FANUC SERVO AMPLIFIER © i series

DESCRIPTIONS

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.

The products in this manual are controlled based on Japan's "Foreign Exchange and Foreign Trade Law". The export from Japan may be subject to an export license by the government of Japan.

Further, re-export to another country may be subject to the license of the government of the country from where the product is re-exported. Furthermore, the product may also be controlled by re-export regulations of the United States government.

Should you wish to export or re-export these products, please contact FANUC for advice.

In this manual we have tried as much as possible to describe all the various matters.

However, we cannot describe all the matters which must not be done, or which cannot be done, because there are so many possibilities.

Therefore, matters which are not especially described as possible in this manual should be regarded as "impossible".

General Safety Precautions

- When an abnormality such as an alarm or a hardware failure occurs, the operations
 described in the specifications are not guaranteed unless otherwise specifically noted.
 When action corresponding to the abnormality is specifically described, take the action.
 When no action is described, please contact FANUC.
- The signals and functions described in the specifications cannot be used separately for safety functions unless otherwise described as being usable for the safety functions.
 Their specifications are not assumed to be used as the safety functions in this case, an unexpected danger may be caused. For information about the safety functions, please contact FANUC.
 - Generally, the safety functions represent functions that protect the operators from machine danger.
- A wrong device connection or setting can lead to unpredictable operation. When starting to operate the machine for the first time after assembling the machine, replacing components, or modifying parameter settings, exercise the greater care by, for example, reducing the torque limit value, error detection level, or operating speed or by operating the machine in such a way that an emergency stop can be made quickly.

SAFETY PRECAUTIONS

This "Safety Precautions" section describes the precautions which must be observed to ensure safety when using FANUC servo amplifiers (including spindle amplifiers). Users of any control motor amplifier model are requested to read the "Safety Precautions" carefully before first using the amplifier. Users should also read the relevant description in this manual to become fully familiar with the functions of the servo amplifier.

The users are basically forbidden to do any behavior or action not mentioned in the "Safety Precautions." They are invited to ask FANUC previously about what behavior or action is prohibited.

Contents

DEFINITION OF WARNING, CAUTION, AND NOTE	s-2
WARNINGS AND CAUTIONS RELATING TO MOUNTI	NGs-3
Warning	s-3
Caution	s-5
Note	s-7
WARNINGS AND CAUTIONS RELATING TO A PILOT	RUNs-8
Warning	s-8
Caution	s-9
WARNINGS AND CAUTIONS RELATING TO	
MAINTENANCE	s-10
Warning	s-10
Caution	s-12
Note	s-13

DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

⚠ WARNING

Applied when there is a danger of the user being injured or when there is a danger of both the user being injured and the equipment being damaged if the approved procedure is not observed.

↑ CAUTION

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

- Read this manual carefully, and store it in a safe place.

WARNINGS AND CAUTIONS RELATING TO MOUNTING

Warning

⚠ WARNING

- Check the specification code of the amplifier.

Check that the delivered amplifier is as originally ordered.

- Mount a ground fault interrupter.

To guard against fire and electric shock, fit the factory power supply or machine with a ground fault interrupter (designed for use with an inverter).

- Securely ground the amplifier.

Securely connect the ground terminal and metal frame of the amplifier and motor to a common ground plate of the power magnetic cabinet.

- Be aware of the weight of the amplifier and other components.

Control motor amplifiers and AC reactors are heavy. When transporting them or mounting them in the cabinet, therefore, be careful not to injured yourself or damage the equipment. Be particularly carefull not to jam your fingers between the cabinet and amplifier.

- Never ground or short-circuit either the power supply lines or power lines.

Protect the lines from any stress such as bending. Handle the ends appropriately.

- Ensure that the power supply lines, power lines, and signal lines are securely connected.

A loose screw, loose connection, or the like will cause a motor malfunction or overheating, or a ground fault.

Be extremely careful with power supply lines, motor power lines, and DC link connections through which a large amount of current passes, because a loose screw (or poor contact in a connector or poor connection between a connector terminal and a cable) may cause a fire.

- Insulate all exposed parts that are charged.

- Never touch the regenerative discharge resistor or radiator directly.

The surface of the radiator and regenerative discharge unit become extremely hot. Never touch them directly. An appropriate structure should also be considered.

⚠ WARNING

- Close the amplifier cover after completing the wiring.

 Leaving the cover open presents a danger of electric shock.
- Confirm that the input voltage meets the specifications of the amplifier before making connection.

If the input voltage exceeds the specified value (for example, if the input voltage for a 200-V input amplifier is 400 V), an internal component may be damaged and burnt out.

- Prevent conductive, flammable, or corrosive foreign matters, mists, or water droplets from entering the unit

If conductive or flammable foreign matters enter the unit, explosion or corruption may be caused.

If corrosive or conductive mists or water droplets are attached to an electronic circuit, unexpected operation may be caused in the circuit.

The electronic circuit portion must be installed in an environment of pollution level 2 specified by IEC60664-1. To achieve pollution level 2 in a severe machine tool environment, it is generally necessary to install the portion in a cabinet that satisfies IP54.

Caution

⚠ CAUTION

- Do not step or sit on the amplifier.

Also, do not stack unpacked amplifiers on top of each other.

- Use the amplifier in an appropriate environment.

See the allowable ambient temperatures and other requirements, given in the corresponding descriptions.

- Protect the amplifier from impact.

Do not place anything on the amplifier.

- Do not disassemble the amplifier.
- Do not block the air inlet to the radiator.
- Take appropriate measures to prevent coolant, oil mist, or chips from being adhered to the radiator and fan motors that are exposed to the outside of the power magnetics cabinet.

A deposit of coolant, oil mist, or chips on the air inlet will result in a reduction in the cooling efficiency. In some cases, the required efficiency cannot be achieved. The deposit may also lead to a reduction in the useful life of the fan motors or semiconductors. Especially, when outside air is drawn in, mount filters on both the air inlet and outlet. These filters must be replaced regularly.

So, an easy-to-replace type of filter should be used.

- Connect the power supply lines and power lines to the appropriate terminals and connectors.
- Connect the signal lines to the appropriate connectors.
- Ensure that the cables used for the power supply lines and power lines are of the appropriate diameter and temperature ratings.
- Do not apply an excessively large force to plastic parts.

If a plastic section breaks, it may cause internal damage, thus interfering with normal operation. The edge of a broken section is likely to be sharp and, therefore, presents a risk of injury.

- Before connecting the power supply wiring, check the supply voltage.

Check that the supply voltage is within the range specified in this manual, then connect the power supply lines.

- Ensure that the combination of motor and amplifier is appropriate.

↑ CAUTION

- Ensure that valid parameters are specified.

Specifying an invalid parameter for the combination of motor and amplifier may not only prevent normal operation of the motor but also result in damage to the amplifier.

- Ensure that the amplifier and peripheral equipment are securely connected.

Check that the magnetic contactor, circuit breaker, and other devices mounted outside the amplifier are securely connected to each other and that those devices are securely connected to the amplifier.

- Check that the amplifier is securely mounted in the power magnetic cabinet.

If any clearance is left between the power magnetic cabinet and the surface on which the amplifier is mounted, dust entering the gap may build up and prevent the normal operation of the amplifier.

- Apply appropriate countermeasures against noise.

Adequate countermeasures against noise are required to maintain normal operation of the amplifier. For example, signal lines must be routed away from power supply lines and power lines.

Note

NOTE

- Keep the nameplate clearly visible.
- Keep the legend on the nameplate clearly visible.
- After unpacking the amplifier, carefully check for any damage.
- Mount the amplifier in a location where it can be easily accessed periodic inspection and daily maintenance.
- Leave sufficient space around the machine to enable maintenance to be performed easily.

 Do not place any heavy objects such that they would interfere with the opening of the doors.
- Keep the parameter table and spare parts at hand.
 Also, keep the specifications at hand. These items must be stored in a location where they can be retrieved immediately.
- Provide adequate shielding.

 A cable to be shielded must be securely connected to the ground plate, using a cable clamp or the like.

WARNINGS AND CAUTIONS RELATING TO A PILOT RUN

Warning

⚠ WARNING

- Before turning on the power, check that the cables connected to the power magnetic cabinet and amplifier, as well as the power lines and power supply lines, are securely connected. Also, check that no lines are slack.
- Before turning on the power, ensure that the power magnetic cabinet is securely grounded.
- Before turning on the power, check that the door of the power magnetic cabinet and all other doors are closed.

 Ensure that the door of the power magnetic cabinet containing the amplifier, and all other doors, are securely closed. During operation, all doors must be closed and locked.
- Apply extreme caution if the door of the power magnetic cabinet or another door must be opened.

Only a person trained in the maintenance of the corresponding machine or equipment should open the door, and only after shutting off the power supply to the power magnetic cabinet (by opening both the input circuit breaker of the power magnetic cabinet and the factory switch used to supply power to the cabinet). If the machine must be operated with the door open to enable adjustment or for some other purpose, the operator must keep his or her hands and tools well away from any dangerous voltages. Such work must be done only by a person trained in the maintenance of the machine or equipment.

- When operating the machine for the first time, check that the machine operates as instructed.

To check whether the machine operates as instructed, first specify a small value for the motor, then increase the value gradually. If the motor operates abnormally, perform an emergency stop immediately.

- After turning on the power, check the operation of the emergency stop circuit.

Press the emergency stop button to check that the motor stops immediately, and that the power being supplied to the amplifier is shut off by the magnetic contactor.

- Before opening a door or protective cover of a machine to enable adjustment of the machine, first place the machine in the emergency stop state and check that the motor has stopped.

Caution

⚠ CAUTION

- Note whether an alarm status relative to the amplifier is displayed at power-up or during operation.

If an alarm is displayed, take appropriate action as explained in the maintenance manual. If the work to be done requires that the door of the power magnetic cabinet be left open, the work must be carried out by a person trained in the maintenance of the machine or equipment. Note that if some alarms are forcibly reset to enable operation to continue, the amplifier may be damaged. Take appropriate action according to the contents of the alarm.

- Before operating the motor for the first time, mount and adjust the position and speed sensors.

Following the instructions given in the maintenance manual, adjust the position and speed sensors for the spindle so that an appropriate waveform is obtained.

If the sensors are not properly adjusted, the motor may not rotate normally or the spindle may fail to stop as desired.

- If the motor makes any abnormal noise or vibration while operating, stop it immediately.

Note that if operation is continued in spite of there being some abnormal noise or vibration, the amplifier may be damaged. Take appropriate corrective action, then resume operation.

- Observe the ambient temperature and output rating requirements.

The continuous output rating or continuous operation period of some amplifiers may fall as the ambient temperature increases. If the amplifier is used continuously with an excessive load applied, the amplifier may be damaged.

WARNINGS AND CAUTIONS RELATING TO MAINTENANCE

Warning

⚠ WARNING

- Read the maintenance manual carefully and ensure that you are totally familiar with its contents.

The maintenance manual describes daily maintenance and the procedures to be followed in the event of an alarm being issued. The operator must be familiar with these descriptions.

Notes on replacing a fuse or circuit board

- 1) Before starting the replacement work, ensure that the circuit breaker protecting the power magnetic cabinet is open.
- 2) Check that the red LED that indicates that charging is in progress is not lit.
 - The position of the charging LED on each model of amplifier is given in this manual. While the LED is lit, hazardous voltages are present inside the unit, and thus there is a danger of electric shock.
- 3) Some circuit board components become extremely hot. Be careful not to touch these components.
- 4) Ensure that a fuse having an appropriate rating is used.
- 5) Check the specification code of a circuit board to be replaced. If a modification drawing number is indicated, contact FANUC before replacing the circuit board.

 Also, before and after replacing a circuit board, check its pin settings.
- 6) After replacing the fuse, ensure that the screws are firmly tightened. For a socket-type fuse, ensure that the fuse is inserted correctly.
- 7) After replacing the circuit board, ensure that it is securely connected.
- 8) Ensure that all power lines, power supply lines, and connectors are securely connected.

- Take care not to lose any screws.

When removing the case or circuit board, take care not to lose any screws. If a screw is lost inside the nit and the power is turned on, the machine may be damaged.

↑ WARNING

- Notes on replacing the battery of the absolute Pulsecoder

Replace the battery only while the power is on. If the battery is replaced while the power is turned off, the stored absolute positioning data will be lost. Some αi series servo amplifier modules have batteries in their servo amplifiers. To replace the battery of any of those models, observe the following procedure: Open the door of the power magnetic cabinet; Leave the control power of the power supply module on; Place the machine in the emergency stop state so that the power being input to the amplifier is shut off; Then, replace the battery. Replacement work should be done only by a person who is trained in the related maintenance and safety requirements. The power magnetic cabinet in which the servo amplifier is mounted has a high-voltage section. This section presents a severe risk of electric shock.

- Check the number of any alarm.

If the machine stops upon an alarm being issued, check the alarm number. Some alarms indicate that a component must be replaced. If the power is reconnected without first replacing the failed component, another component may be damaged, making it difficult to locate the original cause of the alarm.

- Before resetting an alarm, ensure that the original cause of the alarm has been removed.
- Contact FANUC whenever a question relating to maintenance arises.

Caution

⚠ CAUTION

- Ensure that all required components are mounted.

When replacing a component or circuit board, check that all components, including the snubber capacitor, are correctly mounted. If the snubber capacitor is not mounted, for example, the IPM will be damaged.

- Tighten all screws firmly.

- Check the specification code of the fuse, circuit board, and other components.

When replacing a fuse or circuit board, first check the specification code of the fuse or circuit board, then mount it in the correct position. The machine will not operate normally if a fuse or circuit board having other than the correct specification code is mounted, or if a fuse or circuit board is mounted in the wrong position.

- Mount the correct cover.

The cover on the front of the amplifier carries a label indicating a specification code. When mounting a previously removed front cover, take care to mount it on the unit from which it was removed.

- Notes on cleaning the heat sink and fan

- 1) A dirty heat sink or fan results in reduced semiconductor cooling efficiency, which degrades reliability. Periodic cleaning is necessary.
- 2) Using compressed air for cleaning scatters the dust. A deposit of conductive dust on the amplifier or peripheral equipment will result in a failure.
- 3) To clean the heat sink, do so only after turning the power off and ensuring that the heat sink has cooled to room temperature. The heat sink becomes extremely hot, such that touching it during operation or immediately after power-off is likely to cause a burn. Be extremely careful when touching the heat sink.

- Notes on removing the amplifier

Before removing the amplifier, first ensure that the power is shut off. Be careful not to jam your fingers between the power magnetic cabinet and amplifier.

- Unless otherwise specified, do not insert or remove any connector while the power is turned on. Otherwise, the amplifier may fail.

Note

NOTE

- Ensure that the battery connector is correctly inserted.

If the power is shut off while the battery connector is not connected correctly, the absolute position data for the machine will be lost.

- Store the manuals in a safe place.

The manuals should be stored in a location where they can be accessed immediately it so required during maintenance work.

- Notes on contacting FANUC

Inform FANUC of the details of an alarm and the specification code of the amplifier so that any components required for maintenance can be quickly secured, and any other necessary action can be taken without delay.

TABLE OF CONTENTS

SA	FETY F	PRECA	UTION	IS	s-1
	DEFIN	IITION O	F WAR	NING, CAUTION, AND NOTE	s-2
				JTIONS RELATING TO MOUNTING	
		_	•		
		Note			s-7
	WARN	IINGS AI	ND CAL	JTIONS RELATING TO A PILOT RUN	s-8
		Warning	ŗ		s-8
		Caution			s-9
	WARN	IINGS AI	ND CAL	JTIONS RELATING TO MAINTENANCE	s-10
		Warning	· · · · · · · · · · · · · · · · · · ·		s-10
		Caution			s-12
		Note			s-13
1	CONI	EIGHD/	A TION		4
•					
	1.1			F THE SERVO AMPLIFIER αi SERIES	
	1.2			ΓΙΟΝ	
		1.2.1		nput Series	
		1.2.2		nput Series	
	1.3			IFIERS	
	1.4	LINEUI	P		10
2	SPEC	CIFICAT	TIONS		11
_	2.1			R	
	2.2			NTAL CONDITIONS	
	2.2			ONS OF THE MODULES	
	2.3				
		2.3.1		eries	
		2.3.2		eries	
		2.3.3		eries	
	2.4	WEIGH	11		43
3	ORDE	ERING	INFOF	RMATION	45
	3.1	SERVO	O AMPL	.IFIER	46
		3.1.1	200-V I	nput Series	46
			3.1.1.1	αi PS series	46
			3.1.1.2	$\alpha i \mathrm{PS_R} \mathrm{series}$	
			3.1.1.3	αi SV series	
			3.1.1.4	αi SP series	
		3.1.2		nput Series	
			3.1.2.1	αi PS series	
			3.1.2.2	αi SV series	
		2.1.2	3.1.2.3	αi SP series	
		3.1.3	Others.		
			3.1.3.1 3.1.3.2	AC reactor	
			3.1.3.2	Sub module SW	
			J . 1 . J . J	~ ~ ~ *** *** ** ** ** ** ** ** ** ** **	

		3 1	.3.4 Sub module SM	57
			3.5 Connectors	
		3.1	.3.6 Fuses	64
			.3.7 Power transformer	
			3.8 Regenerative discharge unit	
			3.9 Cables	
			.3.10 Circuit breaker and magnetic contactor	
			3.12 Noise filter	
			3.13 Sensors for servo	
		3.1	.3.14 Sensors for spindle	
			.3.15 Power line switch unit	
		3.1	.3.16 Battery for absolute Pulsecoder	78
4	HOV	V TO SELE	CT THE MODULE	79
-	4.1		SELECT THE αi SV SERIES (SERVO AMPLIFIER)	
	•••		0-V Input Series	
			0-V Input Series.	
			w to Select the Dynamic Brake Module (DBM)	
	4.2		SELECT THE $lpha i$ SP series(SPINDLE AMPLIFIER)	
			0-V Input Series	
			0-V Input Series.	
	4.3		SELECT THE $lpha i$ PS series (POWER SUPPLY)	
			w to Obtain the αi PS series rated output capability	
			w to Obtain the αi PS series maximum output capability	
			w to Obtain the αi PS series peak maximum output capability	
			mber of Connected αi SV series and αi SP Series	
			tes on 400-V Input αi PS series selection	
	4.4		SELECT THE αi PSR series (POWER SUPPLY, RES	
	7.7		GE TYPE)	
			by to Obtain the αi PS _R series Rated Output Capability	
			1 1	
			w to Obtain the αi PS _R series Maximum Output Capability	
			mber of Connected αi SV series and αi SP series	
	4 E		lecting a Regenerative Discharge Unit	
	4.5			
			ON	
			rvo Motor Continuous Rated Outputs and Maximum Outputs at	
			indle Motor Continuous Rated Outputs and Maximum Outputs celeration.	
		AC	Celciation	100
5	INST	ALLATIO	١١	102
	5.1	LEAKAGE	CURRENT	103
	5.2	GROUND		104
		5.2.1 Gr	ound Systems	104
			ounding Method	105
			tes on Connecting	
	5.3		REVENTION	
			paration of Signal Lines	
			ble Clamp and Shield Processing	
			binet	
		5.3.4 Ot	hers	116

	5.4	AMPLIFIER IN	ISTALLATION	117
	5.5	AMPLIFIER IN	ISTALLATION NOTES RELATING TO SAFETY	
		STANDARDS.		118
		5.5.1 Require	ements of EN and IEC Standards	118
		5.5.1.1	Classification in standards on insulation design	
		5.5.1.2	Protection against electric shock	119
		5.5.1.3	Protective grounding	121
		5.5.1.4	EMC	
		5.5.1.5	Notes on the emergency stop circuit configuration	
		5.5.1.6	Reduction of load ratio to ambient temperature	
		5.5.1.7	Overload protection	
		5.5.1.8	External overload protection device	
		5.5.1.9	Over-speed protection	
		5.5.1.10	1 11 2	
		5.5.1.11	Screw tightening torque	
			ements of UL Standards	
		5.5.2.1 5.5.2.2	Classification in standards on insulation design	
		5.5.2.2 5.5.2.3	Protective grounding	
		5.5.2.4	Overload protection	
		5.5.2.5	External overload protection device	
		5.5.2.6	Short-circuit protection	
		5.5.2.7	Over-speed protection	
		5.5.2.8	24-V power supply	
		5.5.2.9	Screw tightening torque	
	5.6		OOLANT (REFERENCE)	
6	HEV.	T DISSIDATIO	N	127
•				
	6.1		SERIES	
			eries	
			eries	
		6.1.3 $\alpha i SP se$	eries	133
	6.2	400-V INPUT	SERIES	134
		6.2.1 α <i>i</i> PS se	eries	134
			eries	
			eries	
7	COO	LING		140
8	EXTE	ERNAL DIMEN	NSIONS AND MAINTENANCE AREA	141
	8.1		AWINGS	
	0.1		Drawings of Amplifiers, Panel Cut-out, and Maintenance Area.	
			ector Unit	
			e Filter	
			Fransformer	
			rative Discharge Unit	
		•	ic Brake Module (DBM)	
			Breaker	
		\mathcal{C}	ic Contactors	
			ng Surge Protector	
	0.0		ilter	
	8.2	PANEL CUI-C	OUT DIAGRAMS	185

9	CON	INECTI	ON		192
	9.1			ECTION DIAGRAM	
	9.2			LOCATION	
	0.2	9.2.1		ries	
		9.2.1		ries	
		9.2.3		eries	
	9.3			ECTION DETAILS	
		9.3.1	αi PS Se	eries Connection Diagram	
			9.3.1.1	Details of cable K1 (power supply line)	
			9.3.1.2	Details of short bar K2	
			9.3.1.3	Details of cable K3	
			9.3.1.4	Details of cable K69	
			9.3.1.5	Details of cable K6	
			9.3.1.6 9.3.1.7	Details of cable K7	
			9.3.1.7	Detailed description of the connection of cables K41 (for regenerative	230
			7.3.1.0	discharge resistance), K42 (for thermostat), and K43 (for fan motor)	231
			9.3.1.9	Details of cable K100 (for power failure detection output)	
		9.3.2		eries Connection Diagram	
		7.3.2	9.3.2.1	Details of cable K2	
			9.3.2.2	Details of cable K4	
			9.3.2.3	Details of cable K69	
			9.3.2.4	Details of cable K21	
			9.3.2.5	Details of cable K22	
			9.3.2.6	Details of cable K24	248
			9.3.2.7	Details of cable K25	249
			9.3.2.8	Details of cable K26	
			9.3.2.9	Details of cable K27	
			9.3.2.10	Connecting the battery (for the absolute Pulsecoder)	
			9.3.2.11	Details of cable K70	
		9.3.3		eries Connection Diagram	
			9.3.3.1	Details of cable K2	
			9.3.3.2	Details of cable K69	
			9.3.3.3	Details of cable K10 (power cable)	
			9.3.3.4	Details of cable K70	
			9.3.3.5 9.3.3.6	Details of cable K11 Details of cable K12	
			9.3.3.0	Details of cable K12	
			9.3.3.8	Details of cable K16	
			9.3.3.9	Details of cable K17	
			9.3.3.10	Details of cable K33	
			9.3.3.11	Details of cable K36	
			9.3.3.12	Details of cable K71	
			9.3.3.13	Details of cable K86	293
			9.3.3.14	Details of cable K88	294
			9.3.3.15	Details of cable K90	295
			9.3.3.16	Details of cable K96	
			9.3.3.17	Details of cable K97	
	_	_	9.3.3.18	Spindle Motor Feedback Cable Connection	
	9.4			CONNECTORS	
		9.4.1		Half-Pitch Connectors	
		942	Tyco Fle	ectronics AMP D-5000 Series Connector	302

10	SPIN	DLE-R	ELATED OPTIONS	304
	10.1	SPINE	DLE ORIENTATION	305
	10.2		ER LINE SWITCH CIRCUIT	
		10.2.1	Overview	
		10.2.2	Switch Circuit Configuration	
		10.2.3	Power Line Switch Unit	
			10.2.3.1 Specification	308
		10.2.4	Outside and Mounting Dimension Diagrams	309
		10.2.5	Connection	
		10.2.6	Notes	314
	10.3	SUB N	MODULE SW	316
		10.3.1	Configuration	
		10.3.2	Specification	
		10.3.3	External Dimensions	
		10.3.4	Connector Installation Diagram (for Combination with αi SP 15)	
		10.3.5	Connection	
	10.4	SUB N	MODULE SM	323
		10.4.1	Specifications	
		10.4.2	Outline Drawing	
		10.4.3	Panel Cut-out	
		10.4.4	Connection	326
11	SENS	SOR		327
	11.1		OR FOR THE SERVO SYSTEM	
		11.1.1	Absolute αiCZ Sensor (Separate Sensor)	
		11.1.1	11.1.1.1 Specifications	
			11.1.1.2 Connection block diagram (common to three models)	
			11.1.1.3 Connection specifications	
			11.1.1.4 Rotation direction of the absolute α <i>i</i> CZ sensor	
			11.1.1.5 Installation	
			11.1.1.6 Notes on use	
			11.1.1.7 Output signal check method	
	11.2		OR FOR THE SPINDLE	
		11.2.1	Position Coder	
			11.2.1.1 α <i>i</i> position coder	
			11.2.1.2 \alpha position coder S.	
		11 0 0	11.2.1.3 Installation conditions and notes	
		11.2.2	αiBZ Sensor (A860-2150-T*** and A860-2155-T***)	
		11.2.3	αiCZ Sensor (for the Spindle)	
			11.2.3.1 Names and specification numbers	
			11.2.3.3 Specifications	
			11.2.3.4 System configuration and connection block diagram	
			11.2.3.5 Connection specifications	
			11.2.3.6 Rotation direction of the αiCZ sensor	
			11.2.3.7 Machine start-up procedure (outline)	385
			11.2.3.8 Installation	
			11.2.3.9 Interpolation error learning	
			11.2.3.10 Notes	
			11.2.3.11 Maintenance target parts	
			11.2.3.12 Output signal check method	
			11.2.2.1.0pinute atarnis	

APPENDIX

Α	FITT	ING A LIGHTNING SURGE PROTECTION DEVICE	399
	A.1	200-V INPUT SERIES POWER SUPPLY	400
	A.2	400-V INPUT SERIES POWER SUPPLY	402
	A.3	CAUTIONS	403
В	CAB	LES	404
	B.1	10-PAIR CABLE	
	B.2	COMPOSITE 7-CORE CABLE	
	B.3	COMPOSITE 10-CORE CABLE	415
	B.4	COMPOSITE 12-CORE CABLE	417
	B.5	COMPOSITE 16-CORE CABLE	
	B.6	10-PAIR CABLE	420
С	EXT	ERNAL DIMENSIONS OF EACH CONNECTOR	421
D	FEE	DBACK CABLE LENGTH	431
	D.1	SPINDLE CABLE LENGTH	
		(WHEN RECOMMENDED CABLES ARE USED)	432
	D.2	SERVO CABLE LENGTH	
		(WHEN RECOMMENDED CABLES ARE USED)	433
Ε	POW	/ER LINE FOR SERVO MOTOR AND AMPLIFIER	434
	E.1	SELECTING A POWER CABLE	435
F	MEA	SURES AGAINST NOISE FROM SERVO AMPLIFIERS	438
	F.1	NOISE OCCURRENCE IN SERVO AMPLIFIERS	
	F.2	NOISE TYPES	440
	F.3	ANTI-NOISE MEASURES	
		F.3.1 Pre-Installation Arrangement	
		F.3.2 Anti-Noise Measures	
		F.3.4 Anti-Noise Measures for Power Supply Equipment and Grounding	
		F.3.5 Anti-Noise Devices	
	F.4	MISCELLANEOUS	450
G	EXA	MPLES OF RECOMMENDED POWER MAGNETICS	
	CAB	INETS FOR SERVO AMPLIFIER INSTALLATION	451
	G.1	OVERVIEW	
	G.2	DESCRIPTIONS	
		G.2.1 Power Magnetics Cabinet Seal-up	
		G.2.2 Environments for Amplifier Heat Sink Sections G.2.3 Environments for Amplifier Installation	
		•	
Н		INK TERMINAL BOARD SECTION PROTECTIVE COVER	
	H.1	OVERVIEW	
	H.2	HOW TO MOUNT	464

1	POW	VER FAILURE DETECTION FUNCTION	465				
	I.1	OVERVIEW	466				
	1.2	POWER FAILURE DETECTION SPECIFICATION					
	1.3	APPLICATION TO PREVENTION OF VERTICAL AXES FROM F					
	-	AT POWER FAILURE					
		I.3.1 Procedure					
		I.3.2 Brake Circuit					
		I.3.3 Method for Keeping Vertical Axis Motors Energized	473				
		I.3.4 Cautions					
		I.3.5 Confirming Effect					
		I.3.6 Method for Supplying External Power to the Amplifier					
	1.4	USE IN COMBINATION WITH THE DUAL CHECK SAFETY FUNC	TION 481				
J	SEN	SOR (OLD SPECIFICATIONS)	482				
	J.1	SENSOR FOR THE SYNCHRONOUS BUILT-IN SERVO MOTOR A	AND				
		SEPARATE SENSOR	483				
		J.1.1 Absolute α <i>i</i> CZ Sensor (Serial Output, A860-2142-T***)	483				
	J.2	SENSOR FOR THE SPINDLE	498				
		J.2.1.1 αiBZ Sensor (Conventional Dimensions, A860-2120-T***)	498				
		J.2.2 αiCZ Sensor (Analog Output, A860-2140-T***)	503				
K	MAG	SNETIC SENSOR SIGNAL CONVERSION ADAPTER	515				
	K.1	ORDERING INFORMATION	516				
	K.2	SPECIFICATIONS	516				
	K.3	DIMENSIONS	517				
	K.4	CONNECTION	_				
	K.5	METHOD OF ADJUSTMENT					
_							
L	HAR	MONIC LEAKAGE CURRENT	521				

B-65282EN/06 1.CONFIGURATION

1

CONFIGURATION

Chapter 1, "CONFIGURATION", consists of the following sections:

1.1	FEATURES OF THE SERVO AMPLIFIER αi SERIES	2
1.2	CONFIGURATION	3
1.3	SERVO AMPLIFIERS	8
1.4	LINEUP	10

1.CONFIGURATION B-65282EN/06

1.1 FEATURES OF THE SERVO AMPLIFIER αi SERIES

The servo amplifier αi series employs a modular structure, and is thinner, conserves more space, outputs less heat, and saves more energy.

Compact

- (1) Use of a latest low-loss power device and a newly developed highly-efficient radiator makes it possible to reduce the depth of the fin to 100 mm, therefore reducing the depth of the amplifier.
- (2) The width of the amplifier is reduced, and therefore the amplifier requires an average of approximately 30% smaller installation space in the cabinet than the conventional amplifiers.
- (3) The shape of the cable connector is improved to reduce the length of cable projection into the control board.

Reduction in cabling

- (1) Amplifiers can be connected with one cable.
- (2) A ground connection from the motor output terminal block to the flange is included, so external cabling for this connection is no longer required. (A connection from the top of the flange to the system ground on the control board is required.)

Connector attachment to power lines

(1) Connectors are attached to input power lines and motor power lines. (For the large-capacity models, terminal blocks are used.) The time required for power line attachment to and detachment from the servo amplifier cabinet is substantially reduced.

Improved maintainability

- (1) A fan motor can now be replaced in an instant manner, so that the time required to replace a fan motor is reduced substantially.
- (2) Connectors are attached to input power lines and motor power lines, so that the time required for servo amplifier replacement is reduced substantially.
- (3) The need to perform reference position return operation after servo amplifier replacement is eliminated.
 - The servo amplifier αi series has a built-in backup capacitor in the Absolute Pulsecoder as standard. The capacitor enables absolute position detection operation for about 10 minutes, so that reference position return operation after servo amplifier or feedback cable replacement is unnecessary.

1.CONFIGURATION

1.2 CONFIGURATION

The FANUC αi series consists of the following units and parts:

1.2.1 200-V Input Series

(1)	αi PS series (Power Supply)	(Basic)
(2)	$\alpha i PS_R$ series (Power Supply) [resister discharge type]	(Basic)
(3)	αi SV series (Servo Amplifier)	(Basic)
(4)	αi SP series (Spindle Amplifier)	(Basic)
(5)	AC reactor	(Basic)
(6)	Connectors (for connection cables)	(Basic)
(7)	Fuses	(Basic)
(8)	Power transformer(C	(ptional
(9)	AC line filter	(Basic)
(10)	Regenerative discharge unit	(Basic)
(11)	DBM (Dynamic brake module)	(Basic)

1.CONFIGURATION B-65282EN/06

Common Power Spindle Amplifier Servo Amplifier Supply αi PS αi SP αi SV DC link (300VDC) Circuit 200R.200S (1) AC reactor Circuit Magnetic breaker 1 contactor 200 to 240 VAC 3¢ fan motor 3ф (note 4) Lightning Spindle motor surge Servo motor protector

Basic configuration using αi PS (example)

Units prepared by the machine tool builder

NOTE

- 1 For how to use the αi PS together with the αi SV and αi SP, see Chapter 4, "HOW TO SELECT THE MODULE".
- 2 A magnetic contactor, AC line filter, and circuit breakers are always required.
- 3 To protect the unit from surge currents caused by lightning, connect surge absorbers between lines, and between the lines and ground, at the power inlet of the power magnetic cabinet. See APPENDIX A for details.
- 4 When using the 3ϕ fan motor, breaker 2 can be shared.

B-65282EN/06 1.CONFIGURATION

Common Power Spindle amplifier Servo amplifier $\sup_{\alpha i} \mathsf{PS}_\mathsf{R}$ αi SP αi SV DC link (300VDC) Circuit 200R.200S (1) AC line Circuit Magnetic Regenerative breaker 1 contactor discharge filter unit 200 to 240 VAC 3¢ fan motor 3ф (note 5) Spindle motor Liahtnina surge Servo motor protector

Basic configuration using $\alpha i \, PS_R$ (example)

Units prepared by the machine tool builder

NOTE

- 1 For how to use the αi PS_R together with the αi SV and αi SP, see Chapter 4, "HOW TO SELECT THE MODULE".
- 2 A magnetic contactor, AC line filter, and circuit breakers are always required.
- 3 To protect the unit from surge currents caused by lightning, connect surge absorbers between lines, and between the lines and ground, at the power inlet of the power magnetic cabinet. See APPENDIX A for details.
- 4 When an insulating transformer is installed, high-frequency noise to the Power Supply is reduced, so the AC line filter is not required. If the insulating transformer is installed outside the power magnetic cabinet, and the cable connecting the amplifier is exposed, the cable must be covered with a grounded metal duct, or an AC line filter must be installed.
- 5 When using the 3ϕ fan motor, breaker 2 can be shared.

1.CONFIGURATION B-65282EN/06

1.2.2 400-V Input Series

(1)	αi PS series (Power Supply)	(Basic)
(2)	αi SV series (Servo Amplifier)	(Basic)
(3)	αi SP series (Spindle Amplifier)	(Basic)
(4)	AC reactor	(Basic)
(5)	Connectors (for connection cables)	(Basic)
(6)	Fuses	(Basic)
(7)	DBM (Dynamic brake module)	(Basic)

B-65282EN/06 1.CONFIGURATION

Common Power Servo Amplifier Spindle Amplifier αi SV Supply αi SP DC link (300VDC) Circuit 200R,200S 1φ (1) 200 to 240 VAC Lightning surge 3ф protector ____ Magnetic AC reactor Circuit breaker 400 to 480 VAC 3¢ fan motor Circuit Зφ (note 6) Lightning Lightning Spindle motor surge protector surge protector Servo motor

Basic configuration using αi PS (example)

Units prepared by the machine tool builder

NOTE

- 1 For the control Power Supply, single–phase 200VAC is required.
- 2 For how to use the αi PS together with the αi SV and αi SP, see Chapter 4, "HOW TO SELECT THE MODULE".
- 3 A magnetic contactor, AC line filter, and circuit breakers are always required.
- 4 To protect the unit from surge currents caused by lightning, connect surge absorbers between lines, and between the lines and ground, at the power inlet of the power magnetic cabinet. See APPENDIX A for details.
- 5 Measures must be taken to detect the operation (trip) of circuit breaker 3.
- 6 When using the 3ϕ fan motor, breaker 2 can be shared.

1.CONFIGURATION B-65282EN/06

1.3 SERVO AMPLIFIERS

αi PS series (Power Supply)

The αi PS series power supplies are used as a main power supply of motor power and as a common power supply to supply control power to servo amplifiers. Select an appropriate Power Supply according to the output levels of the servo motor and spindle motor used.

There are three types of αi PS series, as follows:

<1> 200-V input series

This Power Supply is designed to provide a main power supply of 200 to 240 V. The module uses power regeneration that returns energy to the power supply during motor deceleration (regeneration).

<2> 400-V input series

This Power Supply can be connected to a main power supply of 400 to 480V without a transformer. The module uses power regeneration that returns energy to the power supply during motor deceleration (regeneration). It is used together with a αi SV series and αi SP series of the 400-V input series.

$<3> \alpha i PS_R series$

This Power Supply is designed to provide a main power supply of 200 to 240 V. The module uses resistance regeneration that allows energy to be consumed by resistance during motor deceleration (regeneration).

<4> Regenerative discharge unit

This unit is a resistance used to consume energy during motor deceleration (regeneration). This unit is required whenever the αi PS_R is used.

 αi PS - x HV

(A) (B) (C)

(A) Model name: PS = Power Supply

PS_R= Power Supply (resister discharge type)

(B) Rated output: Numeric value representing a continuous rating in kW

(C) For a 400-V input series, "HV" is added.

B-65282EN/06 1.CONFIGURATION

αi SV series (Servo Amplifier)

The αi SV series amplifiers are used to drive a servo motor. Select an appropriate amplifier according to the servo motor connected.

There are two types of αi SV series, as follows:

<1> 200-V input series

This Amplifier drives a servo motor of the 200-V input series. Amplifiers for one axis, two axes, and three axes are available.

<2> 400-V input series

This Amplifier drives a servo motor of the 400-V input series. Amplifiers for one axis and two axes are available.

 αi SV x / x / x HV L (A) (B) (C) (D) (E)(F)

- (A) Model name: SV = Servo amplifier
- (B) L-axis maximum output current value [Apeak]
- (C) M-axis maximum output current value [Apeak]
- (D) N-axis maximum output current value [Apeak]
- (E) For an amplifier supporting 400-V input, "HV" is added.
- (F) For an amplifier supporting HRV4 control, "L" is added.

αi SP series (Spindle Amplifier)

The αi SV series amplifiers are used to drive a spindle motor. Select an appropriate amplifier according to the spindle motor connected.

There are two types of αi SP series, as follows:

<1> 200-V input series

This Amplifier drives a spindle motor of the 200-V input series.

<2> 400-V input series

This Amplifier drives a spindle motor of the 400V input series.

α*i* SP x HV (A) (B) (C)

- (A) Model name: SP = Spindle amplifier module
- (B) Output: Numeric value representing the 30-minutes rating of a matching standard motor (αi) in kW
- (C) For an amplifier supporting 400-V input, "HV" is added.

1.CONFIGURATION B-65282EN/06

1.4 LINEUP

Size	Input power supply	α <i>i</i> PS	$lpha i$ PS $_{ m R}$	α <i>i</i> SP		lpha i SV	
60mm-wide	200V		3		4, 20	4/4, 4/20	4/4/4
Without external						20/20	20/20/20
fin	400V				10HV	10/10HV	
	200V	5.5	5.5	2.2, 5.5	40, 80 160, 20L 40L, 80L	20/40, 40/40 40/80, 80/80 20/20L 20/40L	20/20/40
60mm-wide With external fin	400V			5.5HV	20HV 40HV 80HV 10HVL	40/40L 20/20HV 10/10HVL	
					20HVL 40HVL		
	200V	11, 15		11, 15	160L	80/160 160/160 40/80L 80/80L	
90mm-wide With external fin	400V	11HV, 18HV		11HV, 15HV	80HVL	20/40HV 40/40HV 40/80HV 80/80HV 20/20HVL 20/40HVL 40/40HVL	
150mm-wide	200V	26, 30, 37		22, 26, 30, 37	360		
With external fin	400V	30HV, 45HV		30HV, 45HV	180HV		
300mm-wide	200V	55		45, 55			
With external fin	400V	75HV, 100HV		75HV, 100HV	360HV		

2

SPECIFICATIONS

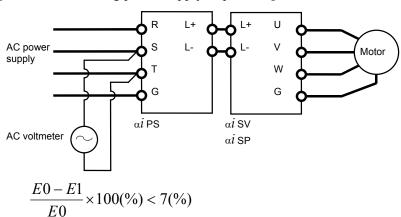
Chapter 2	, "SPECIFICATIONS",	consists of the	following	sections
Chapter 2	, SILCHICATIONS,	consists of the	10110 W III g	SCCHOIIS

2.1	INPUT POWER	.12
	ENVIRONMENTAL CONDITIONS	
2.3	SPECIFICATIONS OF THE MODULES	.33
2.4	WEIGHT	.43

2.SPECIFICATIONS B-65282EN/06

2.1 INPUT POWER

Power supply of 200-V input series


(1) Power specification

(1) 1 ower specification				
Item	Specification			
Main power supply voltage	Three-phase 200 VAC to 240 VAC			
Power supply voltage for the control	Single-phase 200 VAC to 240 VAC (input from connector CX1A)			
Allowable voltage deviation	-15% to +10% (including voltage variation due to load)			
Instantaneous power failure guarantee time	3ms			
Power frequency	50/60Hz, ±1Hz			
Power supply unbalance	±5% of the rated voltage or less			
Power supply impedance (Note)	The voltage variation must be within $\pm 7\%$ when a maximum output is produced for voltage at non-load time (power running and regeneration).			

NOTE

When the power supply impedance is high, and the voltage variation exceeds the specified values, an alarm (DC link undervoltage alarm or DC link overvoltage alarm) can be issued in αi PS, or the output of the motor can decrease.

[Method of checking power supply impedance]

E0: Voltage at non-load time

E1: Voltage at maximum output time (power running and regeneration)

(2) The power supply for αi PS control (power supply input of CX1A) must be turned on before or at the same time when the CNC is turned on. For the timing of power-on at the same time when the CNC is turned on, refer to the chapter of the power supply in the hardware connection manual of the CNC used.

- (3) It is recommended that a capacitor unit for power-factor improvement not be installed. This is because the capacitor unit for power-factor improvement may adversely affect power regeneration.
- (4) The rated output of the motor is guaranteed for the rated input voltage. If the input voltage changes, the rated output may not appear even when the input voltage change is within the allowable range.
- (5) When the power supply is used in an area where the input voltage is not within the range of 200 to 240 VAC, a power transformer is required. When a power transformer is to be provided by the user, the power must satisfy the specifications listed below.

	α <i>i</i> PS 5.5	α <i>i</i> PS 11	α <i>i</i> PS 15	α <i>i</i> PS 26	α <i>i</i> PS 30	α <i>i</i> PS 37	α <i>i</i> PS 55 (45kW output)	α <i>i</i> PS 55 (55kW output)
Rated capacity (kVA)	9	17	22	37	44	53	64	79
Secondary current (A)	26	49	63	106	127	153	185	228
Secondary output voltage	200 to 240V							
Secondary voltage regulation	5%							
Secondary voltage deviation		±3%						

 $\alpha i PS_{R}$

	α <i>i</i> PS _R 3 (2kW output)	α <i>i</i> PS _R 3 (3kW output)	α <i>i</i> PS _R 5.5 (5.5kW output)	α <i>i</i> PS _R 5.5 (7.5kW output)
Rated capacity (kVA)	3.5	5	9	12
Secondary current (A)	10	14.5	26	35
Secondary output voltage	200 to 240V			
Secondary voltage regulation	5%			
Secondary voltage deviation	±3%			

* The secondary current indicates the current value observed when the secondary output voltage is 200 V.

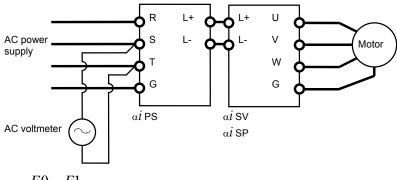
(6) Ground

The main circuit and 200V control power supply must be grounded through the neutral point or one phase of the three-phase power supply.

(7) Noise filter

To satisfy the EMC regulation enforced in the EU countries, a noise filter must be installed in the power supply input section.

Power supply of 400-V input series


(1) Power specification

Item	Specification
	Three-phase 400 VAC to 480 VAC Star connection, neutral grounding (For details, see Items (5) and (6).)
Main power supply voltage	N S T G
Power supply voltage for the control	Single-phase 200 VAC to 240 VAC (input from connector CX1A) (For details, see Item (7).)
Allowable voltage deviation	-15% to +10% (including voltage variation due to load)
Instantaneous power failure guarantee time	3ms
Power frequency	50/60Hz, ±1Hz
Power supply unbalance	±5% of the rated voltage or less
Power supply impedance (Note)	The voltage variation must be within ±7% when a maximum output is produced for voltage at non-load time (power running and regeneration).

NOTE

When the power supply impedance is high, and the voltage variation exceeds the specified values, alarm (DC link undervoltage alarm or DC link overvoltage alarm) can be issued in αi PS, or the output of the motor can decrease.

[Method of checking power supply impedance]

 $\frac{E0 - E1}{E0} \times 100(\%) < 7(\%)$

E0: Voltage at non-load time

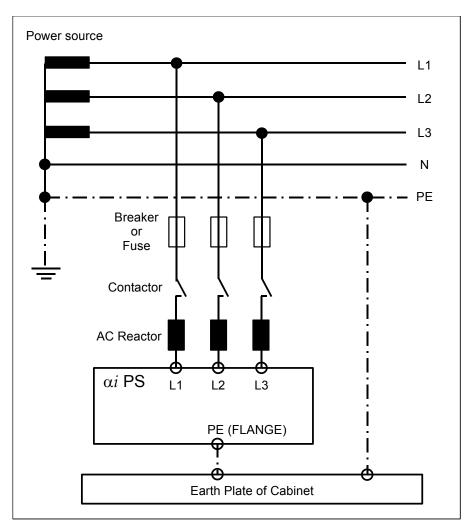
E1: Voltage at maximum output time (power running and regeneration)

B-65282EN/06 2.SPECIFICATIONS

(2) The power supply for α*i* PS control (power supply input of CX1A) must be turned on before or at the same time when the CNC is turned on. For the timing of power-on at the same time when the CNC is turned on, refer to the chapter of the power supply in the hardware connection manual of the CNC used.

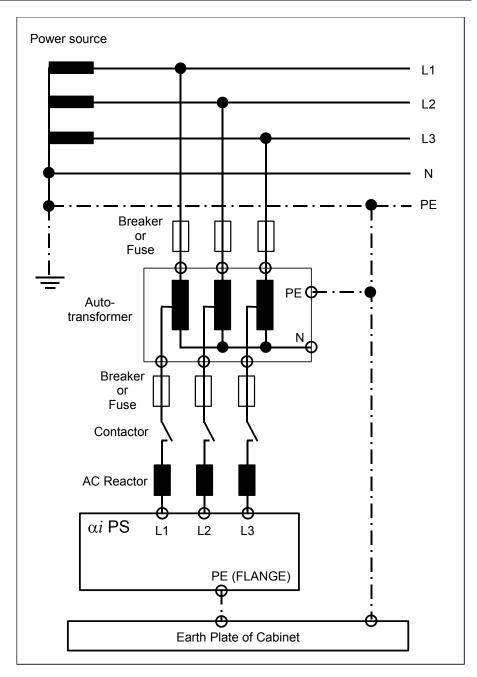
- (3) It is recommended that a capacitor unit for power-factor improvement not be installed. This is because the capacitor unit for power-factor improvement may adversely affect power regeneration.
- (4) The rated output of the motor is guaranteed for the rated input voltage. If the input voltage changes, the rated output may not appear even when the input voltage change is within the allowable range.
- (5) Power supply voltage for the main circuit
 - The power specification of the main circuit for the 400-V input series of the αi series servo amplifier is as follows:
 - <1> Star connection
 - <2> Neutral grounding on the power supply side
 - <3> A PE is provided on the power line. (The PE of the amplifier and motor is connected to the PE of the power line.)
 - <4> The inter-phase voltage of the power supply is 400 VAC to 480 VAC (-15%, +10%).
 - If the power supply does not satisfy the conditions above, the power supply needs to be converted to a power supply for neutral grounding by using a star connection and an isolating-transformer.
 - The 400-V input series of the αi series servo amplifier is designed in compliance with the safety standard EN50178 to implement insulation design of the pattern and components of the printed circuit board by ensuring that the phase voltage of the power supply and the voltage between grounds connected to the neutral point of the star connection are AC 300 Vrms or below.

Accordingly, if the power supply does not satisfy the conditions above, the pattern and components of the printed circuit board are poorly insulated. This can cause very dangerous states including a failure in servo amplifier operation and the occurrence of a high voltage at exposed areas.

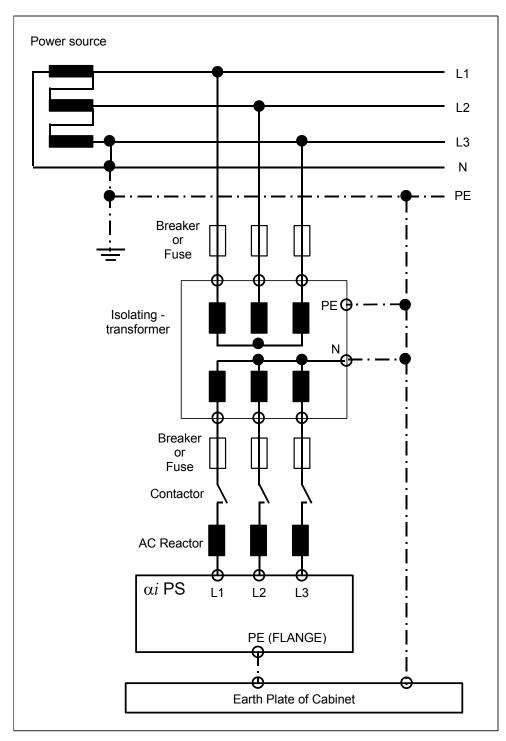

(6) Example of connecting the Power supply of the main circuit

No.	Power system	Power specification	Power supply of amplifier
1	TN-power system	 Star connection Neutral grounding on the power supply side PE provided on the power line Power supply voltage specification 400 VAC to 480 VAC (-15%,+10%) 	Directly connectable to the power supply (No transformer is required.)
2	TN-power system	 Star connection Neutral grounding on the power supply side PE provided on the power line Power supply voltage specification Not within the range 400 VAC to 480 VAC (-15%, +10%) 	[When the power supply voltage is lower than the specified power supply voltage] The power supply voltage is increased with an auto-transformer. [When the power supply voltage is higher than the specified power supply voltage] The power supply voltage is decreased with an auto-transformer. Before starting to use the power supply, check that it conforms to the relevant safety standards.
3	TN-power system	 Delta connection Single-phase grounding on the power supply side PE provided on the power line 	 An isolating-transformer is used. A star connection is made on the secondary side of an isolating-transformer, and the neutral point is grounded.
4	TT-power system	Star connection Neutral grounding on the power supply side No PE provided on the power line	
5	TT-power system	 Delta connection Single-phase grounding on the power supply side No PE provided on the power line 	
6	IT-power system	Star connection No direct ground connection made on the power supply side No PE provided on the power line	
7	IT-power system	 Delta connection No direct ground connection made on the power supply side No PE provided on the power line 	 An isolating-transformer is used. A star connection is made on the secondary side of an isolating-transformer, and the neutral point is grounded.

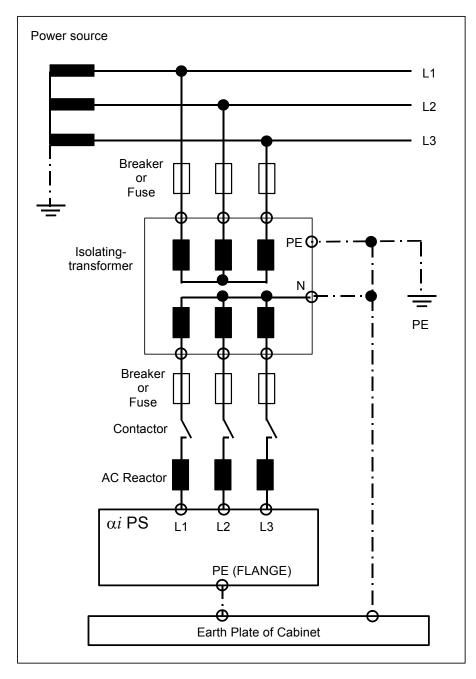
The TN-power system, TT-power system, and IT-power system are based on the DC power distribution system standard IEC60364.


(a) TN-power system

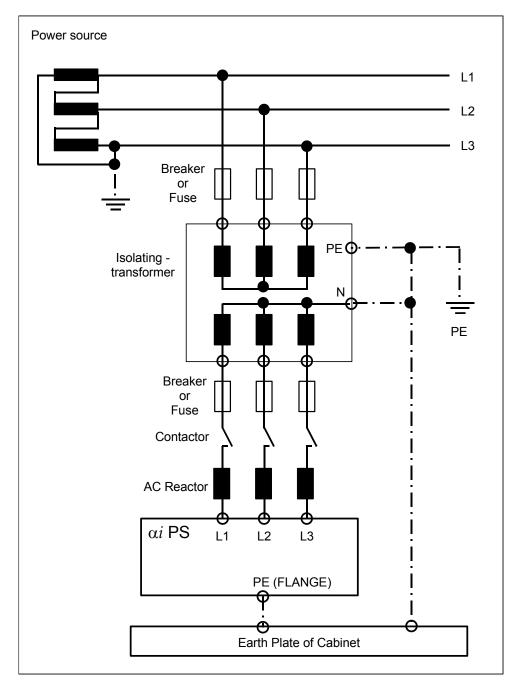
No.	Power system	Power specification	Power supply of amplifier
1	TN-power system	 Star connection Neutral grounding on the power supply side PE provided on the power line Power supply voltage specification 400 VAC to 480 VAC (-15%,+10%) 	Directly connectable to the power supply (No transformer is required.)


(b) TN-power system

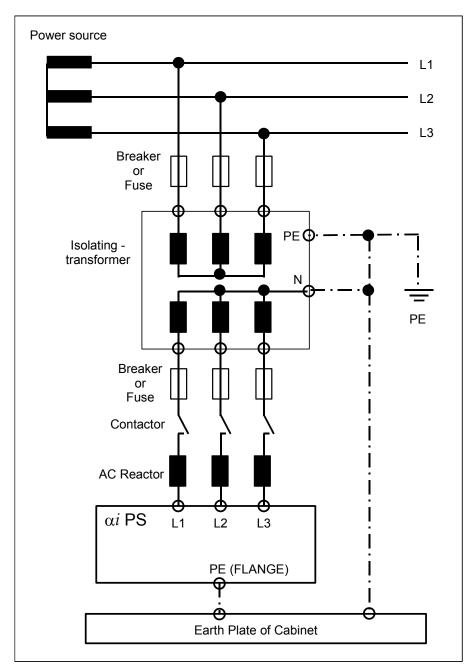
No.	Power system	Power specification	Power supply of amplifier
2	TN-power system	 Star connection Neutral grounding on the power supply side PE provided on the power line Power supply voltage specification Not within the range 400 VAC to 480 VAC (-15%, +10%) 	[When the power supply voltage is lower than the specified power supply voltage] The power supply voltage is increased with an auto-transformer. [When the power supply voltage is higher than the specified power supply voltage] The power supply voltage is decreased with an auto-transformer. Before starting to use the power supply, check that it conforms to the relevant safety standards.


(c) TN-power system

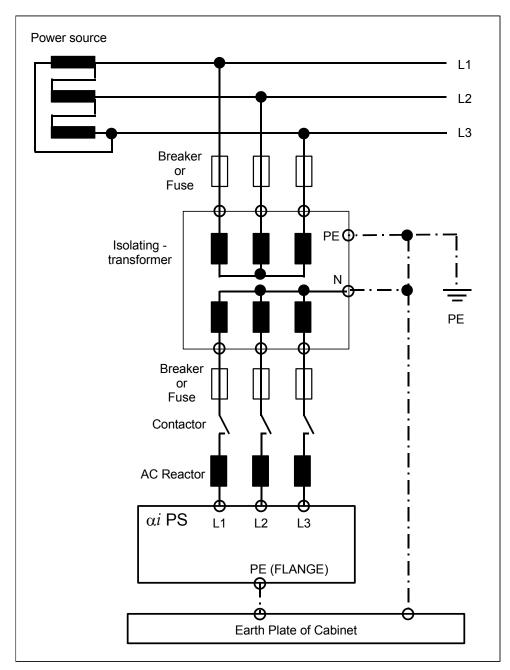
No.	Power system	Power specification	Power supply of amplifier
3	TN-power system	Delta connection	An isolating-transformer is used.
		Single-phase grounding on the	A star connection is made on the
		Power supply side	secondary side of an isolating-transformer,
		PE provided on the power line	and the neutral point is grounded.


(d) TT-power system

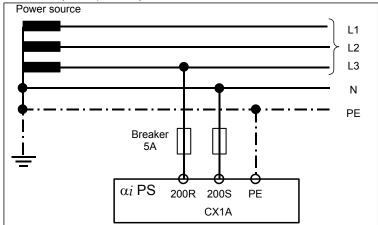
No.	Power system	Power specification	Power supply of amplifier
4	TT-power system	Star connection	An isolating-transformer is used.
		Neutral grounding on the power	A star connection is made on the
		supply side	secondary side of an isolating-transformer,
		No PE provided on the power line	and the neutral point is grounded.


(e) TT-power system

No.	Power system	Power specification	Power supply of amplifier
5	TT-power system	Delta connection	An isolating-transformer is used.
		 Single-phase grounding on the 	A star connection is made on the secondary
		power supply side	side of an isolating-transformer, and the
		 No PE provided on the power line 	neutral point is grounded.

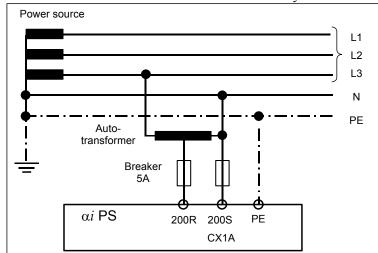

(f) IT-power system

No.	Power system	Power specification	Power supply of amplifier
6	IT-power system	Star connection	An isolating-transformer is used.
		No direct ground connection	A star connection is made on the secondary
		made on the power supply side	side of an isolating-transformer, and the
		No PE provided on the power line	neutral point is grounded.


(g) IT-power system

No.	Power system	Power specification	Power supply of amplifier
7	IT-power system	Delta connection	An isolating-transformer is used.
		 No direct ground connection 	A star connection is made on the secondary
		made on the power supply side	side of an isolating-transformer, and the
		 No PE provided on the power line 	neutral point is grounded.

- (7) Control power supply connection
 - Specification of the control power supply voltage for the 400V input series of the α*i* series servo amplifier Single-phase 200 VAC to 240 VAC (-15%, +10%)
 - When the power supply has a neutral point, power can be supplied from the neutral point and phase voltage to the control power supply.
 - When an isolating-transformer is used, connect one phase of the control power supply to the neutral point on the secondary side of the isolating-transformer.
 - (a) Example of connection when the three-phase power supply voltage of the main circuit is 400 VAC to 415 VAC (-15%, +10%)


With the following connection, the control power supply voltage can be converted to single-phase 200 VAC to 240 VAC (-15%, +10%):

(b) Example of connection when the three-phase power supply voltage of the main circuit is 460 VAC or more

By using an auto-transformer, ensure that the single-phase power supply voltage for the control power supply is 200 VAC to 240 VAC (-15%, +10%).

(NOTE) Before starting to use the auto-transformer, check that it conforms to the relevant safety standards.

B-65282EN/06 2.SPECIFICATIONS

2.2 ENVIRONMENTAL CONDITIONS

The servo amplifier αi series must be installed in a sealed type cabinet to satisfy the following environmental requirements. For how to design such a cabinet, see Appendix G, "EXAMPLES OF RECOMMENDED POWER MAGNETICS CABINETS FOR SERVO AMPLIFIER INSTALLATION".

(1) Ambient Temperature

Ambient temperature of the unit:

0 to 55°C (at operation)

-20 to 60°C (at keeping and transportation)

(2) Humidity

Normally 90% RH or below, and condensation-free

(3) Vibration

In operation: Below 0.5G

(4) Atmosphere

Prevent conductive, flammable, or corrosive foreign matters, mists, or water droplets from entering the unit

⚠ WARNING

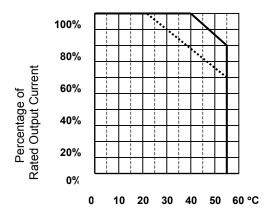
If conductive or flammable foreign matters enter the unit, explosion or corruption may be caused. If corrosive or conductive mists or water droplets are attached to an electronic circuit, unexpected operation may be caused in the circuit. The electronic circuit portion must be installed in an environment of pollution level 2 specified by IEC60664-1. To achieve pollution level 2 in a severe machine tool environment, it is generally necessary to install the portion in a cabinet that satisfies IP54.

(5) Notes on Installation

The αi series servo amplifier is designed to be installed in the power magnetics cabinet, with its heat sink projecting through the back of the cabinet. This carries away the heat generated by the semiconductors, thus preventing heat from building up in the cabinet as much as possible. Therefore, note the following when installing the amplifier.

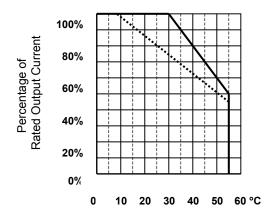
(a) Take appropriate measures to prevent coolant, oil mist, or chips from being adhered to the radiator and fan motors. A deposit of coolant, oil mist, or chips on the radiator or fan motors can lower the cooling efficiency. In some cases, the amplifier characteristics cannot sometimes be satisfied. The deposit may also reduce the service life of the fan motors or semiconductors.

- When outside air is drawn in to the radiator, mount an air filter on the air inlet. In addition, ensure to seal doors and parts where cables are drawn in and out.
- (b) No dust or cutting fluid must be able to enter through the exhaust port. The flow of cooling air must not be obstructed.
- (c) The amplifier must be installed where it can be easily inspected, removed, and remounted for maintenance.
- (d) Current lines and signal lines must be separated and noise must be suppressed. See the section 5.3 and the connection manual for each CNC for details.
- (e) Each amplifier must be installed vertically.
- (f) Servo amplifiers are to be arranged horizontally. When arranging servo amplifiers vertically from necessity, note the following:
 - Ensure that cooling air from a lower amplifier does not blow directly against the upper amplifier. Otherwise, radiation performance can degrade and the rated output may not be satisfied.
 - 2) Ensure that the flow of cooling air of a lower amplifier is not impeded.
- (g) Maintenance areas must be reserved for each servo amplifier.


(6) Derating

Consider derating as shown below, according to ambient temperatures.

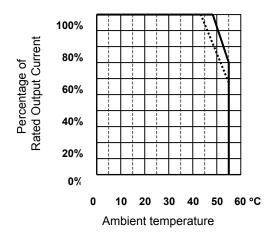
(a) αi SV series


The solid line indicates derating when HRV2 is applied, the dotted line indicates derating when HRV3 is applied, and the dot-dash line indicates derating when HRV4 is applied.

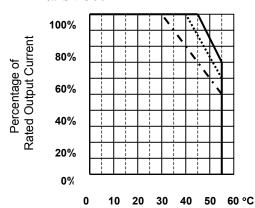
αi SV 40 to 160

Ambient temperature

ai SV 20/40 to 160/160

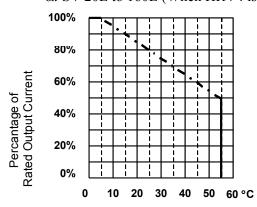


Ambient temperature


⚠ CAUTION

HRV4 cannot be applied to A06B-6114-Hxxx and -6124-Hxxx.

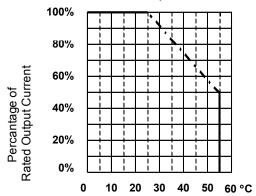
> αi SV 4 to 20 αi SV 4/4 to αi SVM20/20 αi SV 4/4/4 to αi SV 20/20/40



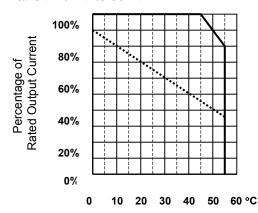
αi SV 360

Ambient temperature

αi SV 20L to 160L (When HRV4 is applied)


Ambient temperature

! CAUTION

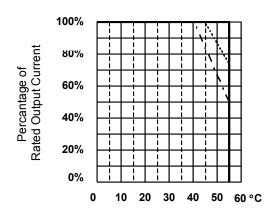

HRV4 cannot be applied to A06B-6114-Hxxx and -6124-Hxxx.

αi SV 20/20L to 80/80L (When HRV4 is applied)

Ambient temperature

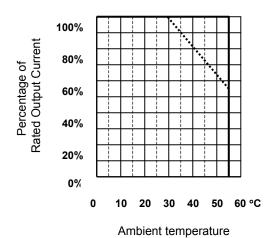
αi SV 10HV to 80HV

Ambient temperature

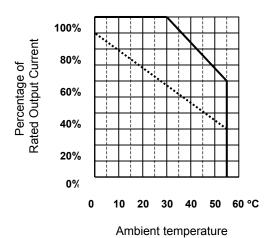

αi SV 180HV 100% Percantage of Rated Output Current 80% 60% 40% 20% 0% 0 10 20 30 40 50 60 °C

Ambient temperature

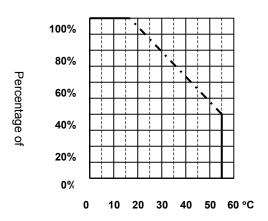
⚠ CAUTION


HRV4 cannot be applied to A06B-6114-Hxxx and -6124-Hxxx.

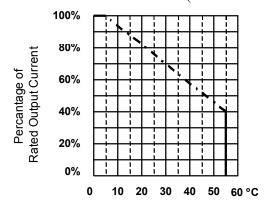
αi SV 360HV



Ambient temperature


αi SV 10/10HV to 20/20HV

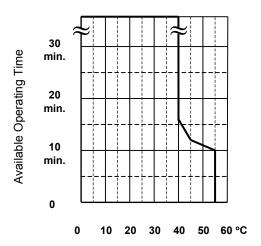
ai SV 20/40HV to 80/80HV



αi SV 10HVL to 80HVL (When HRV4 is applied)

Ambient temperature

 αi SV 10/10HVL to 40/40HVL (When HRV4 is applied)



Ambient temperature

⚠ CAUTION

HRV4 cannot be applied to A06B-6114-Hxxx and -612<u>4-Hxxx</u>.

(b) αi SP series αi SP 2.2 to 55 αi SP 5.5HV to 100HV

Ambient temperature

2.3 SPECIFICATIONS OF THE MODULES

2.3.1 αi PS series

200-V input series - power source regeneration type

Item	Model	α <i>i</i> PS 5.5	α <i>i</i> PS 11	α <i>i</i> PS 15	α <i>i</i> PS 26	α <i>i</i> PS 30	α <i>i</i> PS 37	α <i>i</i> PS 55
Main circuit		200 to 240VAC +10%,-15%,3φ 50/60Hz, ±1Hz						
Power supply (Note 1)	Control power	2	200 to 24	OVAC +	10%,-159	%,1¢ 50/6	60Hz, ±1Hz	<u> </u>
Power equipment	Main circuit	9kVA	17kVA	22kVA	37kVA	44kVA	53kVA	79kVA
capacity	Control power				0.7kVA	١		
Rated output capacity (Note 2)		6.8kW	13.2kW	17.5kW	29.8kW	35kW	43kW	65kW
Control method		Regenerative control (power source generation)						

Output capacities for motor selection

Model	α <i>i</i> PS 5.5	α <i>i</i> PS 11	α <i>i</i> PS 15	α <i>i</i> PS 26	α <i>i</i> PS 30	α <i>i</i> PS 37	α <i>i</i> PS 55
Rated output capacity	5.5kW	11kW	15kW	26kW	30kW	37kW	55kW
Maximum output capacity	13kW	24kW	34kW	48kW	64kW	84kW	125kW
Peak maximum output capability	22kW	38kW	51kW	73kW	85kW	106kW	192kW

NOTE

- 1 A power transformer is necessary for voltages other than those listed in above table.
- 2 When selecting an αi PS unit, use "Output capacities for motor selection".
- 3 The values in the above table are applied when A06B-6140-Hxxxx is used. When A06B-6110-Hxxxx is used, the values of the maximum output capacity and peak maximum output capacity differ as shown in the table below.

Output capacities for motor selection (when A06B-6110-Hxxx is used)

Model Item	α <i>i</i> PS 5.5	α <i>i</i> PS 11	α <i>i</i> PS 15	α <i>i</i> PS 26	α <i>i</i> PS 30	α <i>i</i> PS 37	α <i>i</i> PS 55
Maximum output capacity	11kW	20kW	28kW	40kW	53kW	70kW	104kW
Peak maximum output capability	20kW	34kW	46kW	66kW	77kW	96kW	174kW

200-V input series - resister discharge type (αi PS_R)

Item	Model	αi PS _R 3	α <i>i</i> PS _R 5.5			
Power supply (Note 1)	Main circuit	200 to 240VAC +	10%,-15%,3φ 50/60Hz, ±1Hz			
rower supply (Note 1)	Control power	200 to 240VAC +	10%,-15%,1φ 50/60Hz, ±1Hz			
Power equipment	Main circuit	5kVA	12kVA			
capacity	Control power		0.5kVA			
Rated output capacity	(Note 2)	3.8kW	9.4kW			
Control method		Regenerative control (resister discharge)				

Output capacities for motor selection

Model	αi PS _R 3	α <i>i</i> PS _R 5.5
Rated output capacity	3kW	7.5kW
Maximum output capacity	12kW	20kW

NOTE

- 1 A power transformer is necessary for voltages other than those listed in above table.
- 2 When selecting an αi PS_R unit, use "Output capacities for motor selection".
- 3 The αi PS_R 3 and αi PS_R 5.5 require regenerative discharge unit.

400-V input series - power source regeneration type

Item		Model	α <i>i</i> PS 11HV	α <i>i</i> PS 18HV	α <i>i</i> PS 30HV	α <i>i</i> PS 45HV	α <i>i</i> PS 75HV	α <i>i</i> PS 100HV
Main circuit		400	to 480VAC	+10%,-	·15%,3¢	50/60Hz, ±	±1Hz	
Power supply (Note 1)	Control power		200	to 240VAC	+10%,-	·15%,1¢	50/60Hz, ±	±1Hz
Power equipment	Main circuit		17kVA	26kVA	44kVA	64kVA	107kVA	143kVA
capacity	Control power 0.7kVA							
Rated output capacity (Note 2)		13kW	21kW	35kW	50kW	82kW	110kW	
Control method		Regenerative control (power source regeneration)						

Output capacities for motor selection

		20-00-				
Model		α <i>i</i> PS				
Item	11HV	18HV	30HV	45HV	75HV	100HV
Rated output capacity	11kW	18kW	30kW	45kW	75kW	100kW
Maximum output capacity	24kW	42kW	72kW	102kW	144kW	180kW
Peak maximum output capability	38kW	64kW	96kW	137kW	193kW	220kW

NOTE

- 1 A power transformer is necessary for voltages other than those listed in above table.
- 2 When selecting an αi PS unit, use "Output capacities for motor selection".
- 3 The values in the above table are applied when A06B-6150-Hxxxx is used. When A06B-6120-Hxxxx is used, the values of the maximum output capacity and peak maximum output capacity differ as shown in the table below.

Output capacities for motor selection (when A06B-6120-Hxxx is used)

Model	α <i>i</i> PS	αi PS	αi PS	α <i>i</i> PS	αi PS	lpha i PS
Item	11HV	18HV	30HV	45HV	75HV	100HV
Maximum output capacity	20kW	35kW	60kW	85kW	120kW	150kW
Peak maximum output capability	34kW	58kW	87kW	124kW	175kW	200kW

How to calculate the power equipment capacity

Calculate the power equipment capacity using the formula below.

Power supply capacity (kVA) = $\frac{\text{Rated capacity calculated in Section 4.3 (kW)}}{\text{Rated capacity of power supply module (kW)}} \times \text{Power supply capacity of power supply module having rated output (kVA)}$

NOTE

Select a Power supply for which, when the motor is accelerated, the input voltage variation does not exceed 7%.

How to calculate the input current of the αi PS

Calculate the input current of the αi PS by using the formula below. Refer to the result when selecting the MCC, power cable, and circuit breaker 1, to be connected to the αi PS input section.

(Margin for selection: 1 to 1.5 times)

PS input current (Arms) = $\frac{\text{Power equipment capacity (kVA)}}{\sqrt{3} \times \text{Nominal supply voltage (Vrms)}} \times 1.2 \text{ (margin)}$

NOTE

Under normal conditions, assume that the nominal supply voltage (Vrms) is 200 Vrms for the 200-V input series or 400 Vrms for the 400-V input series.

2.SPECIFICATIONS

2.3.2 αi SV series

Specifications (common)

Item	Specifications
Main circuit control method	Sine-wave PWM control with transistor (IGBT) bridge
Applicable CNC	16 <i>i</i> -B, 18 <i>i</i> -B, 21 <i>i</i> -B, 0 <i>i</i> -B/C/D, and 30 <i>i</i> /31 <i>i</i> /32 <i>i</i>

⚠ CAUTION

HRV4 cannot be applied to A06B-6114-Hxxx and

200-V input series - 1-axis amplifier

Name	Axis	Rated output current [Arms]	Nominal current limit [Apeak]
αi SV 4	-	1.5	4
α <i>i</i> SV 20	-	6.5	20
α <i>i</i> SV 20L	-	6.5	20
α <i>i</i> SV 40	-	13	40
lpha i SV 40L	-	13	40
α <i>i</i> SV 80	-	19	80
lpha i SV 80L	-	19	80
α <i>i</i> SV 160	-	45	160
α <i>i</i> SV 160L	-	45	160
α <i>i</i> SV 360	-	115	360

200-V input series - 2-axis amplifier

Name	Axis	Rated output current [Arms]	Nominal current limit [Apeak]
α <i>i</i> SV 4/4	L	1.5	4
at 3V 4/4	М	1.5	4
α <i>i</i> SV 4/20	L	1.5	4
at 3V 4/20	M	6.5	20
α <i>i</i> SV 20/20	L	6.5	20
at 3V 20/20	М	6.5	20
α <i>i</i> SV 20/40	L	6.5	20
at 3V 20/40	M	13	40
α <i>i</i> SV 40/40	L	13	40
at 3V 40/40	М	13	40
α <i>i</i> SV 40/80	L	13	40
at 3V 40/00	M	19	80
α <i>i</i> SV 80/80	L	19	80
at 3V 00/00	M	19	80
α <i>i</i> SV 80/160	L	19	80
ui 3 v 60/100	M	39	160
α <i>i</i> SV 160/160	L	39	160
αι 3V 100/100	М	39	160
α <i>i</i> SV 20/20L	L	6.5	20
α <i>ι</i> 3ν 20/20L	М	6.5	20

Name	Axis	Rated output current [Arms]	Nominal current limit [Apeak]
α <i>i</i> SV 20/40L	L	6.5	20
at 6V 20/40L	M	13	40
α <i>i</i> SV 40/40L	L	13	40
αι 3V 40/40L	M	13	40
α <i>i</i> SV 40/80L	L	13	40
αι SV 40/60L	M	19	80
α <i>i</i> SV 80/80L	L	19	80
αι 3V 00/60L	M	19	80
α <i>i</i> SV 80/160L	L	19	80
αι 3V 60/160L	M	39	160

NOTE

The current limit (peak value) is a standard value. It varies by about $\pm 10\%$, depending on the circuit constants.

200-V input series - 3-axis amplifier

Name	Axis	Rated output current [Arms]	Nominal current limit [Apeak]
	L	1.5	4
α <i>i</i> SV 4/4/4	М	1.5	4
	N	1.5	4
	L	6.5	20
α <i>i</i> SV 20/20/20	М	6.5	20
	N	6.5	20
	L	6.5	20
α <i>i</i> SV 20/20/40	М	6.5	20
	N	13	40

400-V input series - 1-axis amplifier

Name	Axis	Rated output current [Arms]	Nominal current limit [Apeak]
αi SV 10HV	-	3.1	10
lpha i SV 20HV	-	5.6	20
lpha i SV 40HV	-	9.1	40
lpha i SV 80HV	-	18.2	80
lpha i SV 180HV	-	58	180
lpha i SV 360HV	-	115	360
lpha i SV 10HVL	-	3.1	10
lpha i SV 20HVL	-	5.6	20
αi SV 40HVL	-	9.1	40
αi SV 80HVL	-	18.2	80

400-V input series - 2-axis amplifier

Name	Axis	Rated output current [Arms]	Nominal current limit [Apeak]
α <i>i</i> SV 10/10HV	L	3.1	10
at 64 10/10/14	M	3.1	10
α <i>i</i> SV 20/20HV	L	5.6	20
ai 3V 20/2011V	M	5.6	20
α <i>i</i> SV 20/40HV	L	5.6	20
at 3 v 20/4011v	M	9.1	40
α <i>i</i> SV 40/40HV	L	9.1	40
at 3 v 40/4011v	M	9.1	40
α <i>i</i> SV 40/80HV	L	9.1	40
α <i>ι</i> 3ν 4υ/ουπν	M	18.2	80
α <i>i</i> SV 80/80HV	L	18.2	80
$\alpha \iota$ SV 60/60 Π V	M	18.2	80
α <i>i</i> SV 10/10HVL	L	3.1	10
α <i>ι</i> 5ν 10/10πνL	M	3.1	10
α <i>i</i> SV 20/20HVL	L	5.6	20
α <i>ι</i> 3ν 20/20ΠνL	M	5.6	20
α <i>i</i> SV 20/40HVL	L	5.6	20
ui 3V 20/40ΠVL	М	9.1	40
α <i>i</i> SV 40/40HVL	L	9.1	40
αι 3V 4U/4UΠVL	М	9.1	40

NOTE

The current limit (peak value) is a standard value. It varies by about $\pm 10\%$, depending on the circuit constants.

2.3.3 αi SP series

200-V input series

Model	αi SP	αi SP	α <i>i</i> SP	α <i>i</i> SP	αi SP	αi SP	α <i>i</i> SP	α <i>i</i> SP	α <i>i</i> SP	lpha i SP
Item	2.2	5.5	11	15	22	26	30	37	45	55
Rated output	13A	27A	48A	63A	95A	111A	133A	165A	198A	250A
(HRV type)		Sp	indle HR	V2			Spino	lle HRV1	(Note 3)	
Main circuit control method			Sine-wa	ave PWM	control w	ith transis	tor (IGBT) bridge		
Speed control range					Speed ra	tio 1:100				
Speed variation rate		0.1	% or less	of maxim	num spee	d (load va	riation: 10	0% to 100)%)	
Applicable CNC			16 <i>i</i> -	B, 18 <i>i-</i> B,	21i-B, 0i-	-B/C/D, ar	nd 30 <i>i</i> /31 <i>i</i>	/32i		
Applicable motors ^(Note 1) (typical examples)	α <i>i</i> Ι 0.5 α <i>i</i> Ι 1	α <i>i</i> I 1.5 α <i>i</i> I 2 α <i>i</i> I 3		α <i>i</i> I 12 α <i>i</i> I _P 15 α <i>i</i> I _P 18	α <i>i</i> I 15 α <i>i</i> I 18 α <i>i</i> I _P 22 α <i>i</i> I _P 30	ai In 50	α <i>i</i> Ι _Ρ 60	(Note 2)	αί Ι 30 αί Ι 40	αί Ι 50

400-V input series

Model	αi SP	lpha i SP	α <i>i</i> SP	α <i>i</i> SP	α <i>i</i> SP	α <i>i</i> SP	α <i>i</i> SP
Item	5.5HV	11HV	15HV	30HV	45HV	75HV	100HV
Rated output	14A	23A	32A	70A	107A	170A	200A
(HRV type)	HR	.V2			HRV1 注3		
Main circuit control method		Sine-wave PWM control with transistor (IGBT) bridge					
Speed control range	Speed ratio 1:100						
Speed variation rate	0.	1% or less	of maximum	speed (load	d variation:	10% to 100%	%)
Applicable CNC		16 <i>i-</i> E	3, 18 <i>i-</i> B, 21 <i>i</i>	-B, 0 <i>i</i> -B/C/D), and 30 <i>i</i> /31	1 <i>i</i> /32 <i>i</i>	
	α <i>i</i> Ι 0.5ΗV			α <i>i</i> Ι 15ΗV	α <i>i</i> Ι 30ΗV		
Applicable motors (Note 1)	αi I 1HV	α <i>i</i> Ι 6ΗV	α <i>i</i> Ι _Ρ 15ΗV	α <i>i</i> Ι 22ΗV	ai I 40HV	ai I 60HV	α <i>i</i> Ι 100HV
(typical examples)	αi I 2HV	α <i>i</i> Ι 8ΗV	μι ip 15HV	$\alpha i \; \mathrm{I_P} \; 40 \text{HV}$	$\alpha i I_P 60HV$		αι 1 10011V
	αI I 3HV			α <i>i</i> I _P 50HV	at IP OULL		

NOTE

- 1 For combinations of motor models and amplifier models, refer to "Applicable spindle amplifier" in the specification list in the descriptions manual of the spindle motor.
- 2 Built-in spindle motors are applied.
- 3 For spindle HRV2, the rated current is derated as follows:
 - αi SP37 85% αi SP45 79%, αi SP55 80%
 - αi SP15HV 94%, αi SP30HV 83%, αi SP45HV 72%
 - *αi* SP75HV 83%, *αi* SP100HV 91%

Types (A and B) of αi SP models and sensors applicable to each type

Either of two αi SP models, types A and B, is available for each detector on the spindle to be used. The following lists combinations of an αi SP type, applicable sensors, and functions.

		Configuration	Configuration number									Remarks
		Comiguration		2	3	4	5	6	7	8	9	Remarks
	αi SP	TYPE A	0	0	0	0	0	0		0		
	at Oi	TYPE B	0	0	0	0	0	0	0	0	0	
(0		lpha iM	0				0	0	0	0	0	
Spindle system configuration		lpha iMZ sensor		0								
dle :	Sensor on the motor	αi BZ sensor (*8)			0							
sys		(when a built-in motor is used))							
tem		lpha iCZ I sensor				0						See next
8		(when a built-in motor is used)										page.
nfig		lpha i position coder					0					*3
ura	anre	External 1-rotation						0				*3
tion	Sensor on the spindle	lpha iBZ sensor							0			*3
	osilosi on allo opiliono	lpha iCZ IS sensor								0		See next page.
		α position coder S									0	*3
	Rigid tapping		O*1	O*2	0	0	0	O*2	0	0	0	
	Orientation by a position coder			O*6	0	0	0		0	0	0	
Function	Orientation by the external one-rotation signal							O*2				*5
ion	Spindle	Velocity synchronization	O*2	O*6	0	0	0	O*2	0	0	0	*4
	synchronization	Phase synchronization		O*6	0	0	0	O*7	0	0	0	*4
I	Threading			O*6	0	0	0		0	0	0	
	Cs-axis contour control			O*6	0				0	0	0	

- *1 The spindle and motor must be interconnected directly or with a timing belt or gear. No orientation is available to adjust the tapping start position.
- *2 The spindle and motor must be interconnected with a timing belt or gear.
- *3 The spindle and detector must be interconnected in one-to-one connection mode.
- *4 Two motor amplifiers are required.
- *5 Note that the stop position moves by a backlash between the spindle and motor because of the theory of operation.
- *6 The spindle and motor must be interconnected directly or with a timing belt or gear in one-to-one connection mode.
- *7 Before specifying spindle synchronization, perform orientation to detect the one-rotation signal (PC1DT=1).
- *8 The \alphaiCZ analog output type is also applicable.

Other functions

	TYPE A	TYPE B	Remarks
Analog output of load meter and speedometer	0	0	Connector JY1
Analog override input	0	0	Connector JY1
Excitation off monitor signal output	0	0	Connector JX4
Position coder signal output		O *1	Connector JX4
Spindle EGB function (Inter-SP communication function)		O *1	Connector JX4

^{*1} The αi CZ I sensor and αi CZ IS sensor are excluded.

↑ CAUTION

The excitation off state signal output is not supported by A06B-6111, -6112, -6121, and -6122.

Submodule SW

By using αi SP TYPE A or αi SP TYPE B with a Submodule SW, the spindle switch function for switching between two motors (main and sub) with one spindle amplifier can be used. (*2) For details of the sub module SW, see Chapter 10.

The αiCZ I sensor and αiCZ IS sensor are excluded.

Submodule SM

By using αi SP TYPE B with the Submodule SM, the synchronous built-in spindle motor Bi S series can be used.

⚠ CAUTION

For the latest αi SP series, use Submodule SM unit version B or later.

αiCZ sensors (I, IS)

Applicable spindle amplifiers

Unit version B or later

200-V system: A06B-6141-H002, -H006, -H011, -H015, -H030,

-H037, -H055#H580

400-V system: A06B-6151-H006, -H011, -H015, -H045, -H075,

-H100#H580

Unit version C or later

200-V system: A06B-6141-H022, -H026, -H045#H580

400-V system: A06B-6151-H030#H580

The following functions cannot be used:

Spindle switch control, differential spindle speed control, and position coder signal output

The following functions are not supported at present: Synchronous spindle motor, spindle EGB, simple spindle EGB, torque tandem control, dual check safety (motor sensor side), disconnection detection disable signal

2.4 WEIGHT

αi PS

Model	Weight
αi PS _R 3	2.6kg
α <i>i</i> PS _R 5.5	4.3kg
α <i>i</i> PS 5.5	4.9kg
α <i>i</i> PS 11, 15, 11HV, 18HV	6.3kg
α <i>i</i> PS 26, 30, 37, 30HV, 45HV	10.7kg
αi PS 55, 75HV, 100HV	22.0kg

αi SV

Model	Weight
α <i>i</i> SV 4, 20, 10HV	2.2Kg
αi SV 40, 80, 160, 20L, 40L, 80L	2.01/~
lpha i SV 20HV, 40HV, 80HV, 10HVL, 20HVL,40HVL	3.9Kg
α <i>i</i> SV 4/4, 4/20, 20/20, 10/10HV	2.4Kg
αi SV 20/40, 40/40, 40/80, 80/80, 20/40L, 40/40L	4 GV a
α <i>i</i> SV 20/20HV	4.6Kg
lpha i SV 160L, 80HVL	
αi SV 80/160, 160/160, 40/80L, 80/80L	
lpha i SV 20/40HV, 40/40HV, 40/80HV,	5.5Kg
αi SV 80/80HV, 20/40HVL, 40/40HVL	
αi SV 4/4/4, αi SV 20/20/20	2.6Kg
α <i>i</i> SV 20/20/40	3.8Kg
α <i>i</i> SV 360, 180HV	10.7Kg
α <i>i</i> SV 360HV	22.0Kg
DBM(A06B-6079-H401)	5.4Kg
DBM(A06B-6069-H300)	10.0Kg

αi SP

Model	Weight
α <i>i</i> SP 2.2	4.9Kg
lpha i SP 5.5, 5.5HV	6.1Kg
lpha i SP 11, 15, 11HV, 15HV	6.3Kg
αi SP 22, 26, 30, 37,30HV, 45HV	10.7Kg
lpha i SP 45, 55, 75HV, 100HV	22.0Kg

AC reactor

Model	Weight
A81L-0001-0083#3C	1.1kg
A81L-0001-0171	1.1kg
A81L-0001-0101#C	3.0kg
A81L-0001-0155	4.5kg
A81L-0001-0156	6.5kg
A81L-0001-0157	9.5kg
A81L-0001-0158	9.2kg
A81L-0001-0159	16.5kg

Model	Weight
Miodel	weight
A81L-0001-0160	20.0kg
A81L-0001-0163	8.0kg
A81L-0001-0164	14.0kg
A81L-0001-0165	26.0kg
A81L-0001-0167	8.2kg
A81L-0001-0170	4.2kg

Regenerative discharge unit

Model	Weight
A06B-6089-H510	0.8kg
A06B-6089-H500	2kg
A06B-6089-H711	5kg
A06B-6089-H712	6kg
A06B-6089-H713	5kg

Transformer

Model	Weight
A80L-0024-0006	27kg
A80L-0024-0003	36kg
A06B-6052-J001	61kg
A06B-6044-J006	115kg
A06B-6044-J007	165kg
A06B-6044-J010	260kg
A06B-6044-J015	375kg

Noise filter

	Weight	
A06B-6077-K155	3SUP-HL30-ER-6 : *1	5.2kg
A06B-6077-K156	3SUP-HL75-ER-6 : *1	12.0kg
A06B-6077-K157	3SUP-HL150-ER-6: *1	23.5kg
A06B-6077-K158	3SUP-HL200-ER-6: *1	24.5kg
A06B-6110-K160	NF3050C-VQ : *2	2.9kg
A06B-6110-K161	NF3080C-VQ : *2	3.6kg
A06B-6110-K162	NF3150C-VQ : *2	9.0kg
A06B-6110-K163	NF3200C-VQ : *2	16kg
A06B-6110-K164	NF3250C-VQ : *2	16kg

^{*1} manufacturer Okaya electric Inc. *2 manufacturer Sosin electric Inc.

3

ORDERING INFORMATION

Chapter 3, "ORDERING INFORMATION", consists of the following sections:

3.1	SERV	O AMPLIF	IER	46
	3.1.1	200-V Inp	ut Series	46
		3.1.1.1	αi PS series	46
		3.1.1.2	αi PS _R series	46
		3.1.1.3	αi SV series	47
		3.1.1.4	αi SP series	49
	3.1.2	400-V Inp	ut Series	50
		3.1.2.1	αi PS series	50
		3.1.2.2	αi SV series	51
		3.1.2.3 α <i>i</i>	SP series	53
	3.1.3	Others		54
		3.1.3.1	AC reactor	54
		3.1.3.2	AC line filter	56
		3.1.3.3	Sub module SW	57
		3.1.3.4	Sub module SM	57
		3.1.3.5	Connectors	58
		3.1.3.6	Fuses	64
		3.1.3.7	Power transformer	65
		3.1.3.8	Regenerative discharge unit	69
		3.1.3.9	Cables	
		3.1.3.10	Circuit breaker and magnetic contactor	71
		3.1.3.11	Lightning surge protector	
		3.1.3.12	Noise filter	
		3.1.3.13	Sensors for servo	75
		3.1.3.14	Sensors for spindle	76
		3.1.3.15	Power line switch unit	
		3 1 3 16	Battery for absolute Pulsecoder	78

3.1 SERVO AMPLIFIER

3.1.1 200-V Input Series

3.1.1.1 αi PS series

Category	Ordering number	Name	Remarks
	A06B-6140-H006	α <i>i</i> PS 5.5	
	A06B-6140-H011	α <i>i</i> PS 11	
Standard	A06B-6140-H015	α <i>i</i> PS 15	
	A06B-6140-H026	α <i>i</i> PS 26	
	A06B-6140-H030	α <i>i</i> PS 30	
	A06B-6140-H037	α <i>i</i> PS 37	
	A06B-6140-H055	α <i>i</i> PS 55	

NOTE

See Section 4.3, "HOW TO SELECT THE αi PS series (POWER SUPPLY)" for details of how to select the αi PS.

3.1.1.2 αi PS_R series

Category	Ordering number	Name	Remarks
Standard	A06B-6115-H003	αi PS _R 3	
	A06B-6115-H006	αi PS _R 5.5	

Category	Ordering number	Name	Remarks
Standard	A06B-6115-H003	PSMR-3i	
	A06B-6115-H006	PSMR-5.5 <i>i</i>	

NOTE

See Section 4.4, "HOW TO SELECT THE αi PS_R series (POWER SUPPLY RESISTOR DISCHARGE TYPE)" for details of how to select the αi PS_R.

3.1.1.3 αi SV series

1-axis amplifier

Category	Ordering number	Name	Remarks
	A06B-6117-H101	αi SV 4	HRV2 and HRV3 supported
	A06B-6117-H103	α <i>i</i> SV 20	HRV2 and HRV3 supported
	A06B-6117-H104	α <i>i</i> SV 40	HRV2 and HRV3 supported
	A06B-6117-H105	α <i>i</i> SV 80	HRV2 and HRV3 supported
	A06B-6117-H106	α <i>i</i> SV 160	HRV2 and HRV3 supported
Standard	A06B-6117-H109	α <i>i</i> SV 360	DBM required HRV2, HRV3, and HRV4 supported
	A06B-6117-H153	α <i>i</i> SV 20L	HRV4 supported
	A06B-6117-H154	αi SV 40L	HRV4 supported
	A06B-6117-H155	αi SV 80L	HRV4 supported
	A06B-6117-H156	α <i>i</i> SV 160L	HRV4 supported

2-axis amplifier

Category	Ordering number	Name	Remarks
	A06B-6117-H201	α <i>i</i> SV 4/4	HRV2 and HRV3 supported
	A06B-6117-H203	α <i>i</i> SV 4/20	HRV2 and HRV3 supported
	A06B-6117-H205	α <i>i</i> SV 20/20	HRV2 and HRV3 supported
	A06B-6117-H206	α <i>i</i> SV 20/40	HRV2 and HRV3 supported
	A06B-6117-H207	α <i>i</i> SV 40/40	HRV2 and HRV3 supported
	A06B-6117-H208	α <i>i</i> SV 40/80	HRV2 and HRV3 supported
Standard	A06B-6117-H209	α <i>i</i> SV 80/80	HRV2 and HRV3 supported
Standard	A06B-6117-H210	α <i>i</i> SV 80/160	HRV2 and HRV3 supported
	A06B-6117-H211	α <i>i</i> SV 160/160	HRV2 and HRV3 supported
	A06B-6117-H255	α <i>i</i> SV 20/20L	HRV4 supported
	A06B-6117-H256	α <i>i</i> SV 20/40L	HRV4 supported
	A06B-6117-H257	α <i>i</i> SV 40/40L	HRV4 supported
	A06B-6117-H258	α <i>i</i> SV 40/80L	HRV4 supported
	A06B-6117-H259	α <i>i</i> SV 80/80L	HRV4 supported

3-axis amplifier

Category	Ordering number	Name	Remarks
	A06B-6117-H301	α <i>i</i> SV 4/4/4	HRV2 and HRV3 supported
Standard	A06B-6117-H303	α <i>i</i> SV 20/20/20	HRV2 and HRV3 supported
	A06B-6117-H304	αi SV 20/20/40	HRV2 and HRV3 supported

Dynamic brake module

Category	Ordering number	Name	Remarks
Standard	A06B-6079-H401	DBM	α <i>i</i> SV 360

NOTE

- 1 See Section 4.1, "HOW TO SELECT THE αi SV SERIES (SERVOAMPLIFIER)" for details of how to select the αi SV.
- 2 For the αi SV 360, a dynamic brake module (DBM) is required.
 - The dynamic brake module is used to immediately stop the motor at emergency stop. Other αi SV models contain a similar function.

3.1.1.4 αi SP series

Ordering numbers depend on the detectors being used (function).

(1) TYPE A (1 spindle sensor input)

Category	Ordering number	Name	Remarks
	A06B-6141-H002#H580	α <i>i</i> SP 2.2	
	A06B-6141-H006#H580	α <i>i</i> SP 5.5	
	A06B-6141-H011#H580	α <i>i</i> SP 11	
	A06B-6141-H015#H580	α <i>i</i> SP 15	
Standard	A06B-6141-H022#H580	α <i>i</i> SP 22	
Standard	A06B-6141-H026#H580	α <i>i</i> SP 26	
	A06B-6141-H030#H580	α <i>i</i> SP 30	
	A06B-6141-H037#H580	α <i>i</i> SP 37	
	A06B-6141-H045#H580	α <i>i</i> SP 45	
	A06B-6141-H055#H580	α <i>i</i> SP 55	

(2) TYPE B (2 spindle sensor inputs)

Category	Ordering number	Name	Remarks
	A06B-6142-H002#H580	α <i>i</i> SP 2.2	
	A06B-6142-H006#H580	αi SP 5.5	
	A06B-6142-H011#H580	α <i>i</i> SP 11	
	A06B-6142-H015#H580	α <i>i</i> SP 15	
Standard	A06B-6142-H022#H580	α <i>i</i> SP 22	
Standard	A06B-6142-H026#H580	α <i>i</i> SP 26	
	A06B-6142-H030#H580	α <i>i</i> SP 30	
	A06B-6142-H037#H550	α <i>i</i> SP 37	
	A06B-6142-H045#H580	α <i>i</i> SP 45	
	A06B-6142-H055#H580	α <i>i</i> SP 55	

NOTE

See Section 4.2, "HOW TO SELECT THE αi SP SERIES (SPINDLE AMPLIFIER)" for details of how to select the αi SP.

3.1.2 400-V Input Series

3.1.2.1 αi PS series

Category	Ordering number	Name	Remarks
	A06B-6150-H011	lpha i PS 11HV	
	A06B-6150-H018	lpha i PS 18HV	
Standard	A06B-6150-H030	lpha i PS 30HV	
Standard	A06B-6150-H045	lpha i PS 45HV	
	A06B-6150-H075	lpha i PS 75HV	
	A06B-6150-H100	α <i>i</i> PS 100HV	

NOTE

See Section 4.3, "HOW TO SELECT THE αi PS series (POWER SUPPLY)" for details of how to select the αi PS.

3.1.2.2 αi SV series

1-axis amplifier

Category	Ordering number	Name	Remarks
	A06B-6127-H102	lpha i SV 10HV	HRV2 and HRV3 supported
	A06B-6127-H103	αi SV 20HV	HRV2 and HRV3 supported
	A06B-6127-H104	αi SV 40HV	HRV2 and HRV3 supported
	A06B-6127-H105	αi SV 80HV	HRV2 and HRV3 supported
Standard	A06B-6127-H106	α <i>i</i> SV 180HV	DBM required HRV2, HRV3, and HRV4 supported
Standard	A06B-6127-H109	α <i>i</i> SV 360HV	DBM required HRV2, HRV3, and HRV4 supported
	A06B-6127-H152	lpha i SV 10HVL	HRV4 supported
	A06B-6127-H153	lpha i SV 20HVL	HRV4 supported
	A06B-6127-H154	lpha i SV 40HVL	HRV4 supported
	A06B-6127-H155	αi SV 80HVL	HRV4 supported

2-axis amplifier

Category	Ordering number	Name	Remarks
	A06B-6127-H202	α <i>i</i> SV 10/10HV	HRV2 and HRV3 supported
	A06B-6127-H205	α <i>i</i> SV 20/20HV	HRV2 and HRV3 supported
	A06B-6127-H206	α <i>i</i> SV 20/40HV	HRV2 and HRV3 supported
	A06B-6127-H207	α <i>i</i> SV 40/40HV	HRV2 and HRV3 supported
Standard	A06B-6127-H208	α <i>i</i> SV 40/80HV	HRV2 and HRV3 supported
Stariuaru	A06B-6127-H209	α <i>i</i> SV 80/80HV	HRV2 and HRV3 supported
	A06B-6127-H252	α <i>i</i> SV 10/10HVL	HRV4 supported
	A06B-6127-H255	α <i>i</i> SV 20/20HVL	HRV4 supported
	A06B-6127-H256	αi SV 20/40HVL	HRV4 supported
	A06B-6127-H257	α <i>i</i> SV 40/40HVL	HRV4 supported

Dynamic brake module

Category	Ordering number	Name	Remarks
Standard	A06B-6079-H401	DBM	αi SV 180HV, αi SV 360HV
Standard	A06B-6069-H300	DBM	α <i>i</i> SV 360HV (Note 3)

NOTE

- 1 See Section 4.1, "HOW TO SELECT THE αi SV SERIES (SERVOAMPLIFIER)" for details of how to select the αi SV.
- 2 For the αi SV 180HV and αi SV 360HV, a dynamic brake module (DBM) is required. The dynamic brake module is used to immediately stop the motor at emergency stop. Other αi SV models contain a similar function.
- 3 A06B-6069-H300 is used when the servo motor is the αi S1000HV, 2000HV, or 3000HV.

3.1.2.3 αi SP series

Ordering numbers depend on the detectors being used (function).

(1) TYPE A (1 spindle sensor input)

Category	Ordering number	Name	Remarks
	A06B-6151-H006#H580	lpha i SP 5.5HV	
	A06B-6151-H011#H580	αi SP 11HV	
	A06B-6151-H015#H580	lpha i SP 15HV	
Standard	A06B-6151-H030#H580	αi SP 30HV	
	A06B-6151-H045#H580	αi SP 45HV	
	A06B-6151-H075#H580	αi SP 75HV	
	A06B-6151-H100#H580	lpha i SP 100HV	

(2) TYPE B (2 spindle sensor inputs)

Category	Ordering number	Name	Remarks
	A06B-6152-H006#H580	lpha i SP 5.5HV	
	A06B-6152-H011#H580	lpha i SP 11HV	
	A06B-6152-H015#H580	lpha i SP 15HV	
Standard	A06B-6152-H030#H580	lpha i SP 30HV	
	A06B-6152-H045#H580	lpha i SP 45HV	
	A06B-6152-H075#H580	lpha i SP 75HV	
	A06B-6152-H100#H580	lpha i SP 100HV	

NOTE

See Section 4.2, "HOW TO SELECT THE αi SP SERIES (SPINDLE AMPLIFIER)" for details of how to select the αi SP.

3.1.3 Others

3.1.3.1 AC reactor

Category	Ordering number	Applicable models	Remarks
	A81L-0001-0155	α <i>i</i> PS 5.5, 11	(Note)
	A81L-0001-0156	α <i>i</i> PS 15	
	A81L-0001-0157	α <i>i</i> PS 26	
	A81L-0001-0158	α <i>i</i> PS 30	
	A81L-0001-0159	α <i>i</i> PS 37	
Standard	A81L-0001-0160	α <i>i</i> PS 55	
	A81L-0001-0163	αi PS 11HV, 18HV	(Note)
	A81L-0001-0164	α <i>i</i> PS 30HV, 45HV	
	A81L-0001-0165	αi PS 75HV, 100HV	
	A81L-0001-0167	α <i>i</i> PS 11HV	(Note)
	A81L-0001-0170	α <i>i</i> PS 5.5	(Note)

For the outside dimensions, see Subsection 8.1.2, "AC Reactor Unit". For the tightening torque, see Subsection 9.3.1.1, "Details of cable K1 (Common power supply line)".

NOTE

When an αi SV or αi SP unit with a small capacity is connected to the αi PS, the AC reactor unit A81L-0001-0170 (200-V input) or A81L-0001-0167 (400-V input) must be used. For details, see the next page.

AC reactor used when an αi SV or αi SP with a small capacity is connected to the αi PS

200-V input series

When only as many αi SV or αi SP units as indicated in the tables below are connected to a power regeneration type αi PS unit, AC reactor unit A81L-0001-0170 must be used.

ACAUTION

- 1 When using the normal AC reactor, depending on the power state (when the power impedance is low or the voltage is out of balance), power regeneration is maintained and input current becomes too large, possibly damaging the amplifier.
- 2 This problem does not occur in the resistance regeneration type αi PS_R.

αi SV

Name	Number of connected units	Ordering number (*1)
αi SV 4	1	A06B-6117-H101
αi SV 4	2	A06B-6117-H101
α <i>i</i> SV 20	1	A06B-6117-H103
α <i>i</i> SV 20	2	A06B-6117-H103
lpha i SV 20L	1	A06B-6117-H153
lpha i SV 20L	2	A06B-6117-H153
α <i>i</i> SV 4/4	1	A06B-6117-H201
α <i>i</i> SV 4/20	1	A06B-6117-H203
α <i>i</i> SV 20/20	1	A06B-6117-H205
α <i>i</i> SV 20/20L	1	A06B-6117-H255

αi SP

Name	Number of connected units	Ordering number (*2)
α <i>i</i> SP 2.2	1	A06B-6141-H002#H580 A06B-6142-H002#H580

^{*1} The same restriction applies to the old specification A06B-6114-Hxxx.

^{*2} The same restriction applies to the old specifications A06B-6111-Hxxx and A06B-6112-Hxxx.

400-V input series

When only as many αi SV or αi SP units as indicated in the tables below are connected to a power regeneration type αi PS unit, AC reactor unit A81L-0001-0167 must be used.

⚠ CAUTION

When using the normal AC reactor, depending on the power state (when the power impedance is low or the voltage is out of balance), power regeneration is maintained and input current becomes too large, possibly damaging the amplifier.

αi SV

Name	Number of connected units	Ordering number (*1)
αi SV 10HV	1	A06B-6127-H102
αi SV 20HV	1	A06B-6127-H103
lpha i SV 10HVL	1	A06B-6127-H152
lpha i SV 20HVL	1	A06B-6127-H153
α <i>i</i> SV 10/10HV	1	A06B-6127-H202
α <i>i</i> SV 20/20HV	1	A06B-6127-H205
α <i>i</i> SV 10/10HVL	1	A06B-6127-H252
α <i>i</i> SV 20/20HVL	1	A06B-6127-H255

^{*1} The same restriction applies to the old specification A06B-6124-Hxxx.

3.1.3.2 **AC line filter**

Category	Ordering number	Applicable models	Remarks
Ctondord	A81L-0001-0083#3C	αi PS _R 3	
Standard	A81L-0001-0101#C	αi PS _R 5.5	

For the dimensions of the AC line filters, see Section 8.1.3, "AC Line Filter".

As a compatible product of the A81L-0001-0083#3C, the A81L-0001-0171 can be used.

3.1.3.3 Sub module SW

Category	Ordering number	Applicable models	Remarks
	A06B-6111-H401	αi SP TYPE A, TYPE B	Main unit 60-mm width
0 "	A06B-6111-K808	αi SP 90mm,150mm TYPE A	Connection cable
Optional	A06B-6111-K809	αi SP 90mm,150mm TYPE B	One cable needs to be prepared for
		lpha i SP 60mm, TYPE A	
	A06B-6111-K811	αi SP 60mm, TYPE B	SW.

A sub module SW can be used with the αi SP to support the spindle switch function.

- (a) A cable for connecting the sub module SW and the αi SP needs to be prepared.
- (b) See Section 10.3, and prepare a metal fitting for mounting the sub module SW.

3.1.3.4 Sub module SM

Category	Ordering number	Applicable models	Remarks
	AOCD 6444 LI402	α <i>i</i> SP 5.5HV~45HV	
	A06B-6111-H403	TYPE B	
Optional	AOCD 6444 H404	αi SP 75HV~100HV	
	A06B-6111-H404	TYPE B	

A sub module SM is used with the αi SP TYPE B to drive a synchronous spindle motor.

3.1.3.5 Connectors

The ordering drawing number of the connectors required for connection of input/output signals of each amplifier, and the configuration of each connector, are shown below.

The "Use" column of the table indicates connection symbol K*, which is described in Section 9.3, "CABLE CONNECTION DETAILS." For the connector dimensions, see Appendix C.

(1) Usable with each amplifier: Connectors for the αi PS interface (between CXA2A and CXA2B)

Category	Ordering number	Quantity	Use	Connection tool
	A06B-6110-K210	Housing: 1 pcs.	K69	Contact crimping tool
Standard		Contact: 8 pcs.	(Note 1)	A06B-6110-K220#D2M
		Housing: 1 pcs.	(NI-4- O)	Contact crimping tool
A06B-6110-K211	Contact: 2 pcs.	(Note 2)	A06B-6110-K220#D2M	

NOTE

- 1 See Subsection 9.3.1.4 as for the detailed connection of K69.
- 2 See Subsection 9.3.2.10 as for the connection of battery.

(2) Usable with each amplifier:

Power line connectors for motors and power supplies

Category	Ordering number	Quantity	Use	Connection tool
	A06B-6110-K200 #XXSS	Housing: 1 pcs. (XX key) Contact: 4 pcs. (SS size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5SS
	A06B-6110-K200 #XXS	Housing: 1 pcs. (XX key) Contact: 4 pcs. (S size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5S
	A06B-6110-K200 #XXM	Housing: 1 pcs. (XX key) Contact: 4 pcs. (M size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5M
	A06B-6110-K200 #XXL	Housing: 1 pcs. (XX key) Contact: 4 pcs. (L size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5L
	A06B-6110-K201 #XYSS	Housing: 1 pcs. (XY key) Contact: 4 pcs. (SS size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5SS
Standard	A06B-6110-K201 #XYS	Housing: 1 pcs. (XY key) Contact: 4 pcs. (S size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5S
Stariuaru	A06B-6110-K201 #XYM	Housing: 1 pcs. (XY key) Contact: 4 pcs. (M size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5M
	A06B-6110-K201 #XYL	Housing: 1 pcs. (XY key) Contact: 4 pcs. (L size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5L
	A06B-6110-K202 #YYSS	Housing: 1 pcs. (YY key) Contact: 4 pcs. (SS size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5SS
	A06B-6110-K202 #YYS	Housing: 1 pcs. (YY key) Contact: 4 pcs. (S size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5S
	A06B-6110-K202 #YYM	Housing: 1 pcs. (YY key) Contact: 4 pcs. (M size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5M
	A06B-6110-K202 #YYL	Housing: 1 pcs. (YY key) Contact: 4 pcs. (L size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5L

(3) For αi PS

Category	Ordering number	Quantity	Use	Connection tool
Standard	A06B-6071-K203	Housing: 1 pcs./module	K3, K6, K7	Contact crimping tool
Stariuaru	AU0D-007 1-N203	Contact: 7 pcs.	N3, N0, N7	A06B-6110-K220#D3L
Ctom doud	A O C D C A O O A C O O A	Housing: 1 pcs.	K100	Contact crimping tool
Standard	A06B-6130-K201	Contact: 6 pcs.		A06B-6110-K220#D2M

(4) For αi SV

Category	Ordering number	Quantity	Use	Connection tool
Standard	A06B-6078-K225	Case: 1 pcs. Connector: 1 pcs. Solder type	K22	
	A06B-6073-K216	Case: 2 pcs. Connector: 4 pcs.	IKソ4 Kソ5	Contact crimping tool A06B-6110-K220#D3L

(5) For αi SP

Category	Ordering number	Quantity	Use	Use
	A06B-6078-K222	Case: 1 pcs. Connector: 1 pcs. Solder type	K14, K17, K71	
Standard	A06B-6078-K223	Case: 1 pcs. Connector: 1 pcs. Crimp type	K12	Purchase a connector for F130-20S from Hirose Electric.
Standard	A06B-6078-K224	Case: 1 pcs. Connector: 1 pcs. Solder type	K33	
	A06B-6078-K225	Case: 1 pcs. Connector: 1 pcs. Crimp type	K16	

NOTE

- 1 Some connectors are attached to a cable by crimping or soldering. Be careful when placing an order.
- When attaching a connector of crimp type, use a dedicated tool prepared by each manufacturer. For the specifications of the tools, see the description of "Connection tools" below.

Connection tools

Connector connection tools are indicated below with their ordering numbers for purchase from FANUC. The connection tools can also be directly purchased from each manufacturer.

(a) Connectors manufactured by Tyco Electronics AMP D-2100 series (for α*i* PS interface)

Category	Ordering number	Manufacturer part number	Use
Optional	A06B-6110-K220#D2M	191595-1	M size Contact crimping tool
Optional	A06B-6110-K220#D2R	1276716-1	Contact extractor

D-3000 series (for αi PS)

Category	Ordering number	Manufacturer part number	Use
Optional	A06B-6110-K220#D3L	91558-1	L size Contact crimping tool
Optional	A06B-6110-K220#D3R	234168-1	Contact extractor

D-5000 series (for power line)

D 3000 series (for power line)				
Category	Ordering number	Manufacturer part number	Use	
Ontional	A06B-6110-K220#D5SS	91596-1	SS size	
Optional	AU0D-011U-K22U#D333	91096-1	Contact crimping tool	
Ontional	otional A06B-6110-K220#D5S 234170-	224470.4	S size	
Optional		234170-1	Contact crimping tool	
Ontional	100D C110 K000#DEM		M size	
Optional	A06B-6110-K220#D5M	234171-1	Contact crimping tool	
Ontional	A 00D 0440 K000 #DEL	42000444	L size	
Optional	A06B-6110-K220#D5L	1366044-1	Contact crimping tool	
Optional	A06B-6110-K220#D5R	409158-1	Contact extractor	

(b) Half-pitch 20-pin press-mount connector of Hirose Electric (FI30-20S)

Name	Manufacturer part number
Jig for neat cabling	FI30-20CAT1
Jig for press-mounting	HHP-502, FI30-20GP

(c) Half-pitch 20-pin press-mount connector of Honda Tsushin Kogyo (PCR-E20FA)

Name	Manufacturer part number
Jig for neat cabling	JGPS-015-1/1-20, JGPS-014
Jig for press-mounting	MFC-K1, PCS-K1

Connector configuration

- Configuration of A06B-6110-K210

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CXA2A	AMP Japan, Ltd.	1-1318119-4 (housing)	1	For αi PS	C(d)
CXA2B		131807-1 (contact)	8	1014113	-

- Configuration of A06B-6110-K211

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CXA2A	AMP Japan, Ltd.	1-1318119-4 (housing)	1	For connection to separate	C(d)
CXA2B		131807-1 (contact)	2	battery	-

- Configuration of A06B-6093-K303 (Connector with lock mechanism)

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
	Japan Aviation	IL-L2S-S3L-B (N)	1	For connection to separate	C(d)
CX5X	Electronics Industry, Ltd.	IL-C2-1-00001	2	battery	-

- Configuration of A06B-6110-K200#XXSS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2	AMD James Ltd	1-917807-2 (housing)	1	For L-axis motor power	-
CZ2L	AMP Japan, Ltd.	1318986-6 (contact)	4	Wire diameter: 0.75 mm ² max.	-

- Configuration of A06B-6110-K200#XXS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2	AMP Japan, Ltd.	1-917807-2 (housing)	1	For L-axis motor power	-
CZ2L		316040-6 (contact)	4	Wire diameter: 2.0mm ² max	-

- Configuration of A06B-6110-K200#XXM

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ1, CZ2	AMD laws a lad	1-917807-2 (housing)	1	For input power supply and L-axis motor power Wire diameter: 5.5mm² max	-
CZ2L	AMP Japan, Ltd.	316041-6 (contact)	4		-

- Configuration of A06B-6110-K200#XXL

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2	AMP Japan, Ltd.	1-917807-2 (housing)	1	For L-axis motor power	-
CZ2L		1318697-6 (contact)	4	Wire diameter: 8.0mm ² max	-

- Configuration of A06B-6110-K201#XYSS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2M AMP Japan, Ltd.		3-917807-2 (housing)	1	For M-axis motor power	-
	1318986-6 (contact)	4	Wire diameter: 0.75 mm ²	_	
		1310900-0 (contact)	4	max	_

- Configuration of A06B-6110-K201#XYS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2M	AMD Jones Ltd	3-917807-2 (housing)	1	For M-axis motor power	-
	AMP Japan, Ltd.	316040-6 (contact)	4	Wire diameter: 2.0mm ² max	-

- Configuration of A06B-6110-K201#XYM

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2M AMF	AMD Japan Ltd	3-917807-2 (housing)	1	For M-axis motor power	-
	AMP Japan, Ltd.	316041-6 (contact)	4	Wire diameter: 5.5mm ² max	-

- Configuration of A06B-6110-K201#XYL

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2M	AMD James Ltd	3-917807-2 (housing)	1	For M-axis motor power	-
	AMP Japan, Ltd.	1318697-6 (contact)	4	Wire diameter: 8.0mm ² max	-

- Configuration of A06B-6110-K202#YYSS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2N	AMD Japan Ltd	2-917807-2 (housing)	1	For N-axis motor power	-
CZZIN	AMP Japan, Ltd.	1318986-6 (contact)	4	Wire diameter: 0.75 mm ² max	-

- Configuration of A06B-6110-K202#YYS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2N		2-917807-2 (housing)	1	For N-axis motor power	-
CZ3	AMP Japan, Ltd.	316040-6 (contact)	4	PSR regenerative resistor Wire diameter: 2.0mm ² max	-

- Configuration of A06B-6110-K202#YYM

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2N	AMP Japan, Ltd.	2-917807-2 (housing)	917807-2 (housing) 1 For I	For N-axis motor power	-
CZZIN	Aivir Japan, Liu.	316041-6 (contact)	4	Wire diameter: 5.5mm ² max	-

- Configuration of A06B-6110-K202#YYL

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2N	AMP Japan, Ltd.	2-917807-2 (housing)	1	For N-axis motor power	-
CZZIV	Alvir Japan, Liu.	1318697-6 (contact)	4	Wire diameter: 8.0mm ² max	-

- Configuration of A06B-6071-K203

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CX1A	AMP Japan, Ltd.	1-178128-3 (housing)	1	For control, single-phase	C(a)
CATA	Alvir Japan, Liu.	1-175218-2 (contact) 3 200 ^N	200VAC input	C(c)	
0)/4	ANAD 1 1/1	1-178128-3 (housing)	1	For amount of the signal	C(a)
CX4	AMP Japan, Ltd.	1-175218-2 (contact)	2	For emergency stop signal	C(c)
0.70	AMP Japan, Ltd.	2-178128-3 (housing)	1	For ON/OFF control for	C(b)
CX3		1-175218-2 (contact)	2	external MCC	C(c)

- Configuration of A06B-6130-K201

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CV27	AMP Japan, Ltd.	1-1318119-3 (housing)	1	For power failure detection	-
CX37	Aivir Japan, Liu.	1318107-1 (contact)	6	output	-

- Configuration of A06B-6078-K225 (solder type, side cable type)

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
JFx	Hirose Electric	FI40B-2015S (connector)	1	For pulso coder	C(g)
JEX	Co., Ltd.	FI-20-CVS2 (case)	1	For pulse coder	C(h)

- Configuration of A06B-6073-K216

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CX8	AMP Japan, Ltd.	2-178128-3 (housing)	1	For DB interlock signals	C(b)
CAO		1-175218-2 (contact)	2	FOI DB Interlock signals	C(c)
CVO	AMP Japan, Ltd.	1-178128-3 (housing)	1	For DB driving coil	C(a)
CX9		1-175218-2 (contact)	2		C(c)

- Configuration of A06B-6078-K222 (solder type, side cable type)

		, ,,		<u> </u>	
Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
JY1 JYA2	Hirose Electric	FI40B-20S (connector)	1	0 1 1	C(f)
JYA3 JYA4	Co., Ltd.	FI-20-CVS5 (case)	1	See below.	C(i)

Use αi M sensor, αi MZ sensor, αi BZ sensor, external one-rotation signal, speedometer, or analog override

- Configuration of A06B-6078-K223 (crimp type, side cable type)

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
JA7A	Hirose Electric	FI30-20S (connector)	1	Can balaw	C(e)
JA7B	Co., Ltd.	FI-20-CVS2 (case)	1	See below.	C(h)

Use JA7A and JA7B : For communication between CNC and SP or SPC

- Configuration of A06B-6078-K224 (solder type, side cable type)

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
JA7A	Hirose Electric	FI40B-20S (connector)	1	On a hadaw	C(f)
JA7B	Co., Ltd.	FI-20-CVS2 (case)	1	See below.	C(h)

Use JY7B and JY7B : For communication between CNC and SP or SPC

- Configuration of A06B-6078-K225 (solder type, side cable type)

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
JYA3	Hirose Electric	FI40B-2015S (connector)	1	Coo bolow	C(g)
JYA4	Co., Ltd.	FI-2015-CVS (case)	1	See below.	C(j)

Use JYA3: For αi position coder JYA4: For αi position coder S

3.1.3.6 Fuses

The ordering numbers of fuses used with each amplifier (αi PS, αi SV, αi SP) are indicated below.

(1) For control power supply for αi PS

Category	Ordering number	Remarks
Optional	A06B-6077-K250	Manufacturer: DAITO TSUSHIN KOGYO Ltd.
		Manufacturer part number : DM20, DM50
		Specification: 2A/250V, 5A/250V
		Use: For short-circuit protection of 200VAC

(2) For control power supply for $\alpha i PS_R$

Category	Ordering number	Remarks	
		Manufacturer: DAITO TSUSHIN KOGYO Ltd.	
Optional		Manufacturer part number : DM50	
		Specification: 5A/250V	
		Use: For short-circuit protection of 200VAC	

(3) For control power supply for αi SV and αi SP

Category	Ordering number	Remarks	
Optional		Manufacturer: DAITO TSUSHIN KOGYO Ltd. Manufacturer part number: LM32C Specification: 3.2A/48V Use: For short-circuit protection of 24-VDC	
		control power supply	

NOTE

- 1 When a fuse blows, the control circuit may often be faulty. In such a case, replacing the fuse does not correct the trouble. Replace the amplifier.
- 2 A fuse is installed on the control board of an amplifier, but is not directly accessible for replacement from the outside. When replacing a fuse, extract the control board.

3.1.3.7 Power transformer

When an αi PS series of the 200V input series is used in an area where the input voltage is not within the range of 200 to 240VAC, a power transformer is required. The ordering drawing numbers and specifications of power transformers manufactured by FANUC are listed below. When other than a FANUC power transformers is to be prepared by the user, it must satisfy the transformer specifications indicated Section 2.1.

Ordering drawing numbers of power transformers manufactured by FANUC

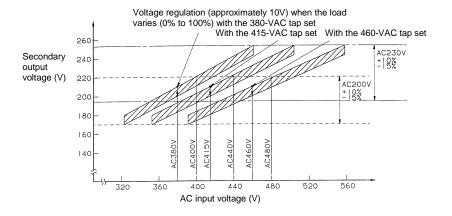
Category	Ordering number	Name	Remarks
	A80L-0024-0006	αi PS _R 3 (at 2kw output)	
	A80L-0024-0003	αi PS _R 3 (at 3kw output)	
	A06B-6052-J001	αi PS _R 5.5 (at 5.5kw output)	
	AU0D-0052-J001	α <i>i</i> PS 5.5	
Optional	A06B-6044-J006	αi PS _R 5.5 (at 7.5kw output)	Primary
Optional		α <i>i</i> PS 11 <i>i</i>	380/415/460VAC Secondary
	A06B-6044-J007	α <i>i</i> PS 15	
	A06B-6044-J010	α <i>i</i> PS 26, 30	200VAC
	A06B-6044-J015	α <i>i</i> PS 37	
		lpha i PS 55 (at 45kw output)	

Specifications of power transformers manufactured by FANUC

Power transformer for αi PS

		Power transforme	1 101 0.115			
Model Item	α <i>i</i> PS 5.5	α <i>i</i> PS 11	α <i>i</i> PS 15	α <i>i</i> PS 26, 30	α <i>i</i> PS 37 α <i>i</i> PS 55 (at 45kw output)	
Ordering drawing number	A06B-6052-J001	A06B-6044-J006	A06B-6044-J007	A06B-6044-J010	A06B-6044-J015	
FANUC drawing number	A80L-0001-0496	A80L-0001-0313	A80L-0001-0314	A80L-0001-0352	A80L-0001-0452	
Rated capacity	10kVA	20kVA	30kVA	45kVA	64kVA	
Rated primary voltage			380/415/460VAC ondary is used as ar % -15%, 50/60±1Hz			
	15A (at 380V)	30A (at 380V)	46A (at 380V)	68A (at 380V)	97A (at 380V)	
Rated primary current	14A (at 415V)	28A (at 415V)	42A (at 415V)	63A (at 415V)	89A (at 415V)	
	13A (at 460V)	25A (at 460V)	38A (at 460V)	56A (at 460V)	80A (at 460V)	
Rated secondary voltage			200/220/230VAC			
Rated primary current	29A	58A	87A	130A	185A	
Voltage regulation at the secondary		5%				
Voltage deviation at the secondary		±3%				
Connection			Y-Y connection			
Insulation		Class H (maxim	num allowable tempe	erature : 180°C)		
Ambient temperature			0 to 45°C			
Allowable			135deg			
temperature rise			Toodey			
Relative humidity			Max. 95%RH			
Type		Dry ty	pe, natural air coolin	ig type		
Dielectric withstand		2	000VAC, for 1 minu	te		
voltage				T	T	
Weight	Max. 61kg	Max. 115kg	Max. 165kg	Max. 260kg	Max. 375kg	
Outline drawing	Fig.8.1.4(a)	Fig.8.1.4(b)	Fig.8.1.4(c)	Fig.8.1.4(d)	Fig.8.1.4(e)	
Connection diagram		R3 0 460 V R1 0 380 V PRI 0 72 PRI 0 73 PRI 0 73 PRI 0 74 PRI 0	SHIELD SEC. (Secondar	230V R4 200V O (Neutral point) S4 O Y T4 O G		

Power transformer for αi PS_R


Power transformer for $\alpha i \mathrm{PS_R}$				
Model	$lpha i$ PS $_{ extsf{R}}$ 3	$lpha i$ PS $_{ extsf{R}}$ 3	αi PS $_{ m R}$ 5.5	αi PS _R 5.5
Item	(at 2kw output)	(at 3kw output)	(at 5.5kw output)	(at 7.5kw output)
Ordering drawing number	A80L-0024-0006	A80L-0026-0003	A06B-6052-J001	A06B-6044-J006
FANUC drawing number	A80L-0024-0006	A80L-0026-0003	A80L-0001-0496	A80L-0001-0313
Rated capacity	3.5kVA	5kVA	10kVA	20kVA
Rated primary voltage	200/220/230/240V 380/415/460/480/550 ±15%, 50/60	OVAC, Y connection	380/415/460VAC 230VAC(The secondary is used as an autotransformer.) +10% -15%, 50/60±1Hz, 3¢	
Rated primary current	5.3A (at 380V)	7.6A (at 380V)	15A (at 380V) 14A (at 415V) 13A (at 460V)	30A (at 380V) 28A (at 415V) 25A (at 460V)
Rated secondary voltage	210	VAC	,	VAC
Rated primary current	9.6A	13.7A	29A	58A
Voltage regulation at the secondary	29	%	5'	%
Voltage deviation at the secondary			3%	
Connection	Δ - Δ connection o		Y-Y connection	
Insulation	Clas (maximum allowable		Class H (maximum allowable temperature: 180°C)	
Ambient temperature	-20 to	55°C	0 to	45°C
Allowable temperature rise			deg	
Thermostat	B col (operating temp	erature: 135°C)	None	
Relative humidity			95%RH	
Туре		Dry type, natura	l air cooling type	
Dielectric withstand voltage	2300VAC, f		2000VAC, f	
Weight	Max. 27kg	Max. 36kg	Max. 61kg	Max. 115kg
Outline drawing	Fig.8.1.5(e)	Fig.8.1.5(e)	Fig.8.1.5(a)	Fig.8.1.5(b)
Connection diagram	3 0 115V:2240V 215V 225V 70 215V 225V 70 215V 70 215V	10V 31 33 TOH1 51 10V 33 TOH1 51 10V 33 TOH2 52	R3 0 460V SHIEI R2 0 415V R1 0 380V T1 0 PRI. T2 T3 0 (Primary) G 0 (Primary)	230V R4 0 200V (Neutral point) 0 SEC. V S4 0 V (Secondary) T4 0 G

Connecting a power transformer

Power transformers must be set according to the supply voltage used.

(a) Connection points of power transformers for α*i* PS 5.5, α*i* PS 11, α*i* PS 15, α*i* PS 26, α*i* PS 30, and α*i* PS 37

Supply voltage	Connection points at the primary	Remarks
380 VAC	R - R1, S - S1, T - T1 (380-V tap)	
400 VAC	R - R1, S - S1, T - T1 (380-V tap)	
415 VAC	R - R2, S - S2, T - T2 (415-V tap)	
440 VAC	R - R2, S - S2, T - T2 (415-V tap)	
460 VAC	R - R3, S - S3, T - T3 (460-V tap)	
480 VAC	R - R3, S - S3, T - T3 (460-V tap)	

! CAUTION

- 1 When installing a transformer in a cabinet, be careful to ensure that the transformer does not thermally affect other equipment. For example, separate the transformer from the other equipment.
- When installing a transformer outside the cabinet, make sure that the transformer is not directly exposed to cutting chips or coolant.
- 3 If there is a possibility of the transformer falling, secure the transformer with bolts or similar.

3.1.3.8 Regenerative discharge unit

Whenever a αi PS_R (resistance regeneration type Common Power Supply) is used, a regenerative discharge unit must be specified. For how to select the regenerative discharge unit, see Subsection 4.4.4.

Category	Name	Ordering number	Remarks
	αi PS _R 3	A06B-6089-H510	16Ω/100W (at natural cooling)
		A06B-6089-H500	16Ω/200W (at natural cooling)
	αi PS _R 3, 5.5	A06D 6000 H742	16Ω/800W (forced cooling fan
Standard		A06B-6089-H713	motor is included)
Staridard		4 0 0 D 0 0 0 0 1 174 4	8Ω/800W (forced cooling fan
	; DO . 5.5	A06B-6089-H711	motor is included)
	αi PS _R 5.5	IA06B-6089-H712	8Ω/1200W (forced cooling fan
			motor is included)

See Subsection 8.1.5, "Selecting a Regenerative Discharge Unit" for details of selection.

3.1.3.9 Cables

DC link short bar

Category	Ordering number	Applicable terminal-to-terminal distance		
	A06B-6078-K801	90mm (86mm - 94mm)		
	A06B-6078-K803	64mm (60mm - 68mm)		
Optional	A06B-6078-K840	154mm (150mm - 158mm)		
	A06B-6078-K841	300mm (298mm - 302mm)		
	A06B-6078-K842	150mm (146mm - 154mm)		

See 9.3.1.2 for details.

A06B-6078-K842 is used to connect between a 150-mm wide amplifier (left) and a 300-mm wide amplifier (right).

Cables for connection of amplifiers

Category	Ordering number	Cable length	Applicable amplifier width
	A06B-6110-K801	200mm	150mm width amplifier
Ontional	A06B-6110-K802	150mm	90mm width amplifier
Optional	A06B-6110-K803	100mm	60mm width amplifier
	A06B-6110-K804	400mm	300mm width amplifier

NOTE

- 1 The above table lists the cable for each interface between amplifiers.
 - For connection of CXA2A and CXA2B
- 2 The connection cable for the battery of the absolute pulse coder is not included in the cables shown above. For details, see Subsection 9.3.1.10.

Cables for connection of detectors

Category	Ordering number	Use	Remarks
	A06B-6078-K811	For αiM sensor, αiMZ sensor	Cable length : 7m
Optional	A06B-6078-K814	For αi	Cable length : 7m Connector figure : Straight
	A06B-6078-K815	Positioncoder	Cable length : 7m Connector figure : Elbow

Cables for FSSB interface

Category	Ordering number	Cable length	Applicable amplifier width
Ontional	A66L-6001-0023#L150R0	15cm	For between αi SV and
Optional	A66L-6001-0023#L300R0	30cm	α <i>i</i> SV

3.1.3.10 Circuit breaker and magnetic contactor

The circuit breaker and magnetic contactor capacities are determined by the Common Power Supply specifications. The ordering drawing numbers and specifications of the circuit breakers and magnetic contactors are shown below.

When this equipment is to be prepared by the user, it must satisfy the circuit breaker and magnetic contactor specifications indicated below.

Circuit breaker and magnetic contactor specifications

For αi PS and αi PS_R

PS name	Circuit breaker 1	Circuit breaker 2	Magnetic contactor	Remarks
αi PS _R 3	20A		20A	
αi PS _R 5.5	30A		30A	Note 4)
$ai FS_{R} 5.5$	50A		50A	Note 5)
lpha i PS 5.5	30A to 50A		30A	
lpha i PS 11	55A to 75A	5 A	55A	
lpha i PS 15	70A to 100A	5A	70A	
lpha i PS 26	120A to 150A		120A	
lpha i PS 30	140A to 200A		140A	
α <i>i</i> PS 37	175A to to 225A		175A	
lpha i PS 55	250A		250A	

NOTE

- 1 For the installation positions of the circuit breakers and magnetic contactor, see Section 1.2.
- 2 Set the rated voltage of circuit breakers 1 and 2 according to the power supply voltage.
- 3 The current and voltage of the operation coil of the magnetic contactor must be within the rating of the internal contact [CX3 (MCC)] of the α*i* PS. For details, see Subsection 9.3.1.5.
- 4 When the αi PS_R 5.5 is used at a rated output capacity of 5.5 kW
- 5 When the αi PS_R 5.5 is used at a rated output capacity of 7.5 kW
- 6 When the circuit breaker trips, the contact of the magnetic contactor may be melted. Therefore, before turning on the circuit breaker again, check to make sure that the contact of the magnetic contactor is not melted.

For 400-V input series of αi PS

PS name	Circuit breaker 1	Circuit breaker 2	Circuit breaker 3	Magnetic contactor	Remarks
lpha i PS 11HV	30A			30A	
lpha i PS 18HV	45A			45A	
lpha i PS 30HV	75A	3A	3A	75A	
lpha i PS 45HV	125A	3A	34	125A	
lpha i PS 75HV	200A			200A	
lpha i PS 100HV	250A			250A	

NOTE

- 1 For the installation positions of the circuit breakers and magnetic contactor, see Section 1.2.
- 2 Set the rated voltage of circuit breakers 1 and 2 according to the power supply voltage.
- 3 The current and voltage of the operation coil of the magnetic contactor must be within the rating of the internal contact [CX3 (MCC)] of the α*i* PS. For details, see Subsection 9.3.1.5.
- 4 When the circuit breaker trips, the contact of the magnetic contactor may be melted. Therefore, before turning on the circuit breaker again, check to make sure that the contact of the magnetic contactor is not melted.

Ordering drawing numbers of circuit breakers

Category	Model	Ordering number	Outline drawing	Circuit breaker specification	Circuit breaker cover specification
	αi PS _R 3 αi PS 11HV	A06B-6077-K101	8.1.7(a)	Fuji Electric EA53C/30	Fuji Electric BZ6TBH10C3
	α <i>i</i> PS _R 5.5 α <i>i</i> PS 5.5 α <i>i</i> PS 18HV	A06B-6077-K102	8.1.7(b)	Fuji Electric EA103C/50	Fuji Electric BZ6TBH10C3
	α <i>i</i> PS 11	A06B-6077-K103	8.1.7(c)	Fuji Electric EA103C/60	Fuji Electric BZ6TBH10C3
Optional	α <i>i</i> PS 15, 30HV	A06B-6077-K104	8.1.7(d)	Fuji Electric EA103C/75	Fuji Electric BZ6TBH10C3
	αi PS 45HV	A06B-6077-K108	8.1.7(e)	Fuji Electric EA203B/125	Fuji Electric BZ-TB40B
	αi PS 26, 30	A06B-6077-K105	8.1.7(f)	Fuji Electric EA203B/150	Fuji Electric BZ-TB40B
	α <i>i</i> PS 37	A06B-6077-K110	8.1.7(g)	Fuji Electric EA203B/175	Fuji Electric BZ-TB40B
	αi PS 75HV	A06B-6077-K109	8.1.7(h)	Fuji Electric EA203B/200	Fuji Electric BZ-TB40B
	αi PS 55, 100HV	A06B-6077-K111	8.1.7(i)	Fuji Electric EA403B/250	Fuji Electric BZ-TB60B
	For control power	A06B-6077-K106	8.1.7(j)	Fuji Electric EA33AC/5	Fuji Electric BZ6TBH10C3

Ordering drawing numbers of magnetic contactors

Category	Model	Ordering number	Outline drawing	Magnetic contactor specification	Magnetic contactor cover specification
	$\alpha i PS_R 3 ,$ $\alpha i PS 11HV$	A06B-6077-K121	8.1.7(a)	Fuji Electric SC-5-1	Fuji Electric SZ-JC4
	αi PS _R 5.5, αi PS 5.5 αi PS 18HV	A06B-6077-K122	8.1.7(b)	Fuji Electric SC-N1	Fuji Electric SZ-N1J
Ontional	α <i>i</i> PS 11	A06B-6077-K123	8.1.7(b)	Fuji Electric SC-N2	Fuji Electric SZ-N1J
Optional	α <i>i</i> PS 15, 30HV	A06B-6077-K124	8.1.7(c)	Fuji Electric SC-N2S	Fuji Electric SZ-N2SJ
	α <i>i</i> PS 26, 45HV	A06B-6077-K125	8.1.7(d)	Fuji Electric SC-N4	Fuji Electric SZ-N4J
	α <i>i</i> PS 30	A06B-6077-K126	8.1.7(e)	Fuji Electric SC-N5	Fuji Electric SZ-N4J
	α <i>i</i> PS 37, 75HV	A06B-6077-K128	8.1.7(f)	Fuji Electric SC-N7	Fuji Electric SZ-N7J
	α <i>i</i> PS 55, 100HV	A06B-6077-K127	8.1.7(g)	Fuji Electric SC-N8	Fuji Electric SZ-N8J

NOTE

The coil voltage specification of the magnetic contactor is 200VAC.

3.1.3.11 Lightning surge protector

To protect equipment from surge voltages caused by lightning, install a lightning surge protector between lines and between a line and ground. For how to install protectors, see Appendix A.

Lightning surge protector specifications

Category	Ordering number	Specification	Outline drawing	Remarks
	A06B-6077-K142	For line-to-line installation: RAV-781BYZ-2 For line-to-ground installation: RAV-781BXZ-4	8.1.9(a)	Manufactured by Okaya Electric Industries Co., Ltd. For 200VAC line TÜV approved products
Optional	A06B-6077-K143	For line-to-line installation: RAV-152BYZ-2A For line-to-ground installation: RAV-801BXZ-4	8.1.9(b)	Manufactured by Okaya Electric Industries Co., Ltd. For 400VAC line TÜV approved products
	A06B-6077-K144	Integration type for line-to-line installation/line-to-ground installation: RCM-601BUZ-4	8.1.9(c)	Manufactured by Okaya Electric Industries Co., Ltd. For 200VAC line TÜV approved products

^{*} The line-to-line or line-to-ground installation type (A06B-6077-K144) and the integration type (A06B-6077-K142) are equivalent in performance and specifications.

3.1.3.12 Noise filter

A noise filter must be installed in the PS input section to satisfy the requirements of the EMC Directives which are now being enforced in the EU countries.

Category	Model	Ordering number	Outline drawing	Rated output	Specification
	α <i>i</i> PS _R 3 PS 5.5 <i>i</i>	A06B-6077-K155		30A	3SUP-HL30-ER-6: Okaya Electric Industries Co., Ltd.
	αi PS _R 5.5 αi PS 11 ,15	A06B-6077-K156	8.1.10	75A	3SUP-HL75-ER-6: Okaya Electric Industries Co., Ltd.
1 '	αi PS 26, 30	A06B-6077-K157	0.1.10	150A	3SUP-HL150-ER-6: Okaya Electric Industries Co., Ltd.
	α <i>i</i> PS 37	A06B-6077-K158		200A	3SUP-HL200-ER-6: Okaya Electric Industries Co., Ltd.

Category	Model	Ordering number	Outline drawing	Rated output	Specification
	αi PS _R 3 αi PS 5.5, 11HV	A06B-6110-K160		50A	NF3050C-VQ: Soshin Electric Co., Ltd.
	αi PS _R 5.5 αi PS 11 ,15 αi PS 18HV, 30HV	A06B-6110-K161		80A	NF3080C-VQ: Soshin Electric Co., Ltd.
Optional	α <i>i</i> PS 26, 30 α <i>i</i> PS 45HV	A06B-6110-K162	8.1.10	150A	NF3150C-VQ: Soshin Electric Co., Ltd.
	α <i>i</i> PS 37 α <i>i</i> PS 75HV	A06B-6110-K163		200A	NF3200C-VQ:Soshin Electric Co., Ltd.
	α <i>i</i> PS 55 α <i>i</i> PS 100HV	A06B-6110-K164		250A	NF3250C-VQ:Soshin Electric Co., Ltd.

NOTE

- 1 A06B-6110-K160 to A06B-6110-K164 (manufactured by Soshin Electric Co., Ltd.) are high leakage type filters for neutral grounding. They are not used for purposes other than neutral grounding.
- 2 The above models are listed as guidelines for selection. Load currents of the CNC, amplifier, and other devices flow through the noise filter. Obtain these load currents, and select a noise filter so that the obtained load currents do not exceed the rated current of the noise filter.

3.1.3.13 Sensors for servo

αi CZ sensor (separate detector)

Category	Name	Ordering number	Remarks
	αi CZ sensor 512AS	A860-2164-T411	512 teeth / 15,000min ⁻¹
Optional	lpha i CZ sensor 768AS	A860-2164-T511	768 teeth / 10,000min ⁻¹
	αi CZ sensor 1024AS	A860-2164-T611	1024 teeth / 8,000min ⁻¹

3.1.3.14 Sensors for spindle

αi Positioncoder

Category	Name	Ordering number	Remarks
Optional	lpha i Positioncoder	A860-2109-T302	□68, 10,000min ⁻¹
Optional	Connector kit	A06B-6088-K211	Straight type

αPositioncoder S (analog output type)

Category	Name	Ordering number	Remarks
Ontional	αPositioncoder S	A860-0309-T352	□68, 10,000min ⁻¹
Optional	Connector kit	A06B-6088-K211	Straight type

α*i* BZ sensor (compact type)

	Orderine	Ordering number		Remarks			
	Ordering	j number	Num-		Detecti	Detection ring	
Name	Waterproof connector specification	Non-waterproof connector specification	ber of teeth	Maximum speed	Inner diameter	Outer diameter	
αi BZ sensor 128	A860-2150-T201	A860-2155-T201	128	20,000min ⁻¹	ф40	φ52	
αi BZ sensor 128H	A860-2150-T211	A860-2155-T211	120	70,000min ⁻¹			
αi BZ sensor 192	A860-2150-T301	A860-2155-T301	400	20,000min ⁻¹	100	177.0	
αi BZ sensor 192H	A860-2150-T311	A860-2155-T311	192	40,000min ⁻¹	ф60	φ77.6	
αi BZ sensor 256	A860-2150-T401	A860-2155-T401		45.000	φ82		
αi BZ sensor 256S	A860-2150-T404	A860-2155-T404	256	15,000min ⁻¹	ф88	φ103.2	
lpha i BZ sensor 256H	A860-2150-T411	A860-2155-T411		30,000min ⁻¹	φ82		
αi BZ sensor 384	A860-2150-T511	A860-2155-T511	384	15,000min ⁻¹	φ125	φ154.4	
αi BZ sensor 512	A860-2150-T611	A860-2155-T611	512	10,000min ⁻¹	φ160	ф205.6	

α*i* CZ sensor (for built-in spindle motor *1)

Category	Name	Ordering number	Remarks
	αi CZ sensor 512 I	A860-2161-T411	512 teeth / 15,000min ⁻¹
Optional	αi CZ sensor 768 I	A860-2161-T511	768 teeth / 10,000min ⁻¹
	αi CZ sensor 1024 I	A860-2161-T611	1024 teeth / 8,000min ⁻¹

αi CZ sensor (for spindle *1)

Category	Name	Ordering number	Remarks
	αi CZ sensor 512 IS	A860-2163-T411	512 teeth / 15,000min ⁻¹
Optional	αi CZ sensor 768 IS	A860-2163-T511	768 teeth / 10,000min ⁻¹
	αi CZ sensor 1024 IS	A860-2163-T611	1024 teeth / 8,000min ⁻¹

NOTE

*1 This αi CZ sensor is of the serial interface type.

It is supported by the following αi SP units (manufactured in May 2007 and later):

Supported unit version: B and later

200-V input series: A06B-6141-H002, H006, H011,

H015, H030, H037,

H055#H580

400-V input series: A06B-6151-H006, H011, H015,

H045, H075, H100#H580

Supported unit version: C and later

200-V input series: A06B-6141-H022, H026,

H045#H580

400-V input series: A06B-6151-H030#H580

3.1.3.15 Power line switch unit

Spindle switch control (Y/Y switch type)

Output switch control (Y/Y switch type, Y/Δ switch type)

Category	Name	Ordering number	Remarks
	Y/Y switch type	A06B-6078-K034	(Note)
Optional	Y/∆ switch type	A06B-6078-K035	(Note)
Optional	Y/Y switch type	A06B-6078-K036	(Note)
	Y/Δ switch type	A06B-6078-K037	(Note)

NOTE

Select one type depending on the peak rated current of a spindle motor to be applied. For details, see Subsection 10.2.3.

3.1.3.16 Battery for absolute Pulsecoder

For connection of a battery for an absolute Pulsecoder, two methods are available. For each method, options are available.

NOTE

- 1 A battery needs to be maintained periodically. So, [connection type 1] is recommended because this type uses a battery (consisting of four size D alkaline cells) easily obtainable from the market.
- 2 A built-in battery used with [connection type 2] is not available on the market, but needs to be purchased from FANUC. So, it is recommended to purchase spare built-in batteries.

[Connection type 1]

Power is fed from one battery to multiple αi SV models. (See Subsection 9.3.1.10.)

Category	Ordering number	Name	Remarks	
	A06B-6050-K061	Battery		
Optional	A06B-6050-K060	Battery case	Four pieces of	
	AOCD C440 KO44	Battery connection	size D battery	
	A06B-6110-K211	connector		

[Connection type 2]

A battery is built into each αi SV. (See Subsection 9.3.2.10.)

Category	Ordering number	Name	Remarks
Optional	A06B-6114-K504	Built-in battery	Lithium battery
Optional	A06B-6114-K505	Battery case	For αi SV 60/90 mm wide
			For αi SV 150/300 mm wide
	1000 044445	5	α <i>i</i> SV 360
Optional	A06B-6114-K506	Battery case	α <i>i</i> SV 180HV
			αi SV 360HV

4

HOW TO SELECT THE MODULE

4.4 HOW TO SELECT THE αi PS_R series

Chapter 4, "HOW TO SELECT THE MODULE", consists of the

- 4.3 HOW TO SELECT THE αi PS
 (POWER SUPPLY)......86
- (POWER SUPPLY, RESISTANCE REGENERATION TYPE)90 4.5 LIST OF MOTOR OUTPUT CAPACITIES FOR αi PS AND αi PS_R SERIES SELECTION......96

4.1 HOW TO SELECT THE αi SV SERIES (SERVO AMPLIFIER)

Select an appropriate αi SV module for the selected servo motor.

Table 4.1(a) Specification

No	Specification	Number of connected axes	Input voltage	Interface with CNC
1	A06B-6117-H1xx	1	200V	FSSB
2	A06B-6117-H2xx	2	200V	FSSB
3	A06B-6117-H3xx	3	200V	FSSB
4	A06B-6127-H1xx	1	400V	FSSB
5	A06B-6127-H2xx	2	400V	FSSB

4.1.1 200-V Input Series

Motor model			Group A Gr		0 5							
Amplifier	model 200V type	HRV2/3	HRV4	Outline	Group A	Group B	Group C	Group D	Group E	Group F	Group G	Group H
	α <i>Î</i> SV 4	0	0		0							
	α <i>î</i> SV 20	0	-	TYPE I		0						
	α <i>l</i> SV 20L	0	0			0						
	α <i>l</i> SV 40	0	-				0					
	α <i>l</i> SV 40L	0	0	TYPE II			0					
1-axis	α <i>l</i> SV 80	0	-	TYPEII				0				
	α <i>l</i> SV 80L	0	0					0				
	α <i>l</i> SV 160	0	1						0	0		
	α <i>l</i> SV 160L	0	0	TYPE III					0	0		
	α1 SV 360	0	0	TYPE IV							0	O (*2)
	α1 SV 4/4	0	0		L/M							
	αί SV 4/20	0	-	TYPE I	L	М						
	α1 SV 20/20	0	-			L/M						
	α1 SV 20/20L	0	0			L/M						
	α1 SV 20/40	0	-			L	М					
	α1 SV 20/40L	0	0	TYPE II		L	М					
	α1 SV 40/40	0	-	111 - 11			L/M					
2-axes	α1 SV 40/40L	0	0				L/M					
	α1 SV 40/80	0	-				L	М				
	αί SV 40/80L	0	0	TYPE III			L	М				
	α1 SV 80/80	0	-	TYPE II				L/M				
	α1 SV 80/80L	0	0					L/M				
	αί SV 80/160	0	-	TYPE III				L	М			
	α1 SV 160/160	0	-						L/M			
	αİ SV 4/4/4	0	-	TYPE I	L/M/N							
3-axes	αi SV 20/20/20	0	-			L/M/N						
	α1 SV 20/20/40	0	-	TYPE II		L/M	N					

^{*1) &}quot;SV" of αi SV means "SerVo".

*2) Two servo amplifiers are necessary to drive one motor.

group A: βi S 0.2/5000, βi S 0.3/5000

group B: αiS 2/5000, αiS 2/6000, αiS 4/5000, αiF 1/5000, αiF 2/5000

 βi S 0.4/5000, βi S 0.5/6000, βi S 1/6000, βi S 2/4000, βi S 4/4000, βi S 8/3000, βi S 12/2000

group C: αiF 4/4000, αiF 8/3000, βi S 12/3000, βi S 22/2000

group D: αi S 8/4000, αi S 8/6000, αi S 12/4000, αi F 12/3000, αi F 22/3000 group E: αi S 22/4000, αi S 30/4000, αi S 40/4000, αi F 30/3000, αi F 40/3000

group F: αi S 22/4000, αi S 30/4000, αi S 40/4000, αi F 30/3000, αi F 40/3000, αi F 40/3000 with fan

group G: αi S 50/3000 with fan, αi S 100/2500, αi S 200/2500

group H: αiS 300/2000, αiS 500/2000

4.1.2 400-V Input Series

Motor model											
Amplifier	Amplifier model 400V type		HRV4	Outline	Group A	Group B	Group C	Group D	Group E	Group F	Group G
	lpha i SV 10HV	0	-	TYPE I	0						
	lpha i SV 10HVL	0	0		0						
	αi SV 20HV	0	-			0					
	lpha i SV 20HVL	0	0	TYPE II		0					
	αi SV 40HV	0	-	TTPEII			0				
1-axis	lpha i SV 40HVL	0	0				0				
	αİ SV 80HV	0	-					0			
	αi SV 80HVL	0	0	TYPE III				0			
	lpha i SV 180HV	0	0	TYPE IV					0		
	α <i>i</i> SV 360HV	0	0	TYPE V						0	O (*2)
	lpha i SV 10/10HV	0	-	TYPE I	L/M						
	lpha i SV 10/10HVL	0	0	TYPE II	L/M						
	α <i>i</i> SV 20/20HV	0	-	ITPEII		L/M					
	lpha i SV 20/20HVL	0	0			L/M					
	α <i>i</i> SV 20/40HV	0	1			L	М				
2-axes	α <i>İ</i> SV 20/40HVL	0	0			L	М				
	α <i>İ</i> SV 40/40HV	0	-	TYPE III			L/M	·			
	lpha i SV 40/40HVL	0	0				L/M	·			
	α <i>İ</i> SV 40/80HV	0	-				L	М			
	α <i>i</i> SV 80/80HV	0	-					L/M			

^{*1) &}quot;SV" of αi SV means "SerVo".

group A: αiS 2/5000HV, αiS 2/6000HV, αiS 4/5000HV, βiS 2/4000HV, βiS 4/4000HV, βiS 8/3000HV

group B: α*i*F 4/4000HV, α*i*F 8/3000HV, β*i* S 12/3000HV, β*i*S 22/2000HV

group C: αiS 8/4000HV, αiS 8/6000HV, αiS 12/4000HV, αiF 12/3000HV, αiF 22/3000HV

group D: αiS 22/4000HV, αiS3 0/4000HV, αiS 40/4000HV

group E: αi S 50/3000HV with fan, αi S 100/2500HV, αi S 200/2500HV

group F: αi S 300/2000HV, αi S 500/2000HV

group G: αiS 1000/2000HV

^{*2)} Two servo amplifiers are necessary to drive one motor.

4.1.3 How to Select the Dynamic Brake Module (DBM)

When the αi SV 360, αi SV 180HV, or αi SV 360HV is used, an external dynamic brake module (DBM) is required. This module stops the motor immediately at, for example, emergency stop time. The other αi SV models include a feature similar to this module. Select a dynamic brake module based on the following table:

Dynamic brake module

Category	Ordering number	Name	Remarks
			αi SV 360,
	A06B-6079-H401	DBM	lpha i SV 180HV
Standard			lpha i SV 360HV
	A00D 0000 11200	DDM	α <i>i</i> SV 360HV
	A06B-6069-H300	DBM	(*1)

The dynamic brake module (DBM) is designed based on the energy required to stop the motor rotating at its maximum speed when the load inertia is five times as large as the motor inertia. When this operating condition is exceeded, contact FANUC.

(*1) When the αiS 1000HV, αiS 2000HV, or αiS S3000HV is driven

4.2 HOW TO SELECT THE αi SP series(SPINDLE AMPLIFIER)

Select an appropriate αi SP series for the selected spindle motor. αi SP series amplifiers and standard motors that can be used together are shown below. When using a built-in motor or a motor with special specifications, refer to relevant specifications, and select an αi SP series accordingly.

Table 4.2(a) Specification

No	Ordering number	Input voltage	Remarks
1	A06B-6141-Hxxx#H580	200V	TYPE A
2	A06B-6142-Hxxx#H580	200V	TYPE B
3	A06B-6151-Hxxx#H580	400V	TYPE A
4	A06B-6152-Hxxx#H580	400V	TYPE B

4.2.1 200-V Input Series

Amplifier model 200V type	Outline	Motor model
α <i>İ</i> SP 2.2	TYPE II	αi I 0.5/10000, αi I 1/10000
Sα <i>i</i> P 5.5		αi
α <i>İ</i> SP 11	TYPE III	αi I 6/10000, $αi$ I 8/8000, $αi$ I 3/12000, $αi$ I 6/12000, $αi$ I 8/10000, $αi$ I _P 12/6000, $αi$ I _P 12/8000, $αi$ I _T 3/12000
α <i>i</i> SP 15		lpha i I 12/7000, $lpha i$ I 1.5/20000, $lpha i$ I 12/12000, $lpha i$ I _P 15/6000, $lpha i$ I _P 15/8000, $lpha i$ I _P 18/6000, $lpha i$ I _P 18/8000, $lpha i$ I _T 1.5/20000, $lpha i$ I _T 6/12000, $lpha i$ I _T 8/12000
αi SP 22		αί Ι 15/7000, αί Ι 18/7000, αί Ι 2/20000, αί Ι 15/12000, αί Ι 18/12000, αί Ι _P 22/6000, αί Ι _P 22/8000, αί Ι _P 30/6000, αί Ι _Τ 2/20000
lpha i SP 26	TYPE IV	$α\dot{i}$ I 22/7000, $α\dot{i}$ I 22/12000, $α\dot{i}$ I _P 40/6000, $α\dot{i}$ I _P 50/6000, $α\dot{i}$ I _T 22/10000
α <i>i</i> SP 30		αi I _P 60/4500, $αi$ I _T 15/15000, $αi$ I _L 8/20000, $αi$ I _L 15/15000, $αi$ I _L
α <i>İ</i> SP 37		(*4)
α <i>İ</i> SP 45	TYPE V	αi I 30/6000, αi I 40/6000
α <i>İ</i> SP 55		αί Ι 50/4500

^{*3) &}quot;SP" of αi SP means "SPindle".

4.2.2 400-V Input Series

Amplifier model 400V type	Outline	Motor model
lpha i SP 5.5HV	TYPE II	αi I 0.5/10000HV, $αi$ I 1/10000HV, $αi$ I 1.5/10000HV, $αi$ I 2/10000HV, $αi$ I 3/10000HV
lpha i SP 11HV	TYPE III	lpha i I 6/10000HV, $lpha i$ I 8/8000HV
lpha i SP 15HV		αi I 12/7000HV, $αi$ I _P 15/6000HV, $αi$ I _P 15/8000HV, $αi$ I _T 1.5/20000HV, $αi$ I _T 8/12000HV
lpha i SP 30HV	TYPE IV	αi I 15/7000HV, $αi$ I 22/7000HV, $αi$ I _P 22/6000HV, $αi$ I _P 22/8000HV, $αi$ I _P 40/6000HV, $αi$ I _P 50/6000HV, $αi$ I _P 60/4500HV, $αi$ I _T 2/20000HV, $αi$ I _T 15/15000HV, $αi$ I _T 22/10000HV
lpha i SP 45HV		αi I 30/6000HV, $αi$ I 40/6000HV, $αi$ I _L 8/20000HV, $αi$ I _L 15/15000HV, $αi$ I _L 26/15000HV
lpha i SP 75HV	TYPE V	lpha i I 60/4500HV, $lpha i$ I 100/4000HV
α <i>i</i> SP 100HV	TTPE V	*4

^{*3) &}quot;SP" of αi SP means "SPindle".

^{*4)} These amplifieres drives Built-in Spindle Motor series.

^{*4)} These amplifieres drives Built-in Spindle Motor series.

4.3 HOW TO SELECT THE αi PS series (POWER SUPPLY)

When Power Supply is selected, the conditions described in this section must all be satisfied.

Calculate the required rated output capacity, maximum output capacity, and peak output capacity using the calculation methods in Subsections 4.3.1, 4.3.2, and 4.3.3 and then select an αi PS model that meets all the conditions.

Table 4.2(a) 200-V input

Model	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS
Item	5.5	11	15	26	30	37	55
Rated output capability	5.5kW	11kW	15kW	26kW	30kW	37kW	55kW
Maximum output capability	13kW	24kW	34kW	48kW	64kW	84kW	125kW
Peak output capability	22kW	38kW	51kW	73kW	85kW	106kW	192kW

Table 4.2(b) 400-V input

(a) 100 1 mpm						
Model	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS
Item	11HV	18HV	30HV	45HV	75HV	100HV
Rated output capability	11kW	18kW	30Kw	45kW	75kW	100kW
Maximum output capability	24kW	42kW	72kW	102kW	144kW	180kW
Peak output capability	38kW	64kW	96kW	137kW	193kW	220kW

NOTE

The above tables apply to A06B-6140-Hxxx and A06B-6150-Hxxxx. For A06B-6110-Hxxx and A06B-6120-Hxxxx, the maximum output capability and peak output capability values differ as shown in the tables below.

200-V input (for A06B-6110-Hxxx)

Model	α <i>i</i> PS	αi PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	αi PS
Item	5.5	11	15	26	30	37	55
Rated output capability	5.5kW	11kW	15kW	26kW	30kW	37kW	55kW
Maximum output capability	11kW	20kW	28kW	40kW	53kW	70kW	104kW
Peak output capability	20kW	34kW	46kW	66kW	77kW	96kW	174kW

400-V input (for A06B-6120-Hxxx)

Model	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS	α <i>i</i> PS
Item	11HV	18HV	30HV	45HV	75HV	100HV
Rated output capability	11kW	18kW	30kW	45kW	75kW	100kW
Maximum output capability	20kW	35kW	60kW	85kW	120kW	150kW
Peak output capability	34kW	58kW	87kW	124kW	175kW	200kW

4.3.1 How to Obtain the αi PS series rated output capability

Select an αi PS with a rated output not less than the sum of the total continuous rated output of the spindle motors times 1.15, plus the total continuous rated output of the servo motors times 0.6.

Rated output capacity of αi PS

 $\geq \Sigma$ Continuous rated output of spindle motor \times 1.15

+ Σ Continuous rated output of servo motor \times 0.6

When only αi SP is to be connected to Power Supply module, select the αi PS so that the 30-minute rated output of the spindle motor does not exceed the rated output capacity of Power Supply module.

Rated output capacity of an αi PS \geq 30-minute rated output of a spindle motor

Table 4.3 lists the rated output capacities of the αi PS models. Tables 4.5.1(a) to (d) list the continuous rated outputs of the servo motors. Tables 4.5.2(a) and (b) list the continuous rated outputs or 30-minute rated output of the spindle motors.

4.3.2 How to Obtain the αi PS series maximum output capability

Select the αi PS whose maximum output capability will not be exceeded by the total of the sum of the maximum acceleration spindle motor outputs and the sum of the maximum acceleration outputs of the servo motors that are accelerated simultaneously and whose acceleration time exceeds 0.3 seconds.

Maximum output of αi PS

≥ ∑ Accelerating maximum output of spindle motor +

 Σ Maximum acceleration-time outputs of servo motors whose acceleration time exceeds **0.3 seconds**

(on simultaneous acceleration/deceleration axis)

Table 4.3 lists the maximum output capacities of the αi PS models. Tables 4.5.1(a) to (d) list the accelerating maximum outputs of the servo motors. Tables 4.5.2(a) and (b) list the accelerating maximum outputs of the spindle motors.

4.3.3 How to Obtain the αi PS series peak maximum output capability

Make selection so that a total of maximum acceleration-time outputs of the spindle motors plus a total of maximum acceleration-time outputs of the servo motors that are accelerated concurrently for 0.3 seconds or less are equal to or less than the peak maximum output capacity of the αi PS.

Power Supply peak maximum output capability

- $\geq \Sigma$ spindle motor maximum acceleration outputs
- + ∑Maximum acceleration-time outputs of servo motors whose acceleration time is 0.3 seconds or less

(on simultaneously accelerated axes)

Table 4.3 lists the peak output capacities of the αi PS models. Tables 4.5.1(a) to (d) list the continuous rated outputs of the servo motors. Tables 4.5.2(a) and (b) list the according maximum outputs of the spindle motors.

⚠ CAUTION

When the acceleration-time constant is not identical to the deceleration-time constant and the maximum motor torque is used during deceleration as in pressing machines or injection molding machines, the maximum acceleration-time outputs in Tables 4.5.1 (a) and (c) are multiplied by 1.1.

4.3.4 Number of Connected αi SV series and αi SP Series

Multiple αi SV and αi SP models can be connected to a single αi PS, provided the above output capacity conditions are satisfied.

The table below lists the maximum number of modules which can be connected.

Table 4.3.4 Maximum number of modules that can be connected

		α <i>i</i> SV	
lpha i SP	α <i>i</i> SV 1-axis amplifier	α <i>i</i> SV 2-axis amplifier	α <i>i</i> SV 3-axis amplifier
	6		
2		4	
			3

↑ CAUTION

1 When different types of αi SV models are connected, the following condition must be satisfied:

Total number of connected amplifiers (6) \geq number of αi SV 1-axis amplifiers \times 1 + number of αi SV 2-axis amplifiers \times 1.5 + number of αi SV 3-axis amplifiers \times 2

The maximum number of αi SV models that can be connected is the same when an αi SP is not used.

2 No αi SV 3-axis amplifier is available in the 400-V input series.

4.3.5 Notes on 400-V Input αi PS series selection

When the 400-V input αi PS series is used, a restriction is imposed on the combination with an αi SP.

- (1) For αi SP 30HV, select PSM-30HVi or a higher model.
- (2) For αi SP 45HV, select PSM-45HVi or a higher model.
- (3) For αi PS 75HV and αi PS 100HV, select αi PS 75HV or a higher model.

4.4 HOW TO SELECT THE αi PS_R series (POWER SUPPLY, RESISTANCE DISCHARGE TYPE)

When Power Supply is selected, the conditions described in this section must all be satisfied.

Calculate the required rated output capacity and maximum output capacity using the calculation methods in Subsections 4.4.1 and 4.4.2 and then select an αi PS_R model that meets all the conditions.

Table 4.4 200-V input

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Model Item	$lpha i$ PS $_{R}$ 3	α <i>i</i> PS _R 5.5				
Rated output capability	3kW	7.5kW				
Maximum output capability	12kW	20kW				

NOTE

No specification is defined for the peak output capability of the αi PS_R models.

4.4.1 How to Obtain the αi PS_R series Rated Output Capability

Select an αi PS_R with a rated output not less than the sum of the total continuous rated output of the spindle motors times 1.15, plus the total continuous rated output of the servo motors times 0.6.

Rated output capacity of αi PS_R

 $\geq \Sigma$ Continuous rated output of spindle motor \times 1.15

+ Σ Continuous rated output of servo motor \times 0.6

When only αi SP is to be connected to an αi PS_R, select Power Supply so that the 30-minute rated output of the spindle motor does not exceed the rated output capacity of the αi PS_R.

Rated output capacity of an $\alpha i~\mathrm{PS_R} \geq$ 30-minute rated output of a spindle motor

Table 4.3 lists the rated output capacities of the αi PS_R models. Tables 4.5.1(a) to (d) list the continuous rated outputs of the servo motors. Tables 4.5.2(a) and (b) list the continuous rated outputs or 30-minute rated output of the spindle motors.

4.4.2 How to Obtain the αi PS_R series Maximum Output Capability

Select an αi PS_R so that the sum of the total maximum acceleration-time output of the spindle motors and the total maximum acceleration-time output of the servo motors that are accelerated simultaneously does not exceed the maximum output capability of the αi PS_R .

Maximum output of αi PS_R

- $\geq \Sigma$ Accelerating maximum output of spindle motor +
- Σ Maximum acceleration-time outputs of the servo motors whose acceleration time exceeds **0.3 seconds**.

(on simultaneous acceleration/deceleration axis)

Table 4.4 lists the maximum output capacities of the αi PS_R models. Tables 4.5.1(a) to (d) list the accelerating maximum outputs of the servo motors. Tables 4.5.2(a) and (b) list the accelerating maximum outputs of the spindle motors.

4.4.3 Number of Connected αi SV series and αi SP series

Multiple αi SV models and αi SP models can be connected to a single αi PS_R, provided the above output capacity conditions are satisfied. The table below lists the maximum number of modules which can be connected.

Table 4.4.3 Maximum number of amplifiers that can be connected

	α <i>i</i> SV					
α <i>i</i> SP	α <i>i</i> SV 1-axis amplifier	αi SV 2-axis amplifier	lpha i SV 3-axis amplifier			
	4					
2	1	2				
0	2	1				
		1	1			
	2					
1	1	1				
			1			

⚠ CAUTION

When αi SV amplifiers are used together, the total number of the connected amplifiers must not exceed 4.

Total number of connected amplifiers (4) \geq number of αi SV 1-axis amplifiers \times 1 + number of αi SV 2-axis amplifiers \times 1.5 + number of αi SV 3-axis amplifiers \times 2

Even when no αi SP unit is used, the number of αi SV amplifiers that can be connected does not change.

4.4.4 Selecting a Regenerative Discharge Unit

In the αi PS_R, the regenerative discharge unit (regenerative resistor) dissipates the energy generated during deceleration of a motor (regeneration).

The amount of heat generated by the regenerative discharge unit varies with the motor type, rotation speed, load inertia, and continuous repetition cycle (duty cycle). Use a regenerative discharge unit of a suitable capacity for the load and operation cycle time.

How to Calculate the Required Capacity for the Regenerative Discharge Unit

Obtain the rotation energy of each servo motor and each spindle motor from the formula shown below. Then, see Table 4.4.4, and select a regenerative discharge unit so that the sum of the rotation energy values of the servo motors and spindle motors does not exceed the capacity of the regenerative discharge unit.

Capacity of regenerative discharge unit $\geq \Sigma$ Rotation energy of motor

See Table 4.4.4 for details of the capacity of the regenerative discharge unit.

(1) Servo motor (for horizontal movement)

Amount of regenerative discharge (power [W]) when rapid traverse acceleration/deceleration is performed once every F sec

(a) SI unit system

$$w = \frac{1}{F} \times (5.48 \times 10^{-3} \cdot (Jm + JL) \cdot Vm^2 - 5.23 \times 10^{-2} \cdot ta \cdot Vm \cdot TL) [W]$$

F: Frequency of rapid traverse acceleration/deceleration [sec/number of times]

Unless otherwise specified, rapid traverse acceleration/deceleration is assumed to be performed about once every 5 seconds.

Jm : Rotor inertia of the motor $[kg \cdot m^2]$

JL: Motor-shaft-converted inertia of the load [kg·m²]

Vm :Motor speed at rapid traverse [min⁻¹]

ta: Rapid traverse acceleration/deceleration time [sec]

TL: Machine frictional torque (motor-converted value) $[N \cdot m]$

(b) CGS unit system

$$w = \frac{1}{F} \times (5.37 \times 10^{-4} \cdot (Jm + JL) \cdot Vm^2 - 5.13 \times 10^{-3} \cdot ta \cdot Vm \cdot TL) [W]$$

F: Rapid traverse acceleration/deceleration cycle [s/number of times]

About once every five seconds unless otherwise specified

Jm: Rotor inertia of motor [kg·cm·s²]

JL: Load inertia (value for motor shaft) [kg·cm·s²]

Vm : Motor rotation speed for rapid traverse [min⁻¹]

ta: Rapid traverse acceleration/deceleration time [s]

TL: Friction torque of machine (value for motor) [kg·cm]

(2) Servo motor (for vertical movement)

The amount of regenerative discharge (power [W]) when the operation duty for downward rapid traverse is D(%)

(a) SI unit system

$$w = 1.047 \times 10^{-1} \cdot Th \cdot Vm \times \frac{D}{100} [W]$$

Th: Upward torque that the motor applies at the time of downward rapid traverse $[N \cdot m]$

Vm :Motor speed at rapid traverse [min⁻¹]

D: Operation duty [%] for downward rapid traverse D is set to 50% maximum. Usually, D is less than 50%.

(b) CGS unit system

$$w = 1.026 \times 10^{-2} \cdot Th \cdot Vm \times \frac{D}{100} [W]$$

Th: Upward torque of motor during lowering by rapid traverse [kg·cm]

Vm: Motor rotation speed for rapid traverse [min⁻¹]

D: Downward operation duty during lowering by rapid traverse [%]

D is a maximum of 50% and usually less.

- (3) Spindle motor
 - (a) SI unit system

$$w = 5.48 \times 10^{-3} \cdot (Jm + JL) \cdot N^2 \times \frac{1}{Dt} [W]$$

Jm: Rotor inertia of the motor [kg·m²]

JL: Motor-shaft-converted inertia of the load [kg·m²]

N: Motor speed [min⁻¹]

Dt: Duty cycle [sec]

(b) CGS unit system

$$w = 5.37 \times 10^{-2} \cdot (Jm + JL) \cdot N^2 \times \frac{1}{Dt} [W]$$

Jm: Rotor inertia of motor [kg·cm·s²]

JL: Load inertia (value for motor shaft) [kg·cm·s²]

N: Motor rotation speed [min⁻¹]

Dt: Duty cycle [s]

Cautions for selecting a regenerative discharge unit

Table.4.4.4 Required capacity for the Regenerative Discharge unit

Regenerative	Capacity Wind speed		Remarks	
discharge unit	0m/sec	2m/sec	4m/sec	
A06B-6089-H510	100W	250W	-	Resistance : 16Ω
A06B-6089-H500	200W	400W	600W	Resistance : 16Ω
A06B-6089-H713	-	-	800W	Forced cooling fan motor is included Resistance : 16Ω
A06B-6089-H711	-	-	800W	Forced cooling fan motor is included Resistance : 8Ω
A06B-6089-H712	-	-	1200W	Forced cooling fan motor is included Resistance : 8Ω

NOTE

- 1 The "maximum output at acceleration" value is provided only to aid in the selection of an αi PS_R; this is not a guaranteed value.
- 2 When a spindle motor with a maximum output of 5kW or more is used, the resistance of the regenerative discharge unit must be 8Ω . If a regenerative discharge unit with a resistance of 16Ω is used for a spindle motor with a maximum output of 5 kW or more, a regeneration excess alarm (alarm No. 08) may be generated in the αi PS_R when the spindle is decelerated.

4.5 LIST OF MOTOR OUTPUT CAPACITIES FOR αi PS AND αi PS_R series SELECTION

4.5.1 Servo Motor Continuous Rated Outputs and Maximum Outputs at Acceleration

This section gives the output data for servo motor. These data are used for selecting an αi PS or αi PS_R. See FANUC AC SERVO MOTOR $\alpha is/\alpha i$ series DESCRIPTIONS (B-65262EN) for details.

(1) Servo motor $\alpha is/\alpha i$ series (200-V input series)

Table 4.5.1(a)

Motor model	Continuous rated output	Maximum output at acceleration
α <i>i</i> F 1/5000	0.50kW	2.0kW
α <i>i</i> F 2/5000	0.75kW	2.9kW
α <i>i</i> F 4/4000	1.4kW	4.5kW
α <i>i</i> F 8/3000	1.6kW	5.7kW
α <i>i</i> F 12/3000	3.0kW	7.6kW
α <i>i</i> F 22/3000	4.0kW	9.6kW
α <i>i</i> F 30/3000	7.0kW	21kW
α <i>i</i> F 40/3000	6.0kW	18kW
α <i>i</i> F 40/3000+FAN	9.0kW	18kW
α <i>i</i> S 2/5000	0.75kW	2.8kW
α <i>i</i> S 2/6000	1.0kW	2.4kW
α <i>i</i> S 4/5000	1.0kW	3.1kW
α <i>i</i> S 8/4000	2.5kW	8.0kW
α <i>i</i> S 8/6000	2.2kW	11kW
α <i>i</i> S 12/4000	2.7kW	12kW
α <i>i</i> S 22/4000	4.5kW	17kW
α <i>i</i> S 22/6000	4.5kW	21kW
α <i>i</i> S 30/4000	5.5kW	22kW
α <i>i</i> S 40/4000	5.5kW	24kW
α <i>i</i> S 50/3000	5kW	39kW
α <i>i</i> S 50/3000 +FAN	14kW	39kW
α <i>i</i> S 100/2500	11kW	38kW
α <i>i</i> S 100/2500+FAN	22kW	38kW
α <i>i</i> S 200/2500	16kW	48kW
α <i>i</i> S 200/2500+FAN	30kW	48kW
α <i>i</i> S 300/2000	52kW	96kW
α <i>i</i> S 500/2000	60kW	104kW

NOTE

(2) Servo motor βi S series (200-V input series)

Table 4.5.1(b)

Motor model	Continuous rated output	Maximum output at acceleration
β <i>i</i> S 0.2/5000	0.05kW	0.24kW
β <i>i</i> S 0.3/5000	0.1kW	0.4kW
β <i>i</i> S 0.4/5000	0.13kW	0.5kW
β <i>i</i> S 0.5/6000	0.35kW	1.3kW
β <i>i</i> S 1/6000	0.5kW	2.3kW
β <i>i</i> S 2/4000	0.5kW	2.3kW
β <i>i</i> S 4/4000	0.75kW	2.5kW
β <i>i</i> S 8/3000	1.2kW	2.8kW
β <i>i</i> S 12/2000	1.4kW	2.8kW
β <i>i</i> S 12/3000	1.8kW	5.4kW
β <i>i</i> S 22/2000	2.5kW	5.2kW
β <i>i</i> S 22/3000	3.0kW	8.8kW

NOTE

(3) Servo motor αi series (400-V input series)

Table 4.5.1(c)

Motor model	Continuous rated	Maximum output at
Motor model	output	acceleration
α <i>i</i> F 4/4000HV	1.4kW	4.5kW
α <i>i</i> F 8/3000HV	1.6kW	5.7kW
α <i>i</i> F 12/3000HV	3.0kW	7.5kW
α <i>i</i> F 22/3000HV	4.0kW	9.6kW
α <i>i</i> S 2/5000HV	0.75kW	2.8kW
α <i>i</i> S 2/6000HV	1.0kW	2.4kW
α <i>i</i> S 4/5000HV	1.0kW	3.1kW
α <i>i</i> S 8/4000HV	2.3kW	8.0kW
α <i>i</i> S 8/6000HV	2.2kW	11kW
α <i>i</i> S 12/4000HV	2.5kW	12kW
α <i>i</i> S 22/4000HV	4.5kW	19kW
α <i>i</i> S 22/6000HV	4.5kW	21kW
α <i>i</i> S 30/4000HV	5.5kW	22kW
α <i>i</i> S 40/4000HV	5.5kW	24kW
α <i>i</i> S 50/3000HV	5kW	39kW
α <i>i</i> S 50/3000HV +FAN	14kW	39kW
α <i>i</i> S 100/2500HV	11kW	38kW
α <i>i</i> S 100/2500HV+FAN	22kW	38kW
α <i>i</i> S 200/2500HV	16kW	48kW
α <i>i</i> S 200/2500HV+FAN	30kW	48kW
α <i>i</i> S 300/2000HV	52kW	96kW
α <i>i</i> S 500/2000HV	60kW	104kW
α <i>i</i> S 1000/2000HV	100kW	189kW
α <i>i</i> S 1000/2000HV	110kW	190kW
α <i>i</i> S 2000/2000HV	200kW	400kW
α <i>i</i> S 3000/2000HV	220kW	690kW

NOTE

(4) Servo motor βi S series (400-V input series)

Table 4.5.1(c)

Motor model	Continuous rated output	Maximum output at acceleration
β <i>i</i> S 2/4000HV	0.5kW	2.3kW
β <i>i</i> S 4/4000HV	0.75kW	2.5kW
β <i>i</i> S 8/3000HV	1.2kW	2.8kW
β <i>i</i> S 12/3000HV	1.8kW	5.4kW
β <i>i</i> S 22/2000HV	2.5kW	5.2kW
β <i>i</i> S 22/3000HV	3.0kW	8.8kW

NOTE

4.5.2 Spindle Motor Continuous Rated Outputs and Maximum Outputs at Acceleration

This section gives the output data for spindle motor. These data are used for selecting Power Supply module of the αi PS and αi PS_R See FANUC AC SPINDLE MOTOR αi series DESCRIPTIONS (B-65272EN) for details.

(1) Spindle motor αi series (200-V input series)

Table 4.5.2(a)

Motor model	Continuous rated output	30-minute rated output	Maximum output at acceleration
αi I 0.5/10000	0.55kW	1.1kW(15-minute rated)	1.32kW
αi I 1/10000	1.5kW	2.2kW(15-minute rated)	2.64kW
αi I 1/15000	1.5kW	2.2kW(15-minute rated)	5.6kW
αi I 1.5/10000	1.1kW	3.7kW(10-minute rated)	4.44kW
αi I 1.5/15000	1.5kW	2.2kW(15-minute rated)	13kW
αi I 2/10000	2.2kW	3.7kW(15-minute rated)	4.44kW
αi I 2/15000	2.2kW	3.7kW(15-minute rated)	20kW
αi I 3/10000	3.7kW	5.5kW	6.6kW
αi I 3/12000	3.7kW	5.5kW	13kW
α <i>i</i> I 6/10000 α <i>i</i> I 6/12000	5.5kW	7.5kW	9kW
αi I 8/8000 αi I 8/10000	7.5kW	11kW	13.2kW
α <i>i</i> I 12/7000 α <i>i</i> I 12/10000	11kW	15kW	18kW
α <i>i</i> I 15/7000 α <i>i</i> I 15/10000	15kW	18.5kW	22.2kW
α <i>i</i> I 18/7000 α <i>i</i> I 18/10000	18.5kW	22kW	26.4kW
α <i>i</i> I 22/7000 α <i>i</i> I 22/10000	22kW	26kW	31.2kW
αi I 30/6000	30kW	37kW	44.4kW
αi I 40/6000	37kW	45kW	54kW
αi I 50/6000	45kW	55kW	66kW
α <i>i</i> I _P 12/6000 α <i>i</i> I _P 12/8000	5.5kW	7.5kW	12.3kW
α <i>i</i> I _P 15/6000 α <i>i</i> I _P 15/8000	7.5kW	9kW	13.5kW
α <i>i</i> I _P 18/6000 α <i>i</i> I _P 18/8000	9kW	11kW	15.1kW
α <i>i</i> I _P 22/6000 α <i>i</i> I _P 22/8000	11kW	15kW	20kW
αi I _P 30/6000	15kW	18.5kW	25kW
αi I _P 40/6000	18.5kW	22kW	29kW
αi I _P 50/6000	22kW	30kW	35.4kW
αi I _P 60/4500	22kW	30kW	36kW

NOTE

(2) Spindle motor αi series (400-V input series) **Table 4.5.2(b)**

Table 4.5.2(b)			
Motor model	Continuous rated output	30-minute rated output	Maximum output at acceleration
α <i>i</i> I 0.5/10000HV	0.55kW	1.1kW(15-minute rated)	1.32kW
α <i>i</i> Ι 1/10000HV	1.5kW	2.2kW(15-minute rated)	2.64kW
α <i>i</i> I 1.5/10000HV	1.1kW	3.7kW(10-minute rated)	4.44kW
α <i>i</i> I 2/10000HV	2.2kW	3.7kW(15-minute rated)	4.44kW
α <i>i</i> I 3/10000HV	3.7kW	5.5kW	6.6kW
α <i>i</i> I 6/10000HV	5.5kW	7.5kW	9kW
α <i>i</i> I 8/8000HV	7.5kW	11kW	13.2kW
α <i>i</i> Ι 12/7000HV	11kW	15kW	18kW
α <i>i</i> Ι 15/7000HV	15kW	18.5kW	22.2kW
α <i>i</i> I 22/7000HV	22kW	26kW	31.2kW
α <i>i</i> Ι 30/6000HV	30kW	37kW	44.4kW
α <i>i</i> Ι 40/6000HV	37kW	45kW	54kW
α <i>i</i> I 60/4500HV	60kW	75kW	90kW
α <i>i</i> Ι 100/4000HV	100kW	_	117kW
α <i>i</i> I _P 15/6000HV	7.5kW	9kW	13.5kW
α <i>i</i> I _P 22/6000HV	11kW	15kW	20kW
α <i>i</i> I _P 40/6000HV	18.5kW	22kW	29kW
α <i>i</i> I _P 50/6000HV	22kW	30kW	35.4kW
α <i>i</i> I _P 60/4500HV	22kW	30kW	36kW

NOTE

5

INSTALLATION

Chapter 5, "INSTALLATION", consists of the following sections:

5.1	LEAKAGE CURRENT	103
5.2	GROUND	104
5.3	NOISE PREVENTION	108
5.4	AMPLIFIER INSTALLATION	117
5.5	AMPLIFIER INSTALLATION NOTES RELATING TO	
	SAFETY STANDARDS	118
5.6	NOTES ON COOLANT (REFERENCE)	126

5.1 LEAKAGE CURRENT

The servo amplifier αi series drives the motor by using the transistor PWM inverter method. This causes a high-frequency leakage current to flow via the ground drift capacitance in the motor winding, power cable, and amplifier. This may cause a device installed on Power supply side, such as a ground fault interrupter or leakage-protection relay, to malfunction.

When a circuit breaker with a ground fault interrupter is used, it must be selected so that the sum of the values calculated according to (a) and (b) described below is not greater than the non-operating current value.

(a) Selection criterion per amplifier

Model: αi SV and αi SP

Criterion for selection: 2 mA per amplifier (Note 1)

(b) Selection criterion per motor

Criterion for selection: 1 mA per motor (Note 1)

The following example shows how to use selection criteria (a) and (b): Example:

When the system consists of αi SV 1-axis \times 1, αi SV 3-axis \times 1 (three motors), and αi SP \times 1

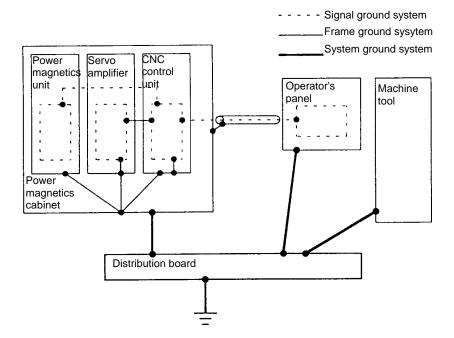
 $2 \text{ mA} \times 3 \text{ (for the amplifiers)} + 1 \text{ mA} \times 5 \text{ (for the motors)} = 11 \text{ mA}$

→ Select a circuit breaker (Note 2) with a non-operating current of 11 mA or higher. (A general ground fault interrupter that can be used for the above example is the one with a rated sensitivity current of 30 mA and a non-operating current of 15 mA.)

NOTE

- 1 These criteria are for selecting a circuit breaker with a ground fault interrupter; they do not indicate accurate leakage currents.
- 2 A circuit breaker may malfunction depending on the frequency characteristic of the ground fault interrupter. Therefore, use a ground fault interrupter supporting the use of inverters.
- 3 The above criteria are values in the commercial frequency band. Some measuring instruments for measuring leakage current may sense a high frequency band, thus showing a larger value.

5.2 GROUND


5.2.1 Ground Systems

There are three ground systems for CNC system grounding.

- (a) Signal ground system (SG)

 The signal ground (SG) supplies the reference voltage (0V) of the electrical signal system.
- (b) Frame ground system (FG)

 The frame ground system (FG) is used for safety, and suppressing external and internal noises. In the frame ground system, the frames, panels, and shields for the interface cables between the units are connected.
- (c) System ground system (PE)
 In the system ground system (PE), frame ground provided for each device or among units is connected systematically to ground at one place.

5.2.2 Grounding Method

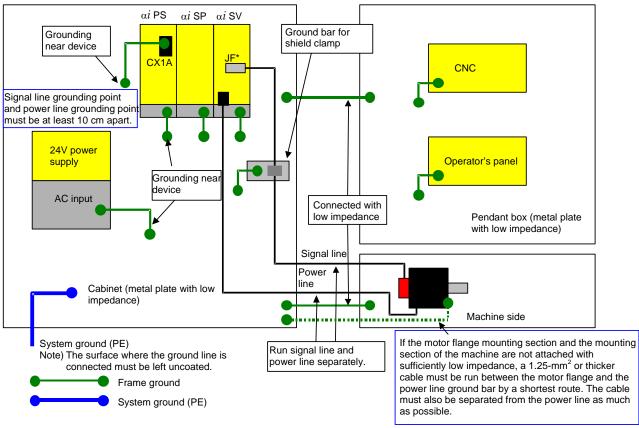
Generally, noise that causes problems is high-frequency noise. Grounding each device with a low impedance(NOTE) is a key to suppression of high-frequency noise. Methods of grounding for this purpose are explained below.

NOTE

In addition to a resistance component, which converts current to heat, impedance contains a reactance component, which prevents the flow of AC current at a certain frequency.

(1) Multi-point grounding

If a metal plate of a cabinet is grounded with a sufficiently low impedance, the metal plate is used as a ground plate, and each device is grounded nearby. This method allows grounding to a low-impedance metal plate of the cabinet over a shortest distance, and can therefore effectively suppress high-frequency noise. On the other hand, because a metal plate of a cabinet is used as a ground plate, noise suppression efficiency depends on the structure of the cabinet. For cabinets, see Subsection 1.1.4. Fig. 1 shows a cabling schematic.


When the multi-point grounding method is used, units can be grounded with a low impedance, and the lengths of ground cables can also be reduced, so cabling can be simplified.

NOTE

If a metal plate of a cabinet does not show a low impedance, a noise problem may arise between the power ground line and signal ground line.

(2) Single-point grounding

Signal lines and power lines are grounded separately, and grounding is performed at a single point to suppress noise from a power line to signal line. With this method, the length of a cable for grounding a unit tends to be long. So, to suppress high-frequency noise sufficiently, the cable diameter must be increased, or more than one connection cable must be used. Fig. 2 shows a cabling schematic.

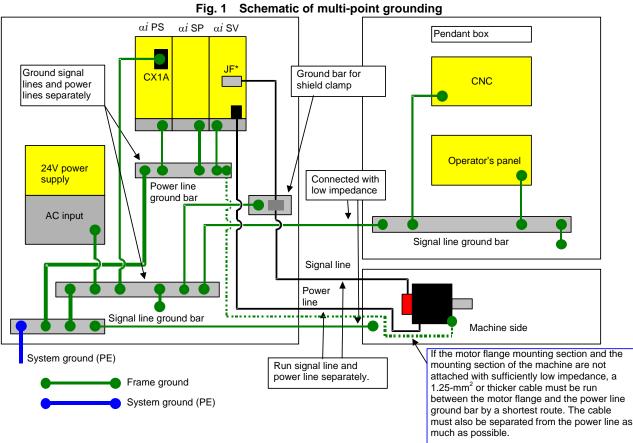


Fig. 2 Schematic of single-point grounding

5.2.3 Notes on Connecting

• Connect the signal ground (0V) with the frame ground (FG) at only one place in the αi PS.

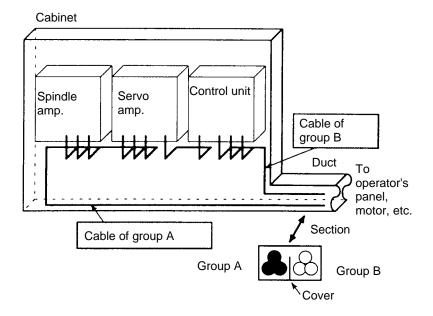
- The grounding resistance of the system ground shall be 100 ohms or less (class D grounding).
- The system ground cable must have enough cross-sectional area to safely carry the accidental current flow into the system ground when an accident such as a short circuit occurs. (Generally, it must have the cross-sectional area of the AC power cable or more.)
- Use the cable containing the AC power wire and the system ground wire so that power is supplied with the ground wire connected.

NOTE

- 1 Securing the ground terminal and a cable together is not permitted.
- 2 The motor flange mounting section may not be able to be connected to the machine mounting section of the power magnetics cabinet via the mechanical unit at sufficiently low impedance in a machine. In this case, a cable of a minimum required length that is at least 1.25 mm² thick must be run from the motor flange to the frame ground of the power magnetics cabinet. The cable must also be separated from the motor power line as much as possible.

5.3 NOISE PREVENTION

5.3.1 Separation of Signal Lines


If a signal cable is near a power cable, noise may be induced. The signal cables must be separated from the power cables when routed. When power and signal cables cannot possibly be separated from each other, the cables must be run in parallel in the minimum distance. When a conduit is used, it is recommended that the signal cables be separated from the power cables in it.

[Types of cables]

Group	Signal type	Action	
А	Amplifier input power line Motor power line Magnetic contactor driving coil (Note 3)	Separate binding (Note 1) or electromagnetic shielding (Note 2) is necessary for group B cables.	
	Cable between CNC and SPM	Congrete hinding or	
В	Cable for position feedback or velocity feedback	Separate binding or electromagnetic shielding is necessary for group A cables. All cables must be shielded.	
	Cable for Positioncoder		
	Other cable related to sensor	asise meet se emolecu.	

NOTE

- 1 The groups must be 10 cm or more apart from one another when binding the cables in each group.
- 2 The electromagnetic shield refers to shielding between groups with grounded steel plates.
- 3 Attach a noise suppressor such as a spark killer to the magnetic contactor driving coil.

5.3.2 Cable Clamp and Shield Processing

Basically, signal lines require shield clamping. Correct shield clamping can suppress noise from the outside.

Strip part of the cable jacket to expose the shield sheath, and secure that part of the cable to the ground bar by using a clamp. At this time, the ground bar must be in contact with the surface of the shield so that the contact area becomes wide. (See the figure.)

When using the multi-point grounding method, remove the coating of the part where the shield clamp ground bar is connected to the cabinet, to allow surface contact.

• Terminal processing of the shield sheaths
Perform terminal processing of the shield sheaths of the signal
cables according to the description in Section 9.3.

• Cable clamp

The cables that run into the amplifier and which require shield processing, with the exception of K14, K15, K17, K18, K19, K31, and K33, must be clamped as indicated in Fig. 5.3.2(a).

Clamping secures a cable and also provides shielding. Clamping must always be performed since it is very important for stable system operation.

Connect the cable clamp of the signal cables of αi SV connected to common αi PS to common the ground plate for signals.

Grounding

The ground plate must be created and installed by the user as shown in Figs.5.3.2(b) to (e).

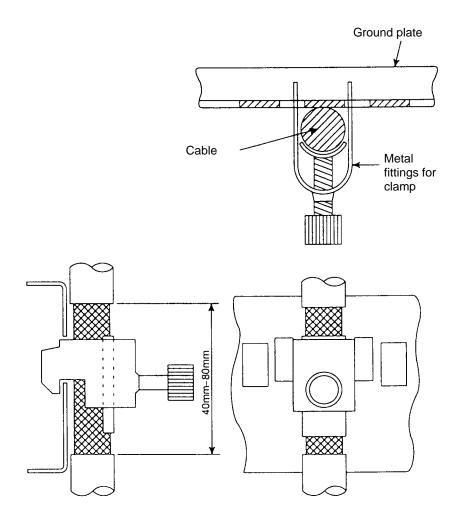


Fig.5.3.2(a) Cable clamp (1)

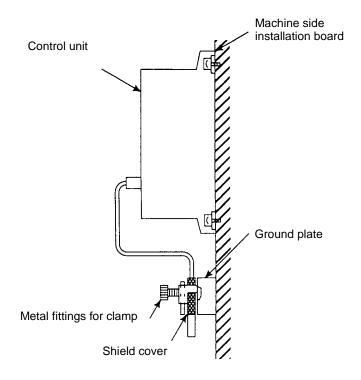


Fig.5.3.2(b) Cable clamp (2)

Fig.5.3.2(c) Ground plate

For the ground plate, use a metal plate of 2 mm or thicker, which surface is plated with nickel.

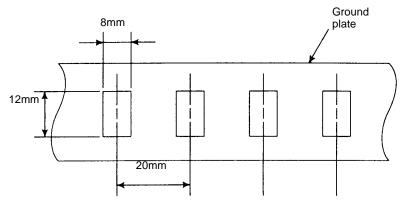
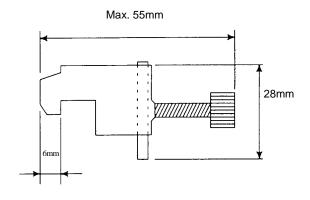



Fig.5.3.2(d) Ground plate holes

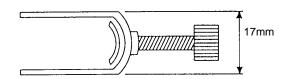


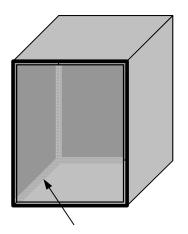
Fig.5.3.2(e) Outer drawings of metal fittings for clamp

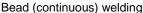
5.3.3 Cabinet

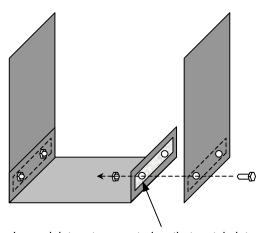
A cabinet is a key element for improving noise resistance and suppressing radiation noise.

One factor of noise resistance and radiation noise problems is insufficient electrical conductivity between metal plates of a cabinet. Generally, noise that causes problems is high-frequency noise. Therefore, a cabinet needs to be designed considering high-frequency noise.

(1) Basic structure of a cabinet

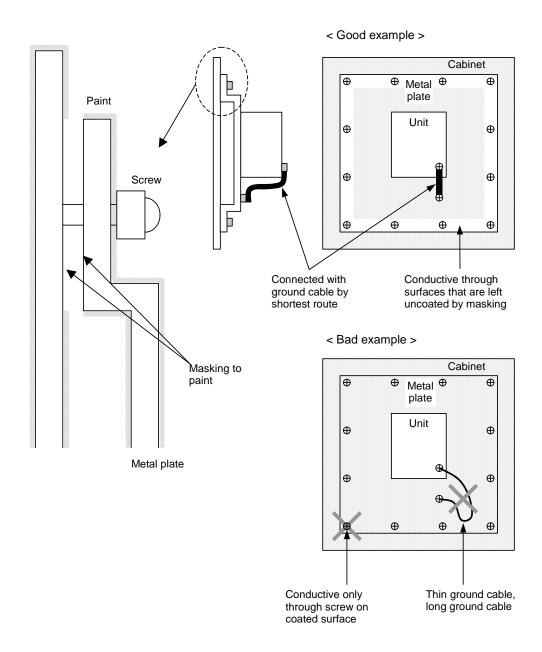

Basically, cabinets should be made of metal.


To improve noise resistance, the metal plates of the side walls, top plate, and bottom plate of a cabinet must be electrically low-impedance conductive. So, welding is recommended for the cabinet


Bead (continuous) welding, rather than spot welding, should be applied to the cabinet to enhance low-impedance electrical conductivity among the metal plates.

When the cabinet uses a built-up structure, joint part of each metal plate must be left uncoated, so that the plates come in direct contact with each other to provide electrical conductivity.

When metal plates are connected only via cables because of structural restrictions, it becomes more difficult to achieve low-impedance connection than when the metal plates are welded or are in direct contact. It is necessary to ensure large sectional areas of the cables used, sufficient conductivity of the connection parts, and large contact areas.


Leave joint parts uncoated so that metal plates come in direct contact.

NOTE

The purpose of the description in this subsection is to provide a cabinet with low-impedance electric conductivity to improve noise resistance. To implement a protection circuit, a cable having an appropriate sectional area for the AC input power capacity of the unit mounted on each metal plate needs to be used to connect the metal plates to perform protective grounding.

(2) Installing a unit in a cabinet

Run the ground cable of the unit by a shortest route. If the conductive wire of the ground cable is thin, impedance to high-frequency noise in particular becomes high, so grounding becomes less effective. For the position of the ground terminal of each unit, see the relevant manual. When a metal plate is installed in the cabinet after a unit is attached to the metal plate, the following method should be used. Attach the metal plate to the cabinet so that their wide areas left uncoated by masking come in contact with each other. The method of using only screws to provide electric conductivity is not recommended because impedance to high frequencies cannot be decreased sufficiently.

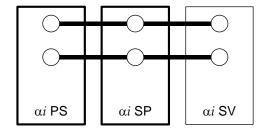
5.3.4 Others

Cable length

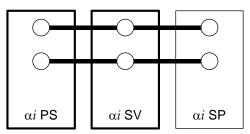
If a cable is longer than required, a loss of power increases, and the signal line becomes likelier to be affected by noise. Use each cable of the minimum required length.

Use of shield cables

• Satisfying the requirements of the EMC Directives For details, refer to "Satisfying the Requirements of the EMC Directive" (A-72937).


• Protection against noise

Noise generated from the shielded wire of a power shield cable may affect signals via the shielded wire of a signal cable. For this reason, separate the ground of the shielded wire of a power cable from that of the shielded wire of a signal cable. Use different ground clamping plates (ground plates) for power cables and signal cables to improve safety.


5.4 AMPLIFIER INSTALLATION

A restriction is imposed on the order of amplifier installation as described below.

(1) When an αi SP 45, αi SP 55, αi SP 30HV, αi SP 45HV, αi SP 75HV, or αi SP 100HV is used Install the αi PS and αi SP close to each other.

(2) When an αi SV 360HV is used Install the αi PS and αi SV 360HV close to each other.

5.5 AMPLIFIER INSTALLATION NOTES RELATING TO SAFETY STANDARDS

The αi series servo amplifiers are designed to meet the following safety standards:

EN50178 1997

UL508C Second Edition or Third Edition

To verify the conformity to these standards, the amplifiers are certified by TÜV Rheinland, a third certification organization, and UL.

When performing the CE Marking or UL Marking process, in design of the power magnetics cabinet, pay special attention to the installation conditions described in this section.

5.5.1 Requirements of EN and IEC Standards

5.5.1.1 Classification in standards on insulation design

(1) Insulation between circuits and between a circuit and protective ground

According to EN50178 5.2, insulation design of the amplifier conforms to the related standards in IEC60664 Part 1.

- The primary (the power supply and main circuit side) and the secondary (control circuit side) are separated by enforced insulation to ensure safety.
- Basic insulation is applied to the protective ground side.

Basic insulation is also applied between the main circuit of the power supply and the aluminum flanges (integrated with the heat sink), so connect a protective ground cable to the ground terminal of the lower aluminum flange.

(2) Installation category (overvoltage category)

In EN50178 5.2.16.2, power supply facilities are classified according to the impulse voltage to ground, included in the power supply to which the amplifier is connected.

This amplifier is designed to fall into installation category (overvoltage category) II.

Space distance is designed on the assumption that the rated impulse withstanding voltage (impulse voltage to ground) that appears in the power supply to which the amplifier is connected is 2.5 kV or less. If an impulse to ground that is higher than the assumed value appears in the power supply, it needs to be suppressed. In general, this condition is considered to be satisfied if an insulation transformer is used in the power supply input section of the machine. If an insulation transformer is not used, a surge protector (lightning surge absorber) must be inserted before ground to suppress impulse higher than 2.5 kV to ground.

(3) Pollution degree of the installation environment and protection class of the power magnetics cabinet

EN 50178 5.2.15.2 requires that when the machine is installed in the environment of ordinary plants, the class of protection against dust, coolant, chips, and so on be IP54 or higher.

If the power magnetics cabinet satisfies this requirement, the degree of pollution inside the power magnetics cabinet is considered to be class 2.

Insulation design of this amplifier assumes that the amplifier is installed in an environment with pollution degree 2.

When the amplifier is used in a general machine installation environment, install the amplifier in a power magnetics cabinet that satisfies protection class IP54 or higher.

The IP level, however, is determined by the environment (atmosphere) in which the machine is installed. So, the protection class of the power magnetics cabinet should be selected according to the environment.

When an external heat sink cooling type amplifier of which heat sink fin protrudes behind the mounting flange is used, the fin section must be in a cooling area (duct) conforming to around IP22 to IP33, and must be protected from being exposed to direct splashes of coolant, chips, and so forth.

5.5.1.2 Protection against electric shock

(1) Protection against direct contact with charged parts (EN50178 7.2.1)

The electric shock protection level of this amplifier after it is installed is equivalent to IP1X (hand protection), which requires protection against unintentional or careless contact.

This amplifier must be installed in a power magnetics cabinet. According to Section 6.2.1, "Electric shock protection by cabinets", in EN 60204-1, the power magnetics cabinet must be equipped with a lock so that when the power to the amplifier is on, the power magnetics cabinet cannot be opened by persons except special maintenance personnel or persons authorized to do maintenance work who have been sufficiently trained in prevention of electric shock.

If the operator of the machine needs to open the power magnetics cabinet for some operations, the operator must be given thorough safety training, or a protection cover must be provided to prevent the operator from touching the amplifier.

(2) Confirmation of discharge of the electrolytic capacitor (EN50178 7.2.1)

This amplifier includes a large-capacity electrolytic capacitor for the power smoothing circuit. Even after the power supply input circuit is shut off, this capacitor remains charged for a while.

When it becomes necessary to touch the amplifier to do maintenance work or for other purposes, wait until the discharge time indicated on the face plate of the amplifier is passed, or start work after ensuring safety by measuring the residual voltage of the DC link section with a volt-ohm meter and checking that the LED (red) indicating charging is turned off.

(3) Leakage current to the protective ground cable (EN50178 7.2.11) The motor is controlled by changing the average amplitude and frequency of voltage by pulse duration modulation and applying the modulated voltage to the armature. To do this, chopper voltage at a frequency of several kilohertz, which is the carrier frequency for the pulse duration modulation, is applied to the power line of the motor.

Ground stray capacitance mainly between the motor winding and casing and between the power line and protective ground line of the motor power cable causes leakage current to flow through the protective ground line of the motor power cable and machine ground, part of which flows also to the protective ground line of the machine.

The resultant leakage current value is around 1 to 2 mA per motor axis at the commercial power frequency component (50/60Hz). However, with the measurement circuit defined by EN 50178 5.2.11, the sensitivity of high-frequency components cannot be reduced sufficiently, so a value greatly exceeding 3.5 mA is sometimes observed.

If the machine is not grounded, making contact with the machine can result in electric shock. Therefore, provide sufficient protection against electric shock by taking one of the following measures:

- (a) Use a protective ground cable with a copper wire having a sectional area of 10 mm² or more.
- (b) Install a ground-fault circuit interrupter to shut off power as soon as a ground fault occurs.
- (c) Add a protective ground terminal to the cabinet to duplicate protective ground cable connection.
- (d) When installing an RCD unit, use RCD type B.

When using a ground-fault circuit interrupter, select an electromagnetic type with low high-frequency component sensitivity or an electronic type supporting inverters to prevent troubles due to high-frequency components. Measure (a) or (d), which can detect leakage current, is recommended.

B-65282EN/06 5.INSTALLATION

5.5.1.3 Protective grounding

The amplifier has several protective ground terminals (marked according to 417-IEC-5019). These terminals are used not only for protection against electric shock due to dielectric breakdown but also for functional grounding to prevent noise.

Connect all the protective ground terminals to the protective ground (PE) terminal in the power magnetics cabinet.

For how to connect a protective ground cable and its cable diameter, refer to Section 5.2, "GROUND", and Subsection 9.3.1.7, "Details of cable K70", in B-65282EN/06.

Note that connecting a cable terminal to a protective ground point is not permitted.

5.5.1.4 EMC

For CE Marking, the EMC Directive must be observed. FANUC's products have obtained certificates of conformance to EN61000 6.2:2001 and EN55011:1998+A1+A2 (EMC Directive (EC Directive 89/336/EEC) from a third certification organization.

In addition, EMC of the machine and system units must be evaluated according to the above EU and (or) other requirements.

5.5.1.5 Notes on the emergency stop circuit configuration

The power system in the amplifier is shut off by IGBT (transistor) and not by electro-mechanical means.

When configuring an emergency stop circuit, therefore, be sure to insert a line contactor to the power input line of Power Supply for power feeding to allow electro-mechanical shut-off operation, so that voltage is applied to the control coil of the contactor via the contactor control output of Power Supply.

If the amplifier fails, even when the emergency stop command input (*ESP) of the amplifier is driven low, the output relay of Power Supply cannot sometimes be turned off, disabling the line contactor from being shut off.

To surely shut off power, besides the shut-off feature of the amplifier, the emergency stop circuit must have a redundant circuit structure that has an independent route for directly shutting off the line contactor when a command is issued from the emergency stop switch.

When a spindle amplifier module is used, if the power line is shut off during spindle rotation, the power regeneration function may not be able to stop the spindle immediately, allowing the spindle to coast for a long time. So, the redundant circuit mentioned above must have a delay feature using an off-delay timer with a normal stop time taken into account.

5.INSTALLATION B-65282EN/06

5.5.1.6 Reduction of load ratio to ambient temperature

Some servo amplifier models have been approved as products conforming to standards with a load reduction ratio described below set

If the load ratio is exceeded during use, the permissible temperature range of a part used may be exceeded, which can result in the issuance of an overheat alarm or decrease of the life of the part. So, the amplifier must be used so that the reduction characteristic is not exceeded.

For the load reduction ratio, refer to "(6) Derating" in Section 2.2.

5.5.1.7 Overload protection

An overload protection feature is provided as follows:

In the αi SP, the protection feature works when the maximum output continues for 30 s or longer.

In the αi SV, the protection feature works when the current level becomes 1.3 times as high as the rated current of the motor.

5.5.1.8 External overload protection device

The servo amplifier is not equipped with a special protection device. To protect conductors, pay attention to the specifications of the power supply unit.

5.5.1.9 Over-speed protection

The αi series servo amplifiers are not equipped with an over-speed protection device.

5.5.1.10 24-V power supply

Normally, the power for controlling the αi SV and αi SP is supplied from the αi PS. When supplying the power from another external power supply, use a <u>class 2</u> power supply. The <u>class 2</u> power supply uses a transformer and other parts that are proven safety. For details, contact the power supply manufacturer.

5.5.1.11 Screw tightening torque

The screws of the servo amplifier are tightened with the following torque:

Screw size	Tightening torque (Nm)
M4	1.1 to 1.5
M5	2.0 to 2.5
M6	3.5 to 4.5
M10	15 to 16

B-65282EN/06 5.INSTALLATION

5.5.2 Requirements of UL Standards

5.5.2.1 Classification in standards on insulation design

(1) Insulation between circuits and between a circuit and protective ground (UL508C 36)

According to UL508C, insulation design of the amplifier conforms to the requirements of UL840. Connect a protective ground cable to the ground terminal of the lower aluminum flange.

(2) Installation category (overvoltage category)

According to UL508C 36.9.4.(C), this amplifier is designed to fall into installation category (overvoltage category) III, so a surge absorber must be installed in the power input section of the machine. (UL-compliant product, clamp voltage: 6 kV or lower between phases) For details of the installation of a surge absorber, see Appendix A.

(3) Pollution degree of the installation environment and protection class of the power magnetics cabinet

UL508C requires that when the machine is installed in the environment of ordinary plants, the power magnetics cabinet in which this amplifier is to be installed meet pollution degree class 2

The α i series servo amplifiers are open type devices that are not equipped with a complete enclosure. If the power magnetics cabinet satisfies the above requirement, the degree of pollution inside the cabinet is considered to be class 2.

Insulation design of this amplifier assumes that the amplifier is installed in an environment with pollution degree 2.

When an external heat sink cooling type amplifier of which heat sink fin protrudes behind the mounting flange is used, the fin section must be in a cooling area (duct) conforming to around IP22 to IP33, and must be protected from being exposed to direct splashes of coolant, chips, and so forth.

5.INSTALLATION B-65282EN/06

5.5.2.2 Protection against electric shock

(1) Protection against direct contact with charged parts

This amplifier must be installed in a power magnetics cabinet. The power magnetics cabinet must be equipped with a lock so that when the power to the amplifier is on, the power magnetics cabinet cannot be opened by persons except special maintenance personnel or persons authorized to do maintenance work who have been sufficiently trained in prevention of electric shock.

If the operator of the machine needs to open the power magnetics cabinet for some operations, the operator must be given thorough safety training, or a protection cover must be provided to prevent the operator from touching the amplifier.

(2) Confirmation of discharge of the electrolytic capacitor (UL508C 21)

This amplifier includes a large-capacity electrolytic capacitor for the power smoothing circuit. Even after the power supply input circuit is shut off, this capacitor remains charged for a while.

When it becomes necessary to touch the amplifier to do maintenance work or for other purposes, wait until the discharge time indicated on the face plate of the amplifier is passed, or start work after ensuring safety by measuring the residual voltage of the DC link section with a volt-ohm meter and checking that the LED (red) indicating charging is turned off.

5.5.2.3 Protective grounding

Connect all of the protective ground terminals to the protective ground (PE) terminal in the power magnetics cabinet.

For how to connect a protective ground cable and its cable diameter, refer to Section 5.2, "GROUND" and Subsection, "Details of cable K70".

Note that connecting a cable terminal to a protective ground point is not permitted.

5.5.2.4 Overload protection

The αi SP and αi SV are equipped with an overload protection feature.

In the αi SP, the protection feature works when the maximum output continues for 30 s or longer.

In the αi SV, the protection feature works when the current level becomes 1.3 times as high as the rated current of the motor.

5.5.2.5 External overload protection device

The servo amplifier is not equipped with a special protection device. To protect conductors, pay attention to the specifications of the power supply unit.

B-65282EN/06 5.INSTALLATION

5.5.2.6 Short-circuit protection

The 200-V input αi series servo amplifiers are suitable for use with a power supply facility with 85,000 Arms or less/240 V (max).

The 400-V input αi series servo amplifiers are suitable for use with a power supply facility with 85,000 Arms or less//480 V (max).

5.5.2.7 Over-speed protection

The αi series servo amplifiers are not equipped with an over-speed protection device.

5.5.2.8 24-V power supply

Normally, the power for controlling the αi SV and αi SP is supplied from the αi PS. When supplying the power from another external power supply, use a <u>class 2</u> power supply. The <u>class 2</u> power supply uses a transformer and other parts that are proven safety. For details, contact the power supply manufacturer.

5.5.2.9 Screw tightening torque

The screws of the servo amplifier are tightened with the following torque:

Screw size	Tightening torque (Nm)
M4	1.1 to 1.5
M5	2.0 to 2.5
M6	3.5 to 4.5
M10	15 to 16

5.INSTALLATION B-65282EN/06

5.6 NOTES ON COOLANT (REFERENCE)

Coolant including highly active sulfur, oil-free coolant called synthetic coolant, and water-soluble strong alkali coolant particularly affect the CNC, motor, and amplifier. Even when they are protected from being exposed to direct splashes of such coolant, problems described below may occur. So, special care should be taken.

- Coolant including highly active sulfur
 Some of coolants including sulfur include extremely highly
 active sulfur. If such a coolant penetrates into the CNC, motor, or
 amplifier, it can corrode copper, silver and other metallic
 materials of components, therefore resulting in component
 failures.
- Infiltrative synthetic coolant

 Some of synthetic type coolants using polyalkylene glycol (PAG) as a lubricant component have extremely high infiltration. Such coolants easily penetrate into a motor even if it is well closed. When this kind of coolant penetrates into the CNC, motor, or amplifier, it can lead to insulation degrading and component failures.
- Water-soluble strong alkali coolant
 Some of coolants using alkanolamine to increase the pH level are
 so strongly alkaline that an alkalinity of pH10 or more is
 measured when diluted by the standard ratio. If such a coolant
 penetrates into the CNC, motor, or amplifier, it can cause a
 chemical reaction with plastic or other materials, therefore
 degrading the materials.

6

HEAT DISSIPATION

Chapter 6, "HEAT DISSIPATION", consists of the following sections:

6.1	200-V	INPUT SERIES	128
	6.1.1	αi PS series	128
	6.1.2	αi SV series	129
	6.1.3	αi SP series	133
6.2	400-V	INPUT SERIES	134
	6.2.1	αi PS series	134
	6.2.2	αi SV series	135
	623	ai SP series	139

6.1 200-V INPUT SERIES

The amount of heat dissipation by each module of the servo amplifier αi series is described below.

6.1.1 αi PS series

Table 6.1.1(a) α*i* PS

1 4 5 1 1 1 (4) 4 1 1 5								
Name	Rated output	Total amount of heat dissipation	Residual amount of heat in the cabinet					
αi PS 5.5	5.5kW	100W	53W					
α <i>i</i> PS 11	11kW	158W	53W					
α <i>i</i> PS 15	15kW	333W	61W					
αi PS 26	26kW	597W	75W					
αi PS 30	30kW	681W	79W					
α <i>i</i> PS 37	37kW	706W	81W					
α <i>i</i> PS 55	45kW	921W	91W					
W 1 3 33	55kW	1115W	101W					

Table 6.1.1(b) AC reactor for αi PS

Name	Ordering number	Rated output	Total amount of heat dissipation
For αi PS 5.5	A81L-0001-0155	5.5kW	16W
For αi PS 11	A61L-0001-0155	11kW	38W
For α <i>i</i> PS 15	A81L-0001-0156	15kW	50W
For αi PS 26	A81L-0001-0157	26kW	70W
For αi PS 30	A81L-0001-0158	30kW	65W
For αi PS 37	A81L-0001-0159	37kW	55W
For αi PS 55	A81L-0001-0160	55kW	79W
For αi PS 5.5	A81L-0001-0170	2.2kW	35W

Table 6.1.1(c) αi PS_R

Name	Ordering number	Rated output	Total amount of heat dissipation	Residual amount of heat in the cabinet
$\alpha i PS_R 3$	A06B-6115-H003	3kW	60W	60W
ori DC E E	400D C44E 1100C	5.5kW	105W	55W
α <i>i</i> PS _R 5.5	A06B-6115-H006	7.5kW	130W	60W

Table 6.1.1(d) AC line filter for αi PS_R

Name	Ordering number	Rated output	Total amount of heat dissipation
αi PS _R 3	A81L-0001-0083#3C	2.0kW	10W
$\alpha i PS_{RS}$	A81L-0001-0171	3.0kW	15W
αi PS _R 5.5	A D A L O D O A O A O A # C	5.5kW	40W
	A81L-0001-0101#C	7.5kW	50W

6.1.2 αi SV series

The amount of heat dissipation by the αi SV depends on the αi SV model and the current that flows through the servo motor. For the current that flows through a servo motor, reference the continuous rated current of each servo motor. (For the continuous rated current of each servo motor, refer to the servo motor descriptions. For servo motors, the continuous rated current is referred to as the stall current.) As the current that flows through a servo motor, the root-mean-square value of the current that flows through an actual servo motor on a machine can be used.

(1) Total amount of heat dissipation

The total amount of heat dissipation by the αi SV is calculated according to the following expression:

Total amount of heat dissipation

 $= a + Ka1 \times b1 + Ka2 \times b2 + Ka3 \times b3$

a : Amount of heat dissipation determined by the αi SV model [W]

model [w]
Ka1: Coefficient determined by the α*i* SV [W/Arms]

 $\begin{array}{lll} b1 & : & Current flowing through the servo motor [Arms] \\ Ka2 & : & Coefficient determined by the αi SV [W/Arms] \\ b2 & : & Current flowing through the servo motor [Arms] \\ Ka3 & : & Coefficient determined by the αi SV [W/Arms] \\ \end{array}$

Ka3: Coefficient determined by the α*i* SV [W/Arms]
 b3: Current flowing through the servo motor [Arms]

 αi SV 1-axis (Total amount of heat dissipation)

Name	Specification	а	Axis		K [W/Arms]	
Name	Specification	[W]	AXIS	HRV2	HRV3	HRV4
αi SV 4	H101	13	L	5.0	6.5	-
α <i>i</i> SV 20	H103	13	Ш	5.0	6.5	-
αi SV 40	H104	13	L	4.6	5.9	-
α <i>i</i> SV 80	H105	13	Ц	4.3	5.8	-
α <i>i</i> SV 160	H106	17	Ш	4.7	6.1	-
α <i>i</i> SV 360	H109	25	Ш	4.9	5.8	7.9
α <i>i</i> SV 20L	H153	14	┙	5.0	6.5	9.4
αi SV 40L	H154	14	L	4.6	5.9	8.4
α <i>i</i> SV 80L	H155	18	L	4.3	5.8	8.5
αi SV 160L	H156	16	L	4.7	6.1	8.8

lpha i SV 2-axis (Total amount of heat dissipation)

Nome	Chasification	а	Avia		K [W/Arms]	
Name	Specification	[W] Axis		HRV2	HRV3	HRV4
α <i>i</i> SV 4/4	H201	17	L	5.0	6.5	-
α <i>ι</i> 3ν 4/4	П201	17	М	5.0	6.5	-
α <i>i</i> SV 4/20	H203	17	L	5.0	6.5	-
ai 3V 4/20	П203	17	М	5.0	6.5	-
α <i>i</i> SV 20/20	H205	17	L	5.0	6.5	-
αι 3V 20/20	11203		М	5.0	6.5	-
α <i>i</i> SV 20/40	H206	17	L	5.0	6.5	-
αι 3V 20/40	11200	17	М	4.6	5.9	-
α <i>i</i> SV 40/40	H207	19	L	4.6	5.9	-
αι 3V 40/40	11207		М	4.6	5.9	-
αi SV 40/80	H208	19	L	4.6	5.9	-
αι ον 4 0/00	11200	19	M	4.3	5.8	-
αi SV 80/80	H209	19	L	4.3	5.8	-
	11203	13	М	4.3	5.8	-
lpha i SV	H210	19	L	4.3	5.8	-
80/160	11210	13	M	4.7	6.1	-
lpha i SV	H211	19	L	4.7	6.1	-
160/160	11211	19	М	4.7	6.1	-
lpha i SV	H255	21	L	5.0	6.5	9.4
20/20L	п255	21	М	5.0	6.5	9.4
lpha i SV	HOEG	24	L	5.0	6.5	9.4
20/40L	H256	21	M	4.6	5.9	8.4
αi SV	11057	22	L	4.6	5.9	8.4
40/40L	H257	23	М	4.6	5.9	8.4
αi SV	11050	04	L	4.6	5.9	8.4
40/80L	H258	21	М	4.3	5.8	8.5
αi SV	11050	0.4	L	4.3	5.8	8.5
80/80L	H259	21	М	4.3	5.8	8.5

αi SV 3-axis (Total amount of heat dissipation)

Name	Specification	а	Axis	K [W/Arms]		
Name	Specification	[W]	AXIS	HRV2	HRV3	
			L	5.0	6.5	
α <i>i</i> SV 4/4/4	H301	24	М	5.0	6.5	
			Ν	5.0	6.5	
	H303	24	L	5.0	6.5	
α <i>i</i> SV 20/20/20			М	5.0	6.5	
			N	5.0	6.5	
			L	5.0	6.5	
αi SV 20/20/40	H304	24	М	5.0	6.5	
			N	4.6	5.9	

(2) Residual amount of heat in the cabinet

By placing the heat sink section of the αi SV outside the cabinet, the residual amount of heat in the cabinet can be calculated according to the expression below.

Residual amount of heat in the cabinet

 $= a + Kb1 \times b1 + Kb2 \times b2 + Kb3 \times b3$

a : Amount of heat dissipation determined by the αi SV model [W]

Kb1: Coefficient determined by the αi SV [W/Arms] b1: Current flowing through the servo motor [Arms] Kb2: Coefficient determined by the αi SV [W/Arms] b2: Current flowing through the servo motor [Arms] Kb3: Coefficient determined by the αi SV [W/Arms] b3: Current flowing through the servo motor [Arms]

 αi SV 1-axis

Name	Specification	а	Axis	H	([W/Arms]
Name	Specification	[W]	AXIS	HRV2	HRV3	HRV4
αi SV 4	H101	13	L	5.0	6.5	-
lpha i SV 20	H103	13	L	5.0	6.5	-
α <i>i</i> SV 40	H104	13	L	0.92	1.18	-
α <i>i</i> SV 80	H105	13	L	0.86	1.16	-
α <i>i</i> SV 160	H106	17	L	0.47	0.61	-
α <i>i</i> SV 360	H109	25	L	0.25	0.33	0.4
lpha i SV 20L	H153	14	L	5.0	6.5	9.4
lpha i SV 40L	H154	14	L	0.92	1.18	1.68
lpha i SV 80L	H155	18	L	0.43	0.58	0.85
α <i>i</i> SV 160L	H156	16	Ĺ	0.47	0.61	0.88

 αi SV 2-axis

Nome	Consideration	а	Avda	K [W/Arms]			
Name	Specification	[W]	Axis	HRV2	HRV3	HRV4	
αi SV 4/4	H201	17	L	5.0	6.5	-	
at 3V 4/4	11201	17	М	5.0	6.5	-	
α <i>i</i> SV 4/20	Lana	17	L	5.0	6.5	-	
αι 3V 4/20	H203	17	М	5.0	6.5	-	
α <i>i</i> SV 20/20	H205	17	L	5.0	6.5	-	
ai 3V 20/20	H205	17	М	5.0	6.5	-	
α <i>i</i> SV 20/40	H206	17	L	1.0	1.3	-	
ai 3 v 20/40	11200	17	М	0.92	1.18	-	
α <i>i</i> SV 40/40	H207	19	L	0.46	0.59	-	
at 3V 40/40		19	М	0.46	0.59	-	
α <i>i</i> SV 40/80	H208	19	L	0.46	0.59	-	
ai 3V 40/00	П200	19	М	0.43	0.58	-	
αi SV 80/80	H209	19	L	0.43	0.58	-	
at 3 v 60/60		19	М	0.43	0.58	-	
α <i>i</i> SV 80/160	H210	19	L	0.43	0.58	-	
<i>ai</i> 3 v 80/100	11210	19	М	0.47	0.61	-	
α <i>i</i> SV 160/160	H211	19	L	0.47	0.61	-	
at 5 v 100/100	11211	19	M	0.47	0.61	-	
α <i>i</i> SV 20/20L	H255	21	L	1.0	1.3	1.88	
01 3V 20/20L	11255	21	M	1.0	1.3	1.88	
α <i>i</i> SV 20/40L	H256	21	L	0.5	0.65	0.94	
₩ 3 V 20/40L	11200	۷1	М	0.46	0.59	0.84	
α <i>i</i> SV 40/40L	H257	23	L	0.46	0.59	0.84	
0.1 3 V 40/40L	11201	23	М	0.46	0.59	0.84	
lpha i SV 40/80L	H258	21	L	0.46	0.59	0.84	
0.0 0 V 70/00L	11200	۷1	М	0.43	0.58	0.85	
α <i>i</i> SV 80/80L	H259	21	L	0.43	0.58	0.85	
0.1 3 V 00/00L	11209	۷1	М	0.43	0.58	0.85	

αi SV 3-axis

Name	Specification	а	Axis	K [W/	Arms]
ivallie	Specification	[W]	AXIS	HRV2	HRV3
			L	5.0	6.5
α <i>i</i> SV 4/4/4	H301	24	М	5.0	6.5
			Ν	5.0	6.5
			لــ	5.0	6.5
lpha i SV 20/20/20	H303	24	М	5.0	6.5
			Ζ	5.0	6.5
	H304		L	5.0	6.5
α <i>i</i> SV 20/20/40		24	М	5.0	6.5
			Ν	0.92	1.18

6.1.3 αi SP series

Table 6.1.3(a) αi SP

Name	Rated output (Note 1)	Total amount of heat dissipation	Residual amount of heat in the cabinet
lpha i SP2.2	1.5kW	75W	37W
ai SP 5.5	2.2kW	112W	36W
α <i>ι</i> 3F 5.5	3.7kW	120W	36W
αi SP 11	5.5kW	171W	41W
αι SP II	7.5kW	218W	44W
lpha i SP 15	11kW	273W	45W
α <i>i</i> SP 22	15kW	435W	53W
α <i>ι</i> 3F 22	18.5kW	515W	57W
lpha i SP 26	22kW	684W	62W
lpha i SP 30	26kW	739W	65W
lpha i SP 37	26kW	739W	65W
α <i>i</i> SP 45	30kW	911W	75W
ui 3P 45	37kW	1123W	85W
α <i>i</i> SP 55	45kW	1360W	98W

NOTE

- 1 "Rated output" indicates the continuous rated output of the motor.
- 2 The indicated amounts of heat dissipation assume the use of αi I series spindle motor.

6.2 400-V INPUT SERIES

The amount of heat dissipation by each amplifier of the 400-V input αi series servo amplifier is described below.

6.2.1 αi PS series

Table 6.2.1(a) αi PS

Name	Rated output	Total amount of heat dissipation	Residual amount of heat in the cabinet
αi PS 11HV	11kW	136W	51W
αi PS 18HV	18kW	274W	57W
αi PS 30HV	30kW	380W	64W
	30kW	394W	64W
αi PS 45HV	37kW	475W	68W
	45kW	567W	75W
ai PS 75HV	60kW	600W	75W
α <i>i</i> F3 7511V	75kW	738W	82W
α <i>i</i> PS 100HV	100kW	1380W	110W

Table 6.2.1(b) AC reactor for αi PS

Name	Ordering number	Rated output	Total amount of heat dissipation
For αi PS 11HV	A81L-0001-0163	11kW	38W
For αi PS 18HV	A61L-0001-0103	18kW	70W
For αi PS 30HV	A 0.4 L 0.004 0.4 C.4	30kW	60W
For αi PS 45HV	A81L-0001-0164	45kW	100W
For αi PS 75HV	A041 0004 040F	75kW	120W
For αi PS 100HV	A81L-0001-0165	100kW	180W
For αi PS 11HV	A81L-0001-0167	11kW	55W

6.2.2 αi SV series

The amount of heat dissipation by the αi SV depends on the αi SV model and the current that flows through the servo motor. For the current that flows through a servo motor, reference the continuous rated current of each servo motor. (For the continuous rated current of each servo motor, refer to the servo motor descriptions.) As the current that flows through a servo motor, the root-mean-square value of the current that flows through an actual servo motor on a machine can be used.

(1) Total amount of heat dissipation

The total amount of heat dissipation by the αi SV is calculated according to the following expression:

Total amount of heat dissipation = $a + Ka1 \times b1 + Ka2 \times b2$

a : Amount of heat dissipation determined by the αi SV model [W]

Ka1: Coefficient determined by the αi SV [W/Arms] b1: Current flowing through the servo motor [Arms] Ka2: Coefficient determined by the αi SV [W/Arms] b2: Current flowing through the servo motor [Arms]

 αi SV 1-axis (Total amount of heat dissipation)

Name	Specification	а	Axis		K [W/Arms]
Name	Specification	[W]	AXIS	HRV2	HRV2 HRV3	
lpha i SV 10HV	H102	13	L	8.2	14.8	-
lpha i SV 20HV	H103	13	L	8.8	14.5	ı
lpha i SV 40HV	H104	13	L	8.8	15.3	ı
lpha i SV 80HV	H105	17	L	9.0	12.3	
α <i>i</i> SV 180HV	H106	25	L	8.8	12.3	23.4
α <i>i</i> SV 360HV	H109	34	L	7.8	11.0	18.2
lpha i SV 10HVL	H152	14	L	8.2	14.8	26.4
lpha i SV 20HVL	H153	14	L	8.8	14.5	25.2
αi SV 40HVL	H154	18	L	8.8	15.3	27.2
lpha i SV 80HV	H155	16	L	9.0	12.3	23.7

 αi SV 2-axis (Total amount of heat dissipation)

	2-axis (10	а			([W/Arms	1
Name	Specification	[W]	Axis	HRV2	HRV3	HRV4
α <i>i</i> SV 10/10HV	H202	17	L	8.2	14.8	-
at 50 10/10/10	11202	17	М	8.2	14.8	-
α <i>i</i> SV 20/20HV	H205	17	L	8.8	14.5	-
at 3V 20/2011V	H205	17	М	8.8	14.5	-
α <i>i</i> SV 20/40HV	H206	19	L	8.8	14.5	-
at 3V 20/4011V	H200	19	М	8.8	15.3	-
α <i>i</i> SV 40/40HV	H207	19	L	8.8	15.3	-
α <i>ι</i> 3ν 40/40πν	H207	19	М	8.8	15.3	-
α <i>i</i> SV 40/80HV	1,1000	19	L	8.8	15.3	-
α <i>ι</i> 3ν 4υ/ουπν	H208		М	9.0	12.3	-
αi SV 80/80HV	11000	4.0	L	9.0	12.3	-
α <i>ι</i> 3ν ου/ουπν	H209	19	М	9.0	12.3	-
α <i>i</i> SV 10/10HVL	LIOFO	40	L	8.2	14.8	26.4
α <i>ι</i> 3ν 10/10ΠνΕ	H252	19	М	8.2	14.8	26.4
α <i>i</i> SV 20/20HVL	LIOEE	24	L	8.8	14.5	25.2
αι 3V 20/20ΠVL	H255	21	М	8.8	14.5	25.2
α <i>i</i> SV 20/40HVL	LIOFO	24	L	8.8	14.5	25.2
αι 3V 20/40ΠVL	H256	21	М	8.8	15.3	27.2
α <i>i</i> SV 40/40HVL	LIGET		L	8.8	15.3	27.2
αι 3V 40/40ΠVL	H257	21	М	8.8	15.3	27.2

(2) Residual amount of heat in the cabinet

By placing the heat sink section of the αi SV outside the cabinet, the residual amount of heat in the cabinet can be calculated according to the expression below.

Residual amount of heat in the cabinet

 $= a + Kb1 \times b1 + Kb2 \times b2$

a : Amount of heat dissipation determined by the αi SV

model [W]

Coefficient determined by the ai SV

 $\begin{array}{lll} Kb1: & Coefficient determined by the αi SV [W/Arms] \\ b1: & Current flowing through the servo motor [Arms] \\ Kb2: & Coefficient determined by the αi SV [W/Arms] \\ b2: & Current flowing through the servo motor [Arms] \\ \end{array}$

αi SV 1-axis (Residual amount of heat in the cabinet)

Name	Specification	а	Axis	ŀ	〈 [W/Arms	i]
Name	Specification	[W]	AXIS	HRV2	HRV3	HRV4
αi SV 10HV	H102	13	L	8.2	14.8	-
αi SV 20HV	H103	13	L	1.76	2.9	-
αi SV 40HV	H104	13	L	1.76	2.9	-
αi SV 80HV	H105	17	L	0.90	1.23	-
α <i>i</i> SV 180HV	H106	25	L	0.44	0.62	1.17
α <i>i</i> SV 360HV	H109	34	L	7.8	11	18.2
lpha i SV 10HVL	H152	14	L	1.64	1.53	2.64
lpha i SV 20HVL	H153	14	L	0.88	1.53	2.52
αi SV 40HVL	H154	18	L	0.88	1.53	2.72
αi SV 80HV	H155	16	L	0.90	1.23	2.37

 αi SV 2-axis (Residual amount of heat in the cabinet)

Name	Specification	a Axis		ŀ	([W/Arms]
Name	Specification	[W]	AXIS	HRV2	HRV3	HRV4
α <i>i</i> SV 10/10HV	H202	17	Ka1	8.2	14.8	-
αι 3 ν 10/10/1ν	11202	17	Ka2	8.2	14.8	-
α <i>i</i> SV 20/20HV	H205	17	Ka1	1.76	2.9	-
<i>at</i> 37 20/20117	11203	17	Ka2	1.76	2.9	-
α <i>i</i> SV 20/40HV	H206	19	Ka1	0.88	1.45	-
ai 3v 20/4011v	H206	19	Ka2	0.88	1.53	-
αi SV 40/40HV	H207	19	Ka1	0.88	1.53	-
at 30 40/40110	H207	19	Ka2	0.88	1.53	-
αi SV 40/80HV	H208	19	Ka1	0.88	1.53	-
at 3v 40/8011v	H206	19	Ka2	0.90	1.23	-
α <i>i</i> SV 80/80HV	H209	10	Ka1	0.90	1.23	-
<i>at</i> 37 80/80117	H209	19	Ka2	0.90	1.23	-
αi SV 10/10HVL	H252	19	Ka1	0.82	1.48	2.64
α <i>ι</i> 3ν 10/10/1۷Ε	11232	19	Ka2	0.82	1.48	2.64
αi SV 20/20HVL	H255	21	Ka1	0.88	1.45	2.52
ai 3V 20/2011VL	H255	21	Ka2	0.88	1.45	2.52
α <i>i</i> SV 20/40HVL	H256	21	Ka1	0.88	1.45	2.52
ai 3v 20/4011vL	11230	21	Ka2	0.88	1.53	2.37
α <i>i</i> SV 40/40HVL	H257	21	Ka1	0.88	1.53	2.37
W 30 40/40HVL	П201	21	Ka2	0.88	1.53	2.37

6.2.3 αi SP series

Table 6.2.3 αi SP

Name	Rated output (Note 1)	Total amount of heat dissipation	Residual amount of heat in the cabinet
	0.55kW	26W	18W
αi SP 5.5HV	1.5kW	44W	22W
ai SF 5.511V	2.2kW	59W	24W
	3.7kW	87W	29W
α <i>i</i> SP 11HV	5.5kW	122W	37W
at SP TIHV	7.5kW	156W	39W
lpha i SP 15HV	11kW	189W	40W
αi SP 30HV	15kW	247W	41W
at SP 30HV	22kW	349W	45W
α <i>i</i> SP 45HV	30kW	482W	52W
α <i>ι</i> οτ 45πν	37kW	588W	57W
αi SP 75HV	60kW	1264W	91W
lpha i SP 100HV	100kW	2100W	150W

NOTE

- 1 "Rated output" indicates the continuous rated output of the motor.
- 2 The indicated amounts of heat dissipation assume the use of αi I series spindle motor.

7.COOLING B-65282EN/06

COOLING

The αi series has a built-in fan for external fin cooling, so that external forced air cooling is unnecessary.

To maintain cooling efficiency, be sure to provide maintenance areas

as described in Section 8.1.

8

EXTERNAL DIMENSIONS AND MAINTENANCE AREA

Chapter 8 "EXTERNAL DIMENSIONS AND MAINTENANCE AREA", consists of the following sections:

8.1	OUTLI	NE DRAWINGS	142
	8.1.1	Outline Drawings of Amplifiers, Panel Cut-out,	
		and Maintenance Area	142
	8.1.2	AC Reactor Unit	148
	8.1.3	AC Line Filter	158
	8.1.4	Power Transformer	159
	8.1.5	Regenerative Discharge Unit	165
	8.1.6	Dynamic Brake Module (DBM)	168
	8.1.7	Circuit Breaker	170
	8.1.8	Magnetic Contactors	172
		Lightning Surge Protector	
		Noise Filter	
8 2	PANFI	CUT-OUT DIAGRAMS	185

8.1 OUTLINE DRAWINGS

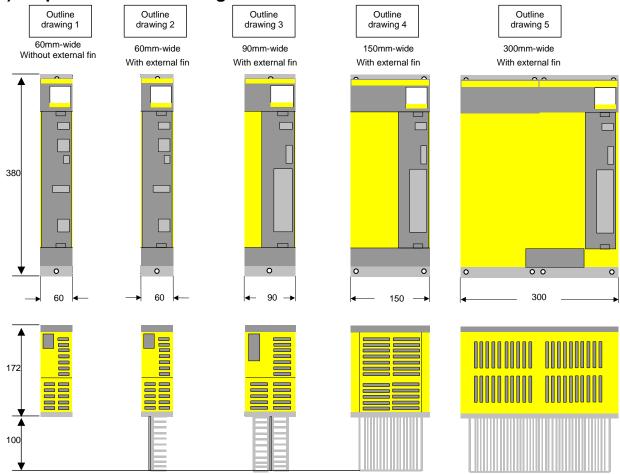
8.1.1 Outline Drawings of Amplifiers, Panel Cut-out, and Maintenance Area

(1) αi PS series

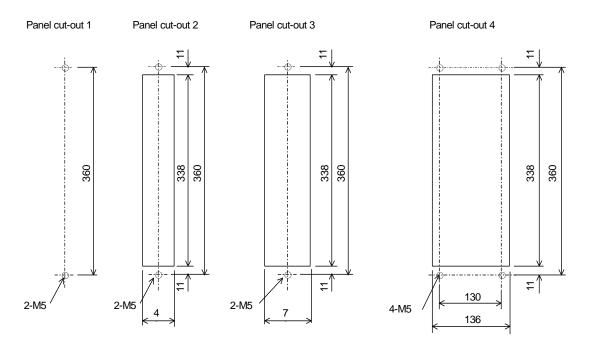
	Model		Outline drawing	Panel cut-out	Maintenance area	Internal fan*1	Internal fan*2	External fan
		α <i>i</i> PS 5.5	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	-	-
		α <i>i</i> PS 11	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	-	Provided
		α <i>i</i> PS 15	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	-	Provided
	200-V input series	α <i>i</i> PS 26	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	-	Provided
		α <i>i</i> PS 30	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	-	Provided
Power		α <i>i</i> PS 37	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	-	Provided
regeneration type		α <i>i</i> PS 55	Outline drawing 5	Panel cut-out 5	Maintenance area 4	Provided	Provided	Provided
туре		α <i>i</i> PS 11HV	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	-	Provided
		αi PS 18HV	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	-	Provided
	400-V input	α <i>i</i> PS 30HV	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	Provided	Provided
	series	α <i>i</i> PS 45HV	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	Provided	Provided
		αi PS 75HV	Outline drawing 5	Panel cut-out 5	Maintenance area 4	Provided	Provided	Provided
		α <i>i</i> PS 100HV	Outline drawing 5	Panel cut-out 5	Maintenance area 4	Provided	Provided	Provided
Resistance	200-V input	αi PS _R 3	Outline drawing 1	Panel cut-out 1	Maintenance area 1	1	Provided	-
regeneration type	series	α <i>i</i> PS _R 5.5	Outline drawing 2	Panel cut-out 2	Maintenance area 1	-	Provided	-

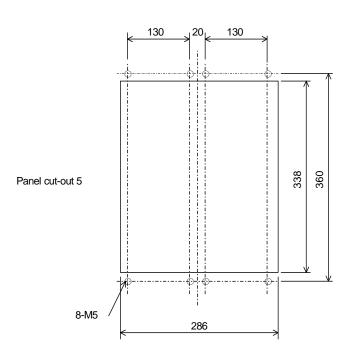
^{*1} Internal cooling fan

^{*2} Radiator cooling fan


(2) αi SV series

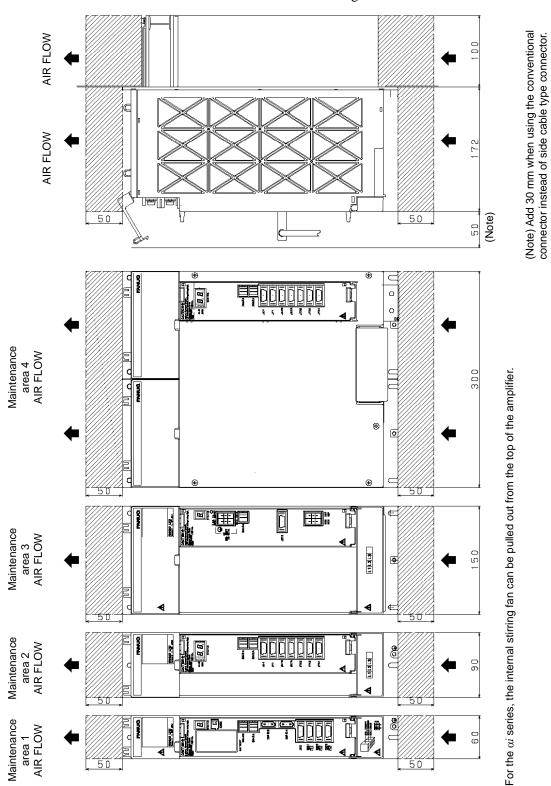
	Мо	odel	Outline drawing	Panel cut-out	Maintenance area	Internal fan	External fan
		αi SV 4	Outline drawing 1	Panel cut-out 1	Maintenance area 1	Provided	-
		αi SV 20	Outline drawing 1	Panel cut-out 1	Maintenance area 1	Provided	-
		αi SV 80	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	-
		ari SV 4 Outline drawing 1 Panel cut-out 1 Maintenance area 1 Provider ari SV 80 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 80 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 360 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 360 Outline drawing 2 Panel cut-out 2 Maintenance area 3 Provider ari SV 360 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 360 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 360 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 360 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 401 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 4020 Outline drawing 3 Panel cut-out 3 Maintenance area 1 Provider ari SV 4020 Outline drawing 1 Panel cut-out 1 Maintenance area 1 Provider ari SV 4020 Outline drawing 1 Panel cut-out 1 Maintenance area 1 Provider ari SV 4040 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 4040 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 4040 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 4040 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 4040 Outline drawing 3 Panel cut-out 2 Maintenance area 1 Provider ari SV 4040 Outline drawing 2 Panel cut-out 2 Maintenance area 1 Provider ari SV 4040 Outline drawing 3 Panel cut-out 2 Maintenance area 1 Provider ari SV 4040 Outline drawing 3 Panel cut-out 3 Maintenance area 1 Provider ari SV 4040 Outline drawing 3 Panel cut-out 3 Maintenance area 1 Provider ari SV 4040 Outline drawing 3 Panel cut-out 3 Maintenance area 1 Provider ari SV 4040 Outline drawing 3 Panel cut-out 3 Maintenance area 1 Provider ari SV 4040 Outline drawing 3 Panel cut-out 2 Maintenance area 1 Provider ari SV 4040 Outline drawing 3 Panel cut-out 2 Maintenance area 1 Provider ari SV 4040 Outline drawing 3 Panel cut-out 3 Maintenance area 1 Provider ari SV 4040 Outline drawing 3 Panel cut-out 3 Maintenance area	Provided	Provided			
	1-axis	αi SV 360	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	Provided
		αi SV 20L	Outline drawing 2		Maintenance area 1	Provided	-
						Provided	-
		αi SV 80L	Outline drawing 2		Maintenance area 1	Provided	Provided
			Outline drawing 3		Maintenance area 2	Provided	Provided
		αi SV 4/4	Outline drawing 1	Panel cut-out 1	Maintenance area 1	Provided	-
		αi SV 4/20	Outline drawing 1	Panel cut-out 1	Maintenance area 1	Provided	-
200-V		αi SV 20/20	Outline drawing 1	Panel cut-out 1	Maintenance area 1	Provided	-
input		αi SV 20/40	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	-
series		αi SV 40/40	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	Provided
001100		αi SV 40/80	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	Provided
	2-avic	αi SV 80/80	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	Provided
	2-0113	αi SV 80/160	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
		αi SV 160/160	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
		αi SV 20/20L	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	-
		αi SV 20/40L	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	Provided
		αi SV 40/40L	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	Provided
		αi SV 40/80L	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
		αi SV 80/80L	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
		αi SV 4/4/4	Outline drawing 1	Panel cut-out 1	Maintenance area 1	Provided	-
	3-axis	αi SV 20/20/20	Outline drawing 1	Panel cut-out 1	Maintenance area 1	Provided	-
		αi SV 20/20/40	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	-
		αi SV 10HV	Outline drawing 1	Panel cut-out 1	Maintenance area 1	Provided	-
		αi SV 20HV	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	-
		αi SV 40HV	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	-
		αi SV 80HV	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	Provided
					Maintenance area 3	Provided	Provided
	1-axis						
			•				Provided
							- -
					i	Provided	Provided
400-V				İ		Provided	Provided
input					Maintenance area 2	Provided	Provided
series			Outline drawing 1	Panel cut-out 1	Maintenance area 1	Provided	-
		α <i>i</i> SV 20/20HV	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	-
		α <i>i</i> SV 20/40HV	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
		α <i>i</i> SV 40/40HV	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
	0 6145	α <i>i</i> SV 40/80HV	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
	2-axis	αi SV 80/80HV	Outline drawing 3			Provided	Provided
			•	İ		Provided	_
		-	-			Provided	Provided
			-			Provided	Provided
			-			Provided	Provided


(3) αi SP series


	Mode	el	Outline drawing	Panel cut-out	Maintenance area	Internal fan	External fan
		α <i>i</i> SP 2.2	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	-
		α <i>i</i> SP 5.5	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	Provided
		α <i>i</i> SP 11	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
	000.17	α <i>i</i> SP 15	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
	200-V	α <i>i</i> SP 22	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	Provided
	input series	α <i>i</i> SP 26	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	Provided
	301103	α <i>i</i> SP 30	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	Provided
		α <i>i</i> SP 37	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	Provided
αi series		α <i>i</i> SP 45	Outline drawing 5	Panel cut-out 5	Maintenance area 4	Provided	Provided
		α <i>i</i> SP 55	Outline drawing 5	Panel cut-out 5	Maintenance area 4	Provided	Provided
		αi SP 5.5HV	Outline drawing 2	Panel cut-out 2	Maintenance area 1	Provided	Provided
		αi SP 11HV	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
	400-V	αi SP 15HV	Outline drawing 3	Panel cut-out 3	Maintenance area 2	Provided	Provided
	input	αi SP 30HV	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	Provided
	series	αi SP 45HV	Outline drawing 4	Panel cut-out 4	Maintenance area 3	Provided	Provided
		α <i>i</i> SP 75HV	Outline drawing 5	Panel cut-out 5	Maintenance area 4	Provided	Provided
		α <i>i</i> SP 100HV	Outline drawing 5	Panel cut-out 5	Maintenance area 4	Provided	Provided

(4) Amplifier outline drawings

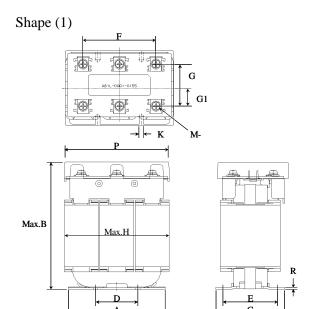
(5) Panel cut-out drawings

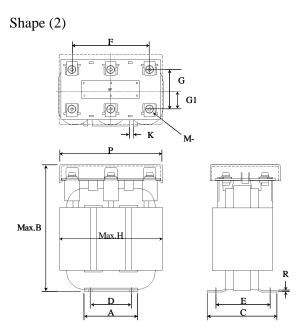


See Section 8.2 for details.

(6) Maintenance area drawings

An amplifier contains a fan motor for internal stirring. To allow air to flow and make replacement of a fan unit easy, be sure to reserve the shaded areas shown in the figure below.

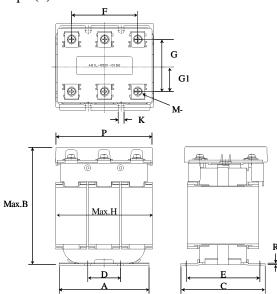



8.1.2 AC Reactor Unit

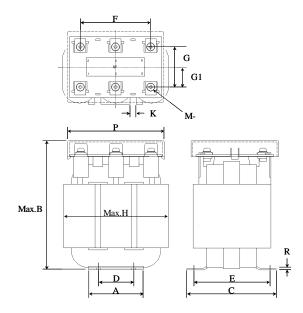
(a) A81L-0001-0155

There are two types of shapes under the same specification drawing number. Both types use the same mounting pitches and other dimensions for mounting.

Specifying shape (1) or (2) is not possible.


	Α	В	С	D	E	F	G	G1	Н	K	Р	R	M
Shape (1)	115	155	82	50	65	84	48	20.5	135	5	135	2	M5
Shape (2)	65	155	85	50	65	94	48	20.5	127	5	125	2	M5

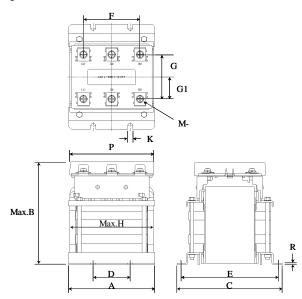
(b) A81L-0001-0156


There are two types of shapes under the same specification drawing number. Both types use the same mounting pitches and other dimensions for mounting.

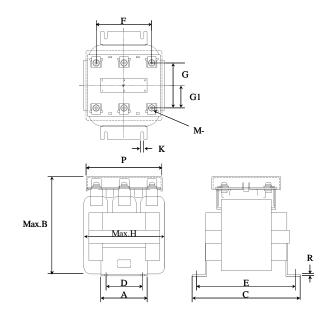
Specifying shape (1) or (2) is not possible.

Shape (1)

Shape (2)


	Α	В	С	D	Е	F	G	G1	Н	K	Р	R	М
外形(1)	115	155	108	42	95	84	66	29.5	135	7.2	135	2	M5
外形 (2)	65	155	107	42	95	84	66	29	131	7.2	115	2	M5

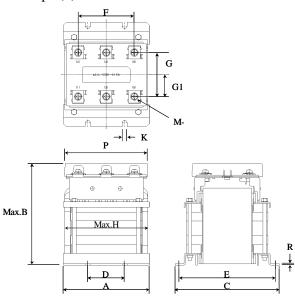
(c) A81L-0001-0157


There are two types of shapes under the same specification drawing number. Both types use the same mounting pitches and other dimensions for mounting.

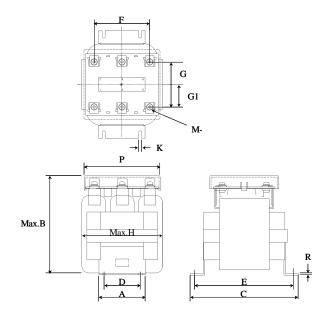
Specifying shape (1) or (2) is not possible.

Shape (1)

Shape (2)


	Α	В	C	D	E	F	G	G1	Н	K	Р	R	M
Shape (1)	128	155	165	55	145	84	66	33	135	7.2	135	2	M5
Shape (2)	70	155	165	55	145	84	66	33	135	7.2	115	2	M5

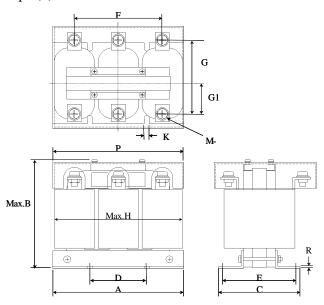
(d) A81L-0001-0158


There are two types of shapes under the same specification drawing number. Both types use the same mounting pitches and other dimensions for mounting.

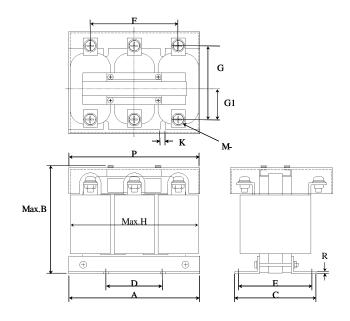
Specifying shape (1) or (2) is not possible.

Shape (1)

Shape (2)


	Α	В	С	D	Е	F	G	G1	Н	K	Р	R	М
Shape (1)	128	155	165	55	145	84	66	33	135	7.2	135	2	M5
Shape (2)	70	155	165	55	145	84	66	33	135	7.2	115	2	M5

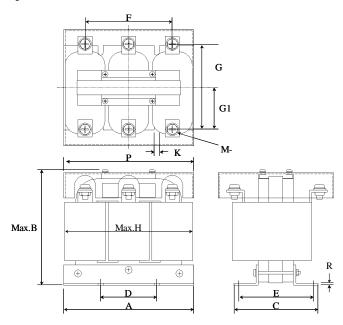
(e) A81L-0001-0159


There are two types of shapes under the same specification drawing number. Both types use the same mounting pitches and other dimensions for mounting.

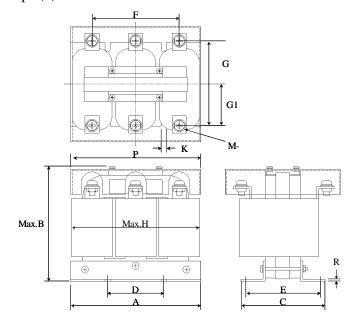
Specifying shape (1) or (2) is not possible.

Shape (1)

Shape (2)

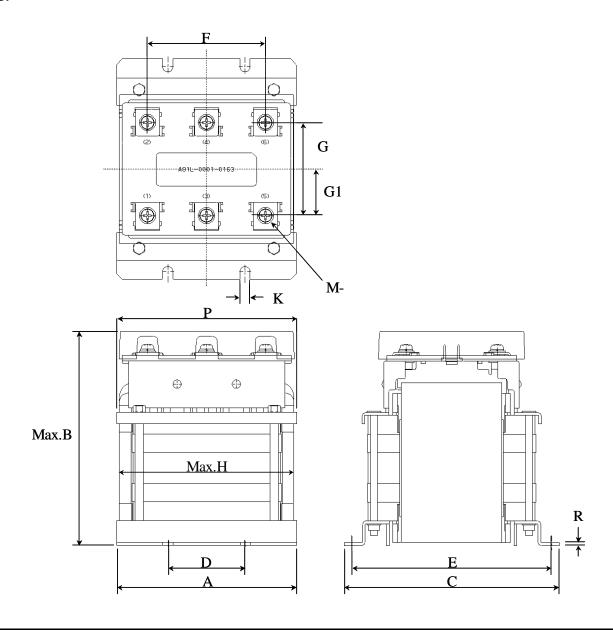

	Α	В	С	D	Е	F	G	G1	Н	K	Р	R	M
Shape (1)	185	160	115	80	100	124	105	44	185	7.2	185	2.6	M8
Shape (2)	184	160	115	80	100	124	95	38.5	185	7.2	185	2.6	M8

(f) A81L-0001-0160

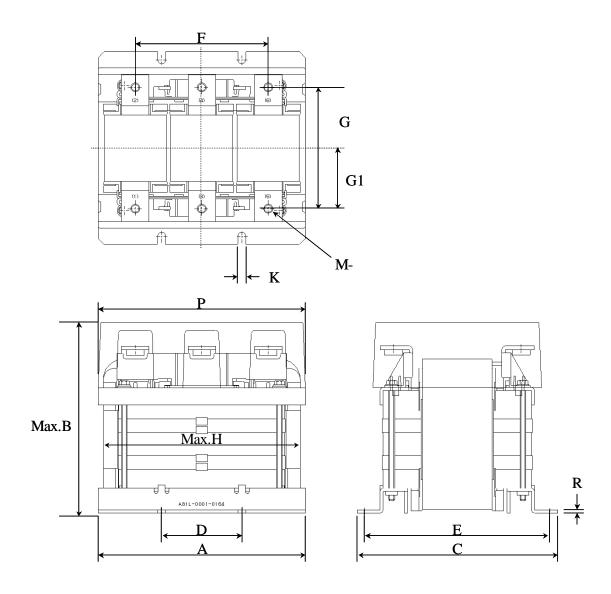

There are two types of shapes under the same specification drawing number. Both types use the same mounting pitches and other dimensions for mounting.

Specifying shape (1) or (2) is not possible.

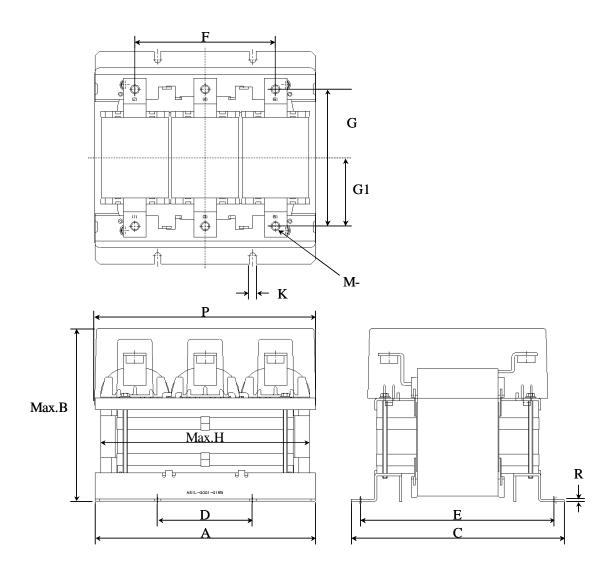
Shape (1)



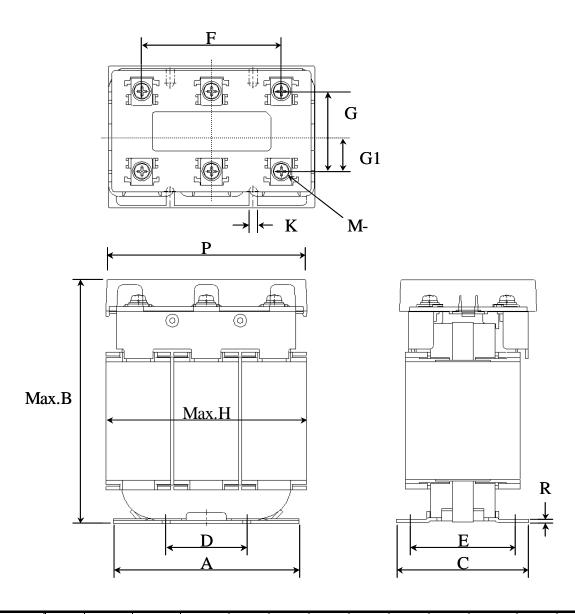
Shape (2)


	Α	В	С	D	Е	F	G	G1	Н	K	Р	R	М
Shape (1)	185	170	120	80	100	124	125	58	190	7.2	185	2.6	M8
Shape (2)	184	170	120	80	100	124	115	57.5	185	7.2	185	2.6	M8

(g) A81L-0001-0163

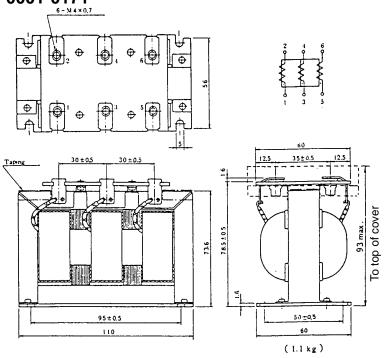

	Α	В	С	D	E	F	G	G1	Н	K	Р	R	М
A81L-0001-0163	135	155	165	55	145	84	66	33	135	7.2	135	2	M5

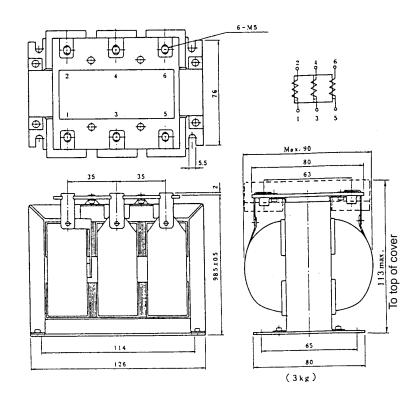
(h) A81L-0001-0164


	Α	В	С	D	E	F	G	G1	Н	K	Р	R	М
A81L-0001-0164	185	172	175	70	154	116	106	53	185	7	185	2.6	M8

(i) A81L-0001-0165

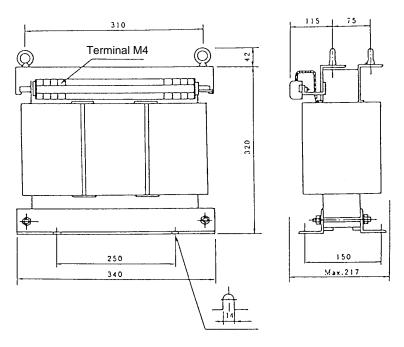
	Α	В	С	D	Е	F	G	G1	Н	K	Р	R	M
A81L-0001-0165	248	200	238	105	216	155	151	75.5	248	7	248	2.6	M10


(j) A81L-0001-0167 (j) A81L-0001-0170

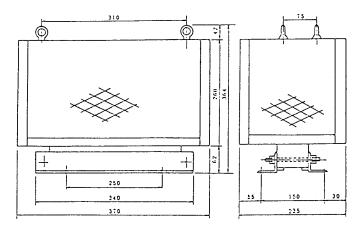

	Α	В	С	D	Е	F	G	G1	Н	K	Р	R	M
Shape (1)	115	155	82	50	65	84	48	20.5	135	5	135	2	M5

8.1.3 AC Line Filter

(a) A81L-0001-0083#3C, A81L-0001-0171

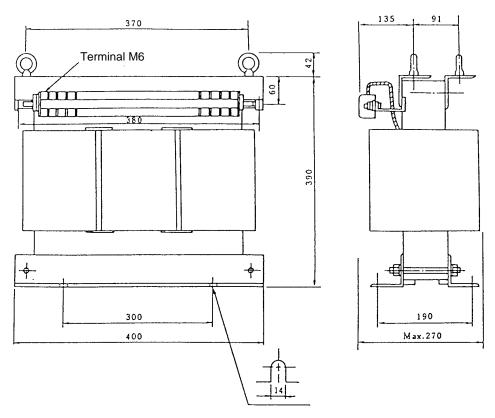


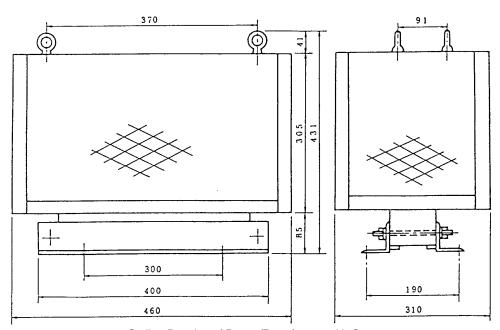
(b) A81L-0001-0101#C



8.1.4 Power Transformer

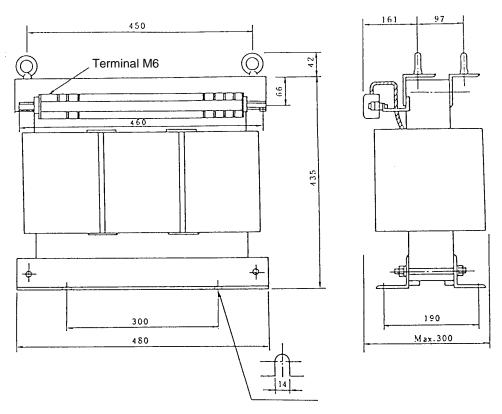
(a) For αi PS 5.5, αi PS_R 5.5 (at 5.5 kW output) (A06B-6052-J001)

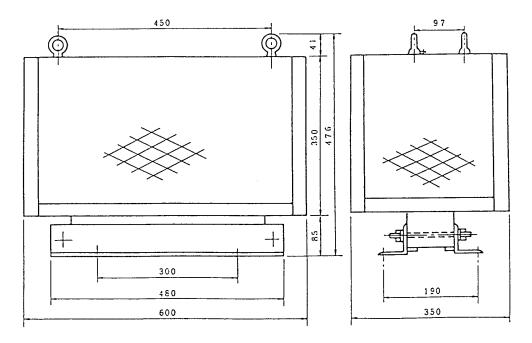

Outline Drawing of Power Transformer with no Cover


Outline Drawing of Power Transformer with Cover

NOTE

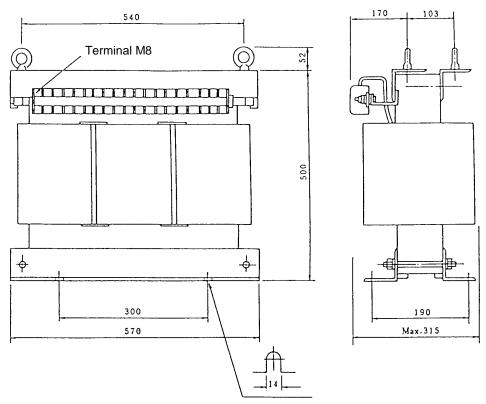
(b) For αi PS 11 , αi PS_R 5.5 (at 7.5KW output) (A06B-6044-J006)

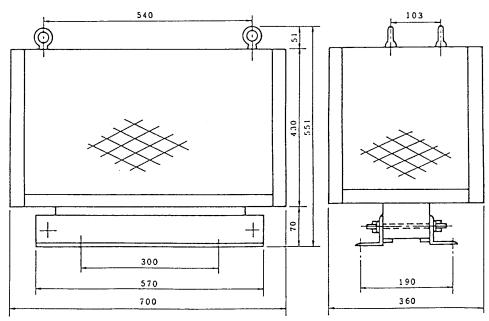

Outline Drawing of Power Transformer with no Cover


Outline Drawing of Power Transformer with Cover

NOTE

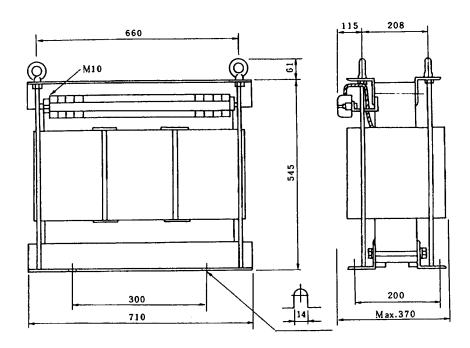
(c) For αi PS 15 (A06B-6044-J007)

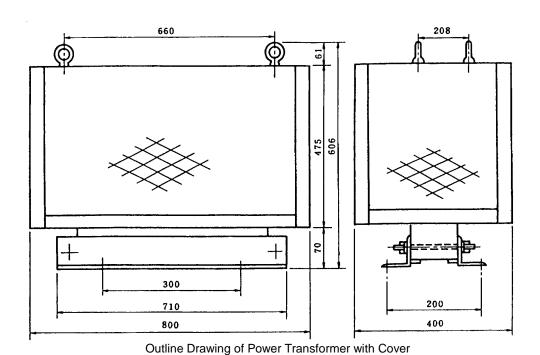

Outline Drawing of Power Transformer with no Cover


Outline Drawing of Power Transformer with Cover

NOTE

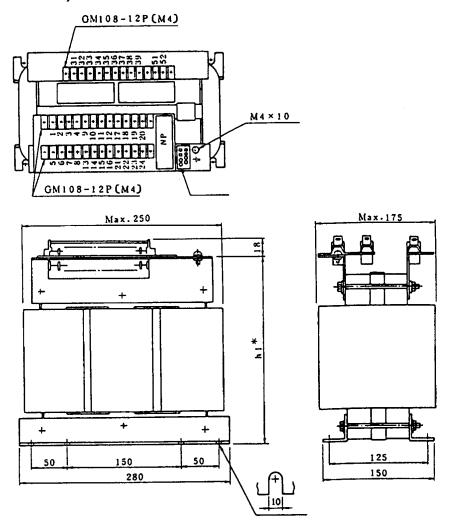
(d) For α*i* PS 26, 30(A06B-6044-J010)


Outline Drawing of Power Transformer with no Cover


Outline Drawing of Power Transformer with Cover

NOTE

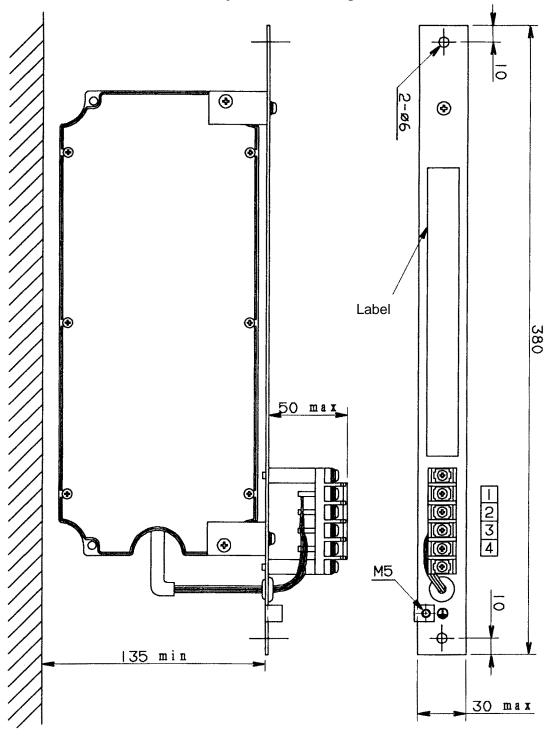
(e) For αi PS 37, αi PS 55 (at 45kW output) (A06B-6044-J015)



Outline Drawing of Power Transformer with no Cover

NOTE

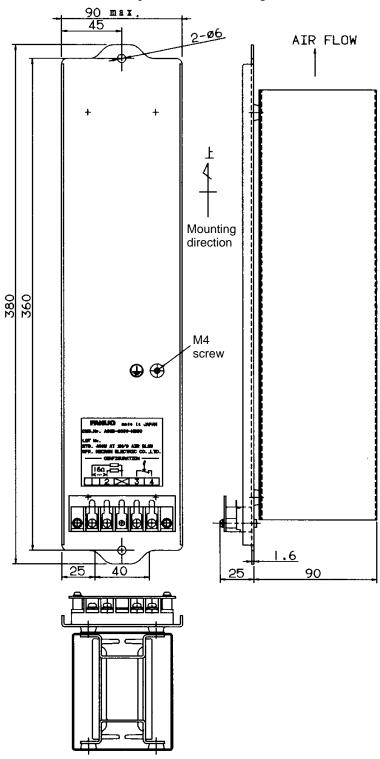
(f) For αi PS_R 3 (2KW output) (A80L-0024-0006), αi PS_R 3 (3KW output) (A80L-0026-0003)



Drawing number	A80L-0024-0006	A80L-0026-0003
Type (name)	SBE	SCE
Weight	27 kg	36 kg
hl* (height of transformer)	217mm max	247mm max

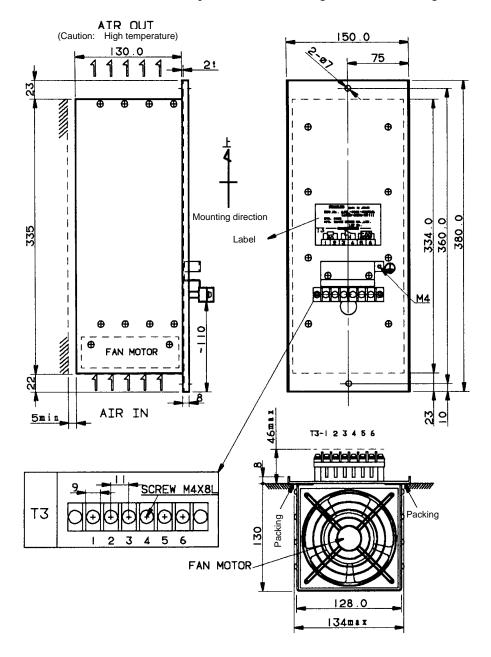
8.1.5 Regenerative Discharge Unit

(a) A06B-6089-H510


For the panel cut-out drawing, see Section 8.2 (e).

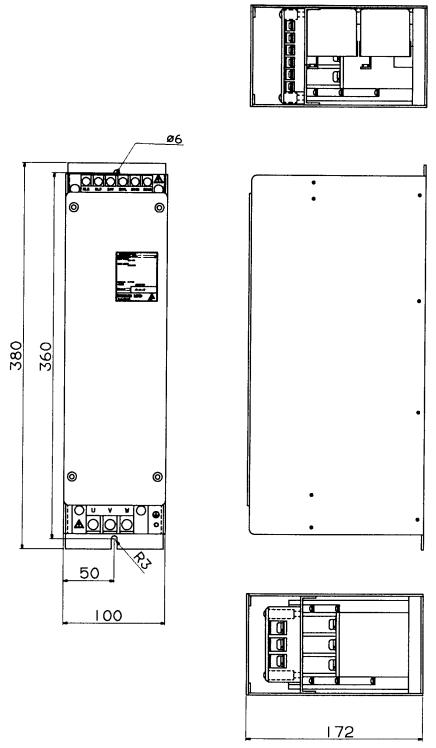
Terminal block: $M4 \times 4$

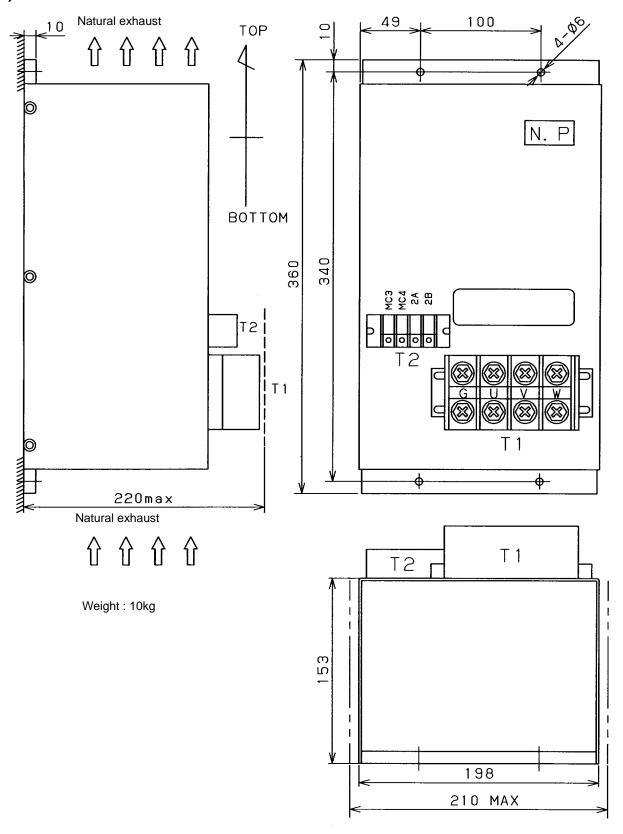
(b) A06B-6089-H500


For the panel cut-out drawing, see Section 8.2 (f).

Terminal block: M4 × 4

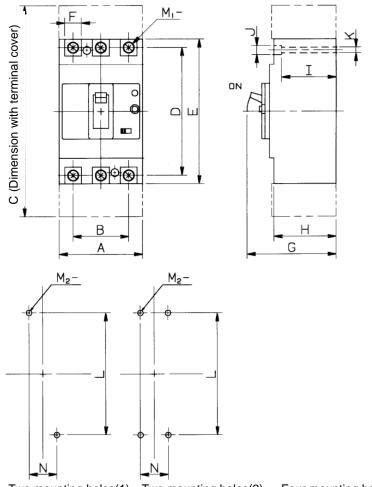
(c) A06B-6089-H711 to H713


For the panel cut-out drawing, see Section 8.2 (g).


8.1.6 Dynamic Brake Module (DBM)

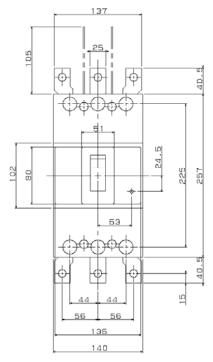
For the panel cut-out drawing, see Section 8.2 (j).

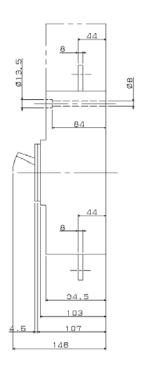
(a) A06B-6079-H401

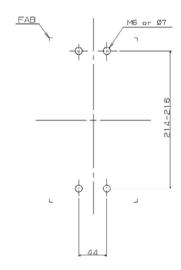


(b) A06B-6069-H300

8.1.7 Circuit Breaker

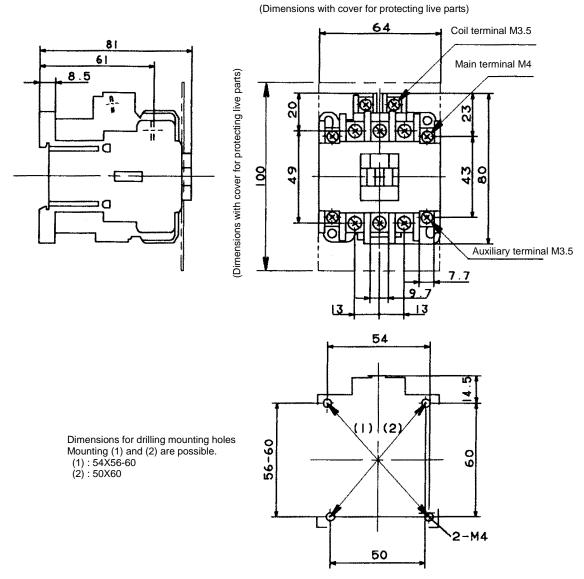

	Ordering drawing number	Α	В	С	D	E	M ₁ -	F	G	н	I	J	K	L	M ₂ -	N	Mounting
(a)	A06B-6077-K101	75	50	180	84	100	M5	17	84	60	43	φ7.8	φ4.9	84	M4	25	2 positions
(b)	A06B-6077-K102																
(c)	A06B-6077-K103	75	50	180	84	100	M8	17	84	60	43	φ7.8	φ4.9	84	M4	25	2 positions
(d)	A06B-6077-K104																
(e)	A06B-6077-K108																
(f)	A06B-6077-K105																
(g)	A06B-6077-K110	105	70	265	144	165	M8	25.5	84	56	47	φ8.5	φ4.5	126	M4	35	4 positions
(h)	A06B-6077-K109																
(i)	A06B-6077-K107																
(j)	A06B-6077-K106	75	50	180	84	100	M5	17	84	60	43	φ7.8	φ4.9	84	M4	25	2 positions

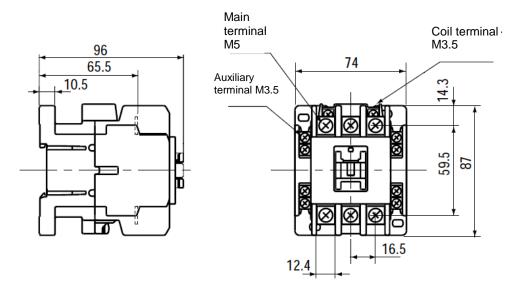



Two mounting holes(1) Two mounting holes(2) Four mounting holes

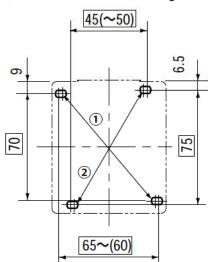
The circuit breakers have two or four mounting holes.

(k) A06B-6077-K111




8.1.8 Magnetic Contactors

(a) A06B-6077-K121

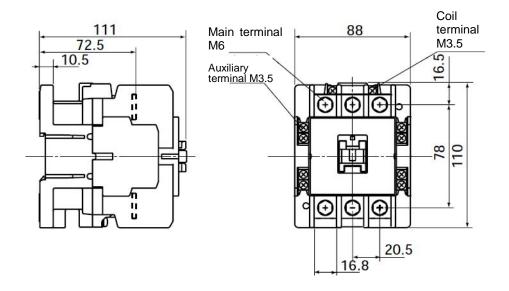


Ordering drawing	Fuji Elec num	ctric part nber	voltage contact		Weight
number	Body	Cover			
A06B-6077-K121	SC-5-1	ISZ- IC4	200V/50Hz 200-220V/60Hz	1a1b	0.38Kg

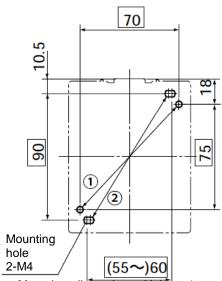
(b) A06B-6077-K122, A06B-6077-K123

Dimensions for drilling mounting holes

 Mounting dimensions: Holes <1> or <2> can be used for mounting.


<1>: $(60 \text{ to}) 65 \times 70$ (compatible with SC-1N and SC-2N)

<2>: 45 (to 50) × 75 Mounting screw: 2-M4

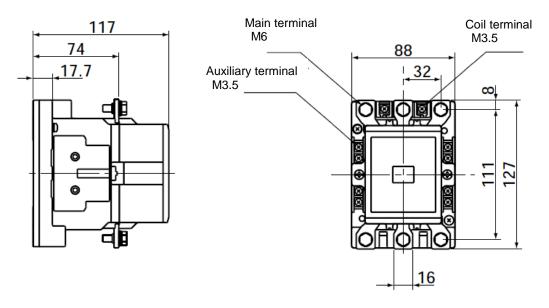

Install a screw at two mounting holes located diagonally.

Ordering drawing	_	tric part	Operation coil voltage	Auxiliary contact	Weight
number	Body	Body	voltage	structure	
A06B-6077-K122	SC-N1	SZ-N1J	200V/50Hz	2a2b	0.59Kg
A06B-6077-K123	SC-N2	SZ-N1J	200-220V/60Hz	2020	0.59Kg

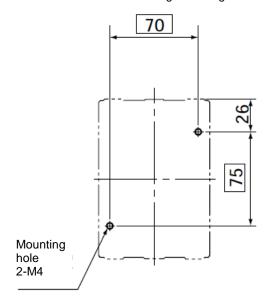
(c) A06B-6077-K124

Dimensions for drilling mounting holes

 Mounting dimensions: Holes <1> or <2> can be used for mounting.

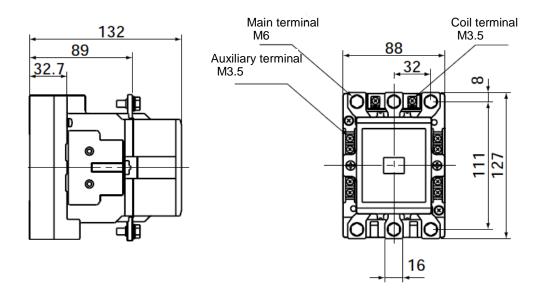

<1>: 70×75 (compatible with SC-1N and SC-2N)

<2>: (55 to) 60 × 90

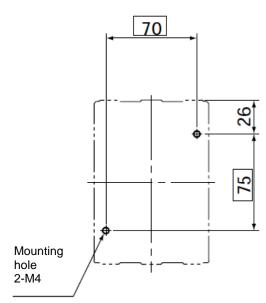

Mounting screw: 2-M4
Install a screw at two mounting holes located diagonally.

Ordering drawing	Fuji Elec num	tric part	Operation coil voltage	Auxiliary contact	Weight
number	Body	Body	voitage	structure	
A06B-6077-K124	SC-N2S	I SCI TOS	200V/50Hz 200-220V/60Hz	2a2b	1.1Kg

(d) A06B-6077-K125

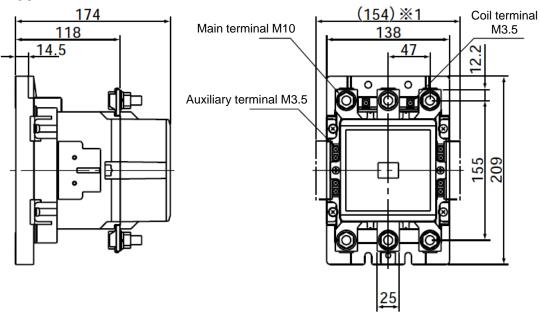


Dimensions for drilling mounting holes

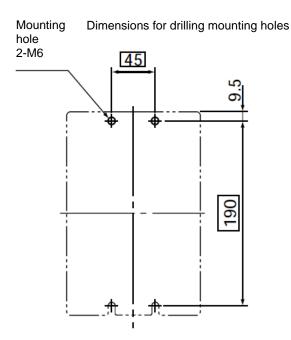


Ordering drawing	_	ctric part nber	Operation coil	Auxiliary contact	Weight
number	Body	Cover	voltage		
A06B-6077-K125	SC-N4	I Q 7_NI/I I	200V/50Hz 200-220V/60Hz	2a2b	1.5Kg

(e) A06B-6077-K126

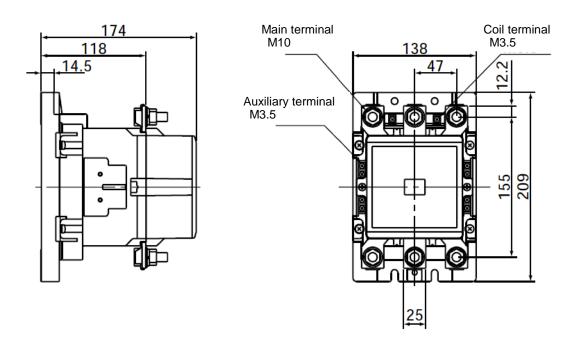


Dimensions for drilling mounting holes



Ordering drawing	_	ctric part nber	Operation coil	Auxiliary contact	Weight
number	Body	Body	voltage structure		
A06B-6077-K126	SC-N5	I Q 7_NI/I I	200V/50Hz 200-220V/60Hz	2a2b	1.8Kg

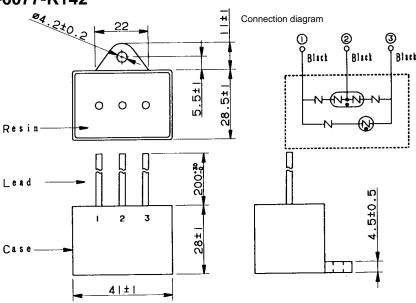
(f) A06B-6077-K127

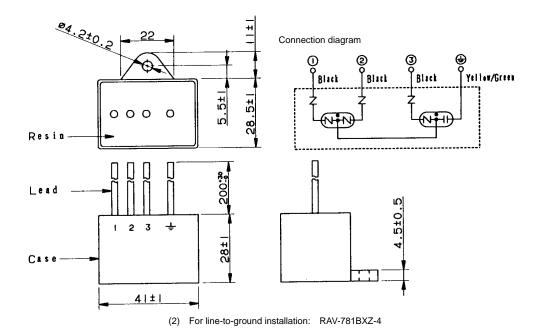


*1 When two side-on auxiliary contact units are installed

Ordering drawing	_	ctric part nber	Operation coil	Auxiliary contact	Weight
number	Body	Body	voltage structure		
A06B-6077-K127	SC-N8	I Q 7_NIQ I	200V/50Hz 200-220V/60Hz	2a2b	4.9Kg

(g) A06B-6077-K128

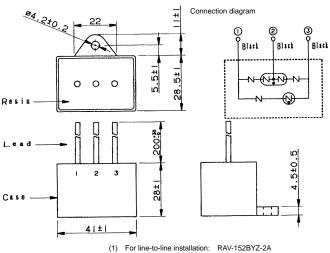

Dimensions for drilling mounting holes

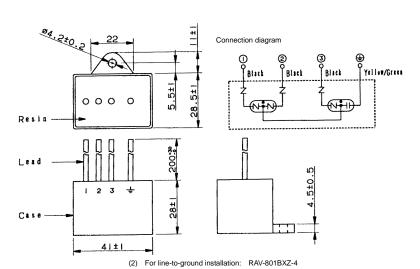

Ordering drawing	•	ctric part nber	Operation coil	Auxiliary contact	Weight
number	Body	Body	voltage structure		
A06B-6077-K128	SC-N7	197 NIT I	200V/50Hz 200-220V/60Hz	2a2b	2.7Kg

8.1.9 Lightning Surge Protector

(a) A06B-6077-K142

(1) For line-to-line installation: RAV-781BYZ-2

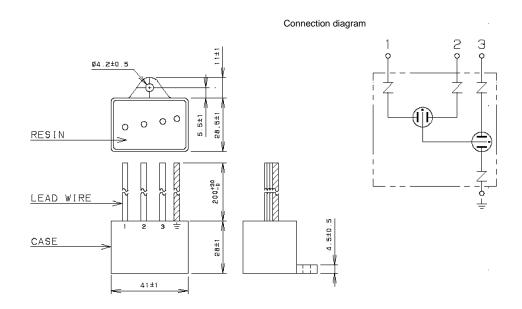



 Specification
 Rated voltage
 Clamp voltage
 Surge withstand current
 Surge withstand voltage

 R·A·V-781BYZ-2
 250VAC
 783VDC±10%(V1.0)
 2500A(8/20μS)
 20kV(1.2/50μS)

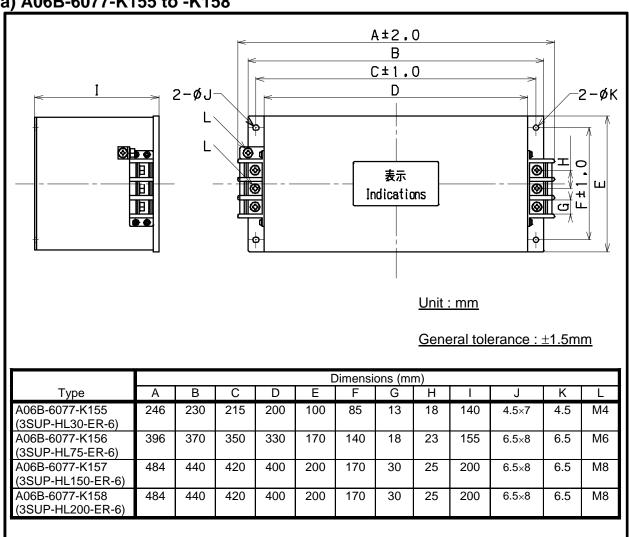
Specification	Rated voltage	AC discharge start voltage	Surge withstand current	Maximum surge discharge start voltage
R·A·V-781BXZ-4	line-to-line: 430VAC, line-to-ground: 250VAC	700VAC±20%(Ua)	2500A(8/20μS)	2.0kV(1.2/50μS)

(b) A06B-6077-K143

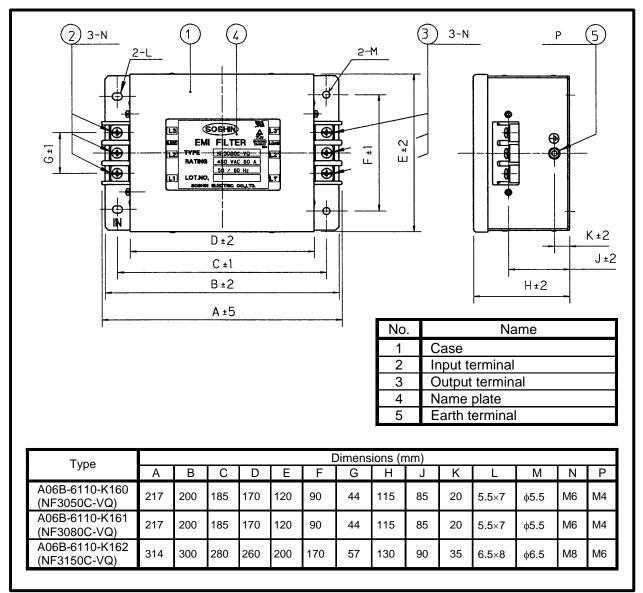


Specification	Rated voltage	Clamp voltage	Surge withstand current	Surge withstand voltage
R·A·V-152BYZ-2A	460VAC+15%	1470V±10%(V1.0)	2500A(8/20μS)	20kV(1.2/50μS)

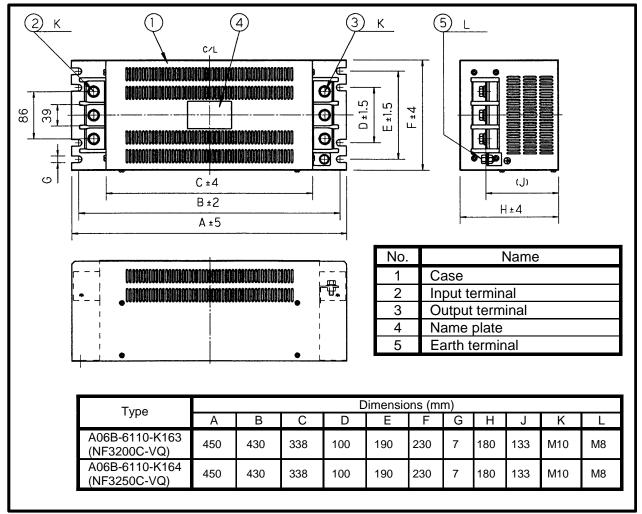
Specification	Rated voltage	AC discharge start voltage	Surge withstand current	Maximum surge discharge start voltage
R·A·V-801BXZ-4	line-to-line: 500VAC, line-to-ground: 290VAC	AC800V±20%(Ua)	2500A(8/20μS)	2.32kV(1.2/50μS)


(c) A06B-6077-K144

Specification	Rated voltage	AC discharge start voltage	Clamp voltage	Surge withstand current	Surge withstand voltage	Maximum surge discharge start voltage
R·C·M-601BUZ-4	250VAC	560VAC ±20%(Ua)	2000V ±10%(V1.0)	2500A (8/20μS)	20kV (1.2/50μS)	2kV (1.2/50μS)


8.1.10 **Noise Filter**

(a) A06B-6077-K155 to -K158


3SUP-HLx-ER-6: External dimensions of noise filter

(b) A06B-6110-K160 to -K162

NF3050C/3080C/3150C-VQ: External dimensions of noise filter

(c) A06B-6110-K163,K164

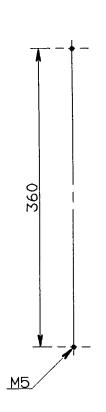
NF3200C/3250C-VQ: External dimensions of noise filter


8.2 PANEL CUT-OUT DIAGRAMS

(a) 60-mm-wide amplifier

With no external fin

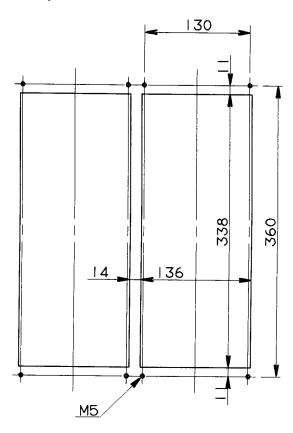
With external fin (when two units are installed side by side)

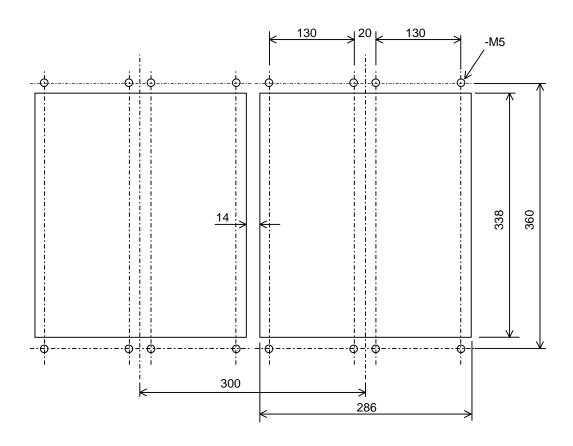



- 1 When an external fin is provided, attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) to the fin to protect it against oil and dust.
- 2 Reinforce the right and left sides of the panel cut-out in the power magnetics cabinet by using fittings such as angles to maintain satisfactory contact between the sheet metal of the power magnetics cabinet and the flange of the amplifier.

(b) 90-mm-wide amplifier

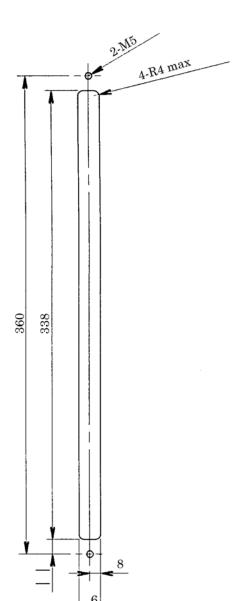
With no external fin

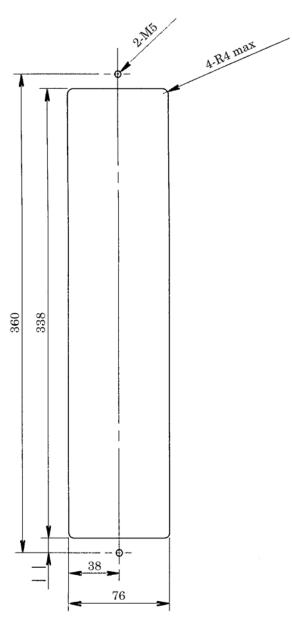

With external fin (when two units are installed side by side)


- 1 When an external fin is provided, attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) to the fin to protect it against oil and dust.
- 2 Reinforce the right and left sides of the panel cut-out in the power magnetics cabinet by using fittings such as angles to maintain satisfactory contact between the sheet metal of the power magnetics cabinet and the flange of the amplifier.

(c) 150-mm-wide amplifier (when two units are installed side-by-side)

- 1 Attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) for protection against oil and dust.
- 2 Reinforce the right and left sides of the panel cut-out in the power magnetics cabinet by using fittings such as angles to maintain satisfactory contact between the sheet metal of the power magnetics cabinet and the flange of the amplifier.

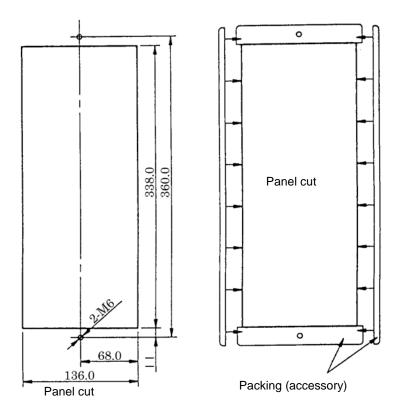

(d) 300-mm-wide amplifier (when two units are installed side-by-side)



- 1 Attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) for protection against oil and dust.
- 2 Reinforce the right and left sides of the panel cut-out in the power magnetics cabinet by using fittings such as angles to maintain satisfactory contact between the sheet metal of the power magnetics cabinet and the flange of the amplifier.

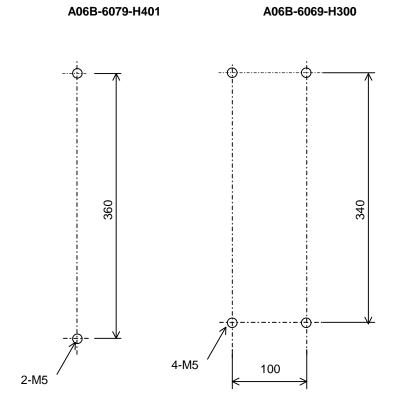
(e) Regenerative discharge unit (A06B-6089-H510)

(f) Regenerative discharge unit (A06B-6089-H500)



NOTE

Attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) for protection against oil and dust.


(g) Regenerative discharge unit (A06B-6089-H711 to -H713)

NOTE

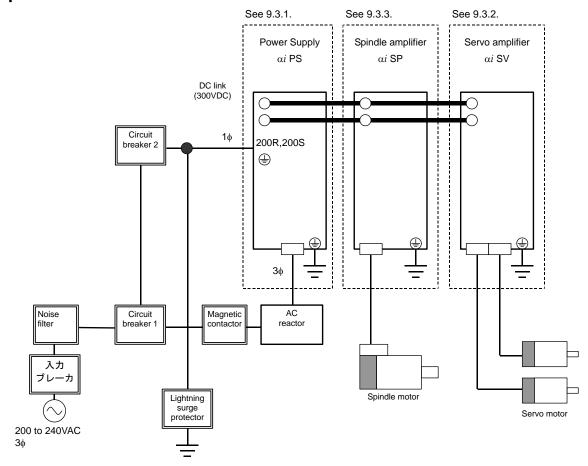
Attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) for protection against oil and dust.

(h) Dynamic brake module

9.CONNECTION B-65282EN/06

9

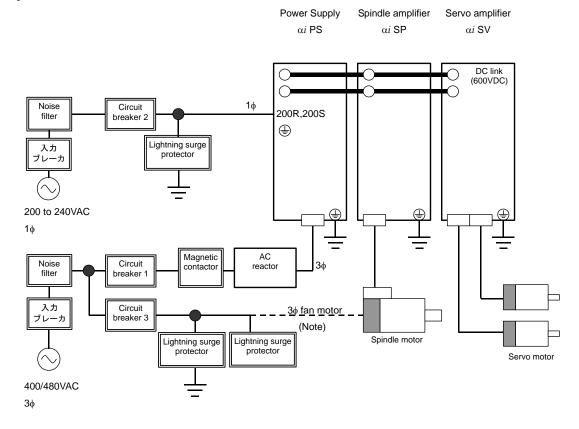
CONNECTION


Chapter 9, "CONNECTION", consists of the following sections:

9.1	TOTAL CONNECTION DIAGRAM	193
9.2	CONNECTOR LOCATION	195
	CABLE CONNECTION DETAILS	
94	DETAILS OF CONNECTORS	301

9.1 TOTAL CONNECTION DIAGRAM

The following connection diagram is an example of combining a αi PS + a αi SP + a 2-axis αi SV. For detailed descriptions about how to connect these amplifiers, see their respective connection diagrams.


200-V input series

⚠ CAUTION

- 1 To meet the EMC Directive operating in EU countries, a noise filter must be installed.
- 2 Install the noise filter more nearer to the power supply than the magnetic contactor.
- 3 When the circuit breaker trips, the contact of the magnetic contactor may be melted. Before turning on the circuit breaker, make sure that the contact is not melted.

400-V input series

⚠ CAUTION

- 1 When the spindle motor model αi I 1HV, αi I 1.5HV, αi I 2HVi, αi I 3HV, αi I $_{\rm T}$ 1HV, αi I $_{\rm T}$ 2HV, and αi I $_{\rm T}$ 3HV is used, the specification of the fan motor is below: Single phase, 200/230 VAC
- 2 To meet the EMC Directive operating in EU countries, a noise filter must be installed.
- 3 Install the noise filter more nearer to the power supply than the magnetic contactor.
- 4 When the circuit breaker trips, the contact of the magnetic contactor may be melted. Before turning on the circuit breaker, make sure that the contact is not melted.
- 5 Breaker 3 is used to interrupt the lightning surge protector. Since the lightning surge protector is disabled if breaker 3 trips, it is necessary to issue a warning during the trip.

NOTE

When the power specification of the fan motor of the spindle motor is 400 V, breaker 3 can also be used for the fan motor. <u>B-65282EN/06</u> <u>9.CONNECTION</u>

9.2 CONNECTOR LOCATION

9.2.1 αi PS series

(a) αi PS 5.5

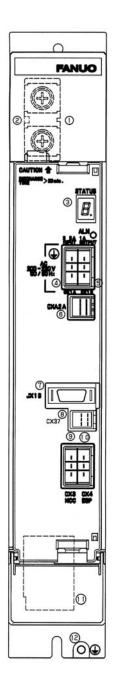


Table.9.2.1(a) Names of connectors and terminal blocks

	Names		Remarks
-	names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	200VAC input connector	CX1A	
5	200VAC output connector	CX1B	
6	Output connector for $lpha i$ PS interface	CXA2A	24VDC power supply
7	Connector for connecting power failure backup module	JX1B	
8	Connector for power failure detection output	CX37	
9	Connector for connecting main Power supply magnetic contactor control signal	CX3	
10	Connector for ESP signal	CX4	
	Connector for motor power line	CZ1	
12	Tapped hole for grounding the flange		

↑ WARNING

When the DC link charge LED is lit, touching parts in the amplifier or cables connected is hazardous; never touch them.

⚠ CAUTION

(b) αi PS 11, αi PS 15, αi PS 11HV, αi PS 18HV

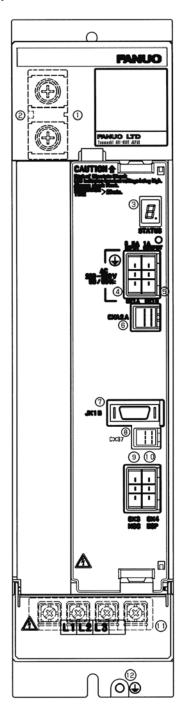
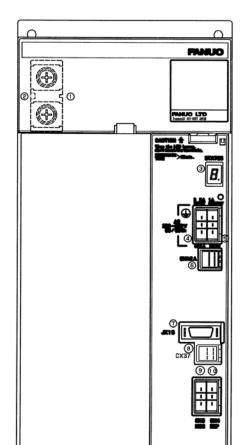


Table.9.2.1(b) Names of connectors and terminal blocks


	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	200VAC input connector	CX1A	
5	200VAC output connector	CX1B	
6	Output connector for αi PS interface	CXA2A	24VDC power supply
7	Connector for connecting power failure backup module	JX1B	
8	Connector for power failure detection output	CX37	
9	Connector for connecting main Power supply magnetic contactor control signal	CX3	
10	Connector for ESP signal	CX4	
11	Terminal block for motor power line	TB2	
12	Tapped hole for grounding the flange		

↑ WARNING

When the DC link charge LED is lit, touching parts in the amplifier or cables connected is hazardous; never touch them.

⚠ CAUTION

(c) αi PS 26, αi PS 30, αi PS 37, αi PS 30HV, αi PS 45HV

00

Table.9.2.1(c) Names of connectors and terminal blocks

	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	200VAC input connector	CX1A	
5	200VAC output connector	CX1B	
6	Output connector for αi PS interface	CXA2A	24VDC power supply
7	Connector for connecting power failure backup module	JX1B	
8	Connector for power failure detection output	CX37	
9	Connector for main power MCC control signal	СХЗ	
10	Connector for ESP signal	CX4	
11	Terminal block for motor power line	TB2	
12	Tapped hole for grounding the flange		

⚠ WARNING

When the DC link charge LED is lit, touching parts in the amplifier or cables connected is hazardous; never touch them.

⚠ CAUTION

(d) αi PS 55, αi PS 75HV, αi PS 100HV

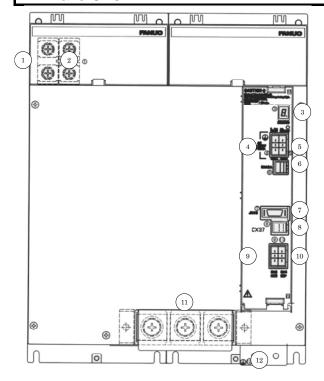

Table.9.2.1(d) Names of connectors and terminal blocks

	Table.9.2.1(d) Names of connectors and terminal blocks				
	Names	Display	Remarks		
1	DC link terminal block		Display the terminal block TB1		
2	DC link charge LED		(Warning)		
3	Status LED	STATUS			
4	200VAC input connector	CX1A			
5	200VAC output connector	CX1B			
6	Output connector for αi PS interface	CXA2A	24VDC power supply		
7	Connector for connecting power failure backup module	JX1B			
8	Connector for power failure detection output	CX37			
9	Connector for main power MCC control signal	CX3			
10	Connector for ESP signal	CX4			
11	Terminal block for motor power line	TB2			
12	Tapped hole for grounding the flange				

⚠ WARNING

When the DC link charge LED is lit, touching parts in the amplifier or cables connected is hazardous; never touch them.

⚠ CAUTION

(e) αi PS_R 3 , αi PS_R 5.5

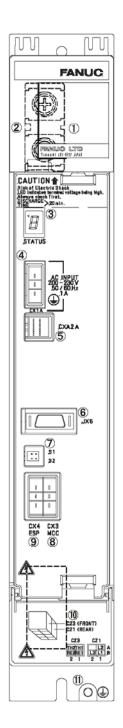


Table.9.2.1(e) Names of connectors and terminal blocks

	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	200VAC input connector	CX1A	
5	Output connector for αi PS interface	CXA2A	24VDC power supply
6	Not used	JX6	
7	Not used	S1	S1 : Connected
		S2	S2 : Open
8	Connector for main power MCC control signal	CX3	
9	Connector for ESP signal	CX4	
10-1	Terminal block for motor power	CZ1	XX key
	line		
10-2	Terminal block for regenerative	CZ3	YY key
	discharge resistor		
11	Tapped hole for grounding the		
	flange		

⚠ WARNING

9.2.2 αi SV series

(a) 60/90mm-wide αi SV series

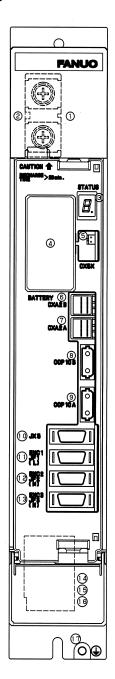


Table.9.2.2(a) Names of connectors and terminal blocks

	Table.9.2.2(a) Names of connecto	1	1
No.	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
_	Location of the batteries for the αi SV	DATTEDY	
4	built-in-type absolute Pulsecoder	BATTERY	
5	Battery connector for the $lpha i$ SV	CX5X	
Э	built-in-type absolute Pulsecoder	CVOV	
6	Input connector for αi PS interface	CXA2B	24VDC power supply The interface for the absolute Pulsecoder batteries is included.
7	Output connector for αi PS interface	CXA2A	
8	FSSB optical input connector	COP10B	
9	FSSB optical output connector	COP10A	
10	Signal check connector	JX5	Unused
11	Pulsecoder connector : L axis	ENC1/JF1	
12	Pulsecoder connector : M axis	ENC2/JF2	
13	Pulsecoder connector : N axis	ENC3/JF3	
14	Connector for motor power line: L axis	CZ2L	For αi SV 1-axis, CZ2
15	Connector for motor power line: M axis	CZ2M	
16	Connector for motor power line: N axis	CZ2N	
17	Tapped hole for grounding the flange		

⚠ WARNING

(b) α*i* SV 360, α*i* SV 180HV

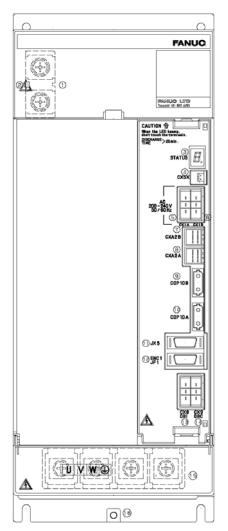
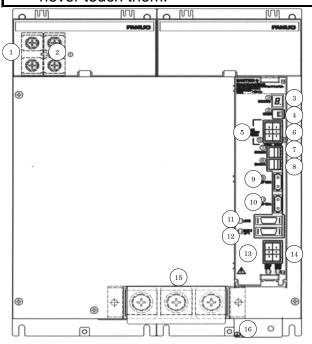


Table.9.2.2(b) Names of connectors and terminal blocks

	rable.9.2.2(b) Names of Connecto	ı	
No.	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	Battery connector for the αi SV built-in-type absolute Pulsecoder	CX5X	
5	200VAC power supply input connector	CX1A	Davier aventy for DD
6	200VAC power supply input connector	CX1B	Power supply for DB
7	Input connector for αi PS interface	CXA2B	24VDC power supply The interface for the absolute Pulsecoder batteries is included.
8	Output connector for αi PS interface	CXA2A	
9	FSSB optical input connector	COP10B	
10	FSSB optical output connector	COP10A	
11	Signal check connector	JX5	Unused
12	Pulsecoder connector	ENC1/JF1	
13	Dynamic module interface for connector	CX8	
14	Connector for the magnetic contactor drive coil of the dynamic brake module	CX9	
15	Terminal block for connection to motor power line		Display the terminal block TB2
16	Tapped hole for grounding the flange		


⚠ WARNING

(c) αi SV 360HV

Table.9.2.2(c) Names of connectors and terminal blocks

No.	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	Battery connector for the αi SV built-in-type absolute Pulsecoder	CX5X	
5	200VAC power supply input connector	CX1A	nower aunaly for DB
6	200VAC power supply input connector	CX1B	power supply for DB
7	Input connector for αi PS interface	CXA2B	24VDC power supply The interface for the absolute Pulsecoder batteries is included.
8	Output connector for αi PS interface	CXA2A	
9	FSSB optical input connector	COP10B	
10	FSSB optical output connector	COP10A	
11	Signal check connector	JX5	Unused
12	Pulsecoder connector	ENC1/JF1	
13	Dynamic module interface for connector	CX8	
14	Connector for the magnetic contactor drive coil of the dynamic brake module	CX9	
15	Terminal block for connection to motor power line		Display the terminal block TB2
16	Tapped hole for grounding the flange	4	

⚠ WARNING

9.2.3 αi SP Series

(a) αi SP 2.2 , αi SP 5.5 , αi SP 5.5HV (TYPE A, B)

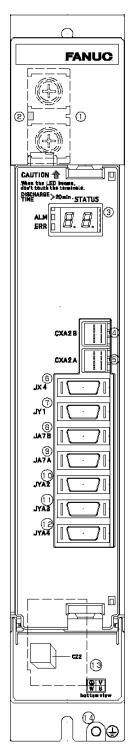


Table.9.2.3(a) Names of connectors and terminal blocks

	Table.9.2.3(a) Names of connec		
	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	Input connector for αi PS interface	CXA2B	24VDC power supply
5	Output connector for αi PS interface	CXA2A	
6	Position coder signal *1 Signal for communication between αi SP units *1 Excitation off signal *2	JX4	*1 TYPE B only
7	Connector for load meter and speedometer	JY1	The signal for the check board is also output.
8	Input connector for electric serial interface	JA7B	
9	Output connector for electric serial interface	JA7A	
10	Connector for spindle sensor for motor	JYA2	αi M, αi MZ, αi BZ, and αi CZ sensors
11	Connector for Positioncoder and external single rotation signal	JYA3	
12	Connector for separate spindle sensor	JYA4	TYPE B only
13	Connector for motor power line		Display the CZ2
	Tapped hole for grounding the flange		

*2 Not supported by the A06B-6111, -6112, -6121, and -6122.

⚠ WARNING

(b) αi SP 11 , αi SP 15 , αi SP 11HV , αi SP 15HV (TYPE A, B)

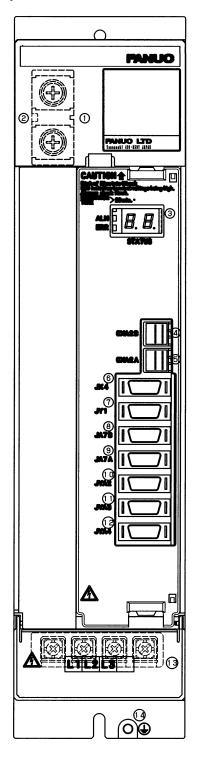


Table.9.2.3 (b) Names of connectors and terminal blocks

DC link terminal block block TB1		Table.9.2.3 (b) Names of connectors and terminal blocks				
DC link terminal block block TB1		Names	Display	Remarks		
3 Status LED 4 Input connector for αi PS interface 5 Output connector for αi PS interface Position coder signal *1 Signal for communication between αi SP units *1 Excitation off signal *2 7 Connector for load meter and speedometer 8 Input connector for electric serial interface 9 Output connector for electric serial interface 10 Connector for spindle sensor for motor 11 Connector for Positioncoder and external single rotation signal 12 Connector for motor power line STATUS 24VDC power supple 2	1	DC link terminal block		Display the terminal block TB1		
4Input connector for αi PS interfaceCXA2B24VDC power sup5Output connector for αi PS interfaceCXA2APosition coder signal *1 Signal for communication between αi SP units *1 Excitation off signal *2JX4*1 TYPE B only7Connector for load meter and speedometerJY1The signal for the check board is also output.8Input connector for electric serial interfaceJA7B9Output connector for electric serial interfaceJA7A10Connector for spindle sensor for motorJYA2αi M, αi MZ, αi BZ, and αi CZ sensors11Connector for Positioncoder and external single rotation signalJYA312Connector for separate spindle sensorJYA4TYPE B only13Connector for motor power lineDisplay the TB2	2	DC link charge LED		(Warning)		
5 Output connector for αi PS interface CXA2A Position coder signal *1 Signal for communication between αi SP units *1 JX4 Excitation off signal *2 The signal for the check board is also output. 8 Input connector for electric serial interface JA7B 9 Output connector for electric serial interface JA7A 10 Connector for spindle sensor for motor JYA2 11 Connector for Positioncoder and external single rotation signal JYA3 12 Sensor JYA4 TYPE B only Display the TB2	3	Status LED	STATUS			
Position coder signal *1 Signal for communication between αi SP units *1 Excitation off signal *2 The signal for the check board is also output. Input connector for electric serial interface Output connector for electric serial interface Connector for spindle sensor for motor The signal for the check board is also output. JA7B JA7B Connector for electric serial interface JA7A Connector for spindle sensor for motor TO motor JYA2 Ai M, αi MZ, αi BZ, and αi CZ sensors TO Connector for Positioncoder and external single rotation signal Connector for separate spindle sensor JYA3 TYPE B only TYPE B only Display the TB2	4	Input connector for αi PS interface	CXA2B	24VDC power supply		
Signal for communication between αi SP units *1 Excitation off signal *2 Connector for load meter and speedometer Input connector for electric serial interface Output connector for electric serial interface Connector for spindle sensor for motor Connector for Positioncoder and external single rotation signal Connector for separate spindle Connector for motor power line Signal for communication between αi JX4 *1 TYPE B only The signal for the check board is also output. JA7B JA7B JA7B Δi M, αi MZ, αi BZ, and αi CZ sensors TYPE B only TYPE B only Display the TB2	5	Output connector for αi PS interface	CXA2A			
7 connector for load meter and speedometer 8 Input connector for electric serial interface 9 Output connector for electric serial interface 10 Connector for spindle sensor for motor 11 Connector for Positioncoder and external single rotation signal 12 Connector for separate spindle sensor 13 Connector for motor power line 14 Connector for motor power line 15 Check board is also output. 16 Check board is also output. 17 Check board is also output. 17 Check board is also output. 18 Check board is also output. 18 Connector for electric serial jack in the properties of the position output. 18 Connector for spindle sensor for jack in the properties of the prop	6	Signal for communication between αi SP units *1	JX4	*1 TYPE B only		
Solution Solution	7		JY1	check board is also		
Sensor Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sensor for Sens	8	'	JA7B			
10 Connector for spindle sensor for motor JYA2 αi BZ, and αi CZ sensors 11 Connector for Positioncoder and external single rotation signal JYA3 12 Connector for separate spindle sensor JYA4 TYPE B only 13 Connector for motor power line Display the TB2	9	· ·	JA7A			
11 external single rotation signal	10	<u>'</u>	JYA2	lpha i BZ, and $lpha i$ CZ		
12 Sensor Senso	11		JYA3			
	12	· · ·	JYA4	TYPE B only		
14 Tapped hole for grounding the flange	13	Connector for motor power line		Display the TB2		
The production grounding the hange	14	Tapped hole for grounding the flange				

*2 Not supported by the A06B-6111, -6112, -6121, and -6122.

⚠ WARNING

(c) αi SP 22, αi SP 26, αi SP 30, αi SP 30HV, αi SP 45HV (TYPE A, B)

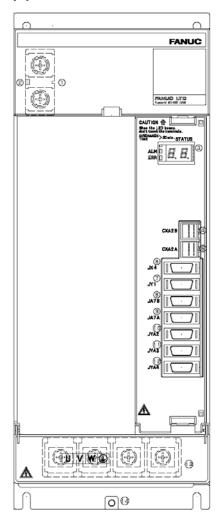


Table.9.2.3 (c) Names of connectors and terminal blocks

	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	Input connector for PSM interface	CXA2B	24VDC power supply
5	Output connector for PSM interface	CXA2A	
6	Position coder signal *1 Signal for communication between αi SP units *1 Excitation off signal *2	JX4	*1 TYPE B only
7	Connector for load meter and speedometer	JY1	The signal for the check board is also output.
8	Input connector for electric serial interface	JA7B	
9	Output connector for electric serial interface	JA7A	
10	Connector for spindle sensor for motor	JYA2	αi M, αi MZ, αi BZ, and αi CZ sensors
11	Connector for Positioncoder and external single rotation signal	JYA3	
12	Connector for separate spindle sensor	JYA4	TYPE B only
13	Connector for motor power line		Display the TB2
14	Tapped hole for grounding the flange	<u></u>	

*2 Not supported by the A06B-6111, -6112, -6121, and -6122.

⚠ WARNING

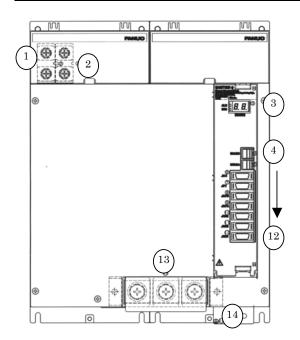
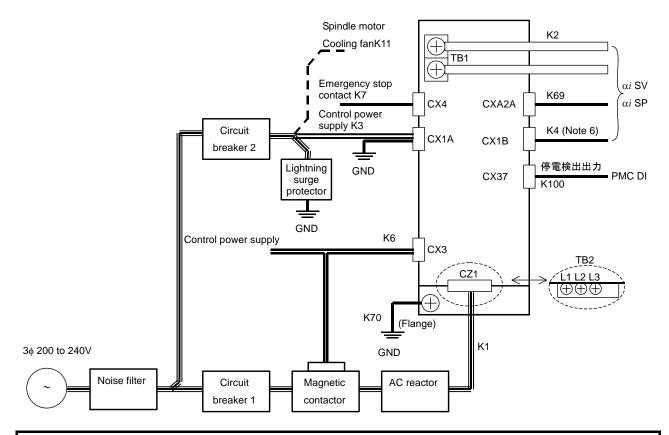

SPM-45*i*, **SPM-55***i*, **SPM-75HV***i*, **SPM-100HV***i* (**TYPE A**, B)

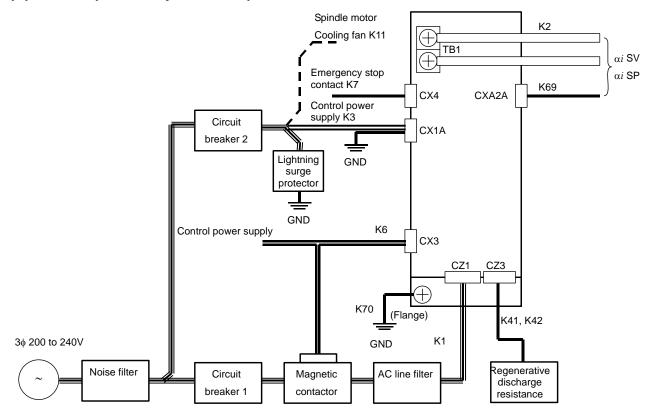
Table.9.2.3 (d) Names of connectors and terminal blocks

	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	Input connector for PSM interface	CXA2B	24VDC power supply
5	Output connector for PSM interface	CXA2A	
6	Position coder signal *1 Signal for communication between αi SP units *1 Excitation off signal *2	JX4	*1 TYPE B only
7	Connector for load meter and speedometer	JY1	The signal for the check board is also output.
8	Input connector for electric serial interface	JA7B	
9	Output connector for electric serial interface	JA7A	
10	Connector for spindle sensor for motor	JYA2	αi M, αi MZ, αi BZ, and αi CZ sensors
11	Connector for Positioncoder and external single rotation signal	JYA3	
12	Connector for separate spindle sensor	JYA4	TYPE B only
13	Connector for motor power line		Display the TB2
14	Tapped hole for grounding the flange		

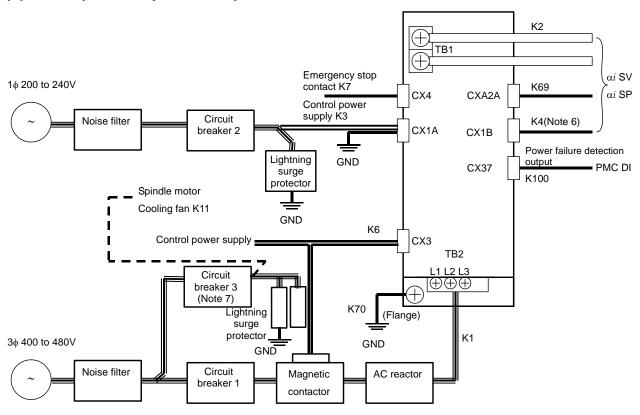
*2 Not supported by the A06B-6111, -6112, -6121, and -6122.


⚠ WARNING

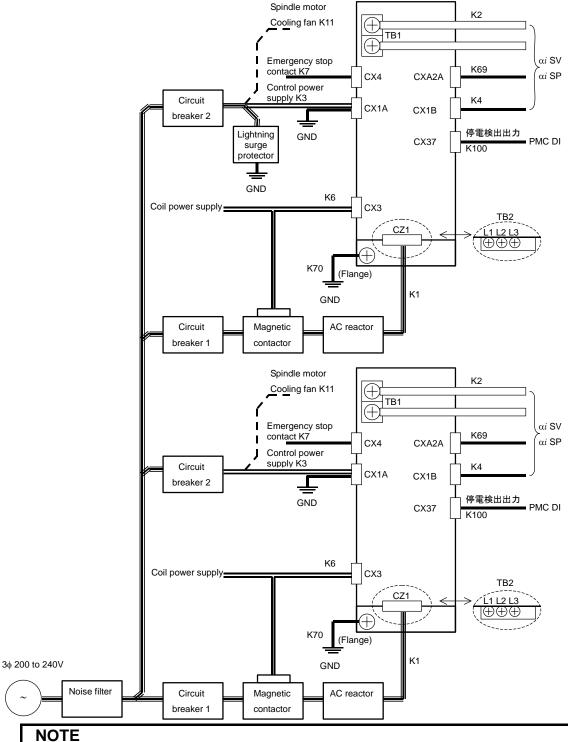
9.3 CABLE CONNECTION DETAILS


9.3.1 αi PS Series Connection Diagram

(a) αi PS (200-V input series)

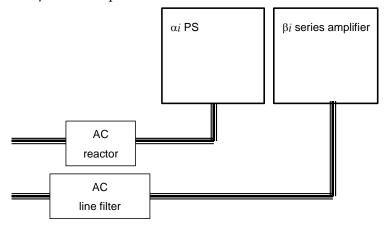

- 1 Always install the circuit breakers, magnetic contactor, and AC reactor.
- 2 To protect the equipment from lightning surge voltages, install a lightning surge protector across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet. See Appendix A, "FITTING A LIGHTNING SURGE PROTECTION DEVICE" for details.
- 3 Always connect the control power supply cable to the CX1A. If it is connected to the CX1B, fuses inside the unit may below.
- 4 See Section 5.2 for the type of the cable to be used for making a connection to a frame ground.
- 5 Install a noise filter more nearer to the power supply than the magnetic contactor for the αi PS.
- 6 Power supply for a dynamic brake module (DBM). When a DBM is not used, this power supply is unnecessary.
- 7 A06B-6110 and A06B-6120 do not have CX37.

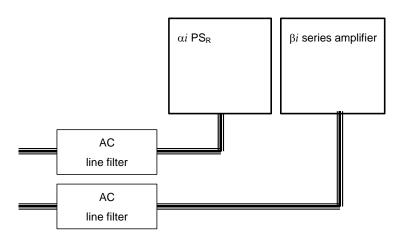
(b) αi PS_R (200-V input series)


- 1 Always install the circuit breakers, magnetic contactor, and AC reactor.
- 2 To protect the equipment from lightning surge voltages, install a lightning surge protector across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet. See Appendix A, "FITTING A LIGHTNING SURGE PROTECTION DEVICE" for details.
- 3 Always connect the control power supply cable to the CX1A. If it is connected to the CX1B, fuses inside the unit may below.
- 4 See Section 5.2 for the type of the cable to be used for making a connection to a frame ground.
- 5 Install a noise filter more nearer to the power supply than the magnetic contactor for the αi PS.

(c) αi PS (400-V input series)

- 1 Always install the circuit breakers, magnetic contactor, and AC reactor.
- 2 To protect the equipment from lightning surge voltages, install a lightning surge protector across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet. See Appendix A, "FITTING A LIGHTNING SURGE PROTECTION DEVICE" for details.
- 3 Always connect the control power supply cable to the CX1A. If it is connected to the CX1B, fuses inside the unit may below.
- 4 See Section 5.2 for the type of the cable to be used for making a connection to a frame ground.
- 5 Install a noise filter more nearer to Power Supply than the magnetic contactor for the αi PS.
- 6 Power supply for a dynamic brake module (DBM). When a DBM is not used, this power supply is unnecessary.
- 7 Circuit breaker 3 is used to shut off the lightning surge protector. When circuit breaker 3 trips, the lightning surge protector does not function. So, the tripping state needs to be detected, and when it is detected, a warning needs to be issued.
- 8 A06B-6110 and A06B-6120 do not have CX37.

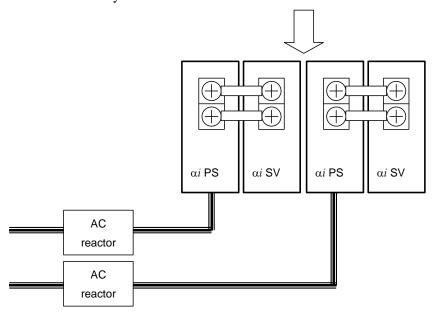

Connection on using two αi PS series amplifiers (200-V input)


- Circuit breaker 1, circuit breaker 2, the magnetic contactor, and the AC reactor cannot be shared among αi PS units.
 - For each αi PS, select and use these devices having appropriate capacitance specifications.
- The lightning surge protection device can be shared. For details, see Appendix A, "FITTING A LIGHTNING SURGE PROTECTION DEVICE".

Notes on using multiple αi PS series and βi series amplifiers

(a) An AC reactor for the αi PS cannot be used as an AC line filter of the βi series amplifier. Connect devices as follows:

(b) An AC line filter for the αi PS_R cannot be shared with the βi series amplifier. Connect devices as follows:



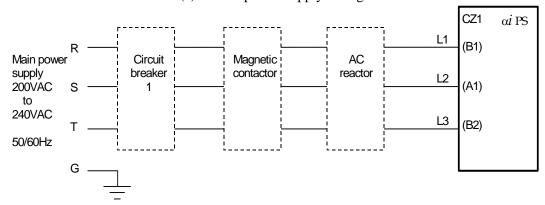
! CAUTION

When multiple αi PS series and βi series amplifiers are used, sharing an AC reactor or AC line filter among these amplifiers can result in an alarm or can damage these amplifiers.

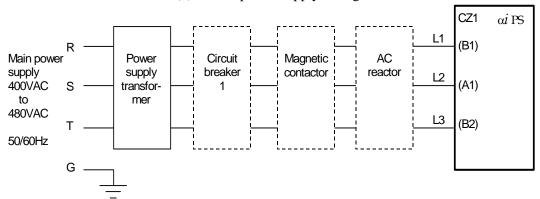
Note on using multiple αi PS series and βi series amplifiers 2

Be careful not to connect DC links of multiple PS amplifiers incorrectly.

! CAUTION


When multiple αi PS series amplifiers are used, connecting their DC links can result in an alarm or can damage these amplifiers.

9.3.1.1 Details of cable K1 (power supply line)


Cable K1 is used to supply main power to the αi PS. Make sure that the cable used between the power supply and αi PS satisfies the requirements listed in Table 9.3.1.1.

(1) For α*i* PS - α*i* PS 5.5

(a) For a power supply voltage of 200 to 240 VAC

(b) For a power supply voltage of 400 to 480 VAC

Pin location of CZ1

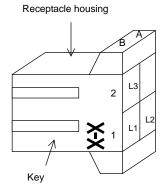


Table 9.3.1.1(a) Cable K1 Specifications (αi PS5.5)

	,	Applicable cable	
Model	Heavy-duty power cable (Note 1)	Heat-resistant cable (Note 2)	UL 規格対応 ケーブル
α <i>i</i> PS 5.5	5.5mm ²	5.5mm ²	AWG8 以上

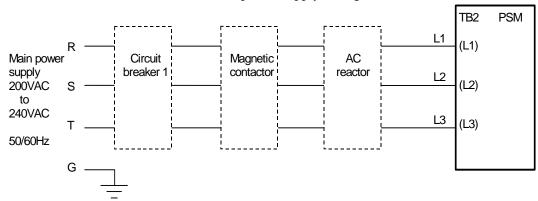
NOTE

- 1 Four-conductor polyvinyl heavy-duty power cable (JIS C3312) (VCT : heat-resistant 60°C)
- 2 Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.
- 3 The cross-section area of each cable is determined under the following conditions:
 - (1) At αi PS rated output
 - (2) Environment temperature of cable: 30°C
 - (3) Number of harnesses
 - 3 (No current flows through the ground wire during normal operation.)

Select a required cable cross-section area according to the user environment and conditions.

Connector Specifications

モデル	Connector key (Note 1)	Applicable contact (Note 1)
α <i>i</i> PS 5.5	XX	M size
ai = 3.5	1-917807-2	316041-6


See Subsection 9.4 for detailed explanations about the specification of the D-5000.

NOTE

Tyco Electronics AMP D-5000 series Select a contact size according to the cross-section area of the cable.

- αi PS 11 ~ αi PS 55

(a) For a power supply voltage of 200 to 240 VAC

(b) For a power supply voltage of 400 to 480 VAC

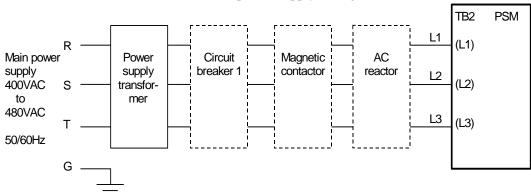
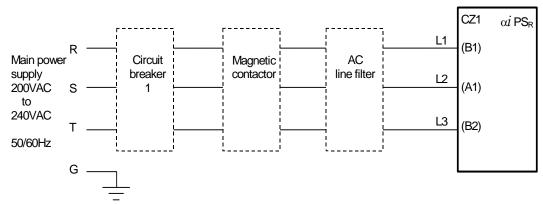


Table.9.3.1.1(b) Cable K1 Specifications, screw tightening torque (αi PS11 to αi PS55)

		Applicable cable			αi PS side		Reactor side	
Model	Heavy-duty power cable (Note 1)	Heat-resistant cable (Note 2)	Cable conforming to UL standard	Terminal screw	Tightening torque	Terminal screw	Tightening torque	
α <i>i</i> PS 11	-	8mm ² or more	AWG8 or Ihigher					
α <i>i</i> PS 15	14 mm ² or more	14mm ² or more	AWG4 or Ihigher	M4	1.1 to 1.5Nm	M5	2.0 to 2.5Nm	
α <i>i</i> PS 26	-	22mm ² or more	AWG2 or Ihigher	M6				
α <i>i</i> PS 30	-	22mm ² or more	AWG2 or Ihigher	IVIO	3.5 to 4.5Nm			
α <i>i</i> PS 37	-	38mm ² or more	AWG1 or Ihigher	M6 (Note 3)	3.3 to 4.5Niii			
		G: 40mm ² or more	AWG1 or Ihigher	M6	3.5 to 4.5Nm	M8	8.5 to 9.5Nm	
α <i>i</i> PS 55	-	R,S,T: 80mm ² or more	AWG3/0 or Ihigher	M10	1 to 16Nm			

The AC reactor does not have polarity, so input and output may be connected to either side of the reactor.

NOTE


1 Four-conductor polyvinyl heavy-duty power cable (JIS C3312) (VCT : heat-resistant 60°C)

- 2 Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.
- 3 Applicable crimp terminal for αi PS : 38-6S
- 4 The cross-section area of each cable is determined under the following conditions:
 - (1) At αi PS rated output
 - (2) Environment temperature of cable: 30°C
 - (3) Number of harnesses 3 (No current flows through the ground wire during normal operation.)

Select a required cable cross-section area according to the user environment and conditions.

(2) For αi PS_R

(a) For a power supply voltage of 200 to 240 VAC

(b) For a power supply voltage other than 200 to 240 VAC

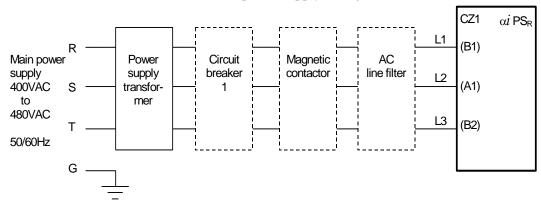


Table 9.3.1.1(c) Cable K1 Specifications, screw tightening torque

100.000	Applicable cable			
Mode	Heavy-duty power cable (Note 1) Heat-resistant conforming to cable (Note 2) Cable Conforming to Cable Conforming to Cable Cable Conforming to Ca			
αi PS _R 3	3.5mm ²	3.5mm ²	AWG10	
α <i>i</i> PS _R 5.5	5.5mm ²	5.5mm ²	AWG8	

NOTE

- 1 Four-conductor polyvinyl heavy-duty power cable (JIS C3312) (VCT : heat-resistant 60°C)
- 2 Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.

Connector Specifications

Model	Connector key (Note 1)	Applicable contact (Note 1)	
αi PS _R 3, 5.5	XX	M size	
	1-917807-2	316041-6	

See Subsection 9.4 for detailed explanations about the specification of the D-5000.

NOTE

Tyco Electronics AMP D-5000 series Select a contact size according to the cross-section area of the cable.

(3) For αi PS 400-V input type

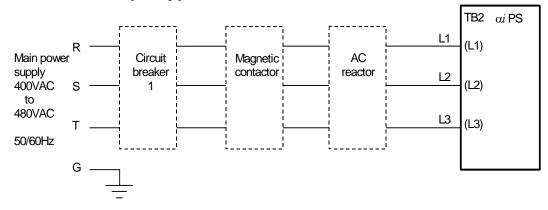


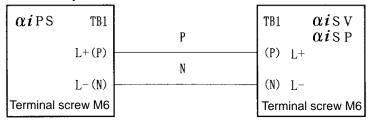
Table.9.3.1.1(d) Cable K1 Specifications

		Applicable cable			αi PS side		Reactor side	
Model	Heavy-dut y power cable (Note 1)	Heat-resistant cable (Note 2)	Cable conforming to UL standard	Terminal screw	Tightening torque	Terminal screw	Tightening torque	
αi PS 11HV	5.5mm ² or more	5.5mm ² or more	AWG8 or higher	M4	1.1 to 1.5Nm	M5	2.0 to 2.5Nm	
αi PS 18HV	-	8mm ² or more	AWG8 or higher					
αi PS 30HV	-	14mm ² or more	AWG4 or higher	M6	3.5 to 4.5Nm	M8	8.5 to 9.5Nm	
αi PS 45HV	-	22mm ² or more	AWG2 or higher	IVIO	0.0 to 4.014111	IVIO	0.5 to 9.514111	
		G: 22mm ² or more	AWG2 or higher	M6	3.5 to 4.5Nm			
αi PS 75HV	-	R, S, T: 38mm ² or more	AWG1 or higher	M10	15 to 16Nm	M10	15 to 16Nm	
		G: 40mm ² or more	AWG1 or higher	M6	3.5 to 4.5Nm	M10	15 to 16Nm	
α <i>i</i> PS 100HV		R, S, T: 80mm ² or more	AWG3/0 or higher	M10	15 to 16Nm			

NOTE

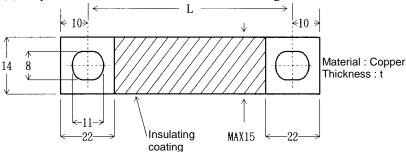
1 Four-conductor polyvinyl heavy-duty power cable (JIS C3312) (VCT : heat-resistant 60°C)

- 2 Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.
- 3 The cross-section area of each cable is determined under the following conditions:
 - (1) At αi PS rated output
 - (2) Environment temperature of cable: 30°C
 - (3) Number of harnesses 3 (No current flows through the ground wire during normal operation.)


Select a required cable cross-section area according to the user environment and conditions.

9.3.1.2 Details of short bar K2

Short bar K2 supplies DC link voltage generated by the αi PS to individual modules.


When designing a short bar for connecting modules placed close to each other, refer to the "Specifications of short bars for connecting modules placed close to each other."

To determine the length of a short bar to be used for connecting modules placed separately, refer to "Location of terminal board TB1." Optional short bars are available from FANUC. Refer to the "DC Link Short Bar Specifications."

Specifications of short bars for connecting modules placed close to each other

(1) Specifications of short bars for connecting the modules

(2) Specifications of short bars for connecting the modules (Figure example of short bars for connecting 300-mm-wide modules)

Hatched area: Apply PVC coating.

Thickness: 1t or more

Table.9.3.1.2 Short Bar K2 Specifications

Module location	Short bar length L	Short bar thickness t	Cross-section area (Note)
Unit of 300mm-wide	300mm	3.0mm	50mm ²
Unit of 150mm-wide	150mm	1.5mm	21mm ²
Unit of 90mm-wide	90mm	1.5mm	21 mm ²
Unit of 60mm-wide	60mm	1.5mm	21 mm ²

- 1 Modules need not necessarily be connected with a short bar (copper plate).
 - If the modules cannot be placed close to each other, however, they cannot help being separated from each other.
 - If you connect them with a power cable, however, the cable may not be thinner than indicated below and must be insulated with heat-resistant polyvinyl.
- 2 When the width is 300 mm ((α*i* SP 45, α*i* SP 55, α*i* PS 55, α*i* SP 75HV, α*i* SP 100HV, α*i* PS 75HV, α*i* PS 100HV, α*i* SV 360HV), cabling needs to be performed using the two screws at P and N. So, use a dedicated short bar (A06B-6078-K841, two each per set).

Location of terminal block TB1 on each module

Fig.9.3.1.2(a) and Fig.9.3.1.2(b) show the location of terminal board TB1 on each module.

If you want to install modules at distances not specified herein, design short bars by referring to the dimensions shown below.

When designing a short bar for connecting 300-mm-wide modules in particular, conform to the above figure specifications and apply the above coating.

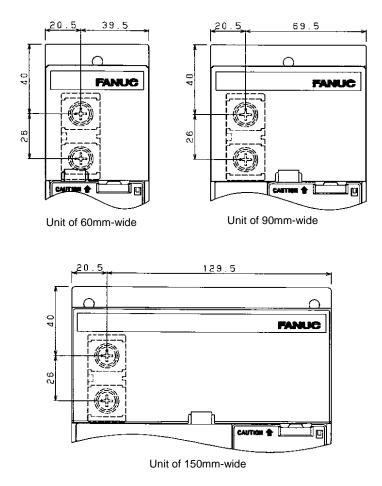


Fig.9.3.1.2(a) Location of Terminal Block TB1 on the units of 60-, 90-, and 150-mm-Wide amplifiers

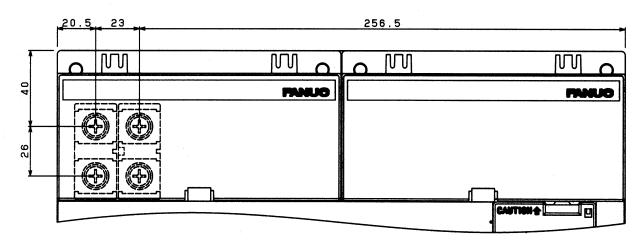
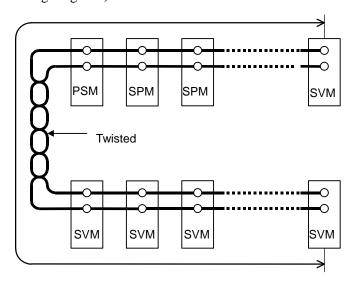
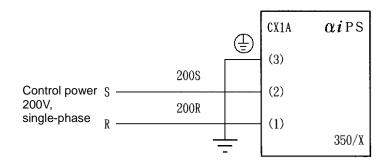



Fig.9.3.1.2(b) Location of Terminal Block TB1 on the units of 300-mm-Wide amplifiers


About the length of the DC link cable

Suppress the length of the DC link cable to within 1.5 m. (See the following diagram.)

9.3.1.3 Details of cable K3

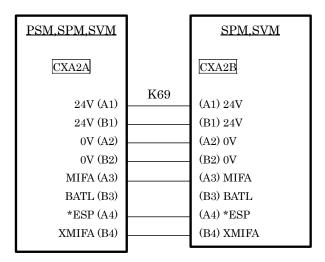
Cable K3 is used to supply control power to the αi PS.

Cable specification:

Two-conductor polyvinyl heavy-duty power cable (JIS C3312), conductor size of 1.25 mm² (50/0.18),

PVC sheath 9.6 mm in diameter

Connector specification:


Tyco Electronics AMP connector with receptacle housing 1-178128-3 and receptacle contact 1-175218-2

NOTE

Always connect cable K3 to the CX1A. If it is connected to the CX1B, fuses inside the unit may blow.

9.3.1.4 Details of cable K69

The cable K69 is used between the i PS, αi SP, and αi SV.

Connector specification

Manufacturer	Tyco Electronics AMP
	D-2100 series
Connector	Housing 1-1318119-4 (1 pieces)
specification	Contact 1318107-1 (8 pieces)
	[Ordering information : A06B-6110-K210 connector only]
Conductor size	0.5mm ² , AWG20
Instruction	4 00 0 00
outer diameter	1.08-2.83 mm

NOTE

The (B3)BATL is the interface used to connect the batteries for the absolute Pulsecoder. For details, see the description of battery connection in Subsection 9.3.2.10.

⚠ WARNING

- 1 When using the built-in battery (A06B-6114-K504), never connect the BATL(B3) of the connector CXA2A/CXA2B.
 - Otherwise, a short-circuit will occur between the battery output voltages for different αi SVs, possibly resulting in the batteries becoming very hot, which is dangerous.
- 2 Do not connect more than one battery to the same BATL(B3) line. Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.

9.3.1.5 Details of cable K6

Cable K6 is used to control the magnetic contactor if it is installed outside the unit.

Cable specification:

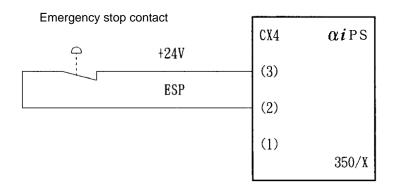
Two-conductor polyvinyl heavy-duty power cable (JIS C3312), conductor size of 1.25 mm² (50/0.18), PVC sheath 9.6 mm in diameter

Connector specification:

Tyco Electronics AMP connector with receptacle housing 2-178128-3 and receptacle contact 1-175218-2

Internal-contact specification:

	Resistive load (cos∳=1)	Inductive load (cosφ=0.4, L/R=7msec)	
Rated load	250VAC, 5A / 30VDC, 5A	250VAC, 2A / 30VDC, 2A	
Maximum contact rating	5A	5A	


NOTE

Always install a spark killer (CR) that matches the magnetic contactor to protect the internal contacts. The following table lists the recommended capacitances and resistances.

Coil voltage	С	R
24VDC	0.22μF	22Ω
100 to 230VAC	0.1µF	220Ω

9.3.1.6 Details of cable K7

Cable K7 is used to supply an emergency stop signal to the αi PS.

Cable specification:

Two-conductor polyvinyl heavy-duty power cable (JIS C3312), conductor size of 1.25 mm² (50/0.18), PVC sheath 9.6 mm in diameter

Connector specification:

Tyco Electronics AMP connector with receptacle housing 1-178128-3 and receptacle contact 1-175218-2

(1) When the contact is ON (closed), the spindle motor and servo motor are enabled.

When the contact is OFF (open), the external magnetic contactor (MCC) is in the off state, and the spindle motor and servo motor do not operate.

- (2) When the contact is set to OFF (open) during motor rotation, the spindle motor decelerates, then stops, and the servo motor is stopped by the dynamic brake.
- (3) The contact input signal is specified as follows:
 - <1> As the external contact capacity, a voltage of at least 30 VDC and a current of at least 100 mA are required.
 - <2> Significant levels (with the voltage between input pins) when the contactless signal input mode is used:

Low level "logic 0": Up to 2 V High level "logic 1": At least 20 V

(4) When the αi PS main power is turned off for safety in such a case that the machine protection door is open, the contact of the ESP signal (CX4), which is input to the αi PS, must be set to OFF (open) within 200 ms after turn-off of the αi PS main power.

When the contact of the ESP signal (CX4) remains ON (closed) after the αi PS main power is turned off, a DC link low-voltage alarm (alarm No. 4) occurs in the PSM.

⚠ WARNING

1 The spindle free-runs as a result of a power failure, an alarm, or a command from the ladder (MPOFA signal). During free running, the spindle does not stop even when an emergency stop is applied.

- 2 Note that even when the power is off, the spindle might be free-running.
- 3 When an amplifier requires an external dynamic brake module, but no dynamic brake module is connected to the amplifier, applying an emergency stop causes the servo axis to coast.
- 4 The ESP signal receive circuit of the amplifier is implemented by an electronic circuit. This means that input of the ESP signal to the amplifier due to an electronic circuit failure may not stop the motor.

9.3.1.7 Details of cable K70

(a) The cable K70 is used to connect the connector CX1A on the αi PS to the frame ground of the cabinet.

Conductor size: 1.25 mm²

(b) See Table 4.3.1.7, and determine the cable to be used for connecting the metal frames of the αi PS, αi SP, αi SV, and dynamic brake module (DBM) to the frame ground of the cabinet.

Table 4.3.1.7 Grounding cable conductor diameter

Motor power cable cross-section S (mm²)	Grounding cable cross-section (mm²)
S ≤ 5.5	5.5 or greater
5.5 < S ≤ 16	S or greater
16 < S ≤ 35	16 or greater
35 < S	S/2 or greater

NOTE

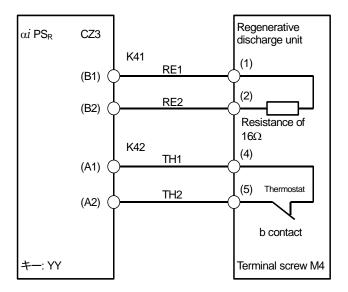
The following M5 crimp terminal can be used with a cable having a large conductor diameter.

Nichifu Co., Ltd. CB22-5S

Overall conductor size range: 16.78 to 22.66 mm²

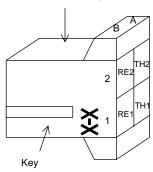
Based on the tables below, select a crimp terminal used for connection to the αi PS.

200-V system


Amplifier model	Terminal screw	Tightening torque
αi PS 5.5, αi PS 11, αi PS 15, αi PS 26, αi PS 30, αi PS 37	M5	2 to 2.5Nm
αi PS 55	M6	3.5 to 4.5Nm

400-V system

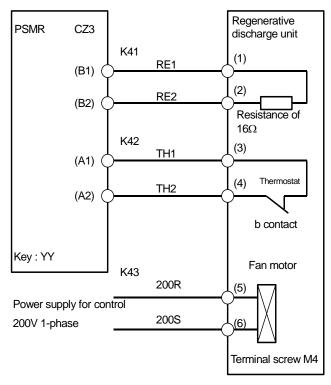
Amplifier model	Terminal screw	Tightening torque
αi PS 11HV , αi PS 18HV, αi PS 30HV, αi PS 45HV	M5	2 to 2.5Nm
αi PS 75HV, αi PS 100HV	M6	3.5 to 4.5Nm


9.3.1.8 Detailed description of the connection of cables K41 (for regenerative discharge resistance), K42 (for thermostat), and K43 (for fan motor)

Connection for A06B-6089-H510 and A06B-6089-H500

Tyco Electronics AMP D-5000

Receptacle housing



Cable number	Applicable cable VCT(heat resistant 60°C (Note 1)	Connector key (Note 2)	Applicable contact (Note 2)
K41	2mm ² Two-conductor polyvinyl heavy-duty power cable (JIS C3312)	YY 2-917807-2	S size 316040-6
K42	1.25mm ² Two-conductor polyvinyl heavy-duty power cable (JIS C3312)		S size 316040-6

NOTE

- 1 Run cables K41 and K42 without tying them in a bundle.
- 2 CZ1 near them is for the power supply. Be careful of the connector key.

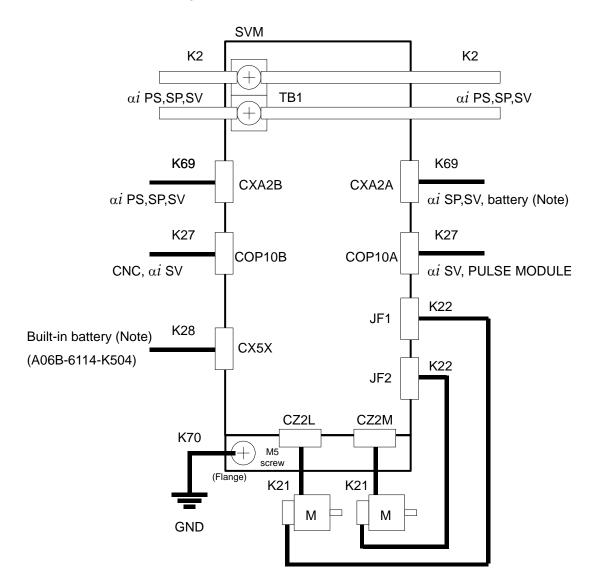
Connection for A06B-6089-H711 to -H713

Cable	Applicable cable	Connector key	Applicable
number	VCT(heat resistant 60°C (Note 1)	(Note 2)	contact (Note 2)
K41	2mm ² Two-conductor polyvinyl heavy-duty power cable (JIS C3312)	YY	S size 316040-6
K42	1.25mm ² Two-conductor polyvinyl heavy-duty power cable (JIS C3312)	2-917807-2	S size 316040-6
K43	2mm ² Two-conductor polyvinyl heavy-duty power cable (JIS C3312)		

NOTE

- 1 Run cables K41, K42, and K43 without tying them in a bundle.
- 2 CZ1 near them is for the power supply. Be careful of the connector key.

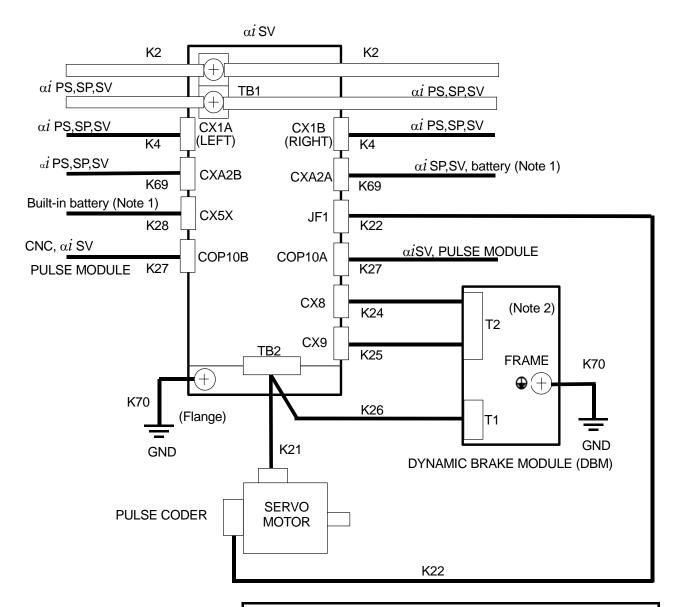
9.3.1.9 Details of cable K100 (for power failure detection output)


Cable K100 is used for the function for preventing the vertical axis from falling at the time of power failure. For details, see Appendix I, "POWER FAILURE DETECTION FUNCTION".

NOTE

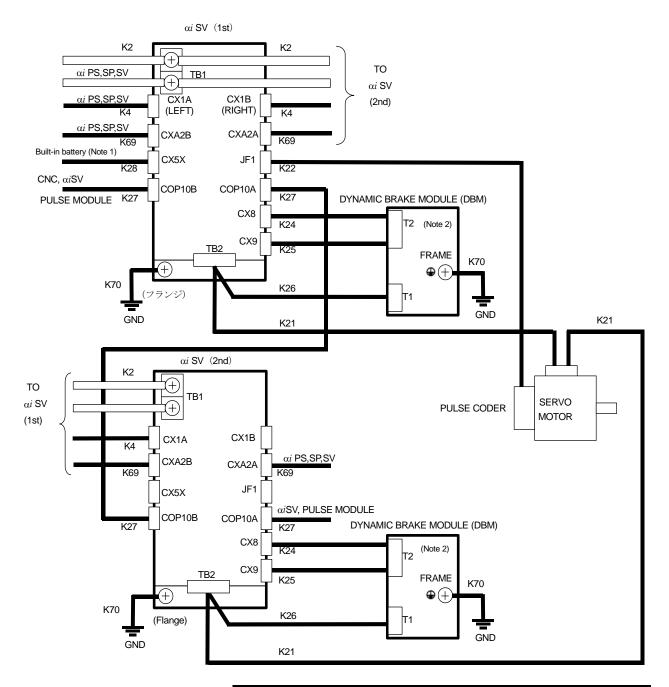
A06B-6110-Hxxx and A06B-6120-Hxxx do not have an output for the K100.

9.3.2 αi SV series Connection Diagram


60mm- or 90mm-wide αi SV (example : αi SV 2-axis) Without connection to dynamic brake module

NOTE

See Subsection 9.3.2.10 for connection to the battery or built-in battery.


αi SV 360, αi SV 180HV, αi SV 360HV

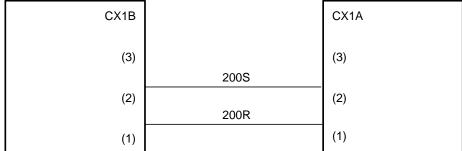
NOTE

- 1 See Subsection 9.3.2.10 for connection to the battery or built-in battery.
- 2 Connect one dynamic brake module for each servo amplifier.

αi SV 360, αi SV 180HV, αi SV 360HV When a servo motor with two windings is driven by two amplifiers

NOTE

- 1 See Subsection 9.3.2.10 for connection to the battery or built-in battery.
- 2 Connect one dynamic brake module for each servo amplifier.


9.3.2.1 Details of cable K2

The cable K2 is used to connect the DC link. See Item 9.3.1.2.

9.3.2.2 Details of cable K4

Cable K4 is a connection cable used to supply power (single phase, 200 VAC) for driving the dynamic brake unit to the αi SV.

αi PS, αi SV αi SV

Example cable:

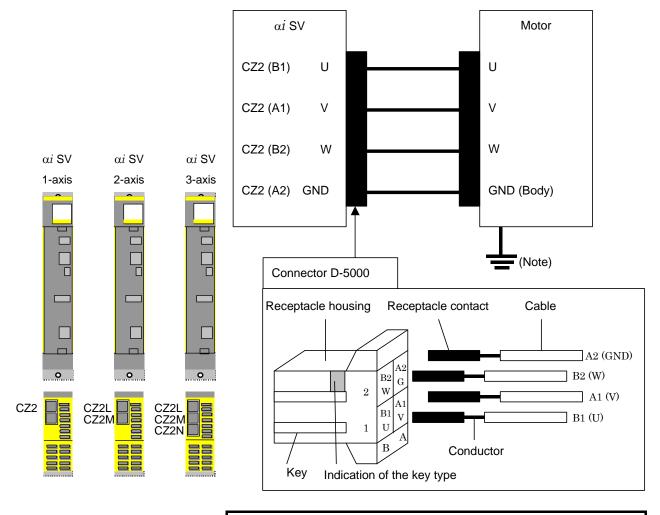
Two-conductor polyvinyl heavy-duty power cable (JIS C3312)

Conductor size of: 1.25mm^2 (50/0.18)

PVC sheath 9.6 mm in diameter

Connector specification:

Tyco Electronics AMP connector with receptacle housing 1-178128-3 and receptacle contact 1-175218-2


9.3.2.3 Details of cable K69

The cable K69 is a communication cable used between modules. See Item 9.3.1.4.

9.3.2.4 Details of cable K21

The cable K21 is a power cable used between the αi SV and motor. The cable is attached to the αi SV through the connector D-5000 excluding αi SV 160L, αi SV 360, αi SV 180HVL, αi SV 180HV and αi SV 360HV

Connection by connector

NOTE

When the αi SV 400-V input seies is used, always mount the motor flange on a cabinet (machine) connected to the system ground. It may be difficult to connect the motor flange to a cabinet (machine) connected to the system ground. In this case, connect the motor flange and frame ground (ground plate of the cabinet) using a cable at least 1.25 mm² thick. The cable must be separated from the power lines as much as possible.

⚠ WARNING

1 If the phase order of the power lines is incorrect, an unpredictable motor operation may occur.

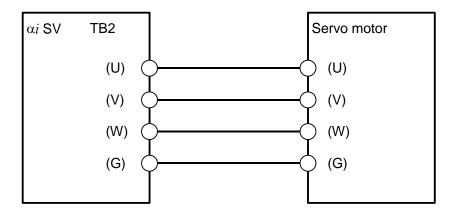
2 If the power lines are connected to wrong axes (L/M/N), an unpredictable motor operation may occur.

About the receptacle housing of the αi SV-side connector

The αi SV-side connector is a key type. The key is intended to prevent incorrect connection between the axes of multi-axis amplifiers (αi SV2, αi SV3). Select the receptacle housing that matches the αi SV and its axis that are to be used.

See Subsection 9.4.2 for detailed explanations about the specification of the D-5000.

Specification of the key	Applicable SVM
XX	αί SV1, αί SV2(L), αί SV3(L)
XY	αί SV2(M), αί SV3(M)
YY	α <i>i</i> SV3(N)


About the receptacle contact of the αi SV-side connector

Four types receptacle contacts are prepared for the different line diameter of the cable. Please use the receptacle contact which suits the line diameter of the cable.

See Subsection 9.4.2 for detailed explanations about the specification of the D-5000.

Connection by terminal block

α*i* SV 160L, α*i* SV 180HVL

- 200-V input series

Cables should be connected to the αi SV using crimp terminals as listed in the following table.

Amplifier models	Terminal screw	Rigid torque
α <i>i</i> SV 160L	M4	1.1 to 1.5Nm

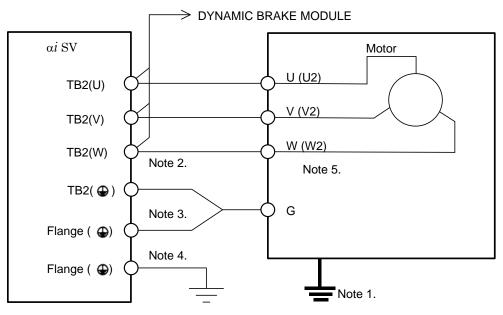
- 400-V input series

Cables should be connected to the αi SV using crimp terminals as listed in the following table.

Amplifier models	Terminal screw	Rigid torque
αi SV 180HVL	M4	1.1 to 1.5Nm

About the cable specification

Select the cable specification by considering the following conditions for use.


- <1> Motor current rating or current needed in use on a real machine
- <2> Cable type (heat resistance temperature, etc.)
- <3> Environment in which the cable is installed (operating ambient temperature, etc.)
- <4> Need of water proofing (pay attention to the diameter of the applicable cable clamp)
- <5> Certification for CE marking (compliance with various safety standards and EMC standard)
- <6> Securing insulation space among the cable pins at the time of cabling

About the motor-side connector

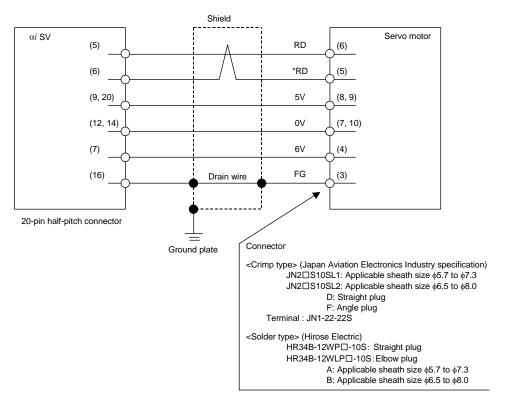
The specification of the motor-side connector varies from one motor model to another.

Refer to "FANUC AC SERVO MOTOR αi series Descriptions (B-65262EN)" for explanations about the specification of the motor-side connector.

αi SV 360, αi SV 180HV, αi SV 360HV

NOTE

- 1 When the αi SV 400-V input series is used, always mount the motor flange on a cabinet (machine) connected to the system ground. It may be difficult to connect the motor flange to a cabinet (machine) connected to the system ground. In this case, connect the motor flange and frame ground (ground plate of the cabinet) using a cable at least 1.25 mm² thick. The cable must be separated from the power lines as much as possible.
- 2 Size of screw for motor power line TB2(U), TB2(V), and TB2(W)
 - For αi SV 360, αi SV 180HV : M6
 - For αi SV 360HV : M10
- 3 Connection for motor ground lead
 - For αi SV 360, αi SV 180HV: Connection to TB2(G) (M6)
 - For αi SV 360HV : Connection to flange (M6)
- 4 Size of screws for connection between flange and ground
 - For αi SV 360, αi SV 180HV : M5
 - For αi SV 360HV : M6
- 5 To drive a motor with multiple windings by using two αi SV amplifiers, connect motor power lines (U, V, W, and G) to the first αi SV amplifier, and connect motor power lines (U2, V2, W2, and G) to the second αi SV amplifier.


9.3.2.5 **Details of cable K22**

The cable K22 is used to connect the αi SV and Pulsecoder.

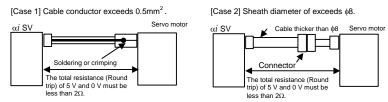
↑ WARNING

If the connector (JF1, 2, or 3) of the pulsecoder is connected incorrectly, an unpredictable motor operation may occur.

For servo motor αi F, αi S series and Servo motor βi S series (βi S 0.4/5000 to βi S 22/2000)

Using cable conductor

Coming Cambric Communication		
Signal name	Cable length : 28m or less	Cable length : 50m or less
	0.3mm ² × 5 (Note 4)	0.5mm ² × 5 (Note 4)
5V, 0V, 6V	Strand configuration 12/0.18 or 60/0.08	Strand configuration 20/0.18 or 104/0.08
	Insulation outer diameter $\phi 0.8$ to $\phi 1.5$	Insulation outer diameter $\phi 0.8$ to $\phi 1.5$
	0.18mm ² or more	0.18mm ² or more
RD, *RD	Twisted-pair wire	Twisted-pair wire
	Insulation outer diameter $\phi 0.8$ to $\phi 1.5$	Insulation outer diameter $\phi 0.8$ to $\phi 1.5$
Drain wire	0.15mm ² or more	0.15mm ² or more


See Subsection 9.4.1 for explanations for αi SV connector that matches the recommended cable.

See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

1 The ground plate to which the shield is connected must be placed as close as possible to the servo amplifier so that distance between the ground plate and the servo amplifier becomes shortest.

- 2 In case that the cable is prepared by MTB, total resistance of 5V and 0V must be less than 2Ω .
- 3 Pulsecoder side connector can accept maximum 0.5mm^2 (wire construction 20/0.18 or 104/0.08, diameter ϕ 1.5 or less) wire and sheath diameter is ϕ 5.7 to ϕ 8.0. In case of using thicker wire or cable, take measures described below.

4 In case of incremental Pulsecoder, 6V is not necessary to be connected.

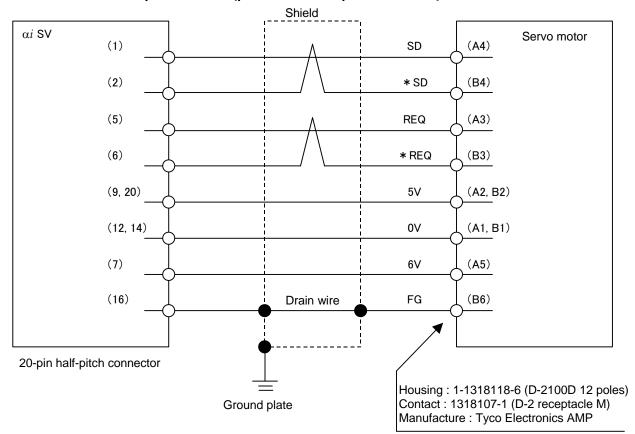
Crimp tool specification

FANUC specification	Japan Aviation Electronics Industry specification	Applicable cable thickness
A06B-6114-K201/JN1E	CT150-2-JN1-E	21AWG(0.5mm ² :20/0.18) 23AWG(0.3mm ²) 25AWG(0.18mm ²)
A06B-6114-K201/JN1D	CT150-2-JN1-D	20AWG(0.5mm ² :104/0.08) 21AWG(0.5mm ² :20/0.18) 25AWG(0.18mm ²)

Recommended cable

Recommended cable specification	Description	Crimp tool specification
A66L-0001-0460	Flexible cable 28 m or less	A06B-6114-K201/JN1E
A66L-0001-0481	Fixed cable 28 m or less	(FANUC specification) CT150-2-JN1-E (Japan Aviation Electronics Industry specification)
A66L-0001-0462	Flexible cable 50 m or less	A06B-6114-K201/JN1D
A66L-0001-0491	Fixed cable 50 m or less	(FANUC specification) CT150-2-JN1-D (Japan Aviation Electronics Industry specification)

Connector kit specification


<Crimp type>

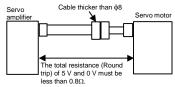
A06B-6114-K204/S: Straight plug (including a contact) A06B-6114-K204/E: Elbow plug (including a contact)

<Solder type>

A06B-6114-K205/S : Straight plug A06B-6114-K205/E : Elbow plug

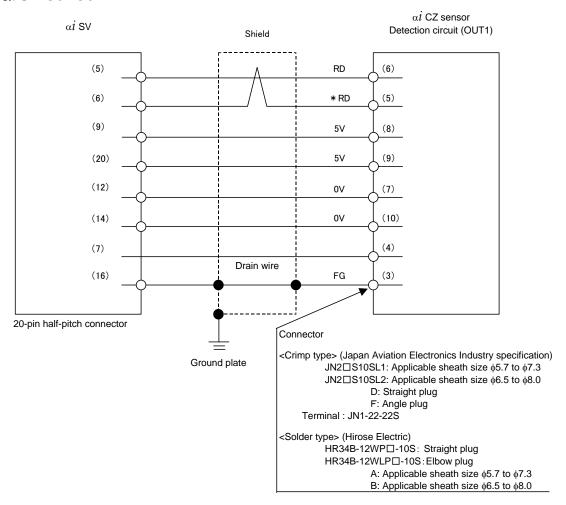
For servo motor βi S series ($\beta 0.2/5000i$ S, $\beta 0.3/5000i$ S)

Using cable conductor


Using cable conductor	
Signal name	Cable length : 20m or less
	0.5mm ² (AWG21) × 5 (Note 4)
5V, 0V,6V	Strand configuration: 20/0.18
	Insulation outer diameter: $\phi 0.88$ to $\phi 1.5$
	0.18mm ² (AWG25) or more
CD *CD DEO *DEO	Twisted-pair wire
SD, *SD, REQ, *REQ	Strand configuration: 7/0.18
	Insulation outer diameter: $\phi 0.88$ to $\phi 1.5$
Drain wire	0.15mm ² or more
	$0.5 \text{mm}^2 \times 5 + 0.18 \text{mm}^2 \times \text{two-pair}$
Recommended wire	(For a fixed cable)
	Hitachi Cable, Ltd.: UL20276-SB(0)5 × 21AWG+2Px25AWG
	(For a movable cable)
	Hitachi Cable, Ltd.: UL20276-SB(FLEX)5 × 20AWG+2P × 25AWG

See Subsection 9.4.1 for explanations about the αi SV-side connector that matches the recommended cable.

NOTE

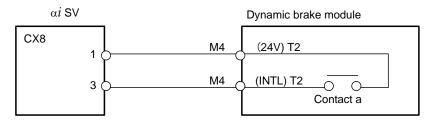

1 The ground plate to which the shield is connected must be placed as close as possible to the servo amplifier so that distance between the ground plate and the servo amplifier becomes shortest.

- 2 In case that the cable is prepared by the user, the total resistance (round trip) of 5 V and 0 V must be less than 0.8Ω .
- 3 The maximum applicable wire diameter of the cable connector on the motor side is 0.5 mm² (when crimping tool 1463475-1 is used) or 0.85 mm² (when crimping tool 1276654-1 is used).In case of using thicker wire or cable, take measures described below.

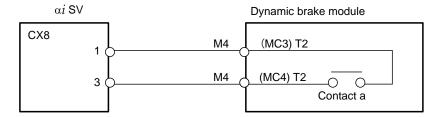
4 In case of incremental Pulsecoder, 6V is not necessary to be connected.

Absolute αi CZ sensor

Using cable conductor


Signal name	Cable length : 28m or less	Cable length : 50m or less	
	$0.3\text{mm}^2 \times 5$	$0.5\text{mm}^2 \times 5$	
5V, 0V, 6V	Strand configuration: 12/0.18 or 60/0.08	Strand configuration: 20/0.18 or 104/0.08	
	Insulation outer diameter: \$\phi1.5\$ or less	Insulation outer diameter: \$\phi 1.5\$ or less	
	0.18mm ² or more	0.18mm ² or more	
RD, *RD	Twisted-pair wire	Twisted-pair wire	
	Insulation outer diameter: \$\phi1.5\$ or less	Insulation outer diameter: \$\phi 1.5\$ or less	
Drain wire	0.15mm ² or more	0.15mm ² or more	

NOTE


The ground plate to which the shield is connected should be placed near the servo amplifier to minimize the distance between the servo amplifier and ground plate.

9.3.2.6 Details of cable K24

(1) For A06B-6079-H401

(2) For A06B-6069-H300

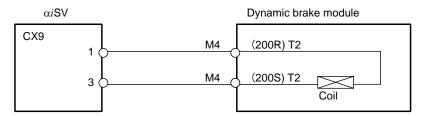
Example cable:

Two-conductor polyvinyl heavy-duty power cable (JIS C3312)

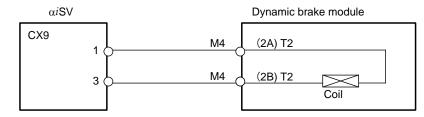
Conductor size of : 1.25mm² (50/0.18)

PVC sheath 9.6 mm in diameter

Connector specification:


Tyco Electronics AMP connector with receptacle housing 2-178128-3 and receptacle contact 1-175218-2

Crimping terminal:


2-4

9.3.2.7 Details of cable K25

(1) For A06B-6079-H401

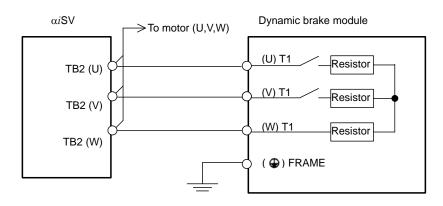
(2) For A06B-6069-H300

Example cable:

Two-conductor polyvinyl heavy-duty power cable (JIS C3312)

Conductor size of : 1.25mm² (50/0.18)

PVC sheath 9.6 mm in diameter


Connector specification:

Tyco Electronics AMP connector with receptacle housing 1-178128-3 and receptacle contact 1-175218-2

Crimping terminal:

2-4

9.3.2.8 Details of cable K26

Example cable:

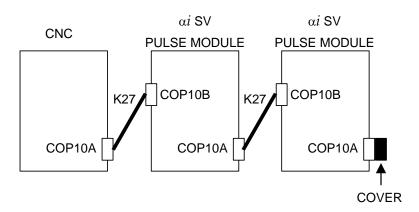
Fire-retardant polyflex wire (maximum conductor temperature 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd., 5.5 mm² or larger

Connector specification:

Tyco Electronics AMP connector with receptacle housing 1-178128-3 and receptacle contact 1-175218-2

Crimping terminal:

DBM side 5.5-5 (A06B-6079-H401)


5.5-8 (A06B-6069-H300)

α*i*SV side 5.5-6 (α*i* SV 360, α*i* SV 180HV)

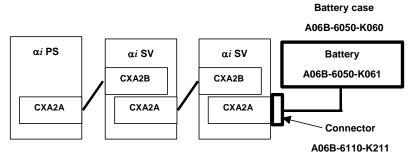
5.5-10 (α*i* SV 360HV)

9.3.2.9 Details of cable K27

Cable K27 is an optical fiber cable used in the FSSB interface.

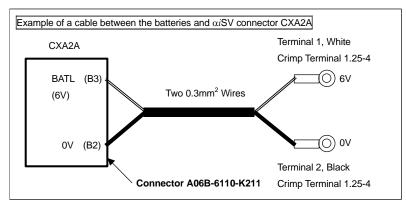
- The cable is run from connector COP10A in the CNC, αi SV, or pulse module to connector COP10B in the αi SV or pulse module.
- Connector COP10A of a module at the end of the cable chain must be covered with the cap supplied with the module.
- Refer to the applicable CNC connection manual for detailed specifications of the optical fiber cable.

9.3.2.10 Connecting the battery (for the absolute Pulsecoder)

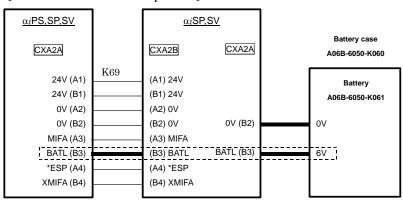

The following two methods can be used to connect the batteries for the absolute Pulsecoder: [connection method 1] and [connection method 2]

NOTE

- 1 Since the battery is a part that is in need of periodic maintenance by nature, it is recommended to use [connection method 1]. In this case, commercial batteries (four R20 alkaline batteries), which are easy to purchase, can be used.
- 2 The built-in batteries used in [connection method 2] must be purchased directly from FANUC. It is recommended that spare built-in batteries is purchased.
- 3 Do not use both [connection method 1] and [connection method 2] at the same time. Otherwise, multiple batteries are connected to the same BATL(B3) line, and a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.


[Connection method 1]

(1) Supplying power from one battery unit to more than one αiSV (1)


- A battery case (A06B-6050-K060) and four R20 alkaline batteries (A06B-6050-K061) are available as options. Commercial R20 alkaline batteries can also be used.

[Connection between the battery case and amplifier]

- A connector (A06B-6110-K211) for connecting batteries is available as an option.

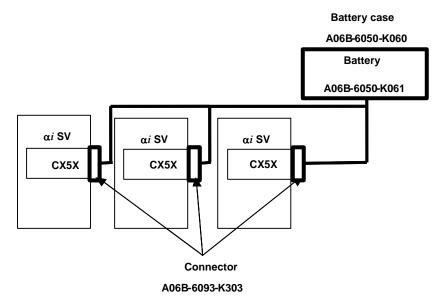
[Connection between amplifiers]

- The BATL(B3) is an interface for supplying power from one absolute Pulsecoder battery unit to more than one αi SV.

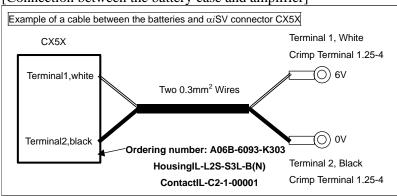
Specification of the connector

Manufacturer	Tyco Electronics AMP	
	D-2100 series	
Connector	Housing 1-1318119-4 (2 pieces)	
specification	Contact 1318107-1 (8 pieces)	
	[Ordering information : A06B-6110-K210 connector only]	
Conductor size	0.5mm ² , AWG20	
Instruction	1 00 2 02 mm	
outer diameter	1.08-2.83 mm	

NOTE


- 1 Up to six servo motors can be connected to one battery.
- 2 The life of the batteries are about two years if they are used for six αi series servo motors and one year if they are used for six α series servo motors.

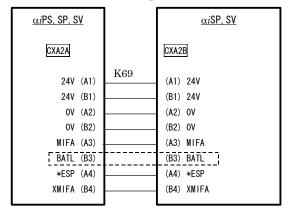
⚠ WARNING


Do not connect more than one battery to the same BATL(B3) line.

Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.

(2) Supplying power from one battery unit to more than one αiSV

[Connection between the battery case and amplifier]


Specification of the connector

Drawing No.	A06B-6093-K303	
Manufacturer	Japan Aviation Electronics Industry	
Manufacturer Housing: IL-L2S-S3L-B(N), Quantity: 1		
part number	Contact: IL-C2-1-00001, Quantity: 2	

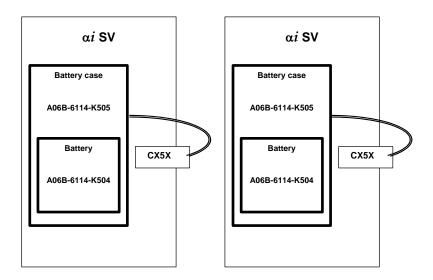
To connect the contacts to the cable, a special crimping tool is required. Contact the manufacturer (Japan Aviation Electronics Industry Ltd.).

• A battery case (A06B-6050-K060) and four size-D alkaline dry cells (A06B-6050-K061) are available as options. Size-D alkaline dry cells are commercially available.

[Connection between amplifiers]

Leave BATL(B3) open.

NOTE

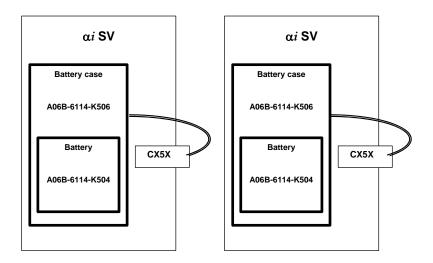

- 1 Up to six servo motors can be connected to one battery.
- 2 The battery service life is about two years for the αi series servo motor or about one year for the α series servo motor.

↑ WARNING

Do not connect multiple batteries to the same BATL(B3) line. Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.

[Connection method 2]

(1) Incorporating built-in batteries in each αi SV (Models other than αi SV 360, αi SV 180HV, and αi SV 360HV)


- Using the built-in battery (A06B-6114-K504) requires the battery case (A06B-6114-K505).

A cover originally mounted at the αi SV battery location cannot be used with the battery.

↑ WARNING

- When using the built-in battery, never connect the BATL(B3) of the connector CXA2A/CXA2B. Otherwise, a short-circuit will occur between the output voltages of different αi SV batteries, possibly resulting in the batteries becoming very hot, which is dangerous.
- 2 Do not connect more than one battery to the same BATL(B3) line.
 - Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.

- Incorporating built-in batteries in each α*i* SV For the α*i* SV 360, α*i* SV 180HV, and α*i* SV 360HV

- Using the built-in battery (A06B-6114-K504) requires the battery case (A06B-6114-K505).

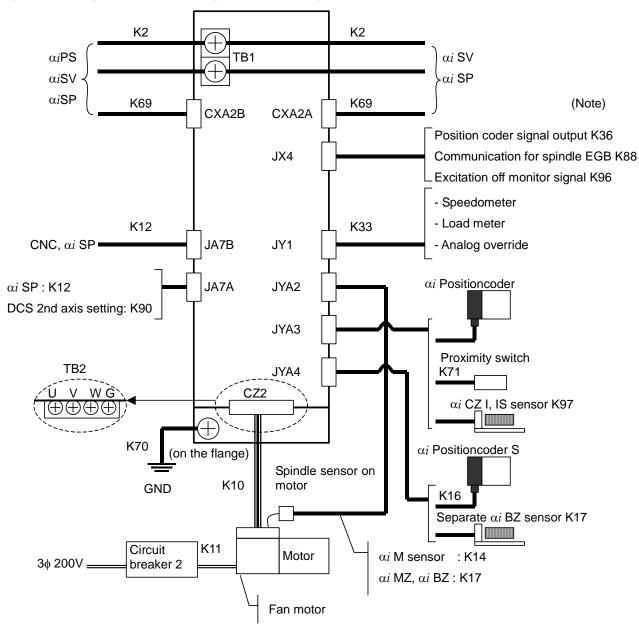
⚠ WARNING

- 1 When using the built-in battery, never connect the BATL(B3) of the connector CXA2A/CXA2B. Otherwise, a short-circuit will occur between the output voltages of different αi SV batteries, possibly resulting in the batteries becoming very hot, which is dangerous.
- 2 Do not connect more than one battery to the same BATL(B3) line. Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.

Battery life

When the αi series servo motor is used, the batteries need to be replaced periodically as follows:

Battery ordering specification	Standard backup life	Remark
A06B-6050-K061	2 years/6 axes	Size D alkaline dry cell × 4
A06B-6114-K504	1 year/3 axes	Lithium battery


9.3.2.11 Details of cable K70

Connect the αi SV flange to the grounding plate through a grounding cable. (Protective ground connection)

See Subsection 9.3.1.7 for detailed descriptions about the K70.

9.3.3 αi SP Series Connection Diagram

Spindle amplifier module (αi SP series)

NOTE

This diagram applies to TYPE B. For TYPE A, neither the JYA4 function nor the JX4 function (except the excitation off monitor function) is provided.

The excitation off monitor signal is not used in A06B-6111, -6112, -6121, and -6122.

9.3.3.1 **Details of cable K2**

See Item 9.3.1.2.

9.3.3.2 **Details of cable K69**

See Item 9.3.1.4.

9.3.3.3 **Details of cable K10 (power cable)**

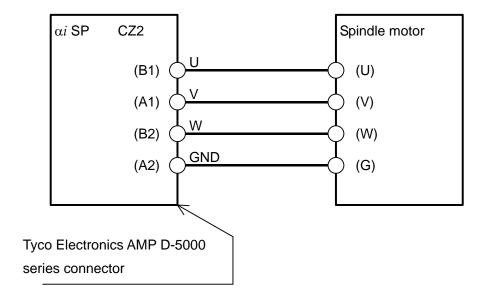
For the αi SP 2.2 and αi SP 5.5, a connector (D-5000) is used to attach the SPM motor power cable. For other models, a terminal block is used for connection.

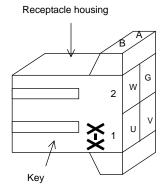
This subsection does not include the dimensions of the crimp terminal or the shape of the motor-side connector.

Refer to "AC SPINDLE MOTOR αi series Descriptions (B-65272EN)" for these items.

About the cable specification

Select the cable specification by considering the following conditions

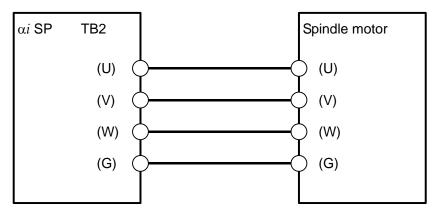

- <1> Motor current rating or current needed in use on a real machine
- <2> Cable type (heat resistance temperature, etc.)
- <3> Environment in which the cable is installed (operating ambient temperature, etc.)
- <4> Need of water proofing (pay attention to the diameter of the applicable cable clamp)
- <5> Certification for CE marking (compliance with various safety standards and EMC standard)
- <6> Securing insulation space among the cable pins at the time of cabling


⚠ CAUTION

If the phase order of the power lines is incorrect, an unpredictable motor operation may occur.

Connection through a connector

Location of connector pins



- 200-V input series

Key specification	Applicable models	
XX	αi SP 2.2, αi SP 5.5 αi SP 5.5HV	

See Subsection 9.4.2 for details.

Connection through a terminal block

- 200-V input series

Cables should be connected to the αi SP using crimp terminals as listed in the following table.

Amplifier models	Terminal screw	Rigid torque
α <i>i</i> SP 11, α <i>i</i> SP 15	M4	1.1 to 1.5Nm
α <i>i</i> SP 22, α <i>i</i> SP 26 α <i>i</i> SP 30, α <i>i</i> SP 37	M6	3.5 to 4.5Nm
αi SP 45, αi SP 55	U V W : M10	15 to 16Nm
ω or 45, ω or 55	G : M6	3.5 to 4.5Nm

- 400-V input series

Cables should be connected to the αi SP using crimp terminals as listed in the following table.

Amplifier models	Terminal screw	Rigid torque
αi SP 11HV, αi SP15HV	M4	1.1 to 1.5Nm
αi SP 30HV, αi SP 45HV	M6	3.5 to 4.5Nm
αi SP 75HV , αi SP 100HV	U,V,W : M10	15 to 16Nm
	G : M6	3.5 to 4.5Nm

9.3.3.4 Details of cable K70

Connect the αi SP flange to the grounding plate through a grounding cable. (Protective ground connection)

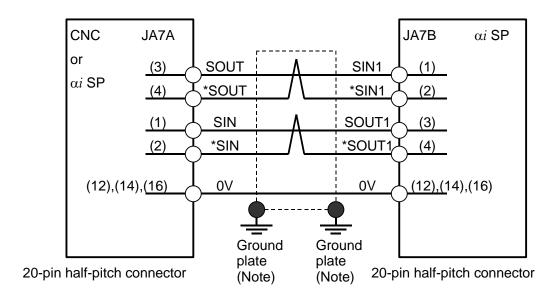
For connection with the αi SP, use the crimp terminal selected according to the following table.

200-V input series

Amplifier model	Terminal screw	Rigid torque
αi SP 2.2, αi SP 5.5, αi SP 11 αi SP 15, αi SP 22, αi SP 26 αi SP 30, αi SP 37	M5	2 to 2.5Nm
αi SP 45, αi SP 55	M6	3.5 to 4.5Nm

See Subsection 9.3.1.7 for details of the cable K70.

400-V input series


Amplifier model	Terminal screw	Rigid torque
αi SP 5.5HV , αi SP 11HV αi SP 15HV, αi SP 30HV, αi SP 45HV	M5	2 to 2.5Nm
α <i>i</i> SP 75HV, α <i>i</i> SP 100HV	M6	3.5 to 4.5Nm

See Subsection 9.3.1.7 for details of the cable K70.

9.3.3.5 Details of cable K11

See FANUC AC SPINDLE MOTOR αi series DESCRIPTIOPNS (B-65272EN) for details of this Subsection.

9.3.3.6 Details of cable K12

Cable specification: 0.09 mm² twisted pair with common shielded Recommended cable (wire only): A66L-0001-0284#10P See Section 9.4.1 for details of connectors applied to recommended cable.

See Appendix B for details of cables.

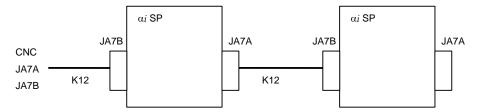
NOTE

If cable K12 is installed near the likes of a power cable, its shielding wire must be connected to a grounding plate. If an αi SP is installed near the CNC or another αi SP, however, it is not necessary to connect the shielding wire to a grounding plate.

Connector pin assignment

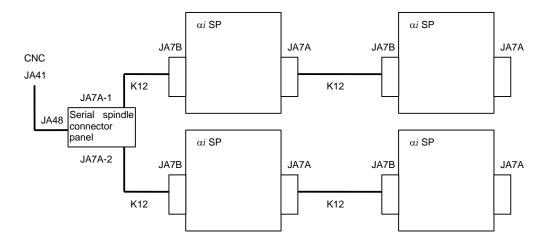
JA7A and JA7B

9	5V (Note 1)	10		19	20	5V (Note 1)
7	, ,	8		17	18	5V (Note 1)
5		6		15	16	0V
3	SOUT	4	*SOUT	13	14	0V
1	SIN	2	*SIN	11	12	0V

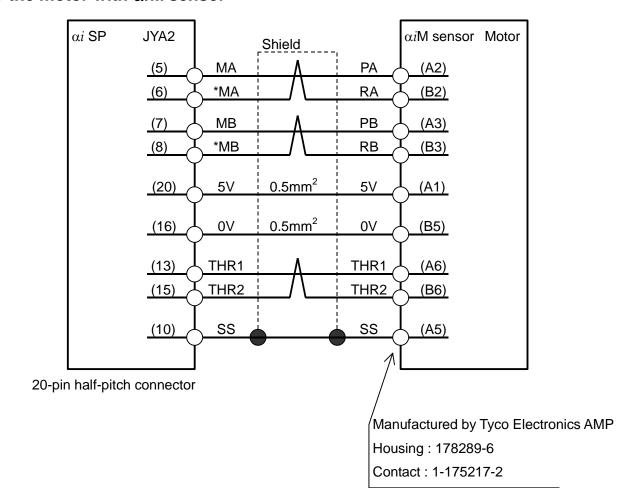

NOTE

- 1 The +5V pin is intended for optical link transmission based on the optical I/O link adapter. Do not use it when a metal cable is being used; otherwise, the +5 V line of the CNC will be short-circuited with that of the α*i* SP.
- 2 α*i* SP serial interface connection using an optical fiber cable

The use of an optical I/O link adapter with the αi SP serial interface extends the maximum allowable length of the optical fiber cable to up to 200 m. Use optical fiber cables in the following cases:


- When the required cable length is 20 m or longer.
- When the cable must be extended across multiple cabinets, and the cabinets cannot be connected with a grounding wire 5.5 mm² or larger.
- The cable may be affected by noise, for example, if the cable is laid near a strong magnetic noise source like a welding machine or in parallel with a power line over a long distance.

- Electrical interface connection between two lpha i SP units


- Electrical interface connection between four lpha i SP units in i series

Refer to the applicable CNC Connection Manual (Hardware) for a detailed description of the serial spindle connector panel.

9.3.3.7 Details of cable K14

For the motor with αiM sensor

Cable specification:

6 common shielded cable

(Three 0.18mm^2 twisted pairs $+ 0.5 \text{mm}^2$ wires)

Recommended cable conductor: A66L-0001-0368

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

If only one 5 V line and only one 0 V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.

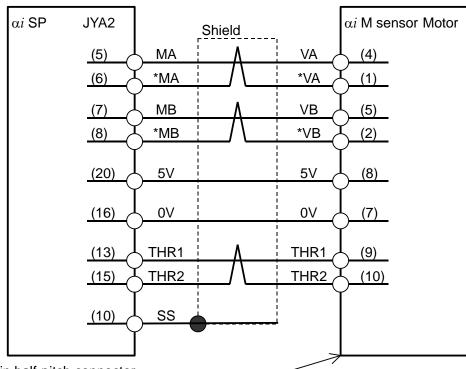
⚠ WARNING

If the feedback signal is connected incorrectly, an unpredictable motor operation may occur.

- Connector pin assignment

JYA2

9	5V	10	SS	19	#	20	5V
7	MB	8	*MB	17	#	18	5V
5	MA	6	*MA	15	THR2	16	0V
3	#	4	#	13	THR1	14	0V
1	MZ	2	*MZ	11	#	12	0V


NOTE

Do not use any pin that is marked #, because they may already be in use for input/output signals for an optional PCB.

Pin arrangement of the connector (manufactured by Tyco Electronics AMP) on the motor side

A1	+5V	B1	
A2	PA	B2	RA
А3	РВ	В3	RB
A4		B4	
A5	SS	B5	0V
A6	THR1	B6	THR2

For the $\alpha i I$ 0.5 spindle motor with αi M sensor

20-pin half-pitch connector

Housing (Japan Aviation Electronics Industry)

JN1xS10SL1 : Applicable sheath diameter \$\ \phi 5.7 to 7.3 JN1xS10SL2 : Applicable sheath diameter \$\ \phi 6.5 to 8.0 \end{array}

D : Straight plug F : Angle plug

Contact (Japan Aviation Electronics Industry)

JN1-22-22S

Cable specification:

2 common shielded cable

(Three 0.2mm^2 twisted pairs $+ 0.3 \text{mm}^2$ wires)

Recommended cable conductor: A66L-0001-0482

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

Keep the electrical resistance across each of the 5V and 0V lines to within 5.7Ω .

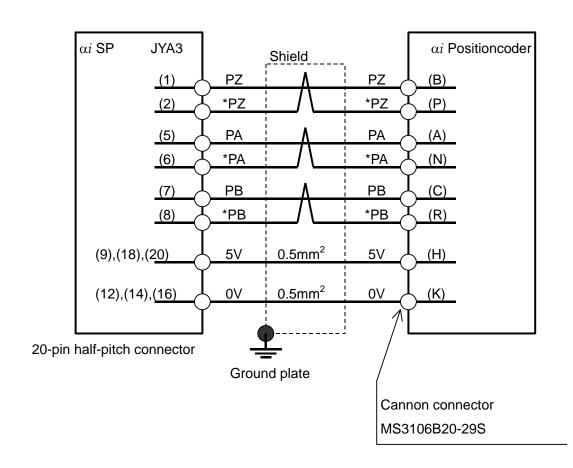
Recommended cable: Up to 41m

Connector pin assignment

Pin arrangement of the connector (manufactured by Japan Aviation Electronics Industry) on the motor side

1	*VA	
2	2 *VB	
3		
4	VA	
5 VB		
6		
7	0V	
8	5V	
9	THR1	
10	THR2	

• Crimp tool specification


A06B-6114-K201/JN1S

(Applicable wire diameter: AWG#22 to #24, AWG#26 to #28)

• Connector kit specification

A06B-6114-K200/S : Straight plug (including a contact) A06B-6114-K200/E : Elbow plug (including a contact)

9.3.3.8 Details of cable K16

Cable specification:

6 common shielded cable

(Three 0.18mm^2 twisted pairs $+ 0.5 \text{mm}^2$ wires)

Recommended cable conductor: A66L-0001-0286

See Section 9.4.1 for explanations about the JYA3-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

If only one 5 V line and only one 0 V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.

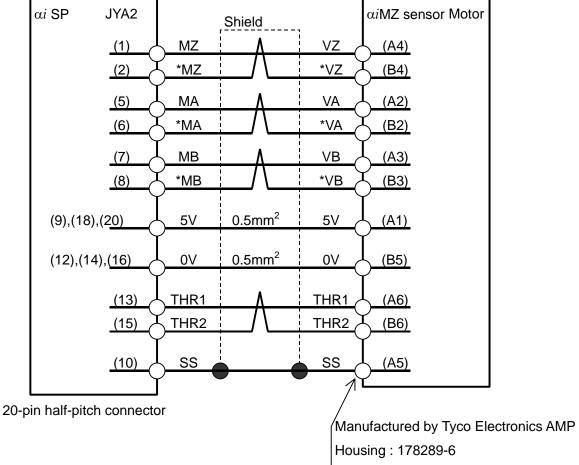
Connector pin assignment

JYA3

9	5V	10	#	19	#	20	5V
7	PB	8	*PB	17	#	18	5V
5	PA	6	*PA	15	EXTSC	16	0V
3	#	4	#	13	SCCOM	14	0V
	π		+57	10	OCCON	4.0	0) /
1	PZ	2	*PZ	11	24V	12	0V

NOTE

Do not use any pin that is marked #, because they may already be in use for input/output signals for an optional PCB.


Pin arrangement of the cannon connector on the Positioncoder side

Α	PA	В	PZ	С	PB
D		Е		F	
G		Н	+5V	J	
K	0V	L		М	
N	*PA	Р	*PZ	R	*PB
S		Т			

9.3.3.9 **Details of cable K17**

It is unnecessary to wire THR1 and THR2 if the αi BZ sensor is used as a separate detector (connected to the connector JYA4).

For the motor with αi MZ sensor

Contact: 1-175217-2

Cable specification:

6 common shielded cable

(Four 0.18mm² twisted pairs + 0.5mm² wires)

Recommended cable conductor: A66L-0001-0368

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

If only one 5 V line and only one 0 V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.

⚠ WARNING

If the feedback signal is connected incorrectly, an unpredictable motor operation may occur.

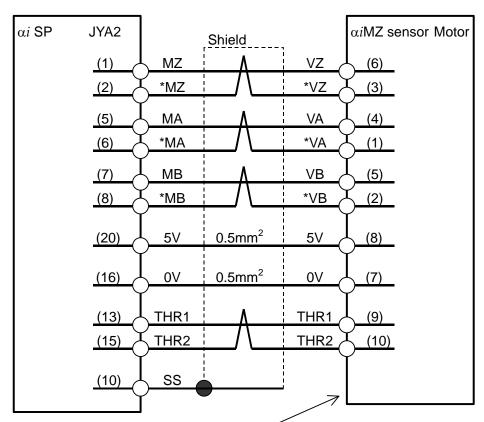
- Connector pin assignment

JYA2

See Subsection for cable K14.

JYA4

9	5V	10	SS	19	#	20	5V
7	MB	8	*MB	17	#	18	5V
5	MA	6	*MA	15		16	0V
3	#	4	#	13		14	0V
1	MZ	2	*MZ	11	#	12	0V


NOTE

Do not use any pin that is marked #, because they may already be in use for input/output signals for an optional PCB.

Pin arrangement of the connector (manufactured by Tyco Electronics AMP) on the motor side

A1	+5V	B1	
A2	VA	B2	*VA
А3	VB	В3	*VB
A4	VZ	B4	*VZ
A5	SS	B5	0V
A6	THR1	B6	THR2

For the $\alpha i I$ 0.5 spindle motor with αi MZ sensor

20-pin half-pitch connector

Housing (Japan Aviation Electronics Industry)

JN1xS10SL1 : Applicable sheath diameter ϕ 5.7 to 7.3 JN1xS10SL2 : Applicable sheath diameter ϕ 6.5 to 8.0

D : Straight plug F : Angle plug

Contact (Japan Aviation Electronics Industry)

JN1-22-22S

Cable specification:

2 common shielded cable

(Four 0.2mm² twisted pairs + 0.3mm² wires)

Recommended cable conductor: A66L-0001-0482

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

Keep the electrical resistance across each of the 5V and 0V lines to within 4Ω .

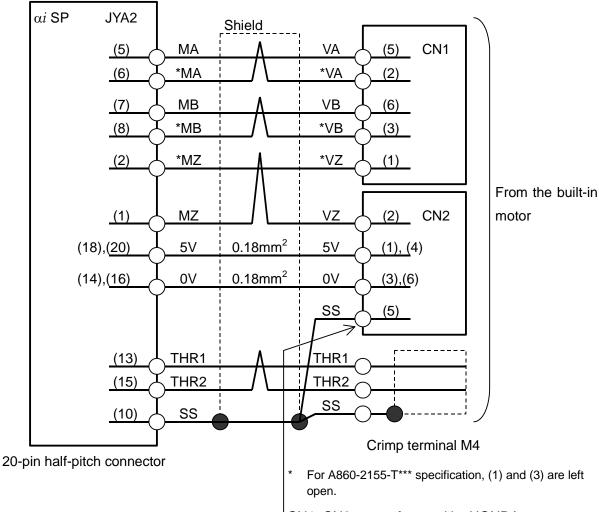
Recommended cable: Up to 28m

- Connector pin assignment

Pin arrangement of the connector (manufactured by Japan Aviation Electronics Industry) on the motor side

1	*VA		
2	*VB		
3	*VZ		
4	VA		
5	VB		
6	VZ		
7	0V		
8	5V		
9	THR1		
10	THR2		

• Crimp tool specification


A06B-6114-K201/JN1S

(Applicable wire diameter: AWG#22 to #24, AWG#26 to #28)

• Connector kit specification

A06B-6114-K200/S : Straight plug (including a contact) A06B-6114-K200/E : Elbow plug (including a contact)

αi BZ Sensor (conventional shape, A860-2120-T***) and αi BZ sensor (compact type, A860-2155-T***)

CN1, CN2: manufactured by HONDA

Connector : Z-374 Contact : HKP-F413

Cable specification:

4 common shielded cable

(Four 0.18mm² twisted pairs + 0.18mm² wires)

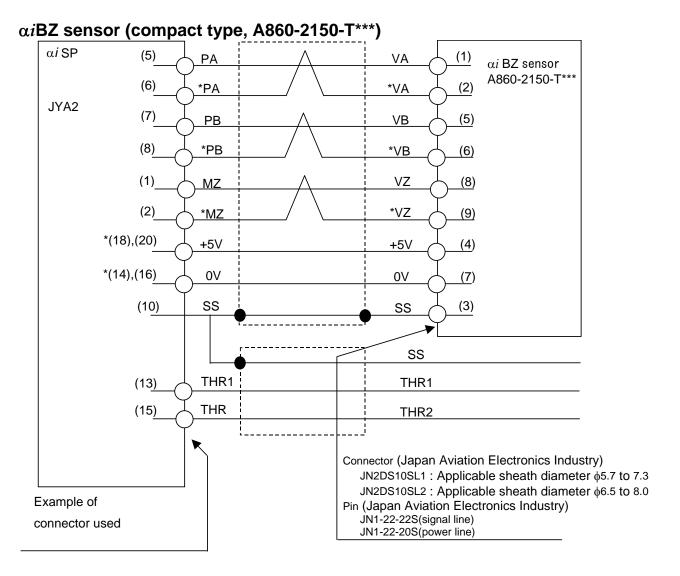
Recommended cable conductor: A66L-0001-0367

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

If only one 5 V line and only one 0 V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.

- Connector pin assignment


Pin arrangement of the connector CN1 (manufactured by Honda Tsushin Kogyo Co., Ltd.) on the motor side

1	*VZ	4	
2	*VA	5	VA
3	*VB	6	VB

Pin arrangement of the connector CN2 (manufactured by Honda Tsushin Kogyo Co., Ltd.) on the motor side

	1	5V	4	5V
Ī	2	VZ	5	SS
	3	0V	6	0V

For A860-2155-T*** specification, pins 1 and 3 of CN2 are left open.

Recommended cable conductor: A 66 L -0001-0482

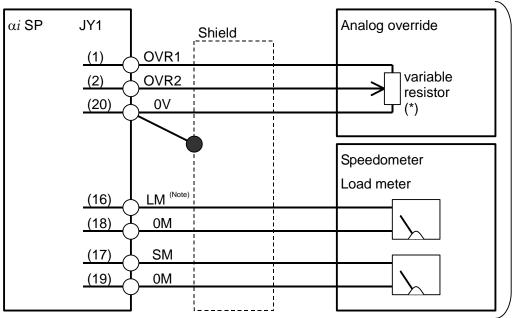
Cable length	28 m max
5V 0V	0.3mm ²
5V, 0V	(Connected to one of the pins marked *)
VA,*VA,VB,*VB,VZ,*VZ	0.2mm ² twisted pair × 3

Crimp tool specification

A06B-6114-K201/JN1S: For 0.3 mm²

A06B-6114-K201/JN1L: For 0.18 mm² and 0.5 mm²

Connector kit specification


A06B-6114-K204/S : Straight plug (including a contact)

- Connector pin assignment

 $\alpha i BZ$ sensor head side: Connector manufactured by Japan Aviation Electronics Industry

1	VA
2	*VA
3	SS
4	5V
5	VB
6	*VB
7	0V
8	VZ
9	*VZ
10	

9.3.3.10 Details of cable K33

20-pin half-pitch connector

Power magnetics cabinet

Cable specification:

0.09mm² common shielded cable

Recommended cable conductor: A66L-0001-0284#10P

See Section 9.4.1 for explanations about the JYA1-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

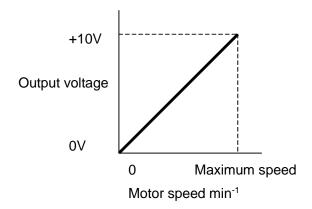
NOTE

Select such an external resistance such that VR+R1 falls within the range between 2 k Ω and 10 k Ω .

Connector pin assignment

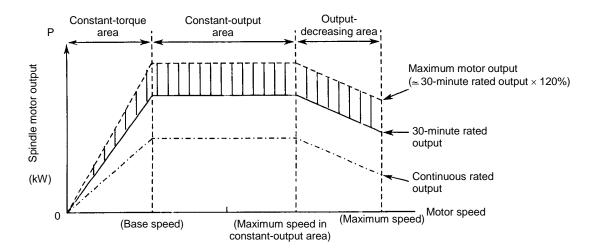
JY1

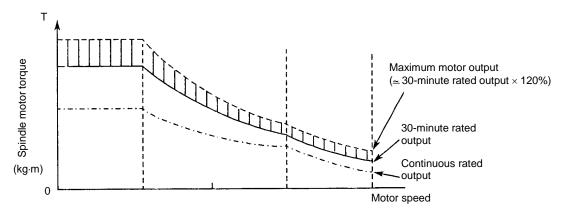
9	#	10	#	19	OM	20	0V
7	#	8	#	17	SM	18	ОМ
5	#	6	#	15	#	16	LM
3	#	4	#	13	#	14	#
		2	OVR2			12	#
1	OVR1		OVRZ	11	#	12	#

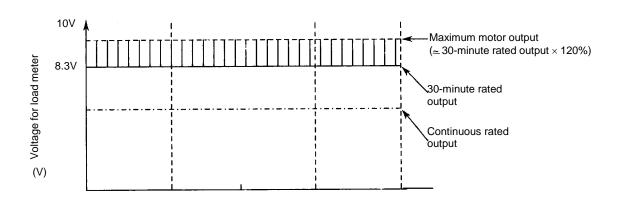

NOTE

Pins indicated # are intended to input or output signals used on a spindle check board. Do not connect any other signal line to them.

Voltage signal for the speedometer (SM)

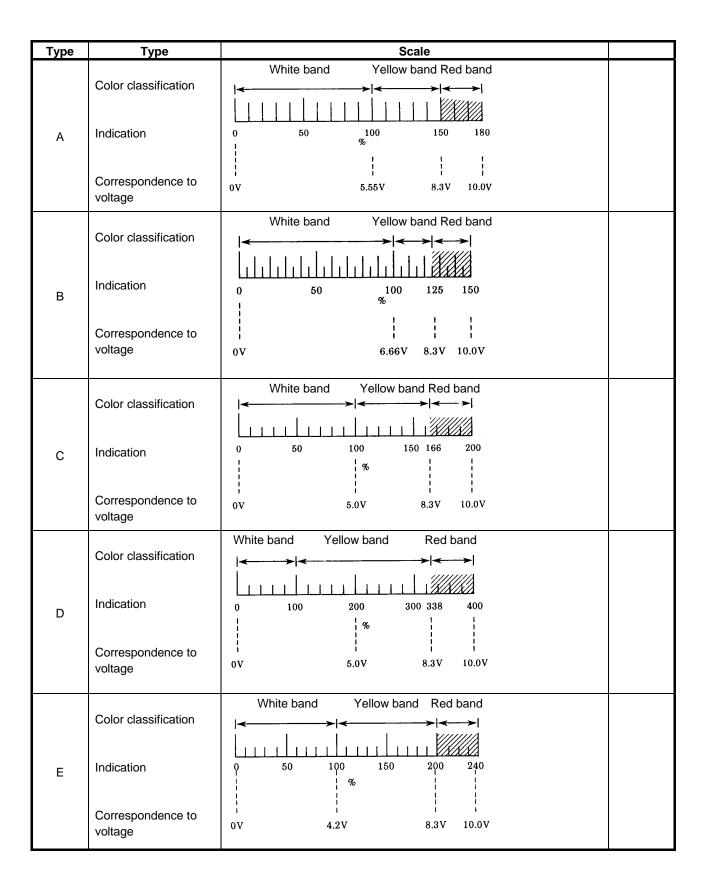

By externally connecting a tachometer, the speed of the spindle motor can be indicated. The voltage (DC) proportional to the speed is output, regardless of the rotation direction of the motor. At the maximum motor speed, $+10~\rm V$ is output.


The output voltage of the speedometer in the forward direction and reverse direction is calibrated using a parameter. The precision is $\pm 3\%$ Max.



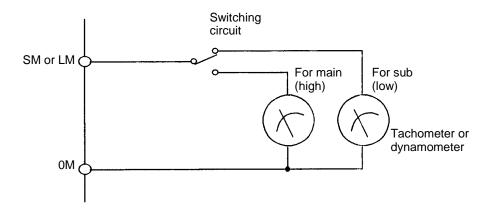
Voltage signal for the load meter (LM)

The load meter indicates a load ratio, that is, the ratio of load at the time of non-load rotation of the machine tool spindle or at the time of cutting to the maximum output of the spindle motor. At the rated input voltage, the relationships of spindle motor output, spindle motor torque, and voltage for the load meter with speed are as described below.

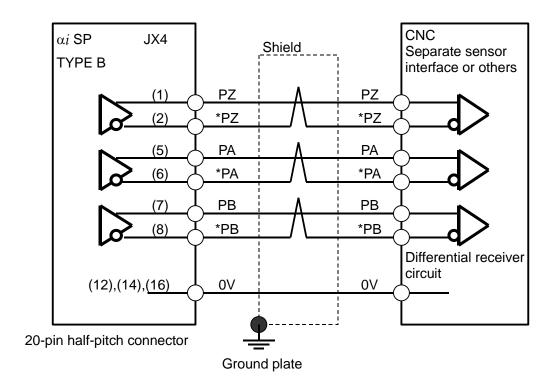


A load meter indication of 100% is provided for the continuous rating of the spindle motor. The table below indicates the relationships between typical spindle motor output values and load meter voltages. From the table below, it is considered that approximately five load meter indications are provided.

		Valtage for lead	Ratio (%) with 100%	Example of load meter		
Motor model	Output (kW)	Voltage for load meter (V) ^(NOTE)	indicated for	Type of load meter	Ratio to full scale	
		meter (v)	continuous rating	used	(%)	
	0.55	4.2	100		100	
α <i>i</i> I 0.5/10000	1.1	8.3	200	E	200	
	1.32	10.0	240		240	
	1.5	5.7	100		102.2	
α <i>i</i> I 1/10000	2.2	8.3	147	A	150	
	2.64	10.0	176		180	
	1.1	2.5	100		100	
α <i>i</i> I 1.5/10000	3.7	8.4	338	D	338	
	4.4	10.0	400		400	
	2.2	5.0	100		101	
$\alpha i I \ 2/10000$	3.7	8.3	166	С	166	
	4.4	10.0	200		200	
	3.7	5.6	100		100.8	
α <i>i</i> I 3/10000	5.5	8.3	148	Α	150	
	6.6	10.0	178		180	
	5.5	6.1	100		109.8	
α <i>i</i> I 6/10000	7.5	8.3	136	Α	150	
	9.0	10.0	164		180	
	7.5	5.7	100		102.6	
αiI 8/8000	11.0	8.3	146	A	150	
	13.2	10.0	175		180	
	11	6.1	100		109.8	
α <i>i</i> I 12/7000	15	8.3	136	A	150	
	18	10.0	164		180	
	15	6.7	100		100.5	
α <i>i</i> I 15/7000	18.5	8.3	124	В	125	
	22.2	10.0	149		150	
	18.5	7.0	100		105	
α <i>i</i> I 18/7000	22.0	8.3	118	В	125	
	26.4	10.0	142		150	
	22.0	7.0	100		105	
α <i>i</i> I 22/7000	26.0	8.3	118	В	125	
	31.2	10.0	142		150	
	30.0	6.7	100		105.5	
α <i>i</i> I 30/5000	37.0	8.3	124	В	125	
	44.4	10.0	149		150	
	37.0	6.8	100]	103	
αiI 40/6000	45.0	8.3	122	В	125	
	54.0	10.0	146		150	
	45.0	6.8	100		103	
α <i>i</i> I 50/4500	55.0	8.3	122	В	125	
	66.0	10.0	146		150	


NOTE

The precision of load meter voltage depends on the used speed and input voltage. The maximum error is about $\pm 15\%$.



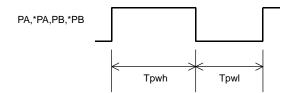
Indication for spindle switching and output switching

The speed indication voltage and dynamometer indication voltage may vary between the main spindle and sub-spindle in spindle switching and between the high winding and low winding in output switching. In such a case, switch the tachometer and dynamometer as shown below.

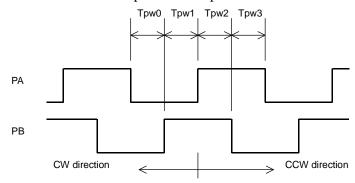
9.3.3.11 Details of cable K36

Cable specification: 0.09 mm² twisted pair with common shielded Recommended cable (wire only): A66L-0001-0284#10P See Section 9.4.1 for details of connectors applied to recommended cable.

See Appendix B for details of cables.


Specification of position coder signal output

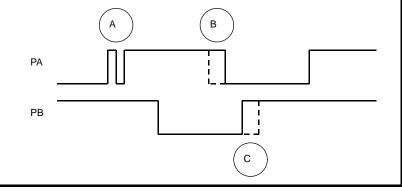
ltem	Specification	
	lpha i position coder	
ODM investorance	lpha i position coder S	
SPM input sensor	αi MZ sensor	
	lpha i BZ sensor	
Output signals PA, *PA, PB, *PB	1024 pulses/rotation (*1)	
Output signals PZ, *PZ	1 pulse/rotation	
Output signal laval	Differential driver signal	
Output signal level	(RS422 compatible)	


*1 A resolution of 4096 pulses/rotation can be obtained by counting the edges of phases A and B (× 4 circuit).

Phase A/B signal

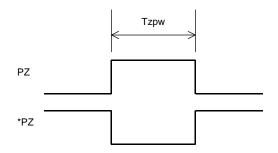
Width of phase A/B signal

Phase difference between phase A and phase B

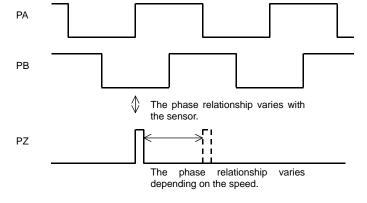


*PA and *PB represent the negative logic signals of PA and PB, respectively.

Symbol	Specification	Remark
Tpwh, Tpwl	Min 636ns	Including a maximum of driver rising/falling
Tpw0,1,2,3	Min 636ns	delay time skew (30 ns)

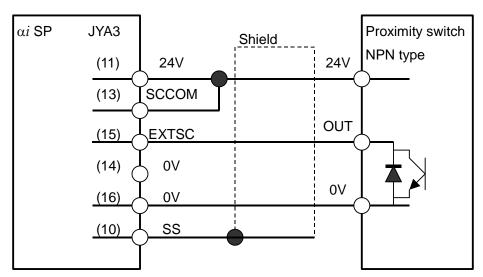

This specification does not include the effect of the cable capacity and the skew due to delay on the receiver side.

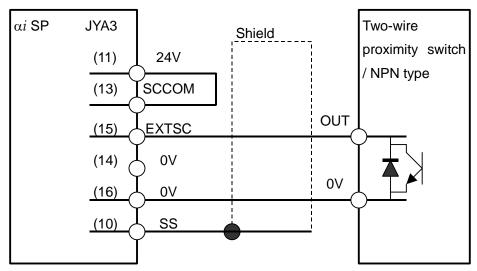
As shown in state A below, a waveform may be distorted at the edge of phase A or B. In addition, the edge may be encountered too late or too early as shown in state B or C. Even in these states, the minimum time is defined according to the specifications described on the previous page, such as the pulse width and the difference between phase A and phase B.


Phase Z signal

Width of phase Z signal

Symbol	Specification
Tzpw	The minimum width is 1/4096 of one rotation.


- * Edge distortion of signal Z Note that the edge of signal Z may be distorted.
- * Phase relationship between the phase Z signal and the phase A/B signal
 - The phase relationship between the phase Z signal and the phase A/B signal varies with the sensor.
 - When the speed changes, the phase relationship between the phase Z signal and the phase A/B signal may vary. The range of variation is approximately (1 p/5000 min-1.


9.3.3.12 Details of cable K71

20-pin half-pitch connector

20-pin half-pitch connector

20-pin half-pitch connector

Cable specification:

0.09mm² common shielded cable
Recommended cable conductor: A66L-0001-0284#10P
See Section 9.4.1 for explanations about the JYA3-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

Connector pin assignment

See Subsection "- Connector pin assignment" for the K16.

External one-rotation signal switch (proximity switch)

Use an external one-rotation signal switch (proximity switch) that satisfies the specifications indicated below.

(a) DC two-wire proximity switch

Item	Specification
	24 VDC ±1.5 V
Supply voltage	(24 VDC is fed from the spindle amplifier
	module.)
Response frequency	400 Hz or higher
Load current	16 mA or higher
Residual voltage	4 V or higher
Supply (leakage) current	1.5 mA or lower

(b) DC three-wire proximity switch

Item	Specification
	24 VDC ±1.5 V
Supply voltage	(24 VDC is fed from the spindle amplifier
	module.)
Response frequency	400 Hz or higher
Load current	16 mA or higher
Residual voltage	4 V or higher
Supply current	50mA or lower

NOTE

The location where a proximity switch signal occurs depends on the temperature. So, consider the ambient temperature when selecting a proximity switch.

Input signal specification (EXTSC input section)

Item	Specification	
High level	20V or higher	
Low level	4V or lower	
Minimum signal width	100 us	

NOTE

In design, the width of the signal to be detected should have a sufficient margin by considering variations in proximity switch on/off time.

9.3.3.13 Details of cable K86

Cable K86 must be up to 3 m long. To ensure noise resistance, install the αi SP and submodule SM on the same control board.

αi SP TYPE B JYA4		Shield		Submodule SM CX31
(11)	24V		24V	(A1)
(13)	XALM		XALM	(A4)
(15)	RDY		RDY	(A3)
(16)	0V		0V	(A2)
(10)	SS			

Applicable connector:

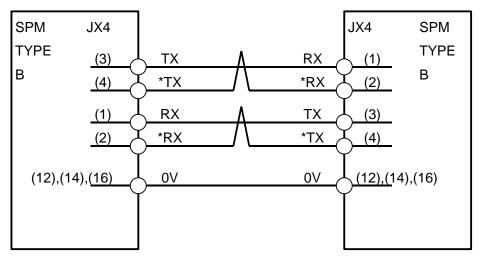
JYA4 : Solder type connector: FI40B20S,

Housing: FI-20-CVS5 manufactured by Hirose Electric Co.,

CX31 : Tyco Electronics AMP D2100 series 8 pins

Housing: 1-1318119-4, contact: 1318107-1 (4 contacts

required)


Cable specification:

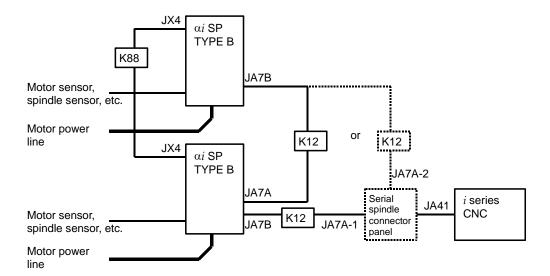
0V, 24V, XALM, RDY: 0.5mmSQ(AWG20 or smaller),

Common shield cable

9.3.3.14 Details of cable K88

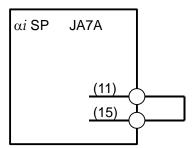
This cable is required when using the spindle EGB function.

20-pin half-pitch connector

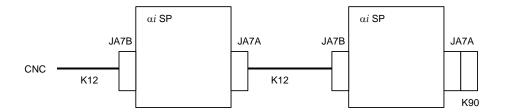

20-pin half-pitch connector

Cable specification: 0.09 mm² twisted pair with common shielded Recommended cable (wire only): A66L-0001-0284#10P See Section 9.4.1 for details of connectors applied to recommended cable.

See Appendix B for details of cables.


NOTE

- 1 The length of cable K88 must be 3 m or shorter and run within the same cabinet.
- 2 The αi SPs that use this connection must be connected to the same CNC as shown below.

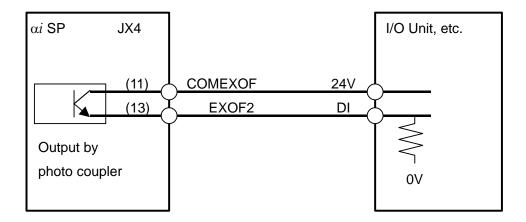

9.3.3.15 Details of cable K90

Only when the dual check safety function is used, this connection is required for the second spindle.

20-pin half-pitch connector

When the dual check safety function is used, connector K90 must be connected to JA7A of the second spindle.

This signal is used to externally monitor the excitation status of the spindle amplifier to implement a safety circuit.


9.3.3.16 **Details of cable K96**

This signal is used to externally monitor the excitation status of the spindle amplifier and implement a safety circuit for the safety spindle stop function of dual check safety.

For how to configure a safety circuit with this signal, refer to the following documents coming with the "Dual Check Safety Operator's Manual" of your CNC.

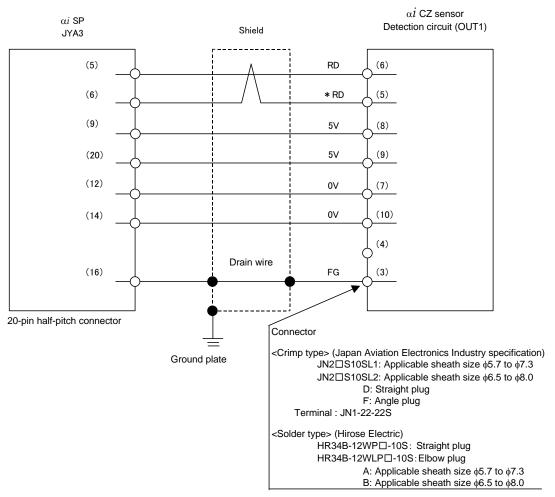
"SAFE SPINDLE STOP FUNCTION with protection door open" For the Series 30*i*/31*i*/32*i*, B-64004EN/03-01

For the Series 16i/18i/21i, B-63494EN/02-01

20-pin half-pitch connector

SP contact output specifications Circuit type: Polar photo coupler Rated voltage: 30 VDC or less Output current: DC 40 mA or less

Saturation voltage: 1.5 V or less (at output current of 40 mA)


Open contact: Excitation on Closed contact: Excitation off

↑ CAUTION

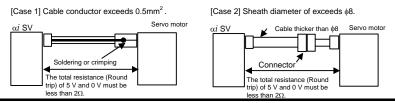
If the connector is connected incorrectly, externally supplied 24 V can damage the internal circuit of the αi SP.

This function is not provided in A06B-6111, -6112, -6121, and -6122.

9.3.3.17 Details of cable K97

Wires used

Signal name	28 m or less	50 m or less
	$0.3\text{mm}^2 \times 5$	$0.5\text{mm}^2 \times 5$
E\/_0\/_6\/	Strand configuration 12/0.18 or	Strand configuration 20/0.18 or
5V, 0V, 6V	60/0.08	104/0.08
	Insulation outer diameter 1.5 or less	Insulation outer diameter 1.5 or less
	0.18 mm ² or more	0.18mm ² or larger
RD, *RD	Twisted-pair wire	Twisted-pair wire
	Insulation outer diameter 1.5 or less	Insulation outer diameter 1.5 or less
Drain wire	0.15mm ² or larger	0.15mm ² or larger


NOTE

- 1 The ground plate to which the shield is connected must be placed near the α iSP to minimize the distance between the α iSP and the ground plate.
- 2 Run the power line and signal line so that they are not in parallel.

NOTE

3 When the customer prepares the cable, the total wire resistance of 5 V and 0 V must be 2 Ω or less.

4 The maximum wire thickness applicable to the connector on the detection circuit side is 0.5 mm² (strand configuration: 20/0.18 or 104/0.08, insulation outer diameter: 15 or less), and the sheath is 5.7 to 8.0 in diameter. When using a wire or cable thicker than the above size is used, take measures as shown below.

Crimp tool specification

FANUC specification	Japan Aviation Electronics	Applicable cable
PANUC Specification	Industry specification	thickness
		21AWG(0.5mm ² :20/0.18)
A06B-6114-K201#JN1E	CT150-2-JN1-E	23AWG(0.3mm ²)
		25AWG(0.18mm ²)
		20AWG(0.5mm ² :104/0.08)
A06B-6114-K201#JN1D	CT150-2-JN1-D	21AWG(0.5mm ² :20/0.18)
		25AWG(0.18mm ²)

Extractor specification A06B-6114-K201/JN1R

• Recommended cable

Recommended cable specification	Description	Crimp tool specification
A66L-0001-0460	Flexible cable 28 m or less	A06B-6114-K201#JN1E
A66L-0001-0481	Fixed cable 28 m or less	(FANUC specification)
		CT150-2-JN1-E
		(Japan Aviation Electronics
		Industry specification)
A66L-0001-0462	Flexible cable 50 m or less	A06B-6114-K201#JN1D
A66L-0001-0491	Fixed cable 50 m or less	(FANUC specification)
		CT150-2-JN1-D
		(Japan Aviation Electronics
		Industry specification)

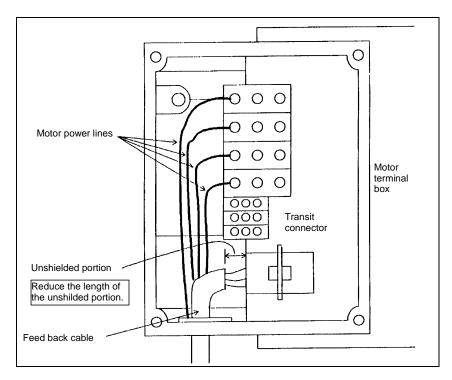
• Connector kit specification

<Crimp type>

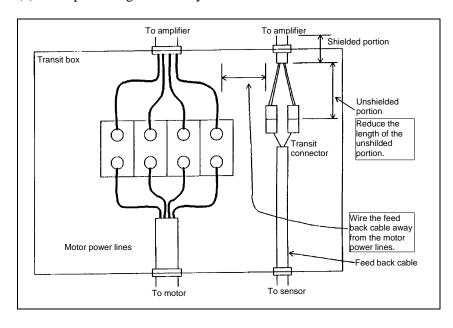
A06B-6114-K204#S: Straight plug (including a contact) A06B-6114-K204#E: Elbow plug (including a contact)

<Solder type>

A06B-6114-K205#S: Straight plug A06B-6114-K205#E: Elbow plug


9.3.3.18 Spindle Motor Feedback Cable Connection

The connector of the feedback cable connected to the spindle motor may have the following problems, depending on the wiring in the motor terminal box (transit box for the built-in motor):


- Variations in low speed become large.
- Sensor signal disconnection alarm (alarm 9073) detected incorrectly
- Sensor signal abnormality alarm (alarm 9083) detected incorrectly

Give consideration to wiring so that minimum lengths of non-shielded portions are provided for the connector connecting the cable for αi SP and signals output from the spindle motor. (See the examples below.)

(1) Sample wiring in the motor terminal box

(2) Sample wiring in the relay box for the built-in motor

B-65282EN/06 9.CONNECTION

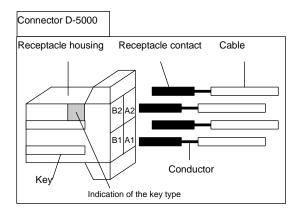
9.4 DETAILS OF CONNECTORS

9.4.1 20-Pin Half-Pitch Connectors

The following table lists the 20-pin half-pitch connectors used for the αi series servo amplifier and the recommended cables for these connectors.

Use connectors that match the recommended cables specified on the applicable connection diagram in detail.

Recommended-cable specification	Applicable connector	Connector model number	Housing model number	Connector + housing
	Crimp type	Hirose Electric Co., Ltd. FI30-20S Honda Tsushin Kogyo	Sideways cable slot type FI-20-CVS2	Sideways cable slot type FI30-20S-CVS2
ACCI 0004 0284#40D		Co., Ltd. PCR-E20FA	PCR-V20LA	
A66L-0001-0284#10P	Soldering type	Hirose Electric Co., Ltd. FI40B-20S Honda Tsushin Kogyo Co., Ltd. PCR-E20FS	Sideways cable slot type FI-20-CVS2 PCR-V20LA	Sideways cable slot type FI40B-20S-CVS2
A66L-0001-0286 A66L-0001-0460 A66L-0001-0462 A66L-0001-0481 A66L-0001-0491	Soldering type Note that this connector does not have pin No. 11, 13, 15, 17, or 19.	Hirose Electric Co., Ltd. FI40B-2015S	Sideways cable slot type FI-2015-CVS	Sideways cable slot type FI40B-2015S-CVS
A66L-0001-0368	Soldering type	Hirose Electric Co., Ltd. FI40B-20S	Sideways cable slot type FI-20-CVS5	Sideways cable slot type FI40B-20S-CVS5


9.CONNECTION B-65282EN/06

9.4.2 Tyco Electronics AMP D-5000 Series Connector

The αi series uses the D-5000 series connector (manufactured by Tyco Electronics AMP) for the motor power cable.

The connector is provided with three keys that assure it is inserted in the correct direction. In addition, four types of receptacle contacts are available, from which the user can select the suitable one depending on the amount of current to use (size of the conductor).

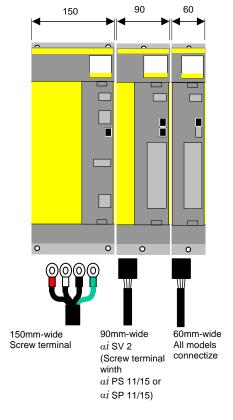
Connectors and tools can be ordered directly from Tyco Electronics AMP. FANUC also furnishes options. For details, see Subsection 3.1.3.5, "Connectors."

Receptacle housing

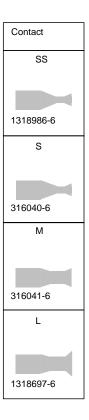
There are three different key types for the receptacle housing. Be sure to select the receptacle housing of the key type that matches the servo axis you use.

Receptacle housing model number	Specification of the key	Applicable servo amplifier
1-917807-2	XX	αi PS 5.5, αi SP2.2, αi SP 5.5, αi SV 1-axis, αi SV 2-axis (L), αi SV 3-axis(L)
3-917807-2	XY	αi SV 2-axis (M), αi SV 3-axis (M)
2-917807-2	YY	αi SV 3-axis (N)

(Reference)


There is a cable-end connectors which are inserted no matter what key is used. Contact the connector manufacturer (Tyco Electronics AMP) for details.

B-65282EN/06 9.CONNECTION


Receptacle contact

Four receptacle contact types are available, so as to support different conductor diameters. Be sure to select the receptacle contact (silver plating) that matches the servo axis you use.

	gle contact Il number	Conductor size (mm²)	Conductor size AWG	Insulation outer diameter (mm)	Manual tool model number	
SS size	1318986-6	0.50 - 1.42	20/18	1.08-3.23	1366656-1	
S size	316040-6	1.23 – 2.27	16/14	3.0-3.8	234170-1	
M size	316041-6	3.08 - 5.50	12/10	4.0-5.2	234171-1	
L size	1318697-6	7.27 – 8.92	8	4.9-7.8	1366044-1	

Applied	Connector key
αi PS 5.5 αi SP 2.2 αi SP 5.5 αi SV1 αi SV2(L-axis) αi SV3(L-axis)	XX 1-917807-2
αi SV 2 (M-axis) αi SV 3 (M-axis)	XY 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
αi SV 3 (N-axis)	2-917807-2

10 SPINDLE-RELATED OPTIONS

Chapter 10, "SPINDLE-RELATED OPTIONS", consists of the following sections:

10.1	SPINDLE ORIENTATION	305
10.2	POWER LINE SWITCH CIRCUIT	306
10.3	SUB MODULE SW	316
104	SUB MODULE SM	323

10.1 SPINDLE ORIENTATION

Sensor

Sensor	Description
lpha i position coder	Connected to the spindle on a 1:1 basis (directly connected by using a gear or timing belt)
lpha i position coder S	Connected to the spindle on a 1:1 basis (directly connected by using a gear or timing belt)
lpha i MZ sensor	
lpha i BZ sensor	Directly connected to the spindle on a 1:1 basis
lpha i CZ sensor	
αi M sensor +	Installed on the enindle. The motor is connected with the enindle by using a goor
Proximity switch	Installed on the spindle. The motor is connected with the spindle by using a gear.

Detection unit and repetitive positioning precision

Sensor	Number of feedback signals	Detection unit	Repetitive positioning precision ^(NOTE)
lpha i position coder	1024p/rev	0.088°	±0.2°
lpha i position coder S	1024λ/rev	0.088°	±0.2°
lpha i MZ sensor, $lpha i$ BZ sensor	128λ/rev to 512λ/rev	0.088°	±0.2°
lpha i CZ sensor		0.088°	±0.2°
lpha i M sensor + proximity switch	128λ/rev to 512λ/rev	0.088°	$\pm 0.2^{\circ}$ When the gear ratio is 1:1. An error due to gear backlash is excluded.

NOTE

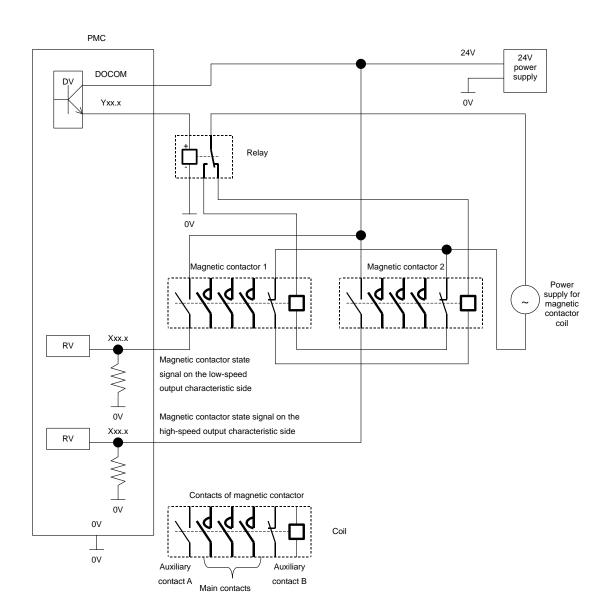
- 1 The error factors on the machine side are excluded.
- 2 With the αi M sensor plus proximity switch method, stop position control is exercised using the αi M sensor built into the motor, with the proximity switch installed on the spindle used as the reference. So, pay attention to the following mechanical error factors:
 - When the gear ratio is higher than 1:1 (on the spindle acceleration side), repetitive positioning precision decreases.
 - The stop position can move by a gear backlash.

10.2 POWER LINE SWITCH CIRCUIT

10.2.1 Overview

The power line switch circuit is installed between an αi SP and spindle motor to exercise spindle switch control and output switch control.

- (1) Power switching from one motor to another (spindle switch control)
- (2) Power line switching between the two different windings of a motor (output switch control)


A power line switch unit for performing power line switching is available.

A switch circuit can also be configured by using magnetic contactors and a relay.

10.2.2 Switch Circuit Configuration

The switch circuit is configured as follows:

- The diagram given below shows connections of the coils of magnetic contactors.
- For the PMC sequence, refer to Section 5.1, "Output Switch Control", or Section 5.2, "Spindle Switch Control", in Chapter 5, "Function Description", in "FANUC AC SPINDLE MOTOR αi Series Parameter Manual" (B-65280EN).
- For the connection of the main contacts in output switch control, refer to the relevant spindle motor descriptions.
- Select magnetic contactors so that the rated contact current of the main contacts is at least the short-time rated current of the spindle motor.

10.2.3 Power Line Switch Unit

10.2.3.1 Specification

Ordering specification drawing number	A06B-6078-K034 (Y/Y connection) A06B-6078-K035 (Y/∆ connection)	A06B-6078-K036 (Y/Y connection) A06B-6078-K037 (Y/Δ connection)			
Magnetic contactor	A58L-0001-0306	A58L-0001-0312			
specification	Fuji Electric (SC-3N)	Fuji Electric (SC-6N)			
	200-240V: 65A	200-240V: 125A			
Rated operating current *1	400-440V: 65A	400-440V: 110A			
	440-480V: 60A	440-480V: 90A			
Rating of operating	200V/220V	15% to +10%			
electromagnetic coil	50/60H	łz ±1Hz			
Relay specification	A58L-0001-0307 OMRON (type LY2-D)				
Rated voltage	24V ±10%				
Rated current	36.	9mA			

^{*1} Select a power line switch unit so that the peak rated current of the spindle motor used is equal to or less than this value.

10.2.4 Outside and Mounting Dimension Diagrams

Outside and mounting dimension diagrams of the switch unit for spindle switch control and output switch control (Y/Y connection)

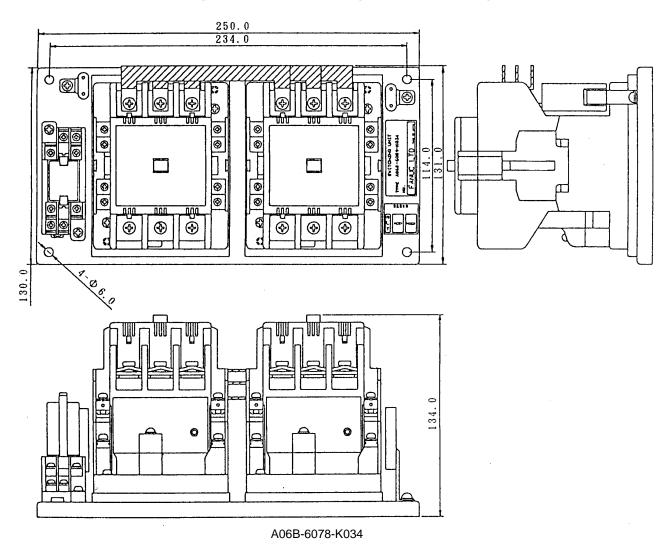
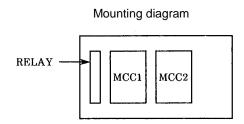
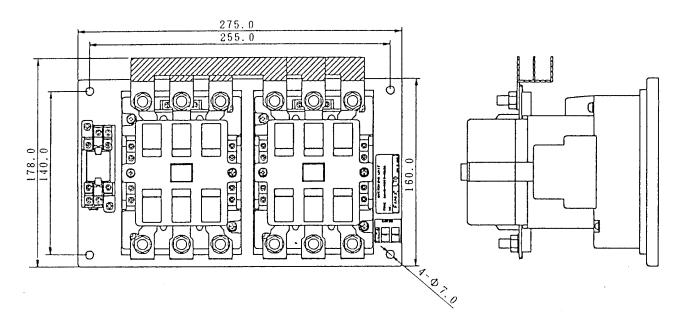
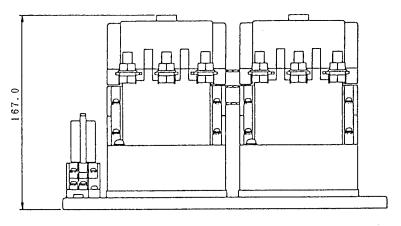
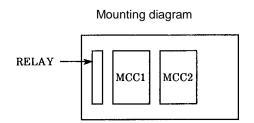
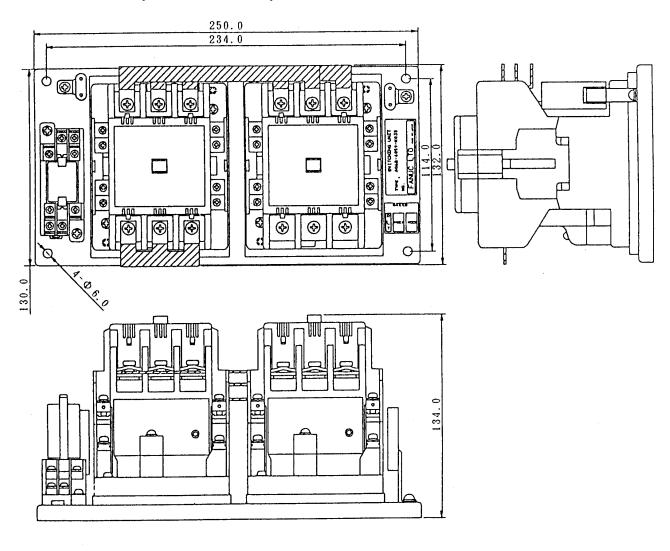





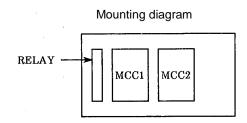
Fig. A





A06B-6078-K036

Fig. B



Outside and mounting dimension diagrams of the switch unit for output switch control (Y/ $\!\Delta$ connection)

A06B-6078-K035

Fig. A

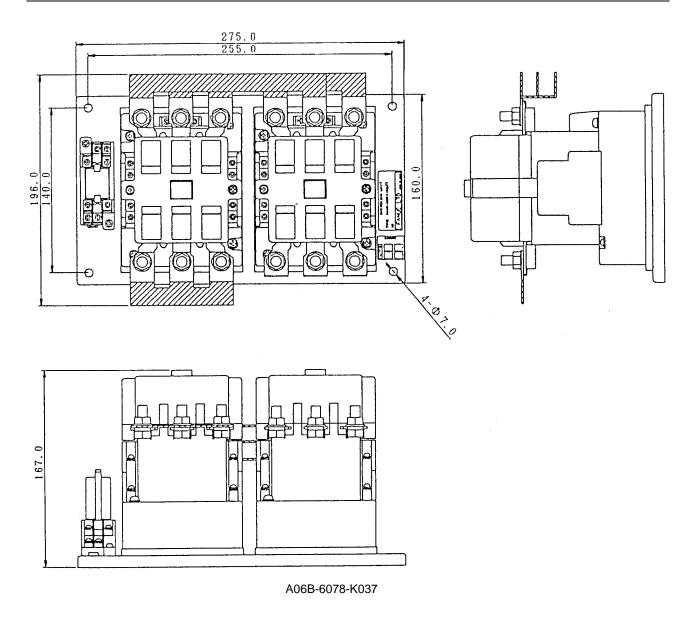
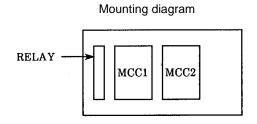
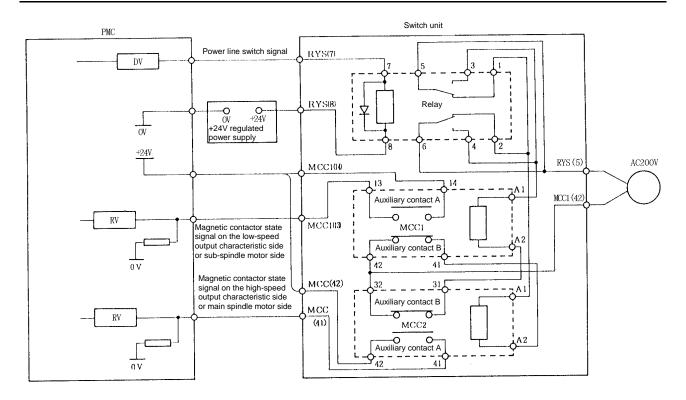




Fig. B

10.2.5 Connection

NOTE

Make a connection to the switch unit by direct screwing on the screw terminal of the magnetic contactor and relay socket.

10.2.6 Notes

- (1) Install the switch unit under the same conditions as for the αi SP. Installation conditions
 - Ambient temperature

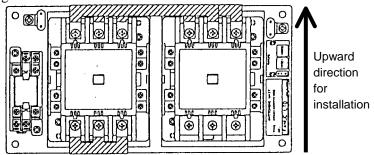
Ambient temperature of the unit:

0 to 55°C (at operation)

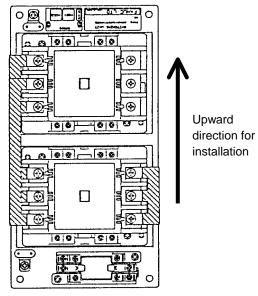
0 to 45°C (at keeping and transportation)

- Humidity

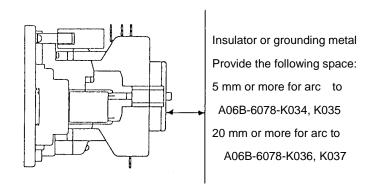
Normally 90% RH or below, and condensation-free


Vibration

In operation: Below 0.5G


Atmosphere

No corrosive or conductive mists or drops should deposit directly on the electronic circuits.


(2) The figure below shows the standard method of installation. However, the switch unit may be tilted up to 15 degrees toward the right or left.

(3) The switch unit may need to be installed horizontally from a viewpoint of cabling or installation (Fig. 11.7.6(b)). In this case, however, the characteristics of the magnetic contactor remain almost the same, but the mechanical life and open/close frequency decrease.

(4) Provide an arc space as shown below.

(5) If the main magnetic contactor unit is installed incorrectly or incompletely, the contact can make an abrupt movement due to a shock upon power-up, or its life can be adversely affected. Moreover, if the electric cable to be connected is not tightened sufficiently, an overheat can occur or the electric cable can come off, resulting in a major accident.

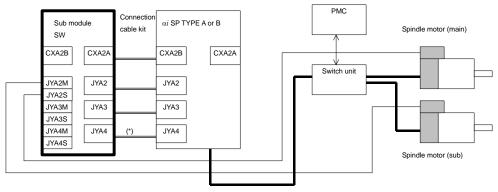
(a) Tightening torque

(i) Magnetic contactor

	Tightening torque [kg⋅cm]				
Location	A06B-6078-K034	A06B-6078-K036			
	A06B-6078-K035	A06B-6078-K037			
MCC main terminal	62.0 (M6.0)	84.0 (M8.0)			
MCC auxiliary terminal	14.0 (M3.5)	14.0 (M3.5)			

(ii) Relay socket

Location	Tightening torque [kg⋅cm]
Relay socket	14.0 (M3.5)


10.3 SUB MODULE SW

The sub module SW is 60 mm wide. By being combined with αi SP TYPE A or αi SP TYPE B according to a required function, the sub module SW is used for the spindle switch function to switch between two motors (main and sub) with one spindle amplifier module.

- A cable for connecting the SW module with the αi SP needs to be prepared.
- A metal plate for mounting needs to be prepared.

For the drawing numbers of the sub module SW and connection cable kit, see Chapter 3.

10.3.1 Configuration

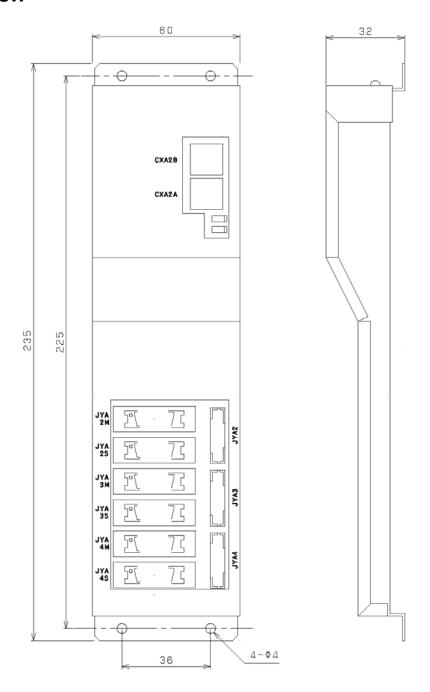
(*) Only when the sub module SW is combined with αi SP TYPE B

10.3.2 Specification

By combining the sub module SW with αi SP TYPE A or αi SP TYPE B, the spindle switch function for switching between two motors (main and sub) with one spindle amplifier module can be used. The table below indicates allowable combinations of detectors and functions on the main and sub sides of spindle switch control. If the main or sub side of spindle switch control includes a function that requires αi SP TYPE B (organization number 6 or 7 indicated below), select TYPE B as an αi SP to be combined with the sub module SW.

			Org	Organization on main or sub side					side	Remarks
			1	2	3	4	5	6	7	Remarks
lpha i SP to be	combined with sub module	αi SP TYPE A	0	0	0	0	0			
	SW	αi SP TYPE B	0	0	0	0	0	0	0	
		lpha i M sensor	0			0	0	0	0	
	Sensor on the motor	αi MZ sensor		0						
Spindle	Sensor on the motor	αi BZ sensor (when a built-in motor is used) (*10)			0					
system configuration		αi position coder				0				*3
configuration	Canaar on the animale	External 1-rotation					0			*3
	Sensor on the spindle	αi BZ sensor						0		*3
		lpha i position coder S							0	*3
	Rigid tapping		O ^{*1}	O*2	0	0	O*2	0	0	
	Orientation by a position coder			O*6	0	0		0	0	*4
Function	Orientation by the external one-rotation signal						O*2			*7
	Chindle aynahranization	Velocity synchronization	O*2	O*6	0	0	O*2	0	0	*5
	Spindle synchronization	Phase synchronization		O*6	0	0	O*9		0	*5
	Threading			O*6	0	0		0	0	
	Cs-axis contour control			O*6	0			0	0	*5

- *1 The spindle and motor must be interconnected with a timing belt or gear. No orientation is available to adjust the tapping start position.
- *2 The spindle and motor must be interconnected with a timing belt or gear.
- *3 The spindle and detector must be interconnected in one-to-one connection mode.
- *4 Orientation of external stop position setting type can be used on the main side only.
- *5 Two motor amplifiers are required.
- *6 Cs contour control can be used on the main side only.
- *7 Note that the stop position moves by a backlash between the spindle and motor because of the theory of operation.
- *8 The spindle and motor must be interconnected directly or with a timing belt or gear in one-to-one connection mode.
- *9 Before specifying spindle synchronization, perform orientation to detect the one-rotation signal (PC1DT=1).
- *10 The \alphaiCZ analog output type is also applicable.

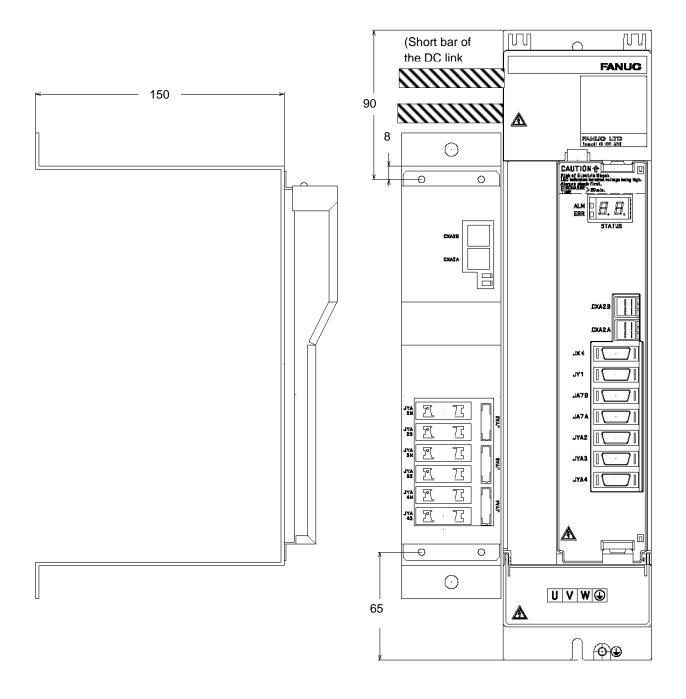

Other notes

Up to two stages of parameter gear switching can be set on the sub side.

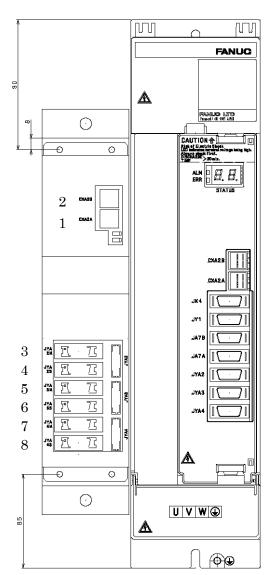
With the Power Mate, only Model D and F can use spindle switch control.

10.3.3 External Dimensions

Sub module SW



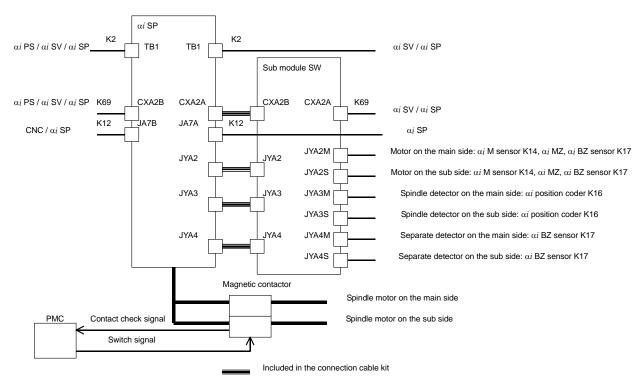
NOTE


A metal plate for mounting the sub module SW needs to be separately prepared.

Installation when the sub module SW is combined with an αi SP 15 (90 mm wide)

Prepare a metal plate for mounting the sub module SW. The dimensions of a metal plate for mounting the sub module SW are specified to avoid interference with the short bar of the DC link section.

10.3.4 Connector Installation Diagram (for Combination with αi SP 15)


	Name	Indication
1	Connector for αi PS interface output	CXA2A
2	Connector for αi PS interface input	CXA2B
3	Connector (main side) for spindle sensor connection on motor side	JYA2M
4	Connector (sub side) for spindle sensor connection on motor side	JYA2S
5	Connector for position coder connection and external one-rotation signal connection (main side)	JYA3M
6	Connector for position coder connection and external one-rotation signal connection (sub side)	JYA3S
7	Connector for separate spindle sensor connection (main side)	JYA4M
8	Connector for separate spindle sensor connection	JYA4S

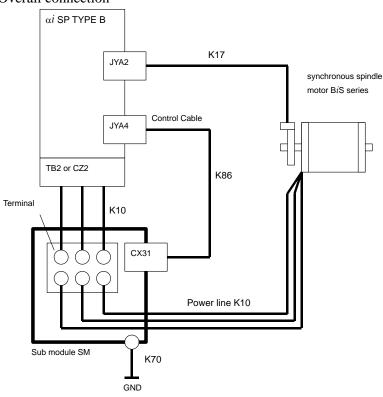
NOTE

Install Submodule SW on the right side of the αi SP when width of αi SP is 150mm or 300mm witdth.

10.3.5 Connection

Total connection diagram

The αiCZ analog output type can be used in the same way as the αiBZ sensor.


For details of the connection cables other than the connection cable kit, see the items of relevant K numbers in Chapter 9.

For the drawing number of the connection cable kit, see Chapter 3.

10.4 SUB MODULE SM

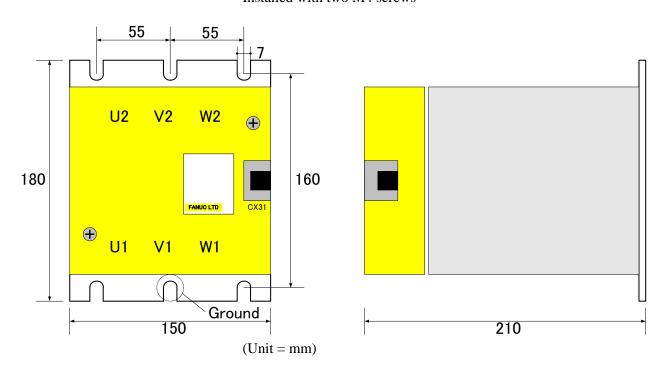
When used with the αi SP TYPE B, the sub module SM is used to drive the synchronous built-in spindle motor Bi S series.

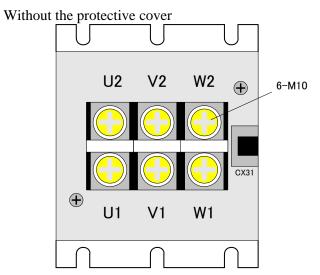
Overall connection

⚠ WARNING

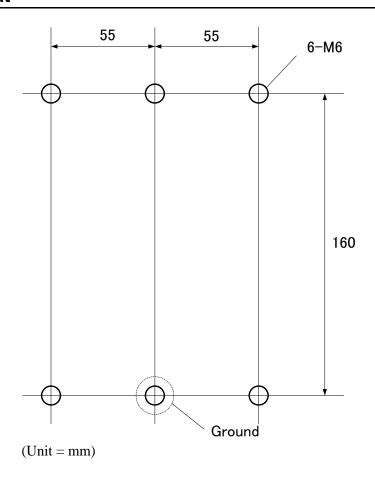
To ensure safety, avoid inserting switches to the power lines connected to the αi SP, sub module SM, and motor. If a switch connected to such a power line is turned off during motor rotation, overvoltage generated from the motor cannot be blocked, possibly damaging the motor and sub module SM.

10.4.1 Specifications


Mandal massa	0014 400	0014 000		
Model name	SSM-100	SSM-200		
Short-circuit current	100Arms	200Arms		
	(within 120 sec)	(within 120 sec)		
Rated input voltage	200 to 480VAC			
Applicable SPM	αi SP TYPE B			
	Software series: 9D53 (#H553) edition B or later			
	9D70 (#H570) edition A or later			
	9D80 (#H580) edition A or later			
Weight	6kg	6.5kg		
Power consumption	3W	6W		
(normal operation				
without alarm)				


⚠ CAUTION

To latest αi SP series (A06B-6142-Hxxx#H580 and A06B-6152-Hxxx#H580), apply sub module SM unit edition B or later.


10.4.2 Outline Drawing

With the protective cover Installed with two M4 screws

10.4.3 Panel Cut-out

10.4.4 Connection

Details of cables K10, K17, K70, and K86

For details of cables K10, K17, K70, and K86, see Subsection 9.2.3 and Appendix E in this manual.

B-65282EN/06 11.SENSOR

1 1 SENSOR

Chapter 11, "SENSOR," consists of the following sections:

11.1	SENSOR FOR THE SERVO SYSTEM	328
11.2	SENSOR FOR THE SPINDLE	350

11.SENSOR B-65282EN/06

11.1 SENSOR FOR THE SERVO SYSTEM

11.1.1 Absolute αi CZ Sensor (Separate Sensor)

This manual describes the specifications and handling of the absolute αiCZ sensor for angular displacement detection.

This sensor can be used as a separate sensor when high-precision angular displacement detection is required as in the case of a round table configured as a full-closed system using a servo motor and worm gear. This sensor differs from the similar sensor models, namely, αi CZ sensors 512A, 768A, and 1024A (used with the DiS serial synchronous built-in servo motor) in that this sensor does not have circuitry for processing temperature information and an overheat alarm and therefore requires no thermistor or thermostat connection. For this sensor, the FANUC serial interface is used. This sensor can be directly connected to the separate sensor interface unit.

Names and specification numbers

Names and specification numbers

	Specification	Remarks		
Name	number	Number of teeth	Maximum speed	
αi CZ sensor 512AS	A860-2164-T411	512	1200min ⁻¹	
αiCZ sensor 768AS	A860-2164-T511	768	800min ⁻¹	
αiCZ sensor 1024AS	A860-2164-T611	1024	600min ⁻¹	

Absolute maximum ratings

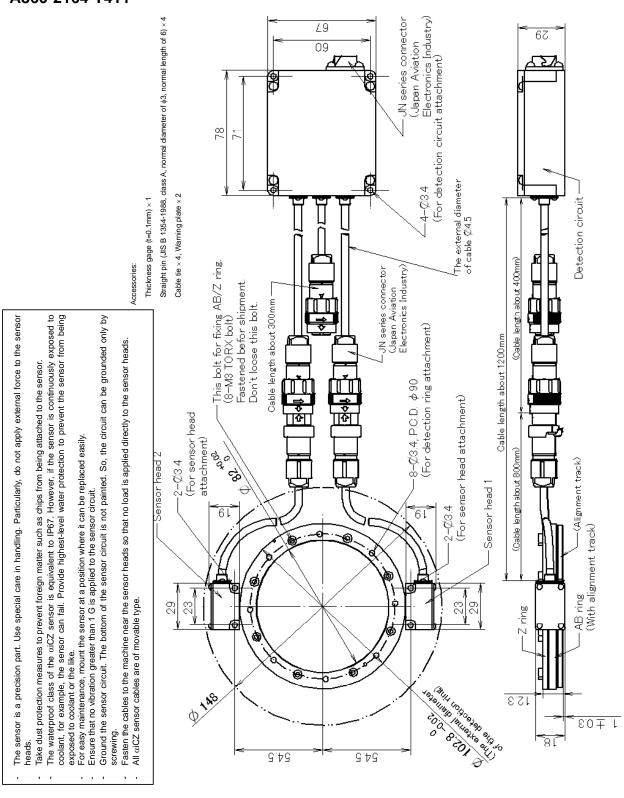
Absolute maximum ratings (applicable to all specifications)

Item	Specification	
Power supply voltage	-0.5 V to +6.0 V	
Operating temperature range	0°C to +70°C	
Humidity	95%RH or less	

B-65282EN/06 11.SENSOR

11.1.1.1 Specifications

α*i*CZ sensor 512AS Mechanical and electrical specifications


Item	Min.	Тур.	Max.	Unit	
Speed			1200	min ⁻¹	
Resolution		1/3,600,000		Revolution	
Precision		±4		Second	
Repetition precision		±1		Second	
Power supply voltage	4.5	5	5.25	V	
Current consumption		150		mA	
Current consumption at battery backup time (NOTE)		300		μΑ	
Water and dust proof class		IP67			

NOTE

- 1 The current consumption at battery backup time is about three times larger than that of the αi pulse coder. So, it is recommended to use four alkaline cells (size D).
- 2 Use a battery case (A06B-6050-K060) and four alkaline cells (A06B-6050-K061). Commercially available size D alkaline cells may be used.

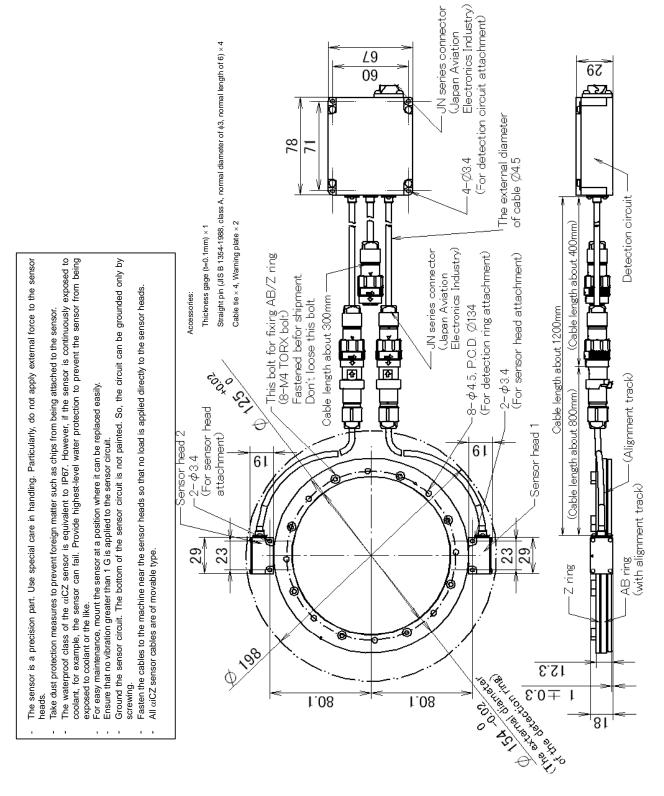
11.SENSOR B-65282EN/06

Dimensions αiCZ sensor 512AS A860-2164-T411

B-65282EN/06 11.SENSOR

αiCZ sensor 768AS

Speed, resolution, precision, and electrical specifications


Item	Min.	Тур.	Max.	Unit
Speed			800	min ⁻¹
Resolution		1/3,600,000		Revolution
Precision		±3		Second
Repetition precision		±1		Second
Power supply voltage	4.5	5	5.25	V
Current consumption		150		mA
Current consumption at battery backup time (NOTE)		300		μΑ
Water and dust proof class		IP67		

NOTE

- 1 The current consumption at battery backup time is about three times larger than that of the αi pulse coder. So, it is recommended to use four alkaline cells (size D).
- 2 Use a battery case (A06B-6050-K060) and four alkaline cells (A06B-6050-K061). Commercially available size D alkaline cells may be used.

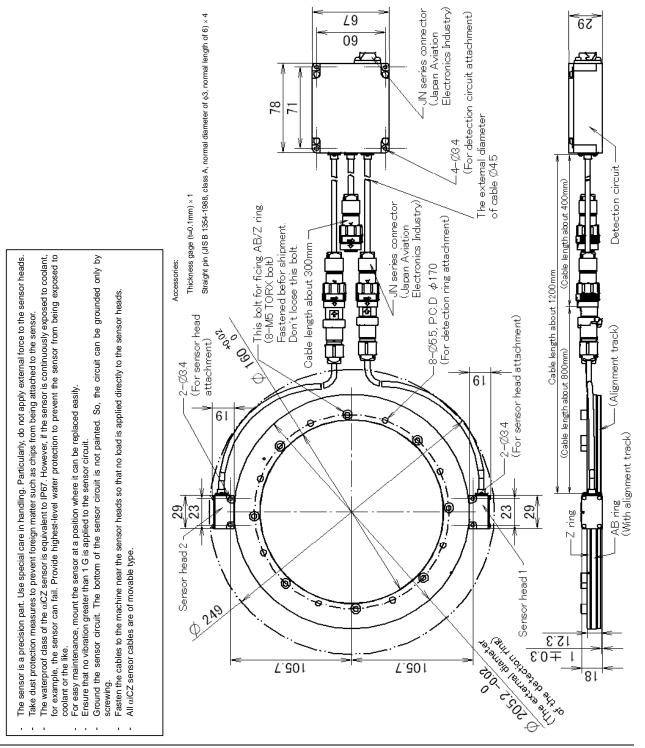
11.SENSOR B-65282EN/06

Dimensions αiCZ sensor 768AS A860-2164-T511

B-65282EN/06 11.SENSOR

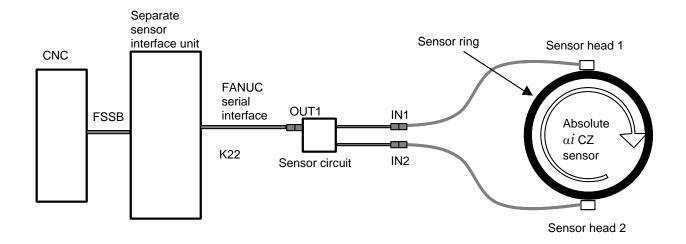
αiCZ sensor 1024AS

Speed, resolution, precision, and electrical specifications


Item	Min.	Тур.	Max.	Unit
Speed			600	min ⁻¹
Resolution		1/3,600,000		Revolution
Precision		±2		Second
Repetition precision		±1		Second
Power supply voltage	4.5	5	5.25	V
Current consumption		150		mA
Current consumption at battery backup time (NOTE)		300		μΑ
Water and dust proof class				

NOTE

- 1 The current consumption at battery backup time is about three times larger than that of the αi pulse coder. So, it is recommended to use four alkaline cells (size D).
- 2 Use a battery case (A06B-6050-K060) and four alkaline cells (A06B-6050-K061). Commercially available size D alkaline cells may be used.


11.SENSOR B-65282EN/06

Dimensions α*i*CZ sensor 1024AS A860-2164-T611

B-65282EN/06 11.SENSOR

11.1.1.2 Connection block diagram (common to three models)

11.SENSOR B-65282EN/06

11.1.1.3 Connection specifications

Cable K22

See Subsection 9.3.2.

Method of extending the sensor cables

The sensor cables from the sensor heads to the sensor circuit can be extended up to 4 m as shown in Fig. 11.1.1.3.

The method of extending the sensor cables is described below.

Connection block diagram

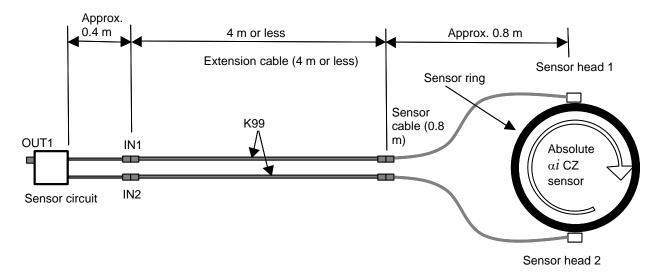
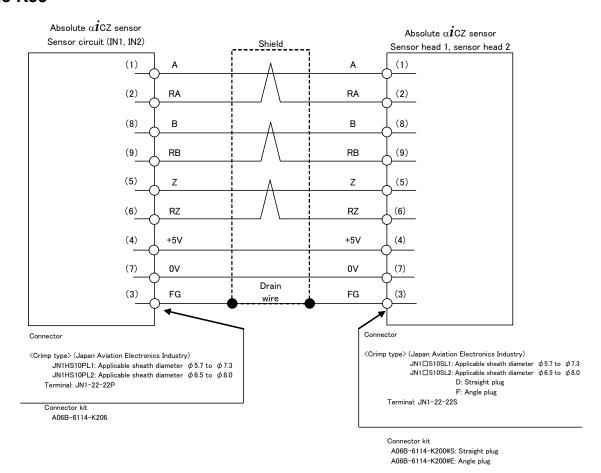
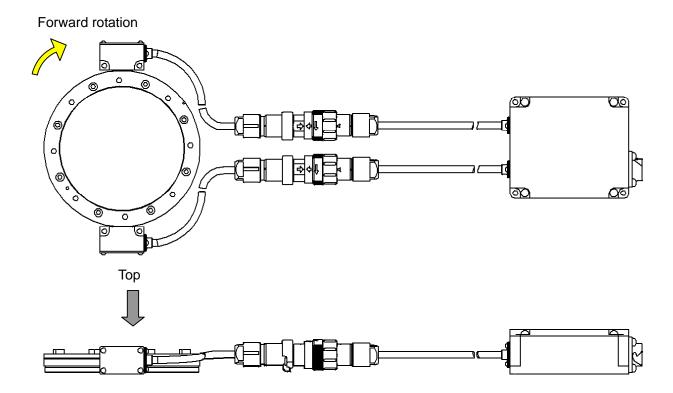



Fig. 11.1.1.3.

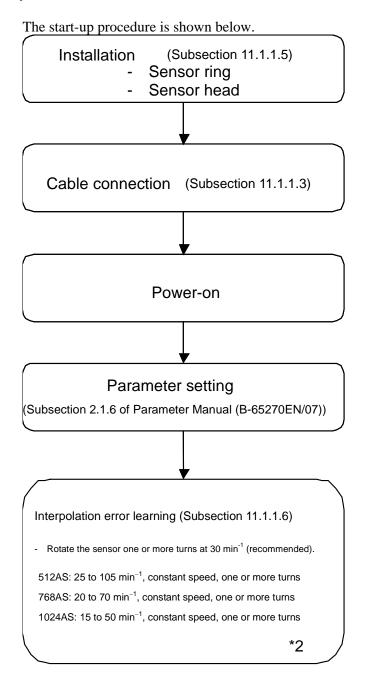
Cable K99

* Z and RZ are not output from sensor head 2 but may be connected.

Recommended wire 5V, 0V A, RA, B, RB, Z, RZ 0.5 mm^2 0.2 mm^2


Recommended cable A66L-0001-0482

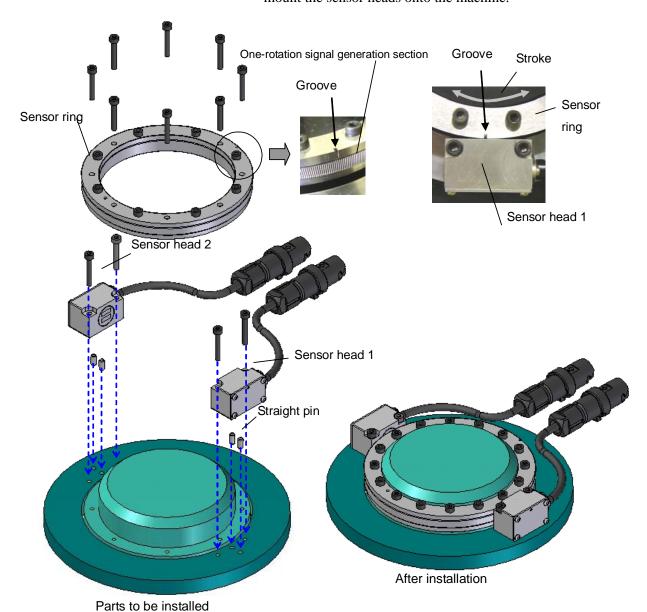
NOTE


When using a cable not recommended, ensure that the sum of the resistance values of 0 V and 5 V does not exceed 2 Ω .

11.1.1.4 Rotation direction of the absolute αi CZ sensor

When the sensor is viewed from the top as shown in the following figure, clockwise rotation of the sensor ring is referred to as forward rotation:

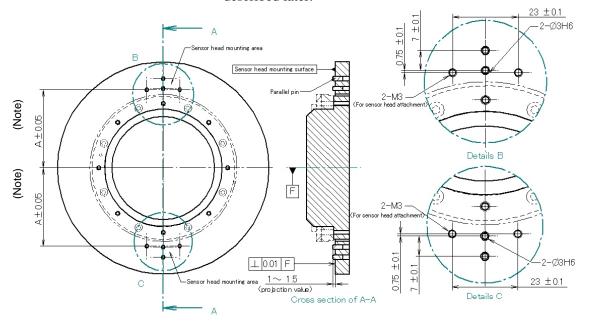
Start-up procedure (outline)


- *1 The method of checking output signals is described in Subsection 11.1.1.7.
- *1 If the fixed position of the sensor heads is changed after power-on, perform the operation described in Subsection 11.1.1.6.
- *2 If it is difficult to rotate the sensor at least one turn for interpolation error learning, repeat forward and reverse rotations under the above rotation conditions until the sum of angular displacements in one direction becomes one turn or more, according to Subsection 11.1.1.6.

11.1.1.5 Installation

Overview

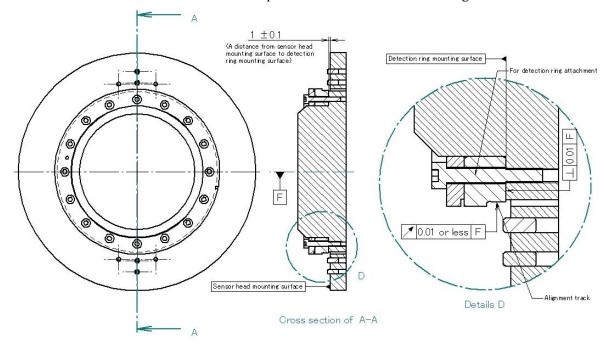
Install the sensor according to the procedure below.


- 1. Machine the sensor mounting surface as necessary then insert the straight pins.
- 2. Mount the sensor ring onto the shaft (or sleeve) of the machine, center the sensor ring, then fasten the ring with screws.
- 3. Adjust the gap between the sensor heads and sensor ring then mount the sensor heads onto the machine.

* Ensure that the groove of the one-rotation signal generation section of the sensor ring passes sensor head 1 within the stroke.

Dimensions of the sensor head mounting plane

The dimensions of the sensor head mounting plane are indicated below. Insert straight pins (supplied as accessories) into the $2-\phi 3H6$ holes. The straight pins are used as the guide for gap adjustment described later.


Dimension A

= (Sensor ring outer diameter)/2+3.1

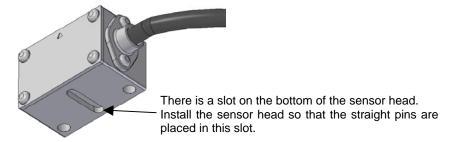
(NOTE) In designing, make sure that the positions of the taps for fastening the sensor heads after machine assembly, in stead of the part having the sensor head mounting plane, satisfy these dimensions.

Installing the sensor ring

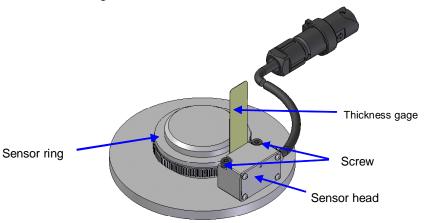
Center the sensor ring by using the centering track so that the runout to the rotation center is 0.01 mm or less. Moreover, in designing, ensure that in the direction along the shaft, the sensor ring mounting plane is 1 ± 0.3 mm off the sensor head mounting plane. Ensure also that the perpendicularity of the sensor ring mounting plane is within 0.01 mm from the rotation center. Apply a thread locker or the like to the screws to prevent the screws from becoming loose.

Specification	Outer diameter of centering track	Positions of sensor ring mounting holes	Mounting screw	Recommended tightening torque (Nm)
A860-2164-T411	φ101	8-φ3.4 through, equally spaced on φ90 circumference	М3	1.5±5%
A860-2164-T511	φ152.2	8- 4.5 through, equally 5paced on 6134 6175	M4	3.0±5%
A860-2164-T611	ф203.4	8-φ5.5 through, equally spaced on φ170 circumference	M5	6.0±5%

NOTE


1 For centering, the outer diameter of the shaft (or sleeve) must be designed so that there is a gap of about 0.1 mm on one side between the outer surface of the shaft (or sleeve) and the inner surface of the sensor ring.

- 2 Secure the sensor ring on an end face with screws (avoid shrink fitting to mount the sensor ring).
- 3 The sensor ring consists of a phase Z ring and phase A/B ring, which are fastened together by using screws in advance. Never detach these screws. Spot facing is not provided. So, at the time of machine design, be careful not to cause interference with the screw heads.
- 4 Centering must be performed with the centering track (the outer surface of the phase Z ring and the teeth pitch circle are not coaxial). When performing centering, use a tool such as a plastic hammer not to damage the gear teeth.
- 5 Magnetic matter attached to gear teeth can lead to a detection error. After centering is completed, remove such foreign matter by air blowing.
- 6 If the sensor ring is tightened with excessive torque, deformation can occur in the sensor ring, resulting in deterioration in detection precision. Use the recommended tightening torque when mounting the sensor ring.


Installing the sensor heads

Install the sensor heads according to the procedure below. (The same procedure is applicable to sensor head 1 and sensor head 2.)

1. Place the sensor head on the sensor mounting surface so that the straight pins are positioned in the slot of the sensor head, and fasten the sensor head temporarily. The magnet in the sensor head and the sensor ring attract each other. When mounting the sensor head, be careful not to hit the sensor head against the sensor ring.

2. Insert the thickness gage (supplied as an accessory, t=0.1 mm) between the sensor ring and the sensor head, and while lightly pressing the sensor head against the thickness gage, tighten the screws (recommended tightening torque: 1.3 Nm $\pm 10\%$). Apply a thread locker or the like to the screws to prevent them from becoming loose.

3. Pull out the thickness gage, and slowly turn the sensor ring to ensure that the sensor ring and the sensor head do not touch each other.

11.1.1.6 Notes on use

Interpolation error learning

- The absolute α*i*CZ sensor includes an automatic interpolation correction circuit that automatically learns interpolation errors and corrects them. When learning conditions are satisfied, learning is performed automatically. When the sensor rotates one or more turns, learning is completed. The learning conditions vary depending on the model. For any model, however, learning at 30 min⁻¹ is recommended.

Learning conditions

αiCZ sensor 512AS : 25 to 105 min⁻¹, constant speed, one or more

turns

αiCZ sensor 768AS : 20 to 70 min⁻¹, constant speed, one or more

turns

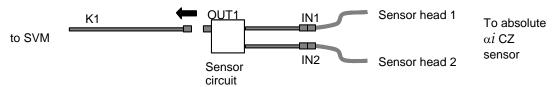
αiCZ sensor 1024AS: 15 to 50 min⁻¹, constant speed, one or more

turns

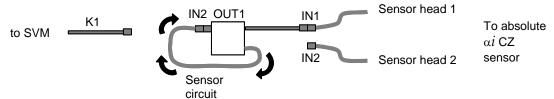
Recommended learning conditions

Common to three models: 30 min⁻¹, constant speed, one or more turns

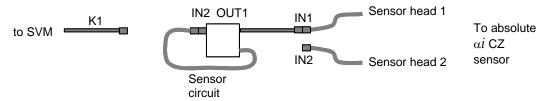
- If the absolute αiCZ sensor is operated for the first time after being mounted or the procedure applicable when the sensor head is moved after conduction is performed, interpolation error learning is performed. So, rotate the sensor under the conditions above.
- Learned data is backed up by the battery.
- If it is difficult to rotate the sensor at least one turn, repeat forward and reverse rotations under the above rotation conditions to achieve at least one turn in total.
- Learning is performed when the learning conditions are satisfied.

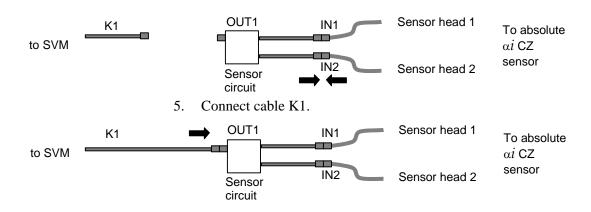

Sensor head

- The sensor circuit memorizes the initial conduction state. So, do not move the sensor head afterward.
- If the sensor head is moved after the initial conduction state, the reference position may be displaced. Moreover, a pulse error alarm may be issued. Issue the battery zero alarm and perform reference position return operation according to "Procedure applicable when the sensor head is moved after conduction" below.

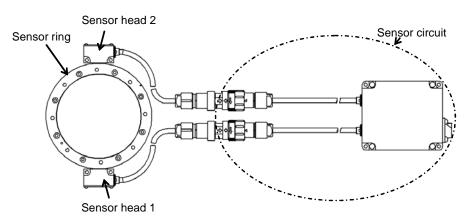

Procedure applicable when the sensor head is moved after conduction

Each of the sensor heads, sensor ring, and sensor circuit can be replaced individually. After replacement, issue the battery zero alarm according to the procedure below. Then, perform reference position return operation.


1. Detach cable K1 from connector OUT1.


2. Connect connector IN2 to connector OUT1. (Connector IN1 and connector IN3 may remain connected.)

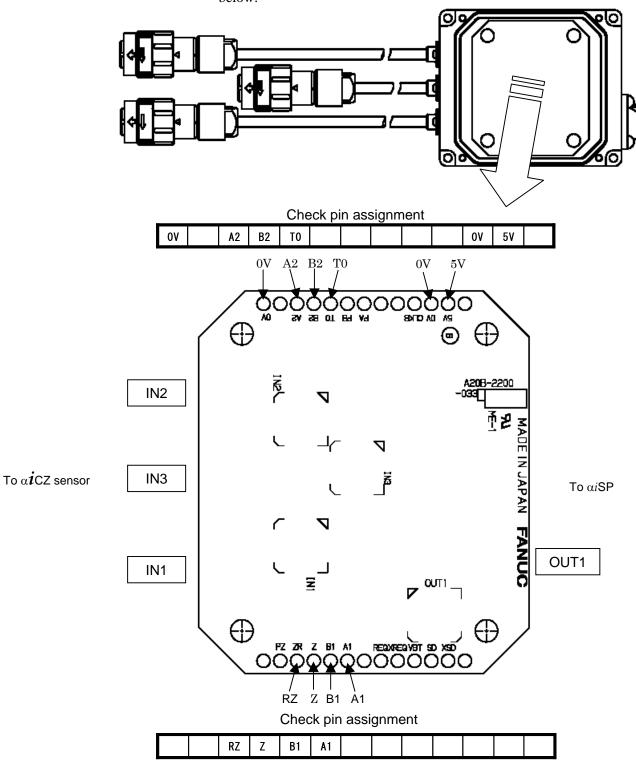
3. Leave the connection for 10 seconds.


4. Connect the cables other than cable K1 correctly.

- 6. Check that the battery zero alarm is issued. If the battery zero alarm is not issued, return to step 1.
- 7. Perform reference position return operation.

Maintenance target parts

As shown below, the absolute αiCZ sensor consists of four parts: sensor ring (phase A/B ring and phase Z ring coupled by screws), sensor head 1, sensor head 2, and sensor circuit. Each single part can be maintained separately. So, place an order on each part as needed according to the specification numbers indicated below.

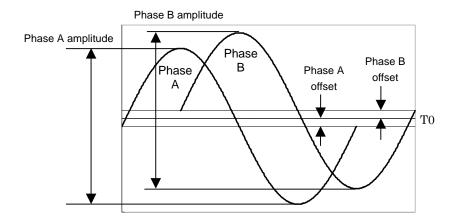


Parent specification Part specification	α <i>İ</i> CZ sensor 512AS A860-2164-T411	α <i>İ</i> CZ sensor 768AS A860-2164-T511	α <i>İ</i> CZ sensor 1024AS A860-2164-T611
Sensor ring	A860-2160-V901	A860-2160-V902	A860-2160-V903
Sensor head 1	A860-2162-V001 (common to all specifications)		
Sensor head 2	A860-2162-V012 (common to all specifications)		
Sensor circuit	A860-2164-V201 (common to all specifications)		

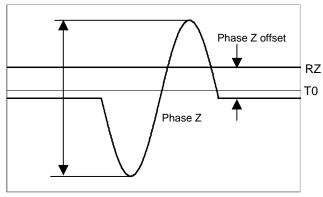
11.1.1.7 Output signal check method

* The description below is applicable to both of A860-2161-T*** and A860-2163-T***.

When checking the signal waveform directly, see the illustration below.


- Supply power to the 0 V and 5 V pins.

- The Lissajous figure of the phase A/B output signal is a complete circle.


Phase A/B and phase Z signal waveforms (measured on the sensor circuit check pins at room temperature and 500 min⁻¹)

Signal name	Check pin	Output amplitude	Offset
Sensor head 1 phase A (after amplification)	A1	1,300 to 3,000	±180mV
Sensor head 1 phase B (after amplification)	B1	mVp-p	
Sensor head 2 phase A (after amplification)	A2	1,300 to 3,000	±180mV
Sensor head 2 phase B (after amplification)	B2	mVp-p	± 100111V
Sensor head 1 phase Z	7	400 to 600	70 to 150 mV
Gensor nead 1 phase 2		mVp-p	Measure the DC components of Z
Sensor head 1 RZ	RZ		and RZ and use the differential as an offset.

(Measure each signal by connecting the ground of the oscilloscope to T0.)

Phase Z amplitude

The check pins used with the $\alpha 1CZ$ sensor fit in the following housing and crimp terminals:

Housing: HKP-13FS01 (Honda Tsushin Kogyo)

Crimp terminal: HKP-F113 (Honda Tsushin Kogyo), AWG#24 to

28 (\$\psi 1.0 to 1.5 mm)

HKP-F213 (Honda Tsushin Kogyo), AWG#28 to

 $32 (\phi 0.5 \text{ to } 0.8 \text{ mm})$

Crimping tool: KP309D (Honda Tsushin Kogyo)

11.2 SENSOR FOR THE SPINDLE

11.2.1 Position Coder

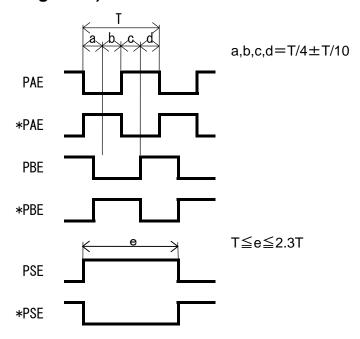
11.2.1.1 αi position coder

Name and specification number

Name	Specification number	Remarks
i manitian andan	A860-2109-T302	☐68 flange mounting,
αl position coder	A000-2109-1302	10,000 min ⁻¹

Absolute maximum ratings

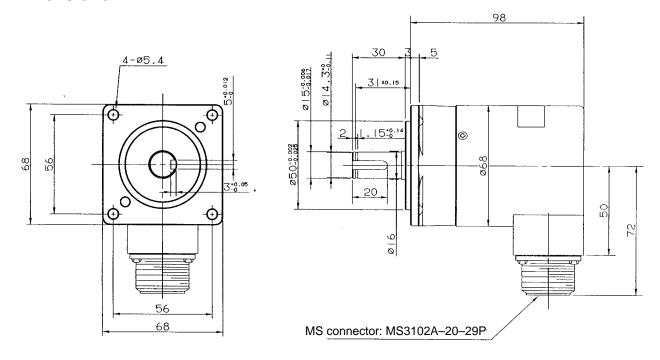
Item	Specification
Power supply voltage	-0.5 V to +7.0 V
Operating temperature range	0°C to +50°C
Humidity	95%RH or less


Electrical specifications

Item		Specification	
Power supply voltage		5 V ±5%	
Current consumption		350 mA or less	
PAE, *PAE, PBE, *PBE		1,024 pulses/rotation	
Output signal	PSE, *PSE	1 pulse/rotation	

Mechanical specifications

Item	Specification		
Input axis inertia	9.8×10 ⁻³ kg⋅n	n ² or less	
Input axis start torque	0.098 N⋅m or less		
Allowable input	Radial load (operating)	98N	
axis load	Thrust load (operating)	49N	
Maximum speed	10,000 min ⁻¹		
Structure	Water and dust proof (equivalent to IP55 when waterproof connector is mated)		
Tolerable vibration acceleration	10G		
Weight	Approx. 0.75 kg		


Signal phase relationships (timing chart)

Output pin arrangement

Α	В	С	D	Ε	F	G	Н	J
PAE	PSE	PBE					+5V	
K	L	М	N	Р	R	S	Т	
0V			*PAE	*PSE	*PBE			

Dimensions

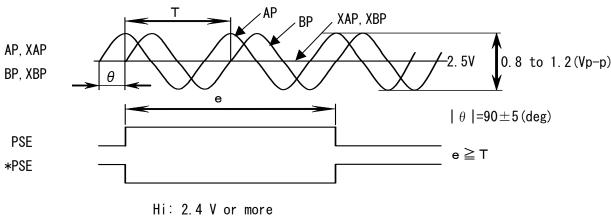
11.2.1.2 α position coder S

Name and specification number

Name	Specification number	Remarks
α position coder S	A860-0309-T352	☐68 flange mounting, 10,000 min ⁻¹

Absolute maximum ratings

Item	Specification
Power supply voltage	-0.5 V to +7.0 V
Operating temperature range	0°C to +50°C
Humidity	95%RH or less

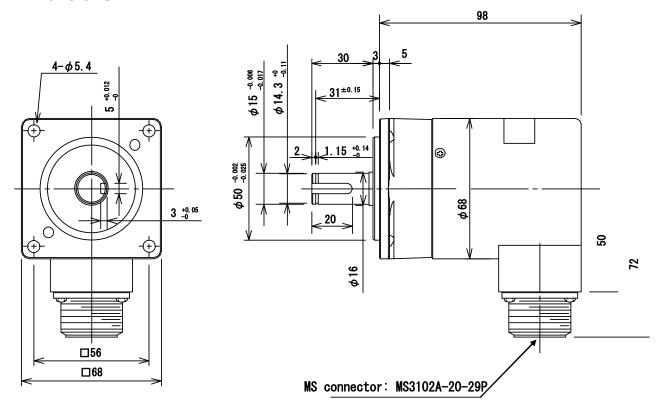

Electrical specifications

Item		Specification
Power supply voltage		5 V ±5%
Current consumption		350 mA or less
AP, BP		1,024λ/rotation
Output signal	PSE, *PSE	1 pulse/rotation

Mechanical specifications

Item	Specification		
Input axis inertia	9.8×10 ⁻³ kg⋅m ² or less		
Input axis start torque	0.098 N₁	m or less	
Allowable input axis load	Radial load (operating)	98N	
Allowable input axis load	Thrust load (operating)	49N	
Maximum speed	10,000 min ⁻¹		
Structure	Water and dust proof (equivalent to IP55 when		
Structure	waterproof connector is mated)		
Tolerable vibration acceleration	10G		
Weight	Approx. 0.75 kg		

Signal phase relationships (timing chart)



Lo: 0.4 V or less

Output pin arrangement

Α	В	С	D	E	F	G	Н	J
AP	PSE	BP					+5V	
1/							_	
K	L	M	N	Р	R	S	Т	

Dimensions



11.2.1.3 Installation conditions and notes

(a) Method of connection

Two methods of connecting the αi position coder or α position coder S to the spindle are available as described below.

- (1) With one method, the position coder is connected to the rear part of the spindle by using a flexible joint. In this case, the rotation of the spindle is transported accurately to the position coder, resulting in a higher accuracy in position coder positioning. However, the position coder installation location is limited, so that the mechanical section may need to be modified.
- (2) With the other method, a shaft for holding a pulley is fitted into the shaft of the position coder and is held by two bearings as shown below. In this case, a timing belt is used to connect the pulley of the position coder to the pulley attached to the spindle.

This connection method is generally used to connect a conventional position coder to the spindle. When using this method, note the following:

<1> If there is a clearance between the shaft for holding the pulley and the shaft of the position coder, the shaft of the position coder can suffer from fretting or the key can becomes loose, resulting in a degraded accuracy in position coder positioning. So, specify tolerances for good fitting so that there is no clearance between the shaft of the position coder and the shaft for holding the pulley and between the key and key groove.

<2> If the outer diameter center of the pulley of the position coder is not aligned with the axis center of the shaft of the position coder, or if the outer diameter center of the pulley fitted around the spindle is not aligned with the axis center of the spindle, the spindle positioning accuracy is degraded in proportion to the magnitude of eccentricity. So, minimize these eccentricities.

(b) Shock

The position coder is a precision sensor. So, be careful not to apply a shock to the shaft.

(c) Atmosphere

The protection of the position coder satisfies class IP55, but the protection is provided on a short-time basis only. So, ensure that the position coder is not routinely exposed to coolant and lubricant and is free from buildup of oil. If the position coder is exposed to coolant and lubricant, install a protection cover.

11.2.2 αi BZ Sensor (A860-2150-T*** and A860-2155-T***)

Two types of αiBZ sensors are available: αiBZ sensors of the conventional dimensions (A860-2120-T***) and compact-size αiBZ sensors (A860-2150-T*** and A860-2155-T***). The αiBZ sensors of the conventional dimensions and compact-size αiBZ sensors are not compatible with each other from the viewpoint of installation. If the number of sensor ring teeth of an αiBZ sensor of the conventional dimensions is the same as that of a compact-size αiBZ sensor, the sensor rings of the sensors have the same inner and outer diameters. The αiBZ sensors of the conventional dimensions and compact-size αiBZ sensors have the same output signal specifications. So, when a sensor of one type is replaced with a sensor of the other type, no parameter modification is needed.

Names and specification numbers

	Specificati	on number	Remarks				
	Specificati	on number		Sensor ring			
Name	Waterproof connector specification	Non-waterproof connector specification	Number of teeth	Maximum speed	Inner diameter	Outer diameter	
αiBZ sensor 128	A860-2150-T201	A860-2155-T201	128	20,000min ⁻¹	φ40	φ52	
αiBZ sensor 128H	A860-2150-T211	A860-2155-T211	120	70,000min ⁻¹			
αiBZ sensor 192	A860-2150-T301	A860-2155-T301	400	20,000min ⁻¹	φ60	φ77.6	
αiBZ sensor 192H	A860-2150-T311	A860-2155-T311	192	40,000min ⁻¹			
αiBZ sensor 256	A860-2150-T401	A860-2155-T401		15,000min ⁻¹	φ82		
αiBZ sensor 256S	A860-2150-T404	A860-2155-T404	256	15,000min	φ88	ϕ 103.2	
αiBZ sensor 256H	A860-2150-T411	A860-2155-T411		30,000min ⁻¹	φ82		
αiBZ sensor 384	A860-2150-T511	A860-2155-T511	384	15,000min ⁻¹	φ 125	φ 154.4	
αiBZ sensor 512	A860-2150-T611	A860-2155-T611	512	10,000min ⁻¹	φ160	φ 205.6	

Absolute maximum ratings

ltem	Specification		
Power supply voltage	-0.5 V to +7.0 V		
Operating temperature range	0°C to +80°C		
Humidity	95%RH or less		

Electrical specifications

		Specification	
	Power	5 V ±5%	
Current consumption			0.05 A or less
		αiBZ sensor 128/128H	128λ/rotation
	VA, VB	αiBZ sensor 192/192H	192λ/rotation
Outrout simpol		α <i>i</i> BZ sensor 256/256H/256S	256λ/rotation
Output signal		αiBZ sensor 384	384λ/rotation
		αiBZ sensor 512	512λ/rotation
	VZ	Common to all models	1λ/rotation

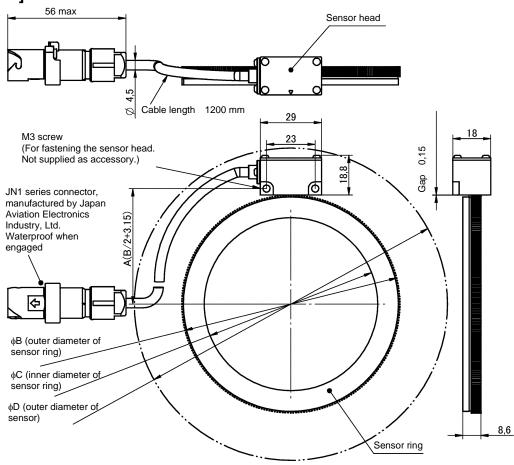
Resolution and precision

Name	Resolution in Cs contour control	Precision (typ.)
αiBZ sensor 128/128H		30/1000°
αiBZ sensor 192/192H		25/1000°
αiBZ sensor 256/256H/256S	360,000/rotation	20/1000°
αiBZ sensor 384		15/1000°
αiBZ sensor 512		10/1000°

NOTE

- 1 The precision values above are not guaranteed values but typical values.
- 2 The precision values above do not consider the influence of an error due to runout in sensor ring installation. The influence of runout in sensor ring installation on precision can be calculated as follows:

Error (°) = A (mm) \times 360/B (mm)

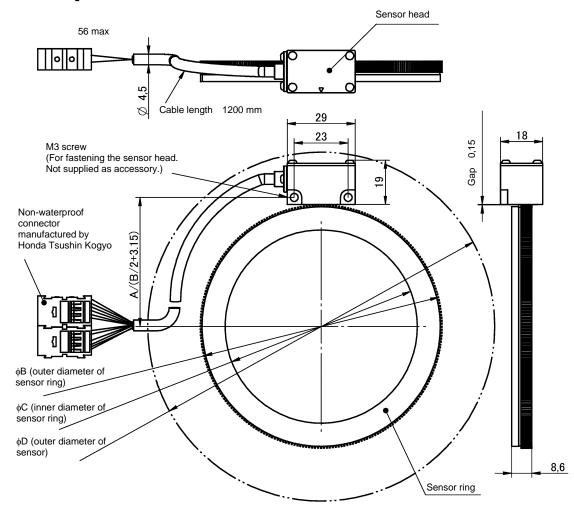

A: Axis runout of the machine spindle or sleeve on the sensor ring mounting plane

B: Perimeter of the sensor ring

Example: If the axis runout on the mounting plane is 0.005 mm when a 256λ sensor ring (103.2 in diameter) is used, the error is:

 $0.005 \times 360/(103.2 \times \pi) = 0.0055(^{\circ})$

Dimensions [A860-2150-T***]


Accessories:

Straight pin (JIS B 1354-1988, class A, normal diameter of ϕ 3, normal length of 6) \times 2, 0.15-mm thickness gage \times 1

Unit (mm)

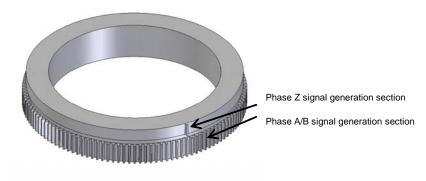
Sensor type number	Number of teeth	A	φВ	фС	φD
A860-2150-T201	128	29.15	$52^{+0}_{-0.020}$	40 ^{+0.016}	98
A860-2150-T211	120	29.10	32 _{-0.020}	40_0	90
A860-2150-T301	192	41.95	77 . 6 ⁺⁰ _{-0.020}	$60^{+0}_{-0.018}$	122
A860-2150-T311	132	41.90	77.0 _0.020	00 _{-0.018}	122
A860-2150-T401				$82^{+0}_{-0.018}$	
A860-2150-T404	256	54.75	$103.2^{+0}_{-0.020}$	$88^{+0}_{-0.018}$	148
A860-2150-T411				$82^{+0}_{-0.018}$	
A860-2150-T511	384	80.35	154 . 4 ⁺⁰ _{-0.020}	$125^{+0.025}_{-0}$	198
A860-2150-T611	512	105.95	205.6 +0 -0.020	$160^{+0.020}_{-0.005}$	249

[A860-2155-T***]

Accessories:

Straight pin (JIS B 1354-1988, class A, normal diameter of $\phi3,$ normal length of 6) \times 2, 0.15-mm thickness gage \times 1

Unit (mm)


Sensor type number	Number of teeth	Α	φВ	φС	φD
A860-2155-T201	128	29.15	$52^{+0}_{-0.020}$	40 ^{+0.016}	98
A860-2155-T211	120	23.13	$52_{-0.020}$	40 ₋₀	30
A860-2155-T301	192	41.95	$77.6^{+0}_{-0.020}$	$60^{+0}_{-0.018}$	122
A860-2155-T311	192	41.90	77.0 _{-0.020}	00 _{-0.018}	122
A860-2155-T401				$82^{+0}_{-0.018}$	
A860-2155-T404	256	54.75	$103.2^{+0}_{-0.020}$	$88^{+0}_{-0.018}$	148
A860-2155-T411				$82^{+0}_{-0.018}$	
A860-2155-T511	384	80.35	154.4 ⁺⁰ _{-0.020}	$125^{+0.025}_{-0}$	198
A860-2155-T611	512	105.95	205.6 ⁺⁰ _{-0.020}	$160^{+0.020}_{-0.005}$	249

NOTE

- Use the sensor under 80°C.
- The sensor is a precision part. Use special care in handling. In particular, do not apply force to the sensor head.
- Fasten the cable to the machine at an appropriate position so that no force is applied directly to the sensor head.
- The sensor is waterproof to an IP67 rating. Note, however, that the waterproofness represented by IP indicates short-time resistance to water only and does not guarantee thorough waterproofness. Therefore, protect the sensor head against direct splash of coolant and so on by taking appropriate measures, for example, by installing a cover.
- When installing the sensor, observe the requirements described in "Installation" described later.
- For easy maintenance, mount the αiBZ sensor at a position where it can be replaced easily.
 - Sensor rings with the same specification number can be replaced with each other.

Notes on the sensor ring

The sensor ring consists of the phase Z signal generation section and the phase A/B signal generation section. The new αiBZ sensors are different from the conventional αiBZ sensors in that the new αiBZ sensors integrate the phase A/B signal generation section and the phase Z signal generation section into one piece, and that the phase Z signal generation section has a convex shape instead of a concave shape. When handling the sensor ring, be very careful not to deform or damage the teeth on the outer surface of the sensor ring.

Interference of the sensor ring

The following table lists the interference for heat shrink fitting for the sensor ring at each maximum speed:

Unit (µm)

Max. speed (min ⁻¹)	T201	T211	T301	T311	T401 T404	T411	T511	T611
3000	φ6 - φ32	φ6 - φ32	φ6 - φ34	φ6 - φ34	φ7 - φ35	φ7 - φ35	φ8 - φ43	φ11 - φ41
3500	\downarrow	\downarrow	\downarrow	1	\downarrow	\downarrow	φ9 - φ44	φ13 - φ43
4500	\downarrow	1	1	1	1	\downarrow	φ11 - φ46	φ19 - φ49
6000	\downarrow	\downarrow	φ7 - φ35	φ7 - φ35	φ9 - φ37	φ9 - φ37	φ15 - φ50	φ29 - φ59
8000	\downarrow	1	φ8 - φ36	φ8 - φ36	φ11 - φ39	φ11 - φ39	φ24 - φ59	φ47 - φ77
10000	\downarrow	\downarrow	φ9 - φ37	φ9 - φ37	φ15 - φ43	φ14 - φ42	φ35 - φ70	φ71 - φ101
12000	φ7 - φ33	φ7 - φ33	φ11 - φ39	φ11 - φ39	φ19 - φ47	φ18 - φ46	φ47 - φ82	
15000	φ8 - φ34	φ8 - φ34	φ13 - φ41	φ13 - φ41	φ28 - φ56	φ26 - φ54	φ71 - φ106	
20000	φ10 - φ36	φ10 - φ36	φ19 - φ47	φ19 - φ47		φ41 - φ69		
25000		φ12 - φ38		φ27 - φ55		φ62 - φ90		
30000		φ15 - φ41		φ37 - φ65		φ87 - φ115		
40000		φ23 - φ49		φ61 - φ89				
50000		φ33 - φ59						
60000		φ43 - φ69						
70000		φ57 - φ83						

NOTE

- From the above table, select the suitable interference according to the maximum speed and the type of the ring used.
 - If an interference not listed above is applied, the ring will be damaged or loosen while the spindle rotates.
- These rings cannot be used at a speed higher than the speeds specified in the above table.

Installation

Install the sensor according to the procedure below.

<1> Machine the sensor mounting surface as necessary then insert the straight pins.

- <2> Fit the sensor ring around the machine shaft (or sleeve) by heat shrink fitting.
- <3> Adjust the gap between the sensor head and sensor ring then mount the sensor on the machine. Fig. 1 shows the parts to be installed and Fig. 2 shows the external view after installation.

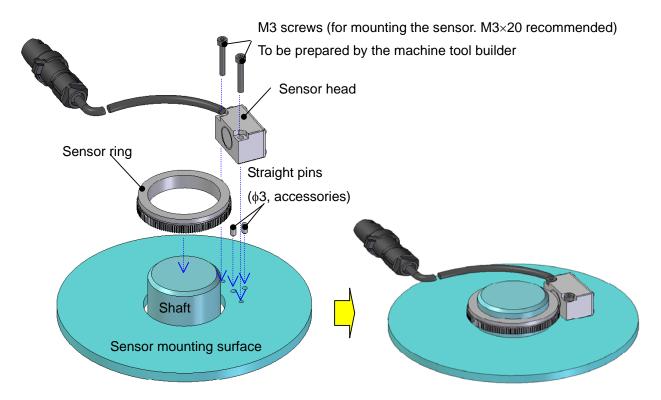


Fig. 1 Parts to be installed

Fig. 2 After installation

Machining the sensor mounting surface

Machine the sensor mounting surface as shown in Fig. 3. Insert straight pins (supplied as accessories) into the 2- ϕ 3H6 holes. The straight pins are used as the guide for gap adjustment described later.

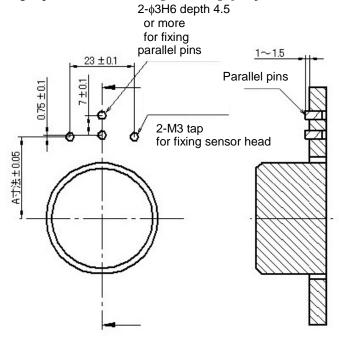
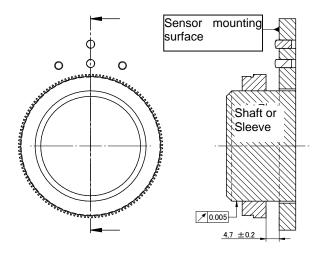
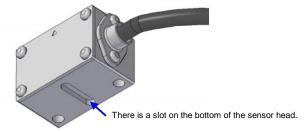
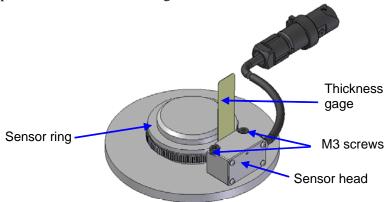



Fig. 3

Installing the sensor ring


Fit the sensor ring around the shaft or sleeve by heat shrink fitting so that the bottom of the phase A/B signal generation section (gear) is 4.7 ± 0.2 mm off the sensor mounting surface. The runout of the shaft or sleeve part around which the sensor ring is fit by heat shrink fitting must be 0.005 mm or less.

Installing the sensor head


Install the αiBZ sensor head according to the procedure below.

Place the sensor head on the sensor mounting surface so that the straight pins are positioned in the slot of the sensor head, and fasten the sensor head temporarily. When mounting the sensor head, be careful not to hit the sensor head against the sensor ring.

Install the sensor head so that the straight pins are placed in this slot.

Insert the thickness gage (supplied as an accessory, t=0.15 mm) between the sensor ring and the sensor head, and while lightly pressing the sensor head against the thickness gage, tighten the sensor mounting screws (recommended tightening torque: 1.3 Nm $\pm 10\%$). Apply a thread locker or the like to the sensor mounting screws to prevent them from becoming loose.

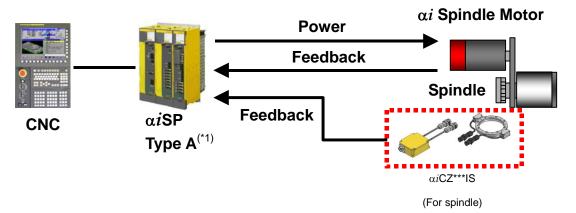
Pull out the thickness gage, and slowly turn the spindle to ensure that the sensor ring and the sensor head do not touch each other.

Check that the gap between the sensor ring and the sensor is at least 0.1 mm.

The output signal level of the αiBZ sensor is designed to fall within the specified range if the sensor head is mounted correctly. Depending on the mounting status, the output signal level may exceed the specified range, which can lead to malfunction. Therefore, make sure that the output signal level is within the specified range.

11.2.3 αi CZ Sensor (for the Spindle)

This subsection describes the specifications and handling of the αi CZ angular displacement sensor.


The αi CZ sensor is used with the built-in spindle motor BiI series/BiS series or αi spindle motor to exercise high-precision Cs contour control. Two major types of αi CZ sensors are available. One type is used for the built-in spindle motor and the other for the spindle. A type needs to be selected according to the system configuration.

(For built-in spindle motor)

[αi CZ sensor (for built-in spindle motor)]

Power Motor Bil / BiS series Feedback Thermistor CNC aiSP Type A^(*1)

[αi CZ sensor (for spindle)]

*1)

Supported unit drawing numbers and versions

Drawing number	Supported unit version
200V system A06B-6141-H002, -H006, -H011, -H015, -H030, -H037, -H055#H580 400V system A06B-6151-H006, -H011, -H015, -H045, -H075, -H100#H580	Version B or later
200V system A06B-6141-H022, -H026, -H045#H580 400V system A06B-6151-H030#H580	Version C or later

11.2.3.1 Names and specification numbers

αiCZ sensor (for built-in spindle motor) A860-2161-T***

Name and specification number

Name	Specification number	Remarks		
Name	Specification number	Number of teeth	Maximum speed	
lpha iCZ sensor 512I	A860-2161-T411	512	15,000min ⁻¹	
lpha iCZ sensor 768I	A860-2161-T511	768	10,000min ⁻¹	
lpha iCZ sensor 1024I	A860-2161-T611	1024	8,000min ⁻¹	

αiCZ sensor (for spindle) A860-2163-T***

Name and specification number

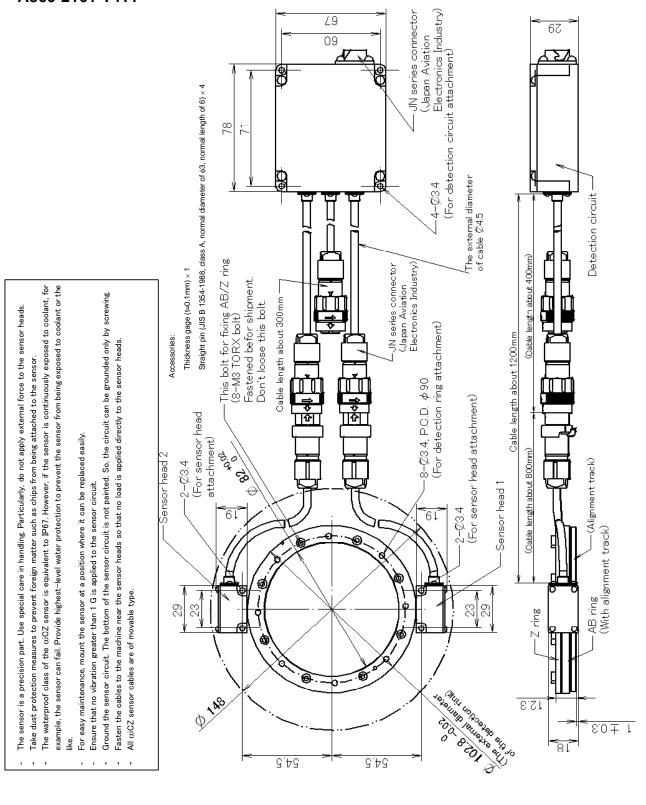
Name	Specification number	Remarks		
Name	Specification number	Number of teeth	Maximum speed	
lpha iCZ sensor 512IS	A860-2163-T411	512	15,000min ⁻¹	
lpha iCZ sensor 768IS	A860-2163-T511	768	10,000min ⁻¹	
lpha iCZ sensor 1024IS	A860-2163-T611	1024	8,000min ⁻¹	

11.2.3.2 Absolute maximum ratings

* The description below is applicable to both of A860-2161-T*** and A860-2163-T***.

Absolute maximum ratings (common to all specifications)

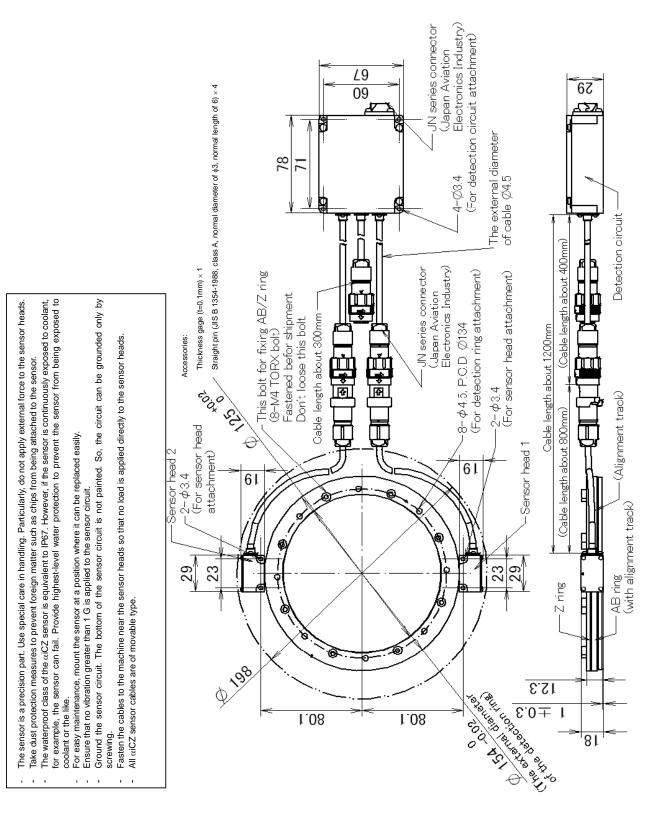
Item	Specification
Power supply voltage	-0.5 V to +6.0 V
Operating temperature range	0°C to +50°C
Humidity	95%RH or less


11.2.3.3 Specifications

[αi CZ sensor (for built-in spindle motor) A860-2161-T***] αi CZ sensor 512I

Mechanical and electrical specifications

Item	Min.	Тур.	Max.	Unit
Speed			15,000	min ⁻¹
Resolution		1/3,600,000		Revolution
Precision		±4		Second
Repetition precision		±1		Second
Power supply voltage	4.5	5	5.25	V
Current consumption		150		mA
Water and dust proof class	IP67			


Dimensions αi CZ sensor 512 I A860-2161-T411

$lpha \emph{i}$ CZ sensor 768 I Speed, resolution, precision, and electrical specifications

Item	Min.	Тур.	Max.	Unit
Speed			10,000	min ⁻¹
Resolution		1/3,600,000		Revolution
Precision		±3		Second
Repetition precision		±1		Second
Power supply voltage	4.5	5	5.25	V
Current consumption		150		mA
Water and dust proof class	IP67			

Dimensions αi CZ sensor 768 I A860-2161-T511

$\alpha \emph{i}$ CZ sensor 1024 I Speed, resolution, precision, and electrical specifications

Item	Min.	Тур.	Max.	Unit
Speed			8,000	min ⁻¹
Resolution		1/3,600,000		Revolution
Precision		±2		Second
Repetition precision		±1		Second
Power supply voltage	4.5	5	5.25	V
Current consumption		150		mA
Water and dust proof class		IP67		

L9

58

Dimensions αiCZ sensor 1024 I A860-2161-T611

exposed to

coolant, for example, the sensor can fail. Provide highest-level water protection to prevent the sensor from being

The waterproof class of the α ICZ sensor is equivalent to IP67. However, if the sensor is continuously Take dust protection measures to prevent foreign matter such as chips from being attached to the sensor.

Ground the sensor circuit. The bottom of the sensor circuit is not painted. So, the circuit can be grounded only by

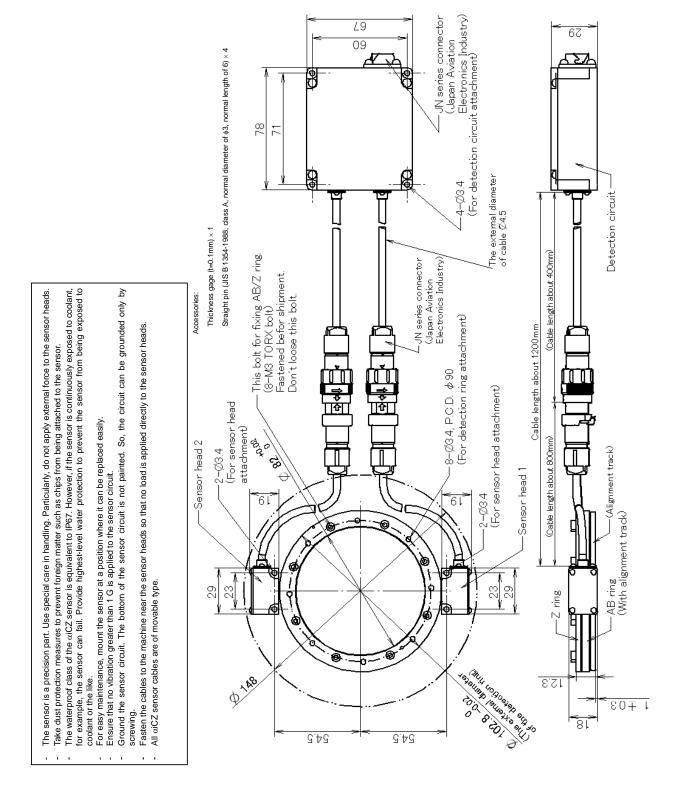
For easy maintenance, mount the sensor at a position where it can be replaced easily. Ensure that no vibration greater than 1 G is applied to the sensor circuit.

exposed to coolant or the like.

Fasten the cables to the machine near the sensor heads so that no load is applied directly to the sensor heads

screwing.

The sensor is a precision part. Use special care in handling. Particularly, do not apply external force to the sensor

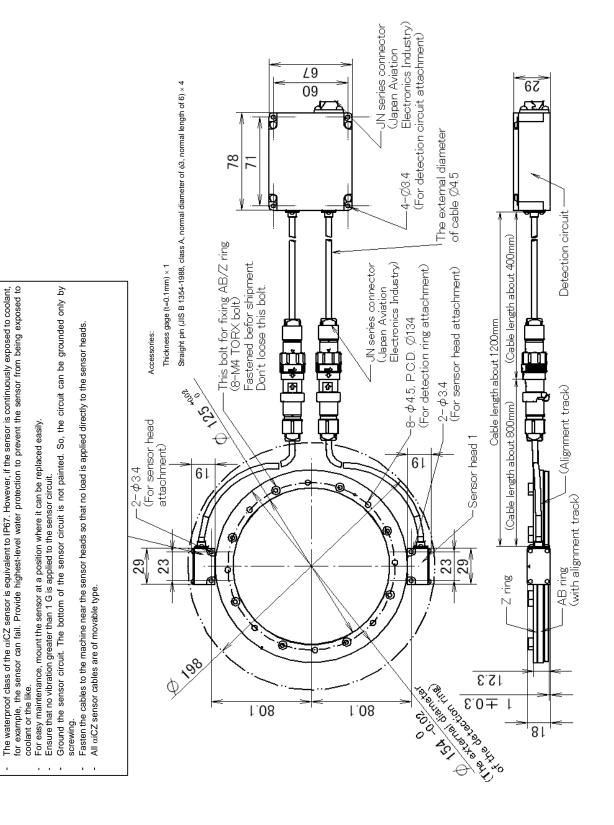


[lpha iCZ sensor (for spindle) A860-2163-T***] lpha iCZ sensor 512 IS

Mechanical and electrical specifications

Item	Min.	Тур.	Max.	Unit
Speed			15,000	min ⁻¹
Resolution		1/3,600,000		Revolution
Precision		±4		Second
Repetition precision		±1		Second
Power supply voltage	4.5	5	5.25	V
Current consumption		150		mA
Water and dust proof class		IP67		

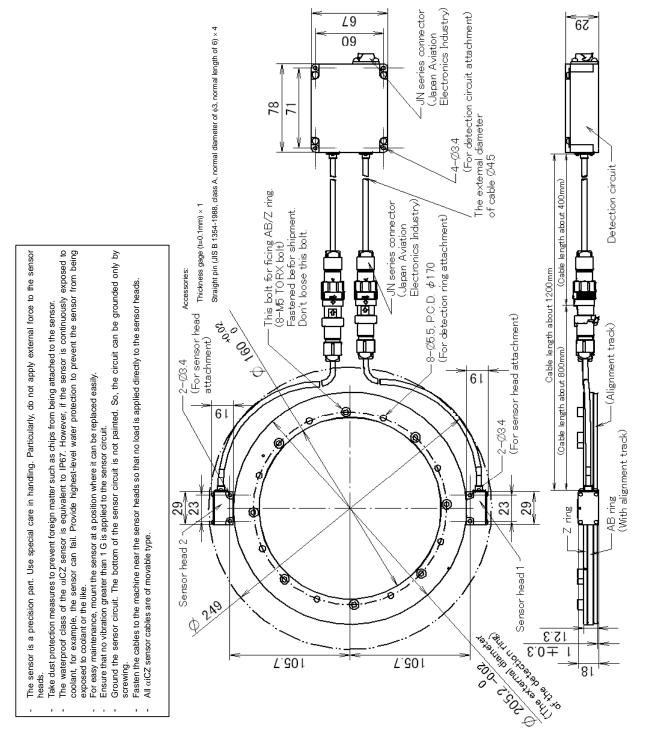
Dimensions αi CZ sensor 512 IS A860-2163-T411


$\alpha i \text{CZ}$ sensor 768 IS Speed, resolution, precision, and electrical specifications

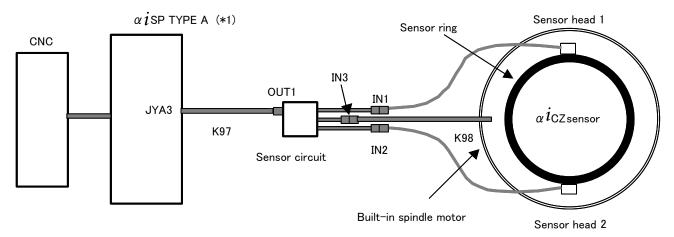
Item	Min.	Тур.	Max.	Unit
Speed			10,000	min ⁻¹
Resolution		1/3,600,000		Revolution
Precision		±3		Second
Repetition precision		±1		Second
Power supply voltage	4.5	5	5.25	V
Current consumption		150		mA
Water and dust proof class		IP67		

Dimensions αi CZ sensor 768 IS A860-2163-T511

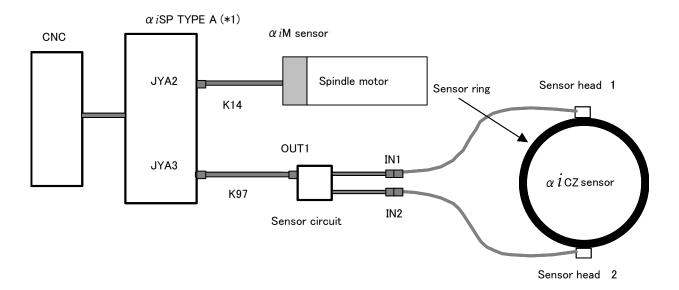
The sensor is a precision part. Use special care in handling. Particularly, do not apply external force to the sensor heads.


Take dust protection measures to prevent foreign matter such as chips from being attached to the sensor.

$\alpha \boldsymbol{i}$ CZ sensor 1024 IS Speed, resolution, precision, and electrical specifications


Item	Min.	Тур.	Max.	Unit
Speed			8,000	min ⁻¹
Resolution		1/3,600,000		Revolution
Precision		±2		Second
Repetition precision		±1		Second
Power supply voltage	4.5	5	5.25	V
Current consumption		150		mA
Water and dust proof class		IP67		

Dimensions αi CZ sensor 1024 IS A860-2163-T611



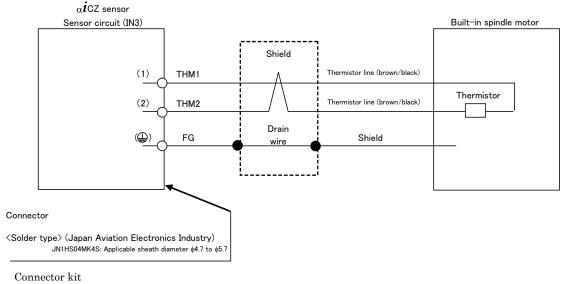
11.2.3.4 System configuration and connection block diagram

[αi CZ sensor (for built-in spindle motor) A860-2161-T***]

[αi CZ sensor (for spindle) A860-2163-T***]

*1) Supported unit drawing numbers and versions

Drawing number	Supported unit version
200V system A06B-6141-H002, -H006, -H011, -H015, -H030, -H037, -H055#H580 400V system A06B-6151-H006, -H011, -H015, -H045, -H075, -H100#H580	Version B or later
200V system A06B-6141-H022, -H026, -H045#H580 400V system A06B-6151-H030#H580	Version C or later


11.2.3.5 Connection specifications

Cable K97

See Subsection 9.3.3 for details of this cable.

Cable K98

Processing of the thermistor line of the built-in spindle motor

Connector kit A06B-6111-K203

Method of extending the sensor cables

The sensor cables from the sensor heads to the sensor circuit can be extended up to 4 m as shown in Fig. 11.2.3.5.

The method of extending the sensor cables is described below.

Connection block diagram

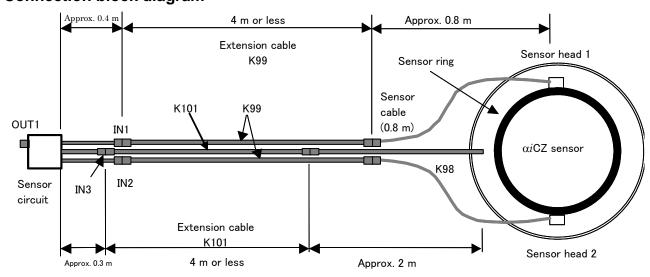
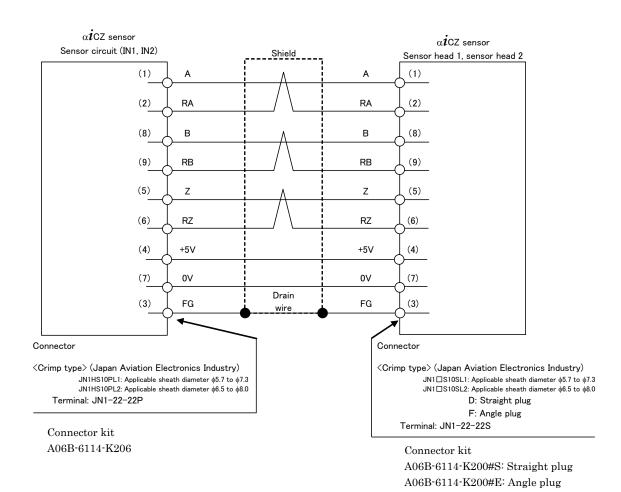
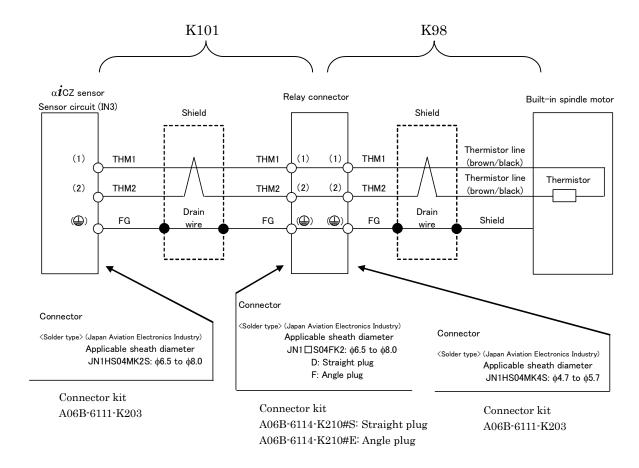



Fig. 11.2.3.5

Cable K99

* Z and RZ are not output from sensor head 2 but may be connected.

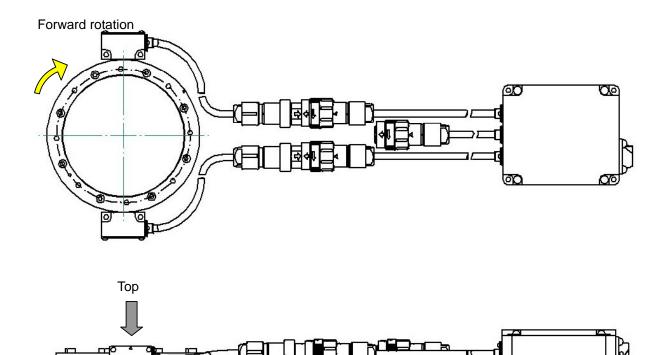

Signal name	
5V, 0V	$0.5 \text{ mm}^2 \times 2$
A, RA, B, RB, Z, RZ	0.2 mm ² or more Twisted pair
Drain wire	0.15 mm ² or more

Recommended cable A66L-0001-0482

NOTE

- 1 When using a cable not recommended, ensure that the sum of the resistance values of 0 V and 5 V does not exceed 2 Ω .
- 2 Run the power and signal lines so that the lines are not parallel with each other.

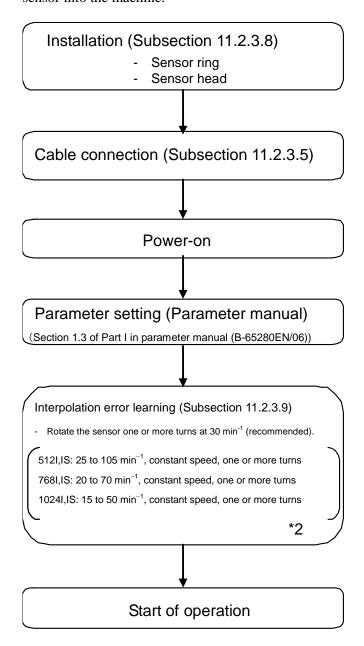
Cable K101



Recommended wire THM1, THM2, OH1, OH2 0.2 mm² A66L-0001-0482

11.2.3.6 Rotation direction of the αi CZ sensor

* The description below is applicable to both of A860-2161-T*** and A860-2163-T***.

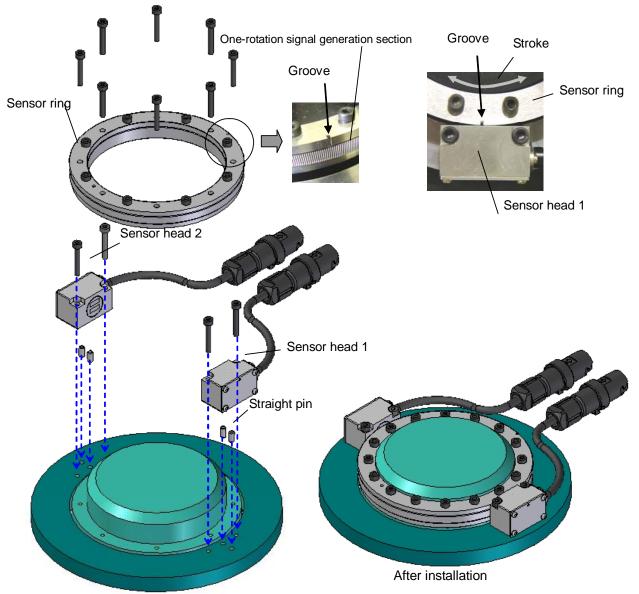

When the sensor is viewed from the top as shown in the following figure, clockwise rotation of the sensor ring is referred to as forward rotation:

11.2.3.7 Machine start-up procedure (outline)

* The description below is applicable to both of A860-2161-T*** and A860-2163-T***.

This subsection indicates the procedure for incorporating the αiCZ sensor into the machine.

- (*1) The method of checking output signals is described in Subsection 11.2.3.12.
- (*2) Interpolation error learning needs to be performed not only at machine start-up time but also at the time of each power-on operation and at the time of each recovery operation from an alarm indicated in Subsection 11.2.3.13. (If interpolation error learning is not performed, degraded precision may result.)

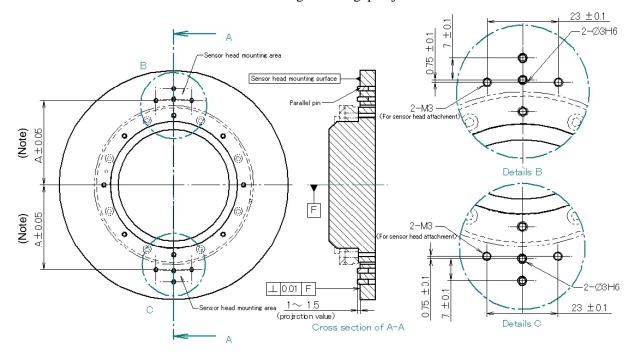

11.2.3.8 Installation

* The description below is applicable to both of A860-2161-T*** and A860-2163-T***.

Overview

Install the αiCZ sensor according to the procedure below.

- <1> Machine the sensor mounting surface as necessary then insert the straight pins.
- <2> Mount the sensor ring onto the shaft (or sleeve) of the machine, center the sensor ring, then fasten the ring with screws.
- <3> Adjust the gap between the sensor heads and sensor ring then mount the sensor heads onto the machine.



Parts to be installed

* Ensure that the groove of the one-rotation signal generation section of the sensor ring passes sensor head 1 within the stroke.

Dimensions of the sensor head mounting plane

The dimensions of the sensor head mounting plane are indicated below. Insert straight pins (JIS B 1354-1988, class A, normal diameter of ϕ 3, normal length of 6) into the 2- ϕ 3H6 holes. The straight pins are used as the guide for gap adjustment described later.

Dimension A

= (Sensor ring outer diameter)/2+3.1

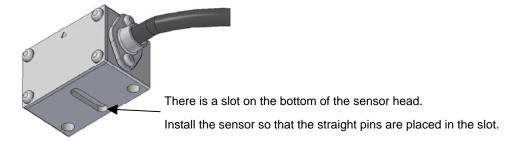
(NOTE) In designing, make sure that the positions of the taps for fastening the sensor heads after machine assembly, in stead of the part having the sensor head mounting plane, satisfy these dimensions.

Installing the sensor ring

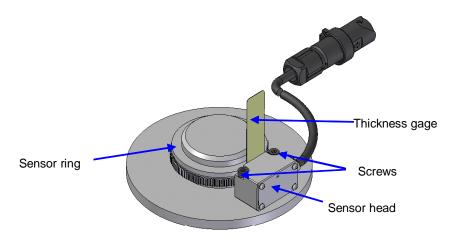
Center the sensor ring by using the centering track so that the runout to the rotation center is 0.01 mm or less. Moreover, in designing, ensure that in the direction along the shaft, the sensor ring mounting plane is 1 ± 0.3 mm off the sensor head mounting plane. Ensure also that the perpendicularity of the sensor ring mounting plane is 0.01 mm or less from the rotation center. Apply a thread locker or the like to the screws to prevent the screws from becoming loose.

Specification	Outer diameter of centering track (mm)	Positions of sensor ring mounting holes	Mounting screw	Recommended tightening torque (Nm)
A860-2161-T411 A860-2163-T411	φ101	8-φ3.4 through, equally spaced on φ90 circumference	М3	1.5±5%
A860-2161-T511 A860-2163-T511	φ152.2	8-φ4.5 through, equally spaced on φ134 circumference	M4	3.0±5%
A860-2161-T611 A860-2163-T611	ф203.4	8-φ5.5 through, equally spaced on φ170 circumference	M5	6.0±5%

NOTE


- For centering, the outer diameter of the shaft (or sleeve) must be designed so that there is a gap of about 0.1 mm on one side between the outer surface of the shaft (or sleeve) and the inner surface of the sensor ring.

- Secure the sensor ring on an end face with screws (avoid shrink fitting to mount the sensor ring).
- The sensor ring consists of a phase Z ring and phase A/B ring, which are fastened together by using screws in advance. Never detach these screws. Spot facing is not provided. So, at the time of machine design, be careful not to cause interference with the screw heads.
- Centering must be performed with the centering track (the outer surface of the phase Z ring and the teeth pitch circle are not coaxial). When performing centering, use a tool such as a plastic hammer not to damage the gear teeth.
- Magnetic matter attached to gear teeth can lead to a detection error. After centering is completed, remove such foreign matter by air blowing. (See Section 12.1.)
- If the sensor ring is tightened with excessive torque, elastic deformation can occur in the sensor ring, resulting in deterioration in detection precision. Use the recommended tightening torque when mounting the sensor ring.


Installing the sensor head

Install the sensor heads according to the procedure below. (The same procedure is applicable to sensor head 1 and sensor head 2.)

1. Place the sensor head on the sensor mounting surface so that the straight pins are positioned in the slot of the sensor head, and fasten the sensor head temporarily. The magnet in the sensor head and the sensor ring attract each other. When installing the sensor head, be careful not to hit the sensor head against the sensor ring with the thickness gage not placed between them (impact can damage elements in the sensor head).

2. Insert the thickness gage (supplied as an accessory, t=0.1 mm) between the sensor ring and the sensor head, and while lightly pressing the sensor head against the thickness gage, tighten the screws (recommended tightening torque: 1.3 Nm $\pm 10\%$). Apply a thread locker or the like to the screws to prevent them from becoming loose.

3. Pull out the thickness gage, and slowly turn the sensor ring to ensure that the sensor ring and the sensor head do not touch each other.

11.2.3.9 Interpolation error learning

* The description below is applicable to both of A860-2161-T*** and A860-2163-T***.

- The α*i*CZ sensor includes an automatic interpolation correction circuit that automatically learns interpolation errors and corrects them. When learning conditions are satisfied, learning is performed automatically. When the sensor rotates one or more turns, learning is completed. The learning conditions vary depending on the model. For any model, however, learning at 30 min⁻¹ is recommended.
- For interpolation error learning, be sure to rotate the sensor under the following conditions after the power is turned on:

(Learning conditions)

αiCZ sensor 512I, 512IS : 25 to 105 min⁻¹, constant speed, one or

more turns

 αiCZ sensor 768I, 768IS : 20 to 70 min⁻¹, constant speed, one or

more turns

αiCZ sensor 1024I, 1024IS: 15 to 50 min⁻¹, constant speed, one or

more turns

Recommended learning conditions

Common to thee models : 30 min⁻¹, constant speed, one or

more turns

- While power is supplied to the αiCZ sensor, interpolation error learning data is maintained in the sensor. When the power is removed, the data is not maintained. Learning data is lost also when a spindle alarm is issued.

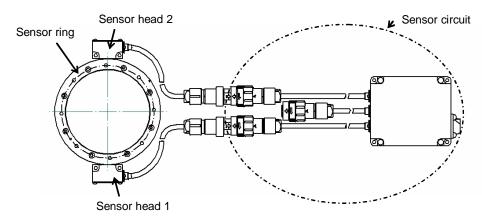
- To ensure precision, rotate the sensor under the automatic learning conditions after each power-on operation.
- When learning is not completed, the detection precision of the αiCZ sensor may deteriorate.
- If it is difficult to rotate the sensor at least one turn for interpolation error learning, repeat forward and reverse rotations under the above rotation conditions until the sum of angular displacements in one direction becomes one turn or more.

11.2.3.10 Notes

Magnetic powder attached to the sensor ring

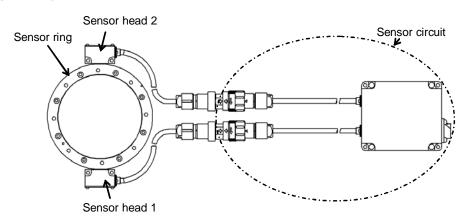
* The description below is applicable to both of A860-2161-T*** and A860-2163-T***.

The α*i*CZ sensor detects an angular displacement according to a change in magnetic flux density between the sensor heads and sensor ring. So, if magnetic powder is attached to a location of the sensor ring, the magnetic flux density at that location changes locally, deteriorating the precision of detection. This precision deterioration occurs each time the location to which magnetic powder is attached passes sensor head 1 and sensor head 2, that is, at every 180°. This deterioration leads to an increased positioning error, torque command variation, abnormal sound, vibration, and so forth.


After installing the sensor, be sure to blow the sensor ring by air. Moreover, to prevent magnetic powder and chips from being attached to the sensor ring and sensor heads during operation, provide protection against dust and water on the machine side.

If nonmagnetic matter (such as aluminum, austenitic stainless steel, resin, and oil) is attached to the sensor ring and sensor head, such precision deterioration as mentioned above does not occur. However, foreign matter caught between the sensor ring and a sensor head can mechanically damage the sensor head. So, attachment of foreign matter, even if nonmagnetic, is undesirable.

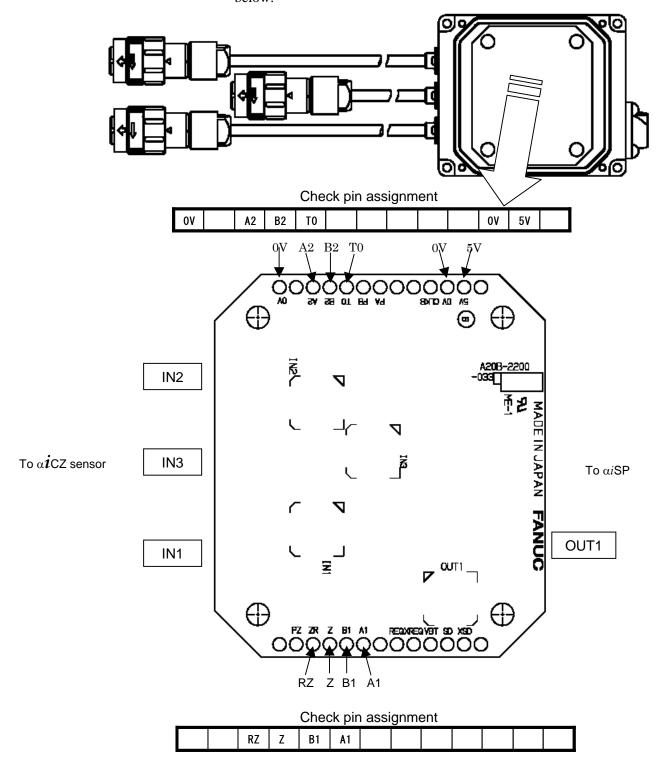
11.2.3.11 Maintenance target parts


As shown below, the αiCZ sensor consists of four parts: sensor ring (phase A/B ring and phase Z ring coupled by screws), sensor head 1, sensor head 2, and sensor circuit. Each single part can be maintained separately. So, place an order on each part as needed according to the specification numbers indicated below.

[$\alpha \dot{\boldsymbol{l}}$ CZ sensor (for built-in spindle motor) A860-2161-T***]

Parent specification Part specification	α <i>1</i> CZ sensor 512l A860-2161-T411	α <i>İ</i> CZ sensor 768I A860-2161-T511	α <i>İ</i> CZ sensor 1024l A860-2161-T611		
Sensor ring	A860-2160-V901	A860-2160-V902	A860-2160-V903		
Sensor head 1	A860-2162-V001 (common to all specifications)				
Sensor head 2	A860-2162-V012 (common to all specifications)				
Sensor circuit	A860-2161-V201 (common to all specifications)				

[αi CZ sensor (for spindle) A860-2163-T***]

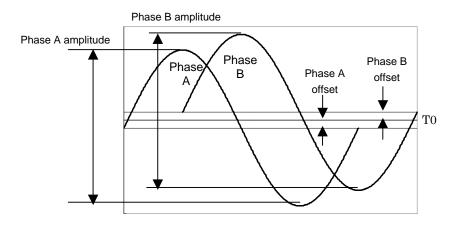


Parent specification Part specification	α <i>İ</i> CZ sensor 512IS A860-2163-T411	α <i>i</i> CZ sensor 768IS A860-2163-T511	α <i>İ</i> CZ sensor 1024IS A860-2163-T611	
Sensor ring	A860-2160-V901	A860-2160-V902	A860-2160-V903	
Sensor head 1	A860-2162-V001 (common to all specifications)			
Sensor head 2	A860-2162-V012 (common to all specifications)			
Sensor circuit	A860-2163-V201 (common to all specifications)			

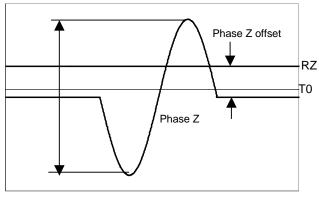
11.2.3.12 Output signal check method

* The description below is applicable to both of A860-2161-T*** and A860-2163-T***.

When checking the signal waveform directly, see the illustration below.



- Supply power to the 0 V and 5 V pins.
- The Lissajous figure of the phase A/B output signal is a complete circle.


Phase A/B and phase Z signal waveform (measured on sensor circuit check pins at room temperature and 500 min⁻¹)

Signal name	Check pin	Output amplitude	Offset
Sensor head 1 phase A (after amplification)	A1	1,300 to 3,000	±180mV
Sensor head 1 phase B (after amplification)	B1	mVp-p	± 100111V
Sensor head 2 phase A (after amplification)	A2	1,300 to 3,000	±180mV
Sensor head 2 phase B (after amplification)	B2	mVp-p	± 100111V
Capaar bood 1 phaga 7	7	400 to 600	70 to 150 mV
Sensor head 1 phase Z		mVp-p	Measure the DC components of Z
Sensor head 1 RZ	RZ		and RZ and use the differential as an
Concornida i N2	112		C offset.

(Measure each signal by connecting the ground of the oscilloscope to T0.)

Phase Z amplitude

The check pins used with the αiCZ sensor fit in the following housing and crimp terminals:

Housing: HKP-13FS01 (Honda Tsushin Kogyo)

Crimp terminal: HKP-F113 (Honda Tsushin Kogyo), AWG#24 to

28 (\$\psi 1.0 to 1.5 mm)

HKP-F213 (Honda Tsushin Kogyo), AWG#28 to

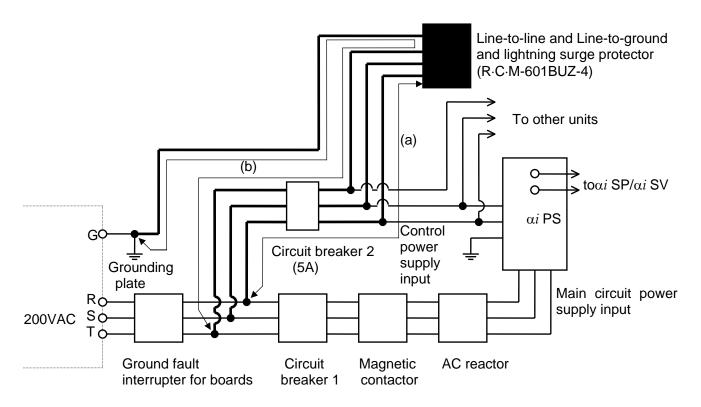
 $32 (\phi 0.5 \text{ to } 0.8 \text{ mm})$

Crimping tool: KP309D (Honda Tsushin Kogyo)

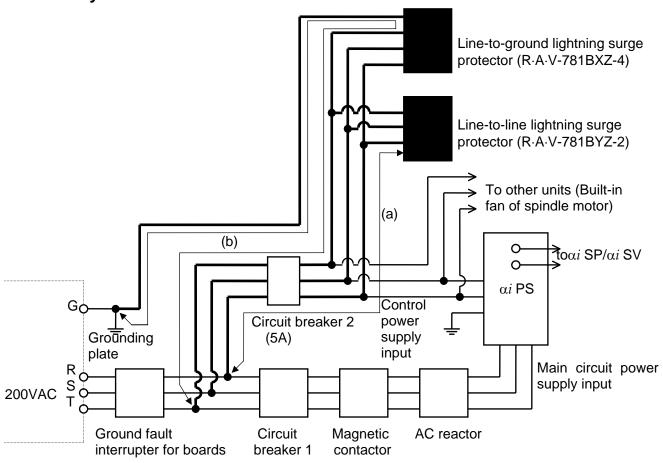
11.2.3.13 Spindle alarms

Ala	Alarm number		LED indication	Alarm name	Alarm description
15 <i>i</i>	16 <i>i</i>	30 <i>i</i>	SP		
SP0132	9132	SP9132	d2	Serial data error	Communication between the sensor and spindle amplifier is not performed.
SP0133	9133	SP9133	d3	Data transfer error	Serial data transmission/reception is not performed normally.
SP0134	9134	SP9134	d4	Soft phase alarm	An abnormal acceleration rate was detected.
SP0139	9139	SP9139	d9	Pulse error alarm	An error occurred in the interpolation circuit.
SP0140	9140	SP9140	E0	Count error alarm	The number of pulses between one phase Z and another is shifted by 4λ or more.
SP0141	9141	SP9141	E1	Sensor one-rotation signal undetected	No absolute position is established within 5 turns immediately after communication between the spindle amplifier and sensor is started.

APPENDIX

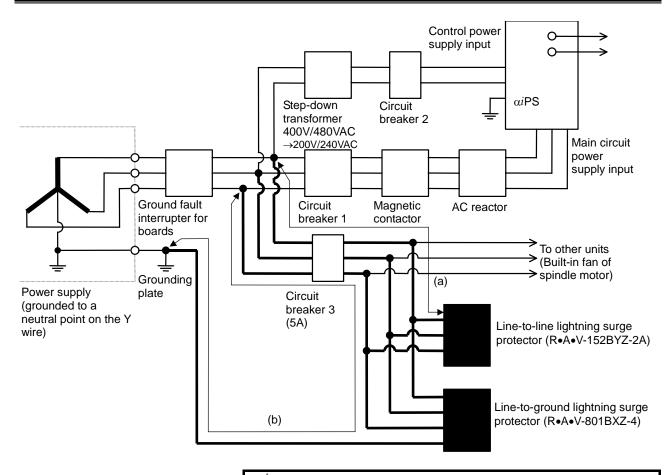


FITTING A LIGHTNING SURGE PROTECTION DEVICE


This appendix describes how to install a lightning surge protector and provides notes on installation.

A.1 200-V INPUT SERIES POWER SUPPLY

When a line-to-line and line-to-ground lightning surge protector is used


When line-to-line and line-to-ground lightning surge protectors are individually used

⚠ CAUTION

If a voltage of 200 V is supplied from a 400-V power supply (with a neutral point used), a lightning surge protector should be used for 400 V; no lightning surge protector is needed for 200 V.

A.2 400-V INPUT SERIES POWER SUPPLY

↑ CAUTION

When the spindle motor $\alpha i I$ 1HV, $\alpha i I$ 1.5HV, $\alpha i I$ 2HV, or $\alpha i I$ 3HV is used, specification of the fan motor for $\alpha i I_T$ 1HV, $\alpha i I_T$ 2HV, and $\alpha i I_T$ 3HV is below :

1 200/230 VAC

2 If a voltage of 200 V is supplied from a 400-V power supply (with a neutral point used), a lightning surge protector should be used for 400 V; no lightning surge protector is needed for 200 V.

A.3 CAUTIONS

(1) To increase the efficiency of lightning surge absorption, the wires indicated by bold lines should be as short as possible.

Wire cross-sectional area: 2 mm² or more

Wire length:

The total length of the cables used for line-to-line lightning surge protector (a) and that used for line-to-ground lightning surge protector (b) must not exceed 2 m.

- (2) When performing a dielectric strength test by applying an overvoltage to the power line, line-to-ground lightning surge protector must be removed to enable the applied voltage to be maintained.
- (3) The circuit breaker 2 (5A) or circuit breaker 3 (5A) works for line protection when the lightning surge absorber is short-circuited because of a surge higher than its rating being applied.
- (4) Because current does not flow through lightning surge protector in a normal state, the circuit breaker 2 (5A) or circuit breaker 3 (5A) can be used together with the surge absorbers as well as with other equipment.

CABLES

This appendix describes the cables used for the 20-pin interface connectors.

The cables are basically the same as those used for the FS16/18.

The table below lists the cables we have developed for interface connectors.

Contact the manufacturers as required.

Cable name	Purpose		Configuration	FANUC specification	Manufacturer	Manufacturer specification
	For general use				Hitachi Electric	UL20276-SB(0)
10-pair			0.00===2.40 =====	A66L-0001-0284#10P	Cable Co., Ltd.	10P×28AWG(7/0.127)
cable	roi generai t	126	0.09mm To pairs	A00L-0001-0204#10P	Oki Electric Cable Co., Ltd.	7/0.127 10P VX10-SV
		28m or less	0.3mm ² 5 cables	A 0.01 . 0.004 . 0.400	Hitachi Electric	UL20276-SB(FLEX)
		Flexible	0.20mm ² 1 pairs	A66L-0001-0460	Cable Co., Ltd.	5×23AWG+1P×25AWG
Composite			0.5mm ² 5 cables	A66L-0001-0462		UL20276-SB(FLEX)
7-core			0.20mm ² 1 pairs	7,000 0001 0402		5×20AWG+1P×25AWG
cable	Pulsecoder		0.3mm ² 5 cables	A66L-0001-0481		UL20276-SB(0)
Cable			0.18mm ² 1 pairs	A00L-0001-0401	Cable Co., Ltd.	5×23AWG+1P×25AWG
		50m or less 0.5mm ² 5 cables		A66L-0001-0491	Hitachi Electric	UL20276-SB(0)
	Fixed		0.18mm ² 1 pairs	A00L-0001-0491	Cable Co., Ltd.	5×20AWG+1P×25AWG
10-core cable	For αiM sensor (for αiI 0.5) For αiMZ sensor (for αiI 0.5) For αiBZ sensor (small type)		0.3mm ² 2 cables 0.2mm ² 4 pairs	A66L-0001-0482		UL20276-SB(FLEX) 2×23AWG+4P×25AWG
Composite	_		2			F-CO-VV(0)-SB
12-core	For αi position		0.5mm ² 6 cables	A66L-0001-0286		6×0.5SQ+3P×0.18SQ
cable	For αi position	on coder S	0.18mm ² 3 pairs	7.002 0001 0200	Oki Electric	MIX12C(7/0.18,
					Cable Co., Ltd.	20/0.18)HRS-SV
10-pair	For αi CZ se		_		Shinko Electric	
cable	For α <i>i</i> BZ sensor (conventional type)		0.18mm ² 10 pairs	A66L-0001-0367	Industries Co.,	FNC-019
					Ltd.	
Composite	For αi M sen		0.5mm ² 6 cables		Shinko Electric	
16-core	For αi MZ se	nsor	0.18mm ² 5 pairs	A66L-0001-0368	Industries Co.,	FNC-021
cable	For αi BZ sei	nsor	o. romini o palis		Ltd.	

B.1 10-PAIR CABLE

Specifications

Item		Unit	Specifications	
Product No.		_	A66L-0001-0284#10P	
Manufacturer		-	Hitachi Cable,Ltd.	
			Oki Electric Cable, Co.,Ltd.	
Rating		_	60°C, 30V:UL2789 80°C, 30V:UL80276	
Material	Conductor	_	Stranded wire of tinned annealed copper (ASTM B-286)	
	Insulator	_	Cross-linked vinyl	
	Shield braid	_	Tinned annealed copper wire	
	Sheath	_	Heat-resistant oilproof vinyl	
Number of pairs		Pairs	10	
Conductor	Size	AWG	28	
	Structure	Conductors/ mm	7/0.127	
	Outside diameter	mm	0.38	
Insulator	Thickness	mm	0.1 (Thinnest portion : 0.08(3. 1mils))	
	Outside diameter (approx.)	mm	0.58	
	Core style (rating)	mm	UL15157(80°C, 30V)	
	Outside diameter (approx.)	mm	1.16	
Twisted pair	Pitch	mm	20 or less	
Lay		I	Collect the required number of twisted pairs into a cable, then wrap binding tape around the cable. To make the cable round, apply a cable separator as required.	
Lay diameter (approx.)		mm	3.5	
Drain wire		Conductors/	Hitachi Cable : Not available	
		mm	Oki Electric Cable : Available,10/0.12	
Element wire Shield braid diameter		mm	0.12	
	Braid density	%	85 or more	
Color		_	Black	
Sheath	Thickness	mm	1.0	
Oncain	Outside diameter (approx.)	mm	6.2	
Standard length		mm	200	
Packing method		mm	Bundle	
	Resistance of conductor (20°C)	Ω/km	233 or less	
Electrical performance	Insulation resistance (20°C)	MΩ-km	10 or less 300	
	Dielectric strength (AC)	V/min		
Flame resistance		_	Shall pass flame resistance test VW-1SC of UL standards.	

Cable structure

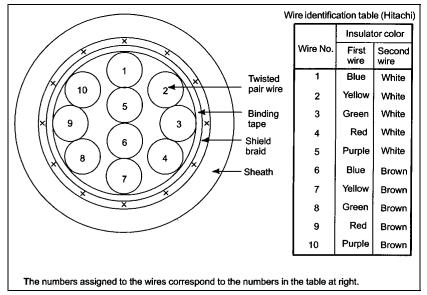


Fig.B.1(a) Cable made by Hitachi Electric Cable

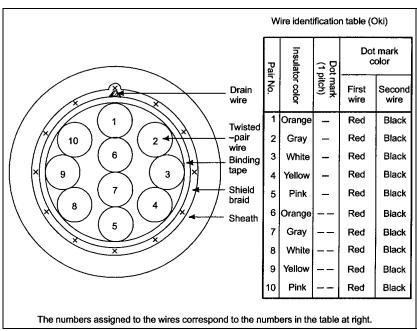
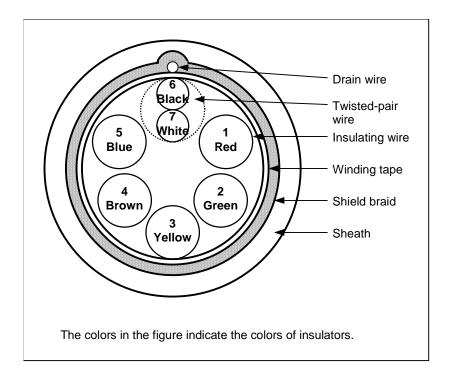


Fig.B.2(b) Cable made by Oki Electric Cable

B.2 COMPOSITE 7-CORE CABLE

A66L-0001-0460


- Specifications

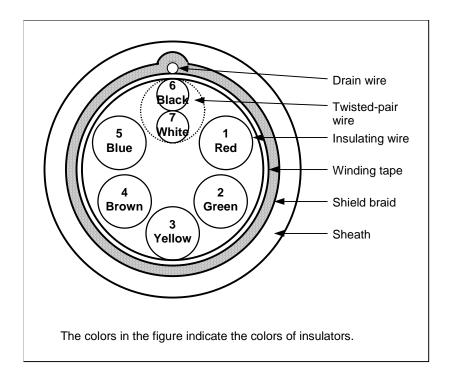
ltem		Unit	Specifications	
Product No.		_	A66L-0001-0460	
Manufacturer		_	Hitachi Electric Cable Co., Ltd.	
Rating		_	80°C, 30V	
Material	Conductor,braid-shielded wire,drain wire	_	Strand wire of tinned annealed copper (JIS C3152)	
	Insulator	_	Fluorine plastics (ETFE)	
	Sheath	_	Oilproof, heat-resistant vinyl	
Number of wires (wire nos.)		Cores	5 (1 to 5) 2 (one pair) (6 to 7)	
	Size	mm ²	0.3	0.20
Conductor	Structure	Conductors /mm	60/0.08	40/0.08
	Conductors	mm	0.72	0.58
Insulator	Standard thickness	mm	0.15	0.15
	Outside diameter	mm	1.02	0.88
Twisted pair	Outside diameter	mm	_	1.76
	Pitch (approx.)	mm	_	13
Lay diameter (approx.)		mm	3.4	
Drain wire	Size	mm ²	0.15	
	Structure	Wires/mm	30/0.08	
	Outside diameter	mm	0.51	
Shield braid	Element wire diameter	mm	0.12	
	Thickness	mm	0.3	
	Braid density	%	85 or more	
	Outside diameter (approx.)	mm	4.2	
Sheath Sheath	Color	_	Black	
	Standard thickness	mm	1.0	
	Standard outside diameter (approx.)	mm	6.2	
	Outside diameter allowance	mm	5.7 to 7.3 (Note)	
Standard length		m	200	
Packing method		_	Bundle	
Electrical performance	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	69.5 or less (1 to 5)	109 or less (6 to 7)
	Insulation resistance (20°C)	MΩ-km	100 or more	
	Dielectric strength (AC)	_	500VAC for 5 minutes	
Flame resistance		_	Shall pass flame resistance test VW-1 of UL standards.	

NOTE

The maximum outside diameter applies to portions other than the drain wire.

- Cable structure

A66L-0001-0462


- Specifications

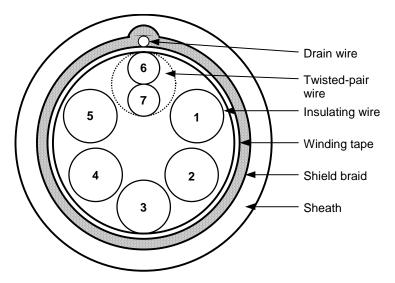
	Item		Specific	cations	
Product No.	Product No.		A66L-0001-0462		
Manufacturer		_	Hitachi Electric Cable Co., Ltd.		
Rating		_	80°C, 30V		
Matarial	Conductor,braid-shielded wire,drain wire	_	Strand wire of tinned annealed	d copper (JIS C3152)	
Material	Insulator	-	Fluorine plastics (ETFE)		
	Sheath	_	Oilproof, heat-resistant vinyl		
Number of wir	res (wire nos.)	Cores	5 (1 to 5)	2 (one pair) (6 to 7)	
	Size	mm ²	0.5	0.20	
Conductor	Structure	Conductors /mm	104/0.08	40/0.08	
	Conductors	mm	0.94	0.58	
Inquiator	Standard thickness	mm	0.2	0.15	
	Outside diameter	mm	1.34	0.88	
Turiotod poir	Outside diameter	mm	_	1.76	
Twisted pair	Pitch (approx.)	mm	_	13	
Lay diameter	(approx.)	mm	4.2		
;	Size	mm ²	0.15		
Drain wire	Structure	Wires/mm	30/0.08		
	Outside diameter	mm	0.51		
	Element wire diameter	mm	0.12		
المناط المامنط	Thickness	mm	0.3		
Shield braid	Braid density	%	85 or more		
	Outside diameter (approx.)	mm	5.0		
	Color	_	Black		
	Standard thickness	mm	1.0		
Sheath	Standard outside diameter (approx.)	mm	7.0		
	Outside diameter allowance	mm	6.5 to 8.0 (Note)		
Standard leng	yth	m	200		
Packing method		_	Bundle		
Electrical	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	40.1 or less (1 to 5)	109 or less (6 to 7)	
performance	Insulation resistance (20°C)	MΩ-km	100 or more		
-	Dielectric strength (AC)	_	500VAC for 5 minutes		
Flame resista	· · · · · · · · · · · · · · · · · · ·	_	Shall pass flame resistance to	est VW-1 of UL standards.	

NOTE

The maximum outside diameter applies to portions other than the drain wire.

- Cable structure

A66L-0001-0481


- Specifications

Item		Unit	Sp	ecifications	
Product No.		_	A66L-0001-0481		
Manufacturer		_	Hitachi Electric Cable Co., Ltd.		
Rating		_	80°C, 30V		
	Conductor,braid-shielded wire,drain wire	_	Strand wire of tinned an	nealed copper (JIS C3152)	
Material	Insulator	_	Heat-resistant vinyl		
	Sheath	_	Oilproof, heat-resistant v	vinyl	
Number of wire	Number of wires (wire nos.)		5 (1 to 5)	2 (one pair) (6 to 7)	
	Size	mm ²	0.3	0.18	
Conductor	Structure	Conductors /mm	12/0.18	7/0.18	
	Conductors	mm	0.72	0.54	
Insulator	Standard thickness	mm	0.25	0.25	
	Outside diameter	mm	1.22	0.94	
Turioto d poir	Outside diameter	mm	_	1.88	
Twisted pair	Pitch (approx.)		_	20	
Lay diameter (approx.)		mm	3.9		
	Size	mm ²	0.18		
Drain wire	Structure	Wires/mm	7/0.18		
	Outside diameter	mm	0.54		
	Element wire diameter	mm	0.12		
0-:	Thickness	mm	0.3		
Shield braid	Braid density	%	85 or more		
	Outside diameter (approx.)	mm	4.6		
	Color	_	Black		
	Standard thickness	mm	0.8		
Sheath	Standard outside diameter (approx.)	mm	6.2		
	Outside diameter allowance	mm	5.7 to 7.3 (Note)		
Standard length		m	200		
Packing methor	od	_	Bundle		
Electrical	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	65.7 or less (1 to 5)	113 or less (6 to 7)	
performance	Insulation resistance (20°C)	MΩ-km	15 or more		
•	Dielectric strength (AC)	_	500VAC for 5 minutes		
Flame resistar	-	_	Shall pass flame resistance test VW-1 of UL standards.		

NOTE

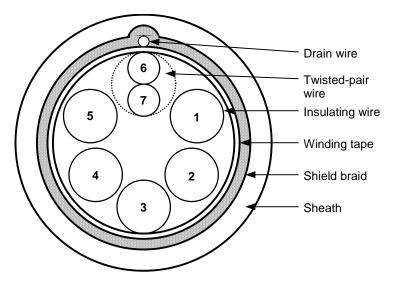
The maximum outside diameter applies to portions other than the drain wire.

- Cable structure

The numbers assigned to the wires correspond to the numbers in the table below.

Wire No.	Insulator color	Dot mark color
1	Yellow	
2	Yellow	Black
3	Yellow	Red
4	Bright green	Black
5	Bright green	Red
6	Light brown	Black
7	Light brown	Red

A66L-0001-0491


- Specifications

ltem		Unit	Spe	ecifications	
Product No.		_	A66L-0001-0491		
Manufacturer		_	Hitachi Electric Cable Co., Ltd.		
Rating		_	80°C, 30V		
	Conductor,braid-shielded wire,drain wire	_	Strand wire of tinned ann	nealed copper (JIS C3152)	
Material	Insulator	_	Heat-resistant vinyl		
	Sheath	_	Oilproof, heat-resistant vi	inyl	
Number of wires (wire nos.)		Cores	5 (1 to 5)	2 (one pair) (6 to 7)	
	Size	mm ²	0.5	0.18	
Conductor	Structure	Conductors /mm	20/0.18	7/0.18	
	Conductors	mm	0.93	0.54	
Insulator	Standard thickness	mm	0.25	0.25	
	Outside diameter	mm	1.43	0.94	
Turiotod poir	Outside diameter	mm	_	1.88	
Twisted pair	Pitch (approx.)		_	23	
Lay diameter (approx.)		mm	4.4		
	Size	mm ²	0.18		
Drain wire	Structure	Wires/mm	7/0.18		
	Outside diameter	mm	0.54		
	Element wire diameter	mm	0.12		
0-:	Thickness	mm	0.3		
Shield braid	Braid density	%	85 or more		
	Outside diameter (approx.)	mm	5.1		
	Color	_	Black		
	Standard thickness	mm	0.55		
Sheath	Standard outside diameter (approx.)	mm	6.2		
	Outside diameter allowance	mm	5.7 to 7.3 (Note)		
Standard length		m	200		
Packing method		_	Bundle		
Electrical	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	39.4 or less (1 to 5)	113 or less (6 to 7)	
performance	Insulation resistance (20°C)	MΩ-km	15 or more		
	Dielectric strength (AC)	_	500VAC for 5 minutes		
Flame resistar		_	Shall pass flame resistance test VW-1 of UL standards.		

NOTE

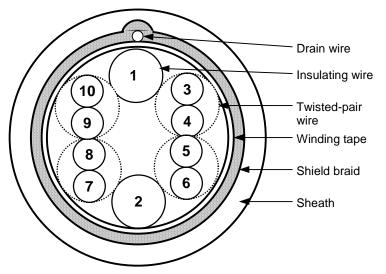
The maximum outside diameter applies to portions other than the drain wire.

- Cable structure

The numbers assigned to the wires correspond to the numbers in the table below.

Wire No.	Insulator color	Dot mark color
1	Light brown	
2	Yellow	
3	Yellow	Black
4	Yellow	Red
5	Bright green	
6	Light brown	Black
7	Light brown	Red

B.3 COMPOSITE 10-CORE CABLE


Specifications

Item		Unit	Specifi	cations	
Product No.		_	A66L-0001-0482		
Manufacturer		_	Hitachi Electric Cable Co., Ltd.		
Rating		_	80°C, 30V		
Matarial	Conductor, braid-shielded wire, drain wire	_	Strand wire of tinned annealed copper (JIS C3152		
Material	Insulator	_	Heat-resistant vinyl		
	Sheath	_	Oilproof, heat-resistant vinyl		
lumber of wires (wire nos.)		Cores	2	8 (four pairs)	
	Size	mm ²	0.3	0.2	
Conductor	Structure	Conductors /mm	60/0.08	40/0.08	
	Conductors	mm	0.72	0.58	
Insulator	Standard thickness	mm	0.25	0.2	
	Outside diameter	mm	1.22	0.98	
Twisted pair	Outside diameter	mm	_	1.96	
i wisteu paii	Pitch (approx.)	mm	_		
Lay diameter		mm	5.0		
	Size	mm ²	0.15		
Drain wire	Structure	Wires/mm	30/0.08		
	Outside diameter	mm	0.51		
	Element wire diameter	mm	0.12		
Shield braid	Thickness	mm	0.3		
Snieid braid	Braid density	%	85 or more		
	Outside diameter (approx.)	mm	5.7		
	Color	_	Black		
	Standard thickness	mm	0.65		
Sheath	Standard outside diameter (approx.)	mm	7.0		
	Outside diameter allowance	mm	6.5 to 8.0 (Note)		
Standard leng	th	m	200		
Packing methor	od	_	Bundle		
Electrical	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	69.5 or less	109 or less	
performance	Insulation resistance (20°C)	MΩ-km	15 or more		
	Dielectric strength (AC)	_	500VAC for 5 minutes		
Flame resistar		_	Shall pass flame resistance t	est VW-1 of UL standards.	

NOTE

The maximum outside diameter applies to portions other than the drain wire.

Cable structure

The numbers assigned to the wires correspond to the numbers in the table below.

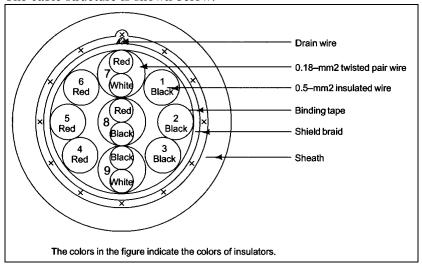
Wire No.	Insulator color	Dot mark color
1	Light brown	
2	Yellow	
3	Light brown	Black
4	Light brown	Red
5	Yellow	Black
6	Yellow	Red
7	Bright green	Black
8	Bright green	Red
9	Gray	Black
10	Gray	Red

B.4 COMPOSITE 12-CORE CABLE

Specifications

	Item	Unit	Spec	ifications	
Product No.		_	A66L-0001-0286		
Manufacturer		_	Hitachi Electric Cable Co., I Oki Cable, Ltd.	_td.	
Rating		_	80°C, 30V		
ramig	Conductor, braid-shielded wire, drain wire	_	Strand wire of tinned annealed copper (JIS C3152)		
Material			Heat-resistant flame-retardant vinyl		
	Insulator Sheath	-	Oilproof, heat-resistant, flan		
Number of wi	res (wire nos.)	Cores	6 (1 to 6)	6 (three pairs) (7 to 9)	
Number of wi	Size	mm ²	0.5	0.18	
Conductor	Structure	Conductors	20/0.18	7/0.18	
		/mm		0.51	
	Conductors Other dead thickers are (The	mm	0.94	0.54	
Insulator	Standard thickness (The minimum thickness is at least 80% of the standard thickness.)	mm	0.25	0.2	
	Outside diameter	mm	1.50	0.94	
	Outside diameter	mm		1.88	
Twisted pair	Direction of lay	_		Left	
	Pitch	mm		20 or less	
Lay		_	Twist the wires at an appropriate pitch so the outermost layer is right-twisted, and wrap tape around the outermost layer. Apply a cable separator as required.		
Lay diameter		mm	5.7	•	
•	Size	mm ²	0.3		
Drain wire	Structure	Wires/mm	12/0.18		
	Outside diameter	mm	0.72		
	Element wire diameter	mm	0.12		
Objete byes	Thickness	mm	0.3		
Shield braid	Braid density	%	70		
	Outside diameter	mm	6.3		
	Color	_	Black		
Sheath	Standard thickness (The minimum thickness is at least	mm	1.1		
	85% of the standard thickness.) Outside diameter	mm	8.5Max.9.0(1)		
Outside diameter Standard length		mm m	100		
Packing method		- "	Bundle		
Electrical	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	39.4 (1 to 6)	113 (7 to 9)	
performance	Insulation resistance (20°C)	MΩ-km	15		
, ssaoo	Dielectric strength (AC)	V/min	500	_	
Flame resista		.,	Shall pass flame resistance	taat \	

NOTE

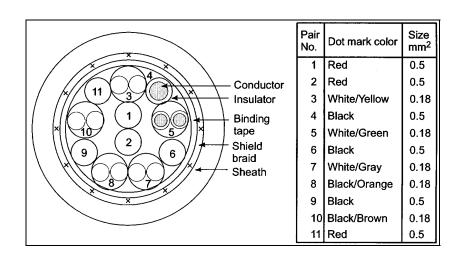

The maximum outside diameter applies to portions other than the drain wire.

Markings on cable

- (i) Name or symbol of the manufacturer
- (ii) Manufacturing year

Cable structure

The cable structure is shown below.

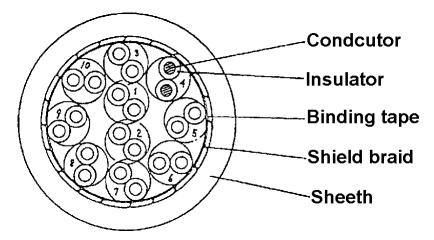


B.5 COMPOSITE 16-CORE CABLE

Specifications

Item			Unit	Spec	ifications
Product No.				A66L-0001-0368(FNC-021)	
Manufacturer	Manufacturer			Shinko Electric Industries Co	o., Ltd.
Rating			80°C, 60V		
	Conductor			Stranded wire of tinned anno	ealed copper (JIS C 3152)
	Insulator			Heat-resistant polivinyl chior	ride
Material	Shield braid			Tinned annealed copper wir	e
	Sheath			Heat-resistant, oil-resistance chioride (S-3)	e, flame-retardent polivinyl
Number of pairs			Pairs	6	10 (5-pair)
	Nominal cross-sarea	sectional		0.5	0.18
Conductor	Structure		Conductors /mm	20/0.18	7/0.18
	Outside diameter (approx.)		mm	0.9	0.54
Insulator	Thickness		mm	0.25 (Average thickness : 90% or more)	0.2 (Average thickness : 90% or more)
	Outside diameter (approx.)		mm	1.5	0.94
Twisted pair	Outside diamet	er (approx.)	mm	_	1.88 (pitch : 20 mm or less)
Lay	Diameter (appro	ox.)	mm	6.5	
Tape-wound wire	Diameter (appre	ox.)	mm	6.6	
Drain wire	Structure		Conductors /mm	12/0.18	
Shield	Element wire di	ameter	mm	0.12 (Braid density: 70% or	more)
	Color			Black	
Sheath	Thickness		mm	1.0 (Average thickness : 90% or more)	
	Outside diamet		mm	9.2 ± 0.3	
	Electric	0.18mm ²	Ω/km	113 or less (20°C JIS C 300	5 6)
Electrical	resistance	0.5mm ²	24 NIII	39.4 or less (20°C JIS C 3	005 6)
performance	Dielectricstreng	th	V/min	AC500(JIS C 3005 8 (2))	
	Insulation resist	tance	MΩ-km	15 or more (20°C JIS C 300	5 9.1)

Cable structure



B.6 10-PAIR CABLE

Specifications

	Item	Unit	Specifications	
Product No.			A66L-0001-0367(FNC-019)	
Manufacturer	Manufacturer		Shinko Electric Industries Co., Ltd.	
Rating			80°C, 60V	
	Conductor		Stranded wire of tinned annealed copper (JIS C 3152)	
	Insulator		Heat-resistant polivinyl chioride	
Material	Shield braid		Tinned annealed copper wire	
	Sheath		Heat-resistant, oil-resistance, flame-retardent polivinyl chioride (S-3)	
Number of pairs	5	Pairs	20 (10-pair)	
	Nominal cross-sectional area	mm^2	0.18	
Conductor	Structure Conductor		s 7/0.18	
	Outside diameter (approx.)	mm	0.54	
lnoulator	Thickness	mm	0.25 (Average thickness : 90% or more)	
Insulator	Outside diameter (approx.)	mm	1.04	
Twisted pair	Outside diameter (approx.)	mm	2.08 (pitch : 25 mm or less)	
Lay	Diameter (approx.)	mm	6.5	
Tape-wound wire	Diameter (approx.)	mm	6.6	
Shield	Element wire diameter	mm	0.12 (Braid density: 70% or more)	
	Color		Black	
Sheath	Thickness	mm	1.0 (Average thickness : 90% or more)	
	Outside diameter	mm	9.2 ± 0.3	
Electrical	Electric resistance	Ω/km	110 or less (20°C JIS C 3005 6)	
performance	Dielectricstrength	V/min	AC500(JIS C 3005 8 (2))	
penomance	Insulation resistance	MΩ-km	15 or more (20°C JIS C 3005 9.1)	

Cable structure

Pair number	Dot mark color
1	Black/Orange
2	Black/Gray
3	White/Yellow
4	White/Green
5	White/Brown
6	White/Orange
7	White/Gray
8	Black/Yellow
9	Black/Green
10	Black/Brown

EXTERNAL DIMENSIONS OF EACH CONNECTOR

Manufacture: Tyco Electronics AMP Type : 1-178128-3

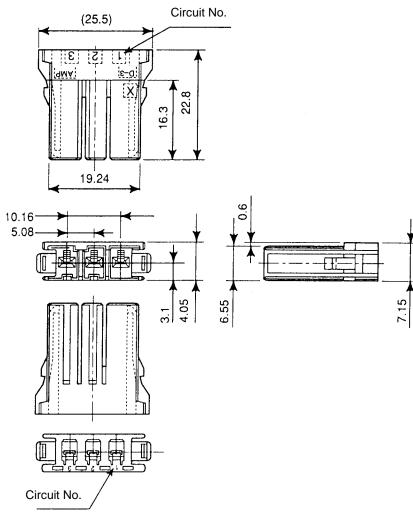


Fig.C(a) Tyco Electronics AMP connector (1)

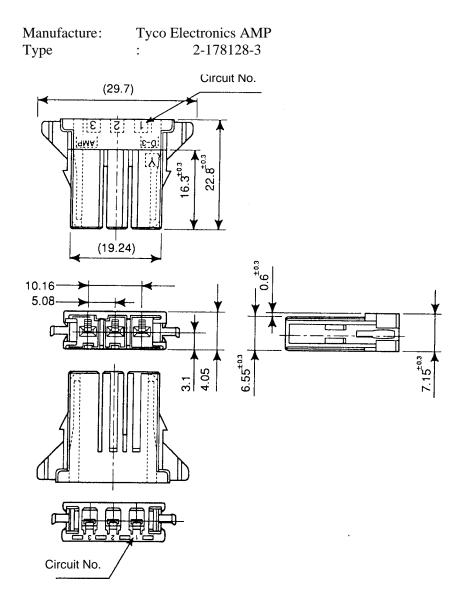


Fig.C(b) Tyco Electronics AMP connector (2)

Manufacture: Tyco Electronics AMP
Type : 1-175218-2
Cable : AWG16, 18, 20



Fig.C(c) Contact for Tyco Electronics AMP connector

Manufacture: Tyco Electronics AMP Type : 1-1318119-4

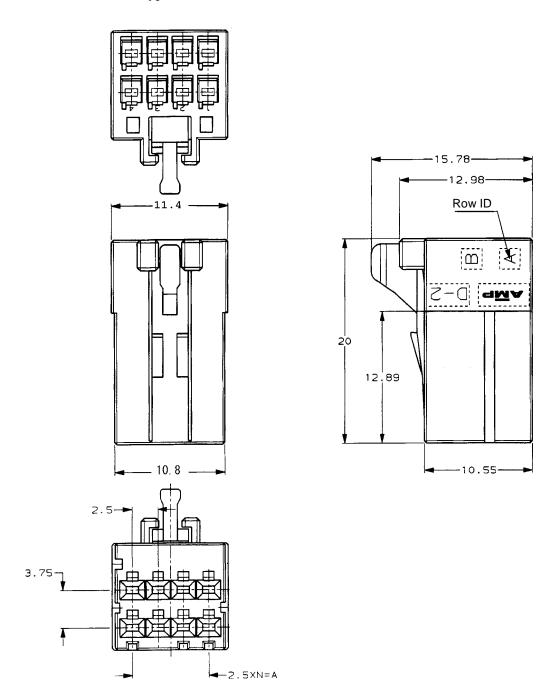


Fig.C(d) Contact for Tyco Electronics AMP connector

Manufacture: HIROSE ELECTRIC CO., LTD.

Type : FI30-20S (crimp type)

Housing : FI-20-CVS2 (plastic)

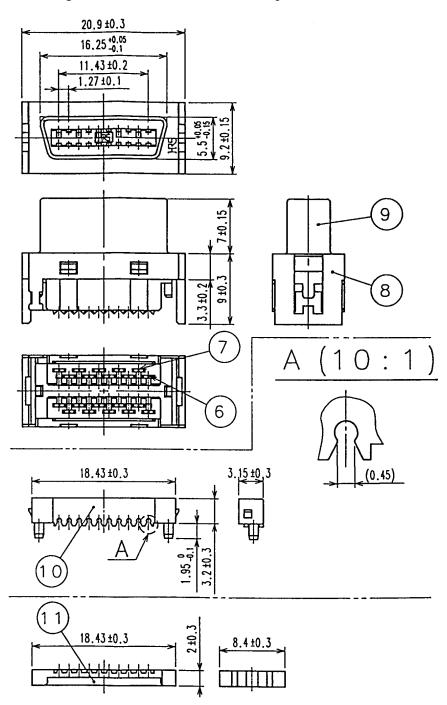
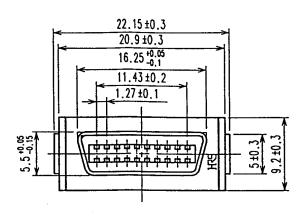



Fig.C(e) Connector for interface (Crimp type)

Manufacture: HIROSE ELECTRIC CO., LTD.

Type : FI40-20S (solder type)

Housing : FI-20-CVS5 (plastic)

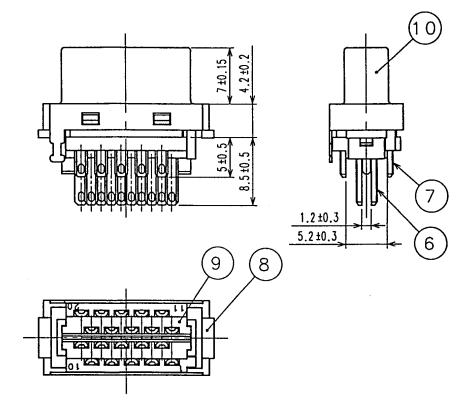


Fig.C(f) Connector for interface (Solder type)

Manufacture: HIROSE ELECTRIC CO., LTD.

Type : FI40B-2015S (solder type)
Housing : FI-2015-CVS (plastic)

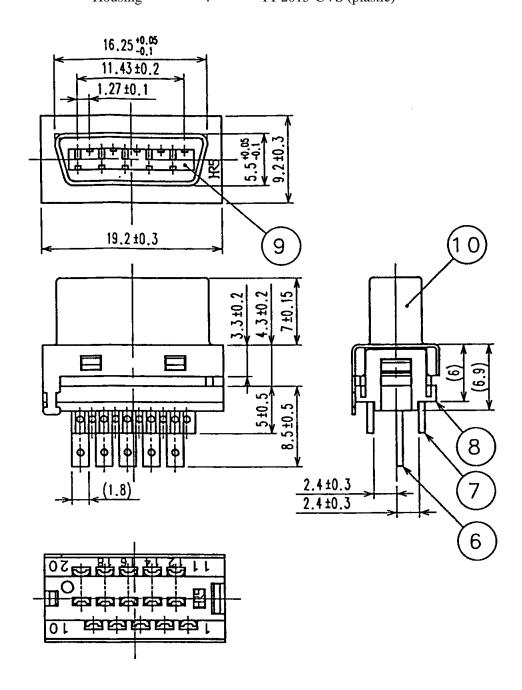


Fig.C(g) Connector for interface (Solder type)

NOTE

This connector does not contact locations 11, 13, 15, 17, and 19.

Manufacture: HIROSE ELECTRIC CO., LTD.

Type : FI-20-CVS2 Connector : FI30-20S

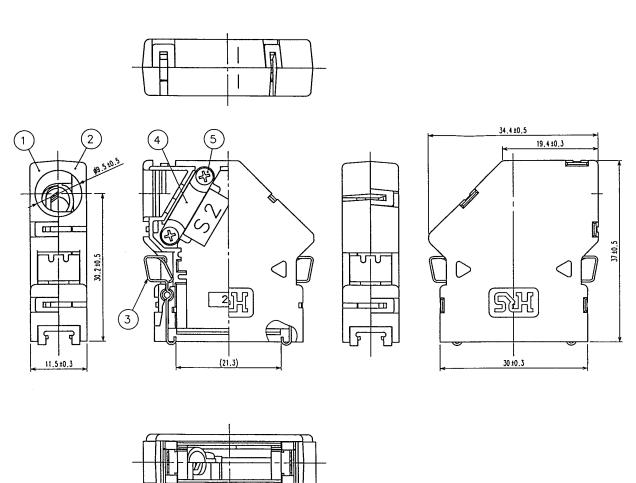
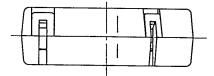
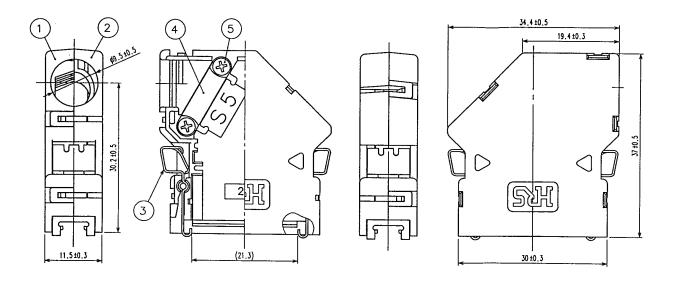




Fig.C(h) Connector housing (Side cable type)

Manufacture: HIROSE ELECTRIC CO., LTD.

Type : FI-20-CVS5 Connector : FI40B-20S

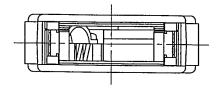
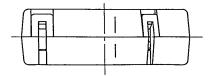
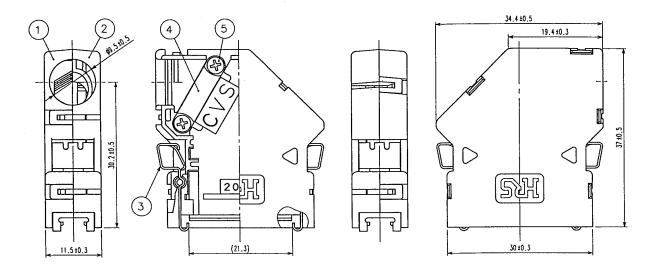


Fig.C(i) Connector housing (Side cable type)

Manufacture:


HIROSE ELECTRIC CO., LTD.


Type

FI-2015-CVS

Connector

FI40B-2015S

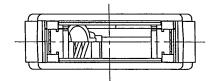


Fig.C(j) Connector housing (Side cable type)

FEEDBACK CABLE LENGTH

Appendix	D,	"FEEDBACK	CABLE	LENGTH",	consists	of	the
following:	secti	ons:					

D.1	SPINDLE	CABLE	LENGTH	(WHEN	RECOMMENDED
	CABLES .	ARE USED	D)		432
D.2	SERVO	CABLE	LENGTH	(WHEN	RECOMMENDED
	CARLES	ARE LISET))		433

D.1 SPINDLE CABLE LENGTH (WHEN RECOMMENDED CABLES ARE USED)

Detector	Recommended cable	Cable structure	Maximum cable length
lpha iM sensor	A66L-0001-0368	0.5mm ² , 6 conductors (for power supply) 0.18mm ² , 5 pairs (for signals)	72m When one power line is used
αiMZ sensor, αiBZ sensor	A66L-0001-0368	0.5mm ² , 6 conductors (for power supply) 0.18mm ² , 5 pairs (for signals)	50m When one power line is used
αi M sensor (for $\alpha 0.5 i$)	A66L-0001-0482	0.3mm ² , 2 conductors (for power supply) 0.2mm ² , 3 pairs (for signals)	41m
αi MZ sensor (for $\alpha 0.5 i$)	A66L-0001-0482	0.3mm ² , 2 conductors (for power supply) 0.2mm ² , 4 pairs (for signals)	28m
αiCZ sensor	A66L-0001-0367	0.18mm ² , 10 pairs (for signals and power supply)	18m When three power lines is used
αiBZ sensor (conventional type)	A66L-0001-0367	0.18 mm ² , 4 conductors (for power supply) 0.18mm ² , 5 pairs (for signals)	36m When two power lines is used
αi positioncoder	A66L-0001-0286	0.5mm ² , 6 conductors (for power supply) 0.18mm ² , 3 pairs (for signals)	7m When one power line is used
lpha i positioncoder S	A66L-0001-0286	0.5mm ² , 6 conductors (for power supply) 0.18mm ² , 3 pairs (for signals)	7m When one power line is used

When a cable other than one of the recommended cables above is used, the voltage drop in the cable must be within $0.2\ V$ for a +5 V power supply.

(Tip)

Maximum cable length L can be found from the following formula:

 $L[m] \le 0.2[V] \times n[line] \div 2 \div I[A] \div R[\Omega/m]$

n : Number of power lines (number of +5V or +15V lines)

I : Current consumption of the detector

R: Resistance of a wire used for a power line

Detector	Current consumption
αiM sensor (pulse generator)	0.035A
αiMZ sensor, αiBZ sensor (built-in sensor)	0.05A
αiCZ sensor	0.15A
αi Positioncoder	0.35A
αi Positioncoder S	0.35A

D.2 SERVO CABLE LENGTH (WHEN RECOMMENDED CABLES ARE USED)

Recommended cable	Cable structure	Maximum cable length
A66L-0001-0460	0.3mm ² , 5 conductors (for power supply) 0.20mm ² , 1 pair (for signals)	28m
	0.5mm ² , 5 conductors (for power supply) 0.20mm ² , 1 pair (for signals)	50m
	0.3mm ² , 5 conductors (for power supply) 0.18mm ² , 1 pair (for signals)	28m
A66L-0001-0491	0.5mm ² , 5 conductors (for power supply) 0.18mm ² , 1 pair (for signals)	50m

When a cable other than recommended cable is used, ensure that the sum of the resistances of $0\ V$ and $5\ V$ is $2\ ohms$ or less.

POWER LINE FOR SERVO MOTOR AND AMPLIFIER

Appendix	E,	"POWER	LINE	FOR	SERVO	MOTOR	AND
AMPLIFIE	ER",	consists of t	he follo	wing se	ections:		
E 1 SELE	CTI	NG A POW	FR CAF	RLF.			435

E.1 SELECTING A POWER CABLE

Select the cable specification by considering the following conditions for use:

- <1> Motor current rating or current needed in use on a real machine
- <2> Cable type (heat resistance temperature, etc.)
- <3> Environment in which the cable is installed (operating ambient temperature, etc.)
- <4> Need of water proofing (pay attention to the diameter of the applicable cable clamp)
- <5> Certification for CE marking (compliance with various safety standards and EMC standard)
- <6> Insulation distance between the cable and terminal is secured at the time of wiring.

Examples of selecting a heavy-duty power cable are shown below. Fully check the cable specifications based on the actual use conditions and use an example below.

The cable diameters are determined based on JCS No. 168 D (1980), "Allowable Currents for Power Cables (1)."

Selection example of power line (reference)

[Selection example 1]

• Heavy-duty power cable specification :

Maximum allowable conductor temperature 60°C

Cable diameter [mm²]	Environment temperature 30°C Allowable current value [Arms]	Receptacle contact specification	
0.75	Up to 11	SS size 1318986-6	
1.25	Up to 15	S size 316040-6	
2	Up to 19	S size 316040-6	
3.5	Up to 27	M size 316041-6	
5.5	Up to 35	M size 316041-6	
8	Up to 43	L size 1318697-6	
14	Up to 56	Crimp terminal only	

[Selection example 2]

• Heavy-duty power cable specification :

Maximum allowable conductor temperature 80°C

Cable diameter [mm²]	Environment temperature 55°C Allowable current value [Arms]	Receptacle contact specification
0.75	Up to 9.2	SS size 1318986-6
1.25	Up to 12.7	S size 316040-6
2	Up to 16.3	S size 316040-6
3.5	Up to 23.4	M size 316041-6
5.5	Up to 31.2	M size 316041-6
8	Up to 38.3	L size 1318697-6

[Selection example 3]

• Fire-retardant polyflex wire or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.: 3 wire bundles

Maximum allowable conductor temperature 105°C

Cable diameter [mm²]	Environment temperature 30°C Allowable current value [Arms]	Environment temperature 55°C Allowable current value [Arms]
0.75	Up to 12	Up to 10
1.25	Up to 16	Up to 13
2	Up to 21	Up to 17
3.5	Up to 32	Up to 26
5.5	Up to 43	Up to 35
8	Up to 55	Up to 44
14	Up to 79	Up to 64
22	Up to 113	Up to 92
30	Up to 137	Up to 112
38	Up to 160	Up to 131
50	Up to 190	Up to 155
60	Up to 220	Up to 180
80	Up to 269	Up to 219

Wire diameter versus AWG number table (reference)

Cable diameter [mm²]	AWG number
0.8226	AWG18
1.307	AWG16
2.082	AWG14
3.309	AWG12
5.262	AWG10
8.368	AWG8
13.30	AWG6
21.15	AWG4
33.62	AWG2
42.41	AWG1
53.49	AWG1/0
67.42	AWG2/0
85.03	AWG3/0
107.2	AWG4/0

Selection example of servo motor power line (reference)

Example 1)

A heavy-duty power cable is used for the αi F22/3000 when the ambient temperature is 55°C.

- Check the continuous current rating of the servo motor with the applicable servo motor specification.

 (See descriptions about the stall current of the servo motor.)
- In this example, it is 18.4 Arms.
 Select a cable wire diameter from [Selection example 2] in this section.

In this example, it is 3.5 mm².

Selection example of spindle motor power line (reference)

Example 1)

A polyflex wire is used for the αi I 8/8000 when the ambient temperature is 55°C.

- Check the continuous current rating of the spindle motor with the applicable spindle motor specification.

 (See descriptions about the stall current of the servo motor.)

 In this example, it is 43 Arms.
- Select a cable wire diameter from [Selection example 3] in this section.

In this example, it is 8 mm².

MEASURES AGAINST NOISE FROM SERVO AMPLIFIERS

This appendix describes what causes noise when servo amplifiers are used to drive servo or spindle motors. It also explains measures that can be taken to protect equipment from noise.

When installing machines, the user is kindly requested to previously arrange measures against noise that may occur in the machines.

Appendix F, "MEASURES AGAINST NOISE FROM SERVO AMPLIFIERS," consists of:

F.1	NOISE OCCURRENCE IN SERVO AMPLIFIERS	439
F.2	NOISE TYPES	440
F.3	ANTI-NOISE MEASURES	442
F 4	MISCELLANEOUS	450

F.1 NOISE OCCURRENCE IN SERVO AMPLIFIERS

Shown below is an outlined configuration of a servo amplifier.

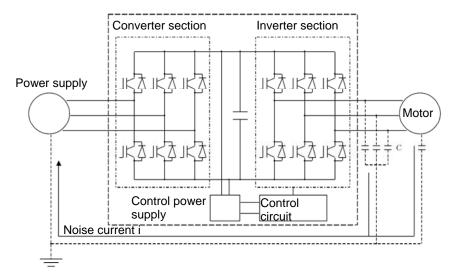


Fig. F-1 Outlined servo amplifier configuration

The servo amplifier shown above converts AC to DC with its converter section and controls the rotation speed of the motor under PWM control by turning ON/OFF the 6 transistors in the inverter section.

Turning the 6 transistors ON/OFF at high speed results in switching noise occurring. This high-speed ON/OFF switching releases noise current (i) to the ground through the stray capacitance (C) between the cable and motor on every switching cycle. The magnitude of the noise current (i) is represented by:

 $i = C \times dV/dt$

As the expression tells, the noise current is proportional to the stray capacitance (C) and the transistor switching speed (dV/dt). Because the frequency band of this noise is below about 30 to 40 MHz, it affects equipment (such as AM radio) that uses a low-frequency band. But it hardly affects equipment (such as FM radio and TV) that uses higher frequency bands.

Described so far is how noise occurs in switching transistors to drive motors.

Meanwhile, if a servo amplifier regenerates power (recirculates motor rotation energy to the power supply during deceleration) when a motor driven by it decelerates, the operation of devices that share the power supply may be affected by voltage fluctuations resulting from current phase commutation for power regeneration.

F.2 NOISE TYPES

Noise that occurs in servo amplifiers can be roughly grouped into any of the following three types.

(1) Conduction noise

Conduction noise occurs in a servo amplifier, passes through a conductor, such as wire, and enters a device connected to the same power line as the servo amplifier, thus affecting the device.

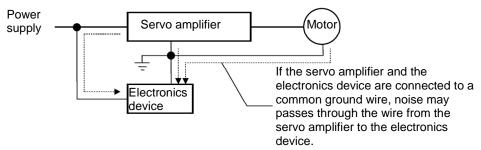


Fig. F2(1) Conduction noise

(2) Induction noise

Induction noise is caused on the power line or signal line of a peripheral device through induction by putting the line close to an electric line through which noise current is flowing.

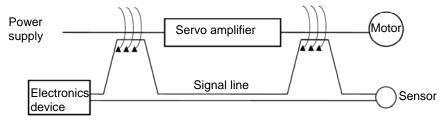


Fig. F2(2) Electromagnetically induced noise

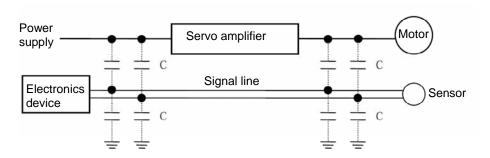


Fig. F2(3) Electrostatically induced noise

(3) Radiation noise

Radiation noise occurs in a servo amplifier and is radiated into the air from that power supply line or power line connected to the servo amplifier which acts as an antenna.

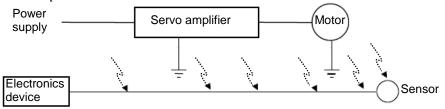


Fig F2(4) Radiation noise

Noise can propagate in diverse ways. In addition, its effect varies depending on how the system is configured.

F.3 ANTI-NOISE MEASURES

It is difficult for the present technology level to prevent noise occurrence completely. So, it is necessary to arrange economic anti-noise measures according to the level of the noise of interest and the situations of equipment installation.

F.3.1 Pre-Installation Arrangement

If a noise problem occurs after equipment has been installed, it may cost a lot of money to solve the problem. So, it is necessary to take the following measures previously.

- <1> Separate signal lines from power supply and motor power lines.
- <2> Put power supply and motor power lines in metal conduits.
- <3> Carry out adequate grounding work, and lay down proper grounding wires (for preventing leakage-caused hazard shocks as well).
- <4> Use as thick and short grounding wires as possible.

The "Electrical Equipment Technical Standards" stipulates grounding methods as listed below.

Grounding type	Applicable equipment	Grounding resistance	
Class-3 grounding	300 VAC or lower	100 Ω or lower	
Special class-3 grounding	300 VAC to 600 VAC	10 Ω or lower	

F.3.2 Anti-Noise Measures

Suppressing noise from equipment effectively requires applying system-wide anti-noise measures by cooperating with devices that may be affected by the noise.

- (1) Anti-measures that can be taken in noise-affected devices
 - <1> Separate signal lines for noise-affected devices from power supply and motor power lines to reduce effect by noise.
 - <2> Separate power supplies between noise-generating and noise-affected devices to block off noise paths.
 - <3> Increase the impedance of signal lines to noise, for example, by passing the signal lines through ferrite core beads.
 - <4> Use line filters or shielded wires for signal lines to prevent noise from entering the signal lines.
- (2) Anti-measures that can be taken in noise-generating devices
 - <1> Lower noise levels by installing anti-noise devices such as noise filters.
 - <2> Isolate noise, using metal conduits or shielded wires.
 - <3> Block off noise paths, using isolation transformers.

(3) Noise type-specific anti-noise measures

Noise types are described in F.2. Which anti-noise measure is effective varies depending on the noise type of interest. In addition, which anti-noise measure is effective and how effective it is also vary depending on the environment (such as power supply and radio wave strength) in which the machine is used, the situations of machine operation, and the noise immunity level of the equipment involved.

Take the most effective measure by referencing Table F.3.2.

Table F.3.2 Noise type-specific anti-noise measures

		Noise type			
	Measure	Conduction noise	Induction noise	Radiation noise	
Wiring and grounding	Separate signal lines from power supply and power lines	0	0		
	Use metal conduits		0	0	
	Avoid parallel wiring		0		
	Shied power supply and power lines			0	
	Ground securely		0		
Anti-noise device (noise	Line filter	0		0	
source side)	Isolating transformer	0		0	
Anti-noise device (noise	Ferrite core used with signal lines		0	0	
receiving side)	Signal line shielding		0	0	
Others	Separating power supplies	0			

F.3.3 Concrete Examples of Anti-Noise Measures

(1) AM radio

<<Symptom>>

When a motor at a factory was energized, radios at the factory sounded bzzz, making voice and music inaudible.

<< Probable cause>>

The radios received radiation noise from the power line of the motor, which is connected to a servo amplifier.

<<Measure>>

- <1> Installed a noise filter (LC filter) on the power supply side.
- <2> Installed a capacitor across each input phase line and ground.

<<Caution>>

- These measures may not be effective in weak-wave areas, such as residential areas and mountain-ringed regions.
- If a noise filter is used, make the wiring between the filter and servo amplifier as short as possible.

(2) AM radio

<<Symptom>>

When a machine at a factory was operated, radios in neighboring houses and cars parked outside the factory received noise.

<< Probable cause>>

The factory and the neighboring houses shared a pole-mounted transformer, and radiation noise from the wiring on the power supply side affected the radios. Alternatively, it was likely that conduction noise from the power supply line might affect the radios.

<<Measure>>

- <1> Installed a noise filter (LC filter) on the power supply side.
- <2> Supplied the neighboring houses with power from another pole-mounted transformer.

<<Caution>>

• If a noise filter is used, make the wiring between the filter and servo amplifier as short as possible.

(3) Refrigerator

<<Symptom>>

Refrigerator motors in neighboring houses growled when a spindle at a factory decelerated.

<< Probable cause>>

The factory and the neighboring houses shared a pole-mounted transformer, causing voltage distortion resulting from power regeneration at spindle deceleration to make the refrigerator motors growl.

<<Measure>>

- <1> Supplied the neighboring houses with power from another pole-mounted transformer.
- <2> Readjusted the capacity of power supply equipment.

<<Caution>>

 In many cases, factories in residential areas receive power from pole-mounted transformers for their equipment and share power with residential buildings, leading to an insufficient power capacity for the factory equipment. In these cases, power distortion become large, being likely to affect home electrical power.

(4) Telephone

<<Symptom>>

When a machine at a factory was operated, the telephone in a house across the road received noise.

<< Probable cause>>

When high-frequency current from a servo amplifier or motor returned through the grounding of a pole-mounted transformer, it shunted to the shielded ground of the telephone line, inducing noise electrostatically.

<<Measure>>

- <1> Supplied the house with power from another pole-mounted transformer.
- <2> Inserted a capacitor between the servo amplifier power supply and its grounding.

<<Caution>>

- Noise filters (LC filters) may not be effective to suppress noise having audio frequency components.
- Inserting a capacitor between the servo amplifier power supply and its grounding may cause a ground-fault circuit interrupter to trip because of an increasing leakage current.

(5) FAX

<<Symptom>>

When a machine at a factory was operated, a fax machine in a neighboring firm failed in transmission and also noise entered the telephone at the factory. The telephone uses a 100 V power source. Disconnecting the 100 V power source from the telephone resumed normal communication.

<< Probable cause>>

A pole-mounted transformer was shared, and conduction noise from the power line caused the malfunction.

In addition, it was likely that induction noise might also occur on wiring as in (4).

<<Measure>>

- <1> Supplied the residential building with power from another pole-mounted transformer.
- <2> Inserted an insulating transformer (noise-cut transformer) in the power supply circuitry.

<<Caution>>

• LC filters may not be effective for low-frequency noise as in (4).

F.3.4 Anti-Noise Measures for Power Supply Equipment and Grounding

If a noise problem still occurs in a machine already having general anti-noise measures, it may be solved by enhancing the grounding of the machine or installing a noise filter in it as stated below.

(1) Separating grounds

To prevent noise-related trouble from a machine, it is recommended to isolate the ground of the machine from other equipment when the machine is installed.

What to do

Isolate the ground of the machine's power transformer from the ground of the power supply transformer for equipment that may malfunction because of noise from the machine.

Effect

Isolating the grounds prevents noise from going from the machine to other equipment via a "common ground" so that the equipment will not be affected.

See Material 1 for a practical example.

(2) Enhancing machine grounding

If the impedance of an existing power supply grounding line for a machine (a large multi-axis machine in particular) is high and generates a noise voltage across the machine housing and the ground of the factory, it is recommended to enhance grounding.

What to do

Enhance grounding by adding a grounding wire or a ground.

Effect

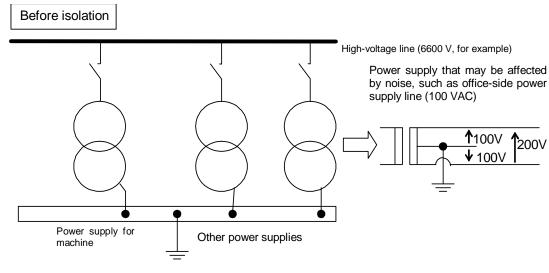
If the impedance of the power supply grounding line is high and it is impossible for the existing power supply grounding wires to provide a good electrical ground, lower the grounding impedance of the machine by adding grounding wires.

See Material 2 for a practical example.

(3) Installing noise filters

If noise from a machine affects other devices through power supply lines adversely, it is recommended to install a noise filter.

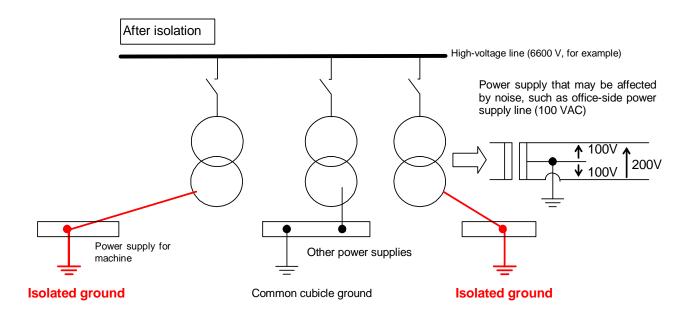
What to do


Install a noise filter in the input power supply of the machine.

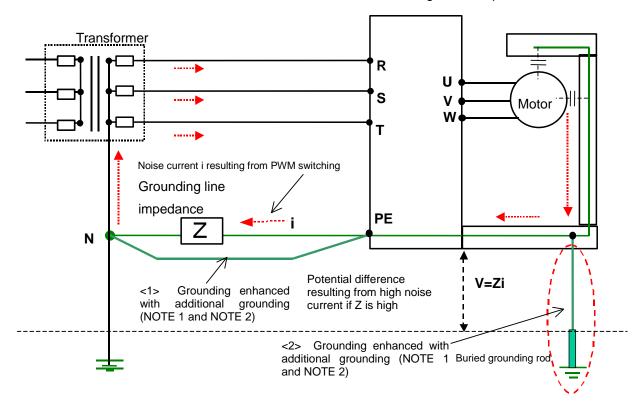
Effect

The noise filter prevents noise going from the machine to other devices through power supply lines to affect them adversely.

See Subsection 3.1.3.12 for the noise filters we recommend.


Material 1: Example of Separating Grounds

Common cubicle ground


Isolation from common ground

Material 2: Example of Enhancing Grounding

If the impedance of a power supply grounding line is high and it is impossible for the grounding of the power supply to provide a good electrical ground, enhance grounding by adding a grounding line or a ground so that the grounding impedance of the machine is lowered to suppress a noise voltage.

Machine using servo amplifer

NOTE

- 1 It is recommended to use mesh cables having a satisfactory high-frequency property for the additional grounding of a machine.
- 2 For TN connections, use additional grounding <1> shown above.
 - For TT connections, use additional grounding <2> by, for example, burying a grounding rod near the machine.

F.3.5 Anti-Noise Devices

As described earlier, what anti-noise measure to take and what anti-noise device to use vary depending on the type of the noise of interest, where the noise occurs, and how large the effect of the noise is. This subsection briefly describes some anti-noise devices. They should be used to take an appropriate measure according to the situations.

(1) Noise filter

A noise filter can be inserted between a power supply and a servo amplifier to reduce high-frequency noise (noise voltage across terminals) superimposed on a supply voltage. Noise filters are effective on the AM radio frequency band.

Example products:

3SUP-H/3SUP-D Series from Okaya Electric Industries Co., Ltd. NF3000/HF3000 Series from Soshin Electric Co., Ltd.

ZRCT/ZRGT Series from TDK LH-3/LH-4 Series from Tokin

(2) Capacitor

A capacitor can be connected directly to a servo amplifier to reduce radiation noise from electrical power lines. Capacitors have a low attenuation property, compared with noise filters. However, they may be effective depending on the situation of radio waves. Select a ground-fault circuit interrupter by giving consideration to leakage current.

Example products:

3XYB-105 · 104 from Okaya Electric Industries Co., Ltd. LW3/LY3 Series from Soshin Electric Co., Ltd.

(3) Zero-phase reactor

A zero-phase reactor can be inserted between a power supply and servo amplifier to reduce radiation noise from electrical power lines.

Example products:

RC Series from Soshin Electric Co., Ltd.

(4) Noise-cut transformer

A noise-cut transformer can be inserted between a power supply and device to reduce conduction noise (low frequency) passing through electrical power lines or grounding lines.

Example products:

FFT Series from Fuji Electric

F.4 MISCELLANEOUS

(1) Harmonics and noise

A harmonic is a sinusoidal wave having a frequency that is an integral multiple of the fundamental frequency (50/60 Hz). Usually, harmonics having a frequency of several tens of kHz or higher are specifically called noise, while those having a frequency of up to several kHz are referred to, using the same term (harmonics).

In many cases, noise occurs in inverter sections, and harmonics, in converter sections. What problem occurs and what measure to take differ between noise and harmonics.

For harmonics, the "Harmonics Suppression Measure Guideline" is available.

(2) References

"Skillful Use of Inverters (Electrical Noise)," The Japan Electrical Manufacturers' Association

EXAMPLES OF RECOMMENDED POWER MAGNETICS CABINETS FOR SERVO AMPLIFIER INSTALLATION

Appendix	G,	"EXAMPLES	OF	REG	COMMENI	DED	POWER
MAGNET	ICS	CABINETS	FO	R	SERVO	AN	1PLIFIER
INSTALL	ATIO	N," consists of:					
G.1 OVEF	RVIE	W					452
G 2 DESC	TTTT	ZIONS					453

G.1 OVERVIEW

In order to prevent the reliability of servo amplifiers from lowering because of their environments, it is important to seal up the power magnetics cabinet for the servo amplifiers and to give consideration to the environment of the inside of the cabinet.

This document presents cautions to be observed when designing power magnetics cabinets. They should be useful to those who are going to design power magnetics cabinets.

Subsection No.	Subsection heading	Summary
G-2-1	Power Magnetics Cabinet Seal-up	Explains how to seal up power magnetics cabinets. Protecting electronics circuits in servo amplifiers requires installing them in a sealed power magnetics cabinet.
G-2-2	Environments for Amplifier Heat Sink Sections	Explains how to reduce extraneous materials, such as cutting fluid, oil mist, and cutting chips, that may get on heat sink sections. Those extraneous materials can lower the cooling efficiency of the servo amplifiers (leading to a lowered amplifier performance) and reduce the operating life of electronics components (power semiconductor devices, fan motors, etc).
G-2-3	Environments for Amplifier Installation	Describes cautions regarding environments in which amplifiers are installed. An environment impeding heat generation can lower the performance of the amplifiers and shorten the operating life of electronics components (power semiconductor devices, fan motors, etc).

G.2 DESCRIPTIONS

G.2.1 Power Magnetics Cabinet Seal-up

This subsection explains how to seal up power magnetics cabinets. In order to protect servo amplifier electronics circuits, it is necessary to house the servo amplifier in a sealed power magnetics cabinet.

- <1> Keep the power magnetics cabinet free of any hole or gap through which external air can enter the cabinet (Fig. 1). Do not make any hole in a cabinet wall panel; fitting air filters in holes cannot necessarily seal up the cabinet.
- <2> Do not make any hole in the cabinet wall panel to install a fan motor in the hole (Fig. 1). In order to release heat from the cabinet to the outside, use a device (such as a heat exchanger or cooler) having a structure that will not hamper seal-up of the cabinet.
- <3> Keep all joining areas of cabinet wall panels free of gaps. If cabinet wall panels are partly bonded (for example, spot-welded), fill any gaps between bonded areas with sealant, for example, in order to seal up the cabinet.

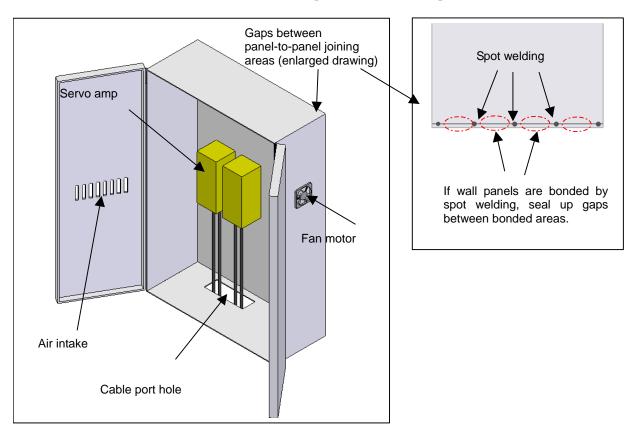


Fig. 1 Example of power magnetics cabinet not sealed well (example of poor

- <4> Keep the cable port free of gaps (Fig. 1). (Concrete method)
 - 1) Fit a conduit in the cable port hole (Fig. 2).
 - 2) If it is impossible to fit a conduit by any means, at least keep the cable port free of gaps. Shown below is an example of sealing by fitting sponge around cables (Fig 3). Do not allow cables to overlap with one on another; otherwise, gaps will occur around the cables. If there are many cables, separate them into several places.
 - 3) If a cable duct is used as a cable port, be sure to seal up the duct. When leading cables into the duct, observe items 1) and 2).

Fig. 2 Fitting a conduit

Fig. 3 Sealing with sponge

- <5> In order to prevent external air from entering through screw holes, observe the following:
 - 1) Avoid making holes in cabinet wall panels as far as possible; for example, weld male screws (studs) to cabinet wall panels and use nuts with them (Fig. 4). Using cap nuts and applying sealant around them is also effective (Fig 5). When using cap nuts, give consideration to the length of screws used with the cap nuts.
 - 2) For the top panel in particular, be sure to observe item 1), because extraneous materials, such as cutting fluid, can easily get on the panel.
 - 3) If a screw hole is left unused (open) because of no screw being inserted (for example, a grounding terminal screw hole left unused), be sure to block it up.

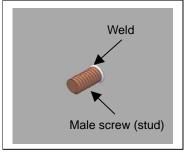


Fig .4 Welding male screw

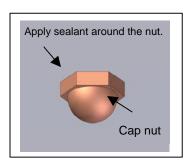


Fig. 5 Using cap nut

- <6> Avoid allowing gaps in the portions where the door meets the door frame.
 - 1) Seal the door, for example, by attaching gaskets to the inside edges of the door (Fig. 6).
 - 2) When attaching gaskets, do not leave gaps between the gaskets, especially those at the corner of the door (Fig. 6).
 - 3) If the cabinet has a double-door structure, use a gasket between the doors (Fig. 7).
 - 4) If a hole is made in a door panel to fit a component in it, seal the hole with a gasket to secure seal-up.
 - 5) To seal up the cabinet, be sure to lock the door.

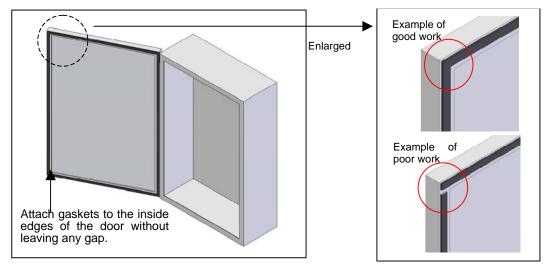


Fig. 6 Sealing doors

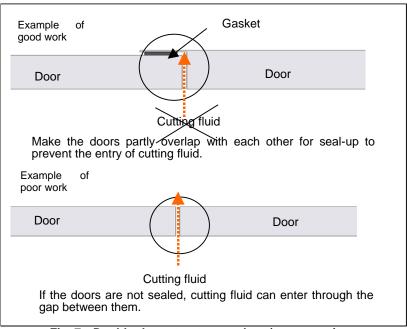


Fig. 7 Double-door structure seal-up (cross-section view of portion where the doors meet)

<7> Provide an underthroating at the portion where the power magnetics cabinet frame meets the door (Fig. 8) to prevent the entry of cutting fluid.

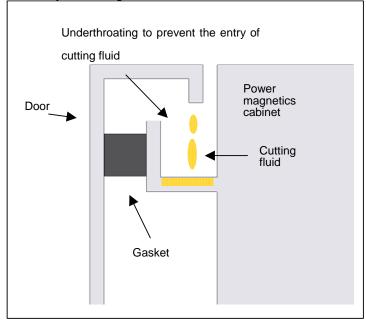


Fig. 8 Explanation of underthroating

<8> Lead cables into the power magnetics cabinet from below the cable port. This is intended to try to prevent cutting fluid entering the cabinet along cables (Fig. 9).

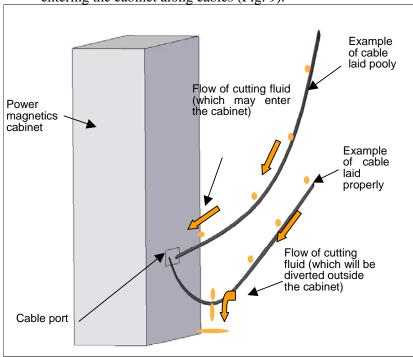


Fig. 9 How to lead in cables

<9> If holes are made in a power magnetics cabinet wall panel to install an amplifier, attach the supplied gaskets to the holes to seal up the cabinet. At each corner of the amplifier, make gaskets overlap with each other. If not (for example, gaskets are cut short), a gap may occur, leading to leakage (Fig. 10).

APPENDIX

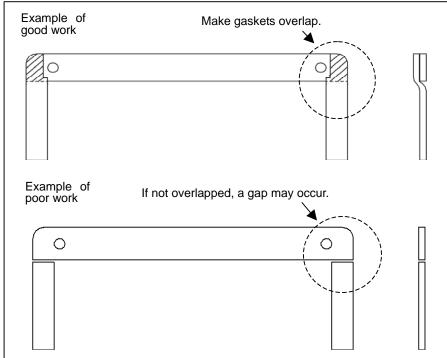


Fig. 10 How to attach gaskets

G.2.2 Environments for Amplifier Heat Sink Sections

This subsection explains how to prevent extraneous materials, such as cutting fluid, oil mist, and cutting chips, from getting on amplifier heat sink sections.

If extraneous materials, such as cutting fluid, oil mist, and cutting chips, get on servo amplifier heat sink sections or fan motors, they can lower the cooling efficiency (performance) of the servo amplifiers and shorten the operating life of electronics components (such as power semiconductor devices and fan motors).

<1> If a structure that takes in fresh air to cool a heat sink section is employed, be sure to enclose the heat sink section in a box having vent holes and cover the vent holes (both intake and discharge holes) with air filters to prevent the entry of cutting fluid mist (Fig. 11).

Select vent holes and air filters designed to release heat properly by giving consideration to the heat release property of the structure. Replace air filters at regular intervals; dirty air filters can lower the cooling efficiency.

Do not provide vent holes in the top panel; cutting fluid would accumulate in the air filter of any vent hole in the top panel and later drop into the box.

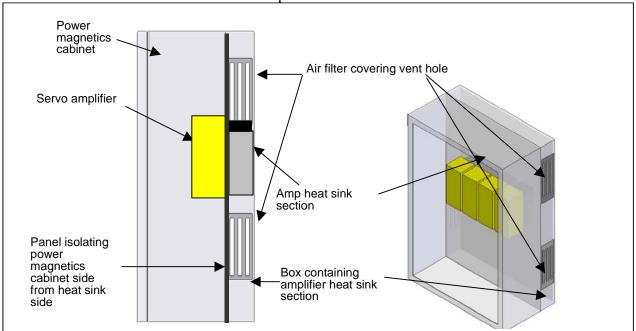


Fig. 11 Air filter locations

<2> Be sure to isolate the machining area from the amplifier heat sink section (Fig. 12); if cutting fluid or cutting chips get in direct contact with an amplifier heat sink section, its heat release property gets lowered (Fig. 13).

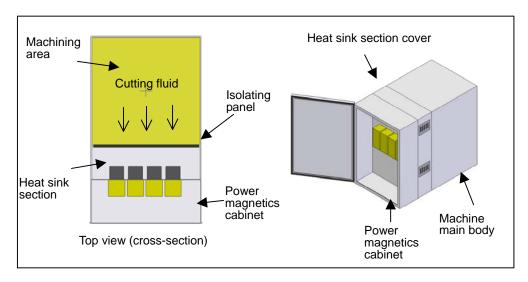


Fig. 12 Machining area isolated from amp heat sink section (example of good work)

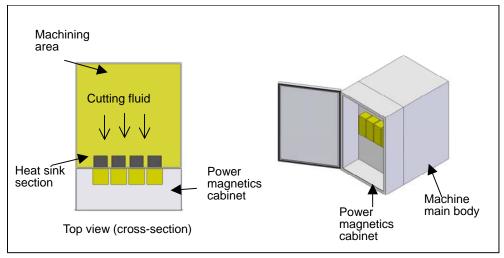


Fig. 13 Machining area and amp heat sink section sharing the same place (example of poor work)

G.2.3 Environments for Amplifier Installation

This subsection describes cautions to be observed with regard to environments for amplifier installation.

If the heat release property of the heat sink section of a servo amplifier gets lowered because of the servo amplifier installation environment being improper, it is likely that the amplifier performance may be lowered and the operating life of electronics components (such as power semiconductor devices and fan motors) may be shortened.

<1> Mounting heat exchangers

If the temperature inside the power magnetics cabinet is at least 10°C higher than the ambient temperature, use heat exchangers to cool the inside of the cabinet.

- *1: When attaching a heat exchanger, fit gaskets around it to seal up the cabinet.
- *2: Prevent air from heat exchangers from flowing directly onto amplifiers or electronics products; otherwise, it is likely that any dust and dirt in the cabinet may be blown to them.
- <2> Installing a cooling fan for agitating air inside Installing a cooling fan inside the power magnetics cabinet can homogenize the temperature and increase the heat release efficiency of the power magnetics cabinet (Fig. 14).
 - *1: Do not place any cable that may hamper air agitation near the cooling fan air outlet.
 - *2: Prevent air blowing from a cooling fan directly onto amplifiers or electronics products; otherwise, it is likely that dust and dirt in the cabinet may be blown to them.

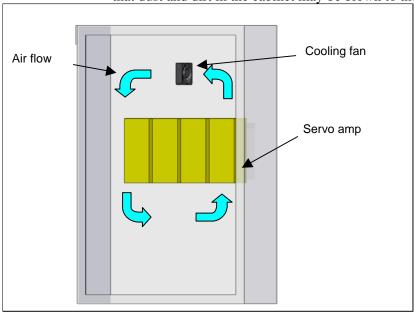


Fig. 14 Example of installing motor-driven fan for agitating air inside

- <3> Using dehumidifying agent inside the power magnetics cabinet Placing dehumidifying agent, such as dehumidifying sheets, in the power magnetics cabinet can prevent the reliability of servo amplifiers from lowering.
- <4> How to install servo amplifiers

It is assumed that, when servo amplifiers are installed, they will be arranged in a raw. If you cannot help but arrange them in a column, observe the following (Fig. 15):

- *1: Keep cooling air for the lower amplifier from flowing directly onto the upper amplifier; otherwise, the heat release property of the upper amplifier gets lowered, being likely to result in the upper amplifier failing to deliver its rated output.
- *2: Keep the upper amplifier from blocking up the cooling air flow for the lower amplifier.

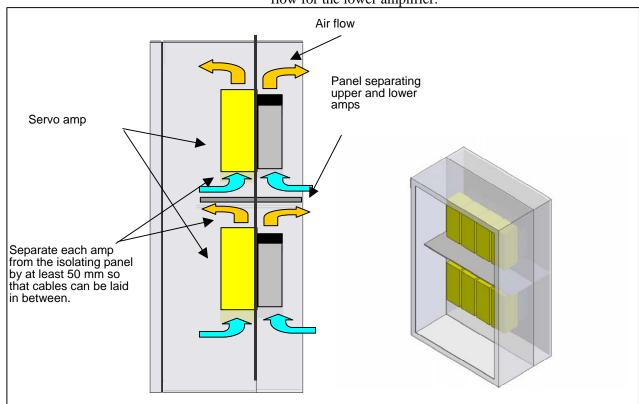


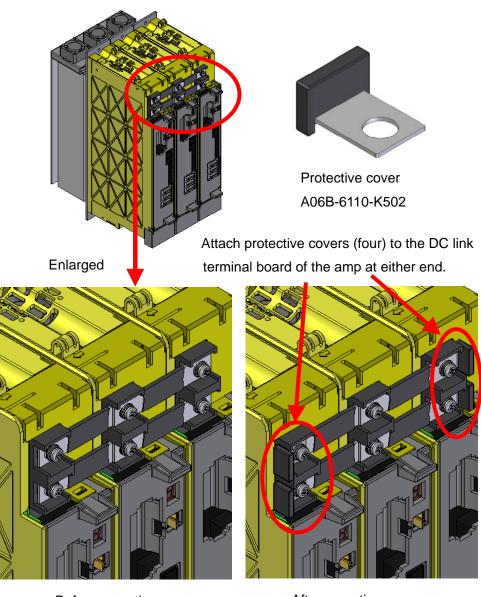
Fig. 15 Example of arranging amps in a column

DC LINK TERMINAL BOARD SECTION PROTECTIVE COVER

Appendix	Η,	"DC	LINK	TERMINAL	BOARD	SECTION
PROTECT	IVE (COVE	R," consi	sts of:		

H.1 OVERVIEW

Protective covers are available for the DC link terminal board section of the αi series servo amplifier unit. They can be used if necessary.


Ordering information: A06B-6110-K502

Quantity: 1 (4 required)

H.2 HOW TO MOUNT

Mount protective covers to the DC link terminal board as shown below

Screw each protective cover with a tightening torqure of 3.5 to 4.5 Nm.

Before mounting

After mounting

POWER FAILURE DETECTION FUNCTION

	pendix I, sists of:	"POWER	FAILURE	DETECTION	FUNCTION,"
I.1	OVERVI	EW			466
I.2	POWER :	FAILURE I	DETECTION	SPECIFICATION	ON467
I.3	APPLICA A	ATION TO I	PREVENTIC	ON OF VERTICA	AL AXES
	FROM E	ALLING AT	POWER E	AILURE	469

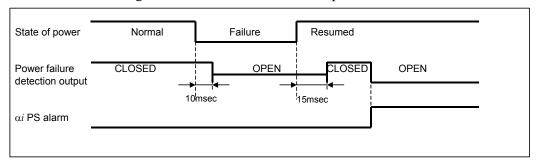
I.1 OVERVIEW

The upgraded version incorporates a power failure detection function. This function can prevent a vertical axis from falling by applying the brake to the vertical axis promptly as directed by a power failure detection signal output from the αi PS after a power failure.

1.2 POWER FAILURE DETECTION SPECIFICATION

- The following voltage drops are detected as power failures:
 - (1) Drop of a 3-phase voltage (L1, L2, or L3) input to the main circuitry of the αi PS
 - (2) DC link voltage drop
 - (3) Drop of a voltage (between pins 1 and 2 of connector CX1A) input to the control power supply of the αi PS
- Power failure signals are output through a photo MOS relay (Fig. 1).
- There are two power failure detection output channels, which operate the same way.

Power failure detection output connector CX37 0 Α1 Maximum rated voltage: 30 V Maximum rated current: 200 mA O **A3** Photo MOS Relay Power failure detection circuit В1 0 Maximum rated voltage: 30 V Maximum rated current: 200 mA **B3** Photo MOS Relay


Fig. 1 Output circuit

Connector specification: AMP connector

Housing: 1-1318119-3 Contact: 1318107-1

- The power failure detection output is closed normally and becomes open at power failure (Fig. 2).
- The power failure detection output becomes open 10 msec after a power failure occurs. It becomes closed 15 msec after the power is resumed (Fig. 2).
- If an alarm condition occurs in the α*i* PS, the power failure detection output becomes open (in the same condition as for the detection of a power failure) (Fig. 2).

Fig. 2 Power failure detection output

- The power failure detection output becomes closed within 1.5 sec after the control power (200 VAC) is applied to the αi PS, enabling power failures to be detected after the αi PS becomes ready (the LED display on the αi PS becomes "0").
- If the αi PS is not ready (the LED display on the αi PS is "-"), the power failure detection output remains closed.

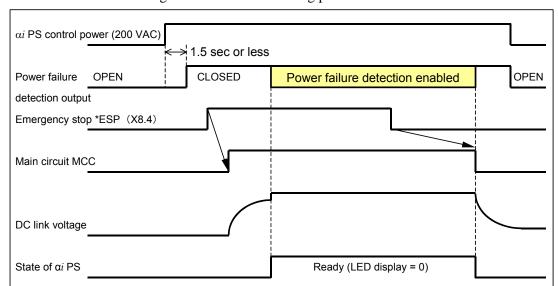
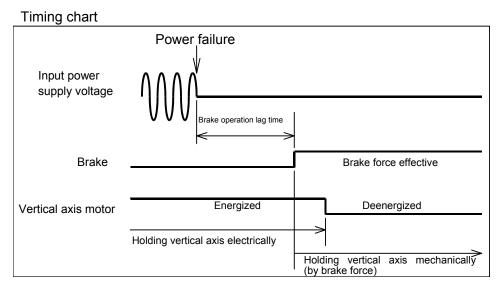



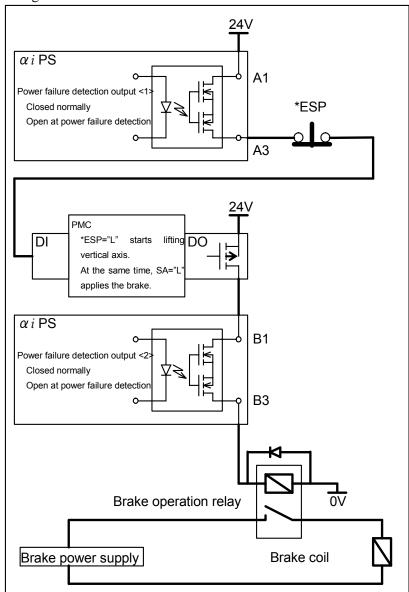
Fig. 3 Conditions enabling power failure detection

1.3 APPLICATION TO PREVENTION OF VERTICAL AXES FROM FALLING AT POWER FAILURE

Preventing a vertical axis from falling at power failure requires applying the brake to the vertical axis before its motor is deenergized. To put it another way, it is necessary to perform the following:

- (1) Apply the brake promptly after the occurrence of a power failure.
- (2) Keep the vertical axis motor energized since the occurrence of the power failure until the brake works.

I.3.1 Procedure

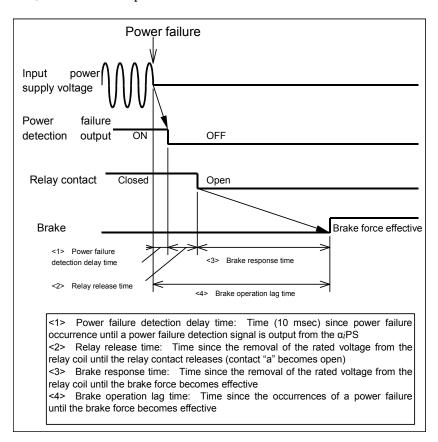

- (1) Configure a brake circuit that operates promptly after the occurrence of a power failure (Subsection I.3.2).
- (2) Keep the vertical axis motor energized until the brake comes into operation (Subsection I. 3. 3).
 - Check the control power supply hold time.
 - Set parameters.
- (3) Confirm the effect of the measure taken (Subsection I.3.5).

1.3.2 Brake Circuit

FUNCTION

The emergency stop signal (*ESP) and the brake operation relay must be operated together on a power failure detection output from the αi PS

Configure a brake circuit as shown below.



Refer to "FANUC AC SERVO MOTOR αi series Descriptions" (B-65262EN) for explanations about the specification of the brake operation relay contacts. Connect a surge suppression element (such as a diode) in parallel to the relay coil in order to suppress voltage surges that may occur when the relay is deenergized.

65282EN/06 APPENDIX

Time since the occurrence of a power failure until the brake operates

The "brake operation lag time" since the occurrence of a power failure is the sum of the "power failure detection delay time," "relay release time," and "brake response time."

Relay release time

Select a relay with a short contact release time.

Example:

Omron G2R (coil voltage of 24 VDC, with a built-in diode): Release time of 20 msec or less

Brake response time

Listed below are the specifications of the built-in brake of each motor model.

	mouen.			
	α <i>i</i> F1, α <i>i</i> F2	αί F4, αί F8	α <i>i</i> F12- α <i>i</i> F40	α <i>i</i> S100
	αiS2, αiS3	αiS8, αiS12	αiS22 - αiS50	α <i>i</i> S200
Motor model		β <i>i</i> S4, β <i>i</i> S 8	β <i>i</i> S 12 - β <i>i</i> S 30	αiS100HV
	αiS2HV	αi F4HV, αi F8HV	αi F12HV, αi F20HV	αiS200HV
	αiS3HV	αiS8HV, αiS12HV	αiS22HV, αiS50HV	
Response time (max)	10msec	30msec	30msec	60msec

FUNCTION APPENDIX B-65282EN/06

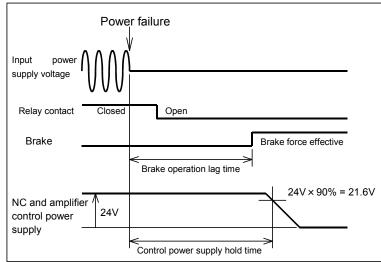
Brake operation lag time

Given below is an example of calculating the time that elapses since the occurrence of a power failure until the brake operates.

Conditions

<1>Power failure detection delay time \rightarrow 10 msec<2>Relay (Omron G2R) release time \rightarrow 20 msec<3>Brake (incorporated in the αi F8) response time \rightarrow 30 msec

Result $10 \text{ msec} + 20 \text{ msec} + 30 \text{ msec} = \underline{60 \text{ msec}}$


1.3.3 Method for Keeping Vertical Axis Motors Energized

The following conditions are required to keep a vertical axis motor energized after the occurrence of a power failure.

- (1) The control power supply for the NC and amplifier remains normal.
- (2) Parameters for enabling brake control are set.

Keeping control power on

Keeping a vertical axis motor energized even after the occurrence of a power failure requires keeping the control power for the NC and amplifier on for longer than the "brake operation lag time."

* See Subsection 5.2.2 for descriptions of the brake operation lag time.

(1) NC control power supply

Check the specification of an external power supply for supplying a control power voltage of 24 V.

The hold time of external power supplies varies depending on their load ratio (ratio of load current to power supply current rating). The lower the load ratio, the longer is the hold time after power failure occurrence. Using a power supply having a somewhat high current rating compared with the load current is effective in keeping the hold time long.

If a switching power supply with a 200 VAC single-phase input is used as a control power supply for the NC, use the same power supply voltage phase as for the control power inputs (pins 1 and 2 of connector CX1A) of the αi PS so that a drop in the 200 VAC control power supply input can be detected promptly.

APPENDIX B-65282EN/06

(2) Amplifier control power supply

The hold time of the amplifier control power supply is determined according to how many SP and SV units are connected to the PS.

The rough hold time of the amplifier control power supply can be determined from the sum (N) of the constants n (Table 1) for each SP and SV connected to the PS according to Table 2.

Example: Assume the following SP and SV units are connected to one PS.

One αi SP 22 unit/one αi SV 360 unit/one αi SV 160 unit/one αi SV 80/80 unit

(According to Table 1)

$$n = 1$$
 $n = 1.5$ $n = 1$ $n = 1.5$
 $N = \underbrace{1 \times 1 \text{ unit}}_{} + \underbrace{1.5 \times 1 \text{ unit}}_{} + \underbrace{1 \times 1 \text{ unit}}_{} + \underbrace{1.5 \times 1 \text{ unit}}_{} = 5$
 $\rightarrow \text{Hold time } \underbrace{40 \text{ msec}}_{} \text{ (according to Table 2)}$

Table 1 Constant n for SP/SV

	Amplifier model	n
SP	αi SP 2.2 to 30, 5.5HV to 45HV (60 mm-wide/90 mm-wide/150 mm-wide	
	type)	
	αi SP_45, 55, 75HV, 100HV (300 mm-wide type)	1.5
C) /	αi SV 20 to 160, 10HV to 80HV (60 mm-wide/90 mm-wide type)	
SV (1 axis)	αi SV 360, 180HV (150 mm-wide type)	1.5
	αi SV_360HV (300 mm-wide type)	2
SV	All models	1.5
(2 axes)	All models	1.5
SV	All models	2
(3 axes)	All models	

Table 2 Relationships between the amplifier control power supply hold time and N (sum of constants n)

Amplifier control power supply hold time	N
20 msec	8
30 msec	6.5
40 msec	5
50 msec	4
60 msec	3
70 msec	2

^{*} The input voltage is 200 VAC.

Confirmation on the real machine

The amplifier control power supply hold time obtained using the expression given above is a mere rough estimate. The exact hold time of the amplifier and NC control power supplies must be confirmed on the real machine.

See Subsection 5.2.5 for explanations about a confirmation method.

Measure for an insufficient amplifier control power supply hold time

- (1) If the hold time of the amplifier control power supply is insufficient (shorter than the brake operation lag time), it can be prolonged by supplying control power to some of the SP and SV units from the outside to reduce the load of the power supply in the PS. See Subsection I.3.6 for explanations about how to supply control power to SP or SV units from the outside.
- (2) If the hold time of the NC and amplifier control power supplies is insufficient and it is difficult to add control power supplies or increase the capacity of existing control power supplies, connecting an UPS (uninterruptible power supply unit) can prolong the hold time.

Parameter setting

Set parameters for brake control.

- (1) Brake control bit (BRKC): To be set to enable brake control.
- (2) Brake control timer: To be set to a value not less than the brake operation lag time (100 msec or so).
- (3) Emergency stop timer incorporated in the α*i* amplifier (ESPTM1, ESPTM0): To be set to a value longer than the brake control timer.

	Parameter No.			
CNC	BRKC	Brake control timer	ESPTM1	ESPTM0
FS15 <i>i</i>	No.1883 #6	No.1976	No.1750 #6	No.1750 #5
FS16 <i>i</i> , 18 <i>i</i> , 21 <i>i</i> , 30 <i>i</i> , 31 <i>i</i> , 32 <i>i</i> , 0 <i>i</i>	No.2005 #6	No.2083	No.2210 #6	No.2210 #5
Example setting	1	100	0	1

Refer to the "FANUC AC SERVO MOTOR α*i* series Parameter Manual" (B-65270EN) for detailed descriptions.

NOTE

If a multiaxis amplifier (such as a 2- or 3-axis amplifier) is used for vertical axes, set the above parameters for all axes on the multiaxis amplifier.

FUNCTION APPENDIX B-65282EN/06

1.3.4 Cautions

- (1) If a power failure occurs during heavy cutting, it is likely that it may be impossible to prevent a vertical axis from falling. This is because a DC link low voltage alarm occurs before the brake operates. Preventing vertical axes from falling in these situations requires connecting a power failure backup module to submodule C.
- (2) Even if a measure is taken to prevent a vertical axis from falling, it falls through a distance corresponding to the backlash of the brake (for a ball screw pitch of 10 mm, up to 20 μ m). If this distance cannot be ignored, the lifting function against gravity at emergency stop can be used to lift the vertical axis through that distance before a complete stop. Refer to the parameter manual (B-65270EN) for detailed descriptions of this function and parameter setting.
- (3) If the connected drive power supply is a 200 VAC dynamic brake module DBM (A06B-6079-H401 or A06B-6069-H300), an UPS (uninterruptible power supply unit) having a 200 VAC output is needed to drive the DBM. Connect the servo amplifier connector CX1A with an UPS having the following specifications:
 - Output voltage: 200 VAC single-phase sine wave
 - Output frequency: 50 or 60 Hz
 - Changeover time: No instantaneous break
 - Output hold time: Brake operation lag time (see Subsection 4.2.2)
 - Rated output (continuous rating): Number of DBM units × 22 [VA]
 - Overload strength (20 msec): Number of DBM units × 220 [VA]

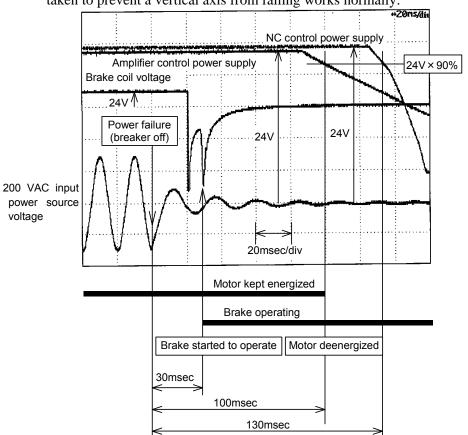
If this UPS is used also as an amplifier control power supply (input to the CX1A of the PS), it must have an output rating (continuous rating) of 700 VA. If a DBM (A06B-6079-H403) driven on 24 VDC is used and the 24 VDC power supply can remain on for the brake operation lag time or longer, no UPS is needed.

1.3.5 Confirming Effect

The following procedure can be used to check whether a measure taken to prevent a vertical axis from falling is effective.

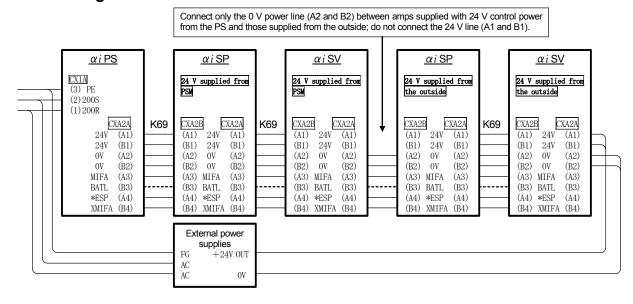
- (1) Keep the vertical axis at a halt, and write down its absolute coordinates.
- (2) Turn off the machine's main circuit breaker to cause a power failure condition.
- (3) Restart the machine, and check the absolute coordinates of the vertical axis to see whether it has fallen.
- * The vertical axis will fall through a distance corresponding to the backlash of the brake (for a ball screw pitch of 10 mm, up to 20 µm).

[Measure for a vertical axis falling when the circuit breaker is turned off]


If a vertical axis falls when the circuit breaker is turned off, observe the waveforms described below to find causes.

- (1) Brake coil voltage \rightarrow Observe the voltage across the brake coil.
- (2) Amplifier control power supply voltage \rightarrow Observe the voltages at pins A1 (24 V) and A2 (0 V) of connector CXA2B of the last amplifier.
- (3) Control power supply voltage supplied to the NC \rightarrow Observe the output voltage of the 24 V power supply for the NC.
- (4) Input power source voltage → Observe the voltage of the input AC power source, using an insulated probe.

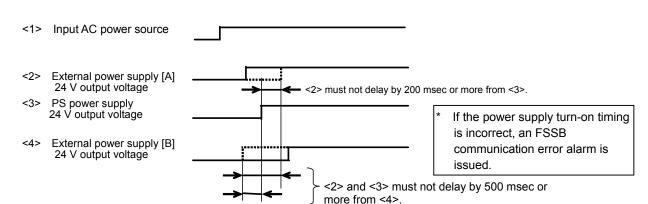
If the control power of the amplifier or NC drops before the brake operates, take an action stated below and see how it works.

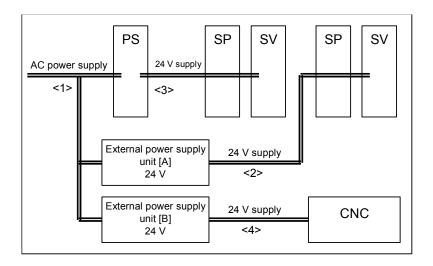

- Exchange the power failure detection relay for operating the brake coil (have another look at the specification of the release time).
- Prolong the hold time of the control power supplies by increasing their capacity (reducing their load ratio).

Shown below are examples of waveforms observed when a measure taken to prevent a vertical axis from falling works normally.

1.3.6 Method for Supplying External Power to the Amplifier

Connection diagram

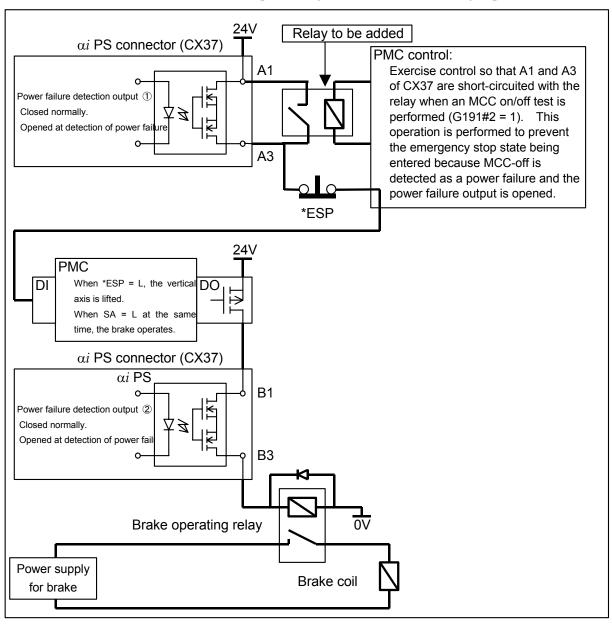



Power supply capacity

- (1) αi SV (3-axes), αi SV 360, 180HV (150 mm-wide SV), αi SP 45, 55, 75HV, 100HV (300 mm-wide SP) \rightarrow 1.5A
- (2) α i SV 360HV (300 mm-wide SV) \rightarrow 2A
- (3) Others $\rightarrow 1A$

Timing to turn off power supplies

Configure connections of the PS, external power supplies A, and B (see the figure below) so that they will be turned on simultaneously and their output voltages will satisfy the timing requirements shown on the following timing chart. Generally, turning on these power supplies simultaneously would satisfy the timing requirements. If a timing requirement is not satisfied, however, attach a delay timer to the power line in order to satisfy it.


⚠ CAUTION

- 1 If an external power supply (24 V) is shared between a servo amplifier and another unit, any fluctuation in the load current of the non-servo amplifier unit affects the 24 V voltage adversely, leading to a possible servo amplifier or CNC alarm.
- 2 Keep voltage fluctuations of the external power supply (24 V) within a tolerable range (24 V ±10%) any time (including momentarily). No 24 V power can be supplied to the PS from the outside. Be sure to supply 200 VAC to the PS (through connector CX1A).

1.4 USE IN COMBINATION WITH THE DUAL CHECK SAFETY FUNCTION

When using the following functions at the same time, add a relay between A1 and A3 of the connector (CX37) of the α iPS.

- When using the dual check safety function
- When using αiPS power failure detection output for the function of preventing vertical axes from falling at power failure

SENSOR (OLD SPECIFICATIONS)

Appendix J,	"SENSOR	(OLD	SPECIFICATIONS),"	consists	of	the
following sec	ctions:					

J.1	SENSOR	FOR	THE	SYNCHRONOUS	BUILT-IN	SERVO
	MOTOR A	AND S	EPAR.	ATE SENSOR		483
12	SENSOR	FOR T	HE SP	INDLE		498

J.1 SENSOR FOR THE SYNCHRONOUS BUILT-IN SERVO MOTOR AND SEPARATE SENSOR

J.1.1 Absolute αi CZ Sensor (Serial Output, A860-2142-T***)

The absolute αiCZ sensor is used as an angular displacement sensor for the synchronous built-in servo motor DiS series or as a separate sensor. For this sensor, the FANUC serial interface is used. This sensor can be directly connected to the αi series servo amplifier or the separate sensor interface unit.

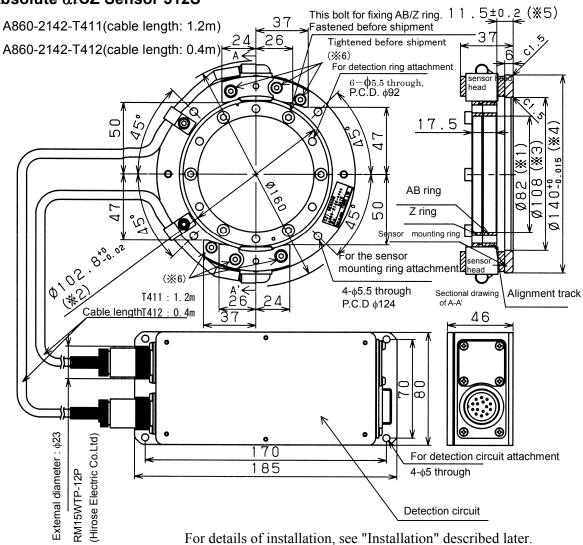
Names and specification numbers

	Specification	Resolution	Repetitive positioning	Absolute	Remarks				
Name					Maximum	Maximum	Sensor ring		
Name	number	[rotation]	precision (Typ.)	(Typ.)	Number of teeth	speed [min ⁻¹]	Inner diameter	Outer diameter	Function
	A860-2142-T411								
Absolute α <i>i</i> CZ sensor 512S	(Cable length: 1.2 m) A860-2142-T412	1/3,600,000	±1"	±7"	512	600	ф82	φ102.8	Absolute
(Cable length	(Cable length: 0.4 m)								
Absolute α <i>i</i> CZ sensor 768S	A860-2142-T511 (Cable length: 1.2 m) A860-2142-T512 (Cable length: 0.4 m)	1/3,600,000	±1"	±5"	768	400	ф125	φ154	Absolute
Absolute α <i>i</i> CZ sensor 1024S	A860-2142-T611 (Cable length: 1.2 m) A860-2142-T612 (Cable length: 0.4 m)	1/3,600,000	±1"	±3.5"	1024	300	ф160	φ205.2	Absolute

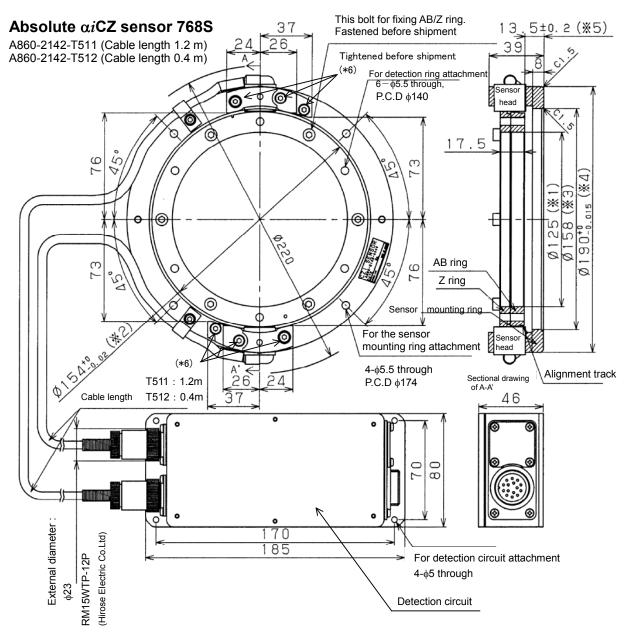
NOTE

When the absolute αiCZ sensor 768S is used as a position sensor for the synchronous built-in servo motor DiS, the sensor can be used only for a application of finite rotations (10 rotations or less in total).

Absolute maximum ratings

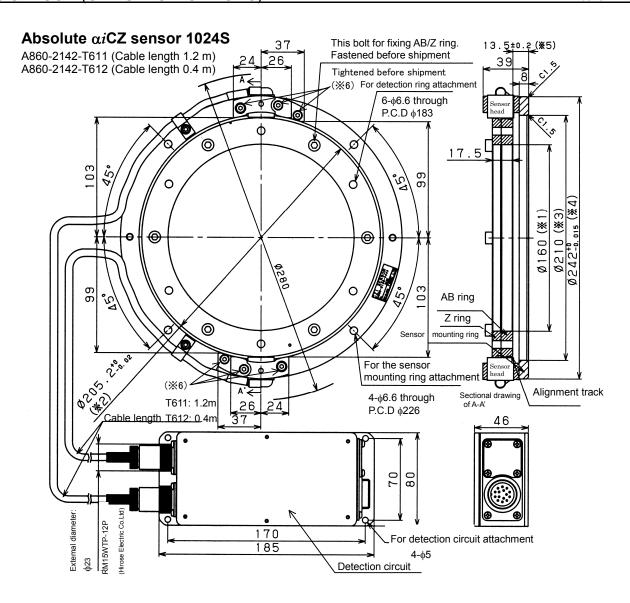

ltem	Specification	
Power supply voltage	-0.5 V to +6.0 V	
Operating temperature range	0°C to +50°C	
Humidity	95%RH or less	

Electrical specifications


Item	Specification
Power supply voltage	5 V ±5%
Current consumption	250 mA or less
Current consumption at battery backup time	400 μA (Typ.)

Dimensions

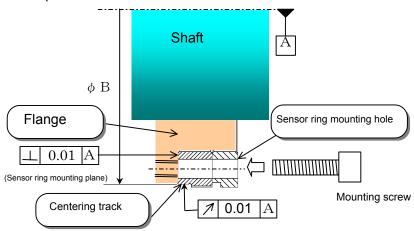
Absolute αi CZ Sensor 512S



- The inner diameter(*1) of the sensor ring is set with a plus tolerance. (*2) indicates the outer diameter of the tooth surface of the sensor ring.
- The inner diameter(*3) of the sensor mounting ring is set with a plus tolerance. (*4) indicates the outer diameter of the sensor mounting ring.
- (*5) indicates the distance from the bottom of the sensor mounting ring to the bottom of the sensor ring.
- The sensor head cannot be adjusted mechanically. So, do not loosen the screws marked (*6).
- Use the sensor at a temperature not higher than 50°C.
- Because the absolute αi CZ sensor is adjusted as a combination of the sensor ring, sensor, and sensor circuit in advance, they must be used as a set.
- The sensor is a precision part. Use special care in handling. Particularly, do not apply external force to the sensor element.
- The sensor is an electronic part. To prevent chips, oil, water, and other harmful materials from being attached to the sensor, take dust-proof and water-proof measures on the machine side.
- The waterproofness of the sensor circuit box is equivalent to IP55. However, if the sensor circuit box is continuously exposed to coolant, for example, the sensor can fail. Provide highest-level water protection to prevent the sensor circuit box from being exposed to coolant or the like.
- Ensure that no vibration greater than 1 G is applied to the sensor circuit box.
- For easy maintenance, mount the sensor at a position where it can be replaced easily.
- Ground the sensor circuit box. The bottom of the sensor circuit box is not painted. So, the sensor circuit box can be grounded only by screwing.

For details of installation, see "Installation" described later.

- The inner diameter(*1) of the sensor ring is set with a plus tolerance. (*2) indicates the outer diameter of the tooth surface of the sensor ring.
- The inner diameter(*3) of the sensor mounting ring is set with a plus tolerance. (*4) indicates the outer diameter of the sensor mounting ring.
- (*5) indicates the distance from the bottom of the sensor mounting ring to the bottom of the sensor ring.
- The sensor head cannot be adjusted mechanically. So, do not loosen the screws marked (*6).
- Use the sensor at a temperature not higher than 50°C.
- Because the absolute αi CZ sensor is adjusted as a combination of the sensor ring, sensor, and sensor circuit in advance, they must be used as a set.
- The sensor is a precision part. Use special care in handling. Particularly, do not apply external force to the sensor element.
- The sensor is an electronic part. To prevent chips, oil, water, and other harmful materials from being attached to the sensor, take dust-proof and water-proof measures on the machine side.
- The waterproofness of the sensor circuit box is equivalent to IP55. However, if the sensor circuit box is continuously exposed to coolant, for example, the sensor can fail. Provide highest-level water protection to prevent the sensor circuit box from being exposed to coolant or the like.
- Ensure that no vibration greater than 1 G is applied to the sensor circuit box.
- For easy maintenance, mount the sensor at a position where it can be replaced easily.
- Ground the sensor circuit box. The bottom of the sensor circuit box is not painted. So, the sensor circuit box can be grounded only by screwing.

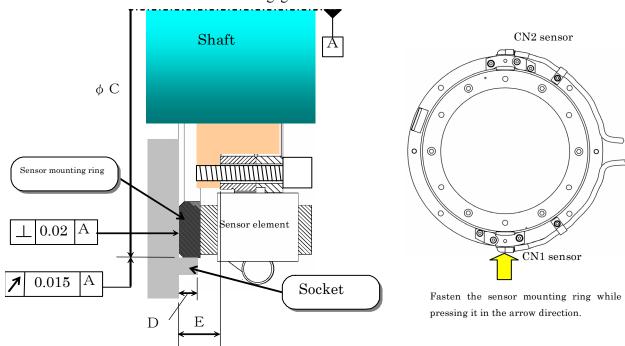


For details of installation, see "Installation" described later.

- The inner diameter(*1) of the sensor ring is set with a plus tolerance. (*2) indicates the outer diameter of the tooth surface of the sensor ring.
- The inner diameter(*3) of the sensor mounting ring is set with a plus tolerance. (*4) indicates the outer diameter of the sensor mounting ring.
- (*5) indicates the distance from the bottom of the sensor mounting ring to the bottom of the sensor ring.
- The sensor head cannot be adjusted mechanically. So, do not loosen the screws marked (*6).
- Use the sensor at a temperature not higher than 50°C.
- Because the absolute αi CZ sensor is adjusted as a combination of the sensor ring, sensor, and sensor circuit in advance, they must be used as a set.
- The sensor is a precision part. Use special care in handling. Particularly, do not apply external force to the sensor element.
- The sensor is an electronic part. To prevent chips, oil, water, and other harmful materials from being attached to the sensor, take dust-proof and water-proof measures on the machine side.
- The waterproofness of the sensor circuit box is equivalent to IP55. However, if the sensor circuit box is continuously exposed to coolant, for example, the sensor can fail. Provide highest-level water protection to prevent the sensor circuit box from being exposed to coolant or the like.
- Ensure that no vibration greater than 1 G is applied to the sensor circuit box.
- For easy maintenance, mount the sensor at a position where it can be replaced easily.
- Ground the sensor circuit box. The bottom of the sensor circuit box is not painted. So, the sensor circuit box can be grounded only by screwing.

Installation Installing the sensor ring

Install the flange on the shaft side and screw it in the axis direction by using the sensor ring mounting hole. In assembly, perform centering using the centering track so that the swing from the center of rotation is $10 \mu m$ or less.

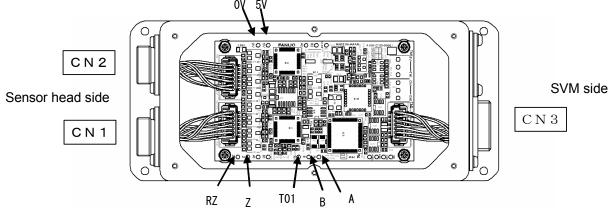


Specification	Outer diameter of centering track (øB)	Positions of sensor ring mounting holes	Mounting screw	Recommended tightening torque (Nm)
A860-2142-T411 A860-2142-T412	φ101	6-φ5.5 through, equally spaced on φ92 circumference	M5	2.4 to 3.4
A860-2142-T511 A860-2142-T512	ф152.2	6-φ5.5 through, equally spaced on φ140 circumference	M5	2.4 to 3.4
A860-2142-T611 A860-2142-T612	ф203.4	6-φ6.6 through, equally spaced on φ183 circumference	M6	4.1 to 5.8

- For centering, the outer diameter of the flange must be designed so that there is a gap of about 0.1 mm between the flange and the inner surface of the sensor ring.
- · Secure the sensor ring on the end face with screws (avoid heat shrink fitting to mount the sensor ring).
- The sensor ring consists of a phase Z ring and phase A/B ring, which are fastened together by using screws in advance. Never detach these screws. Spot facing is not provided. So, at the time of machine design, be careful not to cause interference with the screw heads.
- Centering must be performed with the centering track (the outer surface of the phase Z ring and the teeth pitch circle are not coaxial). When performing centering, use a tool such as a plastic hammer not to damage the gear teeth.
- Magnetic matter attached to gear teeth can lead to a detection error. After centering is completed, remove such foreign matter by air blowing.

Installing the sensor mounting ring

When installing the sensor mounting ring, provide a socket on the machine side, and fit the sensor mounting ring into the socket. (The dimensions of the socket on the machine side must satisfy the accuracy indicated in the table below. Otherwise, detection precision may deteriorate.) When fastening the mounting ring with the screws, press the mounting ring against the socket from the CN1 sensor side as shown in the figure below. After the installation, check that the gap between the sensor ring and sensor is 0.08 mm or more by using a thickness gage.


Specification	Outer diameter of sensor mounting ring	Inner diameter of socket (φC)	Socket height (D)	Distance between bottom of sensor mounting ring and bottom of sensor ring (E)
A860-2142-T411 A860-2142-T412	\$\phi140 _{-0.015}^{+0}\$	¢ 140 ^{+0.015}	5.5 or less	11.5±0.2
A860-2142-T511 A860-2142-T512	φ190 ⁺⁰ _{-0.015}	φ190 ^{+0.015}	7.5 or less	13.5±0.2
A860-2142-T611 A860-2142-T612	φ242 ⁺⁰ _{-0.015}	φ242 ^{+0.015}	7.5 or less	13.5±0.2

NOTE

• Provide a sock on the machine side where possible, and fit the sensor mounting ring into the socket. Avoid making centering adjustments by tapping the outer surface of the sensor mounting ring.

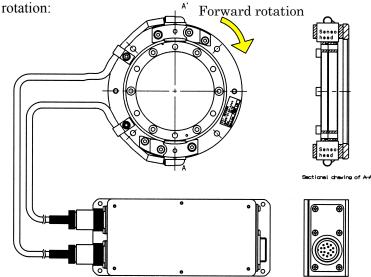
When checking the signal waveforms

When checking the signal waveforms, see the description below. (The signals need not be adjusted.) Supply power to the 0 V and 5 V pins. The Lissajous figure of phase A/B output signal is a complete circle.

Phase A/B and phase Z signal waveforms (measured on the sensor circuit check pins at room temperature and 500 min⁻¹)

Signal name	Check pin	Output amplitude	Offset
Phase A	A (Relative to T01)	3200 ±300 mVp-p	±50 mV
Phase B	B (Relative to T01)	0200 ±000 πτρ ρ	_00
Phase Z	Z (Relative to RZ)	660 to 1,650 mVp-p	100 to 250 mV

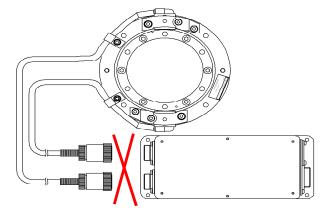
For connector pins, see "Details of cable (K89) for connection with the α iSP series" described later.


NOTE

Adjustments have been made for the sensor, sensor circuit, and sensor ring at the same time. Therefore, use them
as a set. The variable resistor on the printed circuit board of the sensor circuit is also adjusted in advance. So, do
not readjust the variable resistor. Furthermore, the sensors cannot be adjusted mechanically. So, do not loosen the
screws fastening the CN1 and CN2 sensors.

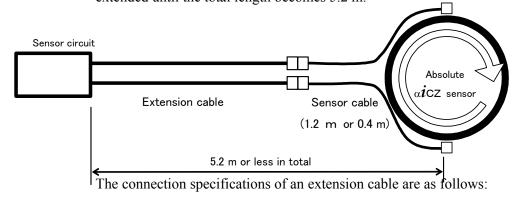
The connectors on the sensor side are labeled "CN1" (in black) and "CN2" (in blue). Make connections according to the figure above.

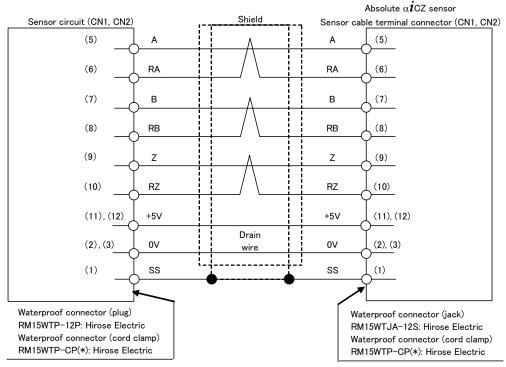
Rotation direction of the absolute αiCZ sensor


When the sensor is viewed from the top as shown in the following figure, clockwise rotation of the sensor ring is referred to as forward

Check the rotation directions of the encoder and motor according to "Synchronous Servo Built-in Motor DiS Series Descriptions (B-65332EN)." If their rotation directions are opposite to each other, connect U-W-V of the motor to U-V-W of the amplifier.

Notes


Do not detach the connectors of the absolute αiCZ sensor heads from the sensor circuit. If the connectors are detached, the reference position may be displaced. In such a case, be sure to perform reference position return operation (magnetic pole position detection and reference position return operation when using the sensor with the synchronous built-in servo motor).



When the absolute αiCZ sensor is used as a sensor with the synchronous built-in servo motor, the magnetic pole position detection function (option) is needed. For the magnetic pole position detection function, refer to the specifications (A-77769).

Extending the sensor cables

The sensor cable from each sensor head to the sensor circuit can be extended until the total length becomes 5.2 m.

* When ordering the cord clamp marked with *, specify the outer diameter of the cable sheath, Z and RZ are not output from the sensor head on the CN2 side but may be connected.

Signal name	
5V, 0V	$0.5 \text{ mm}^2 \times 2$
A, RA, B, RB, Z,	0.2 mm ² or more
RZ	Twisted pair
Drain wire	0.15 mm ² or more

Recommended cable

A66L-0001-0317

Parameter setting

With the absolute αiCZ sensor, the number of feedback pulses per rotation varies, depending on the number of teeth. Make parameter settings according the absolute αiCZ sensor used.

When using the absolute αiCZ sensor as a sensor for the synchronous built-in servo motor, perform magnetic pole position detection by using the magnetic pole position detection function (option). For the magnetic pole position detection function, refer to the specifications (A-77769).

[When using the absolute αi CZ sensor as a position sensor for the synchronous built-in servo motor DiS]

(Supported servo software)

The supported servo software depends on the specifications of the NC and sensor used (see the table below). For AMR offset setting, the magnetic pole position detection function needs to be used. The absolute α iCZ sensor 768S can be used only for an application of finite rotations.

NC Sensor specification	Series-0 <i>i</i>	Series-15 <i>i</i> ,16 <i>i</i> ,18 <i>i</i> ,21 <i>i</i>	Series-30 <i>i</i> ,31 <i>i</i> ,32 <i>i</i>
Absolute αi CZ sensor 512S		Series 90B1/Edition A (01) or later	Series 90D0/Edition A (01) or later Series 90E0/Edition A (01) or later
Absolute		Applicable only to finite rotations (less than 10 rotations	Applicable only to finite rotations (less than 10 rotations in total)
αiCZ sensor 768S		in total) Series 90B1/Edition C (03) or later	Series 90D0/Edition J (10) or later Series 90E0/Edition J (10) or later
Absolute αiCZ sensor 1024S		Series 90B1/Edition A (01) or later	Series 90D0/Edition A (01) or later Series 90E0/Edition A (01) or later

(Absolute αi CZ sensor 1024S)

Make parameter settings as a 1,000,000-pulse coder as with the αi pulse coder.

F-FG Number of velocity pulses Number of position pulses AMR Reference counter	(Number of position pulses needed per motor rotation)/1,000,000 8192 12500 Set (number of poles)/2 in binary. Number of position pulses needed per motor
Reference counter	rotation or that number divided by an integer

Example of setting: 88-pole DD motor, rotation axis, gear ratio of 1:1, 1/1000° detection

F-FG = 360000/1,000,000 = 36/100 Number of velocity pulses = 8192 Number of position pulses = 12500

AMR = 00101100 (44)

Reference counter = 360000 (or this number divided by an integer)

(Absolute \alpha iCZ sensor 768S)

Make parameter settings as a 750,000-pulse coder as described below. Note that parameter settings different from those for 512S and 1024S need to be made.

The absolute αiCZ sensor 768S can be used only for an application of finite rotations (less than 10 rotations in total).

F-FG (Number of position pulses needed per motor

rotation)/750,000

Number of velocity pulses 6144 Number of position pulses 9375

Bit 0 of No. 2608 (FS15i)/Bit 0 of No. 2220 (FS16i, 30i) = 1

AMR 00000000

AMR conversion coefficient 1

No. 1705 (FS15i)/No. 2112 (FS16i, 30i) = 768

AMR conversion coefficient 2

No. 1768 (FS15i)/No. 2138 (FS16i, 30i) =

(Number of poles)/2

Reference counter Number of pulses per 120° or that number divided

by an integer

Example of setting: 88-pole DD motor, rotation axis, gear ratio of 1:1, $1/1000^{\circ}$ detection

 $F \cdot FG = 360000/750,000 = 36/75$

Number of velocity pulses = 6144

Number of position pulses = 9375

Bit 0 of No. 2608 or bit 0 of No. 2220 = 1

AMR = 00000000

AMR conversion coefficient 1 (No. 1705 or No. 2112) = 768

AMR conversion coefficient 2 (No. 1768 or No. 2138) = 44

(=88/2)

Reference counter = 120000 (or this number divided by an integer)

(Absolute αi CZ sensor 512S)

Make parameter settings as a 500,000-pulse coder as described below.

F-FG (Number of position pulses needed per motor rotation)/500,000

Number of velocity pulses 4096 Number of position pulses 6250

AMR Set the number of poles in binary.

Reference counter Number of position pulses needed per motor rotation or that

number divided by an integer

Example of setting: 88-pole DD motor, rotation axis, gear ratio of 1:1, 1/1000° detection

 $F \cdot FG = 360000/500,000 = 36/50$

Number of velocity pulses = 4096

Number of position pulses = 6250

AMR = 01011000 (88)

Reference counter = 360000 (or this number divided by an integer)

[When using the absolute αiCZ sensor as a separate sensor]

(Supported servo software)

No version restriction is imposed. Any version of servo software may be used.

(Absolute \alpha iCZ sensor 1024S)

Make parameter settings as with a FANUC rotary encoder of serial output type.

F-FG (Number of position pulses needed per sensor rotation)/1,000,000 Number of position pulses $12500 \times (\text{gear reduction ratio from motor to table})$

Reference counter Number of position pulses needed per sensor rotation or that

number divided by an integer

Example of setting: Rotation axis, gear ratio of 1:1, 1/1000° detection

 $F \cdot FG = 360000/1000000 = 36/100$ Number of position pulses = 12500

Reference counter = 360000 (or this number divided by an integer)

(Absolute aiCZ sensor 768S)

Make parameter settings as a rotary encoder of 750,000 pulses per rotation as described below.

* Note that parameter settings different from those for 512S and 1024S are made.

F-FG (Number of position pulses needed per sensor

rotation)/750,000

Number of position pulses $9375 \times (gear reduction ratio from motor to$

table)

Reference counter Number of pulses per 120° or that number divided

by an integer

Example of setting: Rotation axis, gear ratio of 1:1, 1/1000° detection

 $F \cdot FG = 360000/750000 = 36 / 75$

Number of position pulses = 9375

Reference counter = 120000 (or this number divided by an integer)

(Absolute αi CZ sensor 512S)

Make parameter settings as a rotary encoder of 500,000 pulses per rotation as described below.

F-FG (Number of position pulses needed per sensor

rotation)/500,000

Number of position pulses $6250 \times (\text{gear reduction ratio from motor to})$

table)

Reference counter Number of position pulses needed per sensor

rotation or that number divided by an integer

Example of setting: Rotation axis, gear ratio of 1:1, $1/1000^{\circ}$ detection $F \cdot FG = 360000/500000 = 36/50$

Number of position pulses = 6250

Reference counter = 360000 (or this number divided by an integer)

J.2 SENSOR FOR THE SPINDLE

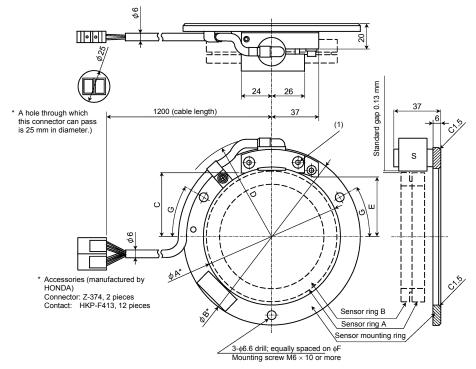
J.2.1 αiBZ Sensor (Conventional Dimensions, A860-2120-T***)

Two types of aiBZ sensors are available: aiBZ sensors of the conventional dimensions (A860-2120-T***) and compact-size αiBZ sensors (A860-2150-T*** and A860-2155-T***). The αiBZ sensors of the conventional dimensions and compact-size αiBZ sensors are not compatible with each other from the viewpoint of installation. If the number of sensor ring teeth of an αiBZ sensor of the conventional dimensions is the same as that of a compact-size αiBZ sensor, the sensor rings of the two sensors have the same inner and outer diameters. The aiBZ sensors of the conventional dimensions and compact-size αiBZ sensors have the same output signal specifications. So, when a sensor of one type is replaced with a sensor of the other type, no parameter modification is needed.

Names and specification numbers

		Remarks				
Name	Specification		Maximum	Sensor ring		
Name	number	Number of teeth	Maximum speed	Inner diameter	Outer diameter	
αiBZ sensor 128	A860-2120-T201	128 20,000min ⁻¹		±40	450	
αiBZ sensor 128H	A860-2120-T211	120	70,000min ⁻¹	φ40	φ52	
αi BZ sensor 256	A860-2120-T401	250	15,000min ⁻¹	100	1400.0	
αiBZ sensor 256H	A860-2120-T411	256	30,000min ⁻¹	φ82	φ103.2	
αiBZ sensor 384	A860-2120-T511	384	15,000min ⁻¹	φ125	φ154.4	
αiBZ sensor 512	A860-2120-T611	512	10,000min ⁻¹	φ160	φ205.6	

Absolute maximum ratings

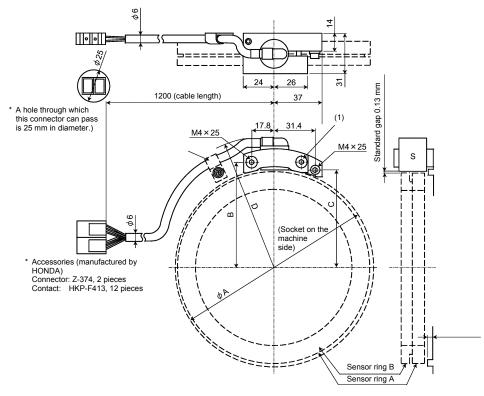

ltem	Specification
Power supply voltage	-0.5 V to +7.0 V
Operating temperature range	0°C to +80°C
Humidity	95%RH or less

Electrical specifications

Item			Specification	
Power supply voltage			5 V ±5%	
Current consumption			0.05 A	
	Output VA, VB	αiBZ sensor 128/128H		128λ/rotation
O. 16m. 16		αiBZ sensor 256/256H	256λ/rotation	
Output	VA, VD	αiBZ sensor 384	384λ/rotation	
signal		αiBZ sensor 512	512λ/rotation	
	VZ	Common to all models	1λ/rotation	

Dimensions

[αi BZ sensor (conventional dimensions, with mounting ring)]

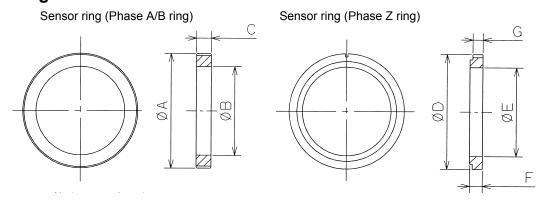


Sensor specification number	Sensor ring	Number of teeth	фА*	φВ*	С	D	Е	φF	G
A860-2120-T201	Ring 1	128	56H6 +0.019	100h6+0.0	25	R57	20	78	10°
A860-2120-T211	Ring 2	120	-0.0	-0.022	23	K31	20	70	10
A860-2120-T401	Ring 3	256	108 +0.040	140h6 <u>+0.0</u>	51	R80	46	124	30°
A860-2120-T411	Ring 4	230	+0.020	-0.025	51	Rou	40	124	30

For the dimensions of the sensor rings, see "Sensor rings" described later.

- Use the sensor at a temperature not higher than 80°C.
- The sensor is a precision part. Use special care in handling. Particularly, do not apply external force to the S section.
- The sensor is an electronic part. To prevent chips, oil, water, and other harmful materials from being attached to the sensor, take dust-proof and water-proof measures on the machine side.
- The dimensions marked with an asterisk (*) are the dimensions of the sensor mounting ring. The socket on the machine side must be designed according to these dimensions. If the socket on the machine side is not made properly, the sensor may output an incorrect signal.
- The gap between the sensor and sensor ring is preadjusted. Because of a dimensional error in the mounting socket and so on, the output signal may not satisfy the specified level. Therefore, when mounting the sensor, check the output signal. If the output signal does not satisfy the specified level, loosen the screws(*1) and adjust the gap. Tighten the screws(*1) with a torque of 1.2 Nm (12 kgfcm) ±10%. After tightening the screws, insert a 0.1-mm thickness gage to check that there is a gap of at least 0.1 mm between the sensor and sensor ring. For the output signal level in gap adjustment, refer to Part II, "INSTALLATION," of "FANUC BUILT-IN AC SPINDLE MOTOR αi series DESCRIPTIONS (B-65292EN)."
- Make a shield wire connection.
- For easy maintenance, mount the sensor at a position where it can be replaced easily.
- Sensor rings with the same specification number can be replaced with each other.
- Sensor rings with different specification numbers cannot be used in combination.
- Mating connectors (accessories) are provided.

[αi BZ sensor (conventional dimensions, without mounting ring)]



Sensor specification number	Sensor ring	Number of teeth	φА	В	С	D
A860-2120-T511	Ring 5	384	158 ^{+0.0} _{-0.025}	84.3	78.3	R110
A860-2120-T611	Ring 6	512	210 +0.0 -0.030	110.8	104.8	R140

For the dimensions of the sensor rings, see "Sensor rings" described later.

- Use the sensor at a temperature not higher than 80°C.
- The sensor is a precision part. Use special care in handling. Particularly, do not apply external force to the S section.
- The sensor is an electronic part. To prevent chips, oil, water, and other harmful materials from being attached to the sensor, take dust-proof and water-proof measures on the machine side.
- Mount the sensor while pressing it against the socket (dimension ϕA) on the machine side (the height of the socket on the machine is 4.5 mm or less).
- The gap between the sensor and sensor ring is preadjusted. Because of a dimensional error in the mounting socket and so on, the output signal may not satisfy the specified level. Therefore, when mounting the sensor, check the output signal. If the output signal does not satisfy the specified level, loosen the screws(*1) and adjust the gap. Tighten the screws(*1) with a torque of 1.2 Nm (12 kgfcm) ±10%. After tightening the screws, insert a 0.1-mm thickness gage to check that there is a gap of at least 0.1 mm between the sensor and sensor ring. For the output signal level in gap adjustment, refer to Part II, "INSTALLATION," of "FANUC BUILT-IN AC SPINDLE MOTOR αi series DESCRIPTIONS (B-65292EN)."
- Use M4 \times 20 mm and M4 \times 25 mm screws for mounting.
- Fasten the cable at a proper position so that no direct force is applied to the sensor when the cable is pulled.
- Make a shield wire connection.
- For easy maintenance, mount the sensor at a position where it can be replaced easily.
- Sensor rings with the same specification number can be replaced with each other.
- Sensor rings with different specification numbers cannot be used in combination.
- Mating connectors (accessories) are provided.

Sensor rings

Dimensions of sensor rings

	Phase A/B ring			Phase Z ring			
	φА	φВ	C	φD	φE	F	G
Ring 1, 2	52 ^{+0.0} _{-0.020}	40 +0.016 -0.0	10 ±0.1	52 ^{+0.0} _{-0.020}	40 +0.016 -0.0	8.6±0.1	6.7
Ring 3, 4	103.2 +0.0 -0.020	82 ^{+0.0} _{-0.018}	10±0.1	103.2 +0.0 -0.020		8.6±0.1	6.7
Ring 5	154.4 ^{+0.0} _{-0.020}	125 +0.025 -0.0	10 ±0.1	154.4 +0.0 -0.020	125 +0.025	8.6±0.1	6.7
Ring 6	205.6 +0.0 -0.020	160 ^{+0.020} _{-0.005}	10 ±0.1	205.6 +0.0	160 ^{+0.020} _{-0.005}	8.6±0.1	6.7

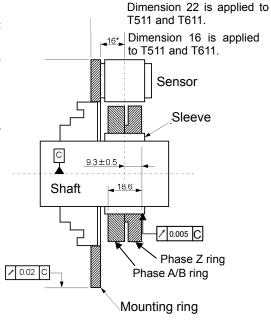
For the dimensions of sensors, see " $[\alpha iBZ \text{ sensor}]$ " above.

NOTE

- Press fit the rings around a sleeve then assemble the sleeve with the spindle.
- A used ring can be reused only once.
- The circumference of a ring has special teeth. Therefore, be careful not to deform or chip the circumference by external force.
- Check the sensor output signal. For the adjustment of the output signal, refer to Part II, "INSTALLATION," of "FANUC BUILT-IN AC SPINDLE MOTOR αi series DESCRIPTIONS (B-65292EN)."

Maximum speed of sensor rings

Ring	Ring 1	Ring 2	Ring 3	Ring 4	Ring 5	Ring 6
Sensor specification number	T201	T211	T401	T411	T511	T611
Number of teeth	128	128	256	256	384	512
Max. speed (min ⁻¹)	20,000	70,000	15,000	30,000	15,000	10,000


NOTE

ullet The interference for shrink fitting varies, depending on the maximum speed used. When designing sensor rings, see "Installing the lpha iBZ sensor"

Installing the αiBZ sensor (conventional dimensions)

Install ring A and ring B as shown below.

- Press fit the rings around the sleeve then press fit the sleeve around the shaft. Contact the phase A/B ring with phase Z ring.
- Mount the sensor so that the distance between the mid point of the thickness of the stack of the phase A/B ring and phase Z ring (9.3 mm) and the center of the sensor is within ± 0.5 mm.
- The runout of the sleeve to the center of the shaft must be within 0.005 mm.
- The runout of the mounting ring to the center of the shaft must be within 0.02 mm.

Interference

The table below indicates the interference of the sensor rings at each maximum speed.

Unit: µm

Maximum speed	T201	T211	T401	T411	T511	T611
(min ⁻¹)	Ring 1	Ring 2	Ring 3	Ring 4	Ring 5	Ring 6
3000	φ6 to φ32	φ6 to φ32	φ7 to φ35	φ7 to φ35	φ8 to φ43	φ11 to φ41
3500	1	\downarrow	\downarrow	1	φ9 to φ44	φ13 to φ43
4500	\downarrow	\downarrow	\downarrow	\downarrow	φ11 to φ46	φ19 to φ49
6000	\downarrow	\downarrow	φ9 to φ37	φ9 to φ37	φ15 to φ50	φ29 to φ59
8000	\downarrow	\downarrow	φ11 to φ39	φ11 to φ39	φ24 to φ59	φ47 to φ77
10000	\downarrow	\downarrow	φ14 to φ42	φ14 to φ42	φ35 to φ70	φ71 to φ101
12000	φ7 to φ33	φ7 to φ33	φ18 to φ46	φ18 to φ46	φ47 to φ82	
15000	φ8 to φ34	φ8 to φ34	φ26 to φ54	φ26 to φ54	φ71 to φ106	
20000	φ10 to φ36	φ10 to φ36		φ41 to φ69		
25000		φ12 to φ38		φ62 to φ90		
30000		φ15 to φ41		φ87 to φ115		
40000		φ23 to φ49				
50000		φ33 to φ59				
60000		φ43 to φ69				
70000		φ57 to φ83				

- From the table above, select the suitable interference according to the maximum speed and the type of ring used. If an interference not listed above is applied, the ring will be damaged or loosen while the spindle rotates.
- These rings cannot be used at a speed higher than the speeds specified in the above table.

J.2.2 αi CZ Sensor (Analog Output, A860-2140-T***)

The αiCZ sensor (analog output, A860-2140-T***) is a sensor of analog output type used for the spindle or used as a separate sensor. Note that the interface and system configuration of this sensor differ from those of the absolute αiCZ sensor (A860-2142-T***) described later.

Names and specification numbers

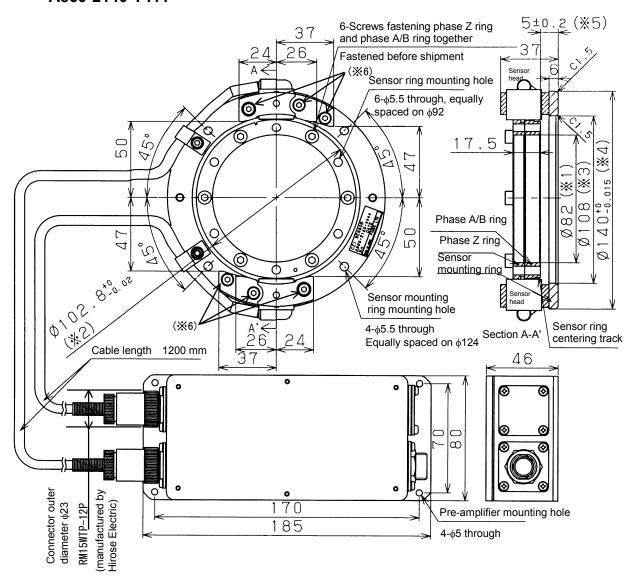
		Remarks				
Name	Specification		Maximum	Sensor ring		
Name	number	Number of teeth	speed	Inner	Outer	
		or teetri	speed	diameter	diameter	
αiCZ sensor 512	A860-2140-T411	512	15,000min ⁻¹	φ82	φ102.8	
αiCZ sensor 768	A860-2140-T511	768	10,000min ⁻¹	φ125	φ154	
αiCZ sensor 1024	A860-2140-T611	1024	8,000min ⁻¹	φ160	φ205.2	

Absolute maximum ratings

<u>.g.</u>	
Item	Specification
Power supply voltage	-0.5 V to +7.0 V
Operating temperature range	0°C to +50°C
Humidity	95%RH or less

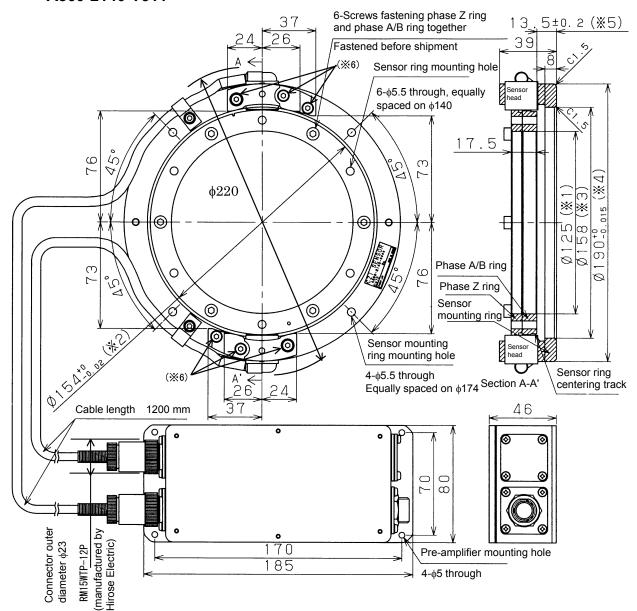
Electrical specifications

	Item	Specification	
Power supply voltage			5 V ±5%
Current consumption			150 mA or less
	VA, VB	αiCZ sensor 512	512λ/rotation
		αiCZ sensor 768	768λ/rotation
Output signal		αiCZ sensor 1024	1024λ/rotation
	VZ	Common to all	1λ/rotation
		models	


Signal name	Check pin	Output amplitude	Offset
Phase A	A (Relative to T01)	1000±100mVp-p	±50mV
Phase B	B (Relative to T01)	1000 ± 100111vp-p	±30111V
Phase Z	Z (Relative to RZ)	660 to 1650 mVp-p	±50mV

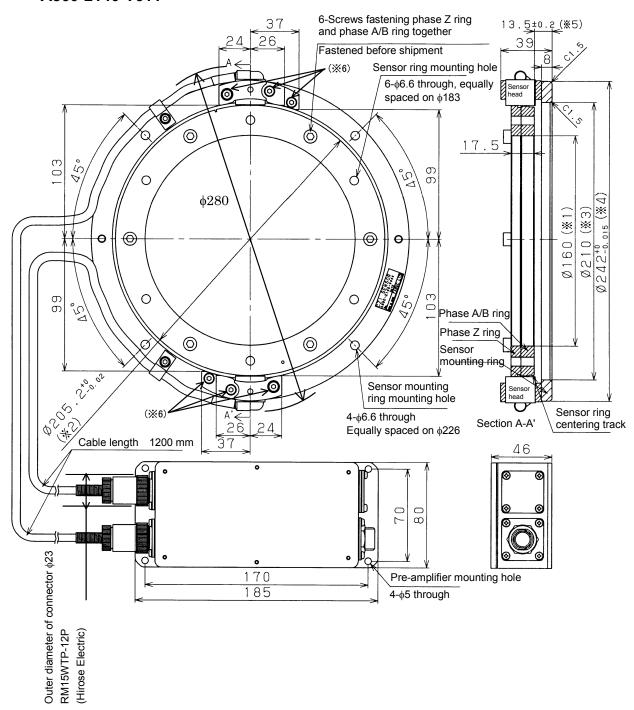
(Preamplifier output at room temperature and 500 min⁻¹)

For connector pins, see "Details of cable (K89) for connection with the α iSP series" described later.


Dimensions α*i*CZ sensor 512 A860-2140-T411

For details of installation, see "Installation."

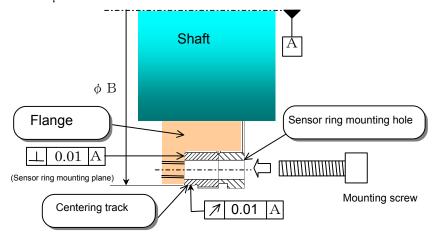
- The inner diameter(*1) of the sensor ring is set with a plus tolerance. (*2) indicates the outer diameter of the tooth surface of the sensor ring.
- The inner diameter(*3) of the sensor mounting ring is set with a plus tolerance. (*4) indicates the outer diameter of the sensor mounting ring.
- (*5) indicates the distance from the bottom of the sensor mounting ring to the bottom of the sensor ring.
- The sensor head cannot be adjusted mechanically. So, do not loosen the screws marked (*6).
- Use the sensor at a temperature not higher than 50°C.
- Because the αiCZ sensor is adjusted as a combination of the sensor ring, sensor, and preamplifier in advance, they must be used as a set.
- The sensor is a precision part. Use special care in handling. Particularly, do not apply external force to the sensor element
- The sensor is an electronic part. To prevent chips, oil, water, and other harmful materials from being attached to the sensor, take dust-proof and water-proof measures on the machine side.
- The waterproofness of the preamplifier box is equivalent to IP55. However, if the preamplifier box is continuously exposed to coolant, for example, the sensor can fail. Provide highest-level water protection to prevent the preamplifier box from being exposed to coolant or the like.
- Ensure that no vibration greater than 1 G is applied to the preamplifier box.
- Make a shield wire connection. Connect the preamplifier box to ground or to the machine cabinet.
- For easy maintenance, mount the sensor at a position where it can be replaced easily.


αiCZ sensor 768 A860-2140-T511

For details of installation, see "Installation."

- The inner diameter(*1) of the sensor ring is set with a plus tolerance. (*2) indicates the outer diameter of the tooth surface of the sensor ring.
- The inner diameter(*3) of the sensor mounting ring is set with a plus tolerance. (*4) indicates the outer diameter of the sensor mounting ring.
- (*5) indicates the distance from the bottom of the sensor mounting ring to the bottom of the sensor ring.
- The sensor head cannot be adjusted mechanically. So, do not loosen the screws marked (*6).
- Use the sensor at a temperature not higher than 50°C.
- Because the αiCZ sensor is adjusted as a combination of the sensor ring, sensor, and preamplifier in advance, they must be used as a set.
- The sensor is a precision part. Use special care in handling. Particularly, do not apply external force to the sensor element
- The sensor is an electronic part. To prevent chips, oil, water, and other harmful materials from being attached to the sensor, take dust-proof and water-proof measures on the machine side.
- The waterproofness of the preamplifier box is equivalent to IP55. However, if the preamplifier box is continuously exposed to coolant, for example, the sensor can fail. Provide highest-level water protection to prevent the preamplifier box from being exposed to coolant or the like.
- Ensure that no vibration greater than 1 G is applied to the preamplifier box.
- Make a shield wire connection. Connect the preamplifier box to ground or to the machine cabinet.
- For easy maintenance, mount the sensor at a position where it can be replaced easily.

αiCZ sensor 1024 A860-2140-T611

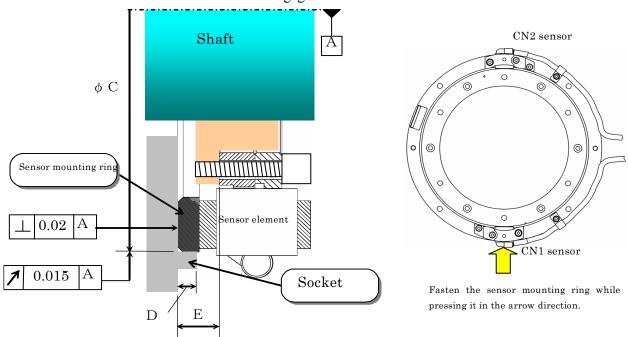


For details of installation, see "Installation."

- The inner diameter(*1) of the sensor ring is set with a plus tolerance. (*2) indicates the outer diameter of the tooth surface of the sensor ring.
- The inner diameter(*3) of the sensor mounting ring is set with a plus tolerance. (*4) indicates the outer diameter of the sensor mounting ring.
- (*5) indicates the distance from the bottom of the sensor mounting ring to the bottom of the sensor ring.
- The sensor head cannot be adjusted mechanically. So, do not loosen the screws marked (*6).
- Use the sensor at a temperature not higher than 50°C.
- Because the αiCZ sensor is adjusted as a combination of the sensor ring, sensor, and preamplifier in advance, they must be used as a set.
- The sensor is a precision part. Use special care in handling. Particularly, do not apply external force to the sensor element
- The sensor is an electronic part. To prevent chips, oil, water, and other harmful materials from being attached to the sensor, take dust-proof and water-proof measures on the machine side.
- The waterproofness of the preamplifier box is equivalent to IP55. However, if the preamplifier box is continuously exposed to coolant, for example, the sensor can fail. Provide highest-level water protection to prevent the preamplifier box from being exposed to coolant or the like.
- Ensure that no vibration greater than 1 G is applied to the preamplifier box.
- Make a shield wire connection. Connect the preamplifier box to ground or to the machine cabinet.
- For easy maintenance, mount the sensor at a position where it can be replaced easily.

Installation Installing the sensor ring

Install the flange on the shaft side and screw it in the axis direction by using the sensor ring mounting hole. In assembly, perform centering using the centering track so that the swing from the center of rotation is $10 \mu m$ or less.

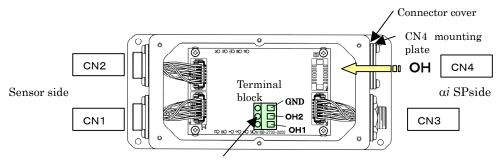


Specification	Outer diameter of centering track (φΒ)	Positions of sensor ring mounting holes	Mounting screw	Recommended tightening torque (Nm)
A860-2140-T411	φ101	6-φ5.5 through, equally spaced on φ92 circumference	M5	2.4 to 3.4
A860-2140-T511	φ152.2	6-φ5.5 through, equally spaced on φ140 circumference	M5	2.4 to 3.4
A860-2140-T611	ф203.4	6-φ6.6 through, equally spaced on φ183 circumference	M6	4.1 to 5.8

- For centering, the outer diameter of the flange must be designed so that there is a gap of about 0.1 mm between the flange and the inner surface of the sensor ring.
- Secure the sensor ring on the end face with screws (avoid heat shrink fitting to mount the sensor ring).
- The sensor ring consists of a phase Z ring and phase A/B ring, which are fastened together by using screws in advance. Never detach these screws. Spot facing is not provided. So, at the time of machine design, be careful not to cause interference with the screw heads.
- Centering must be performed with the centering track (the outer surface of the phase Z ring and the teeth pitch circle are not coaxial). When performing centering, use a tool such as a plastic hammer not to damage the gear teeth.
- Magnetic matter attached to gear teeth can lead to a detection error. After centering is completed, remove such foreign matter by air blowing.

Installing the sensor mounting ring

When installing the sensor mounting ring, provide a socket on the machine side, and fit the sensor mounting ring into the socket. (The dimensions of the socket on the machine side must satisfy the accuracy indicated in the table below. Otherwise, detection precision may deteriorate.) When fastening the mounting ring with the screws, press the mounting ring against the socket from the CN1 sensor side as shown in the figure below. After the installation, check that the gap between the sensor ring and sensor is 0.08 mm or more by using a thickness gage.


Specification	Outer diameter of sensor mounting ring	Inner diameter of socket (φC)	Socket height (D)	Distance between bottom of sensor mounting ring and bottom of sensor ring (E)
A860-2140-T411	\$\phi 140 ^{+0}_{-0.015}\$	φ140 ^{+0.015}	5.5 or less	11.5±0.2
A860-2140-T511	φ 190 ⁺⁰ _{-0.015}	φ190 ^{+0.015}	7.5 or less	13.5±0.2
A860-2140-T611	φ242 ⁺⁰ _{-0.015}	φ242 ^{+0.015}	7.5 or less	13.5±0.2

NOTE

• Provide a sock on the machine side where possible, and fit the sensor mounting ring into the socket. Avoid making centering adjustments by tapping the outer surface of the sensor mounting ring.

Installing the OH line

Open the lid of the preamplifier box, and remove the connector cover on the CN4 side. Draw the OH line from CN4 and connect the line to the terminal block on the printed circuit board.

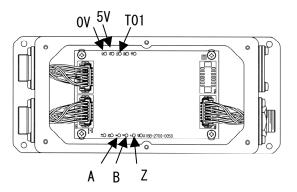


Tighten with flat-blade screwdriver (tightening torque: 0.3 Nm).

A cable clamp for the OH line is to be prepared by the user. Use the attached CN4 connector mounting plate to secure the cable clamp.

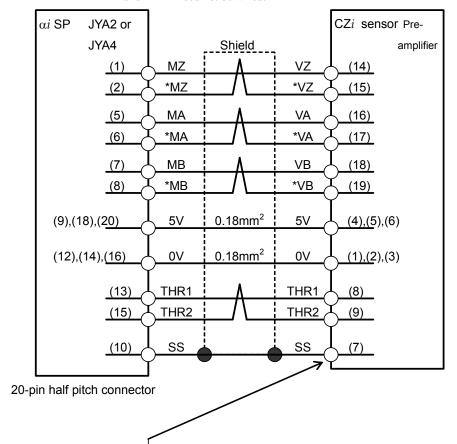
Recommended cable clamp: SKINTOP ST-7 from Lapp Kabel Outer diameter of the OH cable: $\phi 5.2\pm0.3$

Hole diameter on the CN4 connector mounting plate: φ13


CN4 connector mounting plate

- Adjustments have been made for the sensor, preamplifier, and sensor ring at the same time. Therefore, use them as
 a set. The variable resistor on the printed circuit board in the preamplifier is also adjusted in advance. So, do not
 readjust the variable resistor. Furthermore, the sensors cannot be adjusted mechanically. So, do not loosen the
 screws fastening the CN1 and CN2 sensors.
- The connectors on the sensor side are labeled "CN1" (in black) and "CN2" (in blue). Make connections according to the figure above.

Checking the output signals


When checking the output signals, see "Electrical specifications." (The output signals need not be adjusted.)

- Supply power to the 0 V and 5 V pins when checking the waveforms without making a connection to the αi SP.
- The Lissajous figure of the phase A/B output signal is a complete circle.

Details of cable (K89) for connection with the αi SP series

When the CZi sensor is used as a separate sensor (connected to connector JYA4), THR1 and THR2 need not be wired.

Hirose Electric

Crimp type

Crimp pin: HR22-SC-122 (15 pins required per connector)

Housing: HR22-12WTPA-20SC

Crimping tool: HR22-TA-2428HC (Hirose Electric)

Solder type

HR22-12WTPA-20S

Cable specification: 0.18-mm² twisted pair 4 pairs + 0.18-mm² 6

common shielded cable

Recommended wire: A66L-0001-0367

For the connector conforming to the recommended wire on the JYA2

side, see Subsection 9.4.1.

For cable details, see Appendix B, "CABLES."

MAGNETIC SENSOR SIGNAL CONVERSION ADAPTER

By using a magnetic sensor signal conversion adapter for compatibility with the α series, orientation based on the magnetic sensor method can be used with the αi SP series.

In the case of new design, however, employment of a standard spindle sensor of the αi series (such as the αi BZ sensor) is recommended.

K.1 ORDERING INFORMATION

Magnetic sensor signal conversion adapter

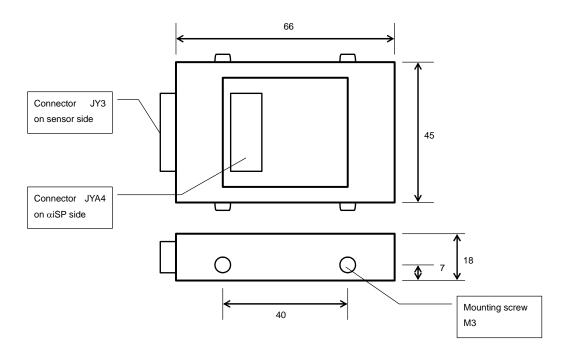
Specification number	
A06B-6111-H402	With no cable

- This adapter needs to be used in combination with the α*i* SP series TYPE B.
- For details of the magnetic sensor, refer to "FANUC SERVO AMPLIFIER a series DESCRIPTIONS (B-65162EN)."

K.2 SPECIFICATIONS

Example of configuration

Spindle motor with a built-in αi M (or αi MZ) sensor \bigcirc Spindle JYA2 Magnetic source (direct connection) αi SP Magnetic senso<u>r</u> Magnetic sensor TYPE B Amp head gnal conversi adapter JYA4 JYA4 JY3Magnetic sensor

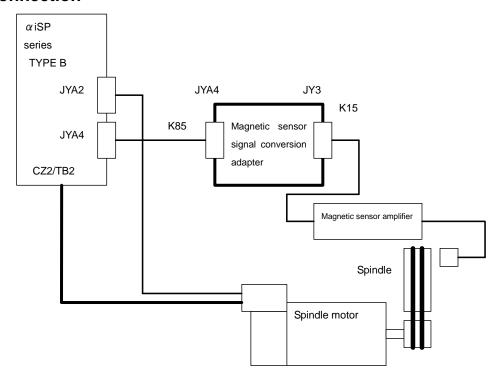

Applicable αi SP series

Specification number	Model	
A06B-6142-Hxxx#H580	TYPE B, 200 V input	
A06B-6152-Hxxx#H580	TYPE B, 400 V input	

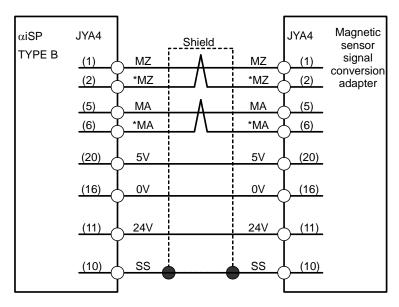
Notes

- A cable for connection between the αi SP and magnetic sensor signal conversion adapter needs to be prepared by the user.
- Operating temperature range: 0°C to 55°C
- The design of this adapter assumes that this adapter is housed in a cabinet such as a power magnetics cabinet, and no waterproof measures are taken.

K.3 DIMENSIONS



NOTE


When installing this adapter in a cabinet, use the M3 mounting screws on the side with an L-shaped mounting hardware.

K.4 CONNECTION

Overall connection

Details of K85 connection

Cable specification

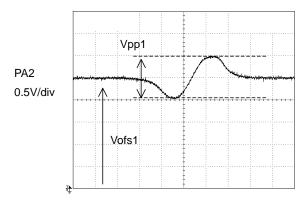
0.18-mm² twisted pair 2 pairs + 0.5-mm² 3 common shielded cable

Recommended wire: A66L-0001-0368

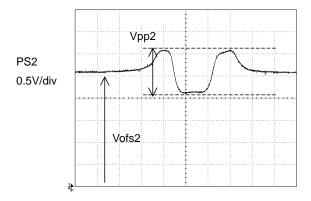
Maximum cable length: 3 m

Connector to be used

Connector: FI40A-20S, Housing: FI-20-CV5, Manufacturer:

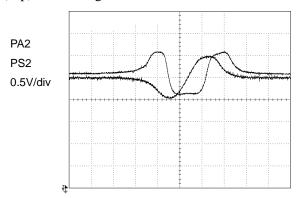

Hirose Electric

Details of K15 connection


Refer to "FANUC SERVO AMPLIFIER a series DESCRIPTIONS (B-65162EN)."

K.5 METHOD OF ADJUSTMENT

While rotating the spindle at a speed of about 100 min⁻¹, check that the following waveforms can be obtained from the check pins PA2 and PS2 on the spindle check board (A06B-6078-H001). The waveforms below are obtained when the spindle is rotated in the reverse direction (SRV direction).



Specification: Vpp1 = 0.5 V to 1.2 V, Vofs1 = 2.5 V \pm 100 mV

Specification: Vpp2 = 0.5 V to 1.2 V, Vofs2 = 2.6 V \pm 100 mV

(Tip) Combining PA2 and PS2

HARMONIC LEAKAGE CURRENT

Method of filling the harmonic leakage current calculation sheet according to the harmonics suppression measure guideline

This appendix provides the method of filling "Calculation sheet of harmonic leakage current from harmonic emission devices (No. 1)" by the user in connection with "Harmonics suppression measure guideline for users who receive power at high or specially high voltages" issued from Agency for JAPAN Natural Resources and Energy of the Ministry of Economy, Trade, and Industry.

Servo amplifier data needed for filling the calculation sheet is provided below.

Servo amplifier data

Device name: Servo amplifier for velocity control

Manufacturer: FANUC LTD.

Model: Enter the drawing number of the servo amplifier. Rated capacity: Refer to the descriptions of each servo amplifier.

- For rated capacity calculation, see "How to calculate the power equipment capacity" in Subsection 2.3.1.
 - For "Minor circuit classification No." and "Conversion coefficient Ki," use the values on the table provided below.
- This appendix describes the method of filling the calculation sheet when no device for harmonic leakage current suppression is installed.
 - If a device for harmonic leakage current suppression is already installed, "Calculation sheet of harmonic leakage current from harmonic emission devices (No. 2)" needs to be submitted.
- The circuit classification of a servo amplifier is 1 or 3. So, "Application of harmonic emission device manufacturers," which is required for circuit classification 10, need not be prepared.
- For details of the guideline, calculation method, and so forth, the user is requested to contact its electric power company.

Name	Target amplifier drawing number	Minor circuit classification No.	Conversion coefficient Ki	Remarks
Power supply (αiPS)	A06B-6110-Hxxx	32	1.8	NOTE
Power supply (αiPS HV)	A06B-6120-Hxxx	32	1.8	NOTE
Power supply (αiPSR)	A06B-6115-Hxxx	32	1.8	NOTE
Power supply (αi PS, Upgraded Version)	A06B-6140-Hxxx	32	1.8	NOTE
Power supply (α <i>i</i> PS HV, Upgraded Version)	A06B-6150-Hxxx	32	1.8	NOTE

NOTE

When the αi series amplifier is used, no separate calculation is needed for each of the servo amplifier (αi SV) and spindle amplifier (αi SP). A calculation may be made for the αi PS or αi PS_R.

B-65282EN/06 INDEX

INDEX

<number></number>	
10-PAIR CABLE405,420	Battery for absolute Pulsecoder78
200-V Input Series	Brake Circuit470
200-V INPUT SERIES POWER SUPPLY400	<c></c>
20-Pin Half-Pitch Connectors	
24-V power supply122,125	Cabinet
400-V Input Series	Cable Clamp and Shield Processing
400-V INPUT SERIES POWER SUPPLY402	CABLE CONNECTION DETAILS207
	Cables
<a>> a> a> a> a> a> a> a> a> a> a> a> a>	Caution
α position coder S	
αi position coder	Circuit breaker and magnetic contactor
αi PS series	Classification in standards on insulation design118,123
αi PS Series Connection Diagram207	COMPOSITE 10-CORE CABLE
αi PS _R series	COMPOSITE 12-CORE CABLE417
αi SP series	COMPOSITE 16-CORE CABLE
αi SP Series Connection Diagram259	COMPOSITE 7-CORE CABLE407
αi SV series37,47,51,129,135,200	Concrete Examples of Anti-Noise Measures444
αi SV series Connection Diagram234	Configuration 1,3,316
αiBZ Sensor (A860-2150-T*** and A860-2155-T***)358	Confirming Effect
αiBZ Sensor (Conventional Dimensions,	Connecting the battery (for the absolute Pulsecoder)252
A860-2120-T***)	Connection
αiCZ Sensor (Analog Output, A860-2140-T***)503	Connection block diagram (common to three models)335
αiCZ Sensor (for the Spindle)367	Connection specifications
<a>	Connector Installation Diagram
Absolute αiCZ Sensor (Separate Sensor)328	(for Combination with α <i>i</i> SP 15)321
Absolute αiCZ Sensor (Serial Output, A860-2142-T***)483	CONNECTOR LOCATION
Absolute maximum ratings	Connectors
AC Line Filter 56,158	COOLING140
AC reactor54	<d></d>
AC Reactor Unit	DC LINK TERMINAL BOARD SECTION
AMPLIFIER INSTALLATION117	PROTECTIVE COVER462
AMPLIFIER INSTALLATION NOTES RELATING TO	DEFINITION OF WARNING, CAUTION, AND
SAFETY STANDARDS118	NOTEs-2
Anti-Noise Devices449	DESCRIPTIONS453
Anti-Noise Measures	Detailed description of the connection of cables
Anti-Noise Measures for Power Supply Equipment and	K41 (for regenerative discharge resistance),
Grounding446	K42 (for thermostat), and K43 (for fan motor)231
APPLICATION TO PREVENTION OF VERTICAL	Details of cable K1 (power supply line)213
AXES FROM FALLING AT POWER FAILURE 469	Details of cable K10 (power cable)260
	Details of cable K100
	(for power failure detection output)233

INDEX
B-65282EN/06

Details of cable K11	.263	<f></f>	
Details of cable K12	.264	FEATURES OF THE SERVO AMPLIFIER αi SERIE	ES .2
Details of cable K14	.267	FEEDBACK CABLE LENGTH	.431
Details of cable K16	.271	FITTING A LIGHTNING SURGE PROTECTION	
Details of cable K17	.273	DEVICE	.399
Details of cable K2237	,260	Fuses	64
Details of cable K21	.238	<g></g>	
Details of cable K22	.243	GROUND	104
Details of cable K24	.248	Ground Systems	
Details of cable K25	.249	Grounding Method	
Details of cable K26	.250	Grounding Method	.103
Details of cable K27	.251	<h></h>	
Details of cable K3	.225	HARMONIC LEAKAGE CURRENT	.521
Details of cable K33	.281	HEAT DISSIPATION	.127
Details of cable K36	.287	HOW TO MOUNT	.464
Details of cable K4	.237	How to Obtain the αi PS series maximum output	
Details of cable K6	.227	capability	87
Details of cable K69226,237	,260	How to Obtain the αi PS series peak maximum output	
Details of cable K7	.228	capability	88
Details of cable K70230,258	3,263	How to Obtain the αi PS series rated output capability	87
Details of cable K71	.290	How to Obtain the αi PS _R series Maximum Output	
Details of cable K86	.293	Capability	91
Details of cable K88	.294	How to Obtain the αi PS _R series Rated Output	
Details of cable K90	.295	Capability	91
Details of cable K96	.296	HOW TO SELECT THE $lpha\dot{m{t}}$ PS series	
Details of cable K97	.297	(POWER SUPPLY)	86
DETAILS OF CONNECTORS	.301	HOW TO SELECT THE αi PSR series (POWER	
Details of short bar K2	.220	SUPPLY, RESISTANCE DISCHARGE TYPE)	90
DIMENSIONS	.517	HOW TO SELECT THE $\alpha \hat{\boldsymbol{i}}$ SP series(SPINDLE	
Dynamic Brake Module (DBM)	. 168	· ·	0.1
<e></e>		AMPLIFIER)	04
	121	HOW TO SELECT THE $lpha \emph{\textbf{1}}$ SV SERIES (SERVO	
ENVIDONMENTAL CONDITIONS		AMPLIFIER)	
ENVIRONMENTAL CONDITIONS		How to Select the Dynamic Brake Module (DBM)	
Environments for Amplifier Heat Sink Sections		HOW TO SELECT THE MODULE	79
Environments for Amplifier Installation	.460		
EXAMPLES OF RECOMMENDED POWER	n	INPUT POWER	12
MAGNETICS CABINETS FOR SERVO AMPLIFIED		Installation	
INSTALLATION		Installation conditions and notes	-
External Dimensions		Interpolation error learning	
EXTERNAL DIMENSIONS AND MAINTENANCE		•	
AREA	. 141	<l></l>	
EXTERNAL DIMENSIONS OF EACH	421	LEAKAGE CURRENT	
CONNECTOR		Lightning Surge Protector	,179
External overload protection device	,124	LINEUP	10

B-65282EN/06 INDEX

LIST OF MOTOR OUTPUT CAPACITIES FOR	POWER FAILURE DETECTION FUNCTION465
αi PS AND αi PSR series SELECTION96	POWER FAILURE DETECTION SPECIFICATION 467
<m></m>	POWER LINE FOR SERVO MOTOR AND
Machine start-up procedure (outline)	AMPLIFIER434
Magnetic Contactors	POWER LINE SWITCH CIRCUIT306
MAGNETIC SENSOR SIGNAL CONVERSION	Power Line Switch Unit77,308
	Power Magnetics Cabinet Seal-up453
ADAPTER	Power Transformer65,159
Maintenance target parts	Pre-Installation Arrangement442
MEASURES AGAINST NOISE FROM SERVO	Procedure469
AMPLIFIERS 438	Protection against electric shock
Method for Keeping Vertical Axis Motors Energized 473	Protective grounding
Method for Supplying External Power to the Amplifier479	405
METHOD OF ADJUSTMENT520	<r></r>
MISCELLANEOUS450	Reduction of load ratio to ambient temperature122
<n></n>	Regenerative discharge unit
Names and specification numbers	Regenerative Discharge Unit
Noise Filter	Requirements of EN and IEC Standards118
NOISE OCCURRENCE IN SERVO AMPLIFIERS 439	Requirements of UL Standards
NOISE PREVENTION108	Rotation direction of the absolute α <i>i</i> CZ sensor338
NOISE TYPES440	Rotation direction of the αiCZ sensor
Note	<\$>
Notes on 400-V Input α <i>i</i> PS series selection	SAFETY PRECAUTIONSs-1
Notes on Connecting	Screw tightening torque
NOTES ON COOLANT (REFERENCE)126	SELECTING A POWER CABLE435
Notes on the emergency stop circuit configuration 121	Selecting a Regenerative Discharge Unit
Notes on use	SENSOR
Number of Connected αi SV series and αi SP Series 89,92	SENSOR (OLD SPECIFICATIONS)
Trumber of Connected at 5 v series and at 51 series 67,72	SENSOR FOR THE SERVO SYSTEM328
<0>	SENSOR FOR THE SPINDLE350,498
ORDERING INFORMATION45,516	SENSOR FOR THE SYNCHRONOUS BUILT-IN
Others	SERVO MOTOR AND SEPARATE SENSOR483
Outline Drawing	Sensors for servo
OUTLINE DRAWINGS142	Sensors for spindle
Outline Drawings of Amplifiers, Panel Cut-out, and	Separation of Signal Lines
Maintenance Area	
Output signal check method	SERVO AMPLIFIER
Outside and Mounting Dimension Diagrams	SERVO CABLE LENGTH (WHEN
Overload protection	RECOMMENDED CABLES ARE USED)433
Over-speed protection	Servo Motor Continuous Rated Outputs and Maximum
	Outputs at Acceleration
< / >	Short-circuit protection
Panel Cut-out	Specification
PANEL CUT-OUT DIAGRAMS185	SPECIFICATIONS OF THE MODULES
Position Coder	Spindle alarms396

INDEX
B-65282EN/06

	SPINDLE CABLE LENGTH (WHEN
	RECOMMENDED CABLES ARE USED)432
	Spindle Motor Continuous Rated Outputs and
	Maximum Outputs at Acceleration100
	Spindle Motor Feedback Cable Connection299
	SPINDLE ORIENTATION305
	SPINDLE-RELATED OPTIONS304
	Sub module SM
	Sub module SW
	Switch Circuit Configuration
	System configuration and connection block diagram380
٠	T >
•	TOTAL CONNECTION DIAGRAM193
	Tyco Electronics AMP D-5000 Series Connector302
<	U>
	USE IN COMBINATION WITH THE DUAL CHECK
	SAFETY FUNCTION481
<	W>
	Warnings-3,s-8,s-10
	WARNINGS AND CAUTIONS RELATING TO A
	PILOT RUNs-8
	WARNINGS AND CAUTIONS RELATING TO
	MAINTENANCEs-10
	WARNINGS AND CAUTIONS RELATING TO
	MOUNTINGs-3
	WEIGHT43

Revision Record

FANUC SERVO AMPLIFIER αi series DESCRIPTIONS (B-65282EN)

				- Changing of model names - Switching level-up amplifiers - Dec., 2008 - Deletion of SPMC - Reflection of technical reports of edition 05 to this edition	Data
				90	Fdition
 Addition and correction of following contents in the Chapter 9 CONNECTION Pulsecoder connection and cables around SPM Addition of CZi sensor Addition and Correction of αis,βi,αir,αir series 	 Addition of following chapter Chapter 10 SPINDLE-RELATED OPTIONS Chapter 11 SPINDLE-RELATED DETECTORS Addition of data in the Chapter 6 HEAT DISSIPATION Correction of errors 	- Correction of errors	 Addition of α(HV)i series Amplifier Addition of PSMR(register discharge type) Addition of Spindle Amplifier Module (SPMC) for αCi series Addition of Models (PSM-55i, SPM-45/55i, SVM1-360i, SVM2-4/4i, SVM3-4/44i) 		Contents
Mar., 2003	Sep., 2002	Dec., 2001	Nov., 2001	Apr., 2001	Date
05	04	03	02	10	Foition

ADDITIONAL INFORMATION

About addition of the power cable of servo amplifier

1. Type of applied technical documents

Name	FANUC SERVO AMPLIFIER αi series
	DESCRIPTIONS
Spec.No./Ver.	B-65282EN/06

2.Summary of change

Group	Name / Outline	New,Add	Applicable
		Correct,Del	Date
Basic Function	Add power cable	Add	11-Aug-2008
Optional		1	
Function		ļ	
Unit			
Maintenance		1	
Parts			[]
Notice			
Correction		1	
Another			

				TITLE	About addition of cable of servo a		
01	08.08.11	Hirai	First edithon	DRAW. No.	B-65282I	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	FANUC LTD Page 001/1-		001/14

1. Outline

As a power cable of servo amplifier, the four-conductor power cable (U/V/W/G) is generally used, and the PWM noise generated by switching of the power transistor inside servo amplifier returns to the servo amplifier through a ground line, however, in case the impedance of the ground line becomes high when the power cable is long, some of PWM noise may not return through the ground line, and may affect other equipment.

Moreover, if electric connection of the motor flange and a machine is not enough, PWM noise may flow through the feedback cable of a pulse coder, and communication alarm between the servo amplifier and the pulse coder may be generated.

In these cases, an additional measure against PWM noise and an additional ground line were needed.

This time, a new cable that reduced the inductance of a ground line is prepared for the power cable of a servo amplifier. By reducing the inductance of a ground line, the PWM noise returns to the amplifier efficiently, and the risk of the malfunction by PWM noise is reduced.

2. Cable specification

(1) Specification (see the 4th clause about the details of specification)

Maker specification (OKI ELECTRIC CABLE)	Cross section (U/V/W)	Cross section (Ground)	FANUC specification	Rating	Standard length
SYM3X0.75SQ	0.75 mm ²	0.25mm ² x3	A66L-0001-0607	105 degrees / 600V	100m
SYM3X1.25SQ	1.25 mm ²	0.43mm ² x3	A66L-0001-0608	105 degrees / 600V	100m
SYM3X2SQ	2.0 mm ²	0.75mm ² x3	A66L-0001-0609	105 degrees / 600V	100m
SYM3X3.5SQ	3.5 mm ²	1.25mm ² x3	A66L-0001-0610	105 degrees / 600V	100m
SYM3X5.5SQ	5.5 mm ²	2.0mm ² x3	A66L-0001-0611	105 degrees / 600V	100m
SYM3X8SQ	8 mm ²	2.7mm ² x3	A66L-0001-0612	105 degrees / 600V	100m

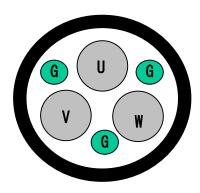


Fig. 1 Structure outline of cable

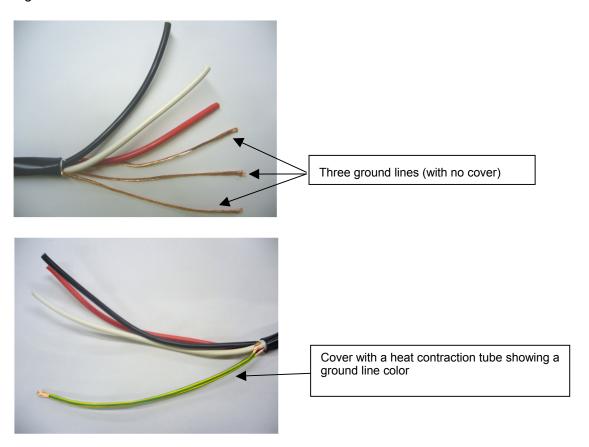
				TITLE	About addition of the power cable of servo amplifier		
				DRAW. No.	B-65282	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	002/14

3. The method of creating cable

The procedure of creating cable is shown below.

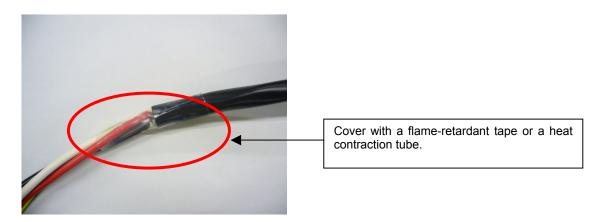
- 3.1 Processing of Cable by the side of Servo Amplifier
- (1) When the power line is connected by a connector

Please refer to B-65282JA/05 "FANUC SERVO AMPLIFIER alpha i series description" about the connector to servo amplifier.

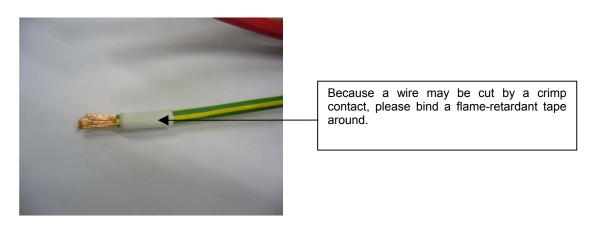

Please refer to B-65262JA/03 "FANUC AC SERVO MOTOR alpha iS / alpha I series description." about the connector to motor.

① Crimp U/V/W line

Please crimp contact as the usual power line.


2 Crimp ground line

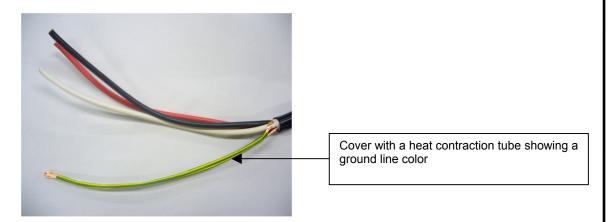
(a) Put three ground lines together, and cover it with a heat contraction tube showing a ground line color.



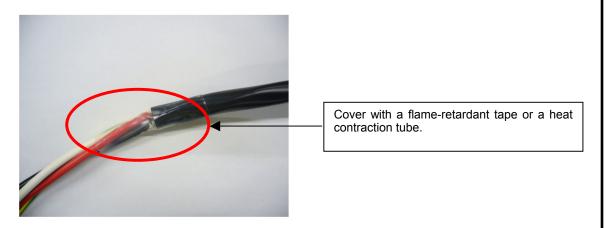
				TITLE	About addition of cable of servo a	-	
				DRAW. No.	B-65282	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	003/14

(b) Protect the exposed wire by the flame-retardant tape or a heat contraction tube. The tape or tube needs to be 105 degrees heat-resistant and be 94-V0 flame-retardant.

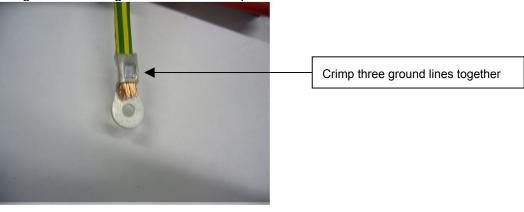
(c) Bind a flame-retardant tape around the part that a crimp contact presses down. Because this cable does not have sheath of the ground line and a wire may be cut by a crimp contact, please be sure to protect it by a flame-retardant tape. Since the temperature of power line becomes high, a flame-retardant tape should be used.



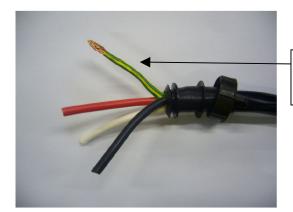
③ Insertion into housing Please insert the crimped contact into housing.



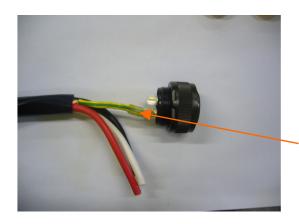
				TITLE	About addition of cable of servo a	•	
				DRAW. No.	B-65282I	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	004/14


- (2) When the power line is connected on a terminal block
 - 4 Crimp U/V/W line Please crimp contact as the usual power line.
 - ① Crimp ground line
 - (a) Put three ground lines together, and cover it with a heat contraction tube showing a ground line color.

(b) Protect the exposed wire by the flame-retardant tape or a heat contraction tube. The tape or tube needs to be 105 degrees heat-resistant and be 94-V0 flame-retardant.



(c) Crimp three ground lines together with one crimp contact.

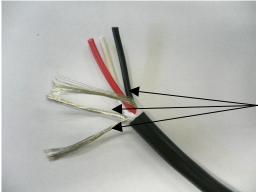

				TITLE	About addition of cable of servo a	-	
				DRAW. No.	B-65282I	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	005/14

- 3.2 Processing of Cable by the side of motor
 - (1) In the case of a plug connector
 - (1) Soldering of U/V/W line Solder U/V/W line as it is.
 - (2) Soldering of ground line
 - (a) Put three ground lines together, and cover it with a heat contraction tube.

Put three lines together, and cover it with a heat contraction tube.

(b) Solder the ground line and a connector, and cover the soldered part with a heat contraction tube or flame-retardant tube.

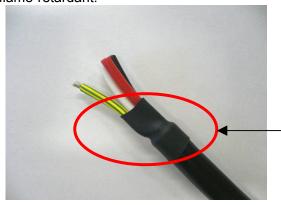
Solder a connector and cover the soldered part with a heat contraction tube


(3) Attach a case.

				TITLE	About addition of the power cable of servo amplifier		
				DRAW. No.	B-65282I	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	006/14

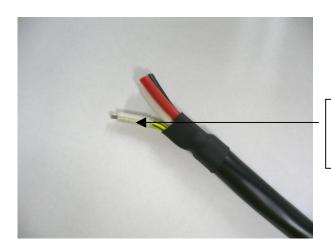
- (2) In the case of the connector of dynamic series
- ① Crimp U/V/W line Please crimp contact as the usual power line.
- (2) Crimp ground line

(a) Put three ground lines together, and cover it with a heat contraction tube showing a ground line color.

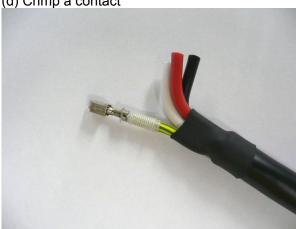


Three ground lines (with no cover)

Cover with a heat contraction tube showing a ground line color


(b) Protect the exposed wire by the flame-retardant tape or a heat contraction tube. The tape or tube needs to be 105 degrees heat-resistant and be 94-V0 flame-retardant.

Cover with a flame-retardant tape or a heat contraction tube.


				TITLE	About addition of the power cable of servo amplifier		
				DRAW.	B-65282	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	007/14

(c) Bind a flame-retardant tape around the part that a crimp contact presses down. Because this cable does not have cover of the ground line and a wire may be cut by a crimp contact, please be sure to protect it by a flame-retardant tape. Since the temperature of power line becomes high, a flame-retardant tape should be used.

Because a wire may be cut by a crimp contact, please bind a flame-retardant tape around.

(d) Crimp a contact

				TITLE	About addition of the power cable of servo amplifier		
					000.00100100		
				DRAW. No.	B-65282I	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	FANUC LTD Page 008		008/14	

4. Cable specification details

(1) SYM 3X0.75SQ

(1) SYM 3XC		0	-4:		
	Item	Specifica			
Core wire clas		Power line	Ground line		
Nominal cross	-section	0.75	0.25		
area (mm²)	1				
Conductor	Material	Stranded wire of	Stranded wire of		
		annealed copper	annealed copper		
	Structure	30/0.18	10/0.18		
	(conductors/mm)				
	Size (mm)	1.2	0.66		
Insulator	Material	Heat-resistant PVC			
	Color	Red, white, black			
	Thickness (mm)	0.81			
	Outside diameter	2.82			
	(mm)				
Lay	Structure	See Fi	ig.2		
,	Binder tape	Plastics			
Sheath	Material	Heat-resistant, oilproof PVC			
Cilculi	Color	Blac	•		
	Display	OKI ELECTRIC CABLE AWG19 🔊 AWM 250			
	Display		11 100 C 000 V VV-1 3 11V13 × 0.735Q		
		or OKI ELECTRIC CABLE(G) AWG19 % AWM2	2501 105°C 600V VW-1 SYM 3 × 0.75SQ		
	Outside diameter	10.3	3		
	(mm)				
Finished	Length (m)	100)		
product	Packing	Bund	lle		
•	method	Buildio			
	Estimated weight	115			
	(kg/km)		•		
Electrical	Conductor	24.4 or less (20 degrees)	73.4 or less (20 degrees)		
performance	resistance	2 ssss (20 dog.oss)			
p 3.13111101100	(ohm/km)				
	Insulation	10 or more (20 degrees)	_		
	resistance	10 of more (20 degrees)	<u>-</u>		
	(Mohm/km)				
	Dielectric	2000VAC			
		2000 VAC	-		
	strength				
	(V-min)	01- 1	0.04		
	Inductance	Standard	0.31		
	(uH/m)	2			
	Capacitance	Standard	100		
	(pF/m)				

				TITLE	About addition of cable of servo a	-	
				DRAW. No.	B-65282	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	009/14

(2) SYM 3X1 25SQ

(2) SYM 3X ²	1.25SQ				
	Item	Spec	cifications		
Core wire class	sification	Power line	Ground line		
Nominal cross	s-section	1.25	0.43		
area (mm²)	,				
Conductor	Material	Stranded wire of	Stranded wire of		
		annealed copper	annealed copper		
	Structure	50/0.18	17/0.18		
	(conductors/mm)				
	Size	1.5	0.86		
	(mm)				
Insulator	Material	Heat-resistant PVC			
	Color	Red, white, black			
	Thickness	0.81			
	(mm)				
	Outside	3.12			
	diameter (mm)				
Lay	Structure	See Fig.2.			
	Binder tape	Plas	stics tape		
Sheath	Material	Heat-resista	ant, oilproof PVC		
	Color		Black		
	Display	OKI ELECTRIC CABLE AWG19 乳 AV	VM 2501 105°C 600V VW-1 SYM 3×1.25SQ		
			or		
		OKI ELECTRIC CABLE(G) AWG19 🤼	AWM 2501 105°C 600V VW-1 SYM 3×1.25SQ		
	Outside diameter	11.0			
	(mm)				
Finished	Length (m)		100		
product	Packing	Bundle			
	method				
	Estimated weight	140			
	(kg/km)				
Electrical	Conductor	14.7 or less (20 degrees)	43.2 or less (20 degrees)		
performance	resistance				
	(ohm/km)				
	Insulation	10 or more (20 degrees)	-		
	resistance				
	(Mohm/km)				
	Dielectric	2000VAC	-		
	strength				
	(V-min)				
	Inductance	Stand	ard 0.28		
	(uH/m)				
	Capacitance	Standard 110			
	(pF/m)				

				TITLE	About addition of cable of servo a	•	
				DRAW. No.	B-65282I	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	010/14

ı

(3) SYM 3X2SQ

(3) SYM 3X29					
	Item	•	ifications		
Core wire clas		Power line	Ground line		
Nominal cross	s-section	2.0	0.75		
area (mm²)					
Conductor	Material	Stranded wire of	Stranded wire of		
	_	annealed copper	annealed copper		
	Structure	37/0.26	30/0.18		
	(conductors/mm)				
	Size (mm)	1.8	1.2		
Insulator	Material	Heat-resistant PVC			
	Color	Red, white, black			
	Thickness (mm)	0.81			
	Outside	3.42			
	diameter (mm)				
Lay	Structure	See	e Fig.2		
	Binder tape	Plastics tape			
Sheath	Material	Heat-resista	nt, oilproof PVC		
	Color	Е	Black		
	Display	OKI ELECTRIC CABLE AWG19 🔧 AW	/M 2501 105°C 600V VW-1 SYM 3 × 2SQ		
			or		
		OKI ELECTRIC CABLE(G) AWG19 🤼	AWM 2501 105°C 600V VW-1 SYM 3×2SQ		
	Outside	11.6			
	diameter (mm)				
Finished	Length (m)		100		
product	Packing	В	undle		
	method				
	Estimated		180		
	weight (kg/km)				
Electrical	Conductor	9.5 or less (20 degrees)	24.4 or less (20 degrees)		
performance	resistance	, ,	, ,		
•	(ohm/km)				
	Insulation	Ten or more (20 degrees)	-		
	resistance	, ,			
	(Mohm/km)				
	Dielectric	2000VAC	-		
	strength				
	(V-min)				
	Inductance	Standa	ard 0.25		
	(uH/m)	- 13.11.13			
	Capacitance	Standa	ard 130		
	(pf/m)	Standard 100			
	(ρι/π)				

				TITLE	About addition of cable of servo a	-	
				DRAW. No.	B-65282	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	011/14

(4) SYM 3X3 5SQ

_	16: 41	
	cifications	
1	Ground line	
3.5	1.25	
	Stranded wire of	
1	annealed copper	
45/0.32	50/0.18	
	1.5	
Red, white, black		
0.81		
4.22		
Se	ee Fig.2	
Plas	stics tape	
Heat-resistant, oilproof PVC		
Black		
OKI ELECTRIC CABLE AWG19 🕦 AV	NM 2501 105°C 600V VW-1 SYM 3 × 3.5SQ	
	or	
OKI ELECTRIC CABLE(G) AWG19 R AWM 2501 105°C 600V VW-1 SYM 3×3.5SQ		
13.2		
100		
Drum		
350		
5.1 or less (20 degrees)	14.7 or less (20 degrees)	
, , ,	,	
10 or more (20 degrees)	-	
, ,		
2000VAC	-	
Stand	ard 0.24	
Standard 160		
Stand	lard 160	
	Power line 3.5 Stranded wire of annealed copper 45/0.32 2.6 Heat-resistant PVC Red, white, black 0.81 4.22 Se Plas Heat-resista OKIELECTRIC CABLE AWG19 N OKIELECTRIC CABLE(G) AWG19 N 10 or more (20 degrees) 2000VAC	

				TITLE	About addition of cable of servo a	-	
				DRAW. No.	B-65282	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	012/14

(5) SYM 3X5 5SQ

(5) SYM 3X5	.55Q Item	Specifications			
Core wire clas		Power line	Ground line		
Nominal cross		5.5	2.0		
area (mm²)	0000011	0.0	2.0		
Conductor	Material	Stranded wire of	Stranded wire of		
		annealed copper	annealed copper		
	Structure (conductors/mm)	70/0.32	37/0.26		
	Size (mm)	3.1	1.8		
Insulator	Material	Heat-resistant PVC			
	Color	Red, white, black			
	Thickness (mm)	1.0			
	Outside diameter (mm)	5.1			
Lay	Structure	Se	ee Fig.2		
	Binder tape	Plastics tape			
Sheath	Material	Heat-resistant, oilproof PVC			
	Color Black				
	Display	OKI ELECTRIC CABLE AWG19 💫 A	WM 2501 105°C 600V VW-1 SYM 3 × 5.5SQ		
			or		
		OKI ELECTRIC CABLE(G) AWG19 ₹ AWM 2501 105°C 600V VW-1 SYM 3×5.5SQ			
	Outside	15.2			
	diameter (mm)				
Finished	Length (m)	100			
product	Packing		Drum		
	method				
	Estimated weight (kg/km)	520			
Electrical	Conductor	3.4 or less (20 degrees)	9.5 or less (20 degrees)		
performance	resistance				
	(Ohm/km)				
	Insulation	10 or more (20 degrees)	-		
	resistance				
	(Mohm/km)				
	Dielectric	2000VAC	-		
	strength				
	(V-min)				
	Inductance	Stand	lard 0.24		
	(uH/m)				
	Capacitance	Standard 160			
	(pF/m)				

				TITLE	About addition of cable of servo a	-	
				DRAW. No.	B-65282	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	013/14

(6) SYM 3X8SO

(6) SYM 3X8	SQ			
	Item	Speci	fications	
Core wire clas	sification	Power line	Ground line	
Nominal cross	-section	8.0	2.7	
area (mm²)				
Conductor	Material	Stranded wire of	Stranded wire of	
		annealed copper	annealed copper	
	Structure	50/0.45	50/0.26	
	(conductors/mm)			
	Size (mm)	3.7	2.1	
Insulator	Material	Heat-resistant PVC		
	Color	Red, white, black		
	Thickness (mm)	1.2		
	Outside	6.1		
	diameter (mm)			
Lay	Structure	See	Fig.2	
-	Binder tape	Plastics tape		
Sheath	Material	Heat-resistant, oilproof PVC		
	Color	Black		
	Display	OKI ELECTRIC CABLE AWG19 🔊 AW		
	' '		or	
		OKI ELECTRIC CABLE(G) AWG19 AW AWM 2501 105°C 600V VW-1 SYM 3 × 8SQ		
	Outline	17.6		
	diameter (mm)			
Finished	Length (m)	100		
product	Packing	Drum		
•	method	273		
	Estimated	650		
	weight (kg/km)			
Electrical	Conductor	2.4 or less (20 degrees)	7.1 or less (20 degrees)	
performance	resistance	, , ,	,	
	(ohm/km)			
	Insulation	10 or more (20 degrees)	-	
	resistance	, , ,		
	(Mohm/km)			
	Dielectric	2000VAC	-	
	strength			
	(V-min)			
	Inductance	Standa	rd 0.24	
	(uH/m)			
	Capacitance	Standa	ird 160	
	(pF/m)	2.5		

				TITLE	About addition of cable of servo a	-	
				DRAW. No.	B-65282	EN/06-0)1
EDIT	DATE	DESIGN	DESCRIPTION	F	ANUC LTD	Page	014/14

Energy Charge Module (ECM) DESCRIPTIONS

1. Type of applied documents

Name	FANUC SERVO AMPLIFIER α <i>i</i> series DESCRIPTIONS			
Spec. No./Ver.	B-65282EN/06-02			

2. Summary of Change

Group	Name/Outline	New, Add Correct, Del	Applicable Date
Basic Function			
Optional	Energy Charge Module (ECM)	New	2008.10
Function	DESCRIPTIONS		
Unit			
Maintenance			
Parts			
Notice			
Correction			
Another			

					TITLE	
					Energy Charge Module DE	ESCRIPTIONS
01	08.10.27	Yamada	NEW ADDED	Yamada	DRAW. NO. B-65282EN/06-0	O2 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION		FANUC LTD	SHEET 1/3 6

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.
- The instructions for use of Energy Charge Module are the same as that of Servo amplifier.
- Energy Charge Module should be used according to "Safety Precautions" described in the FANUC SERVO AMPLIFIER α *i* series DESCRIPTIONS B-65282EN.
- Users should also read the relevant description in this manual to become fully familiar with the functions of ECM.

The products in this manual are controlled based on Japan's "Foreign Exchange and Foreign Trade Law". The export from Japan may be subject to an export license by the government of Japan.

Further, re-export to another country may be subject to the license of the government of the country from where the product is re-exported. Furthermore, the product may also be controlled by re-export regulations of the United States government.

Should you wish to export or re-export these products, please contact FANUC for advice.

In this manual we have tried as much as possible to describe all the various matters.

However, we cannot describe all the matters which must not be done, or which cannot be done, because there are so many possibilities.

Therefore, matters which are not especially described as possible in this manual should be regarded as "impossible".

- When an abnormality occurs such as an alarm or a hardware failure, the operations described in the specifications are not guaranteed unless otherwise specifically noted. About a measure to abnormality, when there is a definite description, please correspond according to the description, and when there is not a description, ask our company for the measure to abnormality.
- The signals and functions described in the specifications cannot be used separately for safety functions to protect the operator from machine hazards unless otherwise they are described as being usable for the safety functions. Since it is the specification that does not expect using those signals and functions as the safety functions, there is a possibility of causing unexpected hazards. If you plan to use such signals or functions for safety functions, please contact FANUC.
- An incorrect device connection or setting may lead to an unpredictable operation. When starting to operate the
 machine for the first time after assembling the machine, replacing components, or modifying parameter
 settings, exercise the greatest care.

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 2/36

Protection against electric shock

(1) Protection against direct contact with charged parts

This amplifier must be installed in a power magnetics cabinet. The power magnetics cabinet must be equipped with a lock so that when the power to the amplifier is on, the power magnetics cabinet cannot be opened by persons except special maintenance personnel or persons authorized to do maintenance work who have been sufficiently trained in prevention of electric shock.

If the operator of the machine needs to open the power magnetics cabinet for some operations, the operator must be given thorough safety training, or a protection cover must be provided to prevent the operator from touching the amplifier.

(2) Confirmation of discharge of the electrolytic capacitor (UL508C 21)

This amplifier includes a large-capacity electrolytic capacitor for the power smoothing circuit. Even after the power supply input circuit is shut off, this capacitor remains charged for a while.

When it becomes necessary to touch the amplifier to do maintenance work or for other purposes, wait until the discharge time indicated on the face plate of the amplifier is passed, or start work after ensuring safety by measuring the residual voltage of the DC link section with a volt-ohm meter and checking that the LED (red) indicating charging is turned off.

(3) Isolation of the terminal of the cable

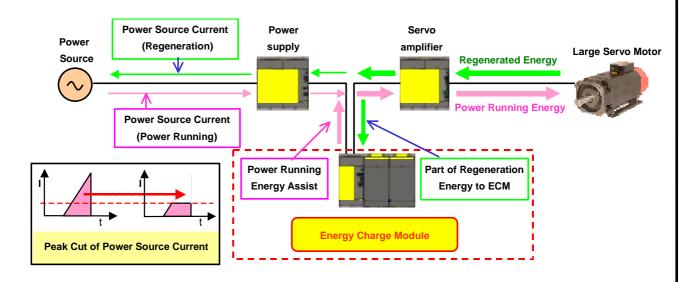
The terminals of the cables that connect to the equipment should be covered by the isolation tube etc., so that live parts should not be exposed.

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 3/36

Energy Charge Module (ECM) DESCRIPTIONS

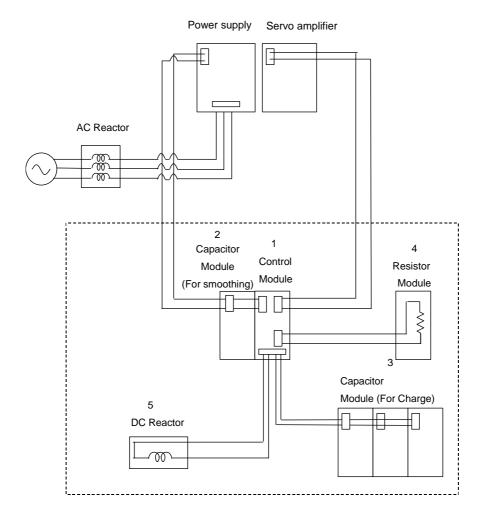
Table of contents	
1. Abstract	 5
Configuration and Ordering	 6
2.1 Configuration	 6
2.2 Ordering number	 7
3. Specifications	 8
3.1 Behavior of ECM	 8
3.2 Control Module	 9
3.3 Capacitor Module (For smoothing)	 9
3.4 Capacitor Module (For charge)	 9
3.5 Resistor Module	 10
3.6 DC Reactor	 10
3.7 Continuous output power of the motor connected to ECM	 10
4. Selection	 11
4.1 The maximum instantaneous power of the machine	 11
4.2 Limit of the maximum instantaneous power of the machine	 12
4.3 Selection of Capacitor Module	 15
4.4 Setup of ECM	 17
5. Functions and Interface	 18
5.1 Interfaces with Servo amplifier	 18
5.2 Interfaces with PMC (I/O)	 19
5.3 Alarm and status display	 20
6. Outline and Panel cut	 21
6.1 Control Module (A06B-6158-H010)	 23
6.2 Capacitor Module (A06B-6158-H020)	 24
6.3 Resistor Module (A06B-6158-H030)	 25
6. 4 DC Reactor (A06B-6158-H040)	 26
7. Connection	 27
7.1 Connection diagram	 27
7.2 Cable connection details	 28

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 4/36


1. Abstract

The use of servo motors for driving industrial machines reduces an average electric power consumption compared with hydraulic driving, thereby contributing to energy saving. On the other hand, the peak power increases at acceleration and deceleration, which causes larger fluctuation in power source voltage, sometimes requiring the electrical facilities capacity to be increased.

Energy Charge Module reduces large power source current at the peak of electric power consumption, and reduces voltage fluctuation of electrical facilities.


FEATURES

- Assists power running energy during motor acceleration and recharges regenerated energy during motor deceleration to reduce voltage fluctuation of the electrical facilities.
- Supplies only a portion of electric power which exceeds the electricity level of the electrical facilities capacity from Energy Charge Module at acceleration, and limits the capacity of the capacitor to minimum in combination with Power Source Regeneration Function at regeneration.
- Added with various types of alarm detection functions and discharging and protection circuits for capacitor, to secure safety as the capacitor is charged with large energy.

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 5/36

2. Configuration and Ordering2.1 Configuration

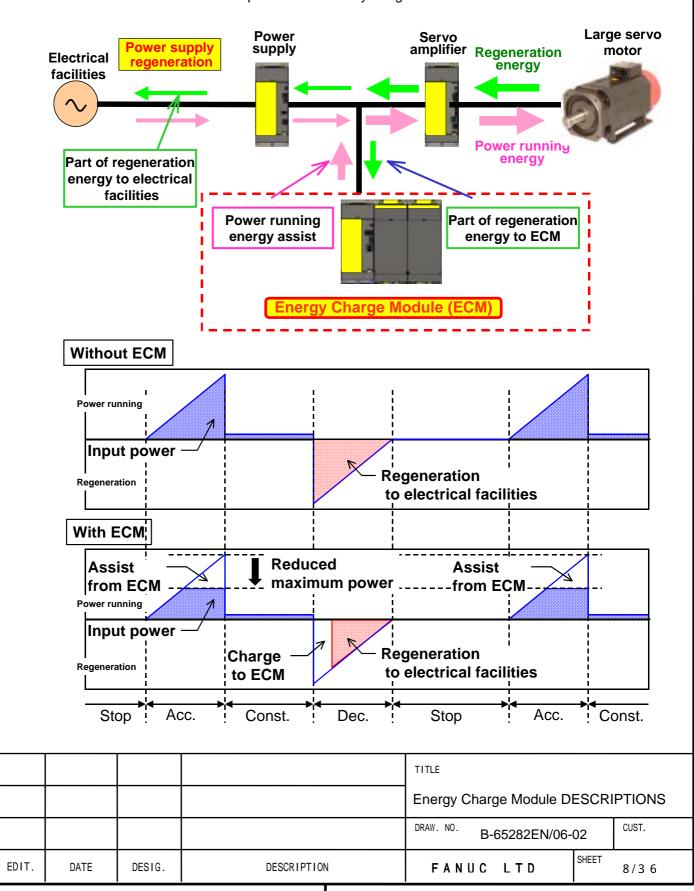
NO.	Name	Functions	
1	Control Module	Controlling charge/discharge of Capacitor Module	
2	Capacitor Module (For smoothing)	Smoothing input/output current of Control Module	
3	Capacitor Module (For charge)	Charging energy	
4	Resistor Module	Resistor to discharge Capacitor Module at Emergency stop	
5	DC Reactor	For controlling charge/discharge current	

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 6/36

2.2 Ordering number2.2.1 Basics

Category	Name	Ordering number	Remarks
Standard	Control Module	A06B-6158-H010	
Standard	Capacitor Module	A06B-6158-H020	
Standard	Resistor Module	A06B-6158-H030	
Standard	DC Reactor	A06B-6158-H040	Continuous current: 100Arms

2.2.2 Short bar, Connector [Short bar]


~a.j			
Category	Name	Ordering number	Remarks
Optional	Short bar	A06B-6110-K504	K1, K2
			The short bar must be attached to DC link terminal of Power supply (300mm) width and Servo amplifier (300mm).
Optional	Short bar	A06B-6078-K804	K3
·			The connection between "DC link of Control Module" and "Capacitor Module (for smoothing)"
Optional	Short bar	A06B-6078-K800	K5
			Connection between "Capacitor Modules (for charge)"

[Connector]

nector]				
Category	Name	Ordering number	Remarks	
Optional	Connector	A06B-6110-K505	K6, K7	
			Connection between "Control Module" and "Resistor Module"	
Optional	Connector	A06B-6110-K210	K21	
			Connection of the interface signal between "Servo amplifier" and a "Control Module"	
Optional	Connector	A06B-6110-K506	K22	
			Connection between "Control Module" and "The	
			break signal of the fuse in Capacitor Module"	
Optional	Connector	A06B-6130-K202	K23	
			Dummy connector for the termination of the break	
			signal of the fuse.	
Optional	Connector	A06B-6110-K508	K24	
			Connection of the interface signal between a	
			"Control Module" and "I/O"	

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 7/36

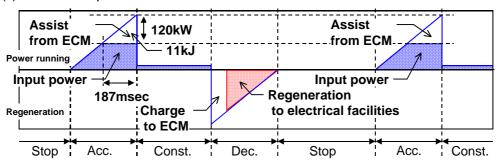
- 3. Specifications
- 3.1 Behavior of ECM
 - (1) Energy supplies the Capacitor Module of ECM from power source after the Power supply is ready. (Pre-charge)
 - (2) When the power that the Servo amplifier requires exceeds the level set as ECM, ECM assists the energy for the power running.
 - (3) The regeneration energy is stored in the Capacitor Module of ECM. The regeneration energy regenerates to the electrical facilities after the Capacitor Module is fully charged.

This Energy Charge Module is equipment applicable to SERVO AMPLIFIER of 400V input series.

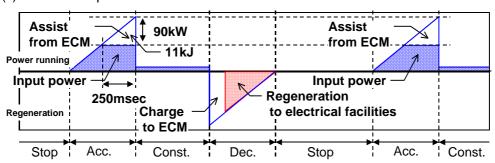
The specification of the following units is explained.

Item	Name	Functions
3.2	Control Module	Controlling charge/discharge of Capacitor Module
3.3	Capacitor Module (For smoothing)	Smoothing input/output current of Control Module
3.4	Capacitor Module (For charge)	Charging energy
3.5	Resistor Module	Resistor to discharge Capacitor Module at Emergency
		stop
3.6	DC Reactor	For controlling charge/discharge current

3.2 Control Module


Control Module controls the current from Capacitor Module.

Item	Specifications
Maximum output	(1) 120kW (2) 90kW
Continuous output	6kW or less Note)
Maximum connection number of Capacitor	(1) 120kW: Up to 10
Module (for charge)	(2) 90kW: Up to 8
Continuous output of motor	55kW or less
Maximum stored energy	About 11 kJ
Limit of input Power supply current	Refer to section 4.4
Protection functions	Refer to section 5.3
	(Fuse, Over current, Over Voltage, etc)


Note) For example, in case of the energy supply per one time is 100kW during 100msec, 36 energy supplies are possible in 1 minute. In case of the energy supply per one time is 50kW during 50msec, 144 energy supplies are possible in 1 minute.

Example)

(1) Maximum output 120kW

(2) Maximum output 90kW

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 9/36

т

3.3 Capacitor Module (For smoothing)

It is the capacitor that smoothes the current. It is installed between Control Module and Power supply.

Item	Specifications
Capacitance	0.011F
Fuse built-in	Circuit is interrupted with fuse.
The number to be used	1

3.4 Capacitor Module (For Charge)

It is the capacitor to charge energy. The regeneration energy is charged in Capacitor Module at deceleration and the power running energy is assisted the by the charged energy at acceleration.

As for the selection of the number of Capacitor Module, please refer to section 4.1.

19 101 1110 0010011011 01 1110 110111100	The time delication of the final liber of department in details, product to decide in the					
Item	Specifications					
Capacitance	0.011F					
Protection	Circuit is interrupted with fuse.					
The number of discharge	The number of acc/dec: 50 million times or more Note)					
(at maximum output)	The number of ESP: 1 million times or more					

Note) If the number of acc/dec is required 50 million times or more, please inquire to our company.

3.5 Resistor Module

It is the resistor in order to discharge the energy of Capacitor Module at ESP or Alarm.

Item	Specifications		
Resistance 30 ohm			
Discharge time about 20 seconds (In case of the number of Capacitor Mod			
Charge time	about 5 seconds (In case of the number of Capacitor Module is 10)		
Protection	The thermostat in Resistor Module detects abnormal heat generation.		
The number to be used	1		
The number of discharge	1 million times or more		
_	Conditions: one discharge in 5 minutes		

3.6 DC Reactor

It is DC Reactor in order to smooth the charge and discharge current.

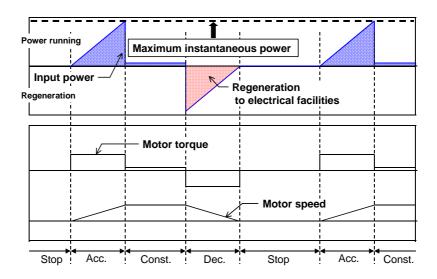
ie De Treaster in erder te errieeur uite erlange and dieerlange editeria					
ltem	Specifications				
Continuous current	100Arms				

				TITLE	
				Energy Charge Module DES	SCRIPTIONS
				DRAW. NO. B-65282EN/06-02	CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD	1 0/3 6

4. Selection

Selection of the number of Capacitor Module (for charge) and the setup of the switch of the energy supply start level from ECM are explained.

[The selection procedure of ECM]

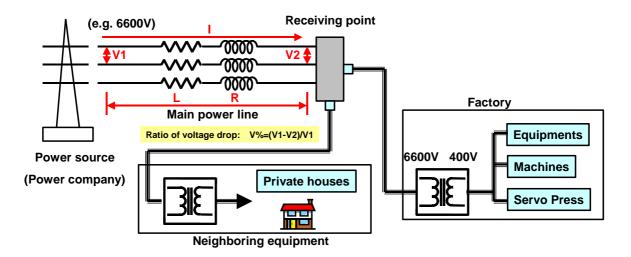

Order	Contents	Reference				
(1)	Confirm the maximum instantaneous power and the power pattern of the	4.1				
	machine.					
(2)	Limit of the maximum instantaneous power of the machine is estimated according	4.2				
	to the specification of the machine or permissible maximum instantaneous power	o the specification of the machine or permissible maximum instantaneous power				
	f the electrical facilities.					
(3)	The number of Capacitor Module (for charge) is selected according to (1) and (2). 4.3					
(4)	The level of the energy supply from ECM is set up with the setting switch on ECM 4.4					
	so that the power from a power source is less than the permissible maximum					
	instantaneous power. (At the time of mechanical installation)					

- 4.1 The maximum instantaneous power and the power pattern of the machine (Order (1))
 - The output of the motor can be calculated with multiplication of the torque and the speed of the motor.

In the case of the existing machine, it can be calculated by measuring the torque and speed of the motor. In the case of the machine is being designed, it can be calculated according to the specification of the motor, the inertia of the machine and the operating conditions of the machine.

The output of the motor (W) = the speed of the motor (rad/s) x the torque of the motor (Nm)

- The loss of the amplifier and the motor is not included in the output of the motor. Therefore the power from the power source and ECM is as the output of the motor x 1.2
 - The power from the power source (W)= the output of the motor (W) x 1.2
- The maximum instantaneous power of the machine is the sum total of the maximum instantaneous power of the motor and the power of the other equipment installed in the machine.


				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 1 1/3 6

4.2 Limit of the maximum instantaneous power of the machine (Order (2))

Limit of the maximum instantaneous power of the machine is estimated according to the specification of the machine or permissible maximum instantaneous power of the electrical facilities.

[The calculation method of the permissible maximum instantaneous power of the electrical facilities]

- The power company regulates the voltage drop ratio in the receiving point of the power system because the voltage drop may affect the neighboring equipment when the customer uses maximum instantaneous power.
 - Since each power company decides the regulation of the voltage drop ratio, please ask the power company.
- Please check the voltage drop ratio in the receiving point of the power system when the customer uses
 maximum instantaneous power. If it is more than the regulation of the voltage drop ratio of the power
 company, the customer needs to improve the voltage drop ratio.
- The calculation method of the voltage drop ratio in the receiving point and the permissible maximum instantaneous power of the electrical facilities are described as follows.

Note 1)

Please ask to electric power company about the impedance of a power line.

Note 2)

Generally, the voltage drop ratio depends on the impedance of the power line between the receiving point from the power supply of the power company. But if the impedance of the power supply of the power company cannot be disregarded, the voltage drop ratio should be calculated with the impedance is added to that of a power line.

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 1 2/3 6

[Calculation method (1)]

Sign	Item	Unit	Remarks
V1	Line Voltage	Vrms	Line Voltage with no load
V2	Voltage at receiving point	Vrms	Voltage at the receiving point with load
1	Max. current	Arms	Current when the machine output Max. power
R	Resistance	ohm	Resistance of main power line
Х	Reactance	ohm	Reactanceof main power line (X [ohm]=j L [H])
cos	Power factor	-	When unknown, please give as 0.9 as a standard.
sin	-	-	When unknown, please give as 0.4 as a standard.

 \succ The ratio of voltage drop (V%) is calculated with the value of the above table.

$$V\% = (V1-V2)/V1 = \{Ix (R \times cos + X \times sin)/(V1/ 3)\}x100 [\%]$$

- ➤ If the ratio of voltage drop (V%) is less than the regulation of an electric power company, the countermeasure is unnecessary.
- > If the ratio of voltage drop (V%) is more than the regulation of an electric power company, calculate the permissible maximum instantaneous power by the following formula.

Permissible maximum instantaneous power = $V1^2x$ $V\%/{(R\times\cos +X\times\sin)x100}$ [VA]

➤ It is necessary that the maximum instantaneous power of the machine is less than the permissible maximum instantaneous power.

Example of calculation)

Conditions

Sign	Item	Value
V1	Line Voltage	6600Vrms
I	Max. current	306Arms
R	Resistance	0.87ohm
X	Reactance	2.18ohm
cos	Power factor	0.9
sin	-	0.4

(1) Calculation of the ratio of voltage drop (V%)

$$V\% = {306 \times (0.87 \times 0.9 + 2.18 \times 0.4) / (6600/ 3)} \times 100 [\%]$$

=13.3 [%]

(2) Calculation of the permissible maximum instantaneous power

The permissible ratio of voltage drop is 4.2%

Permissible maximum instantaneous power = $6600^2 \times 4.2/\{(0.87 \times 0.9 + 2.18 \times 0.4) \times 100\}$ [VA] = 1105 [kVA]

= 1227 [kW] (Power factor:0.9)

				TITLE	
				Energy Charge Module DESCRIPTIONS	
				DRAW. NO. B-65282EN/06-02 CUST.	
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 13/36	

[Calculation method (2)]

Sign	Item	Unit	Remarks
Po	Max. output power	kVA	Max. output power of machine
%R	% Resistance	%	% Resistance of power line
%X	% Reactance	%	% Reactance of power line
Р	Basic capacity of power source	MVA	Basic capacity of %L and %R
cos	Power factor	-	When unknown, please give as 0.9 as a standard.
sin	-	-	When unknown, please give as 0.4 as a standard.

> The ratio of voltage drop (V%) is calculated with the value of the above table.

- > If the ratio of voltage drop (V%) is less than the regulation of an electric power company, the countermeasure is unnecessary.
- > f the ratio of voltage drop (V%) is more than the regulation of an electric power company, calculate the Permissible maximum instantaneous power by the following formula.

Permissible maximum instantaneous power = $V\% / \{(\%R \times \cos + \%X \times \sin)x10^4\}$ [kVA]

> It is necessary that the maximum instantaneous power of the machine is less than the permissible maximum instantaneous power.

Example of calculation)

Conditions

Sign	ltem	Value
Po	Max. output power	3500kVA
%R	% Resistance	20%
%X	% Reactance	50%
Р	Basic capacity of power source	10MVA
cos	Power factor	0.9
sin	-	0.4

(1) Calculation of the ratio of voltage drop (V%)

V%=
$$3500 \times (20 \times 0.9 + 50 \times 0.4) \times 10^{-4}$$
 [%]
=13.3 [%]

(2) Calculation of the permissible maximum instantaneous power

The permissible ratio of voltage drop is 4.2%

Permissible maximum instantaneous power =4.2 / $\{(20 \times 0.9 + 50 \times 0.4) \times 10^{-4}\}$ [VA]

= 1105 [kVA]

= 1227 [kW] (Power factor: 0.9)

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 14/36

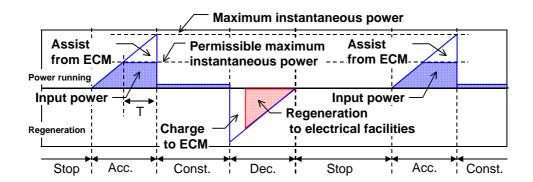
4.3 Selection of Capacitor Module (Order (3))

The energy assisted from ECM is calculated and the number of a Capacitor Module is selected.

The energy assisted from ECM (J) < the energy stored in one capacitor module x N (J)

N: The number of a capacitor module

[The energy assisted from ECM]


The energy assisted from ECM is calculated from the maximum instantaneous power of the machine (4.1) and the permissible maximum instantaneous power (4.2). The energy assisted from ECM is the area of the portion beyond the level of the permissible maximum instantaneous power.

The instant maximum power from the power source cannot be made smaller than " the maximum instantaneous power of the machine -the maximum output of ECM".

For example, the energy assisted from ECM is calculated by the following formulas in the following figure.

The energy assisted from ECM (J) = 0.5xT(sec) x (the maximum instantaneous power of the motor(w)

- the permissible maximum instantaneous power(w))

[Stored energy per a Capacitor Module]

(1) Maximum output 120kW

Power source voltage	400 V	420 V	440 V	460 V	480 V
Stored energy	1024 J	1087 J	1149 J	1211 J	1273 J

Note: $Pc = 0.5 \times 0.011 Fx [V_norm^2 - (V_norm - 200V)^2] J$

Pc: Stored energy per a Capacitor Module

V_norm: Power source voltage x 2

(2) Maximum output 90kW

Power source voltage	400 V	420 V	440 V	460 V	480 V
Stored energy	1372 J	1465 J	1558 J	1652 J	1745 J

Note: $Pc = 0.5x \ 0.011Fx \ [V_norm^2 - (V_norm - 300V)^2]$

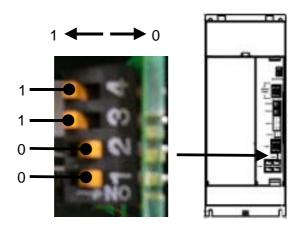
				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 15/36

Example of calculation)

Conditions

Item	Value
Maximum instantaneous power	100kW
Permissible maximum instantaneous power	50kW
Time: T	0.2sec

The energy assisted from ECM (J)= 0.5×0.2 (sec) x (100(kW)-50(kW)) =5000 (J)


Maximum output 120kW :120kW or less, Power source voltage:400V 5000 (J)< 1024 (J) x 5

5 Capacitor Modules (for charge) are required.

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 16/36

4.4 Setup of ECM (Order (4))

- The level of the energy supply from ECM is set up with the setting switch on ECM so that the power from a power source is less than the permissible maximum instantaneous power.
- When the output of the motor exceeds a setting level, the power from a power source is limited by the energy assisted from ECM.
- Setting levels are 16 levels. Setting levels are set by a 4-bit switch.

• The limit value of the power from the power source in each setting level is shown in the following table.

						Limit va	alue of the pow	er from
						the p	ower source	(kW)
						The inside of	f() is power so	urce voltage.
Setup	4	3	2	1	Power source	(400V)	(440V)	(480V)
					current (Arms)			
0001	ON	ON	ON	OFF	42	26	29	31
0010	ON	ON	OFF	ON	45	28	31	34
0011	ON	ON	OFF	OFF	50	31	34	38
0100	ON	OFF	ON	ON	54	34	37	40
0101	ON	OFF	ON	OFF	57	35	39	42
0110	ON	OFF	OFF	ON	66	41	45	49
0111	ON	OFF	OFF	OFF	73	45	50	54
1000	OFF	ON	ON	ON	82	51	56	62
1001	OFF	ON	ON	OFF	88	55	61	66
1010	OFF	ON	OFF	ON	99	62	68	74
1011	OFF	ON	OFF	OFF	113	70	77	85
1100	OFF	OFF	ON	ON	128	80	88	96
1101	OFF	OFF	ON	OFF	143	89	98	107
1110	OFF	OFF	OFF	ON	161	100	110	120
1111	OFF	OFF	OFF	OFF	176	110	121	131

Note) The value of a table is not guaranteed.

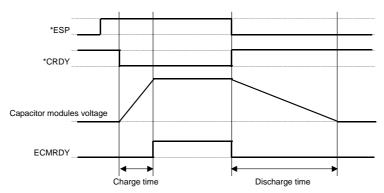
At the time of machine installation, please measure power source current or power, and set the switch.

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 17/36

5. Functions and Interface

- 5.1 Interfaces with Servo amplifier
 - ECM receives an emergency stop signal and the ready signal of the Power supply(PS) by the communication between modules.

[Operation of ECM]


- When the Power supply has been ready.
 - (1) The ECM has been ready after completing the charge to the Capacitor Modules. (Charge time: about 5 second)
- In case of "Emergency stop which is input from CNC"
 - (1) The functions of ECM stop.
 - (The current between ECM and Servo amplifier is intercepted.)
 - (2) The energy of Capacitor Modules (for charge) is discharged. (Discharge time: about 20 seconds)
- In case of "Emergency stop which is input to the Power supply(connector CX4)"
 - (1) The functions of ECM stop.
 - (The current between ECM and Servo amplifier is intercepted.)
 - (2) The energy of Capacitor Modules (for charge and smoothing) and capacitors of Servo amplifiers is discharged. (Discharge time: about 20 seconds)

Note)

- The charge and discharge time of Capacitor Modules are time when ten Capacitor Modules are connected.
- The Capacitor Modules are not discharged when the discharge circuit of the Control Module malfunctions.

WARNING

- The contactor (MCC) for the Power supply should be OFF during Emergency Stop.
 If the contactor is not OFF, the current from power source flows into Resistance Module, and Resistance Module is overheated abnormally.
- Even if the red LED that indicates charging is not lit, before starting the replacement work or wiring work and so on, please ensure that the power source is disconnected by the breaker and the voltages of DC links of the Control Module, the Capacitor Modules (for smoothing and charge), Resistor Module, DC Reactor, the Power supply and the Servo amplifier are falling. As for the voltage of DC link, measure the voltage of the terminal of DC link of each unit by the voltmeter (Tester etc.).

Signal name		Note
*ESP	Emergency stop signal	(L: Emergency stop, H: Emergency stop release)
*CRDY	Ready signal of the Power supply	(L: Ready, H: Not ready)
ECMRDY	Ready signal of ECM	(L: Not ready, H: Ready)

				TITLE			
				Energy Charge Module DESCRIPTIONS			
				DRAW. NO. B-65282EN/06-02 CUST.			
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 18/36			

5.2 Interfaces with PMC (I/O)

The control signal (CX41) of the Control Module is connected to I/O.

(Refer to 7.2.9 Cable K24 about the details of connection)

 The status of ECM is sent to PMC from ECM via I/O and the control signal of ECM is sent to ECM from PMC via I/O.

[The signals which communicate the status of ECM from ECM to PMC]

(1) Ready signal (ECMRDY)

It is a signal for communicating that ECM has been ready.

ECM has been ready within 10 seconds after emergency stop release.

(2) Status signal (ST 1B, ST2B)

It is the 2-bit signal which communicate the status of ECM. (Refer to 5.3 Alarm and status display)

(3) Alarm code (ALM*B)

It is the 4-bit signal which shows the kind of alarm. (Refer to 5.3 Alarm and status display)

[The signal for controlling ECM from PMC to ECM]

(1) Discharge mask signal (DCMASK)

The discharge mask signal can inhibit to discharge the energy of Capacitor Modules by the Resistor Module. In case of the emergency stop is frequently, this signal is available.

(2) Supply mask signal (SPSTP)

The supply mask signal can inhibit to supply the energy from ECM in the period that does not need to supply the energy from ECM. The energy in the Capacitor Modules can be used by this signal when the energy is required, and the quantity of a Capacitor Module can be reduced.

Signal name	The meaning of signal	The state of signal Note)		
		L	Н	
ECMRDY	Ready signal	Not ready	Ready	
ST1B, ST2B	Status signal	Refer to 5.3 Alarm a	nd status display	
ALM*B	Alarm code	Refer to 5.3 Alarm a	nd status display	
DCMASK	Discharge mask signal	Enabling to discharge	Inhibiting to discharge	

Note)

- The output signal from ECM is a high side switch circuit. When a high side switch turns off, it is necessary to set a signal level to L. Therefore, please use the circuit that the pull down resistor is connected as an input circuit of I/O.
- Please use the output circuit with a high side switch as an output circuit of I/O for DCMASK.
- In the case of the emergency stop by the emergency stop signal inputted into Power supply, Capacitor Modules are discharged even if the discharge mask signal is input.

				TITLE		
				Energy Charge Module DESCRIPTIONS		
				DRAW. NO. B-65282EN/06-02 CUST.		
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 19/36		

5.3 Alarm and status display

- When alarm occurs in ECM, the function of ECM stops. (The current between ECM and Servo amplifier is intercepted.)
- Even if alarm occurs in ECM, ECM cannot stop Servo amplifiers and motors. Therefore, the rudder program of PMC is created from the status signal communicate to I/O from ECM in order to stop the machine.

[The status display of ECM]

The status of ECM is displayed on LED of ECM.

Classification	LED display	State	Note
N. 1 1	-	Not ready	
Normal	0	Ready, Operating	
	Right-handed	Under charging	
	rotation		
	Left-handed	Under discharging	
	rotation		
Alarm	1	Over-current at power running	Over-current of DC link current at power running
	2	Over-current at regeneration	Over-current of DC link current at the time of regeneration
	3	Over-current of charge current	Over-current of charge current to Capacitor Modules
	4	Over-current of discharge current	Over-current of discharge current
		-	from Capacitor Modules
	5	Low-voltage of control power supply	Low-voltage of control power supply (24V)
	6	Over-voltage of DC link	Over-voltage of DC link of Servo amplifier
	7	Over-voltage of Capacitor Module	
	8	Low-voltage of Capacitor Module	
	9	Over-heat of Control Module	Detected by the thermostat on the heat sink
	С	Alarm of Power supply	Alarm occurs in the Power supply
	Е	Abnormal charge of Capacitor Module	Capacitor Modules are not charged.
	F	Resistor Module Abnormal discharge (1)	Capacitor Modules are not discharged.
	Н	Resistor Module	Capacitor Modules are discharged
		Abnormal discharge (2)	by malfunction of the discharge circuit.
	J	Over-heat of Resistor Module	Detected by the built-in thermostat
	Р	Communication error	Communication between modules error
	b	Current control circuit malfunction	The circuit to control the current of ECM malfunctions.
	h	Fuse blowing	The fuse of the Capacitor Module is blown.
Warning	А	Cooling fan stop (Refer to Note 1)	The cooling fan stop for the heat sink of the
			Control Module.
	U	Energy supply stop	Potential difference of a capacitor module is
			more than 300V.

Note 1)

In case of the cooling fan stop occurs, although ECM works continuously, please exchange the cooling fan a little early. Depending on ambient air temperature or the operating condition of ECM, the life of parts of the Control Module becomes short, or over-heat of Control Module may occur.

				TITLE			
				Energy Charge Module DESCRIPTIONS			
				DRAW. NO. B-65282EN/06-02 CUST.			
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 2 0/3 6			

т

[Operations when alarm occurs]

- When the alarm occurs in ECM, the status signal is communicated to I/O from ECM.
- The status signal ST1B changes from "H" to "L" when the alarm occurs. After ST1B changes from "H" to "L", please check the status signal ST1B and ST2B.
- Please stop the machine according to a status signal.

The stop method of the machine when alarm occurs

Status	Status signal Status		Stop method of the machine
ST2B	ST1B		
Н	Ι	Normal	-
Н	L	Abnormality occurred in ECM.	(1) The machine is stopped after moving to a safe position.(2) After (1), the machine should be stopped immediately by the emergency stop and the external MCC of the Power supply should be opened.
L	L	Serious abnormality occurred in ECM.	(1) The machine should be stopped immediately by the emergency stop and the external MCC of the Power supply should be opened.

^{*} When a cable is disconnected, the signal to I/O is set to "L".

The status signal of ECM

Classification	LED display	LED display Status			
			ST2B	ST1B	
Normal	-	Not ready	Н	Н	
INOITIAI	0	Ready, Operating	Н	Н	
	Right-handed rotation	Under charging	Н	Н	
	Left-handed rotation	Under discharging	Н	Н	
Alarm	1	Over-current at power running	L	L	
	2	Over-current at regeneration	L	L	
	3	Over-current of charge current	L	L	
	4	Over-current of discharge current	L	L	
	5	Low-voltage of control power supply	L	L	
	6	Over-voltage of DC link	L	L	
	7	Over-voltage of Capacitor Module	L	L	
	8	Low-voltage of Capacitor Module	Н	L	
	9	Over-heat of Control Module	Н	L	
	С	Alarm of Power supply	Н	L	
	Е	Abnormal charge of Capacitor Module	Н	L	
	F	Resistor Module Abnormal discharge (1)	Н	L	
	Н	Resistor Module Abnormal discharge (2)	Н	L	
	J	Over-heat of Resistor Module	Н	L	
	Р	Communication error	Н	L	
	b	Current control circuit malfunction	Н	L	
	h	Fuse blowing	Н	L	
Warning	Α	Cooling fan stop (Refer to Note 1)	Н	L	
	U	Energy supply stop	Н	L	

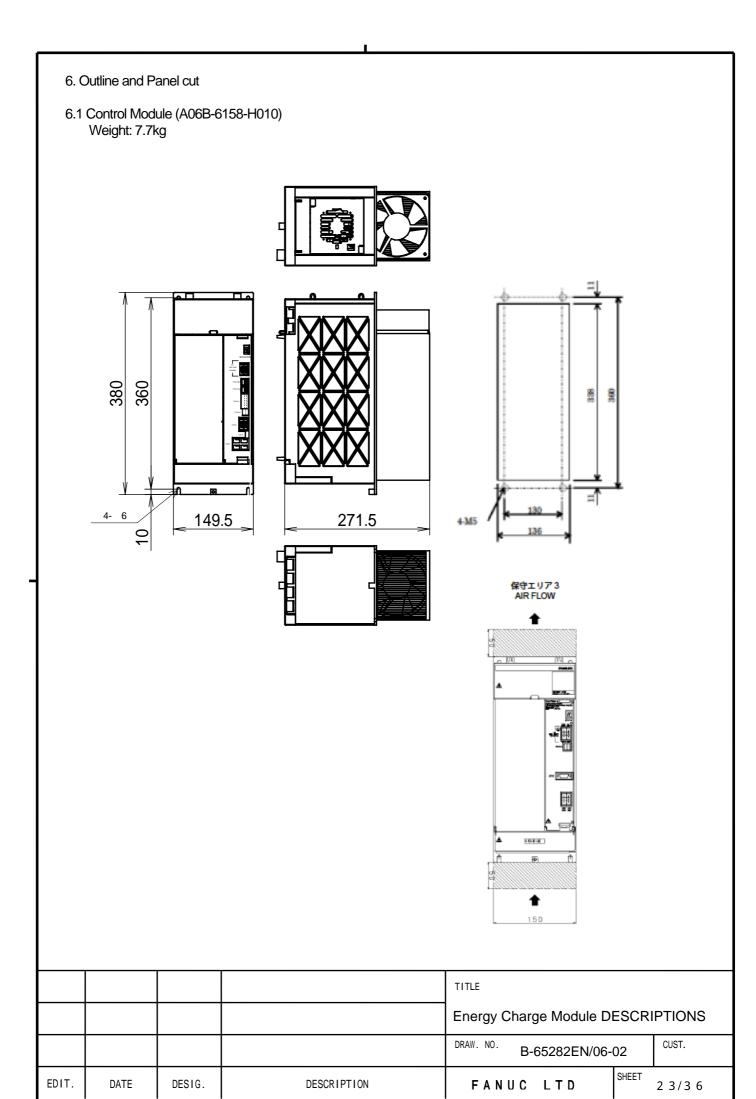
				TITLE		
				Energy Charge Module DESCRIPTIONS		
				DRAW. NO. B-65282EN/06-02 CUST.		
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD	SHEET 2 1/3 6	

[Alarm code]

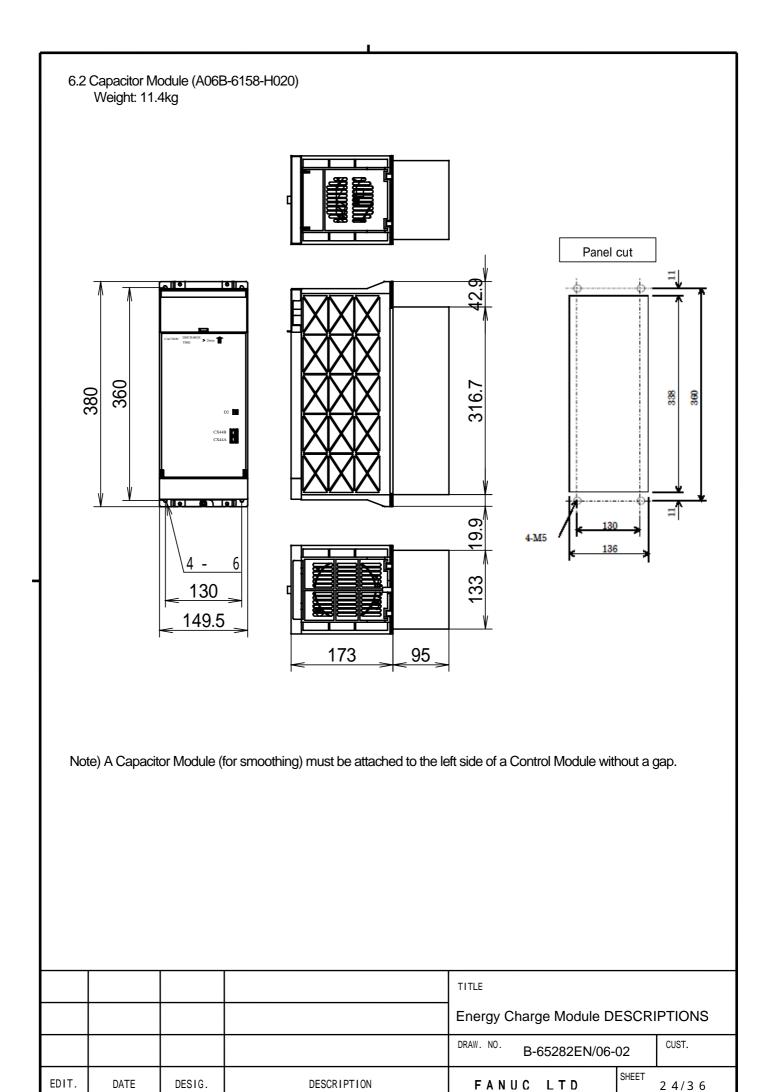
- When the alarm occurs in ECM, the alarm code is communicated to I/O from ECM.
- The status signal ST1B changes from "H" to "L" when the alarm occurs. After ST1B changes from "H" to "L", please check the alarm codes.
- Please use the alarm code in order to display the kind of alarm to a monitor etc..
 It makes maintenance easy.

	Alarm code			Alarm
ALM8B	ALM4B	ALM2B	ALM1B	
L	L	L	L	No alarm
L	L	L	Н	Over-current at power running
				Over-current at regeneration
L	L	Н	L	Over-current of charge current
				Over-current of discharge current
L	L	Н	Н	Low-voltage of control power supply
L	Η	L	L	Over-voltage of DC link
L	Η	L	Н	Over-voltage of Capacitor Module
L	Η	Н	L	Low-voltage of Capacitor Module
L	Η	Н	Н	Over-heat of Control Module
Н	L	L	L	Alarm of Power supply
Н	L	L	Н	Abnormal charge of Capacitor Module
Η	L	Н	L	Resistor Module Abnormal discharge (1)
				Resistor Module Abnormal discharge (2)
				Over-heat of Resistor Module
Н	L	Н	Н	Communication error
Н	Н	L	L	Energy supply stop
Н	Н	L	Н	Current control circuit malfunction
Н	Н	Н	L	Fuse blowing Note1)
Н	Н	Н	Н	Cooling fan stop Note2)

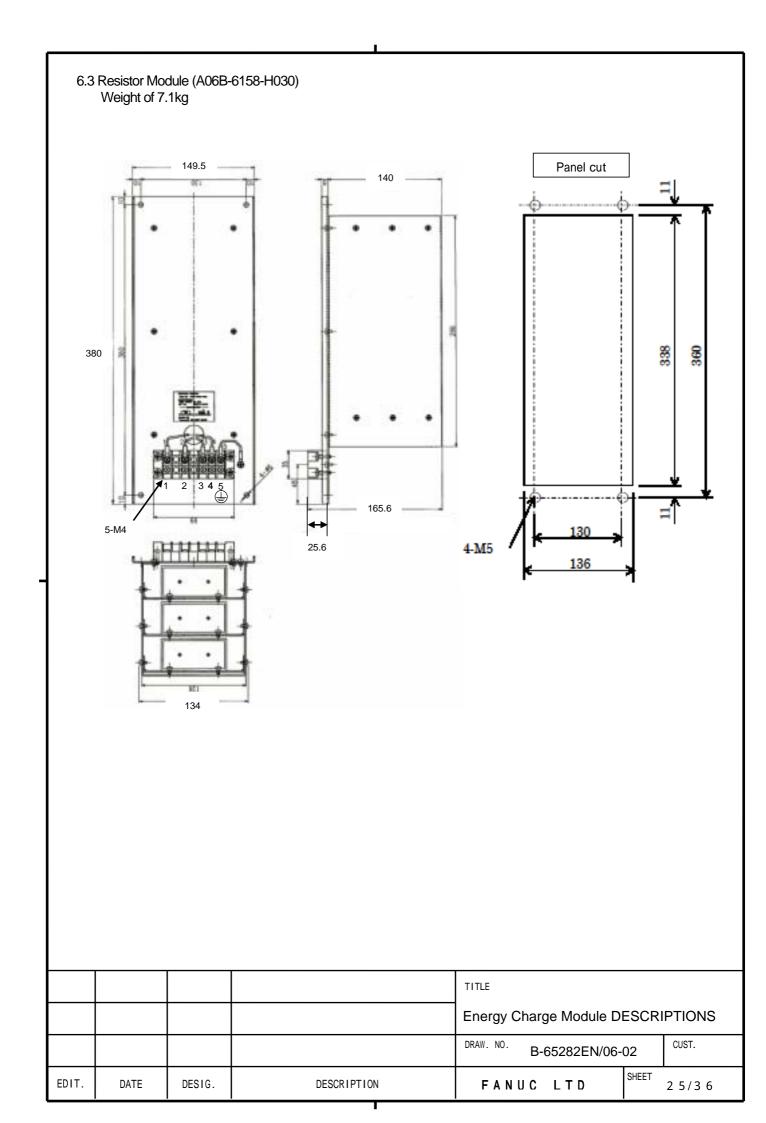
Note 1)

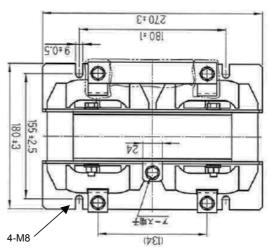

When the fuse blowing alarm occurs, the LED (D2) in the front of a Capacitor Module that the fuse was blown turn off the light. It shows which the fuse of a Capacitor Module was blown. In addition, please keep the control voltage (24V) ON during confirming.

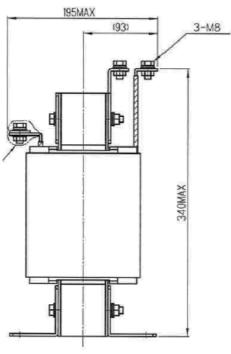
Note 2)

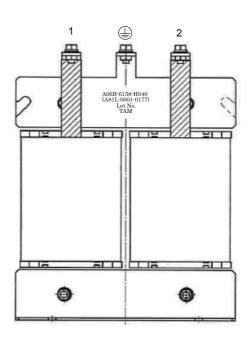

In case of the cooling fan stop occurs, although ECM works continuously, please exchange the cooling fan a little early. Depending on ambient air temperature or the operating condition of ECM, the life of parts of the Control Module becomes short, or over-heat of Control Module may occur.

				TITLE		
				Energy Charge Module DESCRIPTIONS		
				DRAW. NO. B-65282EN/06-02 CUST.		
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 2 2/3 6		


T


Т




T


6. 4 DC Reactor (A06B-6158-H040) 100A 0.5mH Weight: 32kg

				TITLE		
				Energy Charge Module DESCRIPTIONS		
				DRAW. NO. B-65282EN/06-02 CUST.		
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 26/3	6	

7.2 Cable connection details

7.2.1 Connection of cables K1, K2 and K3 (Connection of DC link)

- Cable K1: The connection between "Power supply" and " Capacitor Module (for smoothing)"
- Cable K2: The connection between "Servo amplifier" and "Control Module"
- Cable K3: The connection between "Control Module" and "Capacitor Module (for smoothing)"

Item		Desc	cription			
Size	Effective current of DC link	Average output of motor (Note 1)	Heat-resistant cable (Note 2)	AWG		
	92Arms or less	23kW or less	22 mm ² or more	AWG4 or more		
	112rms or less	29kW or less	30 mm ² or more	AWG2 or more		
	131Arms or less	33kW or less	38 mm ² or more	AWG1 or more		
	155Arms or less	40kW or less	50 mm ² or more	AWG1/0 or more		
	of motor depends reference. (Note 2) Fire-retard manufactured by Tr (Note 3) The cable requirements.	on the operational pat dant polyflex wire (hea ne Furukawa Electric C	ve current of DC link and tern of the motor. So the at-resistant 105°C) or each, Ltd. ed according to a user	hese values are for equivalent to LMFC		
Terminal screw	M6					
Rigid torque Consideration	3.5-4.5Nm	d I/Ol				
Consideration	 [Connection of K1 and K2] Line length should use 5m or less. Two cables must be made into a twisted pair. K1 and K2 separates from a signal line and must be wired. The metal plate (A06B-6110-K504) must be attached to DC link terminal of Power supply (300mm) width and Servo amplifier (300mm). 					
	 [Connection of K3] A Capacitor Module (for smoothing) must be attached to the left side of a Control Module without a gap. In the case of the wire size of K3 is 22mm2, the short bar A06B-6078-K804 can be used. 					

				TITLE		
				Energy Charge Module DESCRIPTIONS		
				DRAW. NO. B-65282EN/06-02 CUST.		
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEE	T 28/36	

т

7.2.2 Connection of cable K4

• Cable K4: The connection between "Control Module" and "Capacitor Module (for charge)"

Item	Description					
Cable size	Heat-resistant cable (Note 1)	AWG				
	22 mm ² or more	AWG4 or more				
	(Note 1) Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.					
Terminal screw	M6					
Rigid torque	3.5-4.5Nm					
Consideration	Line length should use 1m or less.					
	Two cables must be made into a twisted pair.					

7.2.3 Connection of cable K5

• Cable K5: Connection between "Capacitor Modules (for charge)"

Item	Description						
Cable size	Short bar	Heat-resistant cable	AWG				
	(Note 1)	(Note 2)					
	A06B-6078-K800	22 mm ² or more	AWG4 or more				
	, ,	(Note 1) In the case of Capacitor Modules are attached without a gap, the short bar A06B-6078-K800 can be used.					
		(Note 2) Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC					
	manufactured by The Furukawa Electric Co., Ltd.						
Terminal screw	M6						
Rigid torque	3.5-4.5Nm						
Consideration	In the case of Capacitor Modules (for charge) cannot be installed without a gap, the length of the cable should be 1m or less and two cables must be made into a twisted pair.						

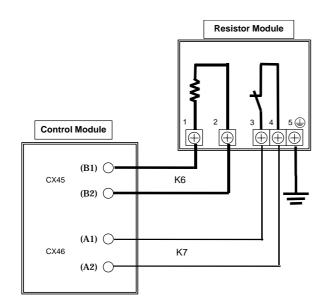
				TITLE		
				Energy Charge Module DESCRIPTIONS		
				DRAW. NO. B-65282EN/06-02 CUST.		
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 2 9/3 6		

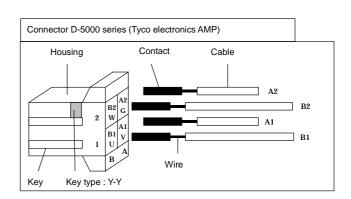
7.2.4 Connection of cables K6 and K7

- Cable K6: Connection between "Control Module" and "The resistor built in Resistor Module"
- Cable K7: Connection between "Control Module" and "The thermostat built in Resistor Module"

Cable Identifier	Conformity cable	Housing (Note 1)	Contact (Note 1)	Connection tool (Note 1)
K6	5.5 mm ²		M size	M size
(Note 2)	(Note 3)	Key: Y-Y	316041-6	234171-1
K7	1.25 mm ²	2-917807-2	S size	S size
(Note 2)	(Note 3)		316040-6	234170-1

(Note 1) The housing and the contact of a connector are D-5000 series of Tyco electronics AMP.


(Note 2) Cables K6 and K7 should wire without bundling.


(Note 3) Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by the Furukawa Electric Co., Ltd

or Two-conductor polyvinyl heavy-duty power cable (JIS C3312) (heat-resistant 60°C)

WARNING

- Control Module should be damaged if the resistor is conversely connected with the thermostat. Please be careful with the connection.
- Please be sure to check the following with a tester before inserting the connector in Control Module.
 - (1) The resistance between B1-B2 of the connector should be 30ohm±5%.
 - (2) The resistance between A1-A2 of the connector should be 0.5ohms or less.

				TITLE		
				Energy Charge Module DESCRIPTIONS		
				DRAW. NO. B-65282EN/06-02 CUST.		
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 3 0/3 6		

7.2.5 Connection of cable K8

Cable K8: Connection between "Control Module" and "DC Reactor"

Item	Description					
Cable size	Heat-resistant cable (Note 1)	AWG				
	22 mm ² or more	AWG2 or more				
	(Note 1) Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by the Furukawa Electric Co., Ltd					
Terminal screw	The Control Module side: M6	The DC Reactor side: M8				
Rigid torque	The Control Module side: 3.5 to 4.5 Nm					
Consideration	Line length should use 5m or less.					
	 Two cables must be made into a twis 	ted pair.				

7.2.6 Connections of Cable K70, K71, K72, K73 and K74

• Cable K70-K74: For grounding connection

Cable	Section	Cable size	Terminal screw	Rigid torque
		(Note 1)		
K70	Control Module	16 mm ² or more	M5	2.0-2.5Nm
		(K1: 22 mm ²)		
K71	Capacitor Module	16 mm ² or more	M5	2.0-2.5Nm
	(For smoothing)	(K1: 22mm ²)		
K72	Capacitor Module	16 mm ² or more	M5	2.0-2.5Nm
	(For charge)	(K4: 22 mm ²)		
K73	Resistor Module	5.5 mm ² or more	M4	1.1-1.5Nm
K74	DC Reactor	16 mm ² or more	M8	8.5-9.5 Nm
		(K8: 22 mm ²)		

(Note 1) The cable size for grounding depends on the cable size of a power line (K1, K4, K8).

In the case of the cable size is 22 mm², the cable size is 16 mm² or more.

In the other case, the cable size for grounding can be selected according to the following table.

Cable size of Power line	Cable size of
S	groundings
(mm²)	(mm ²)
S ≤ 5.5	5.5 or more
5.5 < S ≤ 16	More than S
16 < S ≤ 35	16 or more
35 < S	More than S/2

				TITLE		
				Energy Charge Module DESCRIPTIONS		
				DRAW. NO. B-65282EN/06-02 CUST.		
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 3 1/3 6		

7.2.7 Connection of cable K21

• Cable K21: Connection of the interface signal between "Servo amplifier" and a "Control Module"

Cable Identifier	Conformity cable	Instruction outer daimeter	Housing (Note 1)	Contact (Note 1)	Connection tool (Note 1)
K21 (Note 2)	0.5 mm ² or AWG20	1.08-2.83 mm	1-1318119-4	1318107-1	91595-1

(Note 1) The housing and the contact of a connector are D-2100 series of Tyco electronics AMP. Two connectors and 16 contacts are required.

(Note 2) (B3) BATL is the connection of a battery for the absolute Pulsecoder. Refer to FANUC SERVO AMPLIFIER αi series DESCRIPTIONS B-65282EN.

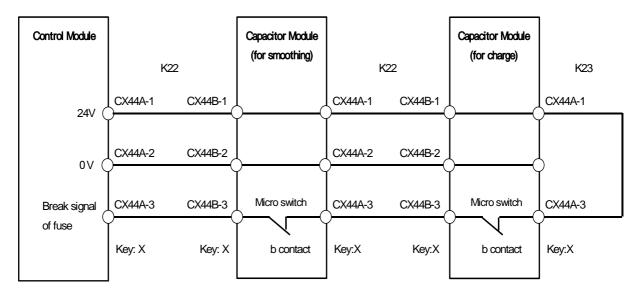
(Note 3) Cable K21 and power line should be wired without bundling..

Servo Amplifier		Control Module
CXA2A		CXA2B
24V (A1) 24V (B1) 0V (A2) 0V (B2) MIFA (A3) BATL (B3) *ESP (A4) XMIFA (B4)	K21	(A1) 24V (B1) 24V (A2) 0V (B2) 0V (A3) MIFA (B3) BATL (A4) *ESP (B4) XMIFA

				TITLE	
				Energy Charge Module DESCRIPTIONS	
				DRAW. NO. B-65282EN/06-02 CUST.	
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 3 2	/3 6

7.2.8 Connection of cables K22 and K23

- Cable K22: Connection between "Control Module" and "The signal of the fuse blowing in Capacitor Module"
- Cable K23: Dummy connector for the termination of the signal of the fuse blowing.


Cable Identifier	Conformity cable	Instruction outer daimeter	Housing (Note 1)	Contact (Note 1)	Connection tool (Note 1)
K22 K23 (Note 2)	0.5mm2 or AWG20	1.11-1.87mm	1-1318120-3	1318107-1	91595-1

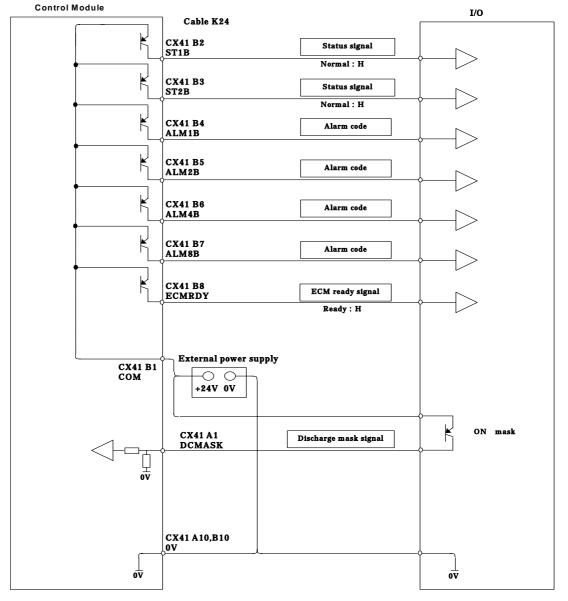
(Note 1) The housing and the contact of a connector are D-2100 series of Tyco electronics AMP.

AS for K22, two connectors and six contacts are required.

AS for K23, one connector and two contacts are required.

(Note 2) Cable K22 and power line should be wired without bundling.

				TITLE	
				Energy Charge Module DESCRIPTIONS	
				DRAW. NO. B-65282EN/06-02 CUST.	
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD	3 3/3 6


7.2.9 Cable K24

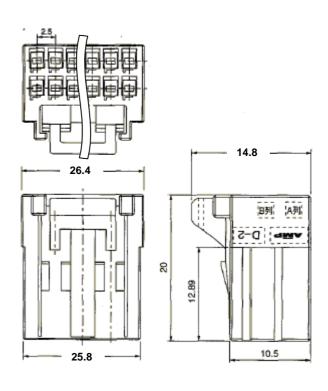
• Cable K24: Connection of the interface signal between a "Control Module" and "I/O"

Cable Identifier	Conformity cable	Instruction outer daimeter	Connector (Note 1)	Electric contact point (Note 1)	Sticking-by-pres sure tool (Note 1)
K24 (Note 2)	0.5mm2 or AWG20	1.11-1.87mm	1-1318118-9	1318107-1	91595-1

- (Note 1) The housing and the contact of a connector are D-2100 series of Tyco electronics AMP.

 One connector is required. The number of contact is ordered according to the using signals.
- (Note 2) Cable K24 and power line should be wired without bundling.
- (Note 3) In case of the distance between Servo amplifier, a Control Module, and I/O is long (for example, by the reason that modules are mounted in separated cabinet), FANUC I/O Unit-Model A which is insulated type is recommended in order to prevent malfunction of the signal by a noise.

				TITLE		
				Energy Charge Module DESCRIPTIONS		
				DRAW. NO. B-65282EN/06-02 CUST.		
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 3 4/3 6		


т

[Input signal specifications (DCMASK, SPSTP)]

Contact capacity	DC24V+10% 10mA
Voltage drop between contacts	Less than 2V
which are closed	(Voltage drop of a cable is also included)

[Output signal specifications (ST*B, ALM*B, ECMRDY)]

Maximum load current	200mA or less
Maximum voltage	24V+20% or less
Saturation voltage of transistor	1V or less (at load current is 200mA)
Leakage current of transistor	20μA or less

				TITLE		
				Energy Charge Module DESCRIPTIONS		
				DRAW. NO. B-65282EN/06-02 CUST.		
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD	SHEET 3 5/3 6	

7.2.10 Separation of power line and signal line
In order to prevent the influence of the noise from a power line to a signal line, power line and signal line should be wired without bundling.

Line name	Cable name
Power line	K1, K2, K3, K4, K5, K6, K8
Signal line	K7, K21, K22, K24

7.2.11 Short bar and Connector

[Short bar]

ortbaij		
Cable name	Remarks	Specifications
K1, K2	The metal plate must be attached to DC link	A06B-6110-K504
	terminal of Power supply (300mm) width and	2 Short bars
	Servo amplifier (300mm).	
K3	The connection between "DC link of Control	A06B-6078-K804
	Module" and "Capacitor Module (for smoothing)"	2 Short bars
K5	Connection between "Capacitor Modules (for	A06B-6078-K800
	charge)"	2 Short bars

[Connector]

nnectorj		
Cable name	Remarks	Specifications
K6, K7	Connection between "Control Module" and	A06B-6110-K505
	"Resistor Module"	Housing: 1
		Contact (M): 2
		Contact (S): 2
K21	Connection of the interface signal between "Servo	A06B-6110-K210
	amplifier" and a "Control Module"	Housing: 1
		Contact: 8
K22	Connection between "Control Module" and "The	A06B-6110-K506
	break signal of the fuse in Capacitor Module"	Housing: 1
		Contact: 3
K23	Dummy connector for the termination of the break	A06B-6130-K202
	signal of the fuse.	Housing: 1
		Contact: 2
K24		A06B-6110-K508
	Connection of the interface signal between a	Housing: 1
	"Control Module" and "I/O"	Contact: 13

				TITLE
				Energy Charge Module DESCRIPTIONS
				DRAW. NO. B-65282EN/06-02 CUST.
EDIT.	DATE	DESIG.	DESCRIPTION	FANUC LTD SHEET 36/36