNTAX DIAGRAMS e te e ee et e et et et e et e et eet e s eanaesnassnssrnesnnennnns E-1
.. GL-28
... Index—1

XX

List of Figures

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

10-1.
10-2.
10-3.
104.
10-5.
10-6.
10-7.
14-1.
14-2.
14-3.
14-4.
15-1.
A-1.
A-2.
A-3.
E-1.
E-2.
E-3.
E-4.
E-5.

(0103113 (0] 1 1S 1Y (<311 10) PP 1-9
R-301A CONIOIIET evvunieiieiteeiiies ettt e ettt e et e e ettt s ettt s eeetaaeseeetaaeseeetaasseeasnanseeesnansenes 1-11
Determining W_handle Relative to WORLD Framec.ceeevueveiiiriiireiieieiieeeiienerieeenneeennnnes 3-10
Determining b_handle Relative to BUMPER FIameccccuueiiiiieiiiieiriieeenieeenieeriieseneeennnns 3-11
R N 16 (<1< | PP PT PSPPI 7-39
"t _sc" Screen with STP_USESTAT = TRUE ...c.iiiiiiiiiiiiiiiie ittt eei et et enesenasennsannsanns 7-39
N N 16 (<) | PP PPN 7-40
"c_sc" Screen with SCRT USERSTAT = TRUEiiiiiiiiiiiiiiiiiie it eiee et enieenneennsanneenns 741
Referencing Positions in KARELcc.uiiiiiiiiiiiiiiiiii ettt et et e e et et et eeneeeneenes 84
XML File 1 Separated start and eNnd taZSveureueenreurenreieireetreietreieereetreetreneeseneenseneensenns 9-22
XML File 2 Combined start and €nd tagS......euurernrerrinirineeieeieeieeirieeeeeeeeeneeneeneeneeneeennens 9-22
XML File 3 GRID tag not registered or ProCESSEAvuveuriureurenrenrinreeireeereeereneerenerreneenrenns 9-22
KAREL PrOGIam c.cueniiiiiniiii ittt ettt ettt ettt ettt et st et s e et s e et s e et sen et seneenseneennan 9-23
Dictionary Compressor and User Dictionary Filec.coeviuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeineieenennennens 10-12
Teach Pendant FOrm SCIEENcuuiiuiiuiiiiiiieiiiii ettt et et ere et een e e eeneeneeenaennns 10-32
CRT/KB FOIM SCTEEM «euuevntiiniiiiiiiiiiiiieti ettt et et ettt et et et eaa e eaaetaeseneeneanennss 10-33
Dictionary Compressor and Form Dictionary Filececoveiiiiiiiiiiiiiiiiiiiieiieiieee e eeieeeeeenns 10-34
Example of Selectable Menu ITeMSuvvuienieniinieiiiiiiieiiiieeieeieeie et eteeteeaeneeneneneneenenennens 10-36
Example of Edit Data TtemMSeeuviuniiniiiiieieeieiitie et et et et et et et ereetaeeeeeeneeenneeneenaennns 10-38
Example of Display Only Data [temSvvuvenienieniiiiiiiiiiiieeiiieeieeieeeeteeneeneeneneeneeneenensennens 1042
KAREL Logic for Converting Input to a Real Value Representing the Voltagecccceuvvenneennee. 144
RSR Timing DIQGIAM ..cvuivuiiniiniiieiiiiiterieteeteterteeteeteeneeeeetrseeeeeseesesnsssessssnssnssnssnssnsensens 14-16
PNS Timing DIagram ...ccueeeueeeniiueiueeieeieet ittt et eteetetee et etneetneetnrenneeneeenseensesneeesennnes 14-17
Location of Ports on the Controllercceveuuiiiiiiiiiiiiiiiiii et eenee 14-23
Task Synchronization Using @ SEMAPNOLEc..eeeuriunriureinreinreinreieeieeeeeteeteeeeenreneeeneeenaeenns 15-10
Example of COMPARE_FILE built-in Procedure........ccoveviiiiiiniiiiiiiiiiiiiii et e eeeennes A-T74
FRAME Built-In FUNCHON «.vuuiiiiiiiiiiiiiiiieie ettt et e et eteete et e ee et et eeneeeneeenaennenns A-143
GET _USEC_SUB Built-In FUNCHION ..vuiiniiniiiiiiiiiiiiiiiiieiereieie et reeeer et se et seeenseneenseneens A-171
.. E-3
.. E-4
.. E-5
.. E-6
.. E-7

XXi

Contents MARRC75KR07091E Rev D

Figure | T PP PRPPRROt E-8
FIgUIC BT ittt ettt st et ettt et e et e et et et et et e aa et e et e et aaneahn et et ean et aaneanns E-9
Figure S TP E-10
FIUIE B0, oottt ettt e et e ettt e e et e et e et e et et et et et e et s et e e et et aneanetanaannns E-11
FIGUIE E10. oottt ettt et ettt ettt et e e et e e et sanetasaneaataaetasanetnsaneansenetnsanetnsenetnraneenreneenres E-12
FIGUIE Bl . oottt et et ettt e et e et e et e e et e et e eaaeaaaeaunsaaneaneansasnsannsannsanesnsenneennsannernneennns E-13
S P40 (S S PP PR RIS E-14
FIgUIE Eol3. oottt et ettt et e et e et e ea e et et e et eaaeaaaetuneauneanatn et tanneann et et enneansanennneannns E-15
S T4 S S U PP PP PPTRPRN E-16
| T (I = P PP R PP PPP P RPPRTURPOR E-17
|2 T4 (e S U Y PP PT RPN E-18
FIGUIE Bl 7. ittt ettt e et e et e et e et e e et s et eaasaaaeaunsauneansaansasnsannsannsensssneesnsennsennssnneennns E-19
S T4 (S S B J PP PRTRPRN E-20
FIGUIE Bl oottt ettt ettt e et e et et e e et s et et e aaaetunsausatnsatnsasnsannsannsanssnsennsennsennsrnneennns E-21
FIGUIE E20. oottt ittt ettt ettt et et ettt et et et et et e e et e e et e e et e ettt a e ea et ea et e et e ee e eanen E-22
FIGUIE B2l oottt et ettt e et e et e et e e et e et e et e aaaeaunsaunetnaansatnsannsannsaneaneenneennsenernneennns E-23
FagUIE B2, oottt et ettt ettt et ettt e e ettt et e a ettt e et e et e e e ettt et ta et ta et eaea e eanan E-24
FIgUIE B2, oottt et ettt e et e ettt et et et e et e et ettt et et et et et et et anneanetnneannns E-25
S T b T S PP PR RPN E-26
| T (I 2 P PR PP PPP P RPPRTURPR E-27

XXii

List of Tables

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

2-10.
3-1.
3-2.
3-3.

3-5.
3-6.
3-7.
3-8.

3-10.
5-1.
5-2.

6-2.
6-3.
6—4.
6-5.
6-6.
6-7.
6-8.
6-9.
6-10.

ASCIL CRATACLET SET .evuneruieneienriuetueeteetneenteuetueetueetueeeasteertnnetnaeensesnsennsenssensesnsesnsessenssennns 2-2
Multinational Character Stcuuiiuiiniiiiiiii ittt et et et ean e eaneeaes 2-4
Graphics CRATACLET S ..ueeunernernriieiue ettt et et et et e et eenneeneeeneeeneeraeesnsenertnnseneenseensennsenns 2-5
KCAREL OPETALOTS teueutenrenetnrenetnrenetnrenetnreneerenetnreneterenstnsenstnsensensensensensnsensensensessensensensenses 2-5
KAREL Operator PreCeAeNCEvuuieuniiuiiieiiieiieiieiieeteetneeieen et etieeteetaeeneetneeneenseeneesneenns 2-6
RESEIVEd WOTd LISt «.uevuniiniiiiiiiiiii ittt et ettt et et ean s eaneeaes 2-6
Predefined Identifier and Value SUMMATYccueiiuiiiiiiieeiiiieie et e e et et ereeneeeeeneeennee 2-8
Port and File Predefined Identifier SUMMATYccveuiiiiniiriiriiriiriirie et s et ree e s eeenseneennes 2-9
TranSlator DITECHIVES .vuueeueiurernrenreneiie et ete et e et ete et et etnaetnrennreneeenneanerneesasesnsennsenneennns 2-11
Simple and Structured Data TYPES vuvvuvenrereiiiiiiiriiririietereietereietereetreetreetreetreneeseneenes 2-14
Summary of Operation ReSUIt TYPES ..cuuveuneiuriiniiiiiiiiieiie et e et et et e et eeneeneeeneeenennnees 3-3
KCAREL OPETALOTS teuvuitnrenrenrenetnrenetnrenetereneterenetnrenetnsensensenstnsensensesensensnnsensensensensensensensenses 3-5
Arithmetic Operations Using +, -, and * OPEratorsc.ceeeueeenreueeueeenrernrenreneeeneerneeeneeeeeneeennes 3-5
Arithmetic Operations EXamPIEscueeuieurinieeiiiieiieieireieireietreietreieeseetnseeensenersensenseneens 3-5
Arithmetic Operations Using Bitwise OPerandsceeeeeureenriueinneineernieneeneeeneereeneereeneeennes 3-6
KAREL Operator PTrECEAENCE ...uvvureniiniiniirieiiiieireietrtetreetreetreetnsenetnseneerensensensenseneenses 3-6
Relational Operation EXaAmPIEsc..eeuiiuiiiueiiieiiiiiiie ettt e et eee et e ee e e eeneeneeeneennaenns 3-7
BOOLEAN Operation SUMIMATYeueeureueenreneenreneenreneenrensensenemnsensensensensensmsensesensessensesensenses 3-8
BOOLEAN Operations Using AND, OR, and NOT Operatorscoeeeueeeueerneeeneennrenseennenneennnenns 3-8
Examples of Vector OPEIationsce.eeuveueinrenrenreneinreeenreetnreetreetrenstseneenseneensensensensensensens 3-13
SHACK USAZE +uevuinntintiittitete et et et et et et et e et aetneeneteuneenseanesaesastnestasseneenseensesnsennsenns 5-13
KAREL Built—In ROULINEG SUMMATY ...vuiiniiniiiiiriieieireieireieereeereetreneerenernrensenseneensensens 5-16
COMAITIONS +tuttnrienrtuetueetneetneenetu et etueetueeeaeteertunetnnetnsennsennetnneenssensesnsesnsessstnsenseenseensesnsenns 6-2
ALCHIONS weteenetit ittt et ettt et et et e e ettt ettt e et et et et et e e et e e et eaa e a s eaa e e sanaes 62
Condition Handler OPerationsceueeueeeueeeueienreuneeneetneeenrenneeneeneeeneereesneessenerenseenseensesnsenns 6-3
Interval Between Global Condition Handler Scanscccccvveuiiiiiiiiiiiiiiiiiiiiiiiiiiic e, 64
POrt Td CONAItIONS euueeuniineiireteineie ettt et et et et eetneenneeneeeneeaneenaeeensenestneseneenseensennsenns 67
Relational ConditioNSiceuieuniiuiiniiiiii ettt et et et e et et eeneanseaneenes 68
System and Program Event CONAItIONSccuveeureunriniiuiieiieeieei et et eteetneetneenneeneeeneeneennnens 6-9
ASSIGNMENE ACLIONS .vueurenernrenetnrenetnrenetnrenetnrenetnrenetnrenstesensensenseesensensensnnsensnnsensesensensensnns 6-12
MOtion Related ACHONS ..eeunernernreeneenreuetie et eteee et et etueeeneernrennreneeenesaneesneesnsesnsennsennsennes 6-13
MiSCEllanNEOUS ACHIONS t.uevunirnriiniitniiiiii ittt ettt et etn e eaa e et etneaneaneanseraetaastnesennes 6—-14
Predefined File Variablesccu.ieuiiuiiiieieiiiei ettt et e et e e e et e en et een et eeneennaenns 7-3

XXiii

Contents

MARRC75KR07091E Rev D

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

7-2.
7-3.

7-3.
7-6.
7-7.
7-8.

7-10.
7-11.
7-12.
7-13.
7-14.
7-15.
7-16.

7-17.
7-18.
7-19.
8&-1.
9-1.
9-2.
9-3.

9-5.
10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
12-1.
14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
14-7.
15-1.
A-1.

Predefined AttrIDULE TYPES .evuieuiiniiiiiiiiiriete et et et et e et e et reetseetnsenetnsenetnseneensenennseneenses 7-5
AIIDULE VALUES ..evniiiiiiiii ittt ettt et st e et et e et e eta s etaeeeaaeeaneeeens 7-6
USAZE SPECITIETS tueueniiueinteneinteetteietrtetreetnreetnseetnsanetnsenetnseetnsenetnsenetnsenesnsenernsenennsenns 7-11
Text (ASCII) Input FOrmat SPECIfIEIS ...cuuivuivurereiieiiiiireieeiretrennrenreueeeneereereeneessenneennes 7-18
Text (ASCIT) Output FOrmat SPECITIETS vuvvuieuiiniiiirieiriieireieiereiete et rere e reetreneeseeenseneens 7-19
Examples of INTEGER Input Data ItemScc.eevuveiniiiiiinriineireirenreireieeeeerieereeneennsenneennes 7-20
Examples of INTEGER Output Data [temsc.veuviieiiieiiiiiiiiiriieinieieereneeeeneeneeneeseneenseneens 7-21
Examples of REAL Input Data [temMSc.uvvuiiueeiiriiiiiiiieiieeireirerreieeieeeieerieenneenesnnssnneennes 7-23
Examples of REAL Output Data TtemScvuveuieniiiiieieiiiirireieereieereneereeereneeseneenseneenseneens 7-24
Examples of BOOLEAN Input Data ItemS ...cuueeurerniiunrineiineiretnrennrenreneeeeeeereesnesnssnnsennes 7-26
Examples of BOOLEAN Output Data ItemMSvuveuiinreeinieieiieieinreirereieereneeeeeeeeneeseneenseneens 7-27
Examples of STRING Input Data TtemScc.eeueeiuiiiniiiiiineieeireirenreireieeeeeeeereeneenesnneennes 7-28
Examples of STRING Output Data IteMS ...veuieniiniiieiiiiieiiriieireieiereee et reetreneeneeeenseneens 7-30
Examples of VECTOR Output Data [teMSceueevurirniiiiriieiieiireirerreireieeeeereeteeneenseneeennes 7-32
Examples of POSITION Output Data Items (p =
POS(2.0,-4.0,8.0,0.0,90.0,0.0,CONTIZ_ VAT)) +.ureinuieineeiieeeiie et e et et et e et e et e eeeaeeeeneeeneeeens 7-33
Binary Input/Output FOrmat SPECITIEISvvuniuueeruriinriiiiieeiieetretrerrerreneeeeerneessesesssennsennes 7-35
Defined WINAOWSs 05 £ SC" .vuiiuiiiiiiiiiiiieri et et et et et et s e e e sa et seetnsaetnsaneenseneens 7-38
Defined WINAOWS fOI C SC" evuuiiniiiiiiiiiieiie e etie et et et et eteeteeenneennsensaneernsesnsesnsssssnneannns 7-40
Turn Number DefINitions .. c.ueunieuiiniieie ettt ettt et et e e et e e een e eeneeeneenns 82
File TYPE DESCIIPLIONS tuuevrrernrernrennreueetieetneereeeenetuneeneetnserssennsesnrensssnsssnsssnssssssnsssnsesnsennserssenns 9-5
VATTUAL DEVICES .eeueniiiiiiiie ettt ettt ettt ettt et et e et et et et e en e eanseaeeeneeenneaneennnees 9-14
System Variable Field DeSCrIPtiONSceuuveureiureinrernrerreireiertieetneereeneerrenereneeenseensernsennsenns 9-18
File Listings for the MDD DEVICE ...uvvuiiuiiiiiiiiiiieiirtieireietrtieteeietseetseeeseetsenetnseneenseneens 9-27
Testing Restrictions when Using the MD: DEVICE ...c.uvvuuvirniinieinrernrernrerreiereeerieereeneeneenneennes 9-30
CONVETSION CRATACIETS ...eeuneenetnteenteneei ettt ettt e eeeta et et etnaeanaeneeeneaneenenasenaeenaeeneennns 10-7
RESEIVEA WOTAS ..eieiiiiiiiiii ittt et ettt e et e et e et s et eeaneeeeneas 10-9
CONVETrSION CRATACIETS «.uevunernerniineeuttn ettt ettt et et et aetaaeneetneeneeaeeaaeeaeenneeneeneenseenns 10-20
Tree VIEW FOTMAL «e.uuiiiniiiiiiiii it ettt e eee e e s et e ea e eeeneees 10-26
RESEIVEA WOTAS ..eneniiiiii ettt ettt et ettt et et e e e ea et e e e e eeneeenns 10-28
Reserved Words for Scrolling WIndOWc..eeeuveeniiniireireinreireireieeeieereereeneeneenneenseensennns 10-29
Access Rights for System Variablesieeieeiiiiiiiiiiiiiiiiieiiriee et e e e e e e e e e e e e ens 12-2
Standard Operator Panel Input Si@Nalscceuveeniiiiiiiriiiriiireiriirieriie et etieeeeeeernsenneenns 14-7
Standard Operator Panel Output SiNalsvuienieniiniiiiiiiiiiiiiiiiriee et et reeeseeeeeneenes 14-7
User Operator Panel INput SigNalsc..veuiiueiieeiieiiiiiriieeieeteetrenrereeneeeeereersessssnsenneennes 14-9
User Operator Panel Output SIZNALSvueuriuriiriuiieiririieeie e e e eeeie e eneeneeneeneeneensensennens 14-14
Teach Pendant Input Signal ASSIZNMENTS ..c..evureenrinnriueernrernrernrenrenereuerrieeraseneeserenneenseensennns 14-17
POTtS Pl - P ettt ettt et e et e et e ta e et et et e ea e ean e eanas 14-24
Default Communications Settings for DEVICESivuuiiuriiureinrernriunieierieeiieeiieeieeieeenereernsennns 1424
System Function Priority TaDIEceieiiiiiiiiiiiiiiiiiieiir ettt et st et e ee e seeeseneenseneensaneennes 15-5
SYNTAX NOLALION ..evniruniiiitireiiriinetie et eteetereteeeureuertueeraeesnstusstnsenseessesssesssesssensssnsesssssssnnses A-9

XXiV

MARRC75KR07091E Rev D Contents

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

A-2.
A-3.

A-S.
A-6.
A-T.
A-8.

A-10.
A-11.
A-12.
A-13.
A-14.
A-15.
A-16.
A-17.
A-18.
A-19.
A-20.
A-21.
A-22.
A-23.
A-24.
A-25.
A-26.

D-1.
D-2.
D-3.
D—4.
D-5.
D-6.
D-7.

ALCTIONS tueuintiie it ee e e ee e et et et et e e et e ee e s e etasanetasanetasanetasanetnsanetasenetnsenetnseneensenetnreneenrenns A-11
CLAUSES tvuneruerneiineiinetieeteetnretereteetueeneeueetasesasasnssusstnnetnseensesssesssesnsenssansssnsssnssssssnsssnnsenns A-11
CONAITIONS tuttuttnttuetnteetre ettt et reetereet st et taetnsenetssenetnsenetnsesstnrerenseeensenetnreseenreneenseneens A-12
D I Y o P PP PT PP A-12
DITECEIVES teuienitnteuetntt ettt ettt ettt ettt et sen et senetnsenetnsanetnseneensensensensenseneensenernseneenreneensensens A-13
KAREL Built—In ROUHINE SUMMATY t.uvvuniiuniiieeieeieiiriietieeteernrerrenrenereneerneessessssssnneennes A-13
7<) PP A-16
SEALCIMETIES 1euivuieniinrinitnrin ettt ettt et et et et et ran et reaeterenetasenetnsenstesensensenstnsensensensensensensensennes A-17
Valid and Invalid BOOLEAN ValUES ...cuiiuiiniiniiniiiiiiiieireiei et eeietseetnseeenseneenseesnseneensanns A-42
INTEGER Representation of Current TimMeco.vieeeeireinreinrenrennrineeieeieeeeeineenneeeeensensenns A-165
CONVETSION CRATACIETS .vuieuiinieurinrenetnteetnreetereetreetseetnreetnreetreetnsesetnsensesenernseneensenns A-185
CONVETSION CRATACIETS t.uevuernrernreunreueetueerneeenetnertueetueeensesnsesnsensrensrsnsssssssssssnsenneesesnsenssenns A-193
Valid and Invalid INTEGER Literalsccccveiiiiiiiiiiiiiiiiiririieiiieiein et seeenseeeseeenseneennes A-204
TO _STATUS EITOTS tueueinieneinttnetntenetnteetreetteetreetereeterestaresterestnsenennsensensensesensensenns A-207
GroUP MASK SEHME .evuirnieniiniiiireetttetteetreetreetneeetreetseetrenetnseetseneensenernsenesnrenns A-216
Group MASK SELHINE ..vvunirnrernrerreirieeteeteetetieeteetieetnsetnsennsenrenersnsssnsssssennsenseensennsennsenns A-221
Valid and Invalid REAL OPETAtOrS ...euviureueinreueinreetnreeereetnreetsenetnseeesenernsenesnsenesnseneenses A-278
GrOUP MASK SCEHING tuuvvuernrernrenreiertieeteeteetetietueetueetnsernsenssenrenersnsesnsssnsenssenneensesnsennsenns A-291
ATIDULE VAIUES .vuiiniiiiiiiiiiiiieie ettt et s et st et s e et s e et s e et s e eansaneansaneensaneensanns A-310
32-Bit INTEGER Format 0f Timecuueeueeunrernieiiiiriieiieeieeiieeieeieeeetneernsernsensennsensssnees A-320
Example STRING LIterals ..ccuveuieuieuiiniiiiiieiiiiriieiiteieieeietreeteenetseetseeenseesnsenernsenesnsenns A-333
Group MASK SELHINES evuuernrernrernreirtieeteeteetetieeteetueetnsetnrennsenerenersnsesnssssennsensesnsesnsennsenns A-342
FUNCtion Code ValUES ...cuieuiiniiniiiiiiiiiiei ittt et et e et et s e et s e et s e e e san et seneansanaansanns A-346
Valid Data TYPES teuveunerurernrernrennrenetueeteeteetneturtueensetnsenssenssenssensrsnsssnssssssnssensessesnsenssenns A-356
Valid DAt TYPES tuueunenreneinreneinteetnteetreetnreetnreeteeetasenetnseetnseetnsenetnsenetnsenernsenennseneenses A-358
KAREL EXaMPIE PTOGIAMS ..uevuernieiniiuieietieetieetieeuetnetunetneetnsernsesnsennsenssensesnsesnsesssnssnnses B-2
ASCIT Character COAES vuvvuirniunitnieiieitetertetterteeteeeetteeeeeeereeseeteesssssesssssssssssssssssssnssnsssssnssnnes D2
Special ASCIT Character COAES ..uvvunriureinrernreinriireieetieereetetretnetsetnsernsennrenesensssnsessssassnnses D-3
Multinational Character COAESuiuuiriiuiuiiiieiiiiieiiietetteeteeteereereeueereeneereenesssssessesnsenssnssnssnnan D4
Graphics Character Codes (not available in R-30iB)ccuiviiiiiiiiiiiiiiiiiiiiiiriiieeiie e D-6
Teach Pendant INPUL COAES ..vuivnieniiniiiiiieiiiiiirieieeie ettt eteereereeteeaeeaeeseenesssssssnssnssnssnssnnsnnns D-7
European Character COUESviuurernriunreureneriieeteeteeietietueetneetnsetnsesnsennsennsensessesnsesssnassnnees D-8
GraphiCS CRATACIETS ..vuieuienitnienetttette ettt et etetrenetnreneterenetaseetesenetnseetnsenetnreneenreneenseneens D-10

XXV

Safety

FANUC Robotics is not and does not represent itself as an expert in safety systems, safety equipment, or
the specific safety aspects of your company and/or its work force. It is the responsibility of the owner,
employer, or user to take all necessary steps to guarantee the safety of all personnel in the workplace.

The appropriate level of safety for your application and installation can best be determined by safety
system professionals. FANUC Robotics therefore, recommends that each customer consult with such
professionals in order to provide a workplace that allows for the safe application, use, and operation of
FANUC Robotic systems.

According to the industry standard ANSI/RIA R15-06, the owner or user is advised to consult the
standards to ensure compliance with its requests for Robotics System design, usability, operation,
maintenance, and service. Additionally, as the owner, employer, or user of a robotic system, it is your
responsibility to arrange for the training of the operator of a robot system to recognize and respond to
known hazards associated with your robotic system and to be aware of the recommended operating
procedures for your particular application and robot installation.

Ensure that the robot being used is appropriate for the application. Robots used in classified (hazardous)
locations must be certified for this use.

FANUC Robotics therefore, recommends that all personnel who intend to operate, program, repair,
or otherwise use the robotics system be trained in an approved FANUC Robotics training course and
become familiar with the proper operation of the system. Persons responsible for programming the
system-including the design, implementation, and debugging of application programs-must be familiar
with the recommended programming procedures for your application and robot installation.

The following guidelines are provided to emphasize the importance of safety in the workplace.

CONSIDERING SAFETY FOR YOUR ROBOT INSTALLATION

Safety is essential whenever robots are used. Keep in mind the following factors with regard to safety:

* The safety of people and equipment

Use of safety enhancing devices
* Techniques for safe teaching and manual operation of the robot(s)

* Techniques for safe automatic operation of the robot(s)

Regular scheduled inspection of the robot and workcell

* Proper maintenance of the robot

XXVii

Safety MARRC75KR07091E Rev D

Keeping People Safe

The safety of people is always of primary importance in any situation. When applying safety measures
to your robotic system, consider the following:

e External devices
Robot(s)

* Tooling

* Workpiece

Using Safety Enhancing Devices

Always give appropriate attention to the work area that surrounds the robot. The safety of the work
area can be enhanced by the installation of some or all of the following devices:

* Safety fences, barriers, or chains

* Light curtains

* Interlocks

* Pressure mats

* Floor markings

* Warning lights

* Mechanical stops

* EMERGENCY STOP buttons

* DEADMAN switches

Setting Up a Safe Workcell

A safe workcell is essential to protect people and equipment. Observe the following guidelines to
ensure that the workcell is set up safely. These suggestions are intended to supplement and not replace
existing federal, state, and local laws, regulations, and guidelines that pertain to safety.

* Sponsor your personnel for training in approved FANUC Robotics training course(s) related to
your application. Never permit untrained personnel to operate the robots.

* Install a lockout device that uses an access code to prevent unauthorized persons from operating
the robot.

* Use anti-tie-down logic to prevent the operator from bypassing safety measures.

* Arrange the workcell so the operator faces the workcell and can see what is going on inside the cell.

XXViii

MARRC75KR07091E Rev D Safety

* Clearly identify the work envelope of each robot in the system with floor markings, signs, and
special barriers. The work envelope is the area defined by the maximum motion range of the
robot, including any tooling attached to the wrist flange that extend this range.

* Position all controllers outside the robot work envelope.

* Never rely on software or firmware based controllers as the primary safety element unless they
comply with applicable current robot safety standards.

* Mount an adequate number of EMERGENCY STOP buttons or switches within easy reach of the
operator and at critical points inside and around the outside of the workcell.

* Install flashing lights and/or audible warning devices that activate whenever the robot is operating,
that is, whenever power is applied to the servo drive system. Audible warning devices shall
exceed the ambient noise level at the end-use application.

* Wherever possible, install safety fences to protect against unauthorized entry by personnel into
the work envelope.

* Install special guarding that prevents the operator from reaching into restricted areas of the work
envelope.

¢ Use interlocks.

» Use presence or proximity sensing devices such as light curtains, mats, and capacitance and
vision systems to enhance safety.

* Periodically check the safety joints or safety clutches that can be optionally installed between the
robot wrist flange and tooling. If the tooling strikes an object, these devices dislodge, remove
power from the system, and help to minimize damage to the tooling and robot.

* Make sure all external devices are properly filtered, grounded, shielded, and suppressed to prevent
hazardous motion due to the effects of electro-magnetic interference (EMI), radio frequency
interference (RFI), and electro-static discharge (ESD).

* Make provisions for power lockout/tagout at the controller.

* Eliminate pinch points. Pinch points are areas where personnel could get trapped between a
moving robot and other equipment.

* Provide enough room inside the workcell to permit personnel to teach the robot and perform
maintenance safely.

* Program the robot to load and unload material safely.

* [If high voltage electrostatics are present, be sure to provide appropriate interlocks, warning, and
beacons.

* If materials are being applied at dangerously high pressure, provide electrical interlocks for
lockout of material flow and pressure.

XXiX

Safety

MARRC75KR07091E Rev D

Staying Safe While Teaching or Manually Operating the Robot

Adpvise all personnel who must teach the robot or otherwise manually operate the robot to observe the
following rules:

Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving
machinery.

Know whether or not you are using an intrinsically safe teach pendant if you are working in
a hazardous environment.

Before teaching, visually inspect the robot and work envelope to make sure that no potentially
hazardous conditions exist. The work envelope is the area defined by the maximum motion range
of the robot. These include tooling attached to the wrist flange that extends this range.

The area near the robot must be clean and free of oil, water, or debris. Immediately report unsafe
working conditions to the supervisor or safety department.

FANUC Robotics recommends that no one enter the work envelope of a robot that is on, except for
robot teaching operations. However, if you must enter the work envelope, be sure all safeguards
are in place, check the teach pendant DEADMAN switch for proper operation, and place the
robot in teach mode. Take the teach pendant with you, turn it on, and be prepared to release the
DEADMAN switch. Only the person with the teach pendant should be in the work envelope.

2 Warning
Never bypass, strap, or otherwise deactivate a safety device, such as a
limit switch, for any operational convenience. Deactivating a safety
device is known to have resulted in serious injury and death.

Know the path that can be used to escape from a moving robot; make sure the escape path is
never blocked.

Isolate the robot from all remote control signals that can cause motion while data is being taught.

Test any program being run for the first time in the following manner:

c Warning
Stay outside the robot work envelope whenever a program is being
run. Failure to do so can result in injury.

— Using a low motion speed, single step the program for at least one full cycle.
— Using a low motion speed, test run the program continuously for at least one full cycle.
— Using the programmed speed, test run the program continuously for at least one full cycle.

Make sure all personnel are outside the work envelope before running production.

XXX

MARRC75KR07091E Rev D Safety

Staying Safe During Automatic Operation

Adpvise all personnel who operate the robot during production to observe the following rules:

Make sure all safety provisions are present and active.

Know the entire workcell area. The workcell includes the robot and its work envelope, plus the
area occupied by all external devices and other equipment with which the robot interacts.

Understand the complete task the robot is programmed to perform before initiating automatic
operation.

Make sure all personnel are outside the work envelope before operating the robot.
Never enter or allow others to enter the work envelope during automatic operation of the robot.

Know the location and status of all switches, sensors, and control signals that could cause the
robot to move.

Know where the EMERGENCY STOP buttons are located on both the robot control and external
control devices. Be prepared to press these buttons in an emergency.

Never assume that a program is complete if the robot is not moving. The robot could be waiting
for an input signal that will permit it to continue activity.

If the robot is running in a pattern, do not assume it will continue to run in the same pattern.

Never try to stop the robot, or break its motion, with your body. The only way to stop robot
motion immediately is to press an EMERGENCY STOP button located on the controller panel,
teach pendant, or emergency stop stations around the workcell.

Staying Safe During Inspection

When inspecting the robot, be sure to

Turn off power at the controller.
Lock out and tag out the power source at the controller according to the policies of your plant.
Turn off the compressed air source and relieve the air pressure.

If robot motion is not needed for inspecting the electrical circuits, press the EMERGENCY
STOP button on the operator panel.

Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving
machinery.

If power is needed to check the robot motion or electrical circuits, be prepared to press the
EMERGENCY STOP button, in an emergency.

Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is
not supported or resting on a hard stop. Support the arm on a solid support before you release
the brake.

XXXI

Safety MARRC75KR07091E Rev D

Staying Safe During Maintenance

When performing maintenance on your robot system, observe the following rules:

* Never enter the work envelope while the robot or a program is in operation.

* Before entering the work envelope, visually inspect the workcell to make sure no potentially
hazardous conditions exist.

* Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving
machinery.

* Consider all or any overlapping work envelopes of adjoining robots when standing in a work
envelope.

* Test the teach pendant for proper operation before entering the work envelope.

* Ifitis necessary for you to enter the robot work envelope while power is turned on, you must be
sure that you are in control of the robot. Be sure to take the teach pendant with you, press the
DEADMAN switch, and turn the teach pendant on. Be prepared to release the DEADMAN switch
to turn off servo power to the robot immediately.

* Whenever possible, perform maintenance with the power turned off. Before you open the
controller front panel or enter the work envelope, turn off and lock out the 3-phase power source
at the controller.

* Be aware that an applicator bell cup can continue to spin at a very high speed even if the robot is
idle. Use protective gloves or disable bearing air and turbine air before servicing these items.

* Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is

not supported or resting on a hard stop. Support the arm on a solid support before you release
the brake.

2 Warning
Lethal voltage is present in the controller WHENEVER IT IS
CONNECTED to a power source. Be extremely careful to avoid
electrical shock. HIGH VOLTAGE IS PRESENT at the input side
whenever the controller is connected to a power source. Turning the
disconnect or circuit breaker to the OFF position removes power from
the output side of the device only.

* Release or block all stored energy. Before working on the pneumatic system, shut off the system
air supply and purge the air lines.

* [solate the robot from all remote control signals. If maintenance must be done when the power
is on, make sure the person inside the work envelope has sole control of the robot. The teach
pendant must be held by this person.

XXXIi

MARRC75KR07091E Rev D Safety

* Make sure personnel cannot get trapped between the moving robot and other equipment. Know the
path that can be used to escape from a moving robot. Make sure the escape route is never blocked.

* Use blocks, mechanical stops, and pins to prevent hazardous movement by the robot. Make sure
that such devices do not create pinch points that could trap personnel.

2 Warning
Do not try to remove any mechanical component from the robot
before thoroughly reading and understanding the procedures in the

appropriate manual. Doing so can result in serious personal injury and
component destruction.

* Be aware that when you remove a servomotor or brake, the associated robot arm will fall if it is

not supported or resting on a hard stop. Support the arm on a solid support before you release
the brake.

* When replacing or installing components, make sure dirt and debris do not enter the system.

* Use only specified parts for replacement. To avoid fires and damage to parts in the controller,
never use nonspecified fuses.

* Before restarting a robot, make sure no one is inside the work envelope; be sure that the robot and
all external devices are operating normally.

KEEPING MACHINE TOOLS AND EXTERNAL DEVICES SAFE

Certain programming and mechanical measures are useful in keeping the machine tools and other
external devices safe. Some of these measures are outlined below. Make sure you know all associated
measures for safe use of such devices.

Programming Safety Precautions

Implement the following programming safety measures to prevent damage to machine tools and
other external devices.

Back-check limit switches in the workcell to make sure they do not fail.

* Implement “failure routines” in programs that will provide appropriate robot actions if an external
device or another robot in the workcell fails.

Use handshaking protocol to synchronize robot and external device operations.

Program the robot to check the condition of all external devices during an operating cycle.

XXXili

Safety

MARRC75KR07091E Rev D

Mechanical Safety Precautions

Implement the following mechanical safety measures to prevent damage to machine tools and other
external devices.

e Make sure the workcell is clean and free of oil, water, and debris.

* Use DCS (Dual Check Safety), software limits, limit switches, and mechanical hardstops to

prevent undesired movement of the robot into the work area of machine tools and external devices.

KEEPING THE ROBOT SAFE

Observe the following operating and programming guidelines to prevent damage to the robot.

Operating Safety Precautions

The following measures are designed to prevent damage to the robot during operation.

Use a low override speed to increase your control over the robot when jogging the robot.
Visualize the movement the robot will make before you press the jog keys on the teach pendant.
Make sure the work envelope is clean and free of oil, water, or debris.

Use circuit breakers to guard against electrical overload.

Programming Safety Precautions

The following safety measures are designed to prevent damage to the robot during programming:

Establish interference zones to prevent collisions when two or more robots share a work area.
Make sure that the program ends with the robot near or at the home position.

Be aware of signals or other operations that could trigger operation of tooling resulting in personal
injury or equipment damage.

In dispensing applications, be aware of all safety guidelines with respect to the dispensing
materials.

Note Any deviation from the methods and safety practices described in this manual must conform
to the approved standards of your company. If you have questions, see your supervisor.

XXXIV

MARRC75KR07091E Rev D Safety

ADDITIONAL SAFETY CONSIDERATIONS FOR PAINT ROBOT
INSTALLATIONS

Process technicians are sometimes required to enter the paint booth, for example, during daily or
routine calibration or while teaching new paths to a robot. Maintenance personal also must work
inside the paint booth periodically.

Whenever personnel are working inside the paint booth, ventilation equipment must be used.
Instruction on the proper use of ventilating equipment usually is provided by the paint shop supervisor.

Although paint booth hazards have been minimized, potential dangers still exist. Therefore, today’s
highly automated paint booth requires that process and maintenance personnel have full awareness of
the system and its capabilities. They must understand the interaction that occurs between the vehicle
moving along the conveyor and the robot(s), hood/deck and door opening devices, and high-voltage
electrostatic tools.

2 Caution
Ensure that all ground cables remain connected. Never operate the paint robot
with ground provisions disconnected. Otherwise, you could injure personnel or
damage equipment.

Paint robots are operated in three modes:

* Teach or manual mode
* Automatic mode, including automatic and exercise operation

* Diagnostic mode

During both teach and automatic modes, the robots in the paint booth will follow a predetermined
pattern of movements. In teach mode, the process technician teaches (programs) paint paths using
the teach pendant.

In automatic mode, robot operation is initiated at the System Operator Console (SOC) or Manual
Control Panel (MCP), if available, and can be monitored from outside the paint booth. All personnel
must remain outside of the booth or in a designated safe area within the booth whenever automatic
mode is initiated at the SOC or MCP.

In automatic mode, the robots will execute the path movements they were taught during teach mode,
but generally at production speeds.

XXXV

Safety

MARRC75KR07091E Rev D

When process and maintenance personnel run diagnostic routines that require them to remain in the
paint booth, they must stay in a designated safe area.

Paint System Safety Features

Process technicians and maintenance personnel must become totally familiar with the equipment and
its capabilities. To minimize the risk of injury when working near robots and related equipment,
personnel must comply strictly with the procedures in the manuals.

This section provides information about the safety features that are included in the paint system and
also explains the way the robot interacts with other equipment in the system.

The paint system includes the following safety features:

* Most paint booths have red warning beacons that illuminate when the robots are armed and ready
to paint. Your booth might have other kinds of indicators. Learn what these are.

* Some paint booths have a blue beacon that, when illuminated, indicates that the electrostatic
devices are enabled. Your booth might have other kinds of indicators. Learn what these are.

* EMERGENCY STOP buttons are located on the robot controller and teach pendant. Become
familiar with the locations of all E-STOP buttons.

* An intrinsically safe teach pendant is used when teaching in hazardous paint atmospheres.

* A DEADMAN switch is located on each teach pendant. When this switch is held in, and the teach
pendant is on, power is applied to the robot servo system. If the engaged DEADMAN switch
is released during robot operation, power is removed from the servo system, all axis brakes are
applied, and the robot comes to an EMERGENCY STOP. Safety interlocks within the system
might also E-STOP other robots.

2 Warning
An EMERGENCY STOP will occur if the DEADMAN switch is released
on a bypassed robot.

* Overtravel by robot axes is prevented by software limits. All of the major and minor axes are
governed by software limits. DCS (Dual Check Safety), limit switches and hardstops also limit
travel by the major axes.

* EMERGENCY STOP limit switches and photoelectric eyes might be part of your system.
Limit switches, located on the entrance/exit doors of each booth, will EMERGENCY STOP all
equipment in the booth if a door is opened while the system is operating in automatic or manual
mode. For some systems, signals to these switches are inactive when the switch on the SOC is

XXXVi

MARRC75KR07091E Rev D Safety

in teach mode.When present, photoelectric eyes are sometimes used to monitor unauthorized
intrusion through the entrance/exit silhouette openings.

* System status is monitored by computer. Severe conditions result in automatic system shutdown.
Staying Safe While Operating the Paint Robot

When you work in or near the paint booth, observe the following rules, in addition to all rules for
safe operation that apply to all robot systems.

c Warning
Observe all safety rules and guidelines to avoid injury.

2 Warning
Never bypass, strap, or otherwise deactivate a safety device, such as a
limit switch, for any operational convenience. Deactivating a safety device
is known to have resulted in serious injury and death.

c Warning
Enclosures shall not be opened unless the area is known to be
nonhazardous or all power has been removed from devices within the
enclosure. Power shall not be restored after the enclosure has been
opened until all combustible dusts have been removed from the interior
of the enclosure and the enclosure purged. Refer to the Purge chapter
for the required purge time.

* Know the work area of the entire paint station (workcell).

* Know the work envelope of the robot and hood/deck and door opening devices.

* Be aware of overlapping work envelopes of adjacent robots.

* Know where all red, mushroom-shaped EMERGENCY STOP buttons are located.

* Know the location and status of all switches, sensors, and/or control signals that might cause the
robot, conveyor, and opening devices to move.

* Make sure that the work area near the robot is clean and free of water, oil, and debris. Report
unsafe conditions to your supervisor.

* Become familiar with the complete task the robot will perform BEFORE starting automatic mode.

XXXVii

Safety

MARRC75KR07091E Rev D

Make sure all personnel are outside the paint booth before you turn on power to the robot servo
system.

Never enter the work envelope or paint booth before you turn off power to the robot servo system.
Never enter the work envelope during automatic operation unless a safe area has been designated.

Never wear watches, rings, neckties, scarves, or loose clothing that could get caught in moving
machinery.

Remove all metallic objects, such as rings, watches, and belts, before entering a booth when the
electrostatic devices are enabled.

Stay out of areas where you might get trapped between a moving robot, conveyor, or opening
device and another object.

Be aware of signals and/or operations that could result in the triggering of guns or bells.
Be aware of all safety precautions when dispensing of paint is required.

Follow the procedures described in this manual.

Special Precautions for Combustible Dusts (powder paint)

When the robot is used in a location where combustible dusts are found, such as the application of
powder paint, the following special precautions are required to insure that there are no combustible
dusts inside the robot.

* Purge maintenance air should be maintained at all times, even when the robot power is off. This

will insure that dust can not enter the robot.

* A purge cycle will not remove accumulated dusts. Therefore, if the robot is exposed to dust

when maintenance air is not present, it will be necessary to remove the covers and clean out any
accumulated dust. Do not energize the robot until you have performed the following steps.

. Before covers are removed, the exterior of the robot should be cleaned to remove accumulated
dust.

. When cleaning and removing accumulated dust, either on the outside or inside of the robot, be
sure to use methods appropriate for the type of dust that exists. Usually lint free rags dampened
with water are acceptable. Do not use a vacuum cleaner to remove dust as it can generate static
electricity and cause an explosion unless special precautions are taken.

. Thoroughly clean the interior of the robot with a lint free rag to remove any accumulated dust.
. When the dust has been removed, the covers must be replaced immediately.

. Immediately after the covers are replaced, run a complete purge cycle. The robot can now
be energized.

XXXViii

MARRC75KR07091E Rev D Safety

Staying Safe While Operating Paint Application Equipment

When you work with paint application equipment, observe the following rules, in addition to all rules
for safe operation that apply to all robot systems.

2 Warning
When working with electrostatic paint equipment, follow all national and
local codes as well as all safety guidelines within your organization.
Also reference the following standards: NFPA 33 Standards for Spray
Application Using Flammable or Combustible Materials , and NFPA 70
National Electrical Code .

* Grounding: All electrically conductive objects in the spray area must be grounded. This includes
the spray booth, robots, conveyors, workstations, part carriers, hooks, paint pressure pots, as well
as solvent containers. Grounding is defined as the object or objects shall be electrically connected
to ground with a resistance of not more than 1 megohms.

* High Voltage: High voltage should only be on during actual spray operations. Voltage should be
off when the painting process is completed. Never leave high voltage on during a cap cleaning
process.

* Avoid any accumulation of combustible vapors or coating matter.
* Follow all manufacturer recommended cleaning procedures.

* Make sure all interlocks are operational.

* No smoking.

* Post all warning signs regarding the electrostatic equipment and operation of electrostatic
equipment according to NFPA 33 Standard for Spray Application Using Flammable or
Combustible Material.

* Disable all air and paint pressure to bell.

* Verify that the lines are not under pressure.

Staying Safe During Maintenance

When you perform maintenance on the painter system, observe the following rules, and all other
maintenance safety rules that apply to all robot installations. Only qualified, trained service or
maintenance personnel should perform repair work on a robot.

* Paint robots operate in a potentially explosive environment. Use caution when working with
electric tools.

* When a maintenance technician is repairing or adjusting a robot, the work area is under the control
of that technician. All personnel not participating in the maintenance must stay out of the area.

XXXIX

Safety MARRC75KR07091E Rev D

* For some maintenance procedures, station a second person at the control panel within reach
of the EMERGENCY STOP button. This person must understand the robot and associated
potential hazards.

* Be sure all covers and inspection plates are in good repair and in place.
* Always return the robot to the “home” position before you disarm it.
* Never use machine power to aid in removing any component from the robot.

* During robot operations, be aware of the robot’s movements. Excess vibration, unusual sounds,
and so forth, can alert you to potential problems.

* Whenever possible, turn off the main electrical disconnect before you clean the robot.
* When using vinyl resin observe the following:
— Wear eye protection and protective gloves during application and removal

— Adequate ventilation is required. Overexposure could cause drowsiness or skin and eye
irritation.

— If there is contact with the skin, wash with water.
— Follow the Original Equipment Manufacturer’s Material Safety Data Sheets.
* When using paint remover observe the following:
— Eye protection, protective rubber gloves, boots, and apron are required during booth cleaning.
— Adequate ventilation is required. Overexposure could cause drowsiness.

— If there is contact with the skin or eyes, rinse with water for at least 15 minutes. Then, seek
medical attention as soon as possible.

— Follow the Original Equipment Manufacturer’s Material Safety Data Sheets.

Xl

Chapter 1

KAREL LANGUAGE OVERVIEW

Chapter 1 KAREL LANGUAGE OVERVIEW .. 1-1
1.1 OVERVIEW ettt s e st s e s e e s e e s e ras s e e e een s e rnnsennnnan 1-2
1.2 KAREL PROGRAMMING LANGUAGEciiiiiiiiiiici e 1-2
O R © V4= Y T PP 1-2
1.2.2 Creating @ Program ..o eee e e ese e se e e e e e e e e e ren s 1-4
1.2.3 Translating @ Program ... eeee e e sen e e e e e e e e eena s 1-4
1.2.4 Loading Program LogiC and Datacccceceuiiiiniiiinieiiiiiieeeeeeee e e eenaees 1-4
1.2.5 EXeCUtiNg @ Program ...cccccciiiiiiiiiiiiiciiices s sse e s en e s s s e s en s en s ensenns 1-5
1.2.6 EXECULION HiSTOMY uuiiiiiiiiiiiiiiecr i e e e s e e s e a e r e enas 1-5
1.2.7 Program StTUCTUIE .iuiviiiiiiiiiiiierires e s r s e s e s s s e s s e s e s e s e nenss 1-5

1.3 SYSTEM SOFTWARE ..ottt ee e e e e e s e e ee s e e e eenn e 1-7
1.3.1 Software COMPONENTS .iuiiiiiiiiiiiiiii e e r e ea e eans 1-7
1.3.2 Supported RODOLS .. 1-7

1.4 CONTROLLER .ottt e st s e e e e s e s e e s re s e ensennnnans 1-8
0t R /=7 0 Y0 1-8
1.4.2 INPUL/OULPUL SYSTEIM cuiiiiiiiiii it ra e e e e 1-10
1.4.3 User INterface DEVICES ...cuuiiiiuiiiiiiiiiiieiie e e rr e re e e rena s 1-10

1-1

1. KAREL LANGUAGE OVERVIEW MARRC75KR07091E Rev D

1.1 OVERVIEW

FANUC Robotics’ KAREL system consists of a robot, a controller and system software. It
accomplishes industrial tasks using programs written in the KAREL programming language. KAREL
can manipulate data, control and communicate with related equipment and interact with an operator.

The SYSTEM R-30iA controller with KAREL works with a wide range of robot models to handle
a variety of applications. This means common operating, programming, and troubleshooting

procedures, as well as fewer spare parts. KAREL systems expand to include a full line of support
products such as integral vision, off-line programming, and application-specific software packages.

The KAREL programming language is a practical blend of the logical, English-like features of
high-level languages, such as Pascal and PL/1, and the proven factory-floor effectiveness of machine
control languages. KAREL incorporates structures and conventions common to high-level languages
as well as features developed especially for robotics applications. These KAREL features include

¢ Simple and structured data types

* Arithmetic, relational, and Boolean operators

* Control structures for loops and selections

* Condition handlers

* Procedure and function routines

* Input and output operations

¢ Multi-programming support

This chapter summarizes the KAREL programming language, and describes the KAREL system
software and the controller.

The following note applies to R-30iB controllers:

Note The KAREL option must beinstalled on the robot controller in order to load KAREL
programs.

1.2 KAREL PROGRAMMING LANGUAGE

1.2.1 Overview

A KAREL program is made up of declarations and executable statements stored in a source code file.
The variable data values associated with a program are stored in a variable file.

1-2

MARRC75KR07091E Rev D 1. KAREL LANGUAGE OVERVIEW

KAREL programs are created and edited using OLPC PRO, or another editor such as Word Pad.

The KAREL language translator turns the source code into an internal format called p-code and
generates a p-code file. The translator is provided with OLPC PRO. After being translated, the
resulting p-code program can be loaded onto the controller using the KAREL Command Language
(KCL) or the FILE menu.

During loading, the system will create any required variables that are not in RAM and set them
uninitialized. When you run the program, the KAREL interpreter executes the loaded p-code
instructions.

A KAREL program is composed of the program logic and the program data. Program logic defines a
sequence of steps to be taken to perform a specific task. Program data is the task-related information
that the program logic uses. In KAREL the program logic is separate from the program data.

Program logic is defined by KAREL executable statements between the BEGIN and the END
statements in a KAREL program. Program data includes variables that are identified in the VAR
declaration section of a KAREL program by name, data type and storage area in RAM.

Values for program data can be taught using the teach pendant to jog the robot, computed by the
program, read from data files, set from within the CRT/KB or teach pendant menu structure, or
accepted as input to the program during execution. The data values can change from one execution to
the next, but the same program logic is used to manipulate the data.

Program logic and program data are separate in a KAREL program for the following reasons:

* To allow data to be referenced from several places in the same program

* To allow more than one program to reference or share the same data

* To allow a program to use alternative data

* To facilitate the building of data files by an off-line computer-aided design (CAD) system

The executable section of the program contains the data manipulation statements, I/O statements,
and routine calls.

The program development cycle is described briefly in the following list. Section 1.2.2 - Section
1.2.6 that follow provide details on each phase.

* Create a program source code file

* Translate the program file.

* Load the program logic and data.

* Execute the program.

* Maintain the execution history of the program.

A log or history of programs that have been executed is maintained by the controller and can be
viewed.

1-3

1. KAREL LANGUAGE OVERVIEW MARRC75KR07091E Rev D

1.2.2 Creating a Program

You can create a KAREL program using an off-line editor such as OLPC PRO or any text editor such
as WordPad. The resulting file is called the source file or source code.

1.2.3 Translating a Program

KAREL source files must be translated into internal code, called p-code, before they are executed.
The KAREL language translator performs this function and also checks for errors in the source code.

The KAREL language translator starts at the first line of the source code and continues until it
encounters an error or translates the program successfully. If an error is encountered, the translator
tries to continue checking the program, but no p-code will be generated.

You can invoke the translator from OLPC PRO, and the source code you were editing will be
translated. After a successful translation, the translator displays a successful translation message and
creates a p-code file. The p-code file will use the source code file name and a .pc file type. This file
contains an internal representation of the source code and information the system needs to link the
program to variable data and routines.

If the translator detects any errors, it displays the error messages and the source lines that were being
translated. After you have corrected the errors, you can translate the program again.

1.2.4 Loading Program Logic and Data

The following note appliesto R-30iB controllers:

Note The KAREL option must beinstalled on the robot controller in order to load KAREL
programs.

The p-code for a program is loaded onto a controller where it can be executed. When a program is
loaded, a variable data table, containing all the static variables in the program, is created in RAM. The
variable data table contains the program identifier, all of the variable identifiers, and the name of the
storage area in RAM where the variables are located.

Loading a program also establishes the links between statements and variables. Initially, the values in
the variable data table will be uninitialized. If a variable file (.vr) is loaded successfully, the values of
any variables will be stored in the variable data storage area (CMOS, DRAM, SHADOW).

MARRC75KR07091E Rev D 1. KAREL LANGUAGE OVERVIEW

Multiple programs are often used to break a large application or problem into smaller pieces that can
be developed and tested separately. The KAREL system permits loading of multiple programs. Each
program that is loaded has its own p-code structure.

Variable data can be shared among multiple programs. In this case, the KAREL language FROM
clause must be specified in the VAR declaration so that the system can perform the link when the
program is loaded. This saves the storage required to include multiple copies of the data.

The following limits apply to the number and size of KAREL programs that can be loaded:

* Number of programs is limited to 2704 or available RAM.
* Number of variables per program is limited to 2704 or available RAM.

1.2.5 Executing a Program

After you have selected a program from the program list and the p-code and variable files are loaded
into RAM, test and debug the program to make sure that it operates as intended.

Program execution begins at the first executable line. A stack of 300 words is allocated unless you
specify a stack size. The stack is allocated from available user RAM. Stack usage is described
in Section 5.1.6 .

1.2.6 Execution History

Each time a program is executed, a log of the nested routines and the line numbers that have been
executed can be displayed from KCL with the SHOW HISTORY command.

This is useful when a program has paused or been aborted unexpectedly. Execution history displays
the sequence of events that led to the disruption.

1.2.7 Program Structure

A KAREL program is composed of declaration and executable sections made up of KAREL language
statements, as shown in Structure of a KAREL Program .

Structure of a KAREL Program

PROGRAM prog name
Translator Directives
CONST, TYPE, and/or VAR Declarations
ROUTINE Declarations
BEGIN

1-5

1. KAREL LANGUAGE OVERVIEW MARRC75KR07091E Rev D

Executable Statements
END prog name
ROUTINE Declarations

In Structure of a KAREL Program , the words shown in uppercase letters are KAREL reserved
words, which have dedicated meanings. PROGRAM, CONST, TYPE, VAR, and ROUTINE indicate
declaration sections of the program. BEGIN and END mark the executable section. Reserved words
are described in Section 2.1.3 .

The PROGRAM statement, which identifies the program, must be the first statement in any KAREL
program. The PROGRAM statement consists of the reserved word PROGRAM and an identifier of
your choice (prog name in Structure of a KAREL Program). Identifiers are described in Section
2.14.

Note Your program must reside in a file. The file can, but does not have to, have the same name

as the program. This distinction is important because you invoke the translator and load programs
with the name of the file containing your program, but you initiate execution of the program and clear
the program with the program name.

For example, if a program named mover was contained in a file named transfer , you would reference
the file by transfer to translate it, but would use the program name mover to execute the program.

If both the program and the file were named mover , you could use mover to translate the file and
also to execute the program.

A task is created to execute the program and the task name is the name of the program you initiate.
The program can call a routine in another program, but the task name does not change.

The identifier used to name the program cannot be used in the program for any other purpose, such
as to identify a variable or constant.

The CONST (constant), TYPE (type), and VAR (variable) declaration sections come after the
PROGRAM statement. A program can contain any number of CONST, TYPE, and VAR sections.
Each section can also contain any number of individual declaration statements. Also, multiple
CONST, TYPE, and VAR sections can appear in any order. The number of CONST, TYPE, and VAR
sections, and declaration statements are limited only by the amount of memory available.

ROUTINE declarations can follow the CONST, TYPE, and VAR sections. Each routine begins with
the reserved word ROUTINE and is similar in syntax to a program. ROUTINE declarations can also
follow the executable section of the main program after the END statement.

The executable section must be marked by BEGIN at the beginning and END, followed by the
program identifier (prog_name in Structure of a KAREL Program), at the end. The same program
identifier must be used in the END statement as in the PROGRAM statement. The executable section
can contain any number of executable statements, limited only by the amount of memory available.

See Also: Chapter 2 LANGUAGE ELEMENTS, Chapter 3 USE OF OPERATORS, and Chapter
5 ROUTINES.

1-6

MARRC75KR07091E Rev D 1. KAREL LANGUAGE OVERVIEW

1.3 SYSTEM SOFTWARE

The R-30iA system includes a robot and controller electronics. Hardware interfaces and system
software support programming, daily operation, maintenance, and troubleshooting.

This section provides an overview of the supported system software and robot models.

Hardware topics are covered in greater detail in the Maintenance Manual specific for your robot
and controller model.

1.3.1 Software Components

R-30i A system software is the FANUC Robotics-supplied software that is executed by the controller
CPU, which allows you to operate the R-30iA system. You use the system software to run programs,
as well as to perform daily operations, maintenance, and troubleshooting.

The components of the system software include:
* Motion Control - movement of the tool center point (TCP) from an initial position to a desired
destination position
* File System - storage of data on the RAM disk or peripheral storage devices
* System Variables- permanently defined variables declared as part of the KAREL system software
* CRT/KB or Teach Pendant Screens - screens that facilitate operation of the KAREL system
e KCL - KAREL Command Language
* KAREL Interpreter - executes KAREL programs

See Also: application-specific FANUC Robotics Setup and Operations Manual for detailed operation
procedures using the CRT/KB and teach pendant screens.

1.3.2 Supported Robots

The robot, using the appropriate tooling, performs application tasks directed by the system software
and controller. The R-30iA system supports a variety of robots, each designed for a specific type of
application.

For a current list of supported robot models, consult your FANUC Robotics technical representative.

See Also: The Maintenance Manual for your specific robot type, for more information on your robot.

1-7

1. KAREL LANGUAGE OVERVIEW MARRC75KR07091E Rev D

1.4 CONTROLLER

The R-30i A controller contains the electronic circuitry and memory required to operate the R-30iA
system. The electronic circuitry, supported by the system software, directs the operation and motion
of the robot and allows communication with peripheral devices.

Controller electronics includes a central processing unit (CPU), several types of memory, an
input/output (1/0) system, and user interface devices. A cabinet houses the controller electronics and
the ports to which remote user interface devices and other peripheral devices are connected.

1.4.1 Memory

There are three kinds of controller memory:

* Dynamic Random Access Memory (DRAM)
* A limited amount of battery-backed static/random access memory (SRAM)
¢ Flash Programmable Read Only Memory (FROM)

In addition, the controller is capable of storing information externally.
DRAM

DRAM memory is volatile. Memory contents do not retain their stored values when power is
removed. DRAM memory is also referred to as temporary memory (TEMP). The system software is
executed in DRAM memory. KAREL programs and most KAREL variables are loaded into DRAM
and executed from here also.

Note Even though DRAM variables are in volatile memory, you can control their value at startup.
Any time that a the program .VR or .PC file is loaded, the values in DRAM for that program are set to
the value in the .VR file. This means that there is not a requirement to re-load the VR file itself at
every startup to set initial values. If the value of that variable changes during normal operation it will
revert to the value it was set to the last time the .VR or .PC file was loaded.

If you want the DRAM variables to be uninitialized at start up you can use the IN UNINIT DRAM
clause on any variable you want to insure is uninitialized at startup. You can use the %UNINITDRAM
directive to specify that all the variables in a program are to be uninitialized at startup.

If you have a SHADOW variables and DRAM variables in the same KAREL program, there is a
possibility that the power up settings of the DRAM variables could change without loading a .PC/.VR
File. In this case the programmer must pay particular attention to the reliance of KAREL software

on a particular setting of a DRAM variable at startup. Specifically, the DRAM startup values will
always retain the values that they had at the end of controlled start. If SHADOW memory is full, the
DRAM startup values could be set during normal system operation.

1-8

MARRC75KR07091E Rev D 1. KAREL LANGUAGE OVERVIEW

SRAM

SRAM memory is nonvolatile. Memory contents retain their stored values when power is removed.
SRAM memory is also referred to as CMOS or as permanent memory (PERM).

The TPP memory pool (used for teach pendant programs) is allocated from PERM. KAREL programs
can designate variables to be stored in CMOS. A portion of SRAM memory can be defined as a
user storage device called RAM Disk (RD:).

Flash memory (FROM)

FROM memory is nonvolatile. Memory contents retain their stored values when power is removed.
FROM is used for permanent storage of the system software. FROM is also available for user storage
as the FROM device (FR:).

SHADOW

Shadow memory provides the same capabilities as SRAM. Any values set in shadow are non-volatile
and will maintain their state through power cycle. Shadow memory is intended for data which tends to
be static. Storing dynamic variables in shadow memory, such as FOR loop indexes or other rapidly
changing data, is not efficient.

Figure 1-1. Controller Memory

DRAM
(TEMP)
Working memory for the system
Loaded KAREL programs
Most KAREL variables

CMOS RAM
(PERM)
Loaded TP Programs

System Variables
Selected KAREL Variables

FROM Disk (FR:)

Saved Programs RAM Disk (RD:)
Saved Data Saved Programs

System Software Saved Data

Off-Line Storage
Saved Programs and Data

1-9

1. KAREL LANGUAGE OVERVIEW MARRC75KR07091E Rev D

External Storage
You can back up and store files on external devices. You can use the following devices:

* Memory card
* Ethernet via FTP
¢ USB Memory Stick

1.4.2 Input/Output System

The controller can support a modular I/O structure, allowing you to add I/O boards as required by
your application. Both digital and analog input and output modules are supported. In addition, you
can add optional process I/O boards for additional I/O. The type and number of I/O signals you have
depends on the requirements of your application.

See Also: Chapter 14 INPUT/OUTPUT SYSTEM , for more information

1.4.3 User Interface Devices

The user interface devices enable you to program and operate the KAREL system. The common user
interface devices supported by KAREL include the operator panel, the teach pendant or the CRT/KB.

Figure 1-2 illustrates these user interface devices. The operator panel and teach pendant have the
same basic functions for all models; however, different configurations are also available.

The operator panel, located on the front of the controller cabinet, provides buttons for performing
daily operations such as powering up, running a program, and powering down. Lights on the operator
panel indicate operating conditions such as when the power is on and when the robot is in cycle.

The system also supports 1/O signals for a user operator panel (UOP) , which is a user-supplied

device such as a custom control panel, a programmable controller, or a host computer. Refer to
Chapter 14 INPUT/OUTPUT SYSTEM .

1-10

MARRC75KR07091E Rev D 1. KAREL LANGUAGE OVERVIEW

Figure 1-2. R-30iA Controller

Teach pendant Operator panel

Mode switch

I

RS-232 Serial Connection

The CRT/KB is a software option on the controller that allows an external terminal such as a PC
running TelNet to display a Menu System that looks similar to the one seen on the teach pendant.

The teach pendant consists of an LCD display, menu-driven function keys, keypad keys, and status
LEDs. It is connected to the controller cabinet via a cable, allowing you to perform operations away
from the controller.

Internally, the teach pendant connects to the controller’s Main CPU board. It is used to jog the robot,
teach program data, test and debug programs, and adjust variables. It can also be used to monitor and
control I/O, to control end-of-arm tooling, and to display information such as the current position of

the robot or the status of an application program.

The application-specific FANUC Robotics Setup and Operations Manual provides descriptions of
each of the user interface devices, as well as procedures for operating each device.

1-11

Chapter 2

LANGUAGE ELEMENTS

Chapter 2 LANGUAGE ELEMENTS .ot en s s r s n s n s ea e 2-1
2.1 LANGUAGE COMPONENTS ..ttt st renrensensensensensensensensensensensensenns 2-2
e Nt R O o =1 = Yo (=] 1< 2-2
A R O] o Y=Y - {0] £ PPN 2-5
2.1.3 RESEIVEA WOTIAS iuiiiiiiiiiiiiiiiiiii i e s e s e s e s e r e aen 2-6
2.1.4 User-Defined [dentifiers ...oiiiiiiiiiiiiii e 2-7
D2 T T 157 o 1= £ 2-8
2.1.6 Predefined IdeNtifiErS .o e e r e e s e e n e eas 2-8
2.1.7 System Variables ... e 2-10
20 108 < T O Y 1 =T 1 2-10
2.2 TRANSLATOR DIRECTIVES ...ctiitiiiiiieii e e senssasenesn e sn e snsenssnsenens 2-11
2.3 DATA TY PES i s s aas 2-13
2.4 USER-DEFINED DATA TYPES AND STRUCTURESccoiiviiviieeereeeneenen, 2-14
241 User-Defined Data TYPES ocvuiiiiiemeiieienaeeereie e eres e e eena s e e rens e e rene e erennnes 2-14
2.4.2 User-Defined Data StrUCIUIES ..i.ciiieiiiiiiiiiiiiieiisiiiiaiiieissessissssenssnsnssnsnnes 2-16
B2 T S o A 0 2-18
251 Multi-DimensSional ATTAYS .ceuoieeeeueieeieieeeeeene e e rer e e rena e e rena e e ren e e erennnes 2-19
2.5.2 Variable-SiZed ATTAYS ..o e e e e e renaas 2-20

2-1

2. LANGUAGE ELEMENTS MARRC75KR07091E Rev D

The KAREL language provides the elements necessary for programming effective robotics
applications. This chapter lists and describes each of the components of the KAREL language, the
available translator directives and the available data types.

2.1 LANGUAGE COMPONENTS

This section describes the following basic components of the KAREL language:

* Character set

* Operators

* Reserved words

* User-defined Identifiers
* Labels

* Predefined Identifiers

* System Variables

e Comments

2.1.1 Character Set

The ASCII character set is available in the KAREL language. Table 2—1 lists the elements in the
ASCII character set. Three character sets are available in the KAREL language:

* ASCII Character Set

e Multinational Character Set

* QGraphics Character Set (not available in R-30iB)
All of the characters recognized by the KAREL language are listed in Table 2—1 , Table 2-2 , and
Table 2-3 . The default character set is ASCII. The multinational and graphics character sets are
permitted only in literals, data, and comments.

See Also: CHR Built-In Procedure, Appendix A .

Table 2-1. ASCII Character Set

Letters abcdefghijklmnopqgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Digits 0123456789

2-2

MARRC75KR07091E Rev D 2. LANGUAGE ELEMENTS

Table 2-1. ASCII Character Set (Cont’'d)

Symbols @<>=/*+-_,;: . #$'[10)&%{}
Special Characters blank or space

form feed (treated as new line)
tab (treated as a blank space)

The following rules are applicable for the ASCII character set:

* Blanks or spaces are:

— Required to separate reserved words and identifiers. For example, the statement PROGRAM
prog_name must include a blank between PROGRAM and prog_name.

— Allowed but are not required within expressions between symbolic operators and their
operands. For example, the statement a = b is equivalent to a=b .

— Used to indent lines in a program.

* (Carriage return or a semi-colon (;) separate statements. Carriage returns can also appear in
other places.

* A carriage return or a semi-colon is required after the BEGIN statement.

* A line is truncated after 252 characters. It can be continued on the next line by using the
concatenation character &.

2-3

2. LANGUAGE ELEMENTS

MARRC75KR07091E Rev D

Table 2-2. Multinational Character Set

Symbols i ¢ £ ¥ § o
© a «] * 2
s u 1 . ! o

» Ya Va ¢
Special Characters A A A A A
£ E E E E
I i T i N o)
¢} ¢} 0 0 CE)
U U 0 U Y R
a a a a a a
® ¢ e é é é
i i T) fi

¢

o] o 6 6} 0 o7}
%) u u a U y

MARRC75KR07091E Rev D 2. LANGUAGE ELEMENTS

Table 2-3. Graphics Character Set

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
Digits 0123456789
Symbols @<>=/*+-,;: . #$'\[]1()&%! "7
Special . H FF CR LF o + N VT J 1 r L
Characters T
+ - - _ I_ _{ T < > I
£

See Also: Appendix D for a listing of the character codes for each character set

2.1.2 Operators

KAREL provides operators for standard arithmetic operations, relational operations, and Boolean
(logical) operations. KAREL also includes special operators that can be used with positional and
VECTOR data types as operands.

Table 24 lists all of the operators available for use with KAREL.

Table 2-4. KAREL Operators
Arithmetic + - * / DIV MOD
Relational < <= = <> > = >
Boolean AND OR NOT
Special >=< # @

The precedence rules for these operators are as follows:

* Expressions within parentheses are evaluated first.

* Within a given level of parentheses, operations are performed starting with those of highest
precedence and proceeding to those of lowest precedence.

* Within the same level of parentheses and operator precedence, operations are performed from
left to right.

Table 25 lists the precedence levels for the KAREL operators.

2-5

2. LANGUAGE ELEMENTS

MARRC75KR07091E Rev D

Table 2-5. KAREL Operator Precedence

OPERATOR PRECEDENCE LEVEL
NOT High

L@ # !

*, /, AND, DIV, MOD 1

Unary + and -, OR, +, - !

<, > =,<> <=, >=>=< Low

See Also: Chapter 3 USE OF OPERATORS, for descriptions of functions operators perform

2.1.3 Reserved Words

Reserved words have a dedicated meaning in KAREL. They can be used only in their prescribed
contexts. All KAREL reserved words are listed in Table 2—6 .

Table 2-6. Reserved Word List

ABORT CONST GET_VAR NOPAUSE STOP
ABOUT CONTINUE GO NOT STRING
ABS COORDINATED GOTO NOWAIT STRUCTURE
AFTER CR GROUP OF THEN
ALONG DELAY GROUP_ASSOC OPEN TIME
ALSO DISABLE HAND OR TIMER
AND DISCONNECT HOLD PATH TO

ARRAY DIV IF PATHHEADER TPENABLE
ARRAY_LEN DO IN PAUSE TYPE

AT DOWNTO INDEPENDENT POSITION UNHOLD
ATTACH DRAM INTEGER POWERUP UNINIT
AWAY ELSE JOINTPOS PROGRAM UNPAUSE
AXIS ENABLE JOINTPOS1 PULSE UNTIL
BEFORE END JOINTPOS2 PURGE USING
BEGIN ENDCONDITION JOINTPOS3 READ VAR
BOOLEAN ENDFOR JOINTPOS4 REAL VECTOR
BY ENDIF JOINTPOS5 RELATIVE VIA

MARRC75KR07091E Rev D

2. LANGUAGE ELEMENTS

Table 2-6. Reserved Word List (Cont’'d)

BYNAME ENDMOVE JOINTPOS6 RELAX VIS_PROCESS
BYTE ENDSELECT JOINTPOS7 RELEASE WAIT
CAM_SETUP ENDSTRUCTURE JOINTPOSS8 REPEAT WHEN
CANCEL ENDUSING JOINTPOS9 RESTORE WHILE
CASE ENDWHILE MOD RESUME WITH
CLOSE ERROR MODEL RETURN WRITE
CMOS EVAL MOVE ROUTINE XYZWPR
COMMAND EVENT NEAR SELECT XYZWPREXT
COMMON_ASSOC END NOABORT SEMAPHORE

CONDITION FILE NODE SET_VAR

CONFIG FOR NODEDATA SHORT

CONNECT FROM NOMESSAGE SIGNAL

See Also: Index for references to descriptions of KAREL reserved words

2.1.4 User-Defined Identifiers

User-defined identifiers represent constants, data types, statement labels, variables, routine names,
and program names. Identifiers

e Start with a letter

* (Can include letters, digits, and underscores

¢ (Can have a maximum of 12 characters

* Can have only one meaning within a particular scope. Refer to Section 5.1.4 .

e Cannot be reserved words

* Must be defined before they can be used.

For example, the program excerpt in Declaring Identifiers shows how to declare program, variable,
and constant identifiers.

Declaring Identifiers

PROGRAM mover

VAR

original

CONST

--program identifier

POSITION

(mover)

--variable identifier

(original)

2. LANGUAGE ELEMENTS MARRC75KR07091E Rev D

no of parts = 10 --constant identifier (no_of parts)

2.1.5 Labels

Labels are special identifiers that mark places in the program to which program control can be
transferred using the GOTO Statement.

* Are immediately followed by two colons (::). Executable statements are permitted on the same
line and subsequent lines following the two colons.
¢ Cannot be used to transfer control into or out of a routine.

In Using Labels , weld: : denotes the section of the program in which a part is welded. When the
statement go to weld is executed, program control is transferred to the weld section.

Using Labels
weld:: --label
--additional program statements
GOTO weld

2.1.6 Predefined ldentifiers

Predefined identifiers within the KAREL language have a predefined meaning. These can be
constants, types, variables, or built-in routine names. Table 2—7 and Table 2-8 list the predefined
identifiers along with their corresponding values. Either the identifier or the value can be specified in
the program statement. For example, SMOTYPE = 7 is the same as SMOTYPE = LINEAR. However,
the predefined identifier MININT is an exception to this rule. This identifier must always be used in
place of its value, -2147483648. The value or number itself can not be used.

Table 2-7. Predefined Identifier and Value Summary

Predefined Identifier Type Value

TRUE BOOLEAN ON

FALSE OFF

ON BOOLEAN ON

OFF OFF
MAXINT INTEGER +2147483647
MININT -2147483648

2-8

MARRC75KR07091E Rev D

2. LANGUAGE ELEMENTS

Table 2-7. Predefined Identifier and Value Summary (Cont’d)

Predefined Identifier Type Value
RSWORLD Orientation Type: 1
AESWORLD $ORIENT_TYPE 2
WRISTJOINT 3
JOINT Motion Type: 6
LINEAR (or STRAIGHT) $SMOTYPE 7
CIRCULAR 8
FINE Termination Types: 1
COARSE $TERMTYPE and 2
NOSETTLE $SEGTERMTYPE 3
NODECEL 4
VARDECEL 5
Table 2-8. Port and File Predefined Identifier Summary
Predefined Identifier Type

DIN (Digital input)
DOUT (Digital output)

Boolean port array

GIN (Group input)
GOUT (Group output)
AIN (Analog input)
AOUT (Analog output)

Integer port array

TPIN (Teach pendant input)
TPOUT (Teach pendant output)
RDI (Robot digital input)

RDO (Robot digital output)
OPIN (Operator panel input)
OPOUT (Operator panel output)
WDI (Weld input)

WDOUT (Weld output)

UIN (User operator panel input)
UOQUT (User operator panel output)
LDI (Laser digital input)

LDO (Laser digital output)

FLG (Flag)

MRK (Marker)

Boolean port array

2. LANGUAGE ELEMENTS

MARRC75KR07091E Rev D

Table 2-8. Port and File Predefined Identifier Summary (Cont’d)

Predefined Identifier

Type

LAI (Laser analog input)
LAO (Laser analog output)

Integer port array

TPDISPLAY (Teach pendant KAREL display)*
TPERROR (Teach pendant message line)
TPPROMPT (Teach pendant function key line)*
TPFUNC (Teach pendant function key line)*
TPSTATUS (Teach pendant status line)*
INPUT (CRT/KB KAREL keyboard)*
OUTPUT (CRT/KB KAREL screen)*
CRTERROR (CRT/KB message line)
CRTFUNC (CRT function key line)*
CRTSTATUS (CRT status line)*
CRTPROMPT (CRT prompt line)*
VIS_MONITOR (Vision Monitor Screen)

File

*Input and output occurs on the USER menu of the teach pendant or CRT/KB.

2.1.7 System Variables

System variables are variables that are declared as part of the KAREL system software. They have
permanently defined variable names, that begin with a dollar sign ($). Many are robot specific,
meaning their values depend on the type of robot that is attached to the system.

Some system variables are not accessible to KAREL programs. Access rights govern whether or not

a KAREL program can read from or write to system variables.

See Also: FANUC Robotics Software Reference Manual for a complete list and description of all

available system variables.

2.1.8 Comments

Comments are lines of text within a program used to make the program easier for you or another
programmer to understand. For example, Comments From Within a Program contains some
comments from %INCLUDE Directive in a KAREL Program and Include File mover decs for

a KAREL Program .

Comments From Within a Program

--This program, called mover,

picks up 10 objects

2-10

MARRC75KR07091E Rev D 2. LANGUAGE ELEMENTS

--from an original POSITION and puts them down
--at a destination POSITION.

original : POSITION --POSITION of objects
destination : POSITION --Destination of objects
count : INTEGER --Number of objects moved

A comment is marked by a pair of consecutive hyphens (- -). On a program line, anything to the
right of these hyphens is treated as a comment.

Comments can be inserted on lines by themselves or at the ends of lines containing any program
statement. They are ignored by the translator and have absolutely no effect on a running program.

2.2 TRANSLATOR DIRECTIVES

Translator directives provide a mechanism for directing the translation of a KAREL program.
Translator directives are special statements used within a KAREL program to

* Include other files into a program at translation time

¢ Specify program and task attributes

All directives except %INCLUDE must be after the program statement but before any other
statements. Table 29 lists and briefly describes each translator directive. Refer to Appendix A for a
complete description of each translator directive.

Table 2-9. Translator Directives

Directive Description

%ALPHABETIZE Specifies that variables will be created in alphabetical order when p-code is
loaded.

%CMOSVARS Specifies the default storage for KAREL variables is CMOS RAM.

%CMOS2SHADOW Instructs the translator to put all CMOS variables in SHADOW memory.

%COMMENT = 'comment’ Specifies a comment of up to 16 characters. During load time, the comment is

stored as a program attribute and can be displayed on the SELECT screen of
the teach pendant or CRT/KB.

%CRTDEVICE Specifies that the CRT/KB user window will be the default in the READ and
WRITE statements instead of the TPDISPLAY window.

%DEFGROUP = n Specifies the default motion group to be used by the translator.

%DELAY Specifies the amount of time the program will be delayed out of every 250
milliseconds.

2-11

2. LANGUAGE ELEMENTS MARRC75KR07091E Rev D

Table 2-9. Translator Directives (Cont'd)

Directive Description

%ENVIRONMENT filename Used by the off-line translator to specify that a particular environment file should
be loaded.

%INCLUDE filename Specifies files to insert into a program at translation time.

%LOCKGROUP =n,n Specifies the motion group(s) locked by this task.

%NOABORT = option Specifies a set of conditions which will be prevented from aborting the program.

%NOBUSYLAMP Specifies that the busy lamp will be OFF during execution.

%NOLOCKGROUP Specifies that no motion groups will be locked by this task.

%NOPAUSE = option Specifies a set of conditions which will be prevented from pausing the program.

%NOPAUSESHFT Specifies that the task is not paused if the teach pendant shift key is released.

%PRIORITY =n Specifies the task priority.

%SHADOWVARS Specifies that all variables by default are created in SHADOW.

%STACKSIZE = n Specifies the stack size in long words.

%TIMESLICE = n Supports round-robin type time slicing for tasks with the same priority.

%TPMOTION Specifies that task motion is enabled only when the teach pendant is enabled.

%UNINITVARS Specifies that all variables are by default uninitialized.

%INCLUDE Directive in a KAREL Program illustrates the %INCLUDE directive. Include File
mover_decs for a KAREL Program shows the included file.

%INCLUDE Directive in a KAREL Program

PROGRAM mover
-- This program, called mover, picks up 10 objects
-- from an original position and puts them down
-- at a destination position.
$INCLUDE mover decs
-- Uses $INCLUDE directive to include the file
-- called mover decs containing declarations
BEGIN
OPEN HAND gripper
-- Loop to move total number of objects
FOR count = 1 TO num of parts DO
-- Put position in Position Register 1
SET_POS _REG(1,original, status)
-- Call TP program to move to Position Register
move_ to_ pr
CLOSE HAND gripper

2-12

MARRC75KR07091E Rev D 2. LANGUAGE ELEMENTS

SET_POS REG(1,destination, status)
move to pr
OPEN HAND gripper
ENDFOR -- End of loop
END mover
The TP program move to pr is a one line program
to do the move:
1:J PR[1] 100% FINE

Include File mover_decs for a KAREL Program

-- Declarations for program mover in file mover decs

VAR
original : XYZWPR --POSITION of objects
destination : XYZWPR --Destination of objects
count : INTEGER --Number of objects moved
CONST
gripper = 1 -- Hand number 1
num_of parts = 10 -- Number of objects to move

2.3 DATA TYPES

Three forms of data types are provided by KAREL to define data items in a program:

* Simple type data items
— Can be assigned constants or variables in a KAREL program
— Can be assigned actual (literal) values in a KAREL program
— Can assume only single values
¢ Structured type data items
— Are defined as data items that permit or require more than a single value
— Are composites of simple data and structured data
* User-defined type data items
— Are defined in terms of existing data types including other user-defined types
— Can be defined as structures consisting of several KAREL variable data types

Cannot include itself

Table 2—10 lists the simple and structured data types available in KAREL. User-defined data types
are described in Section 2.4 .

2-13

2. LANGUAGE ELEMENTS

MARRC75KR07091E Rev D

Table 2-10. Simple and Structured Data Types

Simple Structured

BOOLEAN ARRAY OF BYTE JOINTPOSS

FILE CAM_SETUP JOINTPOS9

INTEGER CONFIG MODEL

REAL JOINTPOS PATH

STRING JOINTPOS1 POSITION
JOINTPOS2 QUEUE_TYPE
JOINTPOS3 ARRAY OF SHORT
JOINTPOS4 VECTOR
JOINTPOS5 VIS_PROCESS
JOINTPOS6 XYZWPR
JOINTPOS7 XYZWPREXT

See Also: Appendix A for a detailed description of each data type.

2.4 USER-DEFINED DATA TYPES AND STRUCTURES

User-defined data types are data types you define in terms of existing data types. User-defined data
structures are data structures in which you define a new data type as a structure consisting of several
KAREL variable data types, including previously defined user data types.

2.4.1 User-Defined Data Types

User-defined data types are data types you define in terms of existing data types. With user-defined

data types, you

* Include their declarations in the TYPE sections of a KAREL program.

* Define a KAREL name to represent a new data type, described in terms of other data types.

* (an use predefined data types required for specific applications.

User-defined data types can be defined as structures, consisting of several KAREL variable data types.

The continuation character, "&", can be used to continue a declaration on a new line.

User-Defined Data Type Example shows an example of user-defined data type usage and continuation

character usage.

2-14

MARRC75KR07091E Rev D 2. LANGUAGE ELEMENTS

User-Defined Data Type Example

CONST
n pages = 20
n lines = 40
std str lng = 8
TYPE
std _string t = STRING [std str 1lng]
std table t = ARRAY [n pages]& --continuation character
OF ARRAY [n lines] OF std string t
path hdr t FROM main prog = STRUCTURE --user defined data type

ph uframe: POSITION
ph utool: POSITION
ENDSTRUCTURE
node data t FROM main prog = STRUCTURE
gun_on: BOOLEAN
air flow: INTEGER
ENDSTRUCTURE
std path t FROM main prog =
PATH PATHDATA = path hdr t NODEDATA = node data t
VAR
msg table 1: std table t
msg _table 2: std table t
temp string: std string t
seam_1 path: std path t

Usage

User-defined type data can be

* Assigned to other variables of the same type
* Passed as a parameter
* Returned as a function
Assignment between variables of different user-defined data types, even if identically declared, is not

permitted. In addition, the system provides the ability to load and save variables of user-defined data
types, checking consistency during the load with the current declaration of the data type.

Restrictions
A user-defined data type cannot

* Include itself
* Include any type that includes it, either directly or indirectly

¢ Be declared within a routine

2-15

2. LANGUAGE ELEMENTS MARRC75KR07091E Rev D

2.4.2 User-Defined Data Structures

A structure is used to store a collection of information that is generally used together. User-defined
data structures are data structures in which you define a new data type as a structure consisting of
several KAREL variable data types.

When a program containing variables of user-defined data types is loaded, the definitions of these
types are checked against a previously created definition. If a previously created definition does not
exist, a new one is created.

With user-defined data structures, you
* Define a data type as a structure consisting of a list of component fields, each of which can be a

standard data type or another, previously defined, user data type. See Defining a Data Type as
a User-Defined Structure .

Defining a Data Type as a User-Defined Structure

new_type name = STRUCTURE

field name_1: type name 1
field name 2: type name 2
ENDSTRUCTURE

* Access elements of a data type defined as a structure in a KAREL program. The continuation
character, "&", can be used to continue access of the structure elements. See Accessing Elements
of a User-Defined Structure in a KAREL Program .

Accessing Elements of a User-Defined Structure in a KAREL Program

var_name = new_type name.field nam 1

new type name.field name 2 = expression

outer struct name.inner struct name&
.field name = expression

* Access elements of a data type defined as a structure from the CRT/KB and at the teach pendant.

* Define a range of executable statements in which fields of a STRUCTURE type variable can
be accessed without repeating the name of the variable. See Defining a Range of Executable
Statements .

2-16

MARRC75KR07091E Rev D 2. LANGUAGE ELEMENTS

Defining a Range of Executable Statements

USING struct_var, struct_var2 DO
statements

ENDUSING

In the above example, struct_var and struct_var2 are the names of structure type variables.

Note If the same name is both a field name and a variable name, the field name is assumed. Ifthe same
field name appears in more than one variable, the right-most variable in the USING statement is used.

Restrictions
User-defined data structures have the following restrictions:

* The following data types are not valid as part of a data structure:

— STRUCTURE definitions; types that are declared structures are permitted. See Valid
STRUCTURE Definitions .

Valid STRUCTURE Definitions

The following is valid:
TYPE
sub_struct = STRUCTURE
subs field 1: INTEGER
subs field 2: BOOLEAN
ENDSTRUCTURE
big struct = STRUCTURE
bigs field 1: INTEGER
bigs field 2: sub_struct
ENDSTRUCTURE
The following is not wvalid:
big struct = STRUCTURE
bigs field 1: INTEGER
bigs field 2: STRUCTURE
subs field 1: INTEGER
subs field 2: BOOLEAN
ENDSTRUCTURE
ENDSTRUCTURE

— PATH types

2-17

2. LANGUAGE ELEMENTS MARRC75KR07091E Rev D

FILE types

VISION types

Variable length arrays

The data structure itself, or any type that includes it, either directly or indirectly

Any structure not previously defined.

* A variable can not be defined as a structure, but can be defined as a data type previously defined
as a structure. See Defining a Variable as a Type Previously Defined as a Structure .

Defining a Variable as a Type Previously Defined as a Structure

The following is valid:

TYPE

struct_t = STRUCTURE
st_1: BOOLEAN
st _2: REAL
ENDSTRUCTURE

VAR

var_name: struct_t

The following is not wvalid:

VAR

var name: STRUCTURE
vn_1: BOOLEAN
vn_2: REAL

ENDSTRUCTURE

2.5 ARRAYS

You can declare arrays of any data type except PATH.

You can access elements of these arrays in a KAREL program, from the CRT/KB, and from the
teach pendant.

In addition, you can define two types of arrays:

* Multi-dimensional arrays

* Variable-sized arrays

2-18

MARRC75KR07091E Rev D 2. LANGUAGE ELEMENTS

2.5.1 Multi-Dimensional Arrays

Multi-dimensional arrays are arrays of elements with two or three dimensions. These arrays allow you
to identify an element using two or three subscripts.

Multi-dimensional arrays allow you to

* Declare variables as arrays with two or three (but not more) dimensions. See Declaring Variables
as Arrays with Two or Three Dimensions .

Declaring Variables as Arrays with Two or Three Dimensions

VAR
name: ARRAY [size 1] OF ARRAY [size 2] .., OF element type
OR

VAR
name: ARRAY [size 1, size 2,...] OF element type

* Access elements of these arrays in KAREL statements. See Accessing Elements of
Multi-Dimensional Arrays in KAREL Statements .

Accessing Elements of Multi-Dimensional Arrays in KAREL Statements

name [subscript 1, subscript 2,...] = value
value = name [subscript 1, subscript 2,...]

* Declare routine parameters as multi-dimensional arrays. See Declaring Routine Parameters as
Multi-Dimensional Arrays .

Declaring Routine Parameters as Multi-Dimensional Arrays

Routine expects 2-dimensional array of INTEGER.

ROUTINE array user (array param:ARRAY [*,*] OF INTEGER)
The following are equivalent:

ROUTINE rtn name (array param: ARRAY[*] OF INTEGER)

and

ROUTINE rtn name (array param: ARRAY OF INTEGER)

2-19

2. LANGUAGE ELEMENTS MARRC75KR07091E Rev D

* Access elements with KCL commands and the teach pendant.

* Save and load multi-dimensional arrays to and from variable files.
Restrictions
The following restrictions apply to multi-dimensional arrays:

* A subarray can be passed as a parameter or assigned to another array by omitting one or more of
the right-most subscripts only if it was defined as a separate type. See Using a Subarray .

Using a Subarray

TYPE
array 30 = ARRAY[30] OF INTEGER
array 20 30 = ARRAY[20] OF array 30
VAR
array 1: array_ 30
array 2: array 20 30
array 3: ARRAY[10] OF array 20 30
ROUTINE array user (array data: ARRAY OF INTEGER
FROM other-prog

BEGIN

array 2 = array 3[10] -- assigns elements array 3[10,1,1]
-- through array 3[10,20,30] to

array 2

array 2[2] = array 1 -- assigns elements array 1[1] through
-- array 1 [30] to elements array 2[2,1]
-- through array 2[2,30]

array user (array_ 3[5,3]) -- passes elements array 31[5,3,1]

-- through array 3[5,3,30] to array_ user

* The element type cannot be any of the following:
— Array (but it can be a user-defined type that is an array)

— Path

2.5.2 Variable-Sized Arrays

Variable-sized arrays are arrays whose actual size is not known, and that differ from one use of the
program to another. Variable-sized arrays allow you to write KAREL programs without establishing
dimensions of the array variables. In all cases, the dimension of the variable must be established
before the .PC file is loaded.

2-20

MARRC75KR07091E Rev D 2. LANGUAGE ELEMENTS

Variable-sized arrays allow you to

* Declare an array size as ““to-be-determined (*). See Indicates that the Size of an Array is
"To-Be-Determined" .

Indicates that the Size of an Array is "To-Be-Determined"

VAR
one_d_array: ARRAY[*] OF type
two_d array: ARRAY[*,*] OF type

* Determine an array size from that in a variable file or from a KCL CREATE VAR command
rather than from the KAREL source code.

The actual size of a variable-sized array will be determined by the actual size of the array if it already
exists, the size of the array in a variable file if it is loaded first, or the size specified in a KCL CREATE
VAR command executed before the program is loaded. Dimensions explicitly specified in a program
must agree with those specified from the .VR file or specified in the KCL CREATE VAR command.

Restrictions
Variable-sized arrays have the following restrictions:
* The variable must be loaded or created in memory (in a .VR file or using KCL), with a known
length, before it can be used.
¢ When the .PC file is loaded, it uses the established dimension, otherwise it uses 0.

* Variable-sized arrays are only allowed in the VAR section and not the TYPE section of a program.

* Variable-sized arrays are only allowed for static variables.

2-21

Chapter 3

USE OF OPERATORS

Contents

Chapter 3 USE OF OPERATORS oot rrrs e rr s e s e e s e e nen s 3-1
3.1 EXPRESSIONS AND ASSIGNMENTS ..oiiiiiiiiiiieeeri e e e ee e e e e 3-2

3.1.1 Rulefor Expressions and ASSIgNMENTScocuiiiiiiiiiiirree e e ee e 3-2
3.1.2 Evaluation of Expressions and ASSIgNMENtScccccvviiiiiiiiiiieniienneenneneeanes 3-2
3.1.3 Variables and EXPreSSIiONS uiiiiiiieiiiiiiiiiierieersesns s s se s e s e s e s s esnnes 34

3.2 OPERATIONS ..ottt eee et e e e e s e s e s e s s e e s e ra e s ea e e reaaernneeennns 3-4

3.2.1 Arithmetic OPerations ..ocuu e e re e e e e e e ean e eeas 3-5
3.2.2 Relational OperatioNsicciieiiiiiiiiiiiiiie it eran s 3-6
3.2.3 B00lean OpPeratiONS ..oiciiiiiiiiieeiieriieirtiee s eresr s s s s e s ea s e s e s e ennnns 3-7
3.2.4 Special OPeratiONS .i.iiceiicerieireesierarearrrrrrerar s s s s e sennresressrnsernes 3-8

3-1

3. USE OF OPERATORS MARRC75KR07091E Rev D

This chapter describes how operators are used with other language elements to perform operations
within a KAREL application program. Expressions and assignments, which are program statements
that include operators and operands, are explained first. Next, the kinds of operations that can be
performed using each available KAREL operator are discussed.

3.1 EXPRESSIONS AND ASSIGNMENTS

Expressions are values defined by a series of operands, connected by operators and cause desired
computations to be made. For example, 4 + 8 is an expression in which 4 and 8 are the operands and
the plus symbol (+) is the operator .

Assignments are statements that set the value of variables to the result of an evaluated expression.

3.1.1 Rule for Expressions and Assignments

The following rules apply to expressions and assignments:

Each operand of an expression has a data type determined by the nature of the operator.

Each KAREL operator requires a particular operand type and causes a computation that produces
a particular result type.

Both operands in an expression must be of the same data type. For example, the AND operator
requires that both its operands are INTEGER values or that both are BOOLEAN values. The
expression i AND b, where i is an INTEGER and b is a BOOLEAN, is invalid.

Five special cases in which the operands can be mixed provide an exception to this rule. These
five cases include the following:

— INTEGER and REAL operands to produce a REAL result

— INTEGER and REAL operands to produce a BOOLEAN result

— INTEGER and VECTOR operands to produce a VECTOR

— REAL and VECTOR operands to produce a VECTOR

— POSITION and VECTOR operands to produce a VECTOR

Any positional data type can be substituted for the POSITION data type.

3.1.2 Evaluation of Expressions and Assignments

Table 3—1 summarizes the data types of the values that result from the evaluation of expressions
containing KAREL operators and operands.

3-2

MARRC75KR07091E Rev D

3. USE OF OPERATORS

Table 3-1. Summary of Operation Result Types

Operator + - * / DIVMOD | < >>= <=

AND OR
NOT

Types of Operators

INTEGER | | | R |1 B

REAL R R R IR |- B

Mixed™* R R R |R |- B
INTEGER-
REAL

BOOLEAN - - - |- - B

STRING S - - |- - B

Mixed** - - V |V - -
INTEGER-
VECTOR

Mixed** REAL- - - V [V |- -
VECTOR

VECTOR \Y \% - |- - B***

POSITION - - - 1- |- -

Mixed** - - - - - _
POSITION-
VECTOR

**Mixed means one operand of each type
***VECTOR values can be compared using = < > only
—Operation not allowed

I INTEGER

R REAL

B BOOLEAN

V VECTOR

P POSITION

3-3

3. USE OF OPERATORS MARRC75KR07091E Rev D

3.1.3 Variables and Expressions

Assignment statements contain variables and expressions. The variables can be any user-defined
variable, a system variable with write access, or an output port array with write access. The expression
can be any valid KAREL expression. The following examples are acceptable assignments:

$SPEED = 200.00 -- assigns a REAL value to a system variable
count = count + 1 -- assigns an INTEGER value to an INTEGER variable
The data types of variable and expression must match with three exceptions:

* INTEGER variables can be assigned to REAL variables. In this case, the INTEGER is treated
as a REAL number during evaluation of the expression. However, a REAL number cannot be

used where an INTEGER value is expected.
* Ifrequired, a REAL number can be converted to an INTEGER using the ROUND or TRUNC
built-in functions.

* INTEGER, BYTE, and SHORT types can be assigned to each other, although a run-time error
will occur if the assigned value is out of range.

* Any positional type can be assigned to any other positional type. A run-time error will result if a
JOINTPOS from a group without kinematics is assigned to an XYZWPR.

See Also: Relational Operations, ROUND and TRUNC built-in functions, Appendix A, “KAREL
Language Alphabetical Description”

3.2 OPERATIONS

Operations include the manipulation of variables, constants, and literals to compute values using the
available KAREL operators. The following operations are discussed:

* Arithmetic Operations
* Relational Operations
* Boolean Operations

* Special Operations

Table 3-2 lists all of the operators available for use with KAREL.

MARRC75KR07091E Rev D 3. USE OF OPERATORS

Table 3-2. KAREL Operators

Operation Operator

Arithmetic + - * / DIV MOD
Relational < <= = <> > = >
Boolean AND OR NOT

Special >=x< # @

3.2.1 Arithmetic Operations

The addition (+), subtraction (-), and multiplication (*) operators, along with the DIV and MOD
operators, can be used to compute values within arithmetic expressions. Refer to Table 3-3 .

Table 3-3. Arithmetic Operations Using +, -, and * Operators

EXPRESSION RESULT
3+2 5
3-2 1
3*2 6

¢ The DIV and MOD operators are used to perform INTEGER division. Refer to Table 3-4 .

Table 3-4. Arithmetic Operations Examples

EXPRESSION RESULT
11 DIV 2 5
11 MOD 2 1

— The DIV operator truncates the result of an equation if it is not a whole number.

— The MOD operator returns the remainder of an equation that results from dividing the
left-side operand by the right-side operand.

— If the right-side operand of a MOD equation is a negative number, the result is also negative.

— If the divisor in a DIV equation or the right-side operand of a MOD equation is zero, the
KAREL program is aborted with the “Divide by zero” error.

The INTEGER bitwise operators, AND, OR, and NOT, produce the result of a binary AND, OR,
or NOT operation on two INTEGER values. Refer to Table 3-5 .

3-5

3. USE OF OPERATORS

MARRC75KR07091E Rev D

Table 3-5. Arithmetic Operations Using Bitwise Operands

EXPRESSION BINARY EQUIVALENT RESULT
5 AND 8 0101 AND 1000 0000 =0
50R 8 0101 OR 1000 1101 =13
-4 AND 8 1100 AND 1000 1000 = 8
-40R 8 1100 OR 1000 1100 = -4
NOT 5 NOT 0101 1010 = -6*
NOT -15 NOT 110001 1110 = 14*

*Because negative INTEGER values are represented in the two’s complement form, NOT i is not the

same as -1.

¢ Ifan INTEGER or REAL equation results in a value exceeding the limit for INTEGER or REAL
variables, the program is aborted with an error. If the result is too small to represent, it is set to

Z€10.

Table 3-6 lists the precedence levels for the KAREL operators.

Table 3-6. KAREL Operator Precedence

OPERATOR PRECEDENCE LEVEL
NOT High

L@ # !

*,/, AND, DIV, MOD !

Unary + and -, OR, +, - !

<, > =,<><=,>=>=< Low

3.2.2 Relational Operations

Relational operators (<>, =, >, <, <=, >=) produce a BOOLEAN (TRUE/FALSE) result corresponding
to whether or not the values of the operands are in the relation specified. In a relational expression,
both operands must be of the same simple data type. Two exceptions to this rule exist:

* REAL and INTEGER expressions can be mixed where the INTEGER operand is converted

to a REAL number.

For example, in the expression 1 > .56 , the number 1 is converted to 1.0 and the result is TRUE.

* VECTOR operands, which are a structured data type, can be compared in a relational expression
but only by using the equality (=) or inequality (<>) operators.

3-6

MARRC75KR07091E Rev D

3. USE OF OPERATORS

The relational operators function with INTEGER and REAL operands to evaluate standard
mathematical equations. Refer to Table 3—7 .

Note Performing equality (=) or inequality (<>) tests between REAL values might not yield the
results you expect. Because of the way REAL values are stored and manipulated, two values that
would appear to be equal might not be exactly equal. This is also true of VECTOR values which are
composed of REAL values. Use >= or <= where appropriate instead of =.

Relational operators can also have STRING values as operands. STRING values are compared
lexically character by character from left to right until one of the following occurs. Refer to Table 3—7 .

* The character code for a character in one STRING is greater than the character code for the
corresponding character in the other STRING. The result in this case is that the first string is
greater. For example, the ASCII code for A is 65 and for a is 97. Therefore, a > A = TRUE.

¢ One STRING is exhausted while characters remain in the other STRING. The result is that the
first STRING is less than the other STRING.

* Both STRING expressions are exhausted without finding a mismatch. The result is that the

STRINGS are equal.

Table 3-7. Relational Operation Examples

EXPRESSION RESULT
'A< AA TRUE
A= FALSE
4>2 TRUE
17.3<> 56 TRUE
(374) <> (4" 3) FALSE

With BOOLEAN operands, TRUE > FALSE is defined as a true statement. Thus the expression
FALSE >= TRUE is a false statement. The statements FALSE >= FALSE and TRUE >= FALSE are

also true statements.

3.2.3 Boolean Operations

The Boolean operators AND, OR, and NOT, with BOOLEAN operands, can be used to perform
standard mathematical evaluations. Table 3—8 summarizes the results of evaluating Boolean

expressions, and some examples are listed in Table 3-9 .

3-7

3. USE OF OPERATORS

MARRC75KR07091E Rev D

Table 3-8. BOOLEAN Operation Summary

OPERATOR OPERAND 1 OPERAND 2 RESULT
NOT TRUE - FALSE
FALSE - TRUE
OR TRUE TRUE TRUE
FALSE
FALSE TRUE
FALSE FALSE
AND TRUE TRUE TRUE
FALSE FALSE
FALSE TRUE
FALSE

Table 3-9. BOOLEAN Operations Using AND, OR, and NOT Operators

EXPRESSION

RESULT

DIN[1] AND DIN[2]

TRUE if DIN[1] and DIN[2] are both TRUE; otherwise FALSE

DIN[1] AND NOT DIN[2]

TRUE if DIN[1] is TRUE and DIN[2] is FALSE; otherwise FALSE

(x<y)OR (y>2z)

TRUE if x <y or if y > z; otherwise FALSE

(i=2)OR (i = 753)

TRUE ifi =2 orif i = 753; otherwise FALSE

3.2.4 Special Operations

The KAREL language provides special operators to perform functions such as testing the value of
approximately equal POSITION variables, relative POSITION variables, VECTOR variables, and
STRING variables. This section describes their operations and gives examples of their usage.

The following rules apply to approximately equal operations:

* The relational operator (>=<) determines if two POSITION operands are approximately equal
and produces a BOOLEAN result. The comparison is similar to the equality (=) relation except
that the operands compared need not be identical. Extended axis values are not considered.

* Approximately equal operations must be used in conjunction with the system variables,
$LOCTOL, $ORIENTTOL, and $CHECKCONFIG to determine how close two positions must
be. Refer to the FANUC Robotics Software Reference Manual for a description of these variables.

3-8

MARRC75KR07091E Rev D 3. USE OF OPERATORS

Relational

* The relational operator (>=<) is allowed only in normal program use and cannot be used as a
condition in a condition handler statement.

In the following example the relational operator (>=<) is used to determine if the current robot
position (determined by using the CURPOS built-in procedure) is near the designated perch position:

Operator

IF perch >=< CURPOS (0,0) THEN
— Call move to perch program
move_to perch

ELSE
ABORT

ENDIF

Relative Position Operations

To locate a position in space, you must reference it to a specific coordinate frame. In KAREL,
reference frames have the POSITION data type. The relative position operator (:) allows you to
reference a position or vector with respect to the coordinate frame of another position (that is, the
coordinate frame that has the other position as its origin point).

The relative position operator (:) is used to transform a position from one reference frame to another
frame.

In the example shown in Figure 3—1 , a vision system is used to locate a target on a car such as a bolt
head on a bumper. The relative position operator is used to calculate the position of the door handle
based on data from the car drawings. The equation shown in Figure 3—1 is used to calculate the
position of w_handle in the WORLD frame.

3. USE OF OPERATORS MARRC75KR07091E Rev D

Figure 3-1. Determining w_handle Relative to WORLD Frame

w_handle = bolt : b handle

(world (world (bumper
frame) frame) frame)
where:

bolt is the position of the BUMPER frame origin referenced in the WORLD frame.
w_handle is the handle position referenced in the WORLD frame.
b handle is the handle position referenced in the BUMPER frame.

The KAREL INV Built-In Function reverses the direction of the reference.

For example, to determine the position of the door handle target (b_handle) relative to the position of
the bolt , use the equation shown in Figure 3-2 .

3-10

MARRC75KR07091E Rev D 3. USE OF OPERATORS

Figure 3-2. Determining b_handle Relative to BUMPER Frame

o/
\{V%O(r
BANG Y
U s

W_HANDLE

b_handle = INV(bolt) : w_handle 8

(bumper (bumper (world O(7~ S

frame) frame) frame) \%
oS

where:
INV(bolt) is the position of the WORLD frame origin referenced in the BUMPER frame.

w_handle is the handle position referenced in the WORLD frame.
b_handle is the handle position referenced in the BUMPER frame.

Note The order of the relative operator (:) is important.where:b_handle = bolt : w_handle is NOT the
same asb_handle = w_handle : bolt

See Also: Chapter 8 POSTION DATA , INV Built-In Function, Appendix A .

Vector Operations
The following rules apply to VECTOR operations:

* A VECTOR expression can perform addition (+) and subtraction (-) equations on VECTOR
operands. The result is a VECTOR whose components are the sum or difference of the
corresponding components of the operands. For example, the components of the VECTOR vect_3
will equal (5, 10, 9) as a result of the following program statements:

Vector Operations

vect 1.x = 4; vect_1.y = 8; vect_1.z =5
vect 2.x = 1; vect 2.y = 2; vect 2.z = 4
vect_3 = vect_1 + vect_2

* The multiplication (*) and division (/) operators can be used with either

3-11

3. USE OF OPERATORS MARRC75KR07091E Rev D

— A VECTOR and an INTEGER operand
— A VECTOR and a REAL operand

The product of a VECTOR and an INTEGER or a VECTOR and a REAL is a scaled version
of the VECTOR. Each component of the VECTOR is multiplied by the INTEGER (treated as
a REAL number) or the REAL.

For example, the VECTOR (8, 16, 10) is produced as a result of the following operation:

VECTOR components can be on the left or right side of the operator.

A VECTOR divided by an INTEGER or a REAL causes each component of the VECTOR to
be divided by the INTEGER (treated as a REAL number) or REAL. For example, (4, 8, 5) / 2
results in (2, 4, 2.5).

If the divisor is zero, the program is aborted with the “Divide by zero” error.

An INTEGER or REAL divided by a VECTOR causes the INTEGER (treated as a REAL
number) or REAL to be multiplied by the reciprocal of each element of the VECTOR, thus
producing a new VECTOR. For example, 3.5 / VEC(7.0,8.0,9.0) results in (0.5,0.4375,0.38889).

If any of the elements of the VECTOR are zero, the program is aborted with the “Divide by
zero” error.

The cross product operator (#) produces a VECTOR that is normal to the two operands in the
direction indicated by the right hand rule and with a magnitude equal to the product of the
magnitudes of the two vectors and SIN(®), where®is the angle between the two vectors. For
example, VEC(3.0,4.0,5.0) # VEC(6.0,7.0,8.0) results in (-3.0, 6.0, -3.0).

If either vector is zero, or the vectors are exactly parallel, an error occurs.

The inner product operator (@) results in a REAL number that is the sum of the products of the
corresponding elements of the two vectors. For example, VEC(3.0,4.0,5.0) @ VEC(6.0,7.0,8.0)
results in 86.0.

If the result of any of the above operations is a component of a VECTOR with a magnitude too
large for a KAREL REAL number, the program is aborted with the “Real overflow” error.

Table 3—10 lists additional examples of vector operations.

3-12

MARRC75KR07091E Rev D 3. USE OF OPERATORS

Table 3-10. Examples of Vector Operations

EXPRESSION RESULT
VEC(3.0,7.0,6.0) + VEC(12.6,3.2,7.5) (15.6,10.2,13.5)
VEC(7.6,9.0,7.0) - VEC(14.0,3.5,17.0) (-6.4,5.5,-10)

4.5 * VEC(3.2,7.6,4.0) (14.4,34.2,18.0)
VEC(12.7,2.0,8.3) * 7.6 (96.52,15.2,63.08)
VEC(17.3,1.5,0.23) /2 (8.65,0.75,0.115)

String Operations
The following rules apply to STRING operations:

* You can specify that a KAREL routine returns a STRING as its value. See Specifying a KAREL
Routine to Return a STRING Value .

Specifying a KAREL Routine to Return a STRING Value

ROUTINE name (parameter list): STRING
declares name as returning a STRING value

* An operator can be used between strings to indicate the concatenation of the strings. See Using an
Operator to Concatenate Strings .

Using an Operator to Concatenate Strings

string 1 = string 2 + string 3 + ’‘ABC’ + ’'DEF’

* STRING expressions can be used in WRITE statements. See Using a STRING Expression in a
WRITE Statement .

Using a STRING Expression in a WRITE Statement

WRITE (CHR(13) + string 1 + string 2)
writes a single string consisting of a return
character followed by string 1 and string 2

3-13

3. USE OF OPERATORS

MARRC75KR07091E Rev D

* During STRING assignment, the string will be truncated if the target string is not large enough to

hold the same string.

* You can compare or extract a character from a string. For example if string_1 = ‘ABCDE’ . Your

output would be ‘D’ . See String Comparison .
String Comparison

IF SUB_STR(string 1, 4, 1) = 'D’ THEN

* You can build a string from another string. See Building a String from Another String .

Building a String from Another String

ROUTINE toupper (p_char: INTEGER): STRING
BEGIN
IF (p_char > 96) AND (p_char < 123) THEN
p_char = p char - 32
ENDIF
RETURN (CHR (p_char))
END toupper
BEGIN
WRITE OUTPUT (’Enter string: ')
READ INPUT (string 1)
string 2 = '’
FOR idx 1 TO STR_LEN(string 1) DO

string 2 = string 2 + toupper (ORD(string 1,

ENDFOR

idx))

3-14

Chapter 4

PROGRAM CONTROL

Chapter 4 PROGRAM CONTROL iiiiiiiiiiiiiiii it s a s e s e s sa s e aa s eean 4-1
O @ NV AV A 1 Y 4-2

4.2 PROGRAM CONTROL STRUCTURES ...c ittt ss s s s sanneans 4-2

4.2.1 Alternation Control STrUCTUIES .iuviiiiiiiiiieiiirrieirerri e risa e sren s rererareeans 4-2
4.2.2 Looping Control StatemMENLS ...c..uiiiiiiiiiieiii e e e e 4-3
4.2.3 Unconditional Branch StatEmMeENtccoveiiiieiiiiiiiciieeeiieeier e eresesasaenns 4-3
4.2.4 Execution Control StatemMENTS ...iciiiiiiiiiiiiiiiiiiiiini e ra e ansaenns 4-3
4.25 Condition HAaNAIErS .iuiviiiiiiiiiiiiiiiin i s s s s s s s e e sa s eans 4-4

4. PROGRAM CONTROL MARRC75KR07091E Rev D

4.1 OVERVIEW

Program control structures define the flow of execution within a program or routine and include
alternation, looping, and unconditional branching as well as execution control.

4.2 PROGRAM CONTROL STRUCTURES

Program control structures can be used to define the flow of execution within a program or routine.
By default, execution starts with the first statement following the BEGIN statement and proceeds
sequentially until the END statement (or a RETURN statement) is encountered. The following control
structures are available in KAREL:

e Alternation

* Looping

* Unconditional Branching

¢ Execution Control

¢ Condition Handlers

For detailed information on each type of control structure, refer to Appendix A, “KAREL Language
Alphabetical Description.”

4.2.1 Alternation Control Structures

An alternation control structure allows you to include alternative sequences of statements in a program
or routine. Each alternative can consist of several statements.

During program execution, an alternative is selected based on the value of one or more data items.
Program execution then proceeds through the selected sequence of statements.

Two types of alternation control structures can be used:

* |F Statement - provides a means of specifying one of two alternatives based on the value of
a BOOLEAN expression.

e SELECT Statement - used when a choice is to be made between several alternatives. An
alternative is chosen depending on the value of the specified INTEGER expression.

See Also: IF...THEN Statement, Appendix A , SELECT Statement, Appendix A .

MARRC75KR07091E Rev D 4. PROGRAM CONTROL

4.2.2 Looping Control Statements

A looping control structure allows you to specify that a set of statements be repeated an arbitrary
number of times, based on the value of data items in the program. KAREL supports three looping
control structures:

* The FOR statement - used when a set of statements is to be executed a specified number of
times. The number of times is determined by INTEGER data items in the FOR statement. At
the beginning of the FOR loop, the initial value in the range is assigned to an INTEGER counter
variable. Each time the cycle is repeated, the counter is reevaluated.

* The REPEAT statement - allows execution of a sequence of statements to continue as long as
some BOOLEAN expression remains FALSE. The sequence of executable statements within the
REPEAT statement will always be executed once.

* The WHILE statement - used when an action is to be executed as long as a BOOLEAN
expression remains TRUE. The boolean expression is tested at the start of each iteration, so it is
possible for the action to be executed zero times.

See Also: FOR Statement, Appendix A , REPEAT Statement, Appendix A , WHILE Statement,
Appendix A

4.2.3 Unconditional Branch Statement

Unconditional branching allows you to use a GO TO Statement to transfer control from one place
in a program to a specified label in another area of the program, without being dependent upon a
condition or BOOLEAN expression.

2 Warning
Never include a GO TO Statement into or out of a FOR loop. The program
might be aborted with a "Run time stack overflow" error.

See Also: GO TO Statement, Appendix A .

4.2.4 Execution Control Statements

The KAREL language provides the following program control statements, which are used to terminate
or suspend program execution:

* ABORT - causes the execution of the program, including any motion in progress, to be
terminated. The program cannot be continued after being aborted.

* DELAY - causes execution to be suspended for a specified time, expressed in milliseconds.

4. PROGRAM CONTROL MARRC75KR07091E Rev D

* PAUSE - causes execution to be suspended until a CONTINUE operation is executed.

* WAIT FOR - causes execution to be suspended until a specified condition or list of conditions is
satisfied.

See Also: ABORT Statement, DELAY Statement, PAUSE Statement, WAIT FOR Statement, all in
Appendix A , Chapter 6 CONDITION HANDLERS

4.2.5 Condition Handlers

A condition handler defines a series of actions which are to be performed whenever a specified
condition is satisfied. Once defined, a condition handler can be ENABLED or DISABLED.

4-4

Chapter 5

ROUTINES

Chapter 5 ROUTINES oot e e e e re e e s e e naa e ean e eens 5-1
5.1 ROUTINE EXECUTION ..iiiiiiiiiiiiiieiii e eeee e e eee s eees e eeee s e eeeea s eeeenneeeees 5-2

5.1.1 Declaring ROULINES .cuuiieiiiiiiii e et e e e e e e e e e re e eaa e eeas 5-2
5.1.2 INVOKING ROULINES .iviiiiiiiiiiiiiei s r s e s s s s s s e s e s e s e enanes 5-5
5.1.3 Returning from ROULINES ...iviiiiiiiiii e ea 5-7
5.1.4 Scope of Variables ... e 5-8
5.1.5 Parameters and ArgUMENTScoceuiiiiieniiieiie e ren e e rene e re e e eene e e eenn s 5-9
ST SRS =T QU L= o PR 5-13

5.2 BUILT- IN ROUTINES ...ttt e e e e e e 5-15

5. ROUTINES MARRC75KR07091E Rev D

Routines, similar in structure to a program, provide a method of modularizing KAREL programs.
Routines can include VAR and/or CONST declarations and executable statements. Unlike programs,
however, a routine must be declared within an upper case program, and cannot include other routine
declarations.

KAREL supports two types of routines:

Procedure Routines - do not return a value

Function Routines - return a value

KAREL routines can be predefined routines called built-in routines or they can be user-defined.

The following rules apply to all KAREL routines:

* Parameters can be included in the declaration of a routine. This allows you to pass data to the

routine at the time it is called, and return the results to the calling program.
Routines can be called or invoked:

— By the program in which they are declared

— By any routine contained in that program

— With declarations by another program, refer to Section 5.1.1

5.1 ROUTINE EXECUTION

ol
[EEY
[EEY

This section explains the execution of procedure and function routines:

Declaring routines
Invoking routines
Returning from routines
Scope of variables

Parameters and Arguments

Declaring Routines

The following rules apply to routine declarations:

A routine cannot be declared in another routine.
The ROUTINE statement is used to declare both procedure and function routines.

Both procedure and function routines must be declared before they are called.

5-2

MARRC75KR07091E Rev D 5. ROUTINES

* Routines that are local to the program are completely defined in the program. Declarations
of local routines include:

— The ROUTINE statement
— Any VAR and/or CONST declarations for the routine

— The executable statements of the routine

* While the VAR and CONST sections in a routine are identical in syntax to those in a program, the
following restrictions apply:

— PATH, FILE, and vision data types cannot be specified.
— FROM clauses are not allowed.
— IN clauses are not allowed.

* Routines that are local to the program can be defined after the executable section if the routine
is declared using a FROM clause with the same program name. The parameters should only be
defined once. See Defining Local Routines Using a FROM Clause .

Defining Local Routines Using a FROM Clause
PROGRAM funct 1lib
ROUTINE done yet (x: REAL; sl1, s2: STRING): BOOLEAN FROM funct lib
BEGIN
IF done_yet (3.2, 'T’, '')
END funct 1lib
ROUTINE done_ yet
BEGIN

END done_yet

* Routines that are external to the program are declared in one program but defined in another.
— Declarations of external routines include only the ROUTINE statement and a FROM clause.
— The FROM clause identifies the name of the program in which the routine is defined.
— The routine must be defined local to the program named in the FROM clause.

* You can include a list of parameters in the declaration of a routine. A parameter list is an optional
part of the ROUTINE statement.

* If aroutine is external to the program, the names in the parameter list are of no significance but
must be included to specify the parameters. If there are no parameters, the parentheses used to
enclose the list must be omitted for both external and local routines.

The examples in Local and External Procedure Declarations illustrate local and external procedure
routine declarations.

5-3

5. ROUTINES MARRC75KR07091E Rev D

Local and External Procedure Declarations

PROGRAM procs_1lib
ROUTINE wait_ a bit
--local procedure, no parameters
BEGIN
DELAY 20
END wait a bit
ROUTINE toggle out (i: INTEGER)
--local procedure, one parameter

BEGIN
DOUT[i] = ON --reference to parameter i
DELAY 1000
DOUT[i] = OFF

END toggle out
ROUTINE calc dist(pl,p2: POSITION; dist: REAL)& FROM math lib
--external procedure defined in math lib.kL
BEGIN
END procs_1lib

The example in Function Declarations illustrate local and external function routine declarations.

Function Declarations

PROGRAM funct 1lib

ROUTINE done yet (x: REAL; sl, s2 :STRING): BOOLEAN& FROM bool 1lib
--external function routine defined in bool_lib.kl
--returns a BOOLEAN value

ROUTINE xy dist(xl,yl,x2,y2: REAL): REAL
--local function, returns a REAL value

VAR
sum_square: REAL --dynamic local variable
dx,dy: REAL --dynamic local variables
BEGIN
dx = x2-x1 --references parameters x2 and x1
dy = y2-y1l --references parameters y2 and yl
sum_square = dx * dx + dy * dy
RETURN (SQRT (sum_square)) --SQRT 1is a built-in
END xy dist
BEGIN

END funct 1ib

See Also: FROM Clause, Appendix A , ROUTINE Statement, Appendix A .

MARRC75KR07091E Rev D 5. ROUTINES

5.1.2 Invoking Routines

Routines that are declared in a program can be called within the executable section of the program, or
within the executable section of any routine contained in the program. Calling a routine causes the
routine to be invoked. A routine is invoked according to the following procedure:

* When a routine is invoked, control of execution passes to the routine.

* After execution of a procedure is finished, control returns to the next statement after the point
where the procedure was called.

* After execution of a function is finished, control returns to the assignment statement where the

function was called.
The following rules apply when invoking procedure and function routines:

* Procedure and function routines are both called with the routine name followed by an argument
for each parameter that has been declared for the routine.

* The argument list is enclosed in parentheses.
* Routines without parameters are called with only the routine name.

* A procedure is invoked as though it were a statement. Consequently, a procedure call constitutes
a complete executable statement.

Procedure Calls shows the declarations for two procedures followed by the procedure calls to invoke

them.

Procedure Calls
ROUTINE wait_ a bit FROM proc_lib

--external procedure with no parameters
ROUTINE calc dist(pl,p2: POSITION; dist: REAL)&

FROM math 1ib
--external procedure with three parameters

BEGIN

wait _a bit --invokes wait_a bit procedure

calc_dist (start pos, end pos, distance)
--invokes calc_dist using three arguments for
--the three declared parameters

* Because a function returns a value, a function call must appear as part or all of an expression.

* When control returns to the calling program or routine, execution of the statement containing the
function call is resumed using the returned value.

Function Calls shows the declarations for two functions followed by the function calls to invoke them.

5. ROUTINES MARRC75KR07091E Rev D

Function Calls
ROUTINE error check : BOOLEAN FROM error prog
--external function with no parameters returns a BOOLEAN value
ROUTINE distance(pl, p2: POSITION) : REAL &
FROM funct 1lib
--external function with two parameters returns a REAL value
BEGIN --Main program
--the function error check is invoked and returns a BOOLEAN
--expression in the IF statement
IF error check THEN
ENDIF
travel time = distance(prev_pos, next pos)/current spd

--the function distance is invoked as part of an expression in
--an assignment statement

* Routines can call other routines as long as the other routine is declared in the program containing
the initial routine. For example, if a program named master _prog contains a routine named
call_proc, that routine can call any routine that is declared in the program, master_prog .

* A routine that calls itself is said to be recursive and is allowed in KAREL. For example, the
routine factorial , shown in Recursive Function , calls itself to calculate a factorial value.

Recursive Function

ROUTINE factorial (n: INTEGER) : INTEGER
--calculates the factorial value of the integer n
BEGIN

IF n = 0 THEN RETURN (1)
ELSE RETURN (n * factorial (n-1))
--recursive call to factorial
ENDIF
END factorial

* The only constraint on the depth of routine calling is the use of the KAREL stack, an area used
for storage of temporary and local variables and for parameters. Routine calls cause information
to be placed in memory on the stack. When the RETURN or END statement is executed in the
routine, this information is taken off of the stack. If too many routine calls are made without this
information being removed from the stack, the program will run out of stack space.

See Also: Section 5.1.6 for information on how much space is used on the stack for routine calls

5-6

MARRC75KR07091E Rev D 5. ROUTINES

5.1.3 Returning from Routines

The RETURN statement is used in a routine to restore execution control from a routine to the
calling routine or program.

The following rules apply when returning from a routine:

* In a procedure, the RETURN statement cannot include a value.

* [fno RETURN statement is executed, the END statement restores control to the calling program
or routine.

Procedure RETURN Statements illustrates some examples of using the RETURN statement in a
procedure.

Procedure RETURN Statements

ROUTINE gun on (error flag: INTEGER)

--performs some operation while a "gun" is turned on
--returns from different statements depending on what,
--if any, error occurs.

VAR gun: INTEGER

BEGIN

IF error_flag = 1 THEN RETURN

--abnormal exit from routine, returns before

--executing WHILE loop

ENDIF
WHILE DIN[gun] DO

--continues until gun is off

IF error flag = 2 THEN RETURN
--abnormal exit from routine, returns from
--within WHILE loop

ENDIF
ENDWHILE --gun is off
END gun _on --normal exit from routine

* In a function, the RETURN statement must specify a value to be passed back when control
is restored to the calling routine or program.

* The function routine can return any data type except
— FILE
— PATH
— Vision types

* [fthe return type is an ARRAY, you cannot specify a size. This allows an ARRAY of any length
to be returned by the function. The returned ARRAY, from an ARRAY valued function, can

5. ROUTINES MARRC75KR07091E Rev D

be used only in a direct assignment statement. ARRAY valued functions cannot be used as
parameters to other routines. Refer to Correct Passage of an ARRAY , for an example of an
ARRAY passed between two function routines.

* Ifno value is provided in the RETURN statement of a function, a translator error is generated.

e Ifno RETURN statement is executed in a function, execution of the function terminates when the
END statement is reached. No value can be passed back to the calling routine or program, so
the program aborts with an error.

Function RETURN Statements illustrates some examples using the RETURN statement in function
routines.

Function RETURN Statements
ROUTINE index value (table: ARRAY of INTEGER;
table_size: INTEGER) : INTEGER
--Returns index value of FOR loop (i) depending on
--condition of IF statement. Returns 0 in cases where
--IF condition is not satisfied.
VAR i: INTEGER

BEGIN
FOR 1 = 1 TO table size DO
IF table[i] = 0 THEN RETURN (i) --returns index
ENDIF
ENDFOR
RETURN (0) --returns 0

END index value
ROUTINE compare (test var 1: INTEGER;
test _var 2: INTEGER): BOOLEAN
--Returns TRUE value in cases where IF test is
--satisfied. Otherwise, returns FALSE value.

BEGIN
IF test _var 1 = test_var 2 THEN
RETURN (TRUE) --returns TRUE
ELSE
RETURN (FALSE) --returns FALSE
ENDIF

END compare
See Also: ROUTINE Statement, Appendix A .

5.1.4 Scope of Variables

The scope of a variable declaration can be

* Global

5-8

MARRC75KR07091E Rev D

5. ROUTINES

Local

Global Declarations and Definitions

The following rules apply to global declarations and definitions:

Global declarations are recognized throughout a program.

Global declarations are referred to as static because they are given a memory location that does
not change during program execution, even if the program is cleared or reloaded (unless the

variables themselves are cleared.)

Declarations made in the main program, as well as predefined identifiers, are global.

The scope rules for predefined and user-defined routines, types, variables, constants, and labels
are as follows:

— All predefined identifiers are recognized throughout the entire program.

— Routines, types, variables, and constants declared in the declaration section of a program are
recognized throughout the entire program, including routines that are in the program.

Local Declarations and Definitions

The following rules apply to local declarations and definitions:

Local declarations are recognized only within the routines where they are declared.

Local data is created when a routine is invoked. Local data is destroyed when the routine finishes
executing and returns.

The scope rules for predefined and user-defined routines, variables, constants, and labels are

as follows:

— Variables and constants, declared in the declaration section of a routine, and parameters,
declared in the routine parameter list, are recognized only in that routine.

— Labels defined in a program (not in a routine of the program) are local to the body of the
program and are not recognized within any routines of the program.

— Labels defined in a routine are local to the routine and are recognized only in that routine.

Types cannot be declared in a routine, so are never local.

5.1.5 Parameters and Arguments

Identifiers that are used in the parameter list of a routine declaration are referred to as parameters.
A parameter declared in a routine can be referenced throughout the routine. Parameters are used to
pass data between the calling program and the routine. The data supplied in a call, referred to as
arguments, can affect the way in which the routine is executed.

The following rules apply to the parameter list of a routine call:

5-9

5. ROUTINES MARRC75KR07091E Rev D

* As part of the routine call, you must supply a data item, referred to as an argument, for each
parameter in the routine declaration.

* An argument can be a variable, constant, or expression. There must be one argument
corresponding to each parameter.

* Arguments must be of the same data type as the parameters to which they correspond, with
three exceptions:

— An INTEGER argument can be passed to a REAL parameter. In this case, the INTEGER
value is treated as type REAL, and the REAL equivalent of the INTEGER is passed by
value to the routine.

— A BYTE or SHORT argument can be passed by value to an INTEGER or REAL parameter.

— Any positional types can be passed to any other positional type. If they are being passed
to a user-defined routine, the argument positional type is converted and passed by value to
the parameter type.

— ARRAY or STRING arguments of any length can be passed to parameters of the same
data type.

Corresponding Parameters and Arguments shows an example of a routine declaration and three
calls to that routine.

Corresponding Parameters and Arguments
PROGRAM params

VAR
long string: STRING[10]; short string: STRINGI[5]
exact dist: REAL; rough dist: INTEGER

ROUTINE label_dist (strg: STRING; dist: REAL) &
FROM procs_1lib

BEGIN

label dist(long string, exact dist)
--long string corresponds to strg;
--exact dist corresponds to dist

label dist (short string, rough dist)
--short string, of a different length,
--corresponds to strg; rough dist, an
--INTEGER, corresponds to REAL dist

label dist(’new distance’, (exact dist * .75))
--literal constant and REAL expression
--arguments correspond to the parameters

END params

* When the routine is invoked, the argument used in the routine call is passed to the corresponding
parameter. Two methods are used for passing arguments to parameters:

— Passing Arguments By Reference

5-10

MARRC75KR07091E Rev D 5. ROUTINES

If an argument is passed by reference, the corresponding parameter shares the same memory
location as the argument. Therefore, changing the value of the parameter changes the value
of the corresponding argument.

— Passing Arguments By Value
If an argument is passed by value, a temporary copy of the argument is passed to the routine.

The corresponding parameter uses this temporary copy. Changing the parameter does not
affect the original argument.

* Constant and expression arguments are always passed to the routine by value. Variables are
normally passed by reference. The following variable arguments, however, are passed by value:

— Port array variables

— INTEGER variables passed to REAL parameters

— BYTE and SHORT arguments passed to INTEGER or REAL parameters
— System variables with read only (RO) access

— Positional parameters that need to be converted

* While variable arguments are normally passed by reference, you can pass them by value by
enclosing the variable identifier in parentheses. The parentheses, in effect, turn the variable
into an expression.

* PATH, FILE, and vision variables can not be passed by value. ARRAY elements (indexed form
of an ARRAY variable) can be passed by value, but entire ARRAY variables cannot.

Passing Variable Arguments shows a routine that affects the argument being passed to it differently
depending on how the variable argument is passed.

Passing Variable Arguments
PROGRAM reference

VAR arg : INTEGER
ROUTINE test (param : INTEGER)
BEGIN
param = param * 3
WRITE (’'value of param:’, param, CR)
END test
BEGIN
arg = 5
test ((arg)) --arg passed to param by wvalue
WRITE ('value of arg:’, arg, CR)
test (arg) --arg passed to param by reference
WRITE ('value of arg:’, arg, CR)

END reference

The output from the program in Passing Variable Arguments is as follows:
value of param: 15

5-11

5. ROUTINES MARRC75KR07091E Rev D
value of arg: 5
value of param: 15
value of arg: 15

If the routine calls from Passing Variable Arguments were made in reverse order, first passing arg
by reference using "test(arg)" and then passing it by value using " test ((arg))," the output would
be affected as follows:

value
value
value
value

of param: 15
of arg: 15
of param: 45
of arg: 15

* To pass a variable as a parameter to a KAREL routine you can use one of two methods:

— You can specify the name of the variable in the parameter list. For example,

o If

other_rtn(param_var) passes the variable param_var to the routine other_rtn. To write
this statement, you have to know the name of the variable to be passed.

You can use BYNAME. The BYNAME feature allows a program to pass as a parameter to a
routine a variable whose name is contained in a string. For example, if the string variables
prog_name and var_name contain the name of a program and variable the operator has
entered, this variable is passed to a routine using this syntax:

other_rtn(BY NAME(prog_name,var_name, entry))

Refer to Appendix A for more information about BYNAME.

a function routine returns an ARRAY, a call to this function cannot be used as an argument to

another routine. If an incorrect pass is attempted, a translation error is detected.

Correct Passage of an ARRAY shows the correct use of an ARRAY passed between two function
routines.

Correct Passage of an ARRAY
PROGRAM correct

VAR a : ARRAY[8] of INTEGER
ROUTINE rtn _ary : ARRAY of INTEGER FROM util prog
ROUTINE print ary(arg : ARRAY of INTEGER)
VAR i1 : INTEGER
BEGIN
FOR 1 = 1 to ARRAY LEN(arg) DO
WRITE (axrg[i], cr)
ENDFOR
END print ary
BEGIN
a = rtn _ary
print ary(a)

5-12

MARRC75KR07091E Rev D 5. ROUTINES

END correct

Incorrect Passage of an ARRAY shows the incorrect use of an ARRAY passed between two function
routines.

Incorrect Passage of an ARRAY
PROGRAM wrong
ROUTINE rtn_ary : ARRAY of INTEGER FROM util prog
ROUTINE print ary(arg : ARRAY of INTEGER)
VAR i : INTEGER
BEGIN
FOR 1 = 1 to ARRAY_LEN(arg) DO
WRITE (arg[i], cr)
ENDFOR
END print ary
BEGIN
print ary(rtn ary)
END wrong

See Also: ARRAY LEN Built-In Function, Appendix A , STR_LEN Built-In Function, Appendix
A, Appendix E , "Syntax Diagrams

5.1.6 Stack Usage

When a program is executed, a stack of 300 words is allocated unless you specify a stack size. The
stack is allocated from available user RAM.

Stack usage can be calculated as follows:

* Each call (or function reference) uses at least five words of stack.

* In addition, for each parameter and local variable in the routine, additional space on the stack is
used, depending on the variable or parameter type as shown in Table 5-1 .

Table 5-1. Stack Usage

Type Parameter Passed by | Parameter Passed by | Local Variable
Reference Value

BOOLEAN 1 2 1

ARRAY OF BOOLEAN not allowed 1 + array size

ARRAY OF BYTE 1 not allowed 1 + (array size)/4

5-13

5. ROUTINES MARRC75KR07091E Rev D

Table 5-1. Stack Usage (Cont’d)

Type Parameter Passed by | Parameter Passed by | Local Variable
Reference Value

CAM_SETUP 1 not allowed not allowed

ARRAY OF CAM_SETUP not allowed not allowed

CONFIG 1 2 1

ARRAY OF CONFIG not allowed 1 + array size

INTEGER 1 2 1

ARRAY OF INTEGER not allowed 1 + array size

FILE 1 not allowed not allowed

ARRAY OF FILE not allowed not allowed

JOINTPOS 2 12 10

ARRAY OF JOINTPOS 1 not allowed 1+ 10 * array size

JOINTPOSH1 2 4 2

ARRAY OF JOINTPOS1 1 not allowed 1+ 2 * array size

JOINTPOS2 2 5 3

ARRAY OF JOINTPOS2 1 not allowed 1+ 3 * array size

JOINTPOS3 2 6 4

ARRAY OF JOINTPOS3 1 not allowed 1+ 4 * array size

JOINTPOS4 2 7 5

ARRAY OF JOINTPOS4 1 not allowed 1+ 5 * array size

JOINTPOS5 2 8 6

ARRAY OF JOINTPOS5 1 not allowed 1+ 6 * array size

JOINTPOS6 2 9 7

ARRAY OF JOINTPOS6 1 not allowed 1+ 7 * array size

JOINTPOS7 2 10 8

ARRAY OF JOINTPOS7 1 not allowed 1+ 8 * array size

JOINTPOSS8 2 11 9

ARRAY OF JOINTPOSS8 1 not allowed 1+ 9 * array size

JOINTPOS9 2 12 10

ARRAY OF JOINTPOS9 1 not allowed 1+ 10 * array size

MODEL 1 not allowed not allowed

ARRAY OF MODEL 1 not allowed not allowed

PATH 2 not allowed not allowed

POSITION 2 16 14

ARRAY OF POSITION 1 not allowed 1+ 14 * array size

5-14

MARRC75KR07091E Rev D

5. ROUTINES

Table 5-1. Stack Usage (Cont’d)

Type Parameter Passed by | Parameter Passed by | Local Variable
Reference Value

REAL 1 2 1

ARRAY OF REAL 1 not allowed 1 + array size

ARRAY OF SHORT 1 not allowed 1 + (array size)/2

STRING 2 2 + (string (string length+2)/4

ARRAY OF STRING 1 length+2)/4not allowed 1+((string length+2)
*array size)/4

VECTOR 1 4 3

ARRAY OF VECTOR 1 not allowed 1+ 3 * array size

VIS_PROCESS 1 not allowed not allowed

ARRAY OF VIS_PROCESS 1 not allowed not allowed

XYZWPR 2 10 8

ARRAY OF XYZWPR 1 not allowed 1+ 8 * array size

XYZWPREXT 2 13 11

ARRAY OF XYZWPREX 1 not allowed 1+ 11 * array size

ARRAY [m,n] OF some_type 1 not allowed m(ele size/4 * n + 1)+1

ARRAY [I,m,n] OF some_type 1 not allowed I(m(ele size/4 * n + 1)+1)+1

5.2 BUILT- IN ROUTINES

The KAREL language includes predefined routines referred to as KAREL built-in routines, or
built-ins. Predefined routines can be either procedure or function built-ins. They are provided as a
programming convenience and perform commonly needed services.

Many of the built-ins return a status parameter that signifies an error if not equal to 0. The error
returned can be any of the error codes defined in the application-specific FANUC Robotics Setup and
Operations Manual . These errors can be posted to the error log and displayed on the error line by
calling the POST_ERR built-in routine with the returned status parameter.

Table A—7 is a summary list of all the predefined built-in routines included in the KAREL language.
A detailed description of all the KAREL built-in routines is provided in Appendix A .

See Also: Appendix A , which lists optional KAREL built-ins and where they are documented.

5-15

5. ROUTINES

MARRC75KR07091E Rev D

Table 5-2. KAREL Built—In Routine Summary

Category Identifier

Byname CALL_PROG CURR_PROG PROG_LIST
CALL_PROGLIN FILE_LIST VAR_INFO

VAR_LIST

Data Acquisition DAQ_CHECKP DAQ_START DAQ_UNREG
DAQ_REGPIPE DAQ_STOP DAQ_WRITE

Error Code Handling ERR_DATA POST_ERR POST_ERR_L

File and Device Operation | CHECK_NAME MOUNT_DEV XML_ADDTAG
COMPARE_FILE MOVE_FILE XML_GETDATA
COPY_FILE PRINT_FILE XML_REMTAG
DELETE_FILE PURGE_DEV XML_SCAN
DISMOUNT_DEV RENAME_FILE XML_SETVAR
DOSFILE_INF
FORMAT_DEV

Serial 1/O, File Usage BYTES_AHEAD IO_STATUS SET_FILE_ATR
BYTES_LEFT MSG_CONNECT SET_FILE_POS
CLR_IO_STAT MSG_DISCO SET_PORT_ATR
GET_FILE_POS MSG_PING VOL_SPACE
GET_PORT_ATR PIPE_CONFIG

Process I/O Setup

CLR_PORT_SIM
GET_PORT_ASG
GET_PORT_CMT
GET_PORT_MOD

GET_PORT_SIM
GET_PORT_VAL
|IO_MOD_TYPE

SET_PORT_ASG

SET_PORT_CMT
SET_PORT_MOD
SET_PORT_SIM
SET_PORT_VAL

KCL Operation KCL KCL_NO_WAIT KCL_STATUS

Memory Operation CLEAR PROG_BACKUP RENAME_VARS
CREATE_VAR PROG_CLEAR SAVE
LOAD PROG_RESTORE SAVE_DRAM
LOAD_STATUS RENAME_VAR

Mirror MIRROR

Motion and Program CNCL_STP_MTN MOTION_CTL RESET

Control

Multi-programming ABORT_TASK PAUSE_TASK SEMA_COUNT
CLEAR_SEMA PEND_SEMA SET_TSK_ATTR
CONT_TASK POST_SEMA SET_TSK_NAME
GET_TSK_INFO RUN_TASK UNLOCK_GROUP
LOCK_GROUP

Path Operation

APPEND_NODE
COPY_PATH

DELETE_NODE
INSERT_NODE

NODE_SIZE
PATH_LEN

5-16

MARRC75KR07091E Rev D

5. ROUTINES

Table 5-2. KAREL Built—In Routine Summary (Cont’'d)

Category

Identifier

Personal Computer

ADD_BYNAMEPC

ADD_REALPC

SEND_DATAPC

Communications ADD_INTPC ADD_STRINGPC SEND_EVENTPC
Position CHECK_EPOS FRAME POS
CNV_JPOS_REL IN_RANGE POS2JOINT
CNV_REL_JPOS J_IN_RANGE SET_PERCH
CURPOS JOINT2POS UNPOS
CURJPOS
Queue Manager APPEND_QUEUE GET_QUEUE INSERT_QUEUE
COPY_QUEUE INIT_QUEUE
DELETE_QUEUE MODIFY_QUEUE
Register Operation CLR_POS_REG GET_SREG_CMT SET_POS_REG
GET_JPOS_REG GET_STR_REG SET_PREG_CMT
GET_POS_REG POS REG_TYPE SET_REAL_REG
GET_PREG_CMT SET EPOS REG SET_REG_CMT
GET_REG SET_INT_REG SET_SREG_CMT
GET_REG_CMT SET_JPOS_REG SET_STR_REG
String Operation CNV_CNF_STRG CNV_STR_CONF STR_LEN
CNV_CONF_STR CNV_STR_INT SUB_STR
CNV_INT_STR CNV_STR_REAL
CNV_REAL_STR
System ABS COS ROUND
ACOS EXP SET_VAR
ARRAY_LEN GET_VAR SIN
ASIN INDEX SQRT
ATAN2 INV TAN
BYNAME LN TRUNC
CHR ORD UNINIT
Time-of-Day Operation CNV_STR_TIME GET_TIME GET_USEC_TIM
CNV_TIME_STR GET_USEC_SUB SET_TIME
TPE Program AVL_POS_NUM GET_POS_FRM SET_ATTR_PRG
CLOSE_TPE GET_POS_TPE SET_EPOS_TPE
COPY_TPE GET_POS_TYP SET_JPOS_TPE
CREATE_TPE GET_TPE_CMT SET _POS_TPE
DEL_INST_TPE GET_TPE_PRM SET_TPE_CMT
GET_ATTR_PRG OPEN_TPE SET_TRNS_TPE
GET_JPOS_TPE SELECT_TPE

Translate

TRANSLATE

5-17

5. ROUTINES

MARRC75KR07091E Rev D

Table 5-2. KAREL Built—In Routine Summary (Cont’'d)

Category Identifier

User Interface ACT_SCREEN DET_WINDOW INI_DYN_DISS
ADD_DICT DISCTRL_ALPH INIT_TBL
ATT_WINDOW_D DISCTRL_FORM POP_KEY_RD
ATT_WINDOW_S DISCTRL_LIST PUSH_KEY_RD
CHECK_DICT DISCTRL_PLMN READ_DICT
CNC_DYN_DISB DISCTRL_SBMN READ_DICT_V
CNC_DYN_DISE DISCTRL_TBL READ_KB
CNC_DYN_DISI FORCE_SPMENU REMOVE_DICT
CNC_DYN_DISP INI_DYN_DISB SET_CURSOR
CNC_DYN_DISR INI_DYN_DISE SET_LANG
CNC_DYN_DISS INI_DYN_DISI WRITE_DICT
DEF_SCREEN INI_DYN_DISP WRITE_DICT_V
DEF_WINDOW INI_DYN_DISR

Vector APPROACH ORIENT

Vision Operation V_CAM_CALIB V_INIT_QUEUE V_START_VTRK
V_GET_OFFSET V_RALC_QUEUE V_STOP_VTRK
V_GET_PASSFL V_RUN_FIND VREG_FND_POS
V_GET_QUEUE V_SET_REF VREG_OFFSET

5-18

Chapter 6

CONDITION HANDLERS

Chapter 6 CONDITION HANDLERS oottt ea e e s a s ean 6-1
6.1 CONDITION HANDLER OPERATIONS ..ouitiiiiii et eee e s s e e e e 6-3
6.1.1 Global Condition HaNAIErSiuiiieiiiiiiiiiin e e 6-3
6.2 CONDITIONS ittt e e e s e e s e s e s s s e ransenransansansanns 6—6
L0225 R = o o A (o I @0 o o 11§ o 1P 6—7
6.2.2 Relational CONITIONS uieiiiiiiieiiiiieiiir e s s e era s ra e s s enrenens 6-7
6.2.3 System and Program Event ConditioNSc.cooevuiiiiiiiiniieeiieee e eee e 6-8
L0 T Y O 1 10\ T 6-11
6.3.1 ASSIGNMENT ACLIONS ovueiiiiiiiii e e e e e e e e rennaas 6-11
6.3.2 MOotion Related ACLIONS .uueuieiiiieiiiiiieie e e s s s e e s e ea s e snseneares 6-13
6.3.3 ROULINE Call ACTIONS 1iniiiiiiiiiiicii e e s e s s ea s s s saes 6-13
6.3.4 MiSCEllaNEOUS ACLIONS .iuiiiiiiiiiiiiii it s s e rra s s e rares 6-14

6. CONDITION HANDLERS

MARRC75KR07091E Rev D

The condition handler feature of the KAREL language allows a program to respond to external
conditions more efficiently than conventional program control structures allow.

These condition handlers, also known as Global condition handlers, allow specified conditions to
be monitored in parallel with normal program execution and, if the conditions occur, corresponding

actions to be taken in response.

For a condition handler to be monitored, it must be defined first and then enabled. Disabling a
condition handler removes it from the group being scanned. Purging condition handlers deletes

their definition.

Table 6-1 lists the conditions that can be monitored by condition handlers.

Table 6-1. Conditions

port_id[n] ERRORI[N]
NOT port_id[n] EVENT[n]
port_id[n]+ ABORT
port_id[n]- PAUSE
operand = operand CONTINUE

operand <> operand

SEMAPHORE[N]

operand < operand

operand <= operand

operand > operand

operand >= operand

Table 6-2 lists the actions that can be taken.

Table 6-2. Actions

variable = expression NOABORT

port_id[n] = expression NOMESSAGE

STOP NOPAUSE

CANCEL ENABLE CONDITIONI[n]
RESUME DISABLE CONDITIONI[N]
HOLD PULSE DOUT[n] FOR t
UNHOLD UNPAUSE

routine_name ABORT

SIGNAL EVENT[n] CONTINUE

MARRC75KR07091E Rev D 6. CONDITION HANDLERS

Table 6-2. Actions (Cont'd)

PAUSE

SIGNAL SEMAPHORE[nN]

6.1 CONDITION HANDLER OPERATIONS

Table 63 summarizes condition handler operations.

Table 6-3. Condition Handler Operations

OPERATION GLOBAL CONDITION HANDLER

Define CONDITION[n]:<WITH $SCAN_TIME = n>.
WHEN conditions DO actions
ENDCONDITION

Enable ENABLE CONDITIONIn] (statement or action)
Disable DISABLE CONDITION[n] (statement or action) or conditions satisfied
Purge PURGE CONDITIONIn] (statement), program terminated

6.1.1 Global Condition Handlers

Global condition handlers are defined by executing a CONDITION statement in the executable
section of a program. The definition specifies conditions/actions pairs. The following rules apply
to global condition handlers.

* Each global condition handler is referenced throughout the program by a specified number, from
1 to 1000. If a condition handler with the specified number was previously defined, it must be
purged before it is replaced by the new one.

* The conditions/action s pairs of a global condition handler are specified in the WHEN clauses
of a CONDITION statement. All WHEN clauses for a condition handler are enabled, disabled,
and purged together.

* The condition list represents a list of conditions to be monitored when the condition handler is
scanned.

* By default, each global condition handler is scanned at a rate based on the value of
$SCR.$cond_time. If the “WITH $SCAN_TIME = n” clause is used in a CONDITION

statement, the condition will be scanned roughly every “n” milliseconds. The actual interval
between the scans is determined as shown in Table 64 .

6-3

6. CONDITION HANDLERS

MARRC75KR07091E Rev D

Table 6-4.

Interval Between Global Condition Handler Scans

e

Interval Between Scans

n <= $COND_TIME

$COND_TIME

$COND_TIME < n <= (2 * $COND_TIME)

(2 * $COND_TIME)

(2 * $COND_TIME) < n <= (4 * $COND_TIME)

(4 * $COND_TIME)

(4 * $COND_TIME) < n <= (8 * $COND_TIME)

(8 * $COND_TIME)

(8 * $COND_TIME) < n <= (16 * $COND_TIME)

(16 * $COND_TIME)

(16 * $COND_TIME) < n <= (32 * $COND_TIME)

(32 * $COND_TIME)

(32 * $COND_TIME) < n <= (64 * $COND_TIME)

(64 * $COND_TIME)

(64 * $COND_TIME) < n <= (128 * $COND_TIME)

(128 * $COND_TIME)

(128 * $COND_TIME) < n <= (256 * $COND_TIME)

(256 * $COND_TIME)

(256 * $COND_TIME) < n

(512 * $COND_TIME)

* Multiple conditions must all be separated by the AND operator or the OR operator. Mixing of

AND and OR is not allowed.

* If AND is used, all of the conditions of a single WHEN clause must be satisfied simultaneously
for the condition handler to be triggered.

* If OR is used, the actions are triggered when any of the conditions are TRUE.

The action list represents a list of actions to be taken when the corresponding conditions of the
WHEN clause are simultaneously satisfied.

Multiple actions must be separated by a comma or a new line.

Global Condition Handler Definitions shows three examples of defining global condition handlers.

See Also: $SCR.$cond time System Variable, FANUC Robotics Software Reference Manual
$SCAN_TIME Condition Handler Qualifier, FANUC Robotics Software Reference Manual

Global Condition Handler Definitions

CONDITION [1] :

1

--defines condition handler number

WHEN DIN[1] DO DOUT[1l] = TRUE --triggered if any one
WHEN DIN[2] DO DOUT[2] = TRUE --of the WHEN clauses
WHEN DIN[3] DO DOUT[3] = TRUE --ig satisfied
ENDCONDITION
CONDITIONI[2] : --defines condition handler number 2

WHEN PAUSE DO
AOUT [speed _out] = 0
DOUT [pause_light] =
ENABLE CONDITION [2]

--one condition triggers
--multiple actions
TRUE
--enables this condition

MARRC75KR07091E Rev D 6. CONDITION HANDLERS

ENDCONDITION --handler again
CONDITION[3] :
WHEN DIN[1] AND DIN[2] AND DIN[3] DO --multiple

DOUT [1] = TRUE --conditions separated by AND;

DOUT [2] = TRUE --all three conditions must be

DOUT [3] = TRUE --satisfied at the same time
ENDCONDITION

* You can enable, disable, and purge global condition handlers as needed throughout the program.
Whenever a condition handler is triggered, it is automatically disabled, unless an ENABLE action
is included in the action list. (See condition handler 2 in Global Condition Handler Definitions .)

— The ENABLE statement or action enables the specified condition handler. The condition
handler will be scanned during the next scan operation and will continue to be scanned
until it is disabled.

— The DISABLE statement or action removes the specified condition handler from the group
of scanned condition handlers. The condition handler remains defined and can be enabled
again with the ENABLE statement or action.

— The PURGE statement deletes the definition of the specified condition handler.

* ENABLE, DISABLE, and PURGE have no effect if the specified condition handler is not
defined. If the specified condition handler is already enabled, ENABLE has no effect; if it is
already disabled, DISABLE has no effect.

Using Global Condition Handlers shows examples of enabling, disabling, and purging global
condition handlers.

Using Global Condition Handlers

CONDITION[1] : --defines condition handler number 1
WHEN line_stop = TRUE DO DOUT[1] = FALSE
ENDCONDITION
CONDITIONI[2] : --defines condition handler number 2
WHEN line go = TRUE DO
DOUT[1] = TRUE, ENABLE CONDITION [1]
ENDCONDITION
ENABLE CONDITIONI[2] --condition handler 2 is enabled

IF ready THEN line go = TRUE; ENDIF

--If ready is TRUE condition handler 2 is triggered (and
--disabled) and condition handler 1 is enabled.
--Otherwise, condition handler 2 is not triggered (and is
--still enabled), condition handler 1 is not yet enabled,
--and the next two statements will have no effect.
DISABLE CONDITIONI[1]

ENABLE CONDITIONI([2]

6. CONDITION HANDLERS

MARRC75KR07091E Rev D

6.2

ENABLE CONDITION[1] --condition handler 1 is enabled

line stop = TRUE --triggers (and disables) condition handler 1
PURGE CONDITION[2] --definition of condition handler 2 deleted
ENABLE CONDITION[2] --no longer has any effect

line go = TRUE --no longer a monitored condition

CONDITIONS

One or more conditions are specified in the condition list of a WHEN or UNTIL clause, defining the
conditions portion of a conditions/actions pair. Conditions can be

* States - which remain satisfied as long as the state exists. Examples of states are DIN[1] and
(VAR > VAR2).

* Events - which are satisfied only at the instant the event occurs. Examples of events are
ERROR[n], DIN[n]+, and PAUSE.

The following rules apply to system and program event conditions:

* After a condition handler is enabled, the specified conditions are monitored.

— Ifall of the conditions of an AND, WHEN, or UNTIL clause are simultaneously satisfied, the
condition handler is triggered and corresponding actions are performed.

— If all of the conditions of an OR, WHEN, or UNTIL clause are satisfied, the condition
handler is triggered and corresponding actions are performed.

* Event conditions very rarely occur simultaneously. Therefore, you should never use AND
between two event conditions in a single WHEN or UNTIL clause because, both conditions
will not be satisfied simultaneously.

* While many conditions are similar in form to BOOLEAN expressions in KAREL, and are
similar in meaning, only the forms listed in this section, not general BOOLEAN expressions,
are permitted.

* Expressions are permitted within an EVAL clause. More general expressions may be used on
the right side of comparison conditions, by enclosing the expression in an EVAL clause: EVAL
(expression). However, expressions in an EVAL clause are evaluated when the condition handler
is defined. They are not evaluated dynamically.

The value of an EVAL clause expression must be INTEGER, REAL, or BOOLEAN.

See Also: EVAL Clause, Appendix A .

6-6

MARRC75KR07091E Rev D 6. CONDITION HANDLERS

6.2.1 Port_Id Conditions

Port_id conditions are used to monitor digital port signals. Port_id must be one of the predefined
BOOLEAN port array identifiers (DIN, DOUT, OPIN, OPOUT, TPIN, TPOUT, RDI, RDO, WDI, or
WDO). The value of n specifies the port array signal to be monitored. Table 6-5 lists the available
port_id conditions.

Table 6-5. Port_Id Conditions

CONDITION

SATISFIED (TRUE) WHEN

port_id[n]

Digital port n is TRUE. (state)

NOT port_id[n]

Digital port n is FALSE. (state)

port_id[n]+

Digital port n changes from FALSE to TRUE. (event)

port_id[n]-

Digital port n changes from TRUE to FALSE. (event)

For the state conditions, port_id[n] and NOT port_id[n] , the port is tested during every scan.
The following conditions would be satisfied if, during a scan, DIN[1] was TRUE and DIN[2]
was FALSE:

WHEN DIN[1] AND NOT DIN[2] DO .

Note that an input signal should remain ON or OFF for the minimum scan time to ensure that
its state is detected.

For the event condition port_id[n]+ , the initial port value is tested when the condition handler is
enabled. Each scan tests for the specified change in the signal. The change must occur while the
condition handler is enabled.

The following condition would only be satisfied if, while the condition handler was enabled,
DIN[1] changed from TRUE to FALSE since the last scan.

WHEN DIN[1]- DO .

6.2.2 Relational Conditions

Relational conditions are used to test the relationship between two operands. They are satisfied
when the specified relationship is TRUE. Relational conditions are state conditions, meaning the
relationship is tested during every scan. Table 66 lists the relational conditions.

6—7

6. CONDITION HANDLERS MARRC75KR07091E Rev D

Table 6-6. Relational Conditions

CONDITION SATISFIED (TRUE) WHEN

operand = operand Relationship specified is TRUE. Operands on the left can be a port array
element, referenced as port_id[n], or a variable. Operands on the right can
be a variable, a constant, or an EVAL clause. (state)

operand < > operand

operand < operand

operand < = operand

operand > operand

operand > = operand

The following rules apply to relational conditions:

* Both operands must be of the same data type and can only be of type INTEGER, REAL, or
BOOLEAN. (As in other situations, INTEGER constants can be used where REAL values are
required, and will be treated as REAL values.)

* The operand on the left side of the condition can be any of the port array signals, a user-defined
variable, a static variable, or a system variable that can be read by a KAREL program.

* The operand on the right side of the condition can be a user-defined variable, a static variable, a
system variable that can be read by a KAREL program, any constant, or an EVAL clause. For

example:

WHEN DIN[1] = ON DO . . . --port_id and constant
WHEN flag = TRUE DO . . . --variable and constant
WHEN AIN[1] >= temp DO . . . --port_id and variable
WHEN flag 1 <> flag 2 DO . . . --variable and variable

WHEN AIN[1] <= EVAL(temp * scale) DO
--port_id and EVAL clause

WHEN dif > EVAL(max count - count) DO
--variable and EVAL clause

* The EVAL clause allows you to include expressions in relational conditions. However, it is
evaluated only when the condition handler is defined. The expression in the EVAL clause cannot
include any routine calls.

See Also: EVAL Clause, Appendix A .

6.2.3 System and Program Event Conditions

System and program event conditions are used to monitor system and program generated events. The
specified condition is satisfied only if the event occurs when the condition handler is enabled.

MARRC75KR07091E Rev D 6. CONDITION HANDLERS

Enabled condition handlers containing ERROR, EVENT, PAUSE, ABORT, POWERUP, or
CONTINUE conditions are scanned only if the specified type of event occurs. For example, an
enabled condition handler containing an ERROR condition will be scanned only when an error occurs.
Table 67 lists the available system and program event conditions.

Table 6-7. System and Program Event Conditions

CONDITION SATISFIED (TRUE) WHEN

ERROR [n] The error specified by n is reached or, if n = *, any error occurs. (event)
EVENT[n] The event specified by n is signaled. (event)

ABORT The program is aborted. (event)

PAUSE The program is paused. (event)

CONTINUE The program is continued. (event)

POWERUP The program is continued. (event)

SEMAPHORE[n]

The value of the semaphore specified by n is posted.

The following rules apply to these conditions:

ERROR Condition

The ERROR condition can be used to monitor the occurrence of a particular error by specifying
the error code for that error. For example, ERROR[15018] monitors the occurrence of the error
represented by the error code 15018.

The error codes are listed in the following format:

ffcce (decimal)

where

ff represents the facility code of the error
ccc represents the error code within the specified facility

For example, 15018 is MOTN-018, which is "Position not reachable." The facility code is 15
and the error code is 018. Refer to the FANUC Robotics Error Code Manual for a complete
listing of error codes.

The ERROR condition can also be used to monitor the occurrence of any error by specifying an
asterisk (*), the wildcard character, in place of a specific error code. For example, ERROR[*]
monitors the occurrence of any error.

The ERROR condition is satisfied only for the scan performed when the error was detected. The
error is not remembered in subsequent scans.

6-9

6. CONDITION HANDLERS MARRC75KR07091E Rev D

EVENT Condition

* The EVENT condition monitors the occurrence of the specified program event. The SIGNAL
statement or action in a program indicates that an event has occurred.

* The EVENT condition is satisfied only for the scan performed when the event was signaled. The
event is not remembered in subsequent scans.

ABORT Condition

* The ABORT condition monitors the aborting of program execution. If an ABORT occurs, the
corresponding actions are performed. However, if one of the actions is a routine call, the routine
will not be executed because program execution has been aborted.

If an ABORT condition is used in a condition handler all actions, except routine calls, will be
performed even though the program has aborted.

PAUSE Condition

* The PAUSE condition monitors the pausing of program execution. If one of the corresponding
actions is a routine call, it is also necessary to specify a NOPAUSE or UNPAUSE action.

CONTINUE Condition

* The CONTINUE condition monitors the resumption of program execution. If program execution
is paused, the CONTINUE action, the KCL> CONTINUE command, a CYCLE START from
the operator panel, or the teach pendant FWD key will continue program execution and satisfy
the CONTINUE condition.

POWERUP Condition

* The POWERUP condition monitors the resumption of program execution after a power failure
recovery. The controller must be able to recover successfully from a power failure before the
program can be resumed.

SEMAPHORE Condition
* The SEMAPHORE condition monitors the specified semaphore. The CLEAR SEMA built-in can
be used to set the semaphore value to 0. The POST SEMA built-in or the SIGNAL SEMAPHORE
action can be used to increment the semaphore value and satisfy the SEMAPHORE condition.
See Also: In Appendix A :
ABORT Condition
CONTINUE Condition

ERROR Condition

6-10

MARRC75KR07091E Rev D 6. CONDITION HANDLERS

EVENT Condition
PAUSE Condition
POWERUP Condition
SEMAPHORE Condition

application-specific FANUC Rabotics Setup and Operations Manual for error codes. FANUC Robotics
Error Code Manual.

6.3 ACTIONS

Actions are specified in the action list of a WHEN clause. Actions can be

* Specially defined KAREL actions that are executed in parallel with the program

* A routine call, which will interrupt program execution

When the conditions of a condition handler are satisfied, the condition handler is triggered. The
actions corresponding to the satisfied conditions are performed in the sequence in which they appear
in the condition handler definition, except for routine calls. Routines are executed after all of the
other actions have been performed.

Note that, although many of the actions are similar in form to KAREL statements and the effects are
similar to corresponding KAREL statements, the actions are not executable statements. Only the

forms indicated in this section are permitted.

See Also: Actions and Statements, Appendix A .

6.3.1 Assignment Actions

The available assignment actions are given in Table 6-8 .

6-11

6. CONDITION HANDLERS MARRC75KR07091E Rev D

Table 6-8. Assignment Actions

ACTION RESULT

The value of the expression is assigned to the variable. The
expression can be a variable, a constant, a port array element, or
an EVAL clause.

variable = expression

port_id[n] = expression The value of the expression is assigned to the port array element
referenced by n. The expression can be a variable, a constant, or

an EVAL clause.

The following rules apply to assignment actions:

* The assignment actions, “variable = expression” and “port_id[n] = expression” can be used to
assign values to variables and port array elements.

— The variable must be either a user-defined variable, a static variable, or a system variable
without a minimum/maximum range and that can be written to by a KAREL program.

— The port array, if on the left, must be an output port array that can be set by a KAREL program.

— The expression can be a user-defined variable, a static variable. a system variable that can be
read by a KAREL program, any constant, or an EVAL clause.

* Ifavariable is on the left side of the assignment, the expression can also be a port array element.
However, you cannot assign a port array element to a port array element directly. For example,
the first assignment shown is invalid, but the next two are valid:

DOUT[1] = DOUT[2] --invalid action
port var = DOUT[2] --valid action, where port var is a variable
DOUT[1] = port _var --another valid action, which if executed

--after port var = DOUT[2], would in effect
--assign DOUT[2] to DOUT[1]

* [f the expression is a variable, it must be a global variable. The value used is the current value
of the variable at the time the action is taken, not when the condition handler is defined. If the
expression is an EVAL clause, it is evaluated when the condition handler is defined and that

value is assigned when the action is taken.

* Both sides of the assignment action must be of the same data type. An INTEGER or EVAL
clause is permitted on the right side of the assignment with an INTEGER, REAL, or BOOLEAN
on the left.

6-12

MARRC75KR07091E Rev D 6. CONDITION HANDLERS

6.3.2 Motion Related Actions

Motion related actions affect the current motion and might affect subsequent motions. They are
given in Table 6-9 .

Table 6-9. Motion Related Actions

ACTION RESULT

STOP Current motion is stopped.

RESUME The last stopped motion is resumed.

CANCEL Current motion is canceled.

HOLD Current motion is held. Subsequent motions are not started.
UNHOLD Held motion is released.

The following rules apply to motion related actions:
¢ [fa STOP is issued, the current motion and any queued motions are pushed as a set on a stopped
motion stack. If no motion is in progress, an empty entry is pushed on the stack.

* [fa RESUME is issued, the newest stopped motion set on the stopped motion stack is queued
for execution.

* [fa CANCEL is issued, the motion currently in progress is canceled. Any motions queued to
the same group behind the current motion are also canceled. If no motion is in progress, the
action has no effect.

* [fa HOLD is issued, the current motion is held and subsequent motions are prevented from
starting. The UNHOLD action releases held motion.

6.3.3 Routine Call Actions

Routine call actions, or interrupt routines, are specified by
<WITH $PRIORITY = n> routine_name
The following restrictions apply to routine call actions or interrupt routines:

* The interrupt routine cannot have parameters and must be a procedure (not a function).

* [f the interrupted program is using READ statements, the interrupt routine cannot read from the
same file variable. If an interrupted program is reading and the interrupt routine attempts a read
from the same file variable, the program is aborted.

* When an interrupt routine is started, the interrupted KAREL program is suspended until the
routine returns.

6-13

6. CONDITION HANDLERS MARRC75KR07091E Rev D

* Interrupt routines, like KAREL programs, can be interrupted by other routines. The maximum
depth of interruption is limited only by stack memory size.

* Routines are started in the sequence in which they appear in the condition handler definition, but
since they interrupt each other, they will actually execute in reverse order.

* Interrupts can be prioritized so that certain interrupt routines cannot be interrupted by others. The
$PRIORITY condition handler qualifier can be used to set the priority of execution for an indicated
routine action. $SPRIORITY values must be 0-255 where the lower value represents a lower
priority. If a low priority routine is called while a routine with a higher priority is running, it will
be executed only when the higher priority routine has completed. If SPRIORITY is not specified,
the routine’s priority will default to the current value of the SPRIORITY system variable.

See Also: WITH Clause, Appendix A, “KAREL Language Alphabetical Description," for more
information on $PRIORITY

6.3.4 Miscellaneous Actions

Table 6-10 describes other allowable actions.

Table 6-10. Miscellaneous Actions

ACTION RESULT
SIGNAL EVENT[n] The event specified by n is signaled.
NOMESSAGE The error message that otherwise would have been generated is not

displayed or logged.

NOPAUSE Program execution is resumed if the program was paused, or is prevented
from pausing.

NOABORT Program execution is resumed if the program was aborted, or is prevented
from aborting.

ABORT Program execution is aborted.

CONTINUE Program execution is continued.

PAUSE Program execution is paused.

SIGNAL SEMAPHORE([n] Specified semaphore is signaled.

ENABLE CONDITION[N] Condition handler n is enabled.

DISABLE CONDITIONIn] Condition handler n is disabled.

PULSE DOUT[n] FOR t Specified port n is pulsed for the time interval t (in milliseconds).
UNPAUSE If a routine_name is specified as an action, but program execution is

paused, execution is resumed only for the duration of the routine and then
is paused again.

6-14

MARRC75KR07091E Rev D 6. CONDITION HANDLERS

See Also: Appendix A for more information on each miscellaneous action.

6-15

Chapter 7

FILE INPUT/OUTPUT OPERATIONS

Chapter 7 FILE INPUT/OUTPUT OPERATIONS ..o e 7-1
A R © VA QY 1 PP 7-3
7.2 FILE VARIABLES ..ot e 7-3
7.3 OPEN FILE STATEMENT oiriiiiiiiiiieeee e cee e e e e e e e e e ee e e eee e e eenn e e eees 7-4
7.3.1 Setting File and Port AttribULES ...cceeiiee e 7-5
7.3.2 File StINQ wuiiriiiiiiii e e e e s s e e e e r e e aarnnas 7-10
7.3.3 USAQE SEIIMNQ tuiiriieiiiiiiiieiiiei et e s s s s s s s s s s e s s e s s e s e s rneesnsennsnnnns 7-11

7.4 CLOSE FILE STATEMENT ..ot ee e e e e e e e e e e 7-14

7.5 READ STATEMENT ittt s s s 7-14

7.6 WRITE STATEMENT oeniiiiiiiie et e e e e e e e e e e r e e e e e nnn e e 7-16

7.7 INPUT/OUTPUT BUFFERcoiiiiiiiiiiiiiiiicii i 7-17

7.8 FORMATTING TEXT (ASCI) INPUT/OQUTPUT ..oovniieiieeeieeee e eeee s 7-18
7.8.1 Formatting INTEGER Data It€mMS ...c..iiiuiiiieiiiieeeeeeeee e eee e ee e 7-19
7.8.2 Formatting REAL Data ItemMSiiviiiiiiiiiiiciinr s es e s e r e anenaas 7-22
7.8.3 Formatting BOOLEAN Data IteMSccvuiiiiiiiiiiiiiiiseecee s s r e e e 7-25
7.8.4 Formatting STRING Data It€MSccvuiiiiiiiiiiiiinrrrr e e eesennas 7-27
7.8.5 Formatting VECTOR Data IteMSoveiieiiiiieeieeeece e 7-31
7.8.6 Formatting Positional Data ItEMSccuoiiiiiiiiiiiiie e 7-32

7.9 FORMATTING BINARY INPUT/OUTPUT ..ccvviiiiiiiiiiiiiiiinscensne e 7-34
7.9.1 Formatting INTEGER Data It€mMSc.vvviiriiiiiiienrinseereenee e s e srnersennsennns 7-35
7.9.2 Formatting REAL Data ItemsS ...coveeiiiiiieeeeie e e 7-36
7.9.3 Formatting BOOLEAN Data ItemMsScouuiiiiiiiiiiiicee e 7-36
7.9.4 Formatting STRING Data ItEMSccvuiiiiiiei e e e e 7-36
7.9.5 Formatting VECTOR Data ltEMSciuiiiiiiiiiiiiiieiins e s e a e eaaas 7-37
7.9.6 Formatting POSITION Data Ilt€mMS ...c.cvvuiiiiiiiiiiniieri e e a e enaas 7-37
7.9.7 Formatting XYZWPR Data IteMS ...ccuivviiriiiiiinirnseeneesessen e sesenassnnsennns 7-37
7.9.8 Formatting XYZWPREXT Data ItEMSuoiiiiiiiiiiieiieeeceeeeeee e eenaes 7-38
7.9.9 Formatting JOINTPOS Data ItEMS ...cccvuuiiiiieiieieeee e 7-38

7-1

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

7.10 USER INTERFACE TIPS ittt e s e s e sa e sasennes 7-38
7.10.1 USER Menu on the Teach Pendantc.cocvieviiiiriiiiiiieiriire e rrenen e e re e e 7-38
7.10.2 USER Menu 0N the CRT/KB ettt e e e e s e e e e 7-40

7-2

MARRC75KR07091E Rev D

7. FILE INPUT/OUTPUT OPERATIONS

/7.1 OVERVIEW

The KAREL language facilities allow you to perform the following serial input/output (I/O)

operations:

File variables are used to indicate the file, communication port, or device on which a serial I/O

Open data files and serial communication ports using the OPEN FILE Statement
Close data files and serial communication ports using the CLOSE FILE Statement
Read from files, communication ports, and user interface devices using the READ Statement

Write to files, communication ports, and user interface devices using the WRITE Statement

Cancel read or write operations

operation is to be performed.

Buffers are used to hold data that has not yet been transmitted. The use of data items in READ and
WRITE statements and their format specifiers depend on whether the data is text (ASCII) or binary,
and on the data type.

7.2 FILE VARIABLES

A KAREL program can perform serial I/O operations on the following:

A file variable is used to indicate the file, communication port, or device on which you want to

¢ Data files residing in the KAREL file system

* Serial communication ports associated with connectors on the KAREL controller

* User interface devices including the CRT/KB and teach pendant

perform a particular serial I/O operation.

Table 7—1 lists the predefined file variables for user interface devices. These file variables are already
opened and can be used in the READ or WRITE statements.

Table 7-1. Predefined File Variables

IDENTIFIER DEVICE OPERATIONS
TPFUNC* Teach pendant function key line Both
TPDISPLAY* Teach pendant KAREL display Both
TPPROMPT* Teach pendant prompt line Both
TPERROR Teach pendant message line Write
TPSTATUS* Teach pendant status line Write

7-3

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

Table 7-1. Predefined File Variables (Cont’d)

CRTFUNC* CRT/KB function key line Both
INPUT CRT/KB keyboard Read
OUTPUT* CRT/KB KAREL screen Write
CRTPROMPT* CRT/KB prompt line Both
CRTERROR CRT/KB message line Write
CRTSTATUS* CRT/KB status line Write

* Only displayed when teach pendant or CRT is in the user menu.

A file variable can be specified in a KAREL statement as a FILE variable. Using FILE in a KAREL
Program shows an example of declaring a FILE variable and of using FILE in the executable section
of a program.

Using FILE in a KAREL Program

PROGRAM lun_prog
VAR
curnt_file : FILE
ROUTINE input data(file spec:FILE) FROM util prog

BEGIN
OPEN FILE curnt file ('RW’,’text.dt’) --variable FILE
input data(curnt file) --file variable argument

WRITE TPERROR (’'Error has occurred’)
END lun prog

Sharing FILE variables between programs is allowed as long as a single task is executing the
programs. Sharing file variables between tasks is not allowed.

7.3 OPEN FILE STATEMENT

The OPEN FILE statement associates the file variable with a particular data file or communication
port.

The association remains in effect until the file is closed, either explicitly by a CLOSE FILE statement
or implicitly when program execution terminates or is aborted.

The OPEN FILE statement specifies how the file is to be used (usage string), and which file or
port (file string) is used.

MARRC75KR07091E Rev D

7. FILE INPUT/OUTPUT OPERATIONS

7.3.1 Setting File and Port Attributes

Attributes specify the details of operation of a serial port, or KAREL FILE variable. The

SET PORT_ATR and SET _FILE ATR built-ins are used to set these attributes. SET_FILE ATR
must be called before the FILE is opened. SET PORT ATR can be called before or after the FILE
that is using a serial port, is opened.

Table 7-2 lists each attribute type, its function and whether the attribute is intended for use with
teach pendant and CRT/KB devices, serial ports, data files, or pipes. Refer to Appendix A for more

information.
Table 7-2. Predefined Attribute Types
ATTRIBUTE TYPE FUNCTION SET_PORT_ATR OR TP/ CRT | SERIAL | DATA | PIPES | SOCKET
SET_FILE_ATR PORTS | FILES MESSAGING
ATR_BAUD Baud rate SET _PORT_ATR not used valid not not not used
used used
ATR_DBITS Data length SET_PORT_ATR not used | valid not not not used
used used
ATR_EOL End of line SET_FILE_ATR not used | valid not valid valid
used
ATR_FIELD Field SET_FILE_ATR valid valid valid valid valid
ATR_IA Interactively SET_FILE_ATR valid valid valid valid valid
write
ATR_MODEM Modem line SET _PORT_ATR not used valid not not not used
used used
ATR_PARITY Parity SET_PORT_ATR not used | valid not not not used
used used
ATR_PASSALL Passall SET_FILE_ATR valid valid not valid valid
used
ATR_READAHD Read ahead SET_PORT_ATR not used valid not not not used
buffer used used
ATR_REVERSE Reverse SET_FILE_ATR not used | valid valid valid valid
transfer
ATR_SBITS Stop bits SET_PORT_ATR not used | valid not not not used
used used
ATR_TIMEOUT Timeout SET_FILE_ATR valid valid not valid valid
used
ATR_UF Unformatted SET_FILE_ATR not used valid valid valid valid
transfer

7. FILE INPUT/OUTPUT OPERATIONS

MARRC75KR07091E Rev D

Table 7-2. Predefined Attribute Types (Cont’d)

ATTRIBUTE TYPE FUNCTION SET_PORT_ATR OR TP/ CRT | SERIAL | DATA | PIPES | SOCKET
SET_FILE_ATR PORTS | FILES MESSAGING
ATR_XONOFF XON/XOFF SET_PORT_ATR not used | valid not not not used
used used
ATR_PIPOVADV Pipe SET_FILE_ATR not used not not valid valid
Overflow used used
ATR_PIPWAIT Wait for data | SET_FILE_ATR not used not not valid valid
used used
Table 7-3 contains detailed explanations of each attribute.
Table 7-3. Attribute Values
Attribute Type Description Valid Device Usage Mode | Valid Values Default Value
ATR_BAUD The baud rate of a serial PORT Read/ Write BAUD_9600: BAUD_9600
Baud rate port can be changed to 9600 baud
one of the valid attribute BAUD_4800:
values. 4800 baud
BAUD_2400:
2400 baud
BAUD_1200:
1200 baud
ATR_DBITS If specified, the data PORT Read/ Write DBITS_5: 5 bits | DBITS_8
Data length length for a serial port is DBITS_6: 6 bits
changed to the specified DBITS_7: 7 bits
attribute values. DBITS_8: 8 bits
ATR_EOL If specified, the serial port | PORT Read/ Write | Any ASCII 13 (carriage return)
End of line is changed to terminate character code
read when the specified
attribute value. Refer to
Appendix D , for a listing
of valid attribute values.
ATR_FIELD If specified, the amount TP/CRT, Read only Ignored Read data until
Field of data read depends on PORT, FILE terminator character
the format specifier in (EOL) appears
the READ statement, or
the default value of the
data type being read. If
not specified, the data is
read until the terminator
character (EOL) appears.

MARRC75KR07091E Rev D

7. FILE INPUT/OUTPUT OPERATIONS

Table 7-3. Attribute Values (Cont’d)

Attribute Type

Description

Valid Device

Usage Mode

Valid Values

Default Value

ATR_IA
Interactively write

If specified, the contents
of the buffer are output
when each write operation
to the buffer is complete.
(Interactive)

If not specified, the
contents of the buffer
are output only when the
buffer becomes full or
when CR is specified.
The size of the output
buffer is 256 bytes. (Not
interactive)

TP/CRT,
PORT, FILE

Write only

Ignored

TP/CRT is
interactive, PORT,
FILE are not
interactive

ATR_MODEM
Modem line

Refer to "Modem Line"
section that follows for
information.

ATR_PARITY
Parity

The parity for a serial port
can be changed to one of
the valid attribute values.

PORT

Read/ Write

PARITY_NONE:
No parity
PARITY_ODD:
Odd parity
PARITY_EVEN:
Even parity

PARITY_NONE

ATR_PASSALL
Passall

If specified, input is read
without interpretation

or transaction. Since

the terminator character
(EOL) will not terminate
the read, the field attribute
automatically assumes
the “field” option.

TP/CRT, PORT

Read only

Ignored

Read only the
displayable keys
until enter key is
pressed

ATR_PIPOVADV

Configures the behavior of
the read when an overflow
occurs. By default the
behavior is to signal an
end of file (EOF) when the
overflow occurs.

PIPE

Read

The value must
be between 0
and the total
number of bytes
in the pipe. The
value will be
rounded up

to the nearest
binary record.

The value parameter
is either OVF_EOF
(sets the default
behavior) or the
number of bytes to
advance when an
overflow occurs.

7. FILE INPUT/OUTPUT OPERATIONS

MARRC75KR07091E Rev D

Table 7-3. Attribute Values (Cont’d)

port is changed to the
specified attribute value.

XF_USED: Used

Attribute Type Description Valid Device Usage Mode | Valid Values Default Value
ATR_PIPWAIT The read operation waits | PIPE Read WAIT_USED or | The default is
for data to arrive in the WAIT_NOTUSED]| snapshot which
pipe. means that the
system returns an
EOF when all the
data in the pipe has
been read.
ATR_READAHD The attribute value is PORT Read/ Write | any positive 1 (128 byte buffer)
Read Ahead Buffer | specified in units of 128 integer
bytes, and allocates a 1=128 bytes
read ahead buffer of the 2=256 bytes
indicated size. O=disable bytes
ATR_REVERSE The bytes will be PORT, FILE Read/ Write Ignored Not reverse transfer
Reverse transfer swapped.
ATR_SBITS This specifies the number | PORT Read/ Write SBITS_1:1 bit SBITS_1
Stop bits of stop bits for the serial SBITS_15: 1.5
port. bits
SBITS_2:2 bits
ATR_TIMEOUT If specified, an error willbe | TP/CRT, PORT | Read only Any integer 0 (external)
Timeout returned by IO_STATUS value (units are
if the read takes longer in msec)
than the specified attribute
value.
ATR_UF If specified, a binary PORT, FILE Read/ Write Ignored ASCII transfer
Unformatted transfer is performed.
transfer For read operations,
the terminator character
(EOL) will not terminate
the read, and therefore
automatically assumes
the “field” option. If not
specified, ASCII transfer
is performed.
ATR_XONOFF If specified, the PORT Read/ Write | XF_NOT_USED: | XF_USED
XON/XOFF XON/XOFF for a serial Not used

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

Modem line

Valid device : PORT

Usage mode : Read/Write

Default value : MD_NOT_USED: DSR, DTR, and RTS not used
Valid attribute values : MD NOT USED: DSR, DTR, and RTS not used
MD_USE DSR: DSR used

MD_NOUSE_DSR: DSR not used

MD_USE DTR: DTR used

MD_NOUSE _DTR: DTR not used

MD_USE RTS: RTS used

MD_ NOUSE_RTS: RTS not used

* This attribute controls the operation of the modem line. The control is based on the following
binary mask, where the flag bits are used to indicate what bit value you are changing.

RTS value | DSRvalue | DTR value RTS flag DSR flag DTR flag

— RTS (request to send) and DTR (data terminal ready) are both outputs.
— DSR (data set ready) is an input.
* Set the modem line attribute by doing the following.

— To indicate RTS is used (HIGH/ON): status = SET _PORT_ATR (port name, ATR_ MODEM,
MD_USE RTS)

— To indicate RTS is NOT used (LOW/OFF):status = SET PORT ATR (port name,
ATR_MODEM, MD NOUSE _RTS)

— To indicate RTS is used (HIGH/ON) and DTR is not used (LOW/OFF):status =
SET PORT_ATR (port_name, ATR_MODEM, MD USE_RTS or MD_NOUSE_DTR)

* The following examples demonstrate how to use the returned attribute value from the
GET _PORT ATR built-in.

status = GET_PORT ATR (port, ATR MODEM, atr_ value)

— To determine if DTR is used:

IF ((atr value AND MD USE DTR) = MD USE DTR) THEN

7-9

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

write ('DTR 1s 1in use’,cCr)
ENDIF

— To determine if DTR is not used (LOW/OFF)

IF (atr_value AND MD USE DTR) = MD NOUSE DTR) THEN
write ('DTR is not in use’, cr)
ENDIF

For more information on GET PORT_ATR Built-in, refer to Appendix A .

7.3.2 File String

The file string in an OPEN FILE statement specifies a data file name and type, or a communication
port.

* The OPEN FILE statement associates the data file or port specified by the file string with the file
variable. For example, OPEN FILE file var (‘RO’, ‘data_file.dt’) associates the data file called
‘data_file.dt” with the file file var.

* If the file string is enclosed in single quotes, it is treated as a literal. Otherwise, it is treated
as a STRING variable or constant identifier.

* When specifying a data file, you must include both a file name and a valid KAREL file type (any
1, 2, or 3 character file extension).

* The following STRING values can be used to associate file variables with serial communication
ports on the KAREL controller. Defaults for are:

— 'P2:" - Debug console connector on the outside of the operator panel
— 'P3:" - RS-232-C, JD17 connector on the Main CPU board (CRT/KB)
— P4’ - RS-422, JD17 connector on the Main CPU board

— 'KB:tp kb’ - Input from numeric keypad on the teach pendant. TPDISPLAY or TPPROMPT
are generally used, so OPEN FILE is not required.

— 'KB:cr kb’ - Input from CRT/KB. INPUT or CRTPROMPT are generally used, so OPEN
FILE is not required.

— "WD:window_name' - Writes to a window.

— 'WD:window_name</keyboard_name>" , where keyboard_name is either "tpkb’ or
crkb’ - Writes to the specified window. Inputs are from the TP keypad (tpkb) or the CRT
keyboard (crkb). Inputs will be echoed in the specified window.

7-10

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

See Also: Chapter 9 FILE SYSTEM , for a description of file names and file types.

7.3.3 Usage String

The usage string in an OPEN FILE statement indicates how the file is to be used.

* [t is composed of one usage specifier.

* Itapplies only to the file specified by the OPEN FILE statement and has no effect on other FILEs.

* [t must be enclosed in single quotes if it is expressed as a literal.

* It can be expressed as a variable or a constant.

Table 74 lists each usage specifier, its function, and the devices or ports for which it is intended.

“TP/CRT” indicates teach pendant and CRT/KB.
“Ports” indicates serial ports.

“Files” indicates data files.

“Pipes” indicates pipe devices.

“Valid” indicates a permissible use.

“No use” indicates a permissible use that might have unpredictable side effects.

Table 7-4. Usage Specifiers

SPECIFIER

FUNCTION TP/CRT PORTS FILES PIPES

RO

valid valid valid valid

— Permits only read
operations

— Sets file position to
beginning of file

— File must already exist

7-11

7. FILE INPUT/OUTPUT OPERATIONS

MARRC75KR07091E Rev D

Table 7-4. Usage Specifiers (Cont’d)

RW

Rewrites over existing
data in a file, deleting
existing data

Permits read and
write operations

Sets file position to
beginning of file

File will be created if it
does not exist

valid

valid

valid
No use on
FRx:

valid

AP

Appends to end of
existing data

Permits read and
write (First operation
must be a write.)

Sets file position to
end of file

File will be created if it
does not exist

no use

valid

valid -RAM
disk* no use
on FRXx:

valid

ub

Updates from
beginning of existing
data. (Number of
characters to be
written must equal
number of characters
to be replaced.)

Overwrites the
existing data with
the new data

Permits read and
write

Sets file position to
beginning of existing
file

no use

valid

valid -RAM
disk* no use
on FRXx:

no use

7-12

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

* AP and UD specifiers can only be used with uncompressed files on the RAM disk. Refer to Chapter
9 FILE SYSTEM , for more information on the RAM disk and Pipe devices.

File String Examples shows a program that includes examples of various file strings in OPEN FILE
statements. The CONST and VAR sections are included to illustrate how file and port strings are
declared.

File String Examples

PROGRAM open_luns

CONST
part file ¢ =’parts.dt’ --data file STRING constant
comm_port = 'P3:’ --port STRING constant

VAR

file varl : FILE
file var2 : FILE
file var3 : FILE
file var4 : FILE
file var5 : FILE
file varl2 : FILE
temp file : STRING[19]

--a STRING size of 19 accommodates 4 character device names,
--12 character file names, the period, and 2 character,
--file types.

port var : STRING[3]

BEGIN

--literal file name and type

OPEN FILE file varl (’'RO’,’log file.dt'’)
--constant specifying parts.dt

OPEN FILE file var2 ('RW’, part file c)
--variable specifying new file dt

temp file = 'RD:new file.dt’

OPEN FILE file var3 (’'AP’, temp file)
--literal communication port

OPEN FILE file var4 ('RW’, 'P2:')
--constant specifying CO:

OPEN FILE file var5 (’'RW’, comm port)
--variable specifying C3:

port_var = 'C3:’

OPEN FILE file varl2 ('RW’, port_ var)

END open_luns

See Also: Chapter 9 FILE SYSTEM , for more information on the available storage devices

Chapter 14 INPUT/OUTPUT SYSTEM , for more information on the CO: and C3: ports

7-13

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

7.4 CLOSE FILE STATEMENT

The CLOSE FILE statement is used to break the association between a specified file variable and its
data file or communication port. It accomplishes two objectives:

* Any buffered data is written to the file or port.

¢ The file variable is freed for another use.

CLOSE FILE Example shows a program that includes an example of using the CLOSE FILE

statement in a FOR loop, where several files are opened, read, and then closed. The same file variable
1s used for each file.

CLOSE FILE Example

PROGRAM read files
VAR

file var : FILE

file names : ARRAY[10] OF STRING[15]

loop count : INTEGER

loop file : STRING([15]
ROUTINE read ops(file spec:FILE) FROM util prog
--performs some read operations

ROUTINE get names (names:ARRAY OF STRING) FROM util prog
--gets file names and types
BEGIN

get names(file names)

FOR loop count = 1 TO 10 DO
loop file = file names[loop_ count]
OPEN FILE file var ('RO’, loop file)

read ops(file var) --call routine for read operations
CLOSE FILE file var

ENDFOR END read files

See Also: CLOSE FILE Statement, Appendix A .

10_STATUS Built-In Function, Appendix A for a description of errors.

7.5 READ STATEMENT

The READ statement is used to read one or more specified data items from the indicated device. The
data items are listed as part of the READ statement. The following rules apply to the READ statement:

7-14

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

The OPEN FILE statement must be used to associate the file variable with the file opened in
the statement before any read operations can be performed unless one of the predefined files is
used (refer to Table 7-1).

If the file variable is omitted from the READ statement, then TPDISPLAY is used as the default.
Using the %CRTDEVICE directive will change the default to INPUT (CRT input window).

Format specifiers can be used to control the amount of data that is read for each data item. The
effect of format specifiers depends on the data type of the item being read and on whether the data
is in text (ASCII) or binary (unformatted) form.

When the READ statement is executed (for ASCII files), data is read beginning with the next
nonblank input character and ending with the last character before the next blank, end of line, or
end of file for all input types except STRING.

With STRING values, the input field begins with the next character and continues to the end of
the line or end of the file. If a STRING is read from the same line following a nonstring field, any
separating blanks are included in the STRING.

ARRAY variables must be read element by element; they cannot be read in unsubscripted form.
Frequently, they are read using a READ statement in a FOR loop.

PATH variables can be specified as follows in a READ statement, where “path name” is a PATH
variable and “n” and “m” are PATH node indexes:

— path_name : specifies that the entire path, starting with a header and including all of the
nodes and their associated data, is to be read. The header consists of the path length and the
associated data description in effect when the PATH was written.

— path_name [0] : specifies that only the header is to be read. The path header consists of
the path length and the associated data description in effect when the PATH was written.
Nodes are deleted or created to make the path the correct length, and all new nodes are set
uninitialized.

— path _name [n] : specifies that data is to be read into node[n] from the current file position.
The value of n must be in the range from 0 to the length of the PATH.

— path name [n .. m] : specifies that data is to be read into nodes n through m. The value of n
must be in the range from 0 to the length of the PATH and can be less than, equal to, or greater
than the value of m. The value of m must be in the range from 1 to the length of the PATH.

If an error occurs while reading node n (where n is greater than 0), it is handled as follows:

If n> original path length (prior to the read operation), the nodes from n to the new path length
are set uninitialized.

If n <= original path length , the nodes from n to the original path length remain as they were prior
to the read operation and any new nodes (greater than the original path length) are set uninitialized.

* [fthe associated data description that is read from the PATH does not agree with the current user

associated data, the read operation is terminated and the path will remain as it was prior to the
read operation. The IO _STATUS built-in function will return an error if this occurs.

7-15

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

* PATH data must be read in binary (unformatted) form.

READ Statement Examples shows several examples of the READ statement using a variety of file
variables and data lists.

READ Statement Examples

READ (next part_no) --uses default TPDISPLAY
OPEN FILE file var ('RO’,’data file.dt’)
READ file var (color, style, option)
READ host line (color, style, option, CR)
FOR 1 = 1 TO array size DO
READ data (data_arrayl[il)
ENDFOR

If any errors occur during input, the variable being read and all subsequent variables up to CR in the
data list are set uninitialized unless the file variable is open to a window device.

If reading from a window device, an error message is displayed indicating the bad data item and you
are prompted to enter a replacement for the invalid data_item and to reenter all subsequent items.

The built-in function I0_STATUS can be used to determine the success or failure (and the reason
for the failure) of a READ operation.

See Also: READ Statement, Appendix A .
10_STATUS Built-In Functions, Appendix A for a list of I/O error messages

%CRTDEVICE Translator Directive, Appendix A .

7.6 WRITE STATEMENT

The WRITE statement is used to write one or more specified data items to the indicated device. The
data items are listed as part of the WRITE statement. The following rules apply to the WRITE
statement:

* The OPEN FILE statement must be used to associate the file variable with the file opened in
the statement before any write operations can be performed unless one of the predefined files is
used (refer to Table 7-1).

¢ [f the file variable is omitted from the WRITE statement, then TPDISPLAY is used as the default.
* Using the %CRTDEVICE directive will change the default to OUTPUT (CRT output window).

7-16

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

* Format specifiers can be used to control the format of data that is written for each data_item. The
effect of format specifiers depends on the data type of the item being written and on whether the
data is in text (ASCII) or binary (unformatted) form.

* ARRAY variables must be written element by element; they cannot be written in unsubscripted
form. Frequently, they are written using a WRITE statement in a FOR loop.

* PATH variables can be specified as follows in a WRITE statement, where “path name” is
a PATH variable and “n” and “m” are PATH node indexes:

— path_name : specifies that the entire path is to be written, starting with a header that provides
the path length and associated data table, and followed by all of the nodes, including their
associated data.

— path_name [0] : specifies that only the header is to be written. The path header consists of the
path length and a copy of the associated data table.

— path _name [n] : specifies that node[n] is to be written.

— path _name [n .. m] : specifies that nodes n through m are to be written. The value of n must
be in the range from 0 to the length of the PATH and can be less than, equal to, or greater than
the value of m. The value of m must be in the range from 1 to the length of the PATH.

* PATH data must be written in binary (unformatted) form.

WRITE Statement Examples shows several examples of the WRITE statement using a variety of
file variables and data lists.

WRITE Statement Examples

WRITE TPPROMPT (’'Press T.P. key "GO" when ready’)

WRITE TPFUNC (' GO RECD QUIT BACK1 FWD-1")

WRITE log file (part no:5, good count:5, bad count:5, operator:3,
CR)

WRITE ('This is line 1’, CR, 'This is line 2’, CR)

--uses default TPDISPLAY

FOR 1 = 1 TO array size DO

WRITE data (data_arrayl[il)
ENDFOR

See Also: WRITE Statement, Appendix A .

I0_STATUS Built-In Functions, Appendix A .

7.7 INPUT/OUTPUT BUFFER

An area of RAM, called a buffer , is used to hold up to 256 bytes of data that has not yet been
transmitted during a read or write operation.

7-17

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

Buffers are used by the READ and WRITE statements as follows:

* During the execution of a READ statement, if more data was read from the file than required by

the READ statement, the remaining data is kept in a buffer for subsequent read operations. For
example, if you enter more data in a keyboard input line than is required to satisfy the READ
statement the extra data is kept in a buffer.

e Ifa WRITE statement is executed to a non-interactive file and the last data item was not a CR, the

data is left in a buffer until a subsequent WRITE either specifies a CR or the buffer is filled.

* The total data that can be processed in a single READ or WRITE statement is limited to 127 bytes.

7.8 FORMATTING TEXT (ASCII) INPUT/OUTPUT

This section explains the format specifiers used to read and write ASCII (formatted) text for each
data type.

The following rules apply to formatting data types:

* For text files, data items in READ and WRITE statements can be of any of the simple data types

(INTEGER, REAL, BOOLEAN, and STRING).

Positional and VECTOR variables cannot be read from text files but can be used in WRITE
statements.

ARRAY variables cannot be read or written in unsubscripted form. The elements of an ARRAY
are read or written in the format that corresponds to the data type of the ARRAY.

PATH variables cannot be read or written.

Some formats and data combinations are not read in the same manner as they were written or
become invalid if read with the same format.

The amount of data that is read or written can be controlled using zero, one, or two format
specifiers for each data item in a READ or WRITE statement. Each format specifier, represented
as an INTEGER literal, is preceded by double colons (::).

Table 7-5 summarizes the input format specifiers that can be used with the data items in a READ
statement. The default format of each data type and the format specifiers that can affect each
data type are explained in Section 7.8.1 , through Section 7.8.6 .

Table 7-5. Text (ASCIl) Input Format Specifiers

DATA TYPE 1ST FORMAT SPECIFIER 2ND FORMAT SPECIFIER
INTEGER Total number of characters read Number base in range 2 - 16
REAL Total number of characters read Ignored

7-18

MARRC75KR07091E Rev D

7. FILE INPUT/OUTPUT OPERATIONS

Table 7-5. Text (ASCII) Input Format Specifiers (Cont’d)

DATA TYPE 1ST FORMAT SPECIFIER 2ND FORMAT SPECIFIER
BOOLEAN Total number of characters read Ignored
STRING Total number of characters read 0 - unquoted STRING

2 - quoted STRING

Table 7-6 summarizes the output format specifiers that can be used with the data items in a WRITE

statement. The default format of each data type and the format specifiers that can affect each data type

are explained in Section 7.8.1 through Section 7.8.6 .

Table 7-6. Text (ASCII) Output Format Specifiers

DATA TYPE 1ST FORMAT SPECIFIER 2ND FORMAT SPECIFIER
INTEGER Total number of characters written Number base in range 2-16
REAL Total number of characters written Number of digits to the right of decimal
point to be written
If negative, uses scientific notation
BOOLEAN Total number of characters written 0 - Left justified
1 - Right justified
STRING Total number of characters written 0 - Left justified
1 - Right justified
2 - Left justified in quotes (leading blank)
3 - Right justified n quotes (leading blank)
VECTOR Uses REAL format for each component Uses REAL format for each component
POSITION Uses REAL format for each component Uses REAL format for each component
XYZWPR Uses REAL format for each component Uses REAL format for each component
XYZWPREXT Uses REAL format for each component Uses REAL format for each component
JOINTPOSN Uses REAL format for each component Uses REAL format for each component

7.8.1 Formatting INTEGER Data Items

INTEGER data items in a READ statement are processed as follows:

Default: Read as a decimal (base 10) INTEGER, starting with the next nonblank character on the
input line and continuing until a blank or end of line is encountered. If the characters read do not
form a valid INTEGER, the read operation fails.

7-19

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

First Format Specifier: Indicates the total number of characters to be read. The input field must be
entirely on the current input line and can include leading, but not trailing, blanks.

Second Format Specifier: Indicates the number base used for the input and must be in the range of 2
(binary) to 16 (hexadecimal).

For bases over 10, the letters A, B, C, D, E, and F are used as input for the digits with values 10, 11,
12, 13, 14, and 15, respectively. Lowercase letters are accepted.

Table 7-7 lists examples of INTEGER input data items and their format specifiers. The input data
and the resulting value of the INTEGER data items are included in the table. (The symbol [eol]
indicates end of line.)

Table 7-7. Examples of INTEGER Input Data Iltems

DATA ITEM INPUT DATA RESULT
int_var -2[eol] int_var = -2
int_var 20 30 ... int_var = 20
int_var::3 10000 int_var = 100
int_var::5::2 10101 int_var = 21
(base 2 input) (base 10 value)

int_var 1.00 format error

(invalid INTEGER)
int_var::5 100[eol] format error

(too few digits)

INTEGER data items in a WRITE statement are formatted as follows:

Default: Written as a decimal (base 10) INTEGER using the required number of digits and one
leading blank. A minus sign precedes the digits if the INTEGER is a negative value.

First Format Specifier: Indicates the total number of characters to be written, including blanks and
minus sign. If the format specifier is larger than required for the data, leading blanks are added. If it is
smaller than required, the field is extended as required.

The specifier must be in the range of 1 to 127 for a file or 1 to 126 for other output devices.

Second Format Specifier: Indicates the number base used for the output and must be in the range of
2 (binary) to 16 (hexadecimal).

If a number base other than 10 (decimal) is specified, the number of characters specified in the first
format specifier (minus one for the leading blank) is written, with leading zeros added if needed.

For bases over 10, the letters A, B, C, D, E, and F are used as input for the digits with values 10,
11, 12, 13, 14, and 15, respectively.

7-20

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

Table 7-8 lists examples of INTEGER output data items and their format specifiers. The output
values of the INTEGER data items are also included in the table. Double quotes are used in the table
as delimiters to show leading blanks; however, double quotes are not written by KAREL programs.

Table 7-8. Examples of INTEGER Output Data Iltems

DATA ITEM OUTPUT COMMENT
123 Leading blank
123
-5 Leading blank
-5
123::6 Right justified (leading blanks)
123
-123::2 Expanded as required
n
-123
1024::0::16 Hexadecimal output
n
400

7-21

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

Table 7-8. Examples of INTEGER Output Data Items (Cont’d)

DATA ITEM OUTPUT COMMENT
5::6::2 Binary output (leading zeros)
00101
-1::9::116 Hexadecimal output
FFFFFFFF
n

7.8.2 Formatting REAL Data ltems

REAL data items in a READ statement are processed as follows:

Default: Read starting with the next nonblank character on the input line and continuing until a
blank or end of line is encountered.

Data can be supplied with or without a fractional part. The E used for scientific notation can be in
upper or lower case. If the characters do not form a valid REAL, the read operation fails.

First Format Specifier: Indicates the total number of characters to be read. The input field must be
entirely on the current input line and can include leading, but not trailing, blanks.

Second Format Specifier: Ignored for REAL data items.

Table 7-9 lists examples of REAL input data items and their format specifiers. The input data and the
resulting value of the REAL data items are included in the table. The symbol [eol] indicates end of
line and X indicates extraneous data on the input line.

7-22

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

Table 7-9. Examples of REAL Input Data ltems

DATA ITEM INPUT DATA RESULT

real_var 1[eol] 1.0

real_var 1.000[eol] 1.0

real_var 2.5 XX 2.50

real_var 1E5 XX 100000.0

real_var::7 2.5 XX format error (trailing blank)
real_var 1E format error (no exponent)
real_var::4 1E 2 format error (embedded blank)

REAL data items in a WRITE statement are formatted as follows:

Default: Written in scientific notation in the following form:
(blank)(msign)(d).(d)(d)(d)(d)(d)E(esign)(d)(d)

where:

(blank) is a single blank

(msign) is a minus sign, if required

(d) is a digit

(esign) is a plus or minus sign

First Format Specifier: Indicates the total number of characters to be written, including all the digits,
blanks, signs, and a decimal point. If the format specifier is larger than required for the data, leading

blanks are added. If it is smaller than required, the field is extended as required.

In the case of scientific notation, character length should be greater than (8 + 2nd format specifier)
to write the data completely.

The specifier must be in the range of 1 to 127 for a file or 1 to 126 for other output devices.

Second Format Specifier: Indicates the number of digits to be output to the right of the decimal
point, whether or not scientific notation is to be used.

The absolute value of the second format specifier indicates the number of digits to be output to the
right of the decimal point.

If the format specifier is positive, the data is displayed in fixed format (that is, without an exponent).
If it is negative, scientific notation is used.

7-23

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

Table 7-10 lists examples of REAL output data items and their format specifiers. The output values of
the REAL data items are also included in the table. Double quotes are used in the table as delimiters
to show leading blanks; however, double quotes are not written by KAREL programs.

Table 7-10. Examples of REAL Output Data Items

DATA ITEM OUTPUT COMMENT

123.0 Scientific notation (default format)

1.23000E+02

123.456789 Rounded to 5 digits in fractional part

1.23457E+02

.00123 Negative exponent

1.23000E-03

-1.00 Negative value

-1.00000E+00

-123.456::9 Field expanded

-1.234560E+02

123.456::12 Leading blank added

1.234560E+02

7-24

MARRC75KR07091E Rev D

7. FILE INPUT/OUTPUT OPERATIONS

Table 7-10. Examples of REAL Output Data Items (Cont’'d)

DATA ITEM OUTPUT COMMENT

123.456::9::2 Right justified and rounded
:.2 3.46

123.:12::-3 Scientific notation
l .230E+02

7.8.3 Formatting BOOLEAN Data Iltems

BOOLEAN data items in a READ statement are formatted as follows:

Default: Read starting with the next nonblank character on the input line and continuing until a
blank or end of line is encountered.

Valid input values for TRUE include TRUE, TRU, TR, T, and ON. Valid input values for FALSE
include FALSE, FALS, FAL, FA, F, OFF, and OF. If the characters read do not form a valid
BOOLEAN, the read operation fails.

First Format Specifier: Indicates the total number of characters to be read. The input field must be
entirely on the current input line and can include leading, but not trailing, blanks.

Second Format Specifier: Ignored for BOOLEAN data items.

Table 7-11 lists examples of BOOLEAN input data items and their format specifiers. The input data
and the resulting value of the BOOLEAN data items are included in the table. (The symbol [eol]
indicates end of line and X indicates extraneous data on the input line.)

7-25

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

Table 7-11. Examples of BOOLEAN Input Data ltems

DATA ITEM INPUT DATA RESULT

bool_var FALSE[eol] FALSE

bool_var FAL 3... FALSE

bool_var T[eol] TRUE

bool_var::1 FXX FALSE (only reads “ F”)
bool_var Oleol] format error (ambiguous)
bool_var 1.2[eol] format error (not BOOLEAN)
bool_var::3 F [eol] format error (trailing blanks)
bool_var::6 TRUE[eol] format error (not enough data)

BOOLEAN data items in a WRITE statement are formatted as follows:

Default: Written as either “TRUE” or “FALSE". (Double quotes are used in the table as delimiters
to show leading blanks; however, double quotes are not written by KAREL programs.)

First Format Specifier: Indicates the total number of characters to be written, including blanks (a
leading blank is always included). If the format specifier is larger than required for the data, trailing
blanks are added. If it is smaller than required, the field is truncated on the right.

The specifier must be in the range of 1 to 127 for a file or 1 to 126 for other output devices.

Second Format Specifier: Indicates whether the data is left or right justified. If the format specifier
is equal to 0, the output word is left justified in the output field with one leading blank, and trailing
blanks as required. If it is equal to 1, the output word is right justified in the output field, with
leading blanks as required.

Table 7-12 lists examples of BOOLEAN output data items and their format specifiers. The output
values of the BOOLEAN data items are also included in the table. Double quotes are used in the table
as delimiters to show leading blanks; however, double quotes are not written by KAREL programs.

7-26

MARRC75KR07091E Rev D

7. FILE INPUT/OUTPUT OPERATIONS

Table 7-12. Examples of BOOLEAN Output Data ltems

DATA ITEM OUTPUT COMMENT

FALSE Default includes a leading blank
]'-.:"ALSE

TRUE TRUE is shorter than FALSE
':.‘RUE
"

FALSE::8 Left justified (default)
]'-.:"ALSE
"

FALSE::8::1 Right justified
]'-.:"ALSE

TRUE::2 Truncated
r

7.8.4 Formatting STRING Data Items

STRING data items in a READ statement are formatted as follows:

Default: Read starting at the current position and continuing to the end of the line. If the length of the
data obtained is longer than the declared length of the STRING, the data is truncated on the right. If it
is shorter, the current length of the STRING is set to the actual length.

7-27

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

First Format Specifier: Indicates the total field length of the input data. If the field length is longer
than the declared length of the STRING, the input data is truncated on the right. If it is shorter, the
current length of the STRING is set to the specified field length.

Second Format Specifier: Indicates whether or not the input STRING is enclosed in single quotes. If
the format specifier is equal to 0, the input is not enclosed in quotes.

If it is equal to 2, the input must be enclosed in quotes. The input is scanned for the next nonblank
character. If the character is not a quote, the STRING is not valid and the read operation fails.

If the character is a quote, the remaining characters are scanned until another quote or the end of line
is found. If another quote is not found, the STRING is not valid and the read operation fails.

If both quotes are found, all of the characters between them are read into the STRING variable, unless
the declared length of the STRING is too short, in which case the data is truncated on the right.

Table 7—13 lists examples of STRING input data items and their format specifiers, where str_var
has been declared as a STRINGJ[5]. The input data and the resulting value of the STRING data
items are included in the table. The symbol [eol] indicates end of line and X indicates extraneous
data on the input line.

Table 7-13. Examples of STRING Input Data ltems
DATA ITEM INPUT DATA RESULT
str_var
ABC[eol] ABC
str_var
ABCDEFG [eol] ABCDE
(FG is read but the STRING is truncated to 5
characters)

7-28

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

Table 7-13. Examples of STRING Input Data Items (Cont’d)
DATA ITEM INPUT DATA RESULT
str_var
"ABC’ XX "AB
(blanks and quote are read as data)
str_var::0::2

"ABC’ XX "ABC’

(read ends with second quote)

STRING data items in a WRITE statement are formatted as follows:
Default: Content of the STRING is written with no trailing or leading blanks or quotes.

The STRING must not be over 127 bytes in length for files or 126 bytes in length for other output
devices. Otherwise, the program will be aborted with the “STRING TOO LONG” error.

First Format Specifier: Indicates the total number of characters to be written, including blanks. If
the format specifier is larger than required for the data, the data is left justified and trailing blanks are
added. If the format specifier is smaller than required, the STRING is truncated on the right.

The specifier must be in the range of 1 to 127 for a file or 1 to 126 for other output devices.

Second Format Specifier: Indicates whether the output is to be left or right justified and whether the
STRING is to be enclosed in quotes using the following values:

0 left justified, no quotes
1 right justified, no quotes
2 left justified, quotes

3 right justified, quotes

Quoted STRING values, even if left justified, are preceded by a blank. Unquoted STRING values are
not automatically preceded by a blank.

7-29

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

Table 7-14 lists examples of STRING output data items and their format specifiers. The output values
of the STRING data items are also included in the table. Double quotes are used in the table as
delimiters to show leading blanks; however, double quotes are not written by KAREL programs.

Table 7-14. Examples of STRING Output Data Items

DATA ITEM OUTPUT COMMENT

'ABC’ No leading blanks
ABC

'ABC’::2 Truncated on right
AB

'ABC’::8 Left justified
ABC

'ABC’::8::0 Same as previous
n
ABC

’ABC’::8::1 Right justified
n
ABC

'ABC’::8::2 Note leading blank
n
"ABC’

7-30

MARRC75KR07091E Rev D

Table 7-14. Examples of STRING Output Data Items (Cont’d)
DATA ITEM OUTPUT COMMENT
'ABC’::8::3 Right justified
"ABC’
'’ABC’::4::2 Truncated
I AI

Format specifiers for STRING data items can cause the truncation of the original STRING values
or the addition of trailing blanks when the values are read again.

If STRING values must be successively written and read, the following guidelines will help you
ensure that STRING values of varying lengths can be read back identically:

* The variable into which the STRING is being read must have a declared length at least as long as

the actual STRING that is being read, or truncation will occur.

* Some provision must be made to separate STRING values from preceding variables on the
same data line. One possibility is to write a * > (blank) between a STRING and the variable
that precedes it.

* [f format specifiers are not used in the read operation, write STRING values at the ends of their
respective data lines (that is, followed in the output list by a CR) because STRING variables
without format specifiers are read until the end of the line is reached.

* The most general way to write string values to a file and read them back is to use the format
::0::2 for both the read and write.

7.8.5 Formatting VECTOR Data Items

VECTOR data items cannot be read from text (ASCII) files. However, you can read three REAL
values and assign them to the elements of a VECTOR variable. VECTOR data items in a WRITE
statement are formatted as three REAL values on the same line.

Table 7-15 lists examples of VECTOR output data items and their format specifiers, where vect.x
= 1.0, vect.y= 2.0, vect.z = 3.0. The output values of the VECTOR data items are also included in

7-31

7. FILE INPUT/OUTPUT OPERATIONS

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

the table. Double quotes are used in the table as delimiters to show leading blanks; however, double
quotes are not written by KAREL programs.

See Also: Section 7.8.2 , “Formatting REAL Data Items,” for information on the default output
format and format specifiers used with REAL data items

Table 7-15. Examples of VECTOR Output Data ltems

DATA ITEM OUTPUT
vect

1 2. 3
vect::6::2

vect::12::-3

1.000E+00 2.000E+00 3.000E+00

7.8.6 Formatting Positional Data Items

Positional data items cannot be read from text (ASCII) files. However, you can read six REAL values
and a STRING value and assign them to the elements of an XYZWPR variable or use the POS
built-in function to compose a POSITION. The CNV_STR CONF built-in can be used to convert

a STRING to a CONFIG data type.

POSITION and XYZWPR data items in a WRITE statement are formatted in three lines of output.
The first line contains the location (x,y,z) component of the POSITION, the second line contains the
orientation (w,p,r), and the third line contains the configuration string.

The location and orientation components are formatted as six REAL values. The default format for
the REAL values in a POSITION is the default format for REAL(s). Refer to Section 7.8.2 .

The configuration string is not terminated with a CR, meaning you can follow it with other data
on the same line.

7-32

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

Table 7-16 lists examples of POSITION output data items and their format specifiers, where p =
P0OS(2.0,-4.0,8.0,0.0,90.0,0.0,config_var). The output values of the POSITION data items are also
included in the table. Double quotes are used in the table as delimiters to show leading blanks;
however, double quotes are not written by KAREL programs.

Table 7-16. Examples of POSITION Output Data Items (p = POS(2.0,-4.0,8.0,0.0,90.0,0.0,config_var))
DATA ITEM OUTPUT
p
2 -4. 8
0 9. 0
N, 127, , -1
p::7::2

2.00-4.00 8.00

0.0090.00 0.00

JOINTPOS data items in a WRITE statement are formatted similarly to POSITION types with three
values on one line.

See Also: Section 7.8.2 , for information on format specifiers used with REAL data items

7-33

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

POS Built-In Function, Appendix A .

7.9 FORMATTING BINARY INPUT/OUTPUT

This section explains the format specifier used in READ and WRITE statements to read and write
binary (unformatted) data for each data item. Binary input/output operations are sometimes referred to
as unformatted, as opposed to text (ASCII) input/output operations that are referred to as formatted.

The built-in SET _FILE ATR with the ATR _UF attribute is used to designate a file variable for binary
operations. If not specified, ASCII text operations will be used.

Data items in READ and WRITE statements can be any of the following data types for binary files:

INTEGER
REAL
BOOLEAN
STRING
VECTOR
POSITION
XYZWPR
XYZWPREXT
JOINTPOS

Vision and array variables cannot be read or written in unsubscripted form. The elements of an
ARRAY are read or written in the format that corresponds to the data type of the ARRAY.

Entire PATH variables can be read or written, or you can specify that only node[0] (containing the
PATH header), a specific node, or a range of nodes be read or written. Format specifiers have

no effect on PATH data. PATH data can be read or written only to a file and not to a serial port,
CRT/KB, or teach pendant.

Binary I/0O is preferred to text I/O when creating files that are to be read only by KAREL programs for
the following reasons:
* Positional, VECTOR, and PATH variables cannot be read directly from text input.

* Some formats and data combinations are not read in the same manner as they were written in
text files or they become invalid if read with the same format.

* Binary data is generally more compact, reducing both the file size and the I/O time.
* There is some inevitable loss of precision when converting from REAL data to its ASCII

representation and back.

Generally, no format specifiers need to be used with binary I/O. If this rule is followed, all input data
can be read exactly as it was before it was written.

7-34

MARRC75KR07091E Rev D

7. FILE INPUT/OUTPUT OPERATIONS

However, if large numbers of INTEGER values are to be written and their values are known to be
small, writing these with format specifiers reduces both storage space and I/O time.

For example, INTEGER values in the range of -128 to +127 require only one byte of storage space,
and INTEGER values in the range of -32768 to +32767 require two bytes of storage space. Writing
INTEGER values in these ranges with a first format specifier of 1 and 2, respectively, results in
reduced storage space and I/O time requirements, with no loss of significant digits.

Table 7—17 summarizes input and output format specifiers that can be used with the data items in
READ and WRITE statements. The default format of each data type is also included. Section 7.8.1
through Section 7.8.6 explain the effects of format specifiers on each data type in more detail.

See Also: SET FILE ATR Built-In Routine, Appendix A .

Table 7-17. Binary Input/Output Format Specifiers
DATA TYPE DEFAULT 1ST FORMAT SPECIFIER 2ND FORMAT SPECIFIER
INTEGER Four bytes read or written Specified number of least Ignored
significant bytes read or written,
starting with most significant (1-4)
REAL Four bytes read or written Ignored Ignored
BOOLEAN Four bytes read or written Specified number of least Ignored
significant bytes read or written,
starting with most significant (1-4)
STRING Current length of string (1 Number of bytes read or written Ignored
byte), followed by data bytes
VECTOR Three 4-byte REAL numbers | Ignored Ignored
read or written
POSITION 56 bytes read or written Ignored Ignored
XYZWPR 32 bytes read or written Ignored Ignored
XYZWPREXT 44 bytes read or written Ignored Ignored
JOINTPOSNh 4 + n*4 bytes read or written Ignored Ignored
PATH Depends on size of structure | Ignored Ignored

7.9.1 Formatting INTEGER Data Items

INTEGER data items in a READ or WRITE statement are formatted as follows:

Default: Four bytes of data are read or written starting with the most significant byte.

7-35

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

First Format Specifier: Indicates the number of least significant bytes of the INTEGER to read or
write, with the most significant of these read or written first. The sign of the most significant byte read
is extended to unread bytes. The format specifier must be in the range from 1 to 4.

For example, if an INTEGER is written with a format specifier of 2, bytes 3 and 4 (where byte 1 is the
most significant byte) will be written. There is no check for loss of significant bytes when INTEGER
values are formatted in binary I/O operations.

Note Formatting of INTEGER values can result in undetected loss of high order digits.

Second Format Specifier: Ignored for INTEGER data items.

7.9.2 Formatting REAL Data ltems

REAL data items in a READ or WRITE statement are formatted as follows:
Default: Four bytes of data are read or written starting with the most significant byte.
First Format Specifier: Ignored for REAL data items.

Second Format Specifier: Ignored for REAL data items.

7.9.3 Formatting BOOLEAN Data Items

BOOLEAN data items in a READ or WRITE statement are formatted as follows:

Default: Four bytes of data are read or written. In a read operation, the remainder of the word,
which is never used, is set to 0.

First Format Specifier: Indicates the number of least significant bytes of the BOOLEAN to read or
write, the most significant of these first. The format specifier must be in the range from 1 to 4. Since
BOOLEAN values are always 0 or 1, it is always safe to use a field width of 1.

Second Format Specifier: Ignored for BOOLEAN data items.

7.9.4 Formatting STRING Data Items

STRING data items in a READ or WRITE statement are formatted as follows:

Default: The current length of the STRING (not the declared length) is read or written as a single
byte, followed by the content of the STRING. STRING values written without format specifiers
have their lengths as part of the output, while STRING values written with format specifiers do not.

7-36

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

Likewise, if a STRING is read without a format specifier, the length is expected in the data, while if a
STRING is read with a format specifier, the length is not expected.

This means that, if you write and then read STRING data, you must make sure your use of format
specifiers is consistent.

First Format Specifier: Indicates the number of bytes to be read or written.

Second Format Specifier: Ignored for STRING data items.

In a read operation, if the first format specifier is greater than the declared length of the STRING, the
data is truncated on the right. If it is less than the declared length of the STRING, the current length of
the STRING is set to the number of bytes read.

In a write operation, if the first format specifier indicates a shorter field than the current length of

the STRING, the STRING data is truncated on the right. If it is longer than the current length of the
STRING, the output is padded on the right with blanks.

Writing STRING values with format specifiers can cause truncation of the original STRING values or
padding blanks on the end of the STRING values when reread.

7.9.5 Formatting VECTOR Data Items

VECTOR data items in a READ or WRITE statement are formatted as follows:
Default: Data is read or written as three 4-byte binary REAL numbers.
First Format Specifier: Ignored for VECTOR data items.

Second Format Specifier: Ignored for VECTOR data items.

7.9.6 Formatting POSITION Data Items

POSITION data items in a READ or WRITE statement are formatted as follows:

Default: Read or written in the internal format of the controller, which is 56 bytes long.

7.9.7 Formatting XYZWPR Data Iltems

XYZWPR data items in a READ or WRITE statement are formatted as follows:

Default: Read or written in the internal format of the controller, which is 32 bytes long.

7-37

7. FILE INPUT/OUTPUT OPERATIONS

MARRC75KR07091E Rev D

7.9.8 Formatting XYZWPREXT Data Items

XYZWPREXT data items in a READ or WRITE statement are formatted as follows:

Default: Read or written in the internal format of the controller, which is 44 bytes long.

7.9.9 Formatting JOINTPOS Data Items

JOINTPOS data items in a READ or WRITE statement are formatted as follows:

Default: Read or written in the internal format of the controller, which is 4 bytes plus 4 bytes for

each axis.

7.10 USER INTERFACE TIPS

Input and output to the teach pendant or CRT/KB is accomplished by executing "READ" and
"WRITE" statements within a KAREL program. If the USER menu is not the currently selected
menu, the input will remain pending until the USER menu is selected. The output will be written
to the "saved" windows that will be displayed when the USER menu is selected. You can have

up to eight saved windows.

7.10.1 USER Menu on the Teach Pendant

The screen that is activated when the USER menu is selected from the teach pendant is named "t sc".

The windows listed in Table 7-18 are defined for "t sc".

Table 7-18. Defined Windows for t_sc"

Window Name Lines Predefined FILE Scrolled Rows
Name

"t_fu" 10 TPDISPLAY yes 5-14

"t_pr" 1 TPPROMPT no 15

"t_st" 3 TPSTATUS no 2-4

"t fk" 1 TPFUNC no 16

"err" 1 TPERROR no 1

"stat" 1 no 2

"full" 2 no 34

"motn" 1 no 3

7-38

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

By default, the USER menu will attach the "err", "stat", "full", "motn", "t fu", "t pr", and "t fk"
windows to the "t sc" screen. See Figure 7-1 .

Figure 7-1. "t_sc" Screen

err (TPERROR)

stat

full [motn -

full motn overlaps
t fu (TPDISPLAY) full at

column 18

£t pr (TPPROMPT)
t fk (TPFUNC)

The following system variables affect the teach pendant USER menu:

* $TP_DEFPROG: STRING - Identifies the teach pendant default program. This is automatically
set when a program is selected from the teach pendant SELECT menu.

* $TP_INUSER: BOOLEAN - Set to TRUE when the USER menu is selected from the teach
pendant.

* $TP_LCKUSER: BOOLEAN - Locks the teach pendant in the USER menu while
$TP_DEFPROG is running and $TP_LCKUSER is TRUE.

e $TP_USESTAT: BOOLEAN - Causes the user status window "t_st" (TPSTATUS) to be attached
to the user screen while $TP_USESTAT is TRUE. While "t_st" is attached, the "stat", "motn", and
"full" windows will be detached. See Figure 7-2 .

Figure 7-2. "t_sc" Screen with $TP_USESTAT = TRUE

err (TPERROR)

t st (TPSTATUS)
t st (TPSTATUS)
t_st (TPSTATUS)
t_fu (TPDISPLAY

)

t pr (TPPROMPT)
t fk (TPFUNC)

7-39

7. FILE INPUT/OUTPUT OPERATIONS MARRC75KR07091E Rev D

7.10.2 USER Menu on the CRT/KB

The screen that is activated when the USER menu is selected from the CRT is named "c_sc". The
windows listed in Table 7—19 are defined for "c_sc".

Table 7-19. Defined Windows for c_sc"

Window Name Lines Predefined FILE Name | Scrolled Rows
"c_fu" 17 INPUT and OUTPUT | yes 5-21
"c_pr" 1 CRTPROMPT no 22
"c_st" 3 CRTSTATUS no 2-4
"c_fk" 2 CRTFUNC no 23-24
"err" 1 CRTERROR no 1
"ct01" 1 no 2
"uful" 2 no 3-4
"motn" 1 no 3

By default, the USER menu will attach the "err", "ct01", "uful", "motn", "c_fu", "c_fk", and "uftn"
windows to the "c_sc" screen. The "c_fk" window will label the function keys an show FCTN and
MENUS for F9 and F10. See Figure 7-3 .

Figure 7-3. "c_sc" Screen

err (CRTERROR)

ct01l

uful | motn | -—

uful uful and motn

c_fu (INPUT and OUTPUT) overlap; motn
starts at
column 18

c pr (CRTPROMPT)
cifk (CRTFUNC)
c fk

The following system variables affect the CRT USER menu:

* $CRT_DEFPROG: STRING - This variable identifies the CRT default program. This is
automatically set when a program is selected from the CRT SELECT menu.

* $CRT_INUSER: BOOLEAN - This variable is set to TRUE when the USER menu is selected
from the CRT.

7-40

MARRC75KR07091E Rev D 7. FILE INPUT/OUTPUT OPERATIONS

* $CRT_LCKUSER: BOOLEAN - This variable locks the CRT in the USER menu while
$CRT_DEFPROG is running and $CRT LCKUSER is TRUE.

* $CRT_USERSTAT: BOOLEAN - This variable causes the user status window "c_st"
(CRTSTATUS) to be attached to the user screen while SCRT USERSTAT is TRUE. While "c_st"
is attached, the "ct01", "motn", and "uful" windows will be detached. See Figure 74 .

Figure 7-4. "c_sc" Screen with $CRT_USERSTAT = TRUE

err (CRTERROR)

c_st (CRTSTATUS)

c_st (CRTSTATUS)

c st (CRTSTATUS)

c_fu (INPUT and OUTPUT)

c pr (CRTPROMPT)
c_fk (CRTFUNC)
c_fk

7-41

Chapter 8

POSITION DATA

Chapter 8 POSITION DATA it e e e rr s e e e e e s e e e e rer e e e rena s 8-1
8.1 OVERVIEW oottt e e e e e e e e e s e s e e s e e s e raeeenn e rens 8-2

8.2 POSITIONAL DATA ottt eett e et s e e e et s e e e et s e e ersn s e eersn s e aerrnseeersnnsaanes 8-2

8.3 FRAMES OF REFERENCEoiiiuiiiiiiiii e eee s ee e e e e s e enn e 8-3

SRS T V1 o T [I =T 1 1= TN 8-4
8.3.2 User Frame (UFRAME) ...iiiiiiiiii ittt er st s s e e s s e ennn s 8-5
8.3.3 Tool Definition (UTOOL) .ivuiiiiiiiiiiiiieiitieerie et e s s s s e ea s e s e s e ennns 8-5
8.3.4 Using Frames in the Teach Pendant Editor (TP) ...ccovevviiiiiiieeiieiieneeneeanes 8-5

8.4 JOG COORDINATE SYSTEMSuiiiiiiiiieeiieneeett e s et s e ees s s eera s seennnaaees 8-6

8. POSITION DATA MARRC75KR07091E Rev D

8.1 OVERVIEW

In robotic applications, single segment motion is the movement of the tool center point (TCP) from
an initial position to a desired destination position. The KAREL system represents positional data
in terms of location (x, y, z), orientation (W, p, 1), and configuration. The location and orientation
are defined relative to a Cartesian coordinate system (user frame), making them independent of the
robot joint angles. Configuration represents the unique set of joint angles at a particular location
and orientation.

Note The KAREL system provides a way to create and manipulate position data but it does not
support motion instructions. All motion must be initiated from a teach pendant program. Instructions
and builtins are available for setting KAREL position data into teach pendant programs.

.2 POSITIONAL DATA

The KAREL language uses the POSITION, XYZWPR, XYZWPREXT, JOINTPOS, and PATH data
types to represent positional data. The POSITION data type is composed of the following:

* Three REAL values representing an X, y, z location expressed in millimeters

* Three REAL values representing a w, p, r orientation expressed in degrees

* One CONFIG Data Type, consisting of 4 booleans and 3 integers, which represent the
configuration in terms of joint placement and turn number. Before you specify the config data
type, make sure it is valid for the robot being used. Valid joint placement values include:

— ‘R’ or ‘L (shoulder right or left)
— ‘U’ or ‘D’ (elbow up or down)
— ‘N’ or ‘F’ (wrist no-flip or flip)
— ‘T’ or ‘B’ (config front or back)

A turn number is the number of complete turns a multiple turn joint makes beyond the
required rotation to reach a position. Table 8—1 lists the valid turn number definitions.

Table 8-1. Turn Number Definitions

Turn Number Rotation (degrees)
-8 -2700 to -3059
-7 -2340 to -2699

8-2

MARRC75KR07091E Rev D

8. POSITION DATA

Table 8-1. Turn Number Definitions (Cont’d)

-6 -1980 to -2339
5 -1620 to -1979
-4 -1260 to -1619
-3 -900 to -1259
-2 -540 to -899

1 -180 to -539

0 -179 to 179

1 180 to 539

2 540 to 899

3 900 to 1259

4 1260 to 1619
5 1620 to 1979
6 1980 to 2339
7 2340 to 2699

The PATH data type consists of a varying-length list of elements called path nodes.

See Also: The appropriate application-specific FANUC Robotics Setup and Operations Manual
for configuration information on each supported robot model. The POSITION, XYZWPR,
XYZWPREXT, JOINTPOS, and PATH Data Types, Appendix A, “KAREL Language Alphabetical

Description.”

8.3 FRAMES OF REFERENCE

The KAREL system defines the location and orientation of positional data relative to a user-defined

frame of reference, called user frame, as shown in Figure 81 .

8-3

8. POSITION DATA MARRC75KR07091E Rev D

Figure 8-1. Referencing Positions in KAREL

L FACEPLATE

$UTOOL .’I
ROBOT :” r; |
. TCPX
T "\ POSITION
\ s o
> > $UFRAME :
N e _ o
WORLD USER
COORDINATE FRAME

SYSTEM

ROBOT = $UFRAME:POSITION:INV($UTOOL)

Three frames of reference exist:

* WORLD - predefined
* UFRAME - determined by the user
* UTOOL - defined by the tool
Using kinematic equations, the controller computes its positional information based on the known

world frame and the data stored in the system variables SUFRAME (for user frame) and SUTOOL
(for tool frame).

8.3.1 World Frame

The world frame is predefined for each robot. It is used as the default frame of reference. The location
of world frame differs for each robot model.

MARRC75KR07091E Rev D 8. POSITION DATA

8.3.2 User Frame (UFRAME)

The programmer defines user frame relative to the world frame by assigning a value to the system
variable SUFRAME.

2 Warning
Be sure SUFRAME is set to the same value whether you are teaching
positional data or running a program with that data, or damage to the
tool could occur.

The location of UFRAME represents distances along the x-axis, y-axis, and z-axis of the world
coordinate system; the orientation represents rotations around those axes.

By default, the system assigns a (0,0,0) location value and a (0,0,0) orientation value to SUFRAME,
meaning the user frame is identical to that of the world coordinate system. All positions are recorded
relative to UFRAME.

8.3.3 Tool Definition (UTOOL)

The tool center point (TCP) is the origin of the UTOOL frame of reference. The programmer defines
the position of the TCP relative to the faceplate of the robot by assigning a value to the system
variable SUTOOL. By default, the system assigns a (0,0,0) location and a (0,0,0) orientation to
$UTOOL, meaning SUTOOL is identical to the faceplate coordinate system. The positive z-axis of
UTOOL defines the approach vector of the tool.

c Warning
Be sure $UTOOL correctly defines the position of the TCP for the tool you
are using, or damage to the tool could occur.

The faceplate coordinate system has its origin at the center of the faceplate surface. Its orientation
is defined with the plane of the x-axis and y-axis on the faceplate and the positive z-axis pointing
straight out from the faceplate.

8.3.4 Using Frames in the Teach Pendant Editor (TP)

The system variable SUSEUFRAME defines whether the current value of
SMNUFRAMENUM[group_no] will be assigned to the position’s user frame when it is being
recorded or touched up.

8-5

8. POSITION DATA MARRC75KR07091E Rev D

* When $USEUFRAME = FAL SE , the initial recording of positions and the touching
up of positions is done with the user frame number equal to 0, regardless of the value of
$MNUFRAMENUM][group no].

* When SUSEUFRAME = TRUE , the initial recording of positions is done with the position’s
user frame equal to the user frame defined by SMNUFRAMENUM]|group no]. The touching up
of positions must also be done with the position’s user frame equal to the user frame defined by
$MNUFRAMENUM][group no].

When a position is recorded in the teach pendant editor, the value of the position’s tool frame will
always equal the value of SMNUTOOLNUM]|group no] at the time the position was recorded. When
a teach pendant program is executed, you must make sure that the user frame and the tool frame of
the position equal the values of SMNUFRAMENUM[group no] and SMNUTOOLNUM[group no];
otherwise, an error will occur. Set the values of SMNUFRAMENUM[1] and SMNUTOOLNUM][1]
using the UFRAME NUM =n and UTOOL NUM = n instructions in the teach pendant editor before
you record the position to guarantee that the user and tool frame numbers match during program
execution.

8.4 JOG COORDINATE SYSTEMS

The KAREL system provides five different jog coordinate systems:

JOINT - a joint coordinate system in which individual robot axes move. The motion is joint
interpolated.

* WORLD - a Cartesian coordinate system in which the TCP moves parallel to, or rotates around,
the x, y, and z-axes of the predefined WORLD frame. The motion is linearly interpolated.

* TOOLFRAME - a Cartesian coordinate system in which the TCP moves parallel to, or
rotates around, the X, y, and z-axes of the currently selected tool frame. The motion is linearly
interpolated. The tool frame is normally selected using the SETUP Frames menu. To jog using
$GROUP[group_no].$utool, set SMNUTOOLNUM[group no] = 30.

* JOGFRAME - a Cartesian coordinate system in which the TCP moves parallel to, or rotates
around, the x, y, and z-axes of the coordinate system defined by the $JOG_GROUP[group
_no].§jogframe system variable. The motion is linearly interpolated.

* USER FRAME - a Cartesian coordinate system in which the TCP moves parallel to, or
rotates around, the x, y, and z-axes of the currently selected user frame. The motion is linearly
interpolated. The user frame is normally selected using the SETUP Frames menu. To jog using
$GROUP[group_no].$uframe, set SMNUFRAMENUM][group no] = 62.

The robot can be jogged in any one of these jog coordinate systems to reach a destination position.
Once that position is reached, however, the positional data is recorded with reference to the user
frame as discussed in Section 8.3 .

See Also: The application-specific FANUC Rabotics Setup and Operations Manual for step-by-step
explanations of how to jog and define frames.

8-6

Chapter 9

FILE SYSTEM

Chapter 9 FILE SYSTEM oot rr e e s e e e e e e na e e e e eens 9-1
9.1 OVERVIEW oottt ettt e e e e e e e e s s e s e e s e e s e raeaenn e rens 9-2
9.2 FILE SPECIFICATION ..iiiiiiiiiiii et rea e e e e e e e eens 9-3
LS 02 A oV o = N =T 3 N 9-3
9.2.2 FIlE@ NAIME oreiiiii it e e s e e e e e s e e s e e s e e narea e ennnarens 9-4
S T o = 1V o 1= PR 9-5

9.3 STORAGE DEVICE ACCESS ...ciuiiiiiiitieiiee s rri e e e a e 9-6
LS R T A O AV N 9-7
9.3.2 MeMOrY File DEVICES .ovuuiiiiiiiiieeiee e e e e e e e e re e e e e e e r e 9-13
0.3.3 VirtUAl DEBVICES .uiiivuiiieiiiiiiieiieeei s et e et s sr s e s s e sa s e sea s e e s e rn s e rr e ennnannnnnas 9-14
S IR S e | [T o 1= PP 9-16

9.4 FILE ACCESS ..ottt ittt e s s e e e e 9-20

9.5 FORMATTING XML INPUT et ee e e e e e e e e e e e 9-20
0.5, 1 OVEIVIBW ituiiiiiiiiiiiiee e e s e s s e e e e s e s e e s s s e s e s s e s s e s s en s e e rneernsennsnnnns 9-20
9.5.2 Installation SEQUENCE ...iiuiieiiiiiiiiiciieerir e e e e e e a e enaas 9-21
9.5.3 Example KAREL Program Referencing an XML Filec.ccoovviiviiiviiinnennns 9-22
S IR A = 1Y =T o g o] 9-26

9.6 MEMORY DEVICE ..ciuiiiiiiiieee et e e e e e e e e e 9-27

9-1

9. FILE SYSTEM MARRC75KR07091E Rev D

9.1

OVERVIEW

The file system provides a means of storing data on CMOS RAM, FROM, or external storage
devices. The data is grouped into units, with each unit representing a file. For example, a file can
contain the following:

* Source code statements for a KAREL program

* A sequence of KCL commands for a command procedure

* Variable data for a program
Files are identified by file specifications that include the following:

¢ The name of the device on which the file is stored
* The name of the file
* The type of data included in the file

The KAREL system includes five types of storage devices where files can be stored:

* RAM Disk
* FROM Disk
e IBM PC
* Memory Card
* USB Memory Stick Device
RAM Disk is a portion of SRAM (formerly CMOS RAM) or DRAM memory that functions as a

separate storage device. Any file can be stored on the RAM Disk. RAM Disk files should be copied
to disks for permanent storage.

FROM Disk is a portion of FROM memory that functions as a separate storage device. Any file can be
stored on the F-ROM disk. However, the hardware supports a limited number of read and write cycles.
Therefore, if a file needs to store dynamically changing data, the RAM disk should be used instead.

IBM PC or compatible computers can be used to store files off-line. You can use OLPC, the
FANUC Robotics off-line storage software for the PC, to store files on an external storage device. The
files on these storage devices are accessible in the following ways:

* Through the FILE menu on the teach pendant and CRT/KB
* Through KAREL programs

Memory Card refers to the ATA Flash File storage. The memory card interface is located on the
MAIN CPU.

For more information on storage devices and memory, refer to Section 9.3.1 .

9-2

MARRC75KR07091E Rev D 9. FILE SYSTEM

USB Memory Stick Device supports a USB 1.1 interface. The USB Organization specifies standards
for USB 1.1 and 2.0. Most memory stick devices conform to the USB 2.0 specification for operation
and electrical standards. USB 2.0 devices as defined by the USB Specification must be backward
compatible with USB 1.1 devices.

However, FANUC Robotics does not support any security or encryption features on USB memory
sticks. The controller supports most widely-available USB Flash memory sticks from 32MB up to
1GB in size. The USB interface is located on the controller operator panel.

FILE SPECIFICATION

File specifications identify files. The specification indicates:

¢ The name of the device on which the file is stored, refer to Section 9.2.1 .
¢ The name of the file, refer to Section 9.2.2 .

* The type of data the file contains, refer to Section 9.2.3 .
The general form of a file specification is:

device_name:file_namefile type

9.2.1 Device Name

A device name consists of at least two characters that indicate the device on which a file is stored.
Files can be stored on RAM disk, F-ROM disk, disk drive units, off-line on a PC, Memory Card, or
PATH Composite Device. The device name always ends with a colon (:). The following is a list of
valid storage devices.

* RD: (RAM Disk)
The RD: device name refers to files stored on the RAM Disk of the controller. RD: is used

as the default device name.

 FR: (F-ROM Disk)

The FR: device name refers to files stored on the F-ROM disk of the controller.
e MC: (Memory Card Device)

The memory card can be formatted and used as an MS-DOS file system. It can be read from and
written to on the controller and an IBM PC equipped with the proper hardware and software. If
the memory card is used as an MS-DOS file system, it should be formatted only on the controller.
Refer to the application-specific FANUC Robotics Setup and Operations Manual for information
on formatting the memory card on the controller.

9-3

9. FILE SYSTEM MARRC75KR07091E Rev D

UD1: (USB Memory Stick Device)

The USB memory stick can be formatted and used as an MS-DOS file system. It can be read from
and written to on the controller and an IBM PC equipped with the proper hardware and software.
If the USB memory stick is used as an MS-DOS file system, it should be formatted only on the
controller. Refer to the application-specific FANUC Robotics Setup and Operations Manual for
information on formatting the USB memory stick on the controller.

e MD: (Memory Device)
The memory device treats the controller’s program memory as if it were a file device. You can

access all teach pendant programs, KAREL programs, KAREL variables, system variables, and
error logs that are loaded in the controller. See Section 9.6 for further details.

* MDB: (Memory Device Backup)
The memory device backup device (MDB:) allows the user to copy the same files as provided by
the Backup function on the File Menu. This allows the user to back up the controller remotely.

* CONS: (Console Device)

The console device provides access to the console log text files CONSLOG.LS and
CONSTAIL.LS. It is used for diagnostic and debug purposes and not as a storage device.

* MF: (Memory File Device)

The MF: device name refers to files stored on both the RAM and F-ROM disks. Since a file
cannot be on both disks at the same time, there will be no duplicate file names.

e PATH: (Composite Device)

The PATH: device is a read-only device that searches the F-ROM disk (FD:), memory card
(MC:0, and floppy disk (FLPY:) in that order, for a specified file. The PATH: device eliminates
the user’s need to know on which storage device the specified file exists.

* PIP: (File Pipe Device)
The PIP: device provides a way to write data from one application and, at the same time, read it
from another application. The PIP: device also allows the last set of data written to be retained for
analysis. The PIP: device allows you to access any number of pipe files. This access is to files
that are in the controller’s memory. This means that the access to these files is very efficient. The

size of the files and number of files are limited by available controller memory. This means that
the best use of a file pipe is to buffer data or temporarily hold it.

9.2.2 File Name

A file name is an identifier that you choose to represent the contents of a file.

The following rules apply to file names:

MARRC75KR07091E Rev D

9. FILE SYSTEM

¢ File names are limited to 36 characters.

* File names can include letters, digits, and underscores.

¢ File names cannot include these characters: .:*;\/”

* Spaces are not allowed in the file name.

* Other special characters can be used with caution.

¢ Subdirectories can be used. These are also called a “path.” These begin and end with the “\”
character. The rules for file names also apply to paths. Below is an example of a file name

with a device and a path:

MC:\mypath\myfile.txt

9.2.3 File Type

A file type consists of two or three characters that indicate what type of data a file contains. A file
type always begins with a period (.). Table 9-1 is an alphabetical list of each available file type

and its function.

Table 9-1. File Type Descriptions

File Type Description

.BMP Bit map files contain bit map images used in robot vision systems.

.CF KCL command files are ASCII files that contain a sequence of KCL
commands for a command procedure.

.CH Condition handler files are used as part of the condition monitor
feature.

.DF Default file are binary files that contain the default motion
instructions for each teach pendant programming.

.DG Diagnostic files are ASCII files that provide status or diagnostic
information about various functions of the controller.

.DT KAREL data file An ASCII or binary file that can contain any data
that is needed by the user.

10 Binary files that contain 1/O configuration data - generated when an
I/O screen is displayed and the data is saved.

KL KAREL source code files are ASCII files that contain the KAREL
language statements for a KAREL program.

9. FILE SYSTEM

MARRC75KR07091E Rev D

Table 9-1. File Type Descriptions (Cont’d)

File Type Description

.LS KAREL listing files are ASCII files that contain the listing of
a KAREL language program and line number for each KAREL
statement.

.MN Mnemonic program files are supported in previous version s of
KAREL.

.ML Part model files contain part model information used in robot vision
systems.

.PC KAREL p-code files are binary files that contain the p-code
produced by the translator upon translation of a .KL file.

.SV System files are binary files that contain data for tool and user
frames (SYSFRAME.SV), system variables (SYSVARS.SV),
mastering (SYSMAST.SV), servo parameters (SYSSERVO.SV), and
macros (SYSMACRO.SV).

TP Teach pendant program files are binary files that contain
instructions for teach pendant programs.

TX Text files are ASCII files that can contain system-defined text or
user-defined text.

.VR Program variable files are binary files that contain variable data for
a KAREL program.

VA ASCII variable files are contain the listing of a variable file with
variable names, types, and contents.

LS Listing files are teach pendant programs, error logs, and description
histories in ASCII format.

9.3 STORAGE DEVICE ACCESS

The KAREL system can access only those storage devices that have been formatted and mounted.
These procedures are performed when the devices are first installed on the KAREL system.

The following rules apply when accessing storage devices:

¢ Formatting a device

— Deletes any existing data on the device. For example, if you format RD2:, you will also
reformat any data existing on RD: thru RD7:.

— Records a directory on the device

— Records other data required by the KAREL system

MARRC75KR07091E Rev D 9. FILE SYSTEM

— Assigns a volume name to the device

For more information on formatting a device, refer to the FORMAT DEV Built-in in Appendix A ,
"KAREL Language Alphabetical Description" or the FORMAT Command in Appendix C, "KCL
Command Alphabetical Description."

9.3.1 Overview

The following kinds of storage devices can be used to store programs and files:

* Memory Card (MC:)

* Flash File Storage disk (FR:)

* RAM Disk (RD:) (Not for SpotTool+)

* Ethernet Device (optional)

* Memory Device (MD:)

* Memory Device Binary (MDB:)

¢ Filtered Memory Device (FMD:)

* USB Memory Stick Device on the controller (UD1:)
* USB Memory Stick Device on the iPendant (UT1:)

This section describes how to set up storage devices for use. Depending on the storage device, this
can include

¢ Setting up a port on the controller
¢ Connecting the device to the controller

* Formatting a device

Memory Card (MC:)
The controller supports memory cards. Memory cards support various sizes 8MB or higher. Compact
Flash PC cards are also supported if used with a suitable compact adapter. The memory card requires

a memory card interface which is standard on Main CPU inside the controller.

Note The controller supports loading software from memory cards.

9-7

9. FILE SYSTEM MARRC75KR07091E Rev D

2 Warning
Lethal voltage is present in the controller WHENEVER IT IS CONNECTED
to a power source. Be extremely careful to avoid electrical shock. HIGH
VOLTAGE IS PRESENT at the input side whenever the controller is
connected to a power source. Turning the disconnect or circuit breaker to
the OFF position removes power from the output side of the device only.

2 Warning
The memory card interface is located on the Main CPU on the controller
cabinet. When the power disconnect circuit breaker is OFF, power is
still present inside the controller. Turn off the power disconnect circuit
breaker before you insert a memory card into the memory card interface;
otherwise, you could injure personnel.

2 Caution
Do not remove the memory card when the controller is reading or writing to it.

Doing so could damage the card and lose all information stored on it.

The memory card can be formatted on the controller, and can be used as a load device to install
software.

Note Data on all internal file devices such as FR:, RD:, and MD: should be backed up to external file
device such as ATA Flash PC card.

Note The controller formats the card with a sector size of 512 bytes.

The memory card can be formatted and used as an MS-DOS file system. It can be read from and
written to the controller and an IBM PC equipped with the proper hardware and software. If the
memory card is used as an MS-DOS file system, it should be formatted on the controller.

The controller can read and write memory cards that are formatted with FAT (also referred to as
FAT16) or FAT32 type of formatting (File Access Tables). When a memory card is formatted on the
Controller it can be formatted as FAT or FAT32 type.

The FAT32 format (32 Bit FAT) removes a few limitations that are included with FAT. One of these is
the limitation that only 512 files can be created in the Root directory. Another is that FAT format type
only supports memory cards up to 2 GB in size. This feature is included in the controller to increase
the compatibility of the robot controller with other computer systems.

9-8

MARRC75KR07091E Rev D 9. FILE SYSTEM

USB Memory Stick Device on the controller (UD1:), and USB Memory Stick Device
on the iPendant (UT1:)

The controller supports USB Flash memory sticks up to 2GB in size if it is formatted as FAT16.
FAT16 is much faster for access. USB Memory sticks with any security or encryption features are
not supported. Memory sticks larger than 2GB can not be formatted FAT16, they must be formatted
FAT32.

Note USB Memory sticks cannot be formatted when plugged into the USB connector on the iPendant
(UT1:) They must be formatted on a PC or when plugged into the front panel USB connector on the
controller.

Note USB Memory sticks with any security or encryption features are not supported.
Note Memory sticks larger than 2GB can not be formatted FAT16, they must be formatted FAT32.

Note Generally the larger the size of the device such as a USB memory stick, the slower the access
speed and device performance. A USB memory stick should be formatted FAT16 if possible. Larger
memory sticks formatted as FAT32 will work, but will be slower for file operations and startup of the
memory stick when it is first inserted.

Note In order to use the UT: device on the iPendant, you must have the USB Port on iPendant
option (J957) installed.

Note Since USB is a well established specification, FANUC Robotics America Corporation does
not qualify specific USB Memory sticks for use with the robot. FANUC Robotics uses USB Flash
drives manufactured by SanDisk® (CRUZER Mini and Micro) to qualify the operation of the USB
interface. Therefore, FANUC Robotics recommends that you use SanDisk® USB Flash Drives,
without security or encryption features. Other drives might work properly but are not specifically
qualified by FANUC Robotics.

The USB Memory Stick Device requires a USB interface which is standard on the controller.

The USB memory stick device can be formatted on the controller.

2 Caution
Do not remove the memory stick when the controller is reading or writing to it.
Doing so could damage the memory stick and lose all information stored on it.

Flash File Storage Disk (FR:)
Flash File Storage Disk is a portion of FROM memory that functions as a separate storage device.
Flash file storage disk (FR:) does not require battery backup for information to be retained. You can

store the following information on Flash file storage disk:

* Programs

9-9

9. FILE SYSTEM MARRC75KR07091E Rev D

* System variables

* Anything you can save as a file

You can format the Flash file storage disk. The size of the Flash file storage disk is set by the system
at software installation. Due to the nature of FROM, each time you copy or save a file to the FR: there
will be a drop in available FR: memory, even if you are working with the same file.

RAM Disk (Not for SpotTool+)

RAM Disk is a portion of Static RAM (SRAM) or DRAM memory that functions as a separate
storage device. Any file can be stored on the RAM Disk. RAM Disk files should be copied to an
external device for permanent storage.

The location and size of the RAM disk (RD:) depends on the value of the system variable
$FILE MAXSEC. The default value of SFILE. MAXSEC depends on the options and tool packages
that are installed.

The value in SFILE_ MAXSEC represents the memory size allocated for RD: in 512 byte sectors. For
example, a value of -128 means that 64K of memory is allocated in DRAM for RD:.

e If$FILE_MAXSEC >0, then RAM disk is defined to be in the PERM pool of SRAM. Because
RAM disk is a portion of SRAM, copy all RAM disk files to an external device for permanent
storage to prevent losing information due to loss of battery power or system software loading.

SRAM is battery-backed volatile memory. This means that all information in SRAM, including
programs, requires battery backup for information to be retained when the controller is turned
off and then on again. Teach pendant programs are automatically stored in the TPP pool of
SRAM when you write a program.

c Caution
Data in SRAM can be lost if the battery is removed or loses its charge, or if
new system software is loaded on the controller. To prevent loss of data,
back up or copy all files to permanent storage devices such as FR: or ATA
Flash PC memory cards.

* If$FILE_MAXSEC <0, then RAM disk is defined to be in DRAM.

DRAM is non-battery-backed volatile memory. This means that all information in DRAM
disappears between power cycles. In effect, DRAM is a temporary device. Information stored in
DRAM is lost when you turn off the controller.

9-10

MARRC75KR07091E Rev D 9. FILE SYSTEM

2 Caution
Data in DRAM will be lost if you turn off the controller or if the controller loses
power. Do not store anything you want to save beyond the next controller
power cycle in DRAM, otherwise, you will lose it.

Note Volatile means the memory is lost when power is disconnected. Non-volatile memory does
not require battery power to retain.

You can store anything that is a file on the RAM Disk. The RAM disk is already formatted for you.

Information stored on RAM disk can be stored as compressed or uncompressed. By default,
information is compressed. If you want information to remain uncompressed, you must use the RDU:
device designation to indicate that information will be saved to that device in an uncompressed

file format.

FTP Ethernet Device

FTP Ethernet devices are used to copy files from the controller to the network PC or workstation if the
FTP option is installed. The client devices displayed are the client devices that have been defined and
started. Refer to the Internet Options Setup and Operations Manual for more information.

Memory Device (MD:)

The memory device (MD:) treats the controller’s program memory as if it were a file device. You can
access all teach pendant programs, KAREL programs, and KAREL variables loaded in the controller.

The Memory Device is a group of devices (MD:, MDB:, and optionally FMD:) that provide the
following :
* MD: provides access to ASCII and binary versions of user setup and programs

* MDB: provides access to binary versions of user setup and programs (similar to "backup - all of
the above" on the teach pendant file menu)

* FMD: provides access to ASCII versions of user setup and programs filtered to include only user
settable information (eg. internal timers or time system variables changed by the system are not
included) making these files useful for detecting user changes.

Memory Device Binary (MDB:)

The memory device binary device (MDB:) allows you to copy the same files as provided by the
Backup function on the File Menu. This allows you to back up the controller remotely such as from

9-11

9. FILE SYSTEM MARRC75KR07091E Rev D

SMON, FTP, or KCL. For example, you could use the MDB: device to copy all teach pendant files
(including invisible files) to the memory card (KCL>copy MDB:*.tp TO mc:).

Filtered Memory Device (FMD:)

The Filtered Memory Device option generates text versions of all backup files of user programs and
variables that have been changed manually. Included are system and KAREL variables, position and
data registers, teach pendant programs, and I/O configuration data.

When logging into the robot FTP server from a remote client you are defaulted into the MD: device.
You can navigate to other robot file devices (FR:, RD:, MC:, MDB:, FMD:) using the change directory
service in your remote FTP client. At a command line using the cd command where in this example
fmd: is the device being used, this might look like :

D:\temp>ftp pderob029

Connected to pderob029.frc.com

220 FTP server ready. [PaintTool Vx.xxP/01]
User <pderob029.frc.com:<none>>:

230 User logged in [NORM] .

ftp>cd fmd:
250 CWD command successful.
ftp>

You can compare these files with previous versions to determine what users or operators have
changed. Variables and programs that change without user input are filtered out, and will appear in
filter exclusion files.

After the option is installed, it will run automatically whenever you perform an Ethernet backup of the
controller from the FMD: device. After you install the Filtered Memory Device option, any of the
following filter exclusion files could appear on the FR: device.

2 Caution
Do not delete these files, or filter exclusion data will be lost.

* FR:SVAREEG.DT
* FRIKVAREEG.DT
* FR:POSREEG.DT
* FR:REGEEG.DT

* FR:TPLINEEG.DT

You can view program, variable, or filter exclusion files via KCL. For example:

9-12

MARRC75KR07091E Rev D 9. FILE SYSTEM

KCL> DIR FMD:*.*.

Note Computer systems that perform periodic backups could be modified to use the FMD: device
instead of the MD: device for some compare operations, for example. Contact FANUC Robotics
for more information.

FRA:

There is a special area for Automatic Backup in the controller F-ROM (FRA:). You do not need
an external device to use Automatic Backup, but a memory card can also be used. Refer to your
application-specific Setup and Operations Manual for more information.

9.3.2 Memory File Devices

The RAM and F-ROM disks allocate files using blocks. Each block is 512 bytes.

The system variable SFILE_ MAXSEC specifies the number of blocks to allocate for the RAM disk. If
the specified number is less than zero, the RAM disk is allocated from DRAM. If it is greater than
zero, RAM disk is allocated from CMOS RAM. To change the number of blocks to allocate for the
RAM disk, perform the following steps from the KCL prompt:

1. Backup all files on the RAM disk. For more information on how to back up files, refer to

Chapter 8, "Program and File Manipulation" in the appropriate application-specific FANUC
Robotics Setup and Operations Manual .

2. Enter DISMOUNT RD:

KCL>DISMOUNT RD:

3. Enter SET VAR $FILE MAXSEC

KCL>SET VAR
SFILE MAXSEC = <new value>

4. Enter FORMAT RD:

KCL>FORMAT RD:

9-13

9. FILE SYSTEM MARRC75KR07091E Rev D

All files will be removed from the RAM Disk when the format is performed.
5. Enter MOUNT RD:

KCL>MOUNT RD:

The RAM disk will be reformatted automatically on INIT start.

The F-ROM disk can only be formatted from the BootROM because the system software also resides
on F-ROM. The number of blocks available is set by the system. The hardware supports a limited
number of read and write cycles, so while the F-ROM disk will function similar to the RAM disk, it
does not erase files that have been deleted or overwritten.

After some use, the F-ROM disk will have used up all blocks. At that time, a purge is required to
erase the F-ROM blocks which are no longer needed. For more information on purging, refer to
the PURGE_DEV Built-in in Appendix A , "KAREL Language Alphabetical Descriptions" or the
PURGE Command in Appendix C , "KCL Command Alphabetical Description."

For more information on memory, refer to Section 1.4.1 .

9.3.3 Virtual Devices

KAREL Virtual Devices are similar to DOS subdirectories. For example

* In DOS, to access a file in a subdirectory, you would view FR:\FR1:\>test.kl .
* In KAREL, to access the same file in a virtual device, you would view FR1:test.kl .

The controller supports 7 virtual devices. A number, which identifies the virtual device, is appended
to the device name (FR 1:). Table 9-2 shows some of the valid virtual devices available.

Table 9-2. Virtual Devices

Device Name Actual Storage

RD: RAM disk

FR: F-ROM disk - compressed and uncompressed files
MF: Refers to files on both RD: and FR:

RD1: - RD7: RAM disk - compressed and uncompressed files

9-14

MARRC75KR07091E Rev D 9. FILE SYSTEM

Table 9-2. Virtual Devices (Cont'd)

FR1: - FR7:

F-ROM disk - compressed and uncompressed files

MF1: - MF7:

Refers to files on both the RAM disk and F-ROM disk of the respective
virtual device

Rules for Virtual Devices

The following rules apply to virtual devices.

A file name on a virtual device is unique. A file could exist on either the RAM or F-ROM disks,
but not both. For example: RD:test.kl and FR:test.kl could not both exist.

A file name could be duplicated across virtual devices. For example: RD:test.kl, RD1:test.kl, and
FR2:test.kl could all exist.

The MF: device name could be used in any file operation to find a file on a virtual device, when the
actual storage device is unknown. For example: MF:test.kl finds either RD:test.kl or FR:test.kl.

When you use the MF: device as a storage device, the RAM disk is used by default when RD:
is in CMOS and $FILE MAXSEC > 0. The F-ROM disk is used by default when RD: is in
DRAM and $FILE MAXSEC < 0. For example: KCL>COPY FILE FLPY:test.kl to MF2 :
The file will actually exist on RD2:

When listing the MF: device directory, all files on the RAM and F-ROM disks are listed.
However, only the files in the specified virtual device are displayed.

If the RDS5: directory is specified instead of MF5:, only those files on the RAM disk in virtual
device 5 are listed. If the FR3: directory is specified, only those files on the F-ROM disk in virtual
device 3 are listed. For example: KCL>DIR RD5:

A file could be copied from one virtual device to another virtual device. A file could also be
copied from the RAM disk to the F-ROM disk, and vice versa, if the virtual device is different.
For example: KCL>COPY RD1:test.kl to FR3:

A file could be renamed only within a virtual device and only on the same device. For example:
KCL>RENAME FR2:test.kl FR2:example.kl

A file could be moved within a virtual device from the RAM disk to the F-ROM disk and vice
versa, using a special command which is different from copy. For example: KCL>MOVE
MF1:test.kl moves test.kl from the F-ROM disk to the RAM disk. KCL>COPY FR1:test.kl TO
RD1:test.kl will also move the file from the F-ROM Disk to the RAM Disk. This is because
unique file names can only exist on one device. For more information on moving files, refer to the
MOVE _FILE Built-in in Appendix A , "KAREL Language Alphabetical Descriptions" or the
MOVE FILE Command in Appendix C , "KCL Command Alphabetical Description."

Formatting the RAM disk, RD: or MF:, clears all the RAM disk files on all the virtual devices. The
files on the F-ROM disk remain intact. For example: KCL>FORMAT RD1: reformats all RAM
disk virtual devices (RD: through RD7:). Reformatting will cause existing data to be removed.

9-15

9. FILE SYSTEM MARRC75KR07091E Rev D

* Purge erases all blocks that are no longer needed for all the virtual devices. For more information
on purging, refer to the PURGE_DEV Built-in in Appendix A , "KAREL Language Alphabetical
Description" or the PURGE Command in Appendix C , "KCL Command Alphabetical
Description."

9.3.4 File Pipes

The PIP: device allows you to access any number of pipe files. This access is to files that are in the
controller’s memory. This means that the access to these files is very efficient. The size of the files
and number of files are limited by available controller memory. This means that the best use of a
file pipe is to buffer data or temporarily hold it.

The file resembles a water pipe where data is poured into one end by the writing task and the data
flows out the other end into the reading task. This is why the term used is a pipe. This concept is very
similar to pipe devices implemented on UNIX, Windows and Linux.

Files on the pipe device have a limited size but the data is arranged in a circular buffer. This is also
called a circular queue. This means that a file pipe of size 8kbytes (this is the default size) will contain
the last 8k of data written to the pipe. When the user writes the ninth kilobyte of data to the pipe,

the first kilobyte will be overwritten.

Since a pipe is really used to transfer data from one place to another some application will be
reading the data out of the pipe. In the default mode, the reader will WAIT until information has
been written. Once the data is available in the pipe the read will complete. A KAREL application
might use BYTES AHEAD to query the pipe for the amount of data available to read. This is the
default read mode.

A second read mode is provided which is called "snapshot." In this mode the reader will read out the
current content of the pipe. Once the current content is read the reader receives an end of the file.
This can be applied in an application like a "flight recorder". This allows you to record information
leading up to an event (such as an error) and then retrieve the last set of debug information written
to the pipe. Snapshot mode is a read attribute. It is configured using SET FILE ATTR builtin. By
default, the read operation is not in snapshot mode.

Typical pipe applications involve one process writing data to a pipe. The data can debug information,
process parameters or robot positions. The data can then be read out of the pipe by another application.
The reading application can be a KAREL program which is analyzing the data coming out of the pipe
or it can be KCL or the web server reading the data out and displaying it to the user in ASCII form.

KAREL Examples
The following apply to KAREL examples.

* Two KAREL tasks can share data through a pipe. One KAREL task can write data to the pipe
while a second KAREL task reads from the pipe. In this case the file attribute ATR _PIPWAIT can
be used for the task that is reading from the pipe. In this case the reading KAREL task will wait

9-16

MARRC75KR07091E Rev D 9. FILE SYSTEM

on the read function until the write task has finished writing the data. The default operation of the
pipe is to return an end of file when there is no data to be read from the pipe.

* A KAREL application might be executing condition handlers at a very fast data rate. In this case it
might not be feasible for the condition handler routine to write data out to the teach pendant display
screen because this would interfere with the performance of the condition handler. In this case
you could write the data to the PIP: device from the condition handler routine. Another KAREL
task might read the data from the PIP: device and display it to the teach pendant. In this case the
teach pendant display would not be strictly real time. The PIP: device acts as a buffer in this case
so that the condition handler can move on to its primary function without waiting for the display
to complete. You can also type the file from KCL at the same time the application is writing to it.

PIP: devices are similar to other devices in the following ways:

* The pipe device is similar in some ways to the RD: device. The RD: device also puts the file
content in the system memory. The PIP device is different primarily because the pipe file can
be opened simultaneously for read and write.

* Similarly to MC: and FR: devices, the PIP: device is used when you want to debug or diagnose
real time software. This allows you to output debug information that you can easily view without
interfering with the operation that is writing the debug data. This also allows one task to write
information that another task can read.

* The function of the PIP: device is similar to all other devices on the controller. This means that all
file I/O operations are supported on this device. All I/O functions are supported and work the
same except the following: Chdir, Mkdir, and Rmdir.

* The PIP: device is similar to writing directly to a memory card. However, writing to a memory
card will delay the writing task while the delay to the PIP: device is much smaller. This means
that any code on the controller can use this device. It also has the ability to retain data through
a power cycle.

Rules for PIP: Devices
The following rules apply to PIP: devices:

* The PIP: device can be used by any application or you can specify an associated common option
such as KAREL.

* The device is configurable. You can configure how much memory it uses and whether that
memory is CMOS (retained) or DRAM (not retained). You are also able to configure the format
of the data in order to read out formatted ASCII type data. The device is configured via the
PIPE_CONFIG built-in.

Installation, Setup and Operation Sequence
In general the PIP: device operates like any other device. A typical operation sequence includes:

OPEN myfile (’PIP:/myfile.dat’, 'RW’,)
Write myfile (’Data that I am logging’, CR)

9-17

9. FILE SYSTEM

MARRC75KR07091E Rev D

Close myfile

If you want to be able to access myfile.dat from the Web server, put a link to it on the diagnostic

Web page.

The files on the PIP: device are configurable. By default the pipe configuration is specified in the
$PIPE_CONFIG system variable. The fields listed in Table 9—3 have the following meanings:

Table 9-3. System Variable Field Descriptions

FIELD DEFAULT DEFINITION
$sectors 8 Number of 1024 byte sectors in the pipe.
$filedata Pointer to the actual pipe data (not accessible).
$recordsize 0 Binary record size, zero means its not tracked.
$auxword 0 Dictionary element if dictionary format or type checksum.
$memtyp 0 If non zero use CMOS.
$format Undefined Formatting mode: undefined, function, format string or
KAREL type.
$formatter Function pointer, "C" format specifier pointer or type code
depending on $format.
Each pipe file can be configured via the pipe config built-in. The pipe config built-in will be called
before the pipe file is opened for writing. Refer to Section A.17 , "pipe config built-in" for more
details.
Operational Examples
The following example writes data from one KAREL routine into a pipe and then reads it back from
another routine. These routines can be called from separate tasks so that one task was writing the data
and another task can read the data.
Program
program pipuform
¥nolockgroup
var
pipe, in file, mcfile, console:file
record: string[80]
status: integer
parml, parm2: integer
msg: string[127]

9-18

MARRC75KR07091E Rev D 9. FILE SYSTEM

cmos_flag: boolean

n_sectors: integer

record size: integer

form dict: stringl4]

form ele: integer
--initialize file attributes
routine file init (att_file :FILE)

begin
set file atr(att file, ATR IA) --force reads to completion
set file atr(att file, ATR FIELD) --force write to completion
set file atr(att file, ATR PASSALL) --ignore cr
set file atr(att file, ATR UF) --binary

end file init
routine write pipe
begin
--file is opened
file init (pipe)

open file pipe ('rw’, ’'pip:example.dat’)
status = io status(pipe)
write console (’'Open pipe status:’,status,cr)

-- write extra parameters to pipe
write pipe (msg::8)
status = io_status(pipe)
end write pipe
routine read pipe
var
record: string[128]
status: integer
entry: integer
num_bytes: integer
begin
file init (in_file)
open file in file ('ro’, ’'pip:example.dat’)
BYTES AHEAD (in file, entry, status)
status = 0
read in file (parml::4)
status = IO _STATUS (in_file)
write console (’parml read’, status,cr)
write console (’'parml’,parml,cr)
read in file (parm2::4)
status = IO _STATUS(in_file)
write console (’'parm2 read’,parm2,status,cr)
end read pipe
begin
SET FILE ATR(console, atr_ia, 0) --ATR IA is defined in flbt.ke
OPEN FILE console ('RW’,’CONS:')

9-19

9. FILE SYSTEM MARRC75KR07091E Rev D

if (uninit (msg)) then

msg = ’'Example’
endif
if (uninit (n_sectors)) then

cmos_flag = true

n_sectors = 16

record size = 128

form dict = ’‘test’

form ele =1
endif

-- [in] pipe name: STRING;name of tag
-- [in] cmos_ flag: boolean;

]
]
-- [in] n_sectors: integer;
] record size: integer;
] form dict: string;
-- [in] form ele: integer;
-- [out] status: INTEGER
pipe config(’'pip:example.dat’,cmos_flag, n_ sectors,
record size,form dict,form ele,status)
write pipe
read pipe
close file pipe
close file in file
end pipuform

9.4 FILE ACCESS

You can access files using the FILE and SELECT screens on the CRT/KB or teach pendant, or by
using KAREL language statements. During normal operations, files will be loaded automatically into
the controller. However, other functions could need to be performed.

9.5 FORMATTING XML INPUT

9.5.1 Overview

This feature allows KAREL programs to input data via an XML (eXtended Markup Language)
formatted text file. The XML rather than binary format allows the file to be manipulated easily on
a PC.

The XML files must follow the most basic XML syntax requirements. These requirements are:

9-20

MARRC75KR07091E Rev D 9. FILE SYSTEM

¢ XML files can have ONLY ONE top level element.
* The start tag must have a matching end tag.
* Empty tags can be represented as <tag parameters/>
* Tags cannot contain special characters such as the set of *, $, and []
* They must not contain unprintable characters
* Attributes must be of the form attr="value”
* Special characters are used for the following (outside of tags):
— < is substituted with &It;
— < is substituted with >
— & is substituted with &
— “ can be substituted with "

* This feature provides an XML parser and the means for both KAREL and C programmers
to easily extract binary data from the text information in an XML file. It does not require the
application program to do any parsing of the XML file.

Note XML files can have only one top level element. For example,

<GRID>
<TPPROG>
</TPPROG>

</GRID>

is legal. It has one top level element (GRID).

<GRID>
</GRID>
<TPPROG>
</TPPROG>

is not legal. The master tag can be used to distinguish a GRID file from a password configuration
file, for example.

9.5.2 Installation Sequence

This feature consists of KAREL built-ins which provide access to this library for KAREL users.
The environment file xml.ev must be on the translator path to translate KAREL programs which
reference these built-ins. These built-ins are XML _ADDTAG, XML GETDATA, XML REMTAG,
XML _SCAN, and XML _SETVAR. Refer to Appendix A for more information on these built-ins.

9-21

9. FILE SYSTEM MARRC75KR07091E Rev D

9.5.3 Example KAREL Program Referencing an XML File

Parse the XML file referred to by xml_name and return the settings in that file to xmlstruct.

The attribute name-value pairs are returned as strings in attrnames and attrvalues. It is not --
required that the data in the XML file be set to a structure in some applicaitons the name-value
pairs -- are used directly.

* The most efficient XML implementation uses many name-value pairs and only a few tags. It
takes the same amount of time to return one name-value pair from a tag as it takes for 32 pairs.
Thirty-two tags will take 32 times longer.

¢ The maximum number of pairs supported is 32.

* There are two different types of XML files. Figure 1-1 and Figure 1-2 illustrate the two types of
tag constructs

* For separated start and end tags (Figure 1-1) the tag processing must be done on the
XML _START return code.

* For combined start and end tags (Figure 1-2) you cannot provide any text within the tag. KAREL
XML processing provides the means to extract this text when required.

* For combined start and end tags (Figure 1-2) the tag processing must be done on the XML _END
return code.

¢ The XML START return code needs to set a flag indicating that the tag has been processed.

* The XML END return code needs to check to see if processing was already done on the start
code and reset the flag.

Figure 9-1. XML File 1 Separated start and end tags

<?xml version="1.0" ?><!-- This is a comment -- >

<xmlstrct_t first="123456" second="7.8910" third="1" fourth="A string">
Text assocated with xmlstrct t tag

</xmlstrct t>

Figure 9-2. XML File 2 Combined start and end tags

<?xml version="1.0" ?><!-- This is a comment -- >
<xmlstrct t first="78910" second="12.3456" third="0" fourth="A string"/>

Figure 9-3. XML File 3 GRID tag not registered or processed

<?xml version="1.0" ?>-<!—comment
<GRID rows="16" cols="24" scale="80">
<xmlstrct t first="123456" second="78910” third="1" "fourth="A String”>
special characters < > & "
</xmlstrct t>
</GRID>

9-22

MARRC75KR07091E Rev D

9. FILE SYSTEM

The GRID tag can be in the XML file but not processed by this example program. In general XML
tags can be processed by different software. Information is only returned to the KAREL program for

tags which are registered by the KAREL program.

Figure 9-4. KAREL Program

PROGRAM xmlparse
%$COMMENT = ’'XML Parse’
$NOPAUSESHFT
$NOPAUSE = ERROR + TPENABLE + COMMAND
$NOABORT = ERROR + COMMAND
$NOLOCKGROUP
$NOBUSYLAMP
%$ENVIRONMENT xml
%$include klerxmlf
CONST
MYXML CONST = 3
TYPE
xmlstrct_t = STRUCTURE
first: INTEGER
second: REAL
third: BOOLEAN
fourth: STRING[20]

ENDSTRUCTURE
VAR
xml name : string[20]
tag name : string[32]
text : array[32] of string[128]
attrnames : array[32] of string[32]
attrvalues : array[32] of stringl[64]
xml file : FILE
status : INTEGER
xmlstrct: xmlstrct t
tag ident: integer
func code: integer
text idx: integer
numattr: integer
textdone: BOOLEAN
done: BOOLEAN
console: FILE

startdata: BOOLEAN

-- There are two types of XML file constructs.

In one the end tag is

-— embedded in the start tag in the other the end tag is separate. A

-—- proper parser must handle both tag constructs

9-23

9. FILE SYSTEM

MARRC75KR07091E Rev D

-- For the case that the end tag is separate from the start tag
-— (Figure 1.1)the following writes show the sequence of returns:

--Scanned (Rev D) xmlstrct t 3 100
--Start Tag processing...

--Scanned (Rev D) xmlstrct t 3 101
--End Tag

--Processed at start tag...

--Scanned (Rev D) xmlstrct t 0 101

129015

129015

--For the case where the end tag and start tag are together (Figure 1.2)
--the following writes show the sequences of returns:

--Scanned (Rev D) xmlstrct_t 3 101 129015
--End Tag
--End Tag processing...
--Scanned (Rev D) xmlstrct t 0 101 0
BEGIN

SET_FILE ATR(console, ATR IA, 0) -- ATR IA is defined in flbt.ke

OPEN FILE console ('RW’, ’"CONS:’)

IF UNINIT (xml name) THEN

xml name = ‘mc:k116004.xml’
ENDIF
SET FILE ATR (xml file, ATR XML) -~ XML

CLR_IO STAT(xml file)
OPEN FILE xml file ('RO’, xml name)
status = IO STATUS (xml file)
IF status <> 0 THEN
POST ERR(status, ’'’, 0, 0)
abort
ENDIF
xml addtag(xml_file, ‘xmlstrct t’, 32,
textdone = TRUE
done = FALSE
startdata=FALSE
WHILE (done = FALSE) DO

-- Open does new operation

FALSE, MYXML_ CONST, status)

xml scan(xml file, tag name, tag ident, func code, status)

if (status = 0) THEN
done= TRUE
ENDIF

WRITE console (’Scanned (Rev D) ', tag name,’ ', tag ident, ' '/,

func_code, '
IF (status = XML_FUNCTION) THEN
status = 0
SELECT tag_ident OF
CASE (MYXML_ CONST)
SELECT func_code OF

", STATUS, ' ", CR)

9-24

MARRC75KR07091E Rev D 9. FILE SYSTEM

CASE (XML_START)

WRITE console (’Start Tag processing...’, CR)
text idx =1
xml setvar(xml file, ‘k116004’, ’'xmlstrct’, status)

-- Already looked at the attribtues get the text
xml getdata(xml file, numattr, attrnames, attrvalues,
text [text idx], textdone, status)
startdata = TRUE
CASE (XML_STEND)
-- This tag is never returned
WRITE console (’StEnd Tag’, CR)
CASE (XML_END)
WRITE console (’End Tag’, CR)
if (startdata = TRUE) THEN
startdata=FALSE

WRITE console (’Processed at start tag...’, CR)
ELSE

WRITE console (’'End Tag processing...’, CR)

text idx = 1

xml setvar(xml file, ’'k1l16004’, ’'xmlstrct’, status)

-- Already looked at the attribtues get the text
xml getdata(xml file, numattr, attrnames, attrvalues,
text [text idx], textdone, status)
ENDIF
CASE (XML_TXCONT)
-- Usually the user will do one or the other but not both of
—-— these calls
text idx = text idx + 1
xml getdata(xml file, numattr, attrnames, attrvalues,
text [text idx], textdone, status)

ELSE:
ENDSELECT
ELSE:
ENDSELECT
ELSE
IF (status <> XML _SCANLIM) THEN
POST ERR(status, ’'‘’, 0, 0)
done = TRUE
ENDIF
ENDIF -- Good status from xml parse
ENDWHILE

-- This is not required but allows the user to dynamically remove
-- and add tags

xml remtag(xml file, ’'xmlstrct t’, status)

CLOSE FILE xml file

status = IO STATUS (xml file)

IF status <> 0 THEN

9-25

9. FILE SYSTEM MARRC75KR07091E Rev D

POST ERR(status, ’'’, 0, 0)
ENDIF
END xmlparse

Executing this program will extract the attributes first, second, third, and fourth, and their values from
the XML file. These values will be set in the variable xmlstruct that has fields first, second, third, and
fourth. The string variables will also be set to KAREL string variables.

95.4 Parse Errors

XML TAG_SIZE "Tag too long"

XML _ATTR_SIZE "Attribute too long"

XML NOSLASH "Invalid use of / character"
XML INVTAG "Invalid character in tag"

XML ATTRMATCH "No value for attribute"
XML TAGMATCH "End tag with no matching start"
XML _INVATTR "Invalid character in attribute"
XML _NOFILE "Cannot find file"

XML TAGNEST "Tag nesting level too deep"”
XML COMMENT "Error in comment"

XML BADEXCHAR "Unknown character &xxx;”
XML TAGNFND "Tag not found"

XML _INVEOF "Unexpected end of file"

XML _SCANLIM "Scan limit exceeded"

Note XML SCANLIM means that the file is too long to be processed in one request. The remedy for
this error is to just re-call the XML scan routine as illustrated in the example.

XML _FUNCTION "Function code return"

9-26

MARRC75KR07091E Rev D

9. FILE SYSTEM

9.6 MEMORY DEVICE

The Memory device (MD:) treats controller memory programs and variable memory as if it were a

file device. Teach pendant programs, KAREL programs, program variables, SYSTEM variables, and
error logs are treated as individual files. This provides expanded functions to communication devices,
as well as normal file devices. For example:

1.

FTP can load a PC file by copying it to the MD: device.

2. The error log can be retrieved and analyzed remotely by copying from the MD: device.

3.

An ASCII listing of teach pendant programs can be obtained by copying ***.LS from the
MBD: device.

4. An ASCII listing of system variables can be obtained by copying SYSVARS.VA from the

MD: device.

Refer to Table 9—4 for listings and descriptions of files available on the MD device.

Table 9-4. File Listings for the MD Device

File Name Description

ACCNTG.DG This file shows the system accounting of Operating system tasks.
ACCOFF.DG This file shows the system accounting is turned off.

AXIS.DG This file shows the Axis and Servo Status.

CONFIG.DG This file shows a summary of system configuration
CONSLOG.DG This file is an ASCII listing of the system console log.
CONSTAIL.DG This file is an ASCII listing of the last lines of the system console log.
CURPOS.DG This file shows the current robot position.

*.DF This file contains the TP editor default setting.

DIOCFGSV.IO This file contains 1/0 configuration information in binary form.
DIOCFGSV.VA This file is an ASCII listing of DIOCFGSV.I0.

ERRACT.LS This file is an ASCII listing of active errors.

ERRALL.LS This file is an ASCII listing of error logs.

ERRAPP.LS This file is an ASCII listing of application errors.

ERRCOMM .LS This file shows communication errors.

ERRCURR.LS This file is an ASCII listing of system configuration.

ERRHIST.LS This file is an ASCII listing of system configuration.

ERRMOT.LS This file is an ASCII listing of motion errors.

ERRPWD.LS This file is an ASCII listing of password errors.

9-27

9. FILE SYSTEM

MARRC75KR07091E Rev D

Table 9-4. File Listings for the MD Device (Cont’d)

File Name Description

ERRSYS.LS This file is an ASCII listing of system errors.
ETHERNET This file shows the Ethernet Configuration.

FRAME.DG This file shows Frame assignments.

FRAMEVAR.VR This file contains system frame and tool variable information in binary form.
FRAMEVAR.VA This file is an ASCII listing of FRAMEVAR.VR.

HIST.LS This file shows history register dumps.

HISTE.LS This file is an ASCII listing of general fault exceptions.
HISTP.LS This file is an ASCII listing of powerfail exceptions.
HISTS.LS This file is an ASCII listing of servo exceptions.
IOCONFIG.DG This file shows 10 configuration and assignments.
IOSTATE.DG This file is an ASCII listing of the state of the 1/O points.
IOSTATUS.CM This file is a system command file used to restore I/O.

LOG CONSTAIL.DG

This file is the last line of Console Log.

NUMREG.VA This file is an ASCII listing of NUMREG.VR.
NUMREG.VR This file contains system numeric registers.
MACRO.DG This file shows the Macro Assignment.

MEMORY.DG This file shows current memory usage.

PORT.DG This file shows the Serial Port Configuration.
POSREG.VA This file is an ASCI! listing of POSREG.VR.
POSREG.VR This file contains system position register information.

PRGSTATE.DG

This file is an ASCII listing of the state of the programs.

RIPELOG.DG This file contains detailed status information such as the times when robots go ON and
OFFLINE, and other diagnostic data. Refer to the Internet Options Manual for more
information .

RIPESTAT.DG This file contains performance data for you to determine how well the network is performing.

Refer to the Internet Options Manual for more information .

9-28

MARRC75KR07091E Rev D

9. FILE SYSTEM

Table 9-4. File Listings for the MD Device (Cont’d)

File Name Description

SFTYSIG.DG This file is an ASCII listing of the state of the safety signals.
STATUS.DG This file shows a summary of system status

SUMMARY.DG This file shows diagnostic summaries

SYCLDINT.VA This file is an ASCII listing of system variables initialized at a Cold start.
SYMOTN.VA This file is an ASCII listing of motion system variables.

SYNOSAVE.VA This file is an ASCII listing of non-saved system variables.

SYSFRAME.SV

This file contains SMNUTOOL, $SMNUFRAME, $SMNUTOOLNUM, and SMNUFRAMENUM.
These variables were in SYSVARS.SV in releases before V7.20.

SYSMACRO.SV This file is a listing of system macro definitions.
SYSMACRO.VA This file is an ASCII listing of SYSMACRO.SV.
SYSMAST.SV This file is a listing of system mastering information.
SYSMAST.VA This file is an ASCII listing of SYSMAST.SV.
SYSSERVO.SV This file is a listing of system servo parameters.
SYSSERVO.VA This file is an ASCII listing of SYSSERVO.SV.
SYSTEM.DG This file shows a summary of system information
SYSTEM.VA This file is an ASCII listing of non motion system variables.
SYSVARS.SV This file is a listing of system variables.

SYSVARS.VA This file is an ASCI! listing of SYSVARS.SV.

SYS*** SV This file contains application specific system variables.
SYS**** VA This file is an ASCI! listing of SYS****.VA.
TASKLIST.DG This file shows the system task information.
TESTRUN.DG This file shows the Testrun Status.

TIMERS.DG This file shows the System and Program Timer Status.
TPACCN.DG This file shows TP Accounting Status.

VERSION.DG This file shows System, Software, and Servo Version Information.
** PC This file is a KAREL binary program.

*** VA This file is an ASCII listing of KAREL variables.

*** VR This file contains KAREL variables in binary form.

** LS This file is an ASCII listing of a teach pendant program.
TP This file is a teach pendant binary program.

9-29

9. FILE SYSTEM

MARRC75KR07091E Rev D

Table 9-4. File Listings for the MD Device (Cont’d)

File Name Description

= TX This file is a dictionary files.

***HTM This file is an HTML web page.

*** STM This file is an HTML web page using an iPendant Control or Server Side Include.
*** GIF This file is a GIF image file.

= JPG This file is a JPEG image file.

Refer to Table 9-5 for a listing of restrictions when using the MD: device.

Table 9-5. Testing Restrictions when Using the MD: Device

File Name or Type READ WRITE DELETE Comments

*** DG YES NO NO Diagnostic text file.

**PC NO YES YES

* VR YES YES YES With restriction of no references.
** LS YES NO NO

** TP YES YES YES

** LS YES NO NO

FFF.DF YES YES NO

SYS***.SV YES YES NO Write only at CTRL START.
SYS***.VA YES NO NO

ERR***.LS YES NO NO

HISTX.LS YES NO NO

**REG.VR YES YES NO

**REG.VA YES NO NO

DIOCFGSV.IO YES YES NO Write only at CTRL START.
DIOCFGSV.VA YES NO NO

9-30

Chapter 10

DICTIONARIES AND FORMS

Contents

Chapter 10
10.1

10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8
10.2.9

10.2.10
10.2.11
10.2.12

10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9

10.3.10
10.3.11
10.3.12
10.3.13
10.3.14

DICTIONARIES AND FORMS oottt eeer e e e e e e nr e e nen e 10-1
OVERVIEW .ttt et et e e e s e e s e e s e e s e sa s e ea s e reaaennsernn s 10-3
CREATING USER DICTIONARIES ...uiiiiitiiiieeeiieseeeeeseeenn s eenns s sesnn e eeees 10-3
DiCLIONArY SYNTAX cuuiiriiiiiiiierirerrersenssrssrssssessena s srssrsrrsensrnssrnsernsenns 10-3
Dictionary Element NUMDEr ..o e 10-4
Dictionary Element Name ... e e 10-5
Dictionary Cursor POSItIONING ..cceuiiiieiiiiiiei e eeaas 10-5
Dictionary EIemMent TEXE ..oviiiiiiiiiiiiiiieicies e s s s s e e e e e e 10-6
Dictionary Reserved Word Commandscoveeiiiriiiiiiineiieensee e eeeens 10-8
Character COOESiiiiiiiiiiiii it e e e e e 10-10
Nesting Dictionary Elementsooooeiiiiiiiiii e 10-10
Dictionary COMMENToiiieeiieiciie e e e e e e e e e e e e e e e e 10-11
Generating a KAREL Constant File ..o 10-11
Compressing and Loading Dictionaries on the Controllerc...c..... 10-11
Accessing Dictionary Elements from a KAREL Programccccovveuneee. 10-12
CREATING USER FORMS ...t eee e eri e ea s re e e e e e een 10-13
FOIM SYNTAX tieiiiii i e e e s e e e ranrans 10-14
FOrm AtIrDULES ouiieeiii e e e e e 10-15
Form Title and Menu Label ... 10-16
FOrm Menu TeXt .uivuiiiiiiiiii i 10-17
Form Selectable Menu ItE€Mcoeeiiiii e 10-18
[=lo T A D= (- | 4= 2 [P 10-19
Dynamic FOrms USiNg Tre€ VIEWcceuuiiiuiiiiiieeeeeee e e e e e ee e ee e eeans 10-26
NON-Selectable TEXt ..ocuuiiiieiiieei e e 10-27
Display Only Data ItemMS ...cuiiiiiiiiieiiiee e re e ra e eaaas 10-27
Cursor Position AttrDULES ...c.viiieiiiiei e 10-27
Form Reserved Words and Character Codesccceeeverennnieeenneeecennnns 10-28
Form Function Key Element Name or NUmMberccoccoviiiiiiiiiiiniiiiecennnn. 10-30
Form Function Key Using a Variable ..o 10-31
Form Help Element Name or NUMDErcociiiiiiiiiiiiieiicciieernens e e 10-31

10-1

10. DICTIONARIES AND FORMS

MARRC75KR07091E Rev D

10.3.15
10.3.16
10.3.17
10.3.18
10.3.19

Teach Pendant FOrm SCreenccovvvviiiiiiiiiininnnini s s e 10-32
CRT/KB FOIM SCrEEN ..iiivuuiiiiiiiiiiiiiss s siis s srns s s snnaa e 10-32
Form File Naming CONVENTION ...iiiiieiiieiie e 10-33
Compressing and Loading Forms on the Controllerc.ccoivieniiiennnnen. 10-34
[DIESY o] P\ VAT g Lo = W o] 4 T 10-36

10-2

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

10.1 OVERVIEW

Dictionaries and forms are used to create operator interfaces on the teach pendant and CRT/KB
screens with KAREL programs.

This chapter includes information about

* Creating user dictionary files, refer to Section 10.2 .
* Creating and using forms, refer to Section 10.3 .

In both cases, the text and format of a screen exists outside of the KAREL program. This allows easy
modification of screens without altering KAREL programs.

10.2 CREATING USER DICTIONARIES

A dictionary file provides a method for customizing displayed text, including the text attributes
(blinking, underline, double wide, etc.), and the text location on the screen, without having to
re-translate the program.

The following are steps for using dictionaries.

1. Create a formatted ASCII dictionary text file with a .UTX file extension.

2. Compress the dictionary file using the KCL COMPRESS DICT command. This creates a
loadable dictionary file with a .TX extension. Once compressed, the .UTX file can be removed
from the system. Only the compressed dictionary (.TX) fileisloaded .

3. Load the compressed dictionary file using the KCL LOAD DICT command or the KAREL
ADD_DICT built-in.

4. Use the KAREL dictionary built-ins to display the dictionary text. Refer to Section 10.2.12,
"Accessing Dictionary Elements from a KAREL Program," for more information.

Dictionary files are useful for running the same program on different robots, when the text displayed
on each robot is slightly different. For example, if a program runs on only one robot, using KAREL
WRITE statements is acceptable. However, using dictionary files simplifies the displaying of text on
many robots, by allowing the creation of multiple dictionary files which use the same program to
display the text.

Note Dictionary files are useful in multi-lingual programs.

10.2.1 Dictionary Syntax

The syntax for a user dictionary consists of one or more dictionary elements. Dictionary elements
have the following characteristics:

10-3

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

* A dictionary element can contain multiple lines of information , up to a full screen of
information. A user dictionary file has the following syntax:

<*comment >
$n<,ele name><@cursor_ pos><&res word><#chr code><"Ele text"><&res wor d>
<#chr_code><+nest_ele>
<*comment >
<Sn+1l>

— Items in brackets < > are optional.

— “*comment is any item beginning with *. All text to the end of the line is ignored. Refer
to Section 10.2.9 .

— $n specifies the element number. n is a positive integer 0 or greater. Refer to Section 10.2.2 .
— ,ele name specifies a comma followed by the element name. Refer to Section 10.2.3 .

— (@cursor_pos specifies a cursor position (two integers separated by a comma.) Cursor
positions begin at @1,1. Refer to Section 10.2.4 .

— &res_word specifies a dictionary reserve word. Refer to Section 10.2.6 .
— "Ele_text" specifies the element text to be displayed. Refer to Section 10.2.5 .
— +nest_ele specifies the next dictionary text. Refer to Section 10.2.8 .

* A dictionary element does not havetoreside all on oneline. Insert a carriage return at
any place a space is allowed, except within quoted text. Quoted text must begin and end on
the same line.

* Dictionary elements can contain text, position, and display attribute information . Table
10-2 lists the attributes of a dictionary element.

10.2.2 Dictionary Element Number

A dictionary element number identifies a dictionary element. A dictionary element begins with a “$”’
followed by the element number. Element numbers have the following characteristics:
* Element numbers begin at 0 and continue in sequential order.

* [f element numbers are skipped, the dictionary compressor will add an extra overhead of 5 bytes
for each number skipped. Therefore you should not skip a large amount of numbers.

* If you want the dictionary compressor to automatically generate the element numbers
sequentially, use a ““-”” in place of the number. In the following example, the "-" is equated
to element number 7.

$1
$2

10-4

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

$3
$6
$-

10.2.3 Dictionary Element Name

Each dictionary element can have an optional element name. The name is separated from the element
number by a comma and zero or more spaces. Element names are case sensitive. Only the first 12
characters are used to distinguish element names.

The following are examples of element names:
$1, KCMN SH LANG
$2, KCMN_SH DICT

Dictionary elements can reference other elements by their name instead of by number. Additionally,
element names can be generated as constants in a KAREL include file.

10.2.4 Dictionary Cursor Positioning

Dictionary elements are displayed in the specified window starting from the current position of the
cursor. In most cases, move the cursor to a particular position and begin displaying the dictionary
element there.
* The cursor position attribute "@" is used to move the cursor on the screen within the window.
* The “@" sign is followed by two numbers separated by a comma. The first number is the
window row and the second number is the window column.
For example, on the teach pendant, the "t fu" window begins at row 5 of the "t sc" screen and

is 10 rows high and 40 columns wide.

— Cursor position “@1,1” is the upper left position of the "t _fu" window and is located at
the "t sc" screen row 5 column 1.

— The lower right position of the "t fu" window is "@10,40” and is located at the "t sc"
screen row 15 column 40.

Refer to Section 7.10.1 for more information on the teach pendant screens and windows.

For example, on the CRT/KB, the "c_fu" window begins at row 5 of the "c_sc" screen and is
17 rows high and 80 columns wide.

10-5

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

— Cursor position “@1,1” is the upper left position of the "c_fu" window and is located at
the "c_sc" screen row 5 column.

— The lower right position of the window is "@17,80” and is located at the "c_sc" screen
row 21, column 80.

Refer to Section 7.10.2 for more information on the CRT/KB screens and windows.

The window size defines the display limits of the dictionary elements.

10.2.5 Dictionary Element Text

Element text, or quoted text, is the information (text) you want to be displayed on the screen.

o
< -

(32

The element text must be enclosed in double quote characters ““ .
To insert a back-slash within the text, use \\ (double back-slash.)
To insert a double-quote within the text, use \" (back-slash, quote.)

More than one element text string can reside in a dictionary element, separated by reserve words.
Refer to Section 10.2.6 for more information.

To include the values of KAREL variables in the element text, use the KAREL built-ins.
WRITE_DICT V and READ DICT _V, to pass the values of the variables.

To identify the place where you want the KAREL variables to be inserted, use format specifiers
in the text.

A format specifier is the character “%” followed by some optional fields and then a conversion
character. A format specifier has the following syntax:
><+><width><.precision>conversion character<®argument numbe r>

Format Specifier

Items enclosed in < > are optional.
The - sign means left justify the displayed value.
The + sign means always display the sign if the argument is a number.

The width field is a number that indicates the minimum number of characters the field should
occupy.

.precision is the . character followed by a number. It has a specific meaning depending upon
the conversion character:

conversion_characters identify the data type of the argument that is being passed. They are
listed in Table 101 .

~argument_number is the * (up-caret character) followed by a number.

10-6

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

Conversion

Character

The conversion character is used to identify the data type of the KAREL variable that was passed.
Table 10-1 lists the conversion characters:

Table 10-1. Conversion Characters

Character Argument Type: Printed As

d INTEGER; decimal number.

o] INTEGER; unsigned octal notation (without a leading zero).

X, X INTEGER; unsigned hexadecimal notation (without a leading 0x or 0X), using abcdef or
ABCDEF for 10, ..., 15.

u INTEGER; unsigned decimal notation.

s STRING; print characters from the string until end of string or the number of characters given
by the precision.

f REAL; decimal notation of the form <->mmm.dddddd, where the number of d’s is given by the
precision. The default precision is 6; a precision of 0 suppresses the decimal point.

e, E REAL; decimal notation of the form <->mmm.dddddd, where the number of d’s is given by the
precision. The default precision is 6; a precision of 0 suppresses the decimal point.

g, G REAL; %e or %E is used if the exponent is less than -4 or greater than or equal to the precision;

otherwise %f is used. Trailing zeros and a trailing decimal pointer are not printed.

%

No argument is converted; print a %.

* The characters d , 0, X, X, and U, can be used with the INTEGER, SHORT, BYTE, and
BOOLEAN data types. A BOOLEAN data type is displayed as 0 for FALSE and 1 for TRUE.

e Thef,e

, E, g, and G characters can be used with the REAL data type.

* The character sis for a STRING data type.

A

Caution

Make sure you use the correct conversion character for the type of argument
passed. If the conversion character and argument types do not match,
unexpected results could occur.

Width and Precision

The optional width field is used to fix the minimum number of characters the displayed variable
occupies. This is useful for displaying columns of numbers.

Setting a width longer than the largest number aligns the numbers.

10-7

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

* [fthe displayed number has fewer characters than the width, the number will be padded on the
left (or right if the "-" character is used) by spaces.

¢ [If the width number begins with “0”°, the field is padded with zeros instead.
The precision has the following meaning for the specified conversion character

* d,0,x,X,and U - The minimum number of digits to be printed. If the displayed integer is
less than the precision, leading zeros are padded. This is the same as using a leading zero on
the field width.

* s- The maximum number of characters to be printed. If the string is longer than the precision, the
remaining characters are ignored.

* f,e,and E - The number of digits to be printed after the decimal point.
* gand G - The number of significant digits.

Argument Ordering

An element text string can contain more than one format specifier. When a dictionary element is
displayed, the first format specifier is applied against the first argument, the second specifier for
the second argument, and so on. In some instances, you may need to apply a format specifier out
of sequence. This can happen if you develop your program for one language, and then translate
the dictionary to another language.

To re-arrange the order of the format specifiers, follow the conversion character with the “*”

character and the argument number. As an example,
$20, file message "File %s”2 on device %s”1 not found" &new line

means use the second argument for the first specifier and the first argument for the second specifier.

2 Caution
You cannot re-arrange arguments that are SHORT or BYTE type because these
argument are passed differently than other data types. Re-arranging SHORT or
BYTE type arguments could cause unexpected results.

10.2.6 Dictionary Reserved Word Commands

Reserve words begin with the “&”” character and are used to control the screen. They effect how, and
in some cases where, the text is going to be displayed. They provide an easy and self-documenting
way of adding control information to the dictionary. Refer to Table 10-2 for a list of the available
reserved words.

10-8

MARRC75KR07091E Rev D

10.

DICTIONARIES AND FORMS

Table 10-2. Reserved Words

Reserved Word

Function

&bg_black Background color black
&bg_blue Background color blue
&bg_cyan Background color cyan
&bg_dflt Background color default
&bg_green Background color green

&bg_magenta

Background color magenta

&bg_red Background color red
&bg_white Background color white
&bg_yellow Background color yellow
&fg_black Foreground color black
&fg_blue Foreground color blue
&fg_cyan Foreground color cyan
&fg_dflt Foreground color default
&fg_green Foreground color green

&fg_magenta

Foreground color magenta

&fg_red Foreground color red
&fg_white Foreground color white
&fg_yellow Foreground color yellow
&clear_win Clear window (#128)
&clear_2_eol Clear to end of line (#129)

&clear_2_eow

Clear to end of window (#130)

$cr Carriage return (#132)

SIf Line feed (#133)

&rev_If Reverse line feed (#134)
&new_line New line (#135)

&bs Back space (#136)

&home Home cursor in window (#137)
&blink Blink video attribute (#138)
&reverse Reverse video attribute (#139)
&bold Bold video attribute (#140)

10-9

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

Table 10-2. Reserved Words (Cont'd)

Reserved Word Function

&under_line Underline video attribute (#141)

&double_wide Wide video size (#142) (refer to description below for usage)
&standard All attributes normal (#143)

&graphics_on Turn on graphic characters (#146)

&ascii_on Turn on ASCII characters (#147)

&double_high High video size (#148) (refer to description below for usage)
&normal_size Normal video size (#153)

&multi_on Turn on multi-national characters (#154)

The attributes &normal_size, &double high, and &double wide are used to clear data from a line on a
screen. However, they are only effective for the line the cursor is currently on. To use these attributes,
first position the cursor on the line you want to resize. Then write the attribute, and the text.

* For theteach pendant, &double high means both double high and double wide are active, and
&double wide is the same as &normal_size.

* For the CRT/KB, &double high means both double high and double wide are active, and
&double_wide means double wide but normal height.

10.2.7 Character Codes

A character code is the “#” character followed by a number between 0 and 255. It provides a method
of inserting special printable characters, that are not represented on your keyboard, into your
dictionary. Refer to Appendix D, for a listing of the ASCII character codes.

10.2.8 Nesting Dictionary Elements

The plus “+ attribute allows a dictionary element to reference another dictionary element from the
same dictionary, up to a maximum of five levels. These nested elements can be referenced by element
name or element number and can be before or after the current element. When nested elements are
displayed, all the elements are displayed in their nesting order as if they are one single element.

10-10

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

10.2.9 Dictionary Comment

The asterisk character (*) indicates that all text, to the end of the line, is a comment. All comments
are ignored when the dictionary is compressed. A comment can be placed anywhere a space is
allowed, except within the element text.

10.2.10 Generating a KAREL Constant File

The element numbers that are assigned an element name in the dictionary can be generated into a
KAREL include file for KAREL programming. The include file will contain the CONST declarator
and a constant declaration for each named element.

element name = element number

Your KAREL program can include this file and reference each dictionary element by name instead
of number.

To generate a KAREL include file, specify “.kl”, followed by the file name, on the first line of the
dictionary fie. The KAREL include file is automatically generated when the dictionary is compressed.

The following would create the file kemn.kl when the dictionary is compressed.
.k1 kcmn
$-, move home, "press HOME to move home"

The kemn.kl file would look as follows
-- WARNING: This include file generated by dictionary compressor.

-- Include File: kcmn.kl

-- Dictionary file: apkcmneg.utx
--CONST

move _home = 0

Note If you make a change to your dictionary that causes the element numbers to be re-ordered, you
must re-translate your KAREL program to insure that the proper element numbers are used.

10.2.11 Compressing and Loading Dictionaries on the Controller

The KAREL editor can be used to create and modify the user dictionary. When you have finished
editing the file, you compress it from the KCL command prompt.
KCL> COMPRESS DICT filename

10-11

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

Do not include the .UTX file type with the file name. If the compressor detects any errors, it will
point to the offending word with a brief explanation of what is wrong. Edit the user dictionary and
correct the problem before continuing.

A loadable dictionary with the name filename but with a .TX file type will be created. If you used the
.kl symbol, a KAREL include file will also be created. Figure 10—1 illustrates the compression process.

Figure 10-1. Dictionary Compressor and User Dictionary File

UTX file

Dictionary Compressor

TIX KL

Before the KAREL program can use a dictionary, the dictionary must be loaded into the controller and
given a dictionary name. The dictionary name is a one to four character word that is assigned to the
dictionary when it is loaded. Use the KCL LOAD DICT command to load the dictionary.

KCL> LOAD DICT filename dictname <lang namex

The optional lang_name allows loading multiple dictionaries with the same dictionary name.
The actual dictionary that will be used by your program is determined by the current value of
SLANGUAGE. This system variable is set by the KCL SET LANGUAGE command or the
SET LANG KAREL built-in. The allowed languages are ENGLISH, JAPANESE, FRENCH,
GERMAN, SPANISH, or DEFAULT.

The KAREL program can also load a dictionary. The KAREL built-in ADD DICT is used to load a
dictionary into a specified language and assign a dictionary name.

10.2.12 Accessing Dictionary Elements from a KAREL Program

Your KAREL program uses either the dictionary name and an element number, or the element name to
access a dictionary element. The following KAREL built-ins are used to access dictionary elements:

* ADD DICT - Add a dictionary to the specified language.

10-12

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

REMOVE DICT - Removes a dictionary from the specified language and closes the file or frees
the memory it resides in.

WRITE_DICT - Write a dictionary element to a window.

WRITE _DICT V - Write a dictionary element that has format specifiers for a KAREL variable,
to a window.

READ DICT - Read a dictionary element into a KAREL STRING variable.
READ DICT V - Read a dictionary element that has format specifiers into a STRING variable.
CHECK _DICT - Check if a dictionary element exists.

10.3 CREATING USER FORMS

A formis a type of dictionary file necessary for creating menu interfaces that have the same "look and
feel" as the R-30iA menu interface.

The following are steps for using forms.

1. Create an ASCII form text file with the .FTX file extension.

2. Compress the form file using the KCL COMPRESS FORM command. This creates a loadable
dictionary file with a .TX extension and an associated variable file (.VR).

3. Load the form.

* From KCL , use the KCL. LOAD FORM command. This will load the dictionary file
(.TX) and the associated variable file (.VR).

* From KAREL , use the ADD DICT built-in to load the dictionary file (.TX), and the
LOAD built-in to load the association variable file (.VR) .

4. Use the KAREL DISCTRL FORM built-in to display the form text. The DISCTRL FORM
built-in handles all input operations including cursor position, scrolling, paging, input validation,
and choice selections. Refer to the DISCTRL _FORM built-in, Appendix A , "KAREL Language
Alphabetical Description."

Forms are useful for programs which require the user to enter data. For example, once the user enters
the data, the program must test this data to make sure that it is in an acceptable form. Numbers
must be entered with the correct character format and within a specified range, text strings must not
exceed a certain length and must be a valid selection. If an improper value is entered, the program
must notify the user and prompt for a new entry. Forms provide a way to automatically validate
entered data. Forms also allow the program to look as if it is integrated into the rest of the system
menus, by giving the operator a familiar interface.

Forms must have the USER2 menu selected. Forms use the "t _sc" and "c_sc" screens for teach pendant
and CRT/KB respectively. The windows that are predefined by the system are used for displaying the
form text. For both screens, this window is 10 rows high and 40 columns wide. This means that the
&double high and &double wide attributes are used on the CRT/KB and cannot be changed.

10-13

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

10.3.1 Form Syntax

A form defines an operator interface that appears on the teach pendant or CRT/KB screens. A form
is a special dictionary element. Many forms can reside in the same dictionary along with other
(non-form) dictionary elements.

Note If your program requires a form dictionary file (.FTX), you do not have to create a user
dictionary file ((UTX). You may place your user dictionary elements in the same file as your forms.

To distinguish a form from other elements in the dictionary, the symbol ““.form” is placed before the
element and the symbol ““.endform” is placed after the element. The symbols must reside on their

own lines. The form symbols are omitted from the compressed dictionary.

The following is the syntax for a form:

Form Syntax

.form <form attributes>
$n, form name<@cursor pos><&res word>"Menu title"<&res work>&new line
<@cursor pos><&res word>"Menu label'"<&res word>&new_line
<@cursor pos><&res word><"-Selectable item"<&res word>&new line>
<@cursor pos><&res word><"-%Edit item"<&res word>&new line>
<@cursor_pos><&res_word><"Non_selectable_text"<&res_word>&new_line>
<@cursor pos><&res word><"Display only item"<&res word>&new lines
<*function key &new line>
<?help menu &new_ line>
.endform
<$n, function key
<"Key name" &new line>
<"Key name" &new line>
<"Key name" &new line>
<"Key name" &new_line>
<"help label" &new line>
<"Key name" &new_ line>
<"Key name" &new line>
<"Key name" &new line>
<"Key name" &new line>
"Key name"
>
<$n,help menu
<"Help text" &new linex
<"Help text" &new linex
"Help_ text'"s>

Restrictions

* [tems in brackets <> are optional.

10-14

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

Symbols not defined here are standard user dictionary element symbols ($n, @cursor pos,
&res_word, &new_line).

* form_attributes are the key words unnumber and unclear .
* form name specifies the element name that identifies the form.

* "Menu_title" and "Menu_label" specify element text that fills the first two lines of the form
and are always displayed.

¢ "-Selectable item" specifies element text that can be cursored to and selected.
» "-%Editable item" specifies element text that can be cursored to and edited.

* "Non_selectable text" specifies element text that is displayed in the form and cannot be cursored
to.

* "%Display only item" specifies element text using a format specifier. It cannot be cursored to.
* “unction_key defines the labels for the function keys using an element name.

* %help menu defines a page of help text that is associated with a form using an element name.

* "Key name" specifies element text displayed over the function keys.

e "Help label" is the special label for the function key 5. It can be any label or the special word
HELP.

* "Help_text" is element text up to 40 characters long.

* Color attributes can be specified in forms. The i Pendant will display the color. The monochrome
pendant will ignore the color attributes.

10.3.2 Form Attributes

Normally, a form is displayed with line numbers in front of any item the cursor can move to. To keep
a form from generating and displaying line numbers, the symbol ““.form unnumber” is used.

To keep a form from clearing any windows before being displayed, the symbol “.form noclear” is
used. The symbols “noclear” and “unnumber” can be used in any order.

In the following example, MH_ TOOLDEFN is an unnumbered form that does not clear any windows.
MH_APPLIO is a numbered form.

.form unnumber noclear

$1, MH TOOLDEFN

.endform

$2, MH_PORT

$3, MH_PORTFKEY

10-15

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

.form
sS6, MH APPLIO

.endform

10.3.3 Form Title and Menu Label

The menu title is the first element of text that follows the form name. The menu label follows the
menu title. Each consists of one row of text in a non-scrolling window.

* On theteach pendant the first row of the "full" window is used for the menu title. The second
row is used for the menu label.

¢ On the CRT/KB the first row of the "cr05" widow is used for the menu title. The second row
is used for the menu label.

* The menu title is positioned at row 3, column 1-21.

* The menu label is positioned at row 4, column 1-40.
Unless the "noclear” form attribute is specified both the menu title and menu label will be cleared.
The reserved word &home must be specified before the menu title to insure that the cursor is
positioned correctly. The reserved word &reverse should also be specified before the menu title
and the reserved word &standard should follow directly after the menu title. These are necessary
to insure the menu appears to be consistent with the R-30iA menu interface. The reserved word
&new_line must be specified after both the menu title and menu label to indicate the end of the text.

The following is an example menu title and menu label definition.

.form

$1, mis_ form

&home &reverse "Menu Title" &standard &new_line

"Menu Label" &new line

.endform

10-16

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

If no menu label text is desired, the &new _line can be specified twice after the menu title as in
the following example.

.form

$1,misc_form

&home &reverse " Menu Title" &standard &new line &new_line

.endform

If the cursor position attribute is specified, it is not necessary to specify the &new_line reserved
word. The following example sets the cursor position for the menu title to row 1, column 2, and
the menu label to row 2, column 5.

.form

$1,misc_form

@l1,2 &reverse "Menu Title" &standard

@2,5 "Menu Label"

.endform

10.3.4 Form Menu Text

The form menu text follows the menu title and menu label. It consists of an unlimited number of lines
that will be displayed in a 10 line scrolling window named ““fscr” on the teach pendant and “ct06” on
the CRT/KB. This window is positioned at rows 5-14 and columns 1-40. Unless the “noclear’ option
is specified, all lines will be cleared before displaying the form.

Menu text can consist of the following:

¢ Selectable menu items

* Edit data items of the following types:

10-17

10. DICTIONARIES AND FORMS

MARRC75KR07091E Rev D

INTEGER

INTEGER port

REAL

SHORT (32768 to 32766)
BYTE (0 to 255)

BOOLEAN

BOOLEAN port

STRING

Program name string

Function key enumeration type
Subwindow enumeration type
Subwindow enumeration type using a variable

Port simulation

¢ Non-selectable text

* Display only data items with format specifiers

* Cursor position attributes

e Reserve words or ASCII codes

* Function key element name or number

* Help element name or number

Each kind of menu text is explained in the following sections.

10.3.5 Form Selectable Menu Item

Selectable menu items have the following characteristics:

* A selectable menu item is entered in the dictionary as a string enclosed in double quotes.

* The first character in the string must be a dash, ‘-’. This character will not be printed to the
screen. For example,
"- Item 1 "

* The entire string will be highlighted when the selectable item is the default.

* [If a selectable item spans multiple lines, the concatenation character ‘+’ should be used as the
last character in the string. The concatenation character will not be printed to the screen. The

attribute &new _line is used to signal a new line. For example,

"- Item 1, line 1 +" &new_line

10-18

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

Item 1, line 2 "

The automatic numbering uses the first three columns and does not shift the form text. Therefore,
the text must allow for the three columns by either adding spaces or specifying cursor positions.
For example,

"- ITtem 1 " &new line
"- Item 2 " &new line
"- Item 3 "

or

@3,4"- Item 1 "

@4,4"- Item 2 "

@5,4"- Item 3 "

The first line in the scrolling window is defined as row 3 of the form.

Pressing enter on a selectable menu item will always cause the form processor to exit with the
termination character of ky_select, regardless of the termination mask setting. The item number
selected will be returned.

Selecting the item by pressing the ITEM hardkey on the teach pendant will only highlight the
item. It does not cause an exit.

Short-cut number selections are not handled automatically, although they can be specified as
a termination mask.

10.3.6 Edit Data Item

You can edit data items that have the following characteristics:

Data item is entered in the dictionary as a string enclosed in double quotes.
The first character in the string must be a dash, ‘-’. This character is not printed to the screen.

The second character in the string must be a ‘%’. This character marks the beginning of a format
specifier.

Each format specifier begins with a % and ends with a conversion character. All the characters
between these two characters have the same meaning as user dictionary elements.

10-19

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

Note You should provide a field width with each format specifier, otherwise a default will be
used. This default might cause your form to be mis-aligned.

Table 10-3 lists the conversion characters for an editable data item.

Table 10-3. Conversion Characters

Character Argument Type: Printed As

d INTEGER; decimal number.

o] INTEGER; unsigned octal notation (without a leading zero).

X, X INTEGER; unsigned hexadecimal notation (without a leading Ox or 0X), using abcdef or
ABCDEF for 10, ..., 15.

u INTEGER; unsigned decimal notation.

pu INTEGER port; unsigned decimal notation.

pXx INTEGER port; unsigned hexadecimal notation (without a leading Ox or 0X), using abcdef
or ABCDEF for 10, ..., 15.

f REAL; decimal notation of the form <->mmm.dddddd, where the number of d’s is given by
the precision. The default precision is 6; a precision of 0 suppresses the decimal point.

e, E REAL; decimal notation of the form <->m.dddddde+-xx or <->m.ddddddE+-xx, where
the number of d’s is given by the precision. The default precision is 6; a precision of
0 suppresses the decimal point.

g, G REAL; %e or %E is used if the exponent is less than -4 or greater than or equal to the
precision; otherwise %f is used. Trailing zeros and a trailing decimal pointer are not printed.

h SHORT; signed short.

b BYTE; unsigned byte.

B BOOLEAN; print characters from boolean enumeration string.

P BOOLEAN port; print characters from boolean port enumeration string.

S INTEGER or BOOLEAN port; print characters from port simulation enumeration string.

k STRING; print characters from KAREL string until end of string or the number of characters
given by the precision.

pk STRING; print program name from KAREL string until end of string or the number of
characters given by the precision.

n INTEGER,; print characters from function key enumeration string. Uses dictionary elements
to define the enumeration strings.

w INTEGER; print characters from subwindow enumeration string. Uses dictionary elements
to define the enumeration strings.

\Y INTEGER,; print characters from subwindow enumeration string. Uses a variable to define

the enumeration strings.

10-20

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

Table 10-3. Conversion Characters (Cont’'d)

Character Argument Type: Printed As

% no argument is converted; print a %.

t BOOLEAN; print + or - for tree view.

The following is an example of a format specifier:
"_$5d" or "-%-10s"

The form processor retrieves the values from the input value array and displays them sequentially. All

values are dynamically updated .

Edit Data Items: INTEGER, INTEGER Ports, REAL, SHORT, BYTE

* You can specify a range of acceptable values by giving each format specifier a minimum and
maximum value allowed "(min, max)." If you do not specify a minimum and maximum value,

any integer or floating point value will be accepted. For example,
"-%$3d(1,255)" or "-%10.3£(0.,100000.)"

* When an edit data item is selected, the form processor calls the appropriate input routine.
The input routine reads the new value (with inverse video active) and uses the minimum and
maximum values specified in the dictionary element, to determine whether the new value is

within the valid range.
— If the new value is out of range, an error message will be written to the prompt line and the

current value will not be modified.

— If'the new value is in the valid range, it will overwrite the current value.

Edit Data Item: BOOLEAN

* The format specifier %B is used for KAREL BOOLEAN values, to display and select menu
choice for the F4 and F5 function keys. The name of the dictionary element, that contains the
function key labels, is enclosed in parentheses and is specified after the %B. For example,

"-%4B (enum_bool) "

The dictionary element defining the function keys should define the FALSE value first (F5 label) and

the TRUE value second (F4 label). For example,
$2,enum bool

" NO" &new line

n YES n

10-21

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

YES NO

The form processor will label the function keys when the cursor is moved to the enumerated item. The
value shown in the field is the same as the function key label except all leading blanks are removed.

Edit Data Item: BOOLEAN Port
* The format specifier %P is used for KAREL BOOLEAN port values, to display and select menu

choices from the F4 and F5 function keys. The name of the dictionary element, that contains the

function key labels, is enclosed in parentheses and is specified after the %P. For example,
"-%3P (enum_bool) "

The dictionary element defining the function keys should define the 0 value first (F5 label) and the 1
value second (F4 label). For example,

$2,enum_bool
" OFF" &new_line

n ON n

ON OFF

The form processor will label the function keys when the cursor is moved to the enumerated item. The
value shown in the field is the same as the function key label except all leading blanks are removed.

Edit Data Item: Port Simulation

* The format specifier %S is used for port simulation, to display and select menu choices from
the F4 and F5 function keys. The name of the dictionary element, that contains the function key

labels, is enclosed in parentheses and is specified after the %S. For example,
"-%1S (sim_fkey)"

The dictionary element defining the function keys should define the 0 value first (F5 label) and the 1
value second (F4 label). For example,

$-, sim fkey

" UNSIM " &new line * F5 key label, port will be unsimulated
"SIMULATE" &new_line * F4 key label, port will be simulated

10-22

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

The form processor will label the function keys when the cursor is moved to the enumerated item. The
value shown in the field is the same as the function key label except all leading blanks are removed
and the value will be truncated to fit in the field width.

Edit Data Item: STRING
* You can choose to clear the contents of a string before editing it. To do this follow the STRING
format specifier with the word "clear", enclosed in parentheses. If you do not specify "(clear)",

the default is to modify the existing string. For example,
"-%$10k (clear) "

Edit Data Item: Program Name String
* You can use the %pk format specifier to display and select program names from the subwindow.
The program types to be displayed are enclosed in parenthesis and specified after %pk. For
example,
"-%12pk (1) " * gspecifies TP programs
"-%12pk(2)" * specifies PC programs
"-%12pk(6)" * specifies TP, PC, VR
"-%12pk (16)" * gpecifies TP & PC
All programs that match the specified type and are currently in memory, are displayed in the
subwindow. When a program is selected, the string value is copied to the associated variable.
Edit Data Item: Function Key Enumeration
* You can use the format specifier %n (for enumerated integer values) to display and select choices
from the function keys. The name of the dictionary element that contains the list of valid choices

is enclosed in parentheses and specified after %n. For example,
"-%6n(enum_fkey)"

The dictionary element defining the function keys should list one function key label per line. If
function keys to the left of those specified are not active, they should be set to "". A maximum
of 5 function keys can be used. For example,

$2,enum_fkey

"" &new line *Specifies F1 is not active

"JOINT" &new line *Specifies F2

"LINEAR" &new_line *Specifies F3

10-23

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

"CIRC" *Specifies F4

The form processor will label the appropriate function keys when the enumerated item is selected.
When a function key is selected, the value set in the integer is as follows:

User presses F1l, value =1
User presses F2, value = 2
User presses F3, value = 3
User presses F4, value = 4
User presses F5, value = 5

The value shown in the field is the same as the function key label except all leading blanks are
removed.

JOINT LINEAR CIRC

Edit Data Item: Subwindow Enumeration

* You can use the format specifier %w (for enumerated integer values) to display and select choices
from the subwindow. The name of the dictionary element, containing the list of valid choices, is
enclosed in parentheses and specified after %w. For example,

"-%8w(enum_sub) "

One dictionary element is needed to define each choice in the subwindow. 35 choices can be used.

If fewer than 35 choices are used, the last choice should be followed by a dictionary element that

contains "\a" . The choices will be displayed in 2 columns with 7 choices per page. If only 4 or less

choices are used, the choices will be displayed in 1 column with a 36 character width. For example,
$2,enum_sub "Option 1"

$3 "Option 2"

$4 "Option 3"

$ 5 " \ an"
The form processor will label F4 as “[CHOICE]” when the cursor is moved to the enumerated item.
When the function key F4, [CHOICE] is selected, it will create the subwindow with the appropriate

display. When a choice is selected, the value set in the integer is the number selected. The value
shown in the field is the same as the dictionary label except all leading blanks are removed.

10-24

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

Edit Data Iltem: Subwindow Enumeration using a Variable

* You can also use the format specifier %v (for enumerated integer values) to display and select
choices from the subwindow. However, instead of defining the choices in a dictionary they are
defined in a variable. The name of the dictionary element, which contains the program and
variable name, is enclosed in parentheses and specified after %v. For example,

"-%8v (enum_var)"

$-,enum_var

"RUNFORM" &new line * program name of variable

"CHOICES" &new_line * variable name containing choices
[RUNFORM] CHOICES must be defined as a KAREL string array. Each element of the array should
define a choice in the subwindow. This format specifier is similar to %w. However, the first element
is related to the value 0 and is never used. Value 1 begins at the second element. The last value is
either the end of the array or the first uninitialized value.

[RUNFORM] CHOICES:ARRAY[6] OF STRING[12] =

[1] *uninit*

[2] 'Red’ <= value 1

[3] 'Blue’ <= value 2

[4] ’'Green’ <= value 3

[5] *uninit*

[6] *uninit*

Edit Data Item: Tree View

* The format specifier %t is used to specify a Tree View item. It uses a KAREL BOOLEAN value
to determine whether the tree is expanded or collapsed. For example,

n _%tll

The form processor will change %t to %c. When the BOOLEAN value is FALSE, a ’+’ will be
displayed using the format specifier and the items following the tree view will not be shown
(collapsed state). When the BOOLEAN value is TRUE, a ’-” will be displayed using the format
specifier and the items following the tree view will be shown (expanded state). Table 10—4
displays some formatting examples.

10-25

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

Table 10-4. Tree View Format

Format FALSE value TRUE value
ll_%tll + -

ll_%2t " + -

"-%t Weld schedule:" + Weld schedule: — Weld schedule:

* The KAREL BOOLEAN value will only determine the initial state of the tree view. It is not
monitored. When the user selects the tree view item and presses ENTER, the tree view state will
toggle and the BOOLEAN value will be set to the resultant value. This state is maintained when
the form is exited and reentered. If the KAREL BOOLEAN value is in CMOS or SHADOW, then
the state is maintained between power cycles.

* There is a way to refresh the tree view. Passing ctl w to the form will expand or collapse all
tree view items based on their associated KAREL BOOLEAN values. The default item will be
maintained. If the default item is no longer shown its tree view item will become the new default
item.

* Nesting of tree view items is not allowed. If another %t is found, the current tree view is ended
and a new one is started. When a tree view item should be ended without creating a new tree
view item, .endtree can be used. For example:

" "-%t Burnback schedule:" &new line

" Wire feed ""-%6.2£(0.0, 9999.0)" &new line
n Trim "m-%$6.2£(0.0, 9999.0)" &new line
.endtree

" Gas postflow time:" &new line

* Ifa form is constructed by concatenating multiple forms and an item will be within a tree view,
then .tree must be used. The .endtree is optional and only necessary if other items will not be
within the tree view.

.form
$-,wl data cmd &new line &new_line
.tree

" Wire Feed ""-%6.2£(0.0, 9999.0)" &new line
.endform

10.3.7 Dynamic Forms using Tree View

The Tree View can be used to create dynamic forms. It can be used instead of concatenating multiple
forms into one. In this case, the Tree View Data Item is used without the leading -. For example,

"$t" &new_line

10-26

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

10.3.8

10.3.9

" PC Share Configuration:" &new_ line

" WINS Server: " "l16k" &new_line
" Client Caching: " "-%10B(bool fkey)" &new line
" Broadcast Discovery:" "-%10B(bool fkey)" &new line

When the KAREL BOOLEAN value is FALSE, the items following the tree view will be invisible.
When the KAREL BOOLEAN value is TRUE, the items following the tree view will be visible. The
tree view line is always invisible. Any other items on its line are also invisible.

The KAREL BOOLEAN value will only determine the initial state of the tree view. It is not
monitored. The user will never be able to change the state since the tree view item is invisible.

There is a way to refresh the tree view. Passing ctl w to the form will expand or collapse all tree view
items based on their associated KAREL BOOLEAN values. The default item will be maintained. If
the default item is no longer shown, the previous item will become the new default item.

Non-Selectable Text

Non-selectable text can be specified in the form. These items have the following characteristics:

* Non-selectable text is entered in the dictionary as a string enclosed in double quotes.

* Non-selectable text can be defined anywhere in the form, but must not exceed the maximum
number of columns in the window.

Display Only Data Items

Display only data items can be specified in the form. These items have the following characteristics:

* Display only data items are entered in the dictionary as a string enclosed in double quotes.

* The first character in the string must be a ‘%’. This character marks the beginning of a format
specifier.

* The format specifiers are the same as defined in the previous section for an edit data item.

10.3.10 Cursor Position Attributes

Cursor positioning attributes can be used to define the row and column of any text. The row is
always specified first. The dictionary compressor will generate an error if the form tries to backtrack
to a previous row or column. The form title and label are on rows 1 and 2. The scrolling window
starts on row 3. For example,

@3,4 "- Item 1"

10-27

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

@4,4 "- Item 2"
@3,4 "- Item 3" <- backtracking to row 3 not allowed

Even though the scrolling window is only 10 lines, a long form can specify row positions that are
greater than 12. The form processor keeps track of the current row during scrolling.

10.3.11 Form Reserved Words and Character Codes

Reserved words or character codes can be used. Refer to Table 10-5 for a list of all available reserved
words. However, only the reserved words which do not move the cursor are allowed in a scrolling
window. Refer to Table 10-6 for a list of available reserved words for a scrolling window.

Table 10-5. Reserved Words

Reserved Word Function

&bg_black Background color black
&bg_blue Background color blue
&bg_cyan Background color cyan
&bg_dflt Background color default
&bg_green Background color green
&bg_magenta Background color magenta
&bg_red Background color red
&bg_white Background color white
&bg_yellow Background color yellow
&fg_black Foreground color black
&fg_blue Foreground color blue
&fg_cyan Foreground color cyan
&fg_dflt Foreground color default
&fg_green Foreground color green
&fg_magenta Foreground color magenta
&fg_red Foreground color red
&fg_white Foreground color white
&fg_yellow Foreground color yellow
&clear_win Clear window (#128)

10-28

MARRC75KR07091E Rev D 10.

DICTIONARIES AND FORMS

Table 10-5. Reserved Words (Cont’d)

Reserved Word

Function

&clear_2_eol

Clear to end of line (#129)

&clear_2_eow

Clear to end of window (#130)

Scr Carriage return (#132)

$If Line feed (#133)

&rev_|If Reverse line feed (#134)
&new_line New line (#135)

&bs Back space (#136)

&home Home cursor in window (#137)
&blink Blink video attribute (#138)
&reverse Reverse video attribute (#139)
&bold Bold video attribute (#140)
&under_line Underline video attribute (#141)

&double_wide

Wide video size (#142) (refer to description below for usage)

&standard

All attributes normal (#143)

&graphics_on

Turn on graphic characters (#146)

&ascii_on

Turn on ASCII characters (#147)

&double_high

High video size (#148) (refer to description below for usage)

&normal_size

Normal video size (#153)

&multi_on

Turn on multi-national characters (#154)

Table 106 lists the reserved words that can be used for a scrolling window.

Table 10-6. Reserved Words for Scrolling Window

Reserved Word

Function

&new_line New line (#135)

&blink Blink video attribute (#138)
&reverse Reverse video attribute (#139)
&bold Bold video attribute (#140)
&under_line Underline video attribute (#141)
&standard All attributes normal (#143)

&graphics_on

Turn on graphic characters (#146)

10-29

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

Table 10-6. Reserved Words for Scrolling Window (Cont’d)

Reserved Word Function
&ascii_on Turn on ASCII characters (#147)
&multi_on Turn on multi-national characters (#154)

10.3.12 Form Function Key Element Name or Number

Each form can have one related function key menu. A function key menu has the following
characteristics:

* The function key menu is specified in the dictionary with a caret, », immediately followed by the

name or number of the function key dictionary element. For example,
“misc_fkey

* The dictionary element defining the function keys should list one function key label per line.
If function keys to the left of those specified are not active, then they should be set to "". A
maximum of 10 function keys can be used. For example,

$3,misc_fkey

" F1" &new line

" F2" &new_line

" F3" &new line

" F4" &new line

" HELP >" &new_ line

'" &new line
""" gnew_ line
" F8" &new_line

" F9" &new line

The form processor will label the appropriate function keys and return from the routine if a valid
key is pressed. The termination character will be set to ky f1 through ky f10.

The function keys will be temporarily inactive if an enumerated data item is using the same
function keys.

10-30

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

* If function key F5 is labeled HELP, it will automatically call the form’s help menu if one exists.

F1 F2 F3 F4 HELP >

F8 F9

10.3.13 Form Function Key Using a Variable

A function key menu can also be defined in a variable. The function key dictionary item will contain
the program and variable name, prefixed with an asterisk to distinguish it from function key text.
For example,

* Specify the function keys in a variable
* whose type is an ARRAY[m] of STRING [n].
$3,misc_fkey
"*RUNFORM" &new_line * program name of variable
"*FKEYS" &new_line * variable name containing function keys

[RUNFORM] FKEYS must be defined as a KAREL string array. Each element of the array should
define a function key label.

[RUNFORM] FKEYS:ARRAY[10] OF STRING[12] =
[1] ¥ F1’

[2] ¥ F2

[3] * F3°

[4] F4’

[5] ' HELP >/
[6]

[71

[8] * F8'

[9] * F9
[10]" >’

10.3.14 Form Help Element Name or Number

Each form can have one related help menu. The help menu has the following characteristics:

10-31

10. DICTIONARIES AND FORMS

MARRC75KR07091E Rev D

* A help element name or number is specified in the dictionary with a question mark, ?,
immediately followed by the name or number of the help dictionary element. For example,
?misc_help

* The dictionary element defining the help menu is limited to 48 lines of text.

* The form processor will respond to the help key by displaying the help dictionary element in a
predefined window. The predefined window is 40 columns wide and occupies rows 3 through 14.

* The help menu responds to the following inputs:
— Up or down arrows to scroll up or down 1 line.
— Shifted up or down arrows to scroll up or down 3/4 of a page.

— Previous, to exit help. The help menu restores the previous screen before returning.

10.3.15 Teach Pendant Form Screen

You can write to other active teach pendant windows while the form is displayed. The screen itself is
named "tpsc." Figure 10-2 shows all the windows attached to this screen. Unless the noclear option is
specified, “full,” “fscr,” “prmp,” and “ftnk” windows will be cleared before displaying the form.

Figure 10-2. Teach Pendant Form Screen

+0udoogougboodbuobotboobobboobobooboobooog+

lerr
|stat
[full
[full
|fscr

lprmp
Iftnk

+[1 jogoggl

| <t ifull and motn overlap
| motn starts at col 18

1jogoal 1jogoal jogoagl jngogd+

10.3.16 CRT/KB Form Screen

You can write to other active CRT/KB windows while the form is displayed. The screen itself is
named “ctsc.” All lines in the screen are set to double high and double wide video size. Figure 10-3

10-32

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

shows all the windows attached to this screen. Unless the “noclear” option is specified, “ct05,”
“ct06,” “ct03,” and “ct04” windows will be cleared before displaying the form.

Figure 10-3. CRT/KB Form Screen

+00000000000000000000000000000000ooboooooag+
lerr

|
|ct01 |
|ct05 | <Octo5 and motn overlap
|
I

|ct05 motn starts at col 18
|ctO6

|ct03 I

|cto4
+UL,JJUUULL,JUUUUL,,JUUUUL,JJUiULL,JUUUUL+

10.3.17 Form File Naming Convention

Uncompressed form dictionary files must use the following file name conventions:

* The first two letters in the dictionary file name can be an application prefix.

* If the file name is greater than four characters, the form processor will skip the first two letters
when trying to determine the dictionary name.

* The next four letters must be the dictionary name that you use to load the .TX file, otherwise
the form processor will not work.

* The last two letters are optional and should be used to identify the language;
“EG” for ENGLISH
— “JP” for JAPANESE
— “FR” for FRENCH
— “GR” for GERMAN
— “SP” for SPANISH

* A dictionary file containing form text must have a .FTX file type, otherwise the dictionary
compressor will not work. After it is compressed, the same dictionary file will have a .TX file
type instead.

The following is an example of an uncompressed form dictionary file name:
MHPALTEG . FTX

10-33

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

MH stands for Material Handling, PALT is the dictionary name that is used to load the dictionary
on the controller, and EG stands for English.

10.3.18 Compressing and Loading Forms on the Controller

The form file can only be compressed on the RAM disk RD:. Compressing a form is similar to
compressing a user dictionary. From the KCL command prompt, enter:
KCL> COMPRESS FORM filename

Do not include the .FTX file type. If the compressor detects any errors, it will point to the offending
word with a brief explanation of what is wrong. Edit the form and correct the problem before
continuing.

Note The form file must be an uncompressed file in order for the errors to point to the correct line.

Two files will be created by the compressor. One is a loadable dictionary file with the name filename
but with a .TX file type. The other will be a variable file with a .VR file type but with the four
character dictionary name as the file name. The dictionary name is extracted from filename as
described previously. A third file may also be created if you used the ““ k1" symbol to generate a
KAREL include file. Figure 10—4 illustrates compressing.

Figure 10-4. Dictionary Compressor and Form Dictionary File

FTX file

|

Dictionary Compressor

I

TIX VR KL

Each form will generate three kinds of variables. These variables are used by the form processor.
They must be reloaded each time the form dictionary is recompressed. The variables are as follows:

1. Item array variable - The variable name will be the four-character dictionary name, concatenated
with the element number, concatenated with _IT.

2. Line array variable - The variable name will be the four-character dictionary name, concatenated
with the element number, concatenated with LN.

10-34

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

3. Miscellaneous variable - The variable name will be the four-character dictionary name,
concatenated with the element number, concatenated with MS.

The data defining the form is generated into KAREL variables. These variables are saved into the
variable file and loaded onto the controller. The name of the program is the dictionary name preceded
by an asterisk. For example, Dictionary MHPALTEG.FTX contains:

.form unnumber

$1, MH_TOOLDEFN

.endform

$2, MH_PORT

$3, MH_PORTFKEY

.form

$6, MH APPLIO

.endform
As explained in the file naming conventions section, the dictionary name extracted from the file name
is “PALT”. Dictionary elements 1 and 6 are forms. A variable file named PALT.VR is generated with
the program name “*PALT.” It contains the following variables:

PALT1 IT, PALT1 LN, and PALT1_ MS

PALT6 IT, PALT6é LN, and PALT6 MS
Note KCL CLEAR ALL will not clear these variables. To show or clear them, you can SET VAR
$CRT_DEFPROG = "*PALT’ and use SHOW VARS and CLEAR VARS.
The form is loaded using the KCL LOAD FORM command.

KCL> LOAD FORM filename

The name filename is the name of the loadable dictionary file. After this file is loaded, the dictionary
name is extracted from filename and is used to load the variable file. This KCL command is
equivalent to

KCL> LOAD DICT filename dict name DRAM

KCL> LOAD VARS dict name

10-35

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

10.3.19 Displaying a Form

The DISCTRL _FORM built-in is used to display and control a form on the teach pendant or CRT/KB
screens. All input keys are handled within DISCTRL_FORM. This means that execution of your
KAREL program will be suspended until an input key causes DISCTRL _FORM to exit the form. Any
condition handlers will remain active while your KAREL program is suspended.

Note DISCTRL FORM will only display the form if the USER2 menu is the selected menu.
Therefore, use FORCE SPMENU(device stat, SPI TPUSER2, 1) before calling DISCTRL FORM
to force the USER2 menu.

The following screen shows the first template in FORM.FTX as displayed on the teach pendant. This
example contains four selectable menu items.

Figure 10-5. Example of Selectable Menu Items

RUNFORM LINE 22 RUNNING

Title here JOINT 10%
label here 1/5
Menu item
Menu item
Menu item
Menu item
Menu item
5 Menu item

S W N R

line 1
line 2

U B w N R

The dictionary elements in FORM.FTX, shown in Example Form Dictionary for Selectable Menu
Items , were used to create the form shown in Figure 10-5 .

Example Form Dictionary for Selectable Menu Items

* Dictionary Form File: form.ftx
*
* Generate form.kl which should be included in your KAREL program
.kl form
.form
S-,forml
&home &reverse "Title here" &standard $new_line
" label here " &new_line
@3,10 "- Menu item 1 "
@4,10 "- Menu item 2 "
@5,10 "- Menu item 3 "
@6,10 "- Menu item 4 line 1 +"
@7,10 " Menu item 4 line 2 "
@8,10 "- Menu item 5 "

* Add as many items as you wish.

10-36

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

* The form manager will scroll them.
*forml fkey * gpecifies element which contains
* function key labels

?forml help * element which contains help
.endform
$-,forml_ fkey * function key labels

" F1" &new line
" F2" &new line
" F3" &new line
" F4" &new line
" HELP >" &new_line * help must be on F5
" F6" &new line
" F7" &new line
" F8" &new line
" F9" &new line

" F10 >"
* you can have a maximum of 10 function keys labeled
$-, forml help * help text

"Help Line 1" &new line

"Help Line 2" &new_line

"Help Line3" &new line

* You can have a maximum of 48 help lines

The program shown in Example Program for Selectable Menu Items was used to display the form
shown in Figure 10-5 .

Example Program for Selectable Menu Items

PROGRAM runform

¥NOLOCKGROUP

$INCLUDE form -- allows you to access form element numbers
%$INCLUDE klevccdf

%$INCLUDE klevkeys

%$INCLUDE klevkmsk

VAR
device stat: INTEGER --tp_panel or crt_panel
value_array: ARRAY [1] OF STRING [1] --dummy variable for DISCTRL_FORM
inact _array: ARRAY [1] OF BOOLEAN --not used
change array: ARRAY [1] OF BOOLEAN --not used
def item: INTEGER
term char: INTEGER
status: INTEGER
BEGIN
device stat = tp_ panel
FORCE_SPMENU (device stat, SPI_TPUSER2, 1)--forces the TP USER2
menu

10-37

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

def item = 1 -- start with menu item 1
--Displays form named FORM1
DISCTRL_FORM ("FORM", forml, value array, inact array,
change array, kc func_key, def item, term char, status)
WRITE TPERROR (CHR(cc_clear win)) --clear the TP error
window
IF term char = ky select THEN
WRITE TPERROR ("Menu item", def item: :1, ’‘was selected.’)
ELSE
WRITE TPERROR ('Func key'’, term char: :1, ' was selected.’)
ENDIF
END runform

Figure 10—6 shows the second template in FORM.FTX as displayed on the CRT/KB (only 10
numbered lines are shown at one time). This example contains all the edit data types.

Figure 10-6. Example of Edit Data Iltems

RUNFORM LINE 81 RUNNING
Title here JOINT 10%
label here
1 Integer: 12345
2 Integer: 1
3 Real: 0.000000
4 Boolean: TRUE
5 String: This is a test
6 String: Kk khkkhkkhkkhkkkkhkkk*k
7 Byte: 10
8 Short: 30
9 DIN[1]: OFF
10 AIN[1]: 0 S
11 AOQOUT[2]: 0 U
12 Enum Type: FINE
13 Enum Type: Green
14 Enum Type: Red
15 Prog Type: MAINTEST
16 Prog Type: RUNFORM
17 Prog Type: PRG1
18 Prog Type: MAINTEST
EXTIT
Fl F2 F3 F4 F5
ITEM PAGE[] PAGE+ FCTN MENUS
Fo6 E7 F8 F9 F10

The dictionary elements in FORM.FTX, shown in Example Dictionary for Edit Data Items , were
used to create the form shown in Figure 10-6 .

10-38

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

Example Dictionary for Edit Data Iltems

* Dictionary Form File: form.ftx
*

* Generate form.kl which should be included in your KAREL program

.kl form

.form

$-,form2

&home &reverse " Title here" &standard &new_line
" label here " &new line
" Integer: " "-%1o0d" &new_line
n Integer: n "-%10d4(1,32767)" &new_line
" Real: " "-g12f" &new_ line
" Bolean: " "-%10B (bool fkey)" &new_line
" String: " "-%-20k" &new_ line
" String: " "-%12k (clear) " &new line
" Byte: " "-%10b" &new_line
" Short: " "-%10h" &new_line
" DIN[1]: " "-%10P (dout_fkey)" &new_ line
" AIN[1]: " "or-%1lopu" " " "-%1S(sim_fkey)" &new_line
" AOUT[2] : " "on-%lopx" " " "-%1S(sim_fkey)" &new_ line
" Enum Type: " "-%8n(enum_fkey)" &new_line
" Enum Type: " "-%6w(enum_subwin)" &new_line
" Enum Type: " "-%6V (ENUM_VAR) " &new_line
" Prog Type: " "-%12pk (1) " &new_line
" Prog Type: " "-%12pk (2) " &new_line
" Prog Type: " "-%12pk(6) " &new_line
" Prog Type: " "-%12pk (16) " &new_line

*form2_ fkey
.endform
$-,form2_ fkey

EXIT" &new_line

*Allows you to specify the labels for F4 and F5 function keys
$-,bool fkey
"FALSE" &new_line * F5 key label, value will be set FALSE
"TRUE" &new_line * F4 key label, value will be set TRUE
* Allows you to specify the labels for F4 and F5 function keys
$-, dout fkey

"OFF" &new_line * F5 key label, value will be set OFF
"ON" &new_line * F4 key label, value will be set
ON

*Allows you to specify the labels for F4 and F5 function keys

$-, sim fkey

" UNSIM " &new line * F5 key label, port will be unsimulated
"SIMULATE" &new_line * F4 key label, port will be simulated
*Allows you to specify the labels for 5 function keys

$-, enum fkey

10-39

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

"FINE" &new line * F1 key label, value will be set to 1
"COARSE" &new_line * F2 key label, value will be set to 2
"NOSETTL" &new_line * F3 key label, value will be set to 3
"NODECEL" &new line * F4 key label, value will be set to 4
"VARDECEL" &new line * F5 key label, value will be set to 5

*Allows you to specify a maximum of 35 choices in a subwindow
$-,enum_subwin

"Red" * value will be set to 1

$-

"Blue" * value will be sget to 2

$-

"Green"

$-

"Yellow"

$-

"\a" * specifies end of subwindow list

* Allows you to specify the choices for the subwindow in a

* variable whose type is an ARRAY[m] of STRING[n].

$-,enum_var

"RUNFORM" &new_line * program name of variable
"CHOICES" &new_line * Variable name containing choices

The program shown in Example Program for Edit Data Items was used to display the form in Figure
10-6 .

Example Program for Edit Data Items

PROGRAM runform

$NOLOCKGROUP

%$INCLUDE form -- allows you to access form element numbers
%$INCLUDE klevccdf

%$INCLUDE klevkeys

%$INCLUDE klevkmsk

TYPE
mystruc = STRUCTURE
byte varl: BYTE
byte var2: BYTE
short var: SHORT

ENDSTRUCTURE

VAR

device stat: INTEGER -- tp panel or crt panel
value array: ARRAY [20] OF STRING [40]

inact _array: ARRAY [1] OF BOOLEAN

change array: ARRAY[1] OF BOOLEAN

def item: INTEGER

term char: INTEGER

1040

value_array [8

"struc_var

.short_var’

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

status: INTEGER

int varl: INTEGER

int var2: INTEGER

real var: REAL

bool var: BOOLEAN

str_varl: STRINGI[20]

str_var2: STRINGI[12]

struc _var: mystruc

color sell: INTEGER

color sel2: INTEGER

prog namel: INTEGER[12]

prog name2: STRING[12]

Prog_name3: STRING[12]

prog name4: STRING[12]

choices: ARRAY[5] OF STRING[12]

BEGIN
value array [1] = ’int varl’
value_ array [2] = ’int_var2’
value_array [3] = ‘real var’
value_array [4] = ’'bool var’
value array [5] = ’'str varl’
value array [6] = ’'str var2’
value array [7] = ’'struc_var.byte varl’

]
]

to
to
to
to

color sell2
color sell2
color sell2
color sell2

value_array [9] = ’din[1]’

value_array [10] = ‘ain[1]’

value array [11] = ’ain[1]’

value array [12] = ’aout([2]’

value array [13] = ’aout([2]’

value array [14] = ' [*system*]S$Sgroup[l].S$termtype’

value_array [15] = ‘color_sell’

value_array [16] = ’‘color sel2’

value array [17] = ’'prog namel’

value array [18] = ’'prog name2’

value array [19] = ’'prog name3’

value_array [20] = ’'prog_name4’

choices [1] = '’ --not used

choices [2] = ’'Red’ --corresponds

choices [3] = 'Blue’ --corresponds

choices [4] = ’'Green’ --corresponds

choices [5] = ’'Yellow’ --corresponds
-- Initialize variables

int varl = 12345

-- int var2 is purposely left uninitialized

real var = 0
bool var = TRUE
str varl = 'This is a test’

S w N R

10-41

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

-- str var = is purposely left uninitialized

struc_var.byte varl = 10

struc_var.short _var = 30

color sell = 3 --corresponds to third item of enum subwin
color _sel2 =1

device stat = crt_panel --gspecify the CRT/KB for displaying

form

FORCE_SPMENU (device stat, SPI_TPUSER2,1)

def item = 1 -- start with menu item 1

DISCTRL_FORM(’'FORM’, form2, value array, inact array,
change_array, kc_ func key, def item, term char, status);
END runform

Figure 10-7 shows the third template in FORM.FTX as displayed on the teach pendant. This example
contains display only items. It shows how to automatically load the form dictionary file and the
variable data file, from a KAREL program.

Figure 10-7. Example of Display Only Data Iltems

RUNFORM LINE 53 RUNNING
Title here JOINT 10%
label here
Int: 12345 Bool: TRUE
Real: 0.000000 Enum: FINE
DIN[1]: OFF UNSIMULATED

The dictionary elements in FORM.FTX, shown in Example Dictionary for Display Only Data Items ,
were used to create the form shown in Figure 10-7 .

Example Dictionary for Display Only Data Iltems

* Dictionary Form File: form.ftx
*
* Generate form.kl which should be included in your KAREL program
.kl form
.form
S$-,form3
&home &reverse "Title here" &standard &new_line
"label here" &new line
&new line
"Int: " "%$-10d" " Bool: " "%-10B(bool fkey)" &new_line
"Real: " "%-10f" " Enum: " "%-10n(enum_ fkey)" &new_line
"DIN[""%1d""]: " "%-10P(dout_fkey)" "%-12S(sim2_ fkey)"

*You can have as many columns as you wish without exceeding * 40 columns.

10-42

MARRC75KR07091E Rev D 10. DICTIONARIES AND FORMS

*You can specify blank lines too.

.endform

$-,sim2 fkey
"UNSIMULATED" &new_ line * F5 key label, port will be unsimulated
"SIMULATED" &new_line * F4 key label, port will be simulated

The program shown in Example Program for Display Only Data Items was used to display the form
shown in Figure 10-7 .

Example Program for Display Only Data Items

PROGRAM runform

$NOLOCKGROUP

$INCLUDE form -- allows you to access form element numbers
$INCLUDE klevccdf

$INCLUDE klevkeys

%¥INCLUDE klevkmsk

device stat: INTEGER -- tp panel or crt panel
value_array: ARRAY [20] OF STRING [40]

inact array: ARRAY [1] OF BOOLEAN -- not used
change array: ARRAY[1] OF BOOLEAN -- not used

def item: INTEGER

term char: INTEGER

status: INTEGER

loaded: BOOLEAN

initialized: BOOLEAN
int varl: INTEGER
int var2: INTEGER
real var: REAL
bool var: BOOLEAN
BEGIN
-- Make sure 'FORM’ dictionary is loaded.
CHECK DICT(’'FORM’, form3, status)
IF status <> 0 THEN

WRITE TPPROMPT (CR, 'Loading form..... ")

KCL (’'CD MF2:’,status) --Use the KCL CD command to
--change directory to MF2:
KCL ("'LOAD FORM’, status) --Use the KCL load for command

--to load in the form
IF status <> 0 THEN
WRITE TPPROMPT (CR, 'loading from failed, STATUS=', status)
ABORT --Without the dictionary this program cannot continue.
ENDIF
ELSE
WRITE TPPROMPT (CR,’'FORM already loaded.’)
ENDIF

1043

10. DICTIONARIES AND FORMS MARRC75KR07091E Rev D

value array [1] = ’int varl’

value_array [2

"bool_ var’

value array [3 '‘real var’

" [*system*] Sgroup [1] . Stermtype’

value_array [5 ‘int_var2’

]
]
]
value_array [4]
]
]
]

value array [6] = ’din[1]’
value_array [7] = ’din[1]’

int varl = 12345

bool var = TRUE

real var = 0

int var2 =1

device stat = tp_ panel

FORCE_SPMENU (device stat, SPI_TPUSER2,1)

def item = 1 -- start with menu item 1

DISCTRL_FORM(’'FORM’, form3, value array, inact array,
change array, kc_func key, def item, term char, status);
END runform

10-44

Chapter 11

SOCKET MESSAGING

Chapter 11 SOCKET MESSAGING it 11-1
11.1 OVERVIEW oottt e e e e e e e e e s s e e en s e e e enn e e e ennaneees 11-2
11.2 SYSTEM REQUIREMENTS ..ottt s s 11-2
It O 1Y T Y o 11-2
11.2.2 Software REQUITEMENTS ..occvuuiiiiiiiii e e e e e e e 11-2
11.2.3 Hardware ReqUIFEMENTS ..cceuuiiiiiiiiieeieie e ree e e ree e e ree e e ren e e ren e e eennes 11-2

11.3 CONFIGURING THE SOCKET MESSAGING OPTIONccevviiiiiinnininninnnnnns 11-3
Tt O O 1Y T Y 11-3
11.3.2 Setting UP @ SEIVET TAQ ..ceeceuuireereniieeienaeeerenaeeerens e erenseeerenseerenaeeenennnss 11-3
11.3.3 Setting UP @ CHENE TAG - iivreneiieiee e e e e e e e e e 11-6

11.4 SOCKET MESSAGING AND KAREL ..ot 11-9
I O O 1Y T Y o 11-9
11.4.2 MSG_CONN(SIING, INTEOET) oeieeiiiieeeiee e e eee e ree e e e e e e eenaes 11-9
11.4.3 MSG_DISCO(String, INtEGEIN) oeeeeiieeeeieeeeeee e e e e e e ee e eenaas 11-9
11.4.4 MSG_PING(String, INTEGEI) .oeeuieieiiieeeeee e eereer e e e ee e een e eenaas 11-10
11.4.5 Exchanging Data during a Socket Messaging Connectioncc..cu..... 11-10

11.5 NETWORK PERFORMANCE ...couiiiiiiieiiiiee e e e 11-10
30 R O V= Y= 11-10
11.5.2 Guidelines for a Good Implementationcccooeuiiiiiiiiiiiiii s 11-11

11.6 PROGRAMMING EXAMPLES ...cioiiiiiiiiinrr e 11-11
00 11-11
11.6.2 A KAREL Client ApPliCAtIONcceuuiiiiii e 11-11
11.6.3 A KAREL Server AppliCation ..o et ee e 11-14
11.6.4 ANSI C Loopback Client EXamplecooiiiiiiiiiiiiiiiiescereer s 11-16

111

11. SOCKET MESSAGING MARRC75KR07091E Rev D

11.1 OVERVIEW

The User Socket Messaging Option gives you the benefit of using TCP/IP socket messaging from
KAREL.

Socket Messaging enables data exchange between networked robots and a remote PC with LINUX, or
a UNIX workstation. A typical application of Socket Messaging might be a robot running a KAREL
program that sends process information to a monitoring program on the remote PC. The combination
of PC-Interface option on the robot and PC-Developers Kit on the PC is recommended for data
exchange between the robot and a Windows-based PC.

Socket Messaging uses the TCP/IP protocol to transfer raw data, or data that is in its original,
unformatted form across the network. Commands and methods that Socket Messaging uses to transfer
data are part of the TCP/IP protocol. Since Socket Messaging supports client and server tags,
applications requiring timeouts, heartbeats, or data formatting commands can provide these additional
semantics at both the client and server (application) sides of the socket messaging connection.

11.2 SYSTEM REQUIREMENTS

11.2.1 Overview

This section contains information about the compatibility of socket messaging with some typical
network software, transmission protocols, and interface hardware.

11.2.2 Software Requirements

Socket Messaging is compatible with all other Internet Options including DNS, FTP, Web Server,
and Telnet.

Note Client and Server tags are shared between Socket Messaging and other supported protocols,
such as FTP. For example, a tag can be set for either FTP operation, or for SM (Socket Messaging)
operation.

11.2.3 Hardware Requirements

Socket Messaging is compatible with all network hardware configurations that use the TCP/IP
network protocol. Some of these network hardware configurations include Ethernet, serial PPP
connections and PPP modem connections.

11-2

MARRC75KR07091E Rev D 11. SOCKET MESSAGING

11.3 CONFIGURING THE SOCKET MESSAGING OPTION

11.3.1 Overview

In order to use Socket Messaging, you need to configure the following network hardware and
software parameters:

* On the server,

— The port you want to use for socket messaging
* On the client,

— The IP address or name of your server

— The port on the server that you want to use for socket messaging.

Use Procedure 11-1 to set up a Socket Messaging Server Tag. Use Procedure 11-2 to set up a Socket
Messaging Client Tag.

Note The server port at which the server listens on should match the port the client tries to connect on.

11.3.2 Setting up a Server Tag

You need configure the server tags you want to use for socket messaging. Use Procedure 11-1 to
set up your server tags.

Note If the server tags you want to use are being used by a network protocol other than TCP/IP, you
need to undefine the tags before they can be used for socket messaging. After making sure the tag you
want to use is not critical to another component of your network, you must undefine the tag.

Procedure 11-1 Setting up a Server Tag

Conditions
* The tag you want to set up is not configured to be used by another device on your network.
Steps

1. Cold start the controller.

a. On theteach pendant, press and hold the SHIFT and RESET keys. Or, on the operator
panel, press and hold RESET.

b. While still pressing SHIFT and RESET on the teach pendant (or RESET on the operator
panel), turn on the power disconnect circuit breaker.

c. Release all of the keys.

11-3

11. SOCKET MESSAGING

MARRC75KR07091E Rev D

© N o o b~ w DN

On the teach pendant, press MENUS.
Select SETUP.
Press F1, [TYPE].

Select Host Comm.

Press F4, [SHOW].

Choose Servers.

Move the cursor to the tag you want set up for Socket Messaging, and press F3, DETAIL.
You will see screen similar to the following.

SETUP Tags

Tag S3:

Comment; *kkkkkhkhkkhkkhkhkhkkkkkkk
Protocol Name: * %k ok ok ok ok ok

Current State: UNDEFINED

Startup State:
Server IP/Hostname : ** %%k kkkk ¥ k%% x*
Remote Path/Share: **x*xk*kkkkkkkkkx*

Port : ok Kk
Inactivity Timeout: 15 min
Username: anonymous
PasseEd Kok Kk k ok ok
9. Move the cursor to Protocol name, and press F4, [CHOICE].
10. Select SM.
11. Move the cursor to Startup State, and press F4, [CHOICE].
12. Select START.
13. Press F2, [ACTION].
14. Select DEFINE.
15. Press F2, [ACTION].
16. Select START.
17. Set the system variable:
a. Press MENUS.
b. Select NEXT.
c. Select SYSTEM, and press F1, [TYPE].
d. Select Variables.

114

MARRC75KR07091E Rev D 11. SOCKET MESSAGING

e. Move the cursor to SHOSTS_ CFG, and Press ENTER.

f. Move the cursor to the structure corresponding to the tag selected in Step 8 . For example,
if you are setting up tag S3, move the cursor structure element [3], as shown in the
following screen.

SYSTEM Variables

SHOSTS CFG
1 [1] HOST CFG T
2 [2] HOST CFG T
3 [3] HOST CFG T
4 [4] HOST CFG T
5 [5] HOST CFG T
6 (6] HOST CFG T
7 [7] HOST CFG T
8 (8] HOST CFG T

g. Press ENTER. You will see a screen similar to the following.

SYSTEM Variables

$HOSTS CFG[3]
1 SCOMMENT *uninit*
2 $PROTOCOL 'SM’
3 SPORT *uninit*
4 SOPER 3
5 S$SSTATE 3
6 SMODE *uninit*
7 SREMOTE *uninit*
8 SREPERRS FALSE
9 STIMEOUT 15

10 SPATH *uninit*
11 $STRT_PATH *uninit*
12 $STRT_REMOTE *uninit*
13 SUSERNAME *uninit*
14 $PWRD_TIMOUT 0

15 $SERVER_PORT 0

h. Move the cursor to SSERVER PORT. Type in the name of the TCP/IP port you want to
use for socket messaging. The server tag is now ready to use from a KAREL program.

11-5

11. SOCKET MESSAGING MARRC75KR07091E Rev D

11.3.3 Setting up a Client Tag

You need configure the client tags you want to use for socket messaging. Use Procedure 11-2 to set up
your server tags. You can also use Procedure 11-2 to undefine tags.

Note If the client tags you want to use are being used by a network protocol other than TCP/IP, you
need to undefine the tags before they can be used for socket messaging.

Procedure 11-2 Setting up a ClientTag

Conditions
* The tag you want to set up is not configured to be used by another device on your network.
Steps

1. Cold start the controller.

a. On theteach pendant, press and hold the SHIFT and RESET keys. Or, on the operator
panel, press and hold RESET.

b. While still pressing SHIFT and RESET on the teach pendant (or RESET on the operator
panel), turn on the power disconnect circuit breaker.

c. Release all of the keys.
On the teach pendant, press MENUS.
Select SETUP.
Press F1, [TYPE].
Select Host Comm.
Press F4, [SHOW].
Choose Clients.

© N o 0 > w DN

Move the cursor to the tag you want set up for Socket Messaging, and press F3, DETAIL.
You will see screen similar to the following.

11-6

MARRC75KR07091E Rev D 11. SOCKET MESSAGING

SETUP Tags
Tag C3:
Comment; *kkkkhkhkkhkkhkkkkkkhkhkhk
Protocol Name: Kk ok ok ok ok ok ok
Current State: UNDEFINED

Startup State:
Server IP/Hostname:***xkxkkkkkkkk k%%
Remote Path/Share: %%k kkkkkk ¥k k*

Port: ok k ok ok
Inactivity Timeout: 15 min

Username: anonymous
Password EEEEEEEEE R

10.
11.
12.
13.

14.
15.

Move the cursor to the Protocol Name item, and press F4, [CHOICE].

Select SM.

Move the cursor to the Startup State item, press F4, [CHOICE], and choose DEFINE.
Move the cursor to the Server IP/Hostname item, and press ENTER.

Type in hostname or IP address the of the remote host server you want to use for socket

messaging.

Note If you are not using DNS, you must add the remote host and its [P address into the host
entry table.

Press F2, [ACTION], and select DEFINE.
Set the system variable:

a. Press MENUS.
b. Select NEXT.
c. Select SYSTEM, and press F1, [TYPE].
d. Select Variables.
Move the cursor to SHOSTC CFG, and press ENTER.
f. Move the cursor to the structure corresponding to the tag selected in Step 8 . For

example, if you are setting up tag C3, move the cursor structure element [3], as shown
in the following screen.

11-7

11. SOCKET MESSAGING

MARRC75KR07091E Rev D

SYSTEM Variables
$HOSTC_CFG

1

W J o Ul b WN

HOST CFG T
HOST CFG T
HOST CFG T
HOST CFG T
HOST CFG T
HOST CFG T
HOST CFG T
HOST CFG T

g. Press ENTER. You will see a screen similar to the following.

SYSTEM Variables
$HOSTC CFG[3]

1

w J o0 Ul b WN

11
12
13
14
15

$COMMENT
$PROTOCOL
$PORT

SOPER

$STATE

$MODE
$REMOTE
$REPERRS
STIMEOUT
S$PATH

$STRT PATH
$STRT REMOTE
$USERNAME
$PWRD TIMOUT
$SERVER_PORT

yninit
" oM’
uninit
3

3
yninit
yninit
FALSE

15
yninit
yninit
yninit
yninit
0

0

h. Move the cursor to $SSERVER PORT. Type in the name of the TCP/IP server port you want
to use for socket messaging. The client tag is now ready to use from a KAREL program.

11-8

MARRC75KR07091E Rev D 11. SOCKET MESSAGING

11.4 SOCKET MESSAGING AND KAREL

11.4.1 Overview

Socket messaging is an integrated component of KAREL. When you use socket messaging functions
and utilities from a KAREL program, the syntax is similar to other file read and write operations,
except that you need to establish a network connection when you use socket messaging functions
and utilities.

The following KAREL socket messaging functions and utilities enable the server to establish a
connection with a remote host on your network. There are several KAREL program samples in this
section that provide examples of how these functions and utilities can be used with KAREL file
read and write functions and utilities to write a complete Socket Messaging KAREL client or a
server program or application. The Environment flbt statement is required to use any of the listed
builtins (%ENVIRONMENT f{lbt).

11.4.2 MSG_CONN(string, integer)

MSG_CONN needs to be called before any tag can be used for socket messaging.

The first parameter of this command contains the tag name ("S1:" for example) and the second
parameter is an integer that will contain the status of the operation. If you are using this command to
connect to a server tag, this command will return a status value only after a remote client device has
established a connection with this server tag.

If you are using this command to connect to a client tag, this command will return a status value only
if the remote server is attempting to accept the connection. If the connection was successful, the
c