GE Fanuc Automation

Computer Numerical Control Products

Series $16 \boldsymbol{i}$ / $18 i$ / 21i / 20i - Model A

Maintenance Manual

Warnings, Cautions, and Notes as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

SAFETY PRECAUTIONS

This section describes the safety precautions related to the use of CNC units. It is essential that these precautions be observed by users to ensure the safe operation of machines equipped with a CNC unit (all descriptions in this section assume this configuration).
CNC maintenance involves various dangers. CNC maintenance must be undertaken only by a qualified technician.
Users must also observe the safety precautions related to the machine, as described in the relevant manual supplied by the machine tool builder.
Before checking the operation of the machine, take time to become familiar with the manuals provided by the machine tool builder and FANUC.

Contents

1. DEFINITION OF WARNING, CAUTION, AND NOTE s-2
2. WARNINGS RELATED TO CHECK OPERATION s-3
3. WARNINGS RELATED TO REPLACEMENT $s-5$
4. WARNINGS RELATED TO PARAMETERS s-6
5. WARNINGS AND NOTES RELATED TO DAILY MAINTENANCE s-7

DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the maintenance personnel (herein referred to as the user) and preventing damage to the machine. Precautions are classified into Warnings and Cautions according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

WARNING

Applied when there is a danger of the user being injured or when there is a danger of both the user being injured and the equipment being damaged if the approved procedure is not observed.

CAUTION

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

Read this manual carefully, and store it in a safe place.

WARNINGS RELATED TO CHECK OPERATION

WARNING

1. When checking the operation of the machine with the cover removed
(1) The user's clothing could become caught in the spindle or other components, thus presenting a danger of injury. When checking the operation, stand away from the machine to ensure that your clothing does not become tangled in the spindle or other components.
(2) When checking the operation, perform idle operation without workpiece. When a workpiece is mounted in the machine, a malfunction could cause the workpiece to be dropped or destroy the tool tip, possibly scattering fragments throughout the area. This presents a serious danger of injury. Therefore, stand in a safe location when checking the operation.
2. When checking the machine operation with the power magnetics cabinet door opened
(1) The power magnetics cabinet has a high-voltage section (carrying a Δ mark). Never touch the high-voltage section. The high-voltage section presents a severe risk of electric shock. Before starting any check of the operation, confirm that the cover is mounted on the high-voltage section. When the high-voltage section itself must be checked, note that touching a terminal presents a severe danger of electric shock.
(2) Within the power magnetics cabinet, internal units present potentially injurious corners and projections. Be careful when working inside the power magnetics cabinet.
3. Never attempt to machine a workpiece without first checking the operation of the machine. Before starting a production run, ensure that the machine is operating correctly by performing a trial run using, for example, the single block, feedrate override, or machine lock function or by operating the machine with neither a tool nor workpiece mounted. Failure to confirm the correct operation of the machine may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.
4. Before operating the machine, thoroughly check the entered data.

Operating the machine with incorrectly specified data may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

WARNING

5. Ensure that the specified feedrate is appropriate for the intended operation. Generally, for each machine, there is a maximum allowable feedrate. The appropriate feedrate varies with the intended operation. Refer to the manual provided with the machine to determine the maximum allowable feedrate. If a machine is run at other than the correct speed, it may behave unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.
6. When using a tool compensation function, thoroughly check the direction and amount of compensation.
Operating the machine with incorrectly specified data may result in the machine behaving unexpectedly, possibly causing damage to the workpiece and/or machine itself, or injury to the user.

- WARNINGS RELATED TO REPLACEMENT

WARNING

1. Always turn off the power to the CNC and the main power to the power magnetics cabinet. If only the power to the CNC is turned off, power may continue to be supplied to the serve section. In such a case, replacing a unit may damage the unit, while also presenting a danger of electric shock.
2. When a heavy unit is to be replaced, the task must be undertaken by two persons or more. If the replacement is attempted by only one person, the replacement unit could slip and fall, possibly causing injury.
3. After the power is turned off, the servo amplifier and spindle amplifier may retain voltages for a while, such that there is a danger of electric shock even while the amplifier is turned off. Allow at least twenty minutes after turning off the power for these residual voltages to dissipate.
4. When replacing a unit, ensure that the new unit has the same parameter and other settings as the old unit. (For details, refer to the manual provided with the machine.) Otherwise, unpredictable machine movement could damage the workpiece or the machine itself, and present a danger of injury.

4 WARNINGS RELATED TO PARAMETERS

WARNING

1. When machining a workpiece for the first time after modifying a parameter, close the machine cover. Never use the automatic operation function immediately after such a modification. Instead, confirm normal machine operation by using functions such as the single block function, feedrate override function, and machine lock function, or by operating the machine without mounting a tool and workpiece. If the machine is used before confirming that it operates normally, the machine may move unpredictably, possibly damaging the machine or workpiece, and presenting a risk of injury.
2. The CNC and PMC parameters are set to their optimal values, so that those parameters usually need not be modified. When a parameter must be modified for some reason, ensure that you fully understand the function of that parameter before attempting to modify it. If a parameter is set incorrectly, the machine may move unpredictably, possibly damaging the machine or workpiece, and presenting a risk of injury.

WARNINGS AND NOTES RELATED TO DAILY MAINTENANCE

WARNING

1. Memory backup battery replacement

When replacing the memory backup batteries, keep the power to the machine (CNC) turned on, and apply an emergency stop to the machine. Because this work is performed with the power on and the cabinet open, only those personnel who have received approved safety and maintenance training may perform this work.
When replacing the batteries, be careful not to touch the high-voltage circuits (marked Δ and fitted with an insulating cover).
Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

NOTE

The CNC uses batteries to preserve the contents of its memory, because it must retain data such as programs, offsets, and parameters even while external power is not applied.
If the battery voltage drops, a low battery voltage alarm is displayed on the machine operator's panel or CRT screen.
When a low battery voltage alarm is displayed, replace the batteries within a week. Otherwise, the contents of the CNC's memory will be lost.
To replace the battery, see the procedure described in Section 2.10 of this manual.

WARNING

2. Absolute pulse coder battery replacement

When replacing the memory backup batteries, keep the power to the machine (CNC) turned on, and apply an emergency stop to the machine. Because this work is performed with the power on and the cabinet open, only those personnel who have received approved safety and maintenance training may perform this work.
When replacing the batteries, be careful not to touch the high-voltage circuits (marked $\mathbb{\Delta}$ and fitted with an insulating cover).
Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

NOTE

The absolute pulse coder uses batteries to preserve its absolute position.
If the battery voltage drops, a low battery voltage alarm is displayed on the machine operator's panel or CRT screen.
When a low battery voltage alarm is displayed, replace the batteries within a week. Otherwise, the absolute position data held by the pulse coder will be lost.
To replace the battery, see the procedure described in Section 2.10 of this manual.

WARNING

3. Fuse replacement

Before replacing a blown fuse, however, it is necessary to locate and remove the cause of the blown fuse.
For this reason, only those personnel who have received approved safety and maintenance training may perform this work.
When replacing a fuse with the cabinet open, be careful not to touch the high-voltage circuits (marked $\boldsymbol{\Delta}$ and fitted with an insulating cover).
Touching an uncovered high-voltage circuit presents an extremely dangerous electric shock hazard.

PREFACE

Description of this manual

1.Display and operation

This chapter covers those items, displayed on the screen, that are related to maintenance. A list of all supported operations is also provided at the end of this chapter.

2.LCD mounted type i Series hardware

This chapter describes the configuration of the hardware, lists the hardware units, and explains how to replace printed-circuit boards.

3.Stand-alone type i Series hardware

4. Matters common to both LCD-mounted type and Stand-alone type i Series hardware

5.Data input/output

This chapter describes the input/output of data, including programs, parameters, and tool compensation data, aswell as the input/output procedures for conversational data.

6. Interface between the CNC and PMC

This chapter describes the PMC specifications, the system configuration, and the signals used by the PMC.

7.Digital servo

This chapter describes the servo tuning screen and how to adjust the reference position return position.

8.AC spindles

These chapters describe the spindle amplifier checkpoints, as well as the spindle tuning screen.

9.Trouble shooting

This chapter describes the procedures to be followed in the event of certain problems occurring, for example, if the power cannot be turned on or if manual operation cannot be performed. Countermeasures to be applied in the event of alarms being output are also described.

Appendix

The appendix consists of a list of all alarms, a list of maintenance parts, and boot system.
This manual does not provide a parameter list. If necessary, refer to the separate PARAMETER MANUAL (B-63010EN) and Series 20i-TA/FA PARAMETER MANUAL (B-63380EN).

Applicable models

This manual can be used with the following models. The abbreviated names may be used.

Product name	Abbreviation	
FANUC Series 16i-TA	16i-TA	T series or T series (two-path control)*1
FANUC Series 160i-TA	160i-TA	
FANUC Series 160is-TA	160is-TA	
FANUC Series 16i-MA	16i-MA	M series or M series (two-path control)*
FANUC Series 160i-MA	160i-MA	
FANUC Series 160is-MA	160is-MA	
FANUC Series 18i-TA	18i-TA	T series or T series (two-path control)*1
FANUC Series 180i-TA	180i-TA	
FANUC Series 180is-TA	180is-TA	
FANUC Series 18i-MA	18i-MA	M series
FANUC Series 180i-MA	180i-MA	
FANUC Series 180is-MA	180is-MA	
FANUC Series 21i-TA	21i-TA	T series
FANUC Series 210i-TA	210i-TA	
FANUC Series 210is-TA	210is-TA	
FANUC Series 21i-MA	21i-MA	M series
FANUC Series 210i-MA	210i-MA	
FANUC Series 210is-MA	210is-MA	
FANUC Series 20is-TA	20i-TA	T series for Lathe
FANUC Series 20is-FA	20i-FA	M series for Milling

*1) With two-path control function.

NOTE

Some function described in this manual may not be applied to some products.
For details, refer to the DESCRIPTIONS manual (B-63002EN)

Renaming of PMC Models

The manual presents programming descriptions for the PMC models listed in the following table. None that some models have been renamed; in the product name column, the old names are enclosed in parentheses, while the new names appear above the old names. However, the previous specifications are still applied to the renamed models. Thus, when using the renamed models, users should:

- Read the old names shown in this manual as the new names.
- Read the old names appearing on the units as the new names.

Table. PMC Model Name

Product name	Abbreviations
FANUC PMC-MODEL SA1 (Old name: FANUC PMC-MODEL RA1)	PMC-SA1 (PMC-RA1)
FANUC PMC-MODEL SA5 (Old name: FANUC PMC-MODEL RA5)	PMC-SA5 (PMC-RA5)
FANUC PMC-MODEL SB5	PMC-SB5
(Old name: FANUC PMC-MODEL RB5)	(PMC-RB5)
FANUC PMC-MODEL SB6 (Old name: FANUC PMC-MODEL RB6)	PMC-SB6 (PMC-RB6)

The table below lists manuals related to MODEL A of Series 16i, Series $18 i$, Series $160 i$ and Series $180 i$.
In the table, this manual is marked with an asterisk(*).

Table 1 Related Manuals

Manual name	Specification number	
DESCRIPTIONS	B-63002EN	
CONNECTION MANUAL (HARDWARE)	B-63003EN	
CONNECTION MANUAL (FUNCTION)	B-63003EN-1	
OPERATOR'S MANUAL FOR LATHE	B-63004EN	
OPERATOR'S MANUAL FOR MACHINING	B-63014EN	
MAINTENANCE MANUAL	B-63005EN	*
PARAMETER MANUAL	B-63010EN	
PROGRAMMING MANUAL (Macro Compiler/Macro Executer)	B-61803E-1	
FAPT MACRO COMPILER PROGRAMMING MANUAL	B-66102E	
FANUC Symbol CAP i T OPERATOR'S MANUAL	B-63304EN	
CONVERSATIONAL AUTOMATIC PROGRAMMING FUNCTION I FOR LATHE OPERATOR'S MANUAL	B-61804E-1	
CONVERSATIONAL AUTOMATIC PROGRAMMING FUNCTION II FOR LATHE OPERATOR'S MANUAL	B-61804E-2	
CONVERSATIONAL AUTOMATIC PROGRAMMING FUNCTION I FOR MACHINING CENTER OPERATOR'S MANUAL	B-61874E-1	
FANUC Super CAP i T OPERATOR'S MANUAL	B-63284EN	
FANUC Super CAP i M OPERATOR'S MANUAL	B-63294EN	

Related manuals of SERVO MOTOR α series, β series

Related manuals of SERVO MOTOR α series, β series

Manual name	Specification number
FANUC AC SERVO MOTOR α series DESCRIPTIONS	B-65142E
FANUC AC SERVO MOTOR α series PARAMETER MANUAL	B-65150E
FANUC AC SPINDLE MOTOR α series DESCRIPTIONS	B-65152E
FANUC AC SPINDLE MOTOR α series PARAMETER MANUAL	B-65160E
FANUC SERVO AMPLIFIER α series DESCRIPTIONS	B-65162E
FANUC SERVO α series MAINTENANCE MANUAL	B-65165E
FANUC SERVO MOTOR β series DESCRIPTIONS	B-65232EN
FANUC SERVO MOTOR β series MAINTENANCE MANUAL	B-65235EN
FANUC SERVO MOTOR β series (I/O Link Option) MAINTENANCE MANUAL	B-65245EN

Table of Contents

SAFETY PRECAUTIONS s-1
PREFACE p-1

1. DISPLAY AND OPERATION 1
1.1 FUNCTION KEYS AND SOFT KEYS 2
1.1.1 Soft Keys 2
1.1.2 Function Keys and Soft Keys (for 20i) 23
1.2 SCREEN DISPLAYED IMMEDIATELY AFTER POWER IS TURNED ON 25
1.2.1 Slot Status Display 25
1.2.2 Setting Module Screen 26
1.2.3 Configuration Display of Software 26
1.3 SYSTEM CONFIGURATION SCREEN 27
1.3.1 Display Method 27
1.3.2 Configuration of PCBs 27
1.3.3 Software Configuration Screen 29
1.3.4 Module Configuration Screen 29
1.4 ALARM HISTORY SCREEN 30
1.4.1 General 30
1.4.2 Screen Display 30
1.4.3 Clearing Alarm History 30
1.4.4 Alarm Display 30
1.5 EXTERNAL OPERATOR MESSAGES RECORD 31
1.5.1 Screen Display 31
1.5.2 Deletion of External Operator Messages Record 31
1.5.3 Parameter 32
1.5.4 Notes 32
1.6 OPERATION HISTORY 33
1.6.1 Parameter Setting 33
1.6.2 Screen Display 34
1.6.3 Setting The Input Signal or Output Signal to Be Recorded in The Operation History 38
1.6.4 Inputting and Outputting the Operation History Data 47
1.6.5 Notes 53
1.7 HELP FUNCTION 54
1.7.1 General 54
1.7.2 Display Method 54
1.8 DISPLAYING DIAGNOSTIC PAGE 57
1.8.1 Displaying Diagnostic Page 57
1.8.2 Contents Displayed 57
1.9 CNC STATE DISPLAY 82
1.10 WAVEFORM DIAGNOSTIC FUNCTION 84
1.10.1 Setting Parameters 84
1.10.2 Waveform Diagnostic Parameter Screen 85
1.10.3 Graphic of Wave Diagnosis data 88
1.10.4 Data Sampling for Storage Type Waveform Diagnosis 90
1.10.5 Outputting Waveform Diagnosis Data (Storage Type) 92
1.10.6 Notes 95
1.11 OPERATING MONITOR 96
1.11.1 Display Method 96
1.11.2 Parameters 97
1.12 LIST OF OPERATIONS 98
1.13 WARNING SCREEN DISPLAYED WHEN AN OPTION IS CHANGED 109
1.14 WARNING SCREEN DISPLAYED WHEN SYSTEM SOFTWARE IS REPLACED (SYSTEM LABEL CHECK ERROR) 111
1.15 MAINTENANCE INFORMATION SCREEN 112
1.15.1 Screen Display and Operation 112
1.15.2 Maintenance Information Input/Output 115
1.16 COLOR SETTING SCREEN 116
1.16.1 Screen Display 116
1.16.2 Color Setting 116
1.16.3 Parameters 118
1.16.4 Notes 119
1.17 CONTRAST ADJUSTMENT 120
1.18 POWER MOTION MANAGER 121
1.18.1 Parameter 121
1.18.2 Screen Display 121
1.18.3 Parameter Input/Output 128
1.18.4 Notes 129
1.19 PERIODIC MAINTENANCE SCREENS 131
1.19.1 Overview 131
1.19.2 Screen Display and Setting 131
1.19.3 Status Screen Display and Setting 132
1.19.4 Setting Screen Display and Setting 137
1.19.5 Registered Data Input/Output 139
1.19.6 FANUC Two-Byte Character Code Table 141
2. LCD-MOUNTED TYPE i SERIES HARDWARE 147
2.1 STRUCTURE 148
2.2 OVERVIEW OF HARDWARE 149
2.2.1 Series $16 i / 160 i / 160$ is 149
2.2.2 Series 18i/180i/180is 151
2.2.3 Series $21 i / 210 i / 210$ is 152
2.2.4 Series $20 i$ 153
2.3 TOTAL CONNECTION DIAGRAMS 154
2.4 CONFIGURATION OF PRINTED CIRCUIT BOARD CONNECTORS AND CARDS 162
2.4.1 FS16i/18i/21i/20i Motherboard 162
2.4.2 PC Function-Equipped FS160i/180i/210i Motherboards 173
2.4.3 PC Function-Equipped FS160is/180is/210is Motherboard 189
2.4.4 Inverter PCBs and Connector Units 202
2.4.5 C Board, Serial Communication Board, CAP-II Board, and Symbol CAP i T Board 208
2.4.6 Sub-CPU Board 214
2.4.7 RISC Board 218
2.4.8 Data Server Board 221
2.4.9 Loader Control Board 229
2.4.10 HSSB Interface Board 233
2.4.11 I/O Link-II Board 236
2.4.12 PROFIBUS Board 238
2.4.13 Ethernet Board 240
2.4.14 DeviceNet Interface Board 244
2.5 LIST OF UNITS AND PRINTED CIRCUIT BOARDS 245
2.5.1 Basic Unit 245
2.5.2 MDI Unit 255
2.5.3 Printed Circuit Boards of the Control Unit 257
2.5.4 Others 263
2.6 REPLACING THE MOTHERBOARD 264
2.7 MOUNTING AND REPLACING THE PC CARD (MMX PENTIUM) 267
2.8 MOUNTING AND REPLACING THE CE CARD 271
2.9 REPLACING FUSE ON CONTROL UNIT 275
2.10 REPLACING BATTERY 277
2.11 REPLACING FAN MOTORS 281
2.12 REPLACING LCD BACKLIGHT 284
2.13 HEAT GENERATED IN EACH UNIT 291
3. STAND-ALONE TYPE i SERIES HARDWARE 294
3.1 HARDWARE CONFIGURATION 295
3.2 HARDWARE OVERVIEW 296
3.2.1 Series $16 i / 160 i$ 296
3.2.2 Series 18i/180i 298
3.2.3 Series 21i/210i 299
3.3 TOTAL CONNECTION DIAGRAMS 300
3.4 CONNECTOR AND CARD CONFIGURATIONS OF PRINTED CIRCUIT BOARDS 304
3.4.1 Main CPU Board of Series 16i/18i/21i 304
3.4.2 Sub-CPU Board 312
3.4.3 RISC Board, Data Server Board, RISC + Data Server Board 316
3.4.4 C Board, Serial Communication Board 322
3.4.5 HSSB Interface Board 323
3.4.6 CAP-II Board 325
3.4.7 I/O Link-II Board 326
3.4.8 Ethernet Board 327
3.4.9 DeviceNet Board 330
3.4.10 PROFIBUS Master Board 332
3.4.11 PROFIBUS Slave Board 333
3.4.12 FL-net Board 334
3.5 UNITS AND PRINTED CIRCUIT BOARDS 335
3.5.1 Basic Units 335
3.5.2 Printed Circuit Boards of Control Unit 335
3.5.3 LCD/MDI Unit 339
3.5.4 Other Units 340
3.6 MOUNTING AND REMOVING AN OPTION BOARD 341
3.6.1 Mounting and Removing the Main CPU Board and a Full-Size Option Board 341
3.6.1.1 Removing the board 341
3.6.1.2 Mounting the board 342
3.6.2 Mounting and Removing a Mini-Slot Option Board (Except DeviceNet Board) 343
3.6.2.1 Removing the board 343
3.6.2.2 Mounting the board 343
3.6.3 Mounting and Removing the DeviceNet Board 344
3.6.3.1 Removing the board 344
3.6.3.2 Mounting the board 344
3.7 MOUNTING AND REMOVING THE BACK PANEL 346
3.7.1 Removing the Panel 346
3.7.2 Mounting the Back Panel 346
3.8 REPLACING THE FUSE OF THE CONTROL UNIT 348
3.9 REPLACING THE BATTERY 350
3.10 REPLACING A FAN UNIT 353
3.11 REPLACING THE FUSE OF THE LCD UNIT 354
3.12 REPLACING THE LCD BACKLIGHT 355
3.13 HEAT GENERATION OF THE UNITS 358
4. MATTERS COMMON TO BOTH LCD-MOUNTED TYPE AND STAND-ALONE TYPE i SERIES (HARDWARE) 360
4.1 MOUNTING AND DEMOUNTING CARD PCBS 361
4.1.1 Demounting a Card PCB 362
4.1.2 Mounting a Card PCB 363
4.2 MOUNTING AND DEMOUNTING DIMM MODULES 364
4.2.1 Demounting a DIMM Module 365
4.2.2 Mounting a DIMM Module 365
4.3 MAINTENANCE OF HEAT EXCHANGER OF HEAT PIPE TYPE 366
4.4 LIQUID CRYSTAL DISPLAY (LCD) 370
4.5 DISTRIBUTED I/O SETTING 373
4.6 REPLACING FUSES ON VARIOUS UNITS 376
4.7 ENVIRONMENTAL CONDITIONS OUTSIDE CABINET 381
4.8 COUNTERMEASURES AGAINST NOISE 382
4.8.1 Separation of Signal Lines 382
4.8.2 Grounding 384
4.8.3 Signal Ground (SG) Connection of Control Unit 386
4.8.4 Noise Suppressor 388
4.8.5 Cable Clamping and Shielding 389
4.9 NOTES ON USING THE MDI UNIT 392
5. INPUT AND OUTPUT OF DATA 393
5.1 SETTING PARAMETERS FOR INPUT/OUTPUT 394
5.2 INPUTTING/ OUTPUTTING DATA 396
5.2.1 Confirming the Parameters Required for Data Output 396
5.2.2 Outputting CNC Parameters 397
5.2.3 Outputting PMC Parameters 398
5.2.4 Outputting Pitch Error Compensation Amount 398
5.2.5 Outputting Custom Macro Variable Values 399
5.2.6 Outputting Tool Compensation Amount 399
5.2.7 Outputting Part Program 399
5.2.8 Inputting CNC Parameters 400
5.2.9 Inputting PMC Parameters 401
5.2.10 Inputting Pitch Error Compensation Amount 402
5.2.11 Inputting Custom Macro Variable Values 402
5.2.12 Inputting Tool Compensation Amount 403
5.2.13 Inputting Part Programs 403
5.3 INPUT/OUTPUT SUPER CAP DATA 405
5.3.1 Input/Output of Conversational Data in a Lump(Super CAP M) 405
5.3.2 Input and Output of Each File (Super CAP M) 407
5.3.3 Input and output of CAP Data (Super CAP T) 407
5.3.4 Input and Output of Each File (Super CAP T) 414
5.4 INPUTTING/OUTPUTTING CAP-II DATA (16i-T) 417
5.5 DUMP/RESTORE OF CAP-II DATA (16i-T) 419
5.5.1 Kind of Data in Sub Memory 419
5.5.2 Operation 419
5.6 CLEARING CAP-II DATA ($16 i-\mathrm{T}$) 420
5.6.1 Deleting File Name and Files 420
5.6.2 Clearing CAP-II Memory 421
5.7 DATA INPUT/OUTPUT ON THE ALL IO SCREEN 422
5.7.1 Setting Input/Output-Related Parameters 423
5.7.2 Inputting and Outputting Programs 425
5.7.3 Inputting and Outputting Parameters 429
5.7.4 Inputting and Outputting Offset Data 430
5.7.5 Outputting Custom Macro Common Variables 431
5.7.6 Inputting and Outputting Floppy Files 432
5.8 DATA INPUT/OUTPUT USING A MEMORY CARD 437
6. INTERFACE BETWEEN CNC AND PMC 447
6.1 GENERAL OF INTERFACE 448
6.2 SPECIFICATION OF PMC 449
6.2.1 Specification 449
6.2.2 Address 451
6.2.3 Built-in Debug Function 453
6.2.4 System Reserve Area of Internal Relay 453
6.2.5 Execution Period of PMC 455
6.3 PMC SCREEN 456
6.3.1 Display Method 456
6.3.2 PMCLAD Screen 457
6.3.3 PMCDGN Screen 461
6.3.4 Memory Display (M.SRCH) 465
6.3.5 PMCPRM Screen 469
6.4 LIST OF SIGNALS BY EACH MODE 475
6.5 LIST OF INPUT/OUTPUT SIGNALS 477
6.6 LIST OF ADDRESSES 497
7. DIGITAL SERVO 523
7.1 INITIAL SETTING SERVO PARAMETERS 524
7.2 SERVO TUNING SCREEN 534
7.2.1 Parameter Setting 534
7.2.2 Displaying Servo Tuning Screen 534
7.3 ADJUSTING REFERENCE POSITION (DOG METHOD) 537
7.3.1 General 537
7.4 DOGLESS REFERENCE POSITION SETTING 540
7.4.1 General 540
7.4.2 Operation 540
7.4.3 Associated Parameters 541
8. AC SPINDLE (SERIAL INTERFACE) 542
8.1 AC SPINDLE (SERIAL INTERFACE) 543
8.1.1 Outline of Spindle Control 543
8.1.1.1 Method A of gear change for machining center 545
8.1.1.2 Method B of gear change for machining center (PRM 3705\#2=1) 545
8.1.1.3 For lathe 545
8.1.2 Spindle Setting and Tuning Screen 546
8.1.2.1 Display method 546
8.1.2.2 Spindle setting screen 546
8.1.2.3 Spindle tuning screen 547
8.1.2.4 Spindle monitor screen 549
8.1.2.5 Correspondence between operation mode and parameters on spindle tuning screen 551
8.1.3 Automatic Setting of Standard Parameters 554
8.2 AC SPINDLE (ANALOG INTERFACE) 555
8.2.1 Outline of Spindle Control 555
8.2.1.1 Block diagram 556
8.2.1.2 Calculation of S analog voltage and related parameters 557
8.2.1.3 Tuning S analog voltage (D / A converter) 559
9. TROUBLESHOOTING 561
9.1 CORRECTIVE ACTION FOR FAILURES 563
9.1.1 Investigating the Conditions under which Failure Occurred 563
9.2 NO MANUAL OPERATION NOR AUTOMATIC OPERATION CAN BE EXECUTED 565
9.3 JOG OPERATION CANNOT BE DONE 569
9.4 HANDLE OPERATION CANNOT BE DONE 573
9.5 AUTOMATIC OPERATION CANNOT BE DONE 578
9.6 CYCLE START LED SIGNAL HAS TURNED OFF 586
9.7 NOTHING IS DISPLAYED ON THE LCD WHEN THE POWER IS TURNED ON 588
9.8 THE DISPLAY ON THE LCD UNIT FLASHES 592
9.9 INPUT FROM AND OUTPUT TO I/O DEVICES CANNOT BE PERFORMED INPUT/OUTPUT CANNOT BE PERFORMED PROPERLY 593
9.10 ALARM 85 TO 87 (READER/PUNCHER INTERFACE ALARM) 595
9.11 ALARM 90 (REFERENCE POSITION RETURN IS ABNORMAL) 602
9.12 ALARM 300 (REQUEST FOR REFERENCE POSITION RETURN) 604
9.13 ALARM 300 (V READY OFF) 605
9.14 ALARM 404 (V READY ON) 609
9.15 ALARM 462 (SEND CNC DATA FAILED) 612
9.16 ALARM 417 (DIGITAL SERVO SYSTEM IS ABNORMAL) 615
9.17 ALARM 700 (OVERHEAT: CONTROL UNIT) 616
9.18 ALARM 701 (OVERHEAT: FAN MOTOR) 617
9.19 ALARM 704 (SPINDLE SPEED FLUCTUATION DETECTION ALARM) 619
9.20 ALARM 749 (SERIAL SPINDLE COMMUNICATION ERROR) 620
9.21 ALARM 750 (SPINDLE SERIAL LINK STARTUP FAILURE) 621
9.22 ALARM 5134 (FSSB: OPEN READY TIME OUT) ALARM 5135 (FSSB: ERROR MODE) ALARM 5137 (FSSB: CONFIGURATION ERROR) ALARM 5197 (FSSB: OPEN TIME OUT) ALARM 5198 (FSSB: ID DATA NOT READ) 624
9.23 ALARM 5136 (FSSB: NUMBER OF AMPS IS SMALL) 628
9.24 ALARM 900 (ROM PARITY) 631
9.25 ALARMS 910 AND 911 (SRAM PARITY) 634
9.26 ALARMS 912 TO 919 (DRAM PARITY) 637
9.27 ALARMS 920 AND 921 (SERVO ALARMS) 639
9.28 ALARM 926 (FSSB ALARM) 643
9.29 ALARM 930 (CPU INTERRUPT) 649
9.30 ALARM 935 (SRAM ECC ERROR) 651
9.31 ALARM 950 (PMC SYSTEM ALARM) 655
9.32 ALARM 951 (PMC WATCHDOG ALARM) 658
9.33 ALARM 972 (NMI ALARM ON AN OPTION BOARD) 659
9.34 ALARM 973 (NMI ALARM WITH AN UNKNOWN CAUSE) 660
9.35 ALARM 974 (F-BUS ERROR) 661
9.36 ALARM 975 (BUS ERROR) 664
9.37 ALARM 976 (LOCAL BUS ERROR) 665
9.38 SERVO ALARMS 666
9.39 SPC ALARMS 669
9.40 SPINDLE ALARMS 670
APPENDIX
A. ALARM LIST 673
A. 1 LIST OF ALARM CODES (CNC) 674
A. 2 LIST OF ALARMS (PMC) 706
A. 3 ALARMS (SERIAL SPINDLE) 719
A. 4 ERROR CODES (SERIAL SPINDLE) 724
B. LIST OF MAINTENANCE PARTS 726
B. 1 MAINTENANCE PARTS 727
C. BOOT SYSTEM 728
C. 1 OVERVIEW 729
C.1.1 Starting the Boot System 729
C.1.2 System Files and User Files 730
C.1.3 Boot Slot Configuration Screen 730
C. 2 SCREEN CONFIGURATION AND OPERATING PROCEDURE 731
C.2.1 System Data Loading Screen 732
C.2.2 System Data Check Screen 734
C.2.3 System Data Delete Screen 736
C.2.4 SYSTEM DATA SAVE Screen 737
C.2.5 SRAM DATA BACKUP Screen 739
C.2.6 MEMORY CARD FILE DELETE Screen 742
C.2.7 MEMORY CARD FORMAT Function 743
C.2.8 LOAD BASIC SYSTEM Function 744
C. 3 ERROR MESSAGES AND REQUIRED ACTIONS 746
D. MEMRY CARD SLOT 749
D. 1 OVERVIEW 750
D. 2 MEMORY CARD TYPES (FUNCTIONS) 751
D. 3 HARDWARE CONFIGURATION 752
E. LED DISPLAY AND MAINTENANCE OF STAND-ALONE TYPE UNIT 754
E. 1 OVERVIEW 755
E. 2 LAYOUT OF THE 7-SEGMENT LED AND SWITCHES 756
E. 3 OPERATION 757
E.3.1 Operation Before Power-On 757
E.3.2 Function Number 757
E.3.3 Seven-Segment LED Display 758
E.3.3.1 NC status display 758
E.3.3.2 LED display during automatic operation 758
E.3.3.3 LED display when the push switch is pressed 758
E.3.3.4 LED display when a system alarm is issued 759
E.3.3.5 Display on the 7-segment LED at power-on 760
E.3.4 Operation of Each Function 761
E. 4 SUPPORTED EDITIONS 763
F. MAINTENANCE OF OPEN CNC (BOOT-UP AND IPL) 764
F. 1 OVERVIEW 765
F. 2 CHANGING START SEQUENCES 766
F. 3 EXPLANATION OF SCREENS 770
F.3.1 Boot Screen 770
F.3.1.1 System data manipulation 771
F.3.1.2 SRAM operation 772
F.3.1.3 File operation 773
F.3.2 IPL Screen 774
F.3.2.1 Functions on the IPL screen 775
F. 4 OTHER SCREENS 777
F.4.1 CNC Alarm Screen 777
F.4.2 Status Screen 778
F.4.3 Option Setting Screen 779
G. FSSB START-UP PROCEDURE/MATERIALS 780
G. 1 OVERVIEW 781
G. 2 SLAVE 782
G. 3 AUTOMATIC SETTING 783
G.3.1 [Sample Setting 1] General Configuration (Semi-Closed Loop) 785
G.3.2 [Sample Setting 2] General Configuration (Closed Loop) 786
G.3.3 [Sample Setting 3] When the C-Axis is a Cs Axis 788
G.3.4 [Sample Setting 4] Tandem Control Configuration 790
G.3.5 [Sample Setting 5] When the Simple Electronic Gear Box (EGB) Function is Used 792
G. 4 MANUAL SETTING 2 794
G. 5 MANUAL SETTING 1 801
G. 6 ALARMS 802
G. 7 ACTIONS FOR TROUBLE ENCOUNTERED AT START-UP TIME 806
G. 8 EXAMPLES OF SETTINGS USING OTHER CONNECTIONS 808
G.8.1 Example 1: Learning Control 808
G.8.2 Example 2: When a 2-Axis Amplifier is Shared by Two Paths 809
G. 9 FSSB DATA DISPLAY 812
G.9.1 Amplifier Setting Screen 812
G.9.2 Axis Setting Screen 813
G.9.3 Amplifier Maintenance Screen 814
H. NOTATION OF MDI KEYS 816

dISPLAY AND OPERATION

1

This chapter describes how to display various screens by the function keys. The screens used for maintenance are respectively displayed.
1.1 FUNCTION KEYS AND SOFT KEYS 2
1.2 SCREEN DISPLAYED IMMEDIATELY AFTER POWER IS TURNED ON 25
1.3 SYSTEM CONFIGURATION SCREEN 27
1.4 ALARM HISTORY SCREEN 30
1.5 EXTERNAL OPERATOR MESSAGES RECORD 31
1.6 OPERATION HISTORY 33
1.7 HELP FUNCTION 54
1.8 DISPLAYING DIAGNOSTIC PAGE 57
1.9 CNC STATE DISPLAY 82
1.10 WAVEFORM DIAGNOSTIC FUNCTION 84
1.11 OPERATING MONITOR 96
1.12 LIST OF OPERATIONS 98
1.13 WARNING SCREEN DISPLAYED WHEN AN OPTION IS CHANGED 109
1.14 WARNING SCREEN DISPLAYED WHEN SYSTEM SOFTWARE IS REPLACED (SYSTEM LABEL CHECK ERROR) 111
1.15 MAINTENANCE INFORMATION SCREEN 112
1.16 COLOR SETTING SCREEN 116
1.17 CONTRAST ADJUSTMENT 120
1.18 POWER MOTION MANAGER 121
1.19 PERIODIC MAINTENANCE SCREENS 131

1.1
 FUNCTION KEYS AND SOFT KEYS

1.1.1
 Soft Keys

Operations and soft key display staturs for each function key are described below:

To display a more detailed screen, press a function key followed by a soft key. Soft keys are also used for actual operations.
The following illustrates how soft key displays are changed by pressing each function key.

*1 Press function keys to switch between screens that are used frequently.
*2 Some soft keys are not displayed depending on the option configuration.
*3 In some cases, the continuous menu key is omitted when the 12 soft keys type is used.

PROGRAM SCREEN

Soft key transition triggered by the function key
PROG in the HNDL, JOG, or REF mode

Program display
[PRGRM] — [(OPRT)] — [BG-EDT] \Rightarrow See "When the soft key [BG-EDT] is pressed"

Current block display screen
[CURRNT] $-[(O P R T)]-[B G-E D T] \Rightarrow$ See "When the soft key $[B G-E D T]$ is pressed"

Next block display screen
[NEXT] - [(ORT)] - [BG-EDT] \Rightarrow See "When the soft key [BG-EDT] is pressed"

Program restart display screen
$[R S T R]-[(O P R T)]-[B G-E D T] \quad \Rightarrow$ See "When the soft key $[B G-E D T]$ is pressed"

PROGRAM SCREEN
Soft key transition triggered by the function key PRoG in the TJOG or THDL mode

Program display
$[$ PRGRM $]-[(O P R T)]-[B G-E D T] \Rightarrow$ See "When the soft key [BG-EDT] is pressed"

Program directory display
[LIB] - [(OPRT)] \square
[BG-EDT]
\Rightarrow See "When the soft key [BG-EDT] is pressed" - (Onumber) - [O SRH] \Rightarrow Return to the program

1.1.2

Function Keys and Soft
Keys (for 20i)

The function selection soft keys are intended to select screens. Their functions are equivalent to those of the function keys. For example, pressing function selection soft key [POS] selects the same screen that is selected using the POS function key.
The function selection soft keys are displayed when bit 0 of parameter No. 3101 (FSK) is 0 . They are not displayed when the bit is 1 .

The following function selection keys are available.

The following table lists the function selection soft keys and the corresponding function keys.

Function selection soft key	Corresponding function key
[POS]	
[PRGRM]	
[SETING]	
[SYSTEM]	
[MSG]	
[CUSTOM]	

Pressing soft key ([CHAP]) displays the chapter selection soft keys.

NOTE

This manual uses the function keys to select screens. When using the function selection soft keys instead of the function keys, read each function key name in the descriptions as the corresponding function selection soft key.

1 Pressing one of the chapter selection soft keys displays the corresponding screen.
If a desired chapter soft key does not appear, press the continuous menu key.
In some cases, several other chapters can be selected in a chapter.
2 When the desired chapter screen appears, press the operation selection key to display the items you want to operate.
3 To return to the chapter selection soft key display, press the return menu key.
If bit 0 of parameter No. 3101 (FSK) is 0, pressing the return menu key displays the function selection soft keys again.

The actual display procedure varies from one screen to another. For specific operations, see the respective descriptions.

1.2
 SCREEN DISPLAYED
 IMMEDIATELY AFTER
 POWER IS TURNED
 ON

1.2.1
 Slot Status Display

Types of PCBs mounted on the slots are displayed.
If a hardware trouble or an incorrect mounting is found, this screen is displayed.

- Slot state screen

*1) Module ID of PCB

Internal slot number
Module function (software ID)
Type of PCB (module ID)

- Module ID

ID	Name
D5	Series 16imotherboard
C5	Series 18imotherboard
CC	Series 160imotherboard
EC	Series 180imotherboard
D4	Series 20imotherboard
CD	Serial communication board: remote buffer/DNC2
	Serial communication board: DNC1
	C language board
	CAP II board
CE	Sub-CPUboard
CF	RISC board
A3	Data server board
D3	Loader control board
AA	HSSB interface board
C9	PC function card

- Software ID

40 : Main CPU
41 : C language
43 : Sub CPU
49 : CAP II
4A : Remote buffer
4F : PMC-RE
53 : Loader control
59 : RISC board for high-precision contour control
5E: HSSB interface (with PC)

1.2.2

Setting Module Screen

1.2.3

Configuration Display of Software

1.3
 SYSTEM
 CONFIGURATION
 SCREEN

After the system has been installed correctly, you can find the PCBs installed and the softwares integrated on the system configuration screen.
1.3.1

Display Method
(1)Press ssstem key.
(2) Press soft key [SYSTEM], then the system configuration screen is displayed
(3) The system configuration screen is composed of three screens and each of them can be selected by the page key $\underset{\text { PAGE }}{\uparrow}\left[\begin{array}{l}\text { PaGE } \\ \boldsymbol{v} \\ \hline\end{array}\right.$.

1.3.2

Configuration of PCBs

- Screen

- Module ID

ID	Name
D5	Series 16imotherboard
C5	Series 18imotherboard
CC	Series 160imotherboard
EC	Series 180imotherboard
D4	Series 20imotherboard
CD	Serial communication board: remote buffer/DNC2
	Serial communication board: DNC1
	C language board
	CAP-II board
CE	Sub-CPUboard
CF	RISC board
A3	Data server board
D3	Loader control board
AA	HSSB interface board
C9	PC function card

- Software ID

40 : Main CPU
41 : C language
43 : Sub CPU
49 : CAP II
4A: Remote buffer
4F : PMC-RE
53 : Loader control
59 : RISC board for high-precision contour control
5E: HSSB interface (with PC)

1.3.3
 Software Configuration Screen

1.3.4
 Module Configuration Screen

Configuration of the modules displayed on PCB.

Contents of display
(1) Slot number (The number is corresponding to PCB configuration screen)
(2) Type of PCB mounted
(3) Name of card PCB or DIMM module
(4) Hardware ID of mounted card PCB or DIMM module Refer to "2.4.3 Printed Circuit Boards of the Control Unit" for correspondence with each hardware ID and drawing number.
 screen of other PCBs.

1.4
 ALARM HISTORY
 SCREEN

1.4.1

General

Alarms generated in the NC are recorded. The latest 25 alarms generated are recorded. The 26th and former alarms are deleted.

1.4.2

Screen Display

(1) Press wessaes key .
(2)Press soft key [HISTRY] and an alarm history screen is displayed.
(3) Other pages are displayed by $\underset{\substack{P_{\text {PAGE }} \\ \square}}{\substack{\text { PAGE } \\ \square}}$ key.

ALARM HISTORY O1234 N12345
97/04/18 20:56:26
506 OVERTRAVEL : +X
97/04/18 19:58:11
000 TURN OFF POWER
97/04/18 19:52:45
000 TURN OFF POWER
97/04/18 19:48:43
300 APC ALARM : X-AXIS ZERO RETURN REQUEST
97/04/18 18:10:10
507 OVERTRAVEL : +B
[ALARM] [MSG] [HISTRY] [] [(OPRT)]

1.4.3

Clearing Alarm History
(1) Press soft key [(OPRT)].
(2)Press soft key [(CLEAR], then the alarm history is cleared.

1.4.4

Alarm Display

When an external alarm (No. 1000 to 1999) or a macro alarm (No. 3000 to 3999) is output, the alarm history function can record both the alarm number and message if so specified in the following parameter. If recording of the message is not set or if no message is input, only an external alarm or macro alarm is displayed.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
3112					EAH			

[Data type] Bit
\#3 (EAH) The alarm history function:
0 : Does not record the messages output with external alarms or macro alarms.
1: Records the messages output with external alarms or macro alarms.

1.5.1
 Screen Display

This function enables the saving of external operator messages as a record.
The record can be viewed on the external operator message history screen.
(1) Press the wesmee function key.
(2)Press the rightmost soft key [>>].
[ALARM] [MGS] [HISTRY] [][(OPRT)]>>
\uparrow
(3) Press the [MSGHIS] soft key.
(4) To display the previous or subsequent screen, press the
 or (1) key.

1.5.2

Deletion of External Operator Messages Record
(1) The recorded external operator message can be deleted by setting the MMC bit (bit 0 of parameter 3113) to 1.
Pressing the [CLEAR] soft key erases all the records of the external operator message.
(2) The MS1 and MS0 bits (bits 7 and 6 of parameter 3113) specify the number of records to be displayed on the external operator message history screen. When the bits are changed, all external operator message records retained up to that point are erased.

1.5.3
 Parameter

3113

\#0 (MHC) The records of an external operator message:
0 : Cannot be erased.
1: Can be erased.
\#6, \#7 (MS0,MS1) These bits set the number of characters to be retained in each record of an external operator message, as well as the number of records, as shown in the following table:

MS1	MS0	Number of charac- ters in each record	Number of records
0	0	255	8
0	1	200	10
1	0	100	18
1	1	50	32

* An external operator message of up to 255 characters can be specified. Combining the MS1 bit and MS0 bit (bits 7 and 6 of parameter No. 3113) selects the number of records by limiting the number of characters to be retained as the record of an external operator message.

| $\# 7$ | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| | | | | | OMH | | |

\#2 (OMH) The external operator message history screen is:
0 : Not displayed.
1: Displayed.

NOTE

After setting this parameter, briefly turn the power off, then on again.
1.5.4

Notes

When the number of an external operator message is specified, the system starts updating the records of the specified message. The system continues to perform update until another external operator message is specified or until an instruction to delete the records of the external operator message is specified.

1.6 OPERATION HISTORY

This function displays the key and signal operations performed by the operator upon the occurrence of a fault or the output of an alarm, together with the corresponding alarms.
This function records the following data:
(1) MDI key operations performed by the operator
(2) Status changes (ON/OFF) of input and output signals (selected signals only)
(3) Details of alarms
(4) Time stamp (date and time)

1.6.1

Parameter Setting

3106

[Data type] Bit
\#4 (OPH) The operation history screen is:
0 : Not displayed.
1: Displayed.
\#7 (OHS) The operation history is:
0 : Sampled.
1: Not sampled.

Interval at which the clock time is recorded in the operation history
[Data type] Word
[Units of data] Minutes
[Valid data range] 0 to 1439
The clock time is recorded to the operation history at specified intervals. If zero is set as the interval, ten minutes is assumed. The time is recorded only when data is recorded within the corresponding interval.

1.6.2
 Screen Display
 - Displaying the operation history

(1) Press the ssorem function key.
(2) Press the continue menu key $[\triangle$]. The [OPEHIS] (OPERATION HISTORY) soft key are displayed.
(3)Press the [OPEHIS] soft key twice. The operation history screen is displayed.

On the operation history screen, the soft keys are configured as shown below:

$\Rightarrow[\triangleright]$	[PARAM]	[DGNOS]	[PMC]	[SYSTEM	[(OPE)][\triangle]
					\downarrow push
[\triangleleft]	[W.DGNS]] []	[OPEHIS] \Downarrow push	[(OPE)][D]
[\triangleleft]	[OPEHIS	[SG-SEL]	[]	,	$\underset{\downarrow \text { push }}{[(\mathrm{OPE})][\triangleright]}$
[\triangleleft]	TOP]	OTTOM] []] [P	PG.SRH] [\square]

(4) To display the next part of the operation history, press the page down key
 The next page is displayed. To display the interface between two pages, press cursor key \qquad \leftarrow. The screen is scrolled by one row. On a 14 -inch CRT screen, pressing the cursor key scrolls the screen by half a page.
These soft keys can also be used:

1) Pressing the [TOP] soft key displays the first page (oldest data).
2) Pressing the [BOTTOM] soft key displays the last page (latest data).
3) Pressing the [PG.SRH] soft key displays a specified page.

Example) By entering 50 then pressing the [PG.SRH] key, page 50 is displayed.

Data displayed on the operation history screen
（1）MDI keys
Address and numeric keys are displayed after a single space．
Soft keys are displayed in square brackets（［］）．
Other keys（RESET／INPUT，for example）are displayed in angle brackets（＜＞）．
A key pressed at power－on is displayed in reverse video．
For two－path control，the operations of path 2 are displayed in the same way，but preceded by S＿．
1）Function key：〈POS＞，〈PROG〉，〈OFFSET＞，etc．
2）Address／numeric key：A to $Z, 0$ to 9 ，；（EOB），＋，－，（，etc．
3）Page／cursor key：〈PAGE \uparrow 〉，〈CUR \downarrow 〉，〈CUR $\leftarrow>$
4）Soft key：［SF1］，［SF2］，etc．
5）Other key：〈RESET＞，〈CAN＞，etc．
6）Key pressed at power－on：＜RESET＞
（2）Input and output signals
General signals are displayed in the following format： G $0000.7 \uparrow$

The \uparrow mark indicates that the signal is turned on．
The \downarrow mark indicates that the signal is turned off．
Indicates the bit．
Indicates the address

Some signals are indicated by their symbol names．
SBK \uparrow（Indicates that the single block switch is turned on．）

Mode selection signals and rapid traverse override signals are displayed as indicated below:

Input signal					Name displayed
MD1	ND2	MD4	REF	DNC1	
0	0	0	0	0	MDI
1	0	0	0	0	MEM
1	0	0	0	1	RMT
0	1	0	0	0	NOMODE
1	1	0	0	0	EDT
0	0	1	0	0	H/INC
1	0	1	0	0	JOG
1	0	1	1	0	REF
0	1	1	0	0	TJOG
1	1	1	0	0	THND

Input signal		Name displayed
ROV1	ROV2	
0	0	R100\%
1	0	$R 50 \%$
0	1	R25\%
1	1	RF0\%

(3) NC alarms

NC alarms are displayed in reverse video.
P/S alarms, system alarms, and external alarms are displayed together with their numbers.
For other types of alarms, only the alarm type is displayed. (No details are displayed.)
For two-path control, the operations of path 2 are displayed in the same way, but preceded by S_{-}.
Example) P/S0050, SV_ALM, S_APC_ALM
(4) Time stamp (date and time)

The following time data (date and time) is recorded:

1) Date and time of power-on
2) Date and time of power-off
3) Date and time when an NC alarm occurs
4) The clock time is recorded at predetermined intervals, together with each new calendar day.
5) The power-on time is displayed as shown below:

97/01/20 ==== Year/Month/Day
09:15:30 ==== Hour:Minute:Second
2) The power-off time and the time when an NC alarm occurred are displayed in reverse video.
97/01/20 ==== Year/Month/Day
09:15:30 $====$ Hour:Minute:Second
If a system alarm occurs, the date and time are not recorded.
3) At predetermined intervals, the clock time is displayed in reverse video. Set the interval in minutes in parameter No. 3122. If zero is set, the time is stamped at ten-minute intervals.

09:15:30 ==== Hour:Minute:Second
Each new calendar day is displayed in reverse video.
97/01/20 ==== Year/Month/Day

NOTE

The clock time is recorded for a specified interval only when data is stored within that interval.

- Input signal or output signal to be recorded in the operation history
(1)P ress the ssstem function key.
(2)Press the continuous menu key [D]. The [OPEHIS] (operation history) soft key is displayed.
(3)Press the [OPEHIS] soft key, then press the [SG-SEL] soft key. The operation history signal selection screen is displayed.

1.6.3
 Setting The Input Signal or Output Signal to Be Recorded in The Operation History

(1) On the operation history signal selection screen, press the [(OPE)] soft key.

```
OP_HIS SIGNAL SELECT O1000 N02000
    No. ADDRESSIGNAL No. ADDRES SIGNAL
    01 G0004 00000010 11 *************
    03 ******** 13 ********
    04 ******** 14 ********
    05 ******** 15 ********
    06 ******** 16 ********
    07 ******** 17 ********
    08 ******** 18 ********
    09 ******** 19 ********
    10 ******** 20 ********
    EDIT **** *** *** *** 00:00:00
[ ALLDEL ][ DELETE ][ ON:1 ] [ OFF:0 ] [ ]
```

(2) Press the cursor key position.
(3) Key in a signal type (X, G, F, or Y) and an address, then press the
 key.

Example) G0004 InPuT
Signal address G0004 is set in the ADDRES column. The corresponding position in the SIGNAL column is initialized to 000000000.
(4) Select the bit to be recorded.

To select all bits of the specified signal address, press the [ON:1] soft key while the cursor is positioned to 00000000 .
To select a particular bit, position the cursor to that bit by pressing the cursor key \longleftarrow or \rightarrow, then press the [ON:1] soft key. To cancel a selection made by pressing the $[\mathbf{O N}: 1]$ soft key or to cancel a previously selected signal, press the [OFF:0] soft key.
(5) Up to 20 addresses can be specified by means of this signal selection. These addresses need not always be specified at consecutive positions, starting from No.1.
(6) Pressing the [ALLDEL] and [EXEC] soft keys deletes all data. If the [ALLDEL] key is pressed by mistake, it can be cancelled by pressing the [CAN] key.
(7) To delete a selected signal address, position the cursor to the corresponding position then press the [DELETE] and [EXEC] soft keys. In the SIGNAL column, asterisks $* * * * * * * *$ are displayed in place of the deleted data. In the ADDRES column, the corresponding position is cleared.
If the [DELET] key is pressed by mistake, it can be cancelled by pressing the [CAN] key.
(8) Pressing the return menu key $[\triangleleft]$ causes the [OPEHIS] (OPE) soft key to be displayed again.

- Input signals and output signals to be recorded in the history

NOTE

1 A cross (\times) indicates that a signal will not be recorded. Also, any signal for which an address is not specified will not be recorded, either.
2 A circle (\bigcirc) indicates that a signal can be recorded.
3 A signal indicated by its symbol name will also be displayed by its symbol name.

	1. M / T addresses MT \rightarrow PMC			\#4	\#3	\#2	\#1	\#0						
	\#7		\#5											
$\times 000$	\bigcirc													
!														
X127	\bigcirc													
	$\mathrm{PMC} \rightarrow \mathrm{CNC}$													
	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0						
G000	\bigcirc													
G003	\bigcirc													
G004	\bigcirc	\bigcirc	\bigcirc	\bigcirc	FIN	\bigcirc	\bigcirc	\bigcirc						
G005	\bigcirc	\bigcirc	\bigcirc	\bigcirc	TFIN	SFIN	\bigcirc	MFIN						
G006														
	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	*ABS	\bigcirc	SRN						
G007	RLSOT	EXLM	*FLUP	\bigcirc	\bigcirc	ST	STLK	\bigcirc						
G008														
	ERS	RRW	*SP	*ESP	\bigcirc	\bigcirc	\bigcirc	*T						
G009														
	G009 0 O 0 l													
G013	\bigcirc													
G014	\bigcirc													
G015														
	\bigcirc													
!														
G018	\bigcirc													
G019	RT	\bigcirc												

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G115	\bigcirc							
G116	*-L8	*-L7	*-L6	*-L5	*-L4	*-L3	*-L2	*-L1
G117	\bigcirc							
G118	*+ED8	*+ED7	*+ED6	*+ED5	*+ED4	*+ED3	*+ED2	*+ED1
G119	\bigcirc							
G120	*-ED8	*-ED7	*-ED6	*-ED5	*-ED4	*-ED3	*-ED2	*-ED1
G121	\bigcirc							
G125	\bigcirc							
G126	SVF8	SVF7	SVF6	SVF5	SVF4	SVF3	SVF2	SVF1
G127	\bigcirc							
G129					\bigcirc	\bigcirc	\bigcirc	\bigcirc
G130	*178	*IT7	*IT6	*IT5	*T4	*\|T3	*\|T2	*IT1
G131	\bigcirc							
G132	\bigcirc	\bigcirc	\bigcirc	\bigcirc	+MIT4	+MIT3	+MIT2	+MIT1
G133	\bigcirc							
G134	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-MIT4	-MIT3	-MIT2	-MIT1
G135	\bigcirc							
1								
G255	\bigcirc							

$\mathrm{PMC} \rightarrow \mathrm{MT}$

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
Y000	\bigcirc							
?								
Y127	\bigcirc							

$\mathrm{CNC} \rightarrow \mathrm{PMC}$

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F000	\bigcirc							

PMC \rightarrow CNC (Signals for the 2-path)

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G1000	\bigcirc							
$\frac{\text { ? }}{\text { ¢ }}$								
	\bigcirc							
G1004	\bigcirc	\bigcirc	\bigcirc	\bigcirc	FIN	\bigcirc	\bigcirc	\bigcirc
G1005	\bigcirc	\bigcirc	\bigcirc	\bigcirc	TFIN	SFIN	\bigcirc	MFIN
G1006	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	*ABS	\bigcirc	SRN
G1007								
	RLSOT	EXLM	*FLUP	\bigcirc	\bigcirc	ST	STLK	\bigcirc

G1008	ERS	RRW	*SP	*ESP	\bigcirc	\bigcirc	\bigcirc	*T
G1009	\bigcirc							
\}								
G1013	\bigcirc							
G1014	\bigcirc							
G1015	\bigcirc							
\}								
G1018	\bigcirc							
G1019	RT	\bigcirc						

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G1116	*-L8	*-L7	*-L6	*-L5	*-L4	*-L3	*-L2	*-L1
G1117	\bigcirc							
G1118	*+ED8	*+ED7	*+ED6	*+ED5	*+ED4	*+ED3	*+ED2	*+ED1
G1119	\bigcirc							
G1120	*-ED8	*-ED7	*-ED6	*-ED5	*-ED4	*-ED3	*-ED2	*-ED1
G1121	\bigcirc							
!								
G1125	\bigcirc							
G1126	SVF8	SVF7	SVF6	SVF5	SVF4	SVF3	SVF2	SVF1
G1127	\bigcirc							
G1129	\bigcirc							
G1130	*IT8	*IT7	*IT6	*IT5	*IT4	*IT3	*\|T2	*IT1
G1131	\bigcirc							
G1132	\bigcirc	\bigcirc	\bigcirc	\bigcirc	+MIT4	+MIT3	+MIT2	+MIT1
G1133	\bigcirc							
G1134	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-MIT4	-MIT3	-MIT2	-MIT1
G1135	\bigcirc							
G1255	\bigcirc							
	$\mathrm{PMC} \rightarrow \mathrm{MT}$							
	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
Y000	\bigcirc							
Y127	\bigcirc							

$\mathrm{CNC} \rightarrow \mathrm{PMC}$ (Signals for the 1-path)

$\mathrm{CNC} \rightarrow \mathrm{PMC}$ (Signals for the 2-path)

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F1000	\bigcirc							
i								
F1255	\bigcirc							

1.6.4
 Inputting and Outputting the Operation History Data

- Output
- Input
- Output data format

Recorded data can be output to an input/output unit connected via a reader/punch interface. An output record can be input from the input/output unit.
Set the input/output unit to be used in setting parameters No. 0020 and 0100 to 0135.
To output the data, set a code in the ISO bit of a setting parameter (bit 1 of parameter No. 0020).
(1) Select EDIT mode.
(2) Press the sstem key, then select the operation history display screen.
(3)Press the soft keys [(OPRT)], $\boxtimes,[\mathbf{P U N C H}]$, and [EXEC] in this order.

The data output to the FANUC Floppy Cassette or FANUC FA Card is stored under file name OPERATION HISTORY.
(1) Select EDIT mode.
(2)Press the \square key, then select the operation history display screen.
(3)Press the soft keys [(OPRT)], \qquad [READ], and [EXEC] in this order.

1. MDI/soft key
2. Signal
3. Alarm
4. For extension (date or time)
5. MDI/soft key of path 2
6. Signal of path 2
7. Alarm of path 2

The header and recorded operation data are output, in this order. The operation history data is divided into four parts by identifier words. Data other than the identifier words depends on the type.

T(identifier word)	
T0	$:$ Header
T50	\vdots MDI/soft key
T51	\vdots Signal
T52	$:$ Alarm
T53	\vdots For extension (date or time)
T54	\vdots MDI/soft key of path 2
T55	\vdots Signal of path 2
T56	$:$ Alarm of path 2

1) Header

C: Data word
2) $\mathrm{MDI} /$ soft key

	T	5	0	P	0 to 1	H	$*$	$*$	$;$	

PO: Usually
P1: At power-on
$H^{* *}$: Key code (See the following table.)

3) Signal

	T	5	1	P	0 to 6	N	0 to 255	H	${ }^{*}$	$*$,	$*$	$*$	$;$

4) Alarm

	T	5	2	P	0 to 10	N	$*$	$*$	$*$	$*$	$;$	

P0: P/S No. 100
P1: P/S No. 000
P2: P/S No. 101
P3: P/S No. 0001 to 254
P4: Overtravel alarm
P5: Overheat alarm
P6: Servo alarm
P7: System alarm
P8: APC alarm
P9: Spindle alarm
P10: P/S alarm No. 5000 to 5999
P15: External alarm
$\mathrm{N}^{* * * *: ~ A l a r m ~ n u m b e r ~(f o r ~ P / S ~ a l a r m, ~ s y s t e m ~ a l a r m, ~ a n d ~ e x t e r n a l ~}$ alarm only)

5) For extension (date or time)

Date

Time

	T	5	3	P	0 to 1	E	1	D	$*$	$*$	$*$	$*$	$*$	$*$	$;$	

PO: Usually
P1: At power-on
E0: Date
E1: Time
D*..*: Data Example) October 29, 1997

	D	1	9	9	7	1	0	2	9	

6) $\mathrm{MDI} /$ soft key of path 2

	T	5	4	P	0 to 1	H	$*$	$*$	$;$	

PO: Usually
P1: At power-on
$H^{* *}$: KCB code (See the following table.)

7) Signal of path 2

	T	5	5	P	2,6	N	1000 to 1255		H	$*$	$*$,	$*$	$*$	$;$	
New data Old data																

P2: G1000 and above
P6: F1000 and above
N***: DI/DO number
$H^{* *}$: Signal information data (hexadecimal)

8) Alarm of path 2

	T	5	6	P	0 to 10	N	$*$	$*$	$*$	$*$	$;$	

P0: P/S No. 100
P1: P/S No. 000
P2: P/S No. 101
P3: P/S No. 001 to 254
P4: Overtravel alarm
P5: Overheat alarm
P6: Servo alarm
P7: System alarm
P8: APC alarm
P9: Spindle alarm
P10: P/S alarm No. 5000 to 5999
P15: External alarm
$\mathrm{N}^{* * * *}$: Alarm number (for P/S alarm, system alarm, and external alarm only)

Key codes (MDI/soft key)
(00 H to 7 FH)

	0	1	2		4	5	6	7
0			Space	0	@	P		
1			!	1	A	Q		
2			"	2	B	R		
3			\#	3	C	S		
4			\$	4	D	T		
5			\%	5	E	U		
6			\&	6	F	V		
7			,	7	G	W		
8			(8	H	X		
9)	9	I	Y		
A	(EOB)		*	:	J	z		
B			+		K	[
C			,	<	L	$¥$		
D			-	$=$	M]		
E				$>$	N			
F			1	$?$	0	-		

(80 H to FFH)

	8	9	A	B	C	D	E	F
0		Reset						F0
1		MMC *						F1
2		CNC						F2
3								F3
4	Shift	Insert						F4
5		Delete						F5
6	CAN	Alter						F6
7								F7
8	$\underset{\text { cur }}{\text { * }}$	Input					POS	F8
9	Cur¢						PROG	F9
A	Cur \downarrow	Help					OFFSET SETTING	
B	Cur ${ }_{\text {* }}$						SYSTEM	
C							MESSAGE	
D							custom GRAPH *1*	
E	Page \downarrow						CUSTOM	FR
F	Page \uparrow						Fapt	FL

*1:On the small-sized keypad, ED corresponds to the
standard keyboard, ED corresponds to the \qquad GRAPH key and EE to the
\square key.
*: Command key
1.6 .5

Notes
(1) While the operation history screen is displayed, no information can be recorded to the history.
(2) An input signal having an on/off width of up to 16 msec is not recorded in the history. Some signals are not recorded in the history.
(3) Once the storage becomes full, old data is deleted, starting from the oldest record. Up to about 8000 key information items can be recorded.
(4) The recorded data is retained even after the power is turned off. A memory all clear operation, however, erases the recorded data.
(5) The operation history function cannot execute sampling when the OHS bit (bit 7 of parameter No. 3106) is set to 1 .
(6) Set the date and time on the setting screen.
(7) The time needed to input and output 6000 operation records at a rate of 4800 baud is as follows:
Output:About 5 minutes
Input: About 2 minutes and 30 seconds
This file corresponds to a paper tape of about 180 m in length.

1.7
 HELP FUNCTION

1.7.1

General

The help function displays alarm information, operation method and a table of contents for parameters. This function is used as a handbook.
1.7.2

Display Method

Press Help key on any screen other than PMC screen, then a help screen appears.
(However, it is not available when PMC screen/CUSTOM screen is displaying)

(1) When an alarm is generated, press soft key [ALARM], then a help message of the alarm is displayed.

(2)Pressing soft key [OPERAT],(alarm No.), and soft key [SELECT] in this order, a help message corresponding to the input alarm number is displayed.

- Help for operation
(1) Press [2 OPR], then a menu for operation method is displayed.
HELP (OPERATION METHOD) O1234 N12345

1. PROGRAM EDIT
2. SEARCH
3. RESET
4. DATA INPUT WITH MDI
5. DATA INPUT WITH TAPE
6. OUTPUT
7. INPUT WITH FANUC CASSETTE
8. OUTPUT WITH FANUC CASSETTE
9. MEMORY CLEAR
[ALARM] [OPRERAT] [PARAM] [] [(OPRT)]
(2)Press [OPERAT], (an item number) and soft key [SELECT], then an operation method of the item is displayed.
Pressing PAGE key $\underset{\substack{\text { PAGE }}}{\substack{\text { PAGE } \\ \boldsymbol{t}}}$ displays another pages.
```
HELP (OPERATION METHOD)
<<1.PROGRAM EDIT>>
DELETE ALL PROGRAMS
    MODE :EDIT
    SCREEN :PROGRAM
    OPR :(0-9999) - (DELETE)
DELETE ONE PROGRAM
    MODE : EDIT
    SCREEN : PROGRAM
    OPR : (0+PROGRAM NUMBER) - <DELETE>
```

 [] [] [\(\quad\)] \(\quad\) [
 - Parameter table

Press soft key [$\mathbf{3}$ PARA], then a parameter table is displayed.

Another screen can be selected by the PAGE key \square or $\begin{gathered}\text { PaGE } \\ \square\end{gathered}$

1.8
 DISPLAYING
 DIAGNOSTIC PAGE

1.8.1
 Displaying Diagnostic Page

(1) Press \square key.
(2)Press soft key [DGNOS], then a diagnostic screen is displayed.

1.8.2
 Contents Displayed

- Causes when the machine does not travel in spite of giving a command

000 WAITING FOR FIN SIGNAL An auxiliary function is being executed.

001 MOTION Travel command of cycle operation is being executed.
DWELL Dwell is being executed.
In-position check is being done.
Feedrate override is 0%.
Interlock or start lock is input.
Waiting for spindle speed arrival signal.
Data is being output through reader/puncher interface.
Data is being input through reader/puncher interface.
Waiting for the end of index table indexing
013 JOG FEEDRATE OVERRIDE 0\% Manual feedrate override is 0%.
014 WAITING FOR RESET, ESP,RRW OFF NC is in reset state.
015EXTERNALPROGRAMNUMBERSEARCH External Program Number Search External program number search is being done Background is being used.

- Cause of the cycle start

LED turned off
020 CUT SPEED UP/DOWN
021 RESET BUTTON ON
022 RESET AND REWIND ON
023 EMERGENCY STOP ON
024 RESET ON
025 STOP MOTION OR DWELL

Input of emergency stop signal
Input of external reset signal
Reset button On of MDI
Input of reset \& rewind
Servo alarm generation
Switching to other mode, Feed hold
Single block stop

- State of TH alarm

030 CHARACTER NUMBER TH ALARM Position of the character that caused TH alarm. The position is counted from the head.
031 TH DATA

Data of the character that caused TH alarm.

- Screen hard copy status

035

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
			ER3	ER2	ER1	ABT	END

\#0(END): Screen hard copy was completed normally.
\#1(ABT): Screen hard copy was discontinued.
\#2(ER1): An invalid parameter value was specified for screen hard copy.
\#3(ER2): An attempt to use a memory card for screen hard copy failed.
\#4(ER3): An error occurred during writing to a memory card for screen hard copy.

- C executor status

C executor status

[Data type] Bit

[Valid data range] 0 to 255
C executor status

$0:$	Normal.
2:	Inoperablebecause of an incorrect FROM content.
3:	Inoperable because the power was switched on with the M and 0 keys held down.
5:	Inoperable because of insufficient SRAM area; increase the SRAM area size. Alternatively, inoperable because of an incorrect C executor library version; use a new C executor library.
6:	Inoperable because of an internal error.
7:	Inoperable because of an internal error.
9:	Inoperable because of an internal error.
10:	Inoperable because of an incorrect C executor library version; use a new C executor library.
$11:$	Inoperable because of an incorrect FROM content.
12:	Inoperable because of an internal error.

- Details of serial pulse coder
\#7(OVL): Overload alarm
\#6(LV): Insufficient voltage alarm
\#5(OVC): Over current alarm
\#4(HCA): Abnormal current alarm
\#3(HVA): Overvoltage alarm
\#2(DCA): Discharge alarm
\#1(FBA): Disconnection alarm
\#0(OFA): Overflow alarm

DGN 201	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	ALD			EXP				
	\checkmark			∇				
Overload alarm	0	-	-	-	Motor overheat			
	1	-	-	-	Amplifier overheat			
Disconnection alarm	1	-	-	0	Built-in pulse coder (hand)			
	1	-	-	1	Disconnection of separated type pulse coder (hard)			
	0	-	-	0	Disconnection of pulse coder (software)			

| | $\# 7$ | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 202 | | | | | | | |
| | DGN | CSA | BLA | PHA | RCA | BZA | CKA | SPH |

\#6(CSA): Hardware of serial pulse coder is abnormal
\#5(BLA): Battery voltage is low (warning)
\#4(PHA): Serial pulse coder or feedback cable is erroneous.
\#3(RCA): Serial pulse coder is faulty.
Counting of feedback cable is erroneous.
\#2(BZA): Battery voltage became 0 .
Replace the battery and set the reference position.
\#1(CKA): Serial pulse coder is faulty. Internal block stopped.
\#0(SPH): Serial pulse coder or feedback cable is faulty. Counting of feedback cable is erroneous.

\#7(DTE): Communication failure of serial pulse coder. There is no response for communication.
\#6(CRC): Communication failure of serial pulse coder. Transferred data is erroneous.
\#5(STB): Communication failure of serial pulse coder. Transferred data is erroneous.
\#4(PRM): The alarm is detected by the servo, the values specified in the parameter is not correct.

		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN	204		OFS	MCC	LDA	PMS			

\#6(OFS): Abnormal current value result of A/D conversion of digital
\#5(MCC): Contacts of MCC of servo amplifier is melted.
\#4(LDA): Serial pulse coder LED is abnormal
\#3(PMS): Feedback is not correct due to faulty serial pulse coder C or feedback cable.

- Details of stand-alone type serial pulse coder alarms

		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN	205	OHA	LDA	BLA	PHA	CMA	BZA	PMA	SPH

\#7(OHA): Overheat occurred in the stand-alone type pulse coder.
\#6(LDA): An LED error occurred in the stand-alone type pulse coder.
\#5(BLA): A low battery voltage occurred in the stand-alone type pulse coder.
\#4(PHA): A phase data error occurred in the stand-alone type linear scale.
\#3(CMA): A count error occurred in the stand-alone type pulse coder.
\#2(BZA): The battery voltage for the stand-alone type pulse coder is zero.
\#1(PMA): A pulse error occurred in the stand-alone type pulse coder.
\#0(SPH): A soft phase data error occurred in the stand-alone type pulse coder.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
206	DTE	CRC	STB					

\#7(DTE): A data error occurred in the stand-alone type pulse coder.
\#6(CRC): A CRC error occurred in the stand-alone type pulse coder.
\#5(STB): A stop bit error occurred in the stand-alone type pulse coder.

- Details of invalid servo This data indicates the cause of servo alarm No. 417, detected by the NC. parameter alarms (on the CNC side)

If the alarm is detected by the servo, the PRM bit (bit 4 of DGN No. 0203) is set to 1 .

| | \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 280 | | | | | | | |
| | DGN | | DIR | | PLS | PLC | | MOT |

\#0(MOT): The motor type specified in parameter No. 2020 falls outside the predetermined range.
\#2(PLC): The number of velocity feedback pulses per motor revolution, specified in parameter No. 2023, is zero or less. The value is invalid.
\#3(PLS): The number of position feedback pulses per motor revolution, specified in parameter No. 2024, is zero or less. The value is invalid.
\#4(DIR): The wrong direction of rotation for the motor is specified in parameter No. 2022 (the value is other than 111 or -111).
\#6(AXS): In parameter No. 1023 (servo axis number), a value that falls outside the range of 1 to the number of controlled axes is specified. (For example, 4 is specified instead of 3.) Alternatively, the values specified in the parameter are not consecutive.

- Position error amount

- Machine position

\square

- Reference position shift function

DGN 302 Distance from the end of the deceleration dog to the first grid point
[Data type] Two-word axis
[Units of data] 0.001 mm (metric output), 0.0001 inch (inch output)
[Valid data range] 0 to ± 99999999

- Position deviation with
fine acceleration/
deceleration enabled
DGN $303 \quad$ Positiondeviation with fine acceleration/deceleration enabled
[Data type] Two-word axis
[Unit of data] Detection unit
[Valid data range] 99999999 to -99999999
- Reference counter

DGN $304 \quad$ Reference counter for individual axes
[Data type] Two-word axis
[Unit of data] Detection unit
[Valid data range] 99999999 to -99999999

- Displacement detection

DGN $305 \quad$ Position feedback data between Z phases of individual axes
[Data type] Two-word axis
[Unit of data] Detection unit
[Valid data range] 99999999 to -99999999
If displacement detection is enabled, the feedback data between the Z phases of different axes is represented in the detection unit.

- Cause of the APZ bit (bit

4 of parameter 1815) brought to 0

0		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN	310		DTH	ALP	NOF	BZ2	BZ1	PR2	PR1

\#0(PR1): The setting of the following parameters has been changed: Parameters 1821, 1850, 1860, 1861.
\#1(PR2): The setting of the ATS bit (bit 1 of parameter 8302) has been changed.
\#2(BZ1): The detected APC battery voltage is 0 V (Inductosyn).
\#3(BZ2): The detected APC battery voltage is 0 V (separate position detector).
\#4(NOF): The Inductosyn output no offset data.
\#5(ALP): Before the α pulse coder detects a full single rotation, reference position establishment by parameters was attempted.
\#6(DTH): A controlled axis detach signal/parameter was input.

| | $\# 7$ | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 311 | | | | | | | |
| | | DUA | XBZ | GSG | AL4 | AL3 | AL2 | AL1 |

\#0(AL1): An APC alarm was issued.
\#2(AL3): The detected APC battery voltage is 0 V (serial pulse coder).
\#3(AL4): An abnormal rotation speed (RCAL) was detected.
\#4(GSG): The G202 signal was brought from 0 to 1 .
\#1(AL2): A disconnection was detected.
\#6(DUA): While the dual position feedback function was being used, the difference in error between the semi-closed loop side and the closed loop side became too large.
\#5(XBZ): The detected APC battery voltage is 0 V (serial separate position detector).

- FSSB status

		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN	320	CFE		ERR	ERP	OPN	RDY	OPP	CLS

Indicates the internal status of the FSSBC.
\#0(CLS): Closed.
\#1(OPP): Running OPEN protocol.
\#2(RDY): Open and ready.
\#3(OPN): Open.
\#4(ERP): Running ERROR protocol.

\#5(ERR):

\#7(CFE): Encountered configuration error.
(The actual slave type does not match the one specified in the conversion table.)

		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN	321	XE3	XE2	XE1	XE0	ER3	ER2	ER1	ER0

Indicates the cause of an FSSBC error.
\#0(ER0): INFORMED ERROR
\#1(ER1): (RESERVE)
\#2(ER2): Master port disconnection
\#3(ER3): External EMG input
Indicates the cause of an FSSBC error resulting from a request from a slave.
\#4(XE0): (RESERVE)
\#5(XE1): Slave port disconnection
\#6(XE2): Master port disconnection
\#7(XE3): External EMG input

		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN	330					EXT	DUA	ST1	STO
DGN		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	332					EXT	DUA	ST1	STO
DGN		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	348					EXT	DUA	ST1	STO

\#0, \#1(ST0, ST1): Indicates the type code for an actually connected slave.

ST1	ST0	Type	Address
0	0	A	Servo amplifier
0	1	(B: RESERVE)	(Currently nonexistent)
1	0	C	Stand-alone type detector inter- face unit
1	1	(RESERVE)	(Currently nonexistent)

\#2(DUA): 0 : The slave of interest is not on the first axis of the two-axis amplifier.
1: The slave of interest is on the first axis of the two-axis amplifier.
\#3(EXT): 0 : The slave of interest does not exist.
1: The slave of interest exists.

\#0, \#1, \#2(HA0, HA1, HA2): Indicates the host LSI address specified as a DMA destination.
\#3, \#4 (TP0, TP1): Indicates the type code of a specified slave.
(See the above descriptions about ST0 and ST1.)
\#5(DMA): Indicates a value determining whether to allow DMA to occur.

NOTE

A combination of parameter Nos. 330 and 331 corresponds to one FSSB slave unit. Up to ten slave units are available.

Slave units and the associated diagnosis numbers

Slave unit 01	\rightarrow	Diagnosis No. 330, No. 331 Slave unit 01
Diagnosis No. 332, No. 333		

- Details of invalid servo parameter setting alarms (on the servo side)

Detail number for invalid servo parameter setting alarm

Indicates information that can be used to identify the location (parameter) and cause of an invalid servo parameter setting alarm (servo alarm No. 417).

This diagnosis information is valid when the following conditions are satisfied.

- Servo alarm No. 417 has occurred.
- Bit 4 of diagnosis No. 203 (PRM) = 1
- The series and editions of the current servo software are:
- Series 9090/E(05) and subsequent editions
- Series 90A0/A(01) and subsequent editions

See the following table for the displayed detail numbers and the corresponding causes. For further detail information that could be used to take measures, refer to FANUC AC Servo Motor α Series Parameter Manual (B-65150E).

- Detailed descriptions about invalid servo parameter setting alarms

Detail number	Parameter number	Cause	Measure
0233	2023	A value specified as the number of velocity pulses is greater than 13100 when initialization bit $0=1$.	Decrease the value specified as the number of velocity pulses to within 13100.
0243	2024	A value specified as the number of position pulses is greater than 13100 when initialization bit $0=1$.	Decrease the value specified as the number of position pulses to within 13100.
$\begin{aligned} & 0434 \\ & 0435 \end{aligned}$	2043	The internal value of the velocity loop integration gain has overflowed.	Decrease the value specified in the velocity loop integration gain parameter.
$\begin{aligned} & 0444 \\ & 0445 \end{aligned}$	2044	The internal value of the velocity loop proportional gain has overflowed.	Use a function for changing the internal format of the velocity loop proportional gain.
$\begin{aligned} & 0474 \\ & 0475 \end{aligned}$	2047	The internal value of the observer parameter (POA1) has overflowed.	Change the setting to: $(-1) \times$ (desired setting)/10
$\begin{aligned} & 0534 \\ & 0535 \end{aligned}$	2053	The internal value of the dead zone compensation parameter has overflowed.	Decrease the setting until the invalid parameter setting alarm will not occur any longer.
$\begin{aligned} & 0544 \\ & 0545 \end{aligned}$	2054	The internal value of the dead zone compensation parameter has overflowed.	Decrease the setting until the invalid parameter setting alarm will not occur any longer.
$\begin{aligned} & 0686 \\ & 0687 \\ & 0688 \end{aligned}$	2068	The internal value of the feedforward coefficient has overflowed.	Use the position gain magnification function.
$\begin{aligned} & 0694 \\ & 0695 \\ & 0696 \\ & 0699 \end{aligned}$	2069	The interval value of the velocity feedforward coefficient has overflowed.	Decrease the velocity feedforward coefficient.
$\begin{aligned} & 0754 \\ & 0755 \end{aligned}$	2075	The setting of the parameter listed at the left has overflowed.	This parameter is presently not in use. Specify 0 in it.
$\begin{aligned} & 0764 \\ & 0765 \end{aligned}$	2076	The setting of the parameter listed at the left has overflowed.	This parameter is presently not in use. Specify 0 in it.
0783	2078	The conversion coefficient parameter listed at the left has not been set up for a full-closed loop linear motor (for the Series 9080 only).	Set a value in this parameter.
0793	2079	The conversion coefficient parameter listed at the left has not been set up for a full-closed loop linear motor (for the Series 9080 only).	Set a value in this parameter.

Detail number	Parameter number	Cause	Measure
0843	2084	No positive value has been set for the flexible feed gear numerator. Alternatively, the following condition exists: Feed gear numerator > denominator	Specify a positive value as the flexible feed gear numerator. Alternatively, satisfy the following condition: Feed gear numerator \leqq denominator (except for phase A-/B-specific stand-alone type detector).
0853	2085	No positive value has been set as the flexible feed gear denominator.	Specify a positive value as the flexible feed gear denominator.
$\begin{aligned} & 0884 \\ & 0885 \\ & 0886 \end{aligned}$	2088	The internal value of the machine velocity feedback coefficient has overflowed.	Decrease the machine velocity feedback coefficient. Alternatively, use the damping control function, which has an equivalent effect.
0883	2088	A value of 100 or greater was specified in the machine velocity feedback coefficient for an axis with a serial stand-alone type detector.	The maximum allowable value for the machine velocity feedback coefficient for axes with a serial stand-alone type detector is 100 . Decrease the setting to within 100.
$\begin{aligned} & 0926 \\ & 0927 \\ & 0928 \end{aligned}$	2092	The interval value of the advance feedforward coefficient has overflowed.	Use the position gain magnification function.
0996	2099	The internal value for suppressing N pulses has overflowed.	Decrease the setting of the parameter listed at the left.
1123	2112	No value has been entered for the AMR conversion coefficient parameter when a linear motor is in use.	Specify the AMR conversion coefficient.
1183	2118	No value has been specified in the semi-/ full-closed loop error threshold parameter for a full-closed loop linear motor (for the Series 9080 only).	Specify a semi-/full-closed loop error threshold value for the parameter listed at the left.
$\begin{aligned} & 1284 \\ & 1285 \end{aligned}$	2128	If the value specified as the number of velocity pulses is small, the internal value of the current control parameter overflows.	Decrease the value for the parameter listed at the left to within a range where no alarm will occur any longer.
$\begin{aligned} & 1294 \\ & 1295 \end{aligned}$	2129	If the value specified as the number of velocity pulses is large, the internal value of the current control parameter overflows.	Re-set "a" to a smaller value when the setting of the parameter listed at the left is broken up into: $a \times 256+b$
1393	2139	The setting of the linear motor AMR offset has exceeded ± 45.	Decrease the setting of the parameter listed at the left to within ± 45.
$\begin{aligned} & 1446 \\ & 1447 \\ & 1448 \end{aligned}$	2144	The cutting feedforward coefficient for the cutting-/rapid traverse-specific FAD function has overflowed.	Use the position gain magnification function.
$\begin{aligned} & 1454 \\ & 1455 \\ & 1456 \\ & 1459 \end{aligned}$	2145	The cutting velocity feedforward coefficient for the cutting-/rapid traverse-specific FAD function has overflowed.	Decrease the velocity feedforward coefficient.
8213	1821	No positive value has been set in the reference counter capacity parameter.	Specify a positive value in the parameter listed at the left.

Detail number	Parameter number	Cause	Measure
8254 8255 8256	1825	The internal value of the position gain has overflowed.	Use the position gain magnification func- tion.
10016			
10019	2200 bit 0	The internal value of a parameter used to detect runaway has overflowed.	Do not use the runaway detection func- tion (specify bit 0 = 1).
10043	$1815 \# 1$ $2010 \# 2$	A full-closed loop has been set up for a linear motor (except for the Series 9080).	A full-closed loop cannot be specified for linear motors.
10053	$2018 \# 0$	The scale reverse connection bit has been set up for a linear motor.	The scale reverse connection bit cannot be used for linear motors.
10062	$2209 \# 4$	The amplifier in use does not support the HC alarm avoidance function.	If you want to use this amplifier, reset the function bit listed at the left to 0. If you want to use the HC alarm avoid- ance function, use an amplifier that sup- ports it.

- Error detection

DGN $360 \quad$ Cumulative command pulse count (NC)
[Data type] Two-word axis
[Unit of data] Detection unit
[Valid data range] 99999999 to -99999999
Indicates the cumulative count of movement commands distributed from the CNC since the power was switched on.
\square
[Data type] Word axis
[Unit of data] Detection unit
[Valid data range] 32767 to -32767
Indicates the cumulative count of compensation pulses (backlash compensation, pitch error compensation, etc.) distributed from the CNC since the power was switched on.
[Data type] Two-word axis
[Unit of data] Detection unit
[Valid data range] 99999999 to -99999999
Indicates the cumulative count of movement command and compensation pulses received at the servo section since the power was switched on.
[Data type] Two-word axis
[Unit of data] Detection unit
[Valid data range] 99999999 to -99999999
Indicates the cumulative count of position feedback pulses received from the pulse coder by the servo section.

- Diagnostic data related to the Inductosyn absolute position detector

DGN 380 \square M (absolute position of the motor) $-S$ (offset data) λ (pitch interval)

The remainder resulting from the division is displayed.
[Data type] Two-word axis
[Units of data] Detection units

DGN $381 \quad$ Offset data from the Inductosyn
Off set data is displayed when CNC calculates the machine position.
[Data type] Two-word axis
[Units of data] Detection units

- Serial spindle

DGN
400

\#7	\#6	\#5	\#4	\#3	\#2	\#1	
\#0							
			SAI	SS2	SSR	POS	SIC

This data indicates the offset data received by the CNC while it is calculating the machine coordinates.
\#4(SAI) 0 : Spindle analog control is not used.
1 : Spindle analog control is used.
\#3(SS2) 0 : Spindle serial doesn't control 2nd spindle.
1 : Spindle serial control 2 nd spindle.
\#2(SSR) 0 : Spindle serial control is not performed.
1 : Spindle serial control is performed.
\#1 (POS) A module required for spindle analog control is
0 : not mounted
1 : mounted
\#0 (SIC) A module required for spindle serial control is
0 : not mounted
1 : mounted

DGN	401	Serial spindle alarm state of 1st spindle							
DGN	402	Serial spindle alarm state of 2nd spindle							
		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN	408	SSA		SCA	CME	CER	SNE	FRE	CRE

\#0 (CRE): A CRC error occurred. (Warning)
\#1 (FRE): A framing error occurred. (Warning)
\#2 (SNE): The transmission/reception target is invalid.
\#3 (CER): An error occurred during reception.
\#4 (CME): No response was returned during automatic scanning.
\#5 (SCA): A communication alarm occurred on the spindle amplifier side.
\#7 (SSA): A system alarm occurred on the spindle amplifier side.
(These problems cause spindle alarm 749. Such problems are mainly caused by noise, disconnection, or instantaneous power-off).

Refer to this diagnosis when alarm 750 has generated.
\#3 (SPE) In spindle serial control serial spindle parameters
0 : Satisfy start condition of spindle unit
1: Do not satisfy start condition of spindle unit
\#2 (S2E) $0:$ 2nd spindle started normally in spindle serial control.
1: 2nd spindle did not start normally in spindle serial control.
\#1 (S1E) 0: 1st spindle started normally in spindle serial control.
1: 1st spindle did not start normally in spindle serial control.
\#0 (SHE) 0: Serial communication module is correct on CNC side.
1: An error occurred in serial communication module on CNC side

No. 425 to 428: Indicates the absolute value of a synchronization error in synchronization mode where each spindle is treated as a slave axis.

\#4(SS4) $0:$ Specifies not to use the fourth spindle under spindle serial control.
1: Specifies to use the fourth spindle under spindle serial control.
\#3(SS3) $0:$ Specifies not to use the third spindle under spindle serial control.
1: Specifies to use the third spindle under spindle serial control.
\#2(SSR) 0 : Spindle serial control (third and fourth spindles) not in progress.
1: Spindle serial control (third and fourth spindles) in progress.
\#0(SIC) Indicates whether a module necessary for spindle serial control (third and fourth spindles) has been installed, as follows:
0 : Not installed
1: Installed

DGN 438

Information about communication errors for spindle serial control (third and fourth spindles).
For contents, see the descriptions about diagnosis No. 408.

\#3(SPE): Indicates the state of the serial spindle parameter (third and fourth spindles) for spindle serial control, as follows:
0 : The start condition for the spindle unit is satisfied.
1: The start condition for the spindle unit is not satisfied.
\#2(S4E): 0 : The fourth spindle was started normally under spindle serial control.
1: The fourth spindle was not started normally under spindle serial control.
\#1(S3E): 0 : The third spindle was started normally under spindle serial control.
1: The third spindle was not started normally under spindle serial control.
\#0(SHE): Indicates the state of the serial communication module (third and fourth spindles) on the CNC side as follows:
0 : Normal
1: Abnormal

[Data type] Word
[Unit of data] Pulse
[Valid data range] 0 to 4095
This parameter is valid when bit 1 of parameter No. $3117=1$.
To display the position data of a spindle, execute spindle orientation.

- Diagnostic data related to rigid tapping

DGN $450 \quad$ Spindle position error during rigid tapping
[Data type] Word
[Unit of data] Detection units

[Data type] Word
[Unit of data] Detection units

[Data type] Two-word
[Unit of data] Detection units
[Data type] Two-word
[Unit of data] Detection units

Instantaneous difference for the travel error, calculated in terms of the spindle, during rigid tapping (signed)
[Data type] Word
[Unit of data] Detection units

DGN
457 Width of synchronization error during rigid tapping (maximum value)
[Data type] Word
[Unit of data] Detection units

- Two-spindle polygon machining (T series only)

		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN	470	SC0	LGE		SCF			PST	SPL

\#0(SPL): Spindle polygon synchronization is in progress.
\#1(PST): Spindle polygon synchronization mode is starting.
\#2: Spindle polygon synchronization mode is being released.
\#3: The spindle speed is being changed in spindle polygon synchronization mode.
\#4(SCF): The spindle speed has been changed in spindle polygon synchronization mode.
\#5: Not used
\#6(LGE): In spindle polygon synchronization mode, the two spindles have different loop gains.
\#7(SC0): In spindle polygon synchronization mode, the specified speed is zero.

CAUTION

1 If SPL and SCF are set to 1 and \#1, \#2, and \#3 are set to 0 in polygon synchronization mode, the operation is normal.
2 If the status does not change, even though PST is set to 1 and the program is stopped in a block including G51.2, one of the spindles cannot attain the polygon synchronization speed. This may occur when the spindle cannot be activated because the PSTU bit (bit 7 of parameter No. 7603) is set to 0.

3 LGE is set to 1 when the speed is changed in polygon synchronization mode if the serial spindle control unit uses different loop gains for the first and second spindles during spindle synchronization.
When this function is used, the two spindles must be controlled with an identical loop gain. The warning is displayed in DGN, but the warning does not cause an alarm. (The serial spindle control unit switches parameters according to the statuses of CTH1, CTH2, and other signals.)
4 SCO is set to 1 if either of the following occurs: The combination of the programmed S value and spindle control signals including *SSTP <G0029, \#6>, SOV0 to SOV7 <G0030> and multispindle control signal <G0027> causes 0 or a value smaller than the resolution of spindle control to be programmed (the programmed value multiplied by 4095/highest-spindle-speed is smaller than 1).
Alternatively, SIND control <G0032, G0033> is used and the programmed output is 0.
When SCO is set to 1 , the spindle speed becomes 0 , setting bit 0 of DGN 471 to 1 and disabling the ratio of polygon synchronization rotation. This, however, is handled as a result of the program, and does not cause P/S alarm No. 5018.

This data indicates the cause of P/S alarm 5018 or 218.

\#0 to \#3 \rightarrow Cause of P/S alarm No. 5018
P/S alarm No. 5018 can be cleared by issuing a reset. The cause indication is retained until the cause is removed or until polygon synchronization mode is released.
\#4 to \#7 \rightarrow Cause of P/S alarm No. 218
If P/S alarm No. 218 occurs, polygon synchronization mode is released. The cause indication, however, is retained until P/S alarm No. 218 is cleared by issuing a reset.
\#0: The speed specified for spindle polygon synchronization is too low. (The unit speed becomes 0 for internal operations.)
\#1(PCL): The first spindle (master axis in polygon synchronization) is clamped.
\#2(QCL): The second spindle (slave axis in polygon synchronization) is clamped.
\#3(SUO): The speed specified in spindle polygon synchronization is too high. (The speed is restricted to the upper limit for internal operations.)
\#4(NSP): A spindle required for control is not connected. (The serial spindle, second spindle, etc. is not connected.)
\#5: A negative Q value is specified while the QDRC bit (bit 1 of parameter No. 7603) is set to 1.
\#6(PQE): The P value or Q value, specified with G51.2, falls outside the predetermined range. Alternatively, the P and Q values are not specified as a pair.
\#7(NPQ): Although the P and Q values are not specified with G51.2, an R value is specified. Alternatively, none of the P, Q, or R value is specified.

CAUTION

Bit 0 is set to 1 even when the specified spindle speed is 0 (bit 7 of DGN 470 is set to 1). This, however, does not cause P/S alarm No. 5018 to be output (because the programmed speed is 0). P/S alarm No. 5018 occurs when bit 7 of DGN 470 is set to 0 , while bit 0 of DGN 471 is set to 1 . Normal spindle speeds will not cause this alarm to be output.

NOTE

1 PCL indicates that the speed specified for the master axis exceeds the maximum speed for the first axis, specified in parameters No. 3741 to 3744 , causing, the specified speed to be limited to the maximum speed.
PCL is not set to 1 provided the first spindle is connected correctly.
2 QCL is set to 1 when the polygon synchronization speed specified for the second spindle (slave axis in polygon synchronization) exceeds the value set in parameter No. 7621, causing the actual speed to be limited to the specified value.
3 SUO occurs if the number of distributed pulses for ITP exceeds 32767, that is, if the speed specified for the first axis, divided by the specified P value, exceeds 59998 . In other words, SUO occurs when a speed in excess of 59998 rpm is specified for the first axis if P is set to 1 .

The specified synchronization mode status is displayed.

In spindle polygon synchronization mode, the rotation ratio (specified P value) of the current master axis (first spindle) is displayed.

DGN 475 Rotation ratio of the slave axis in spindle polygon synchronization (specified Q value)

In spindle polygon synchronization mode, the rotation ratio (specified Q value) of the current slave axis (second axis) is displayed.

DGN $476 \quad \begin{gathered}\text { Phase difference between two spindles in spindle polygon synchronization } \\ \text { (specified } R \text { value) }\end{gathered}$
In spindle polygon synchronization mode, the current phase difference (specified R value) is displayed.(The units are the minimum input increment for the rotation axis of the machine.)

If the RDGN bit (bit 5 of parameter 7603) is set to 1 , the shift amount specified for the serial spindle (number of specified pulses, calculated at a rate of 4096 pulses per 360 degrees) is displayed.

This diagnostic data indicates the actual speed of each spindle in synchronization mode.

DGN 477 Actual speed of the master axis for spindle polygon synchronization (rpm)
In spindle polygon synchronization mode, the actual speed of the master axis (first spindle) is displayed.

DGN $478 \quad$ Actual speed of the slave axis in spindle polygon synchronization (rpm)
In spindle polygon synchronization mode, the actual speed of the slave axis (second spindle) is displayed.

CAUTION

The values of DGN 477 and DGN 478 are displayed without being sampled. The displayed values may vary from the actual values. Use these values for guidance only.

- State of remote buffer

 (protocol A)| DGN | 500 | Send command |
| :---: | :---: | :---: |
| | | 1: SYN 2: RDY 3: RST 4: ALM |
| | | 5: SAT 6: GTD 7: RTY 8: SDI |
| DGN | 501 | Receive command |
| | | 1: SYN 2: RDY 3: ARS 4: AAL |
| | | 5: CLB 6: SET 7: DAT 8: EOD |
| | | 9: WAT 10: RTY 11:RDI 12: SDO |
| DGN | 502 | State of remote buffer |
| | | 0 : Not ready |
| | | 1: Reset state |
| | | 2: Operation state |
| | | 3 : Alarm state |
| | | 4 : Circuit disconnection |

- Open CNC

This data indicates the internal Open CNC information (not available to general users).

This data indicates the internal Open CNC information (not available to general users).

This data indicates the cause of a system alarm that has occurred in Open CNC.
\#0(PRA) 1: A RAM parity error occurred in shared RAM.
\#2(THL) 0 : The temperature of the harddisk of Open CNC is too low.
1: Normal
\#3(THH) $0:$ The temperature of the harddisk of Open CNC is too high.
1: Normal
\#4 0 : Normal
1: An NMI has occurred in HSSB.

Indicates the internal information about the HSSB (open CNC). (Hidden function)

Indicates the internal information about the HSSB (channel 2). (Hidden function)

Indicates the internal information about the HSSB (channel 2). (Hidden function)

Indicates the internal information about the HSSB (channel 2) as follows.
\#0(PRA): 0: Normal
1 : A RAM parity error has occurred in shared RAM.
\#3, \#2(THL, THH):

THL	THH	Status
0	0	A battery alarm has occurred in the intelligent terminal.
1	0	A high-temperature condition has occurred in the intelli- gentterminal.
0	1	A low-temperature condition has occurred in the intelligent terminal.
1	1	Normal (connected to the PC)

\#4: 0 : Normal
1 : An NMI has occurred in the HSSB.

Indicates the internal information about the HSSB (channel 2). (Hidden function)

- Diagnostic data related

 to a small-diameter peck drilling cycle (M series only)DGN $520 \quad$ Total number of retractions during cutting after G83 is specified

Executing the G83 command clears the value to zero.

Total number of retractions made by receiving the overload signal during cutting
after G83 is specified

Executing the G83 command clears the value to zero.

The units are the same as the minimum input increment.

DGN $523 \quad \begin{gathered}\text { Difference between the position on the drill axis from which the previous retraction } \\ \text { was started and the position from which the current retraction is started }\end{gathered}$
The units are the same as the minimum input increment.

- Diagnostic data related to ATC for ROBO DRILL α

		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN	530			A99	A98	A97	A96	A95	A43

* Check the contents of this data if alarm 251 is output.
\#5 (A99): A pry alarm occurred while the tool was being changed.
\#4 (A98): After the power was turned on or after an emergency stop was released, M06 was specified before the first reference position return. While the tool was being changed, machine lock was enabled for the Z-axis.
\#3 (A97): M06 is specified in canned cycle mode. M06 is specified in a block containing the command instructing reference position return. M06 is specified in tool compensation mode.
\#2 (A96): The current tool number parameter (parameter No. 7810) is set to 0 .
\#1 (A95): M06 is specified while the Z-axis machine coordinate is positive.
\#0 (A43): A prohibited T code is specified after M06.

\#6 (585): Spindle servo alarm (excessive error during ATC magazine indexing)
\#5 (584): Invalid sequence during positioning and ATC (system error)
\#4 (583): Spindle servo alarm (LSI overflow)
\#3 (582): Spindle servo alarm (excessive drift)
\#2 (581): Spindle servo alarm (excessive error during travel)
\#1 (580): Spindle servo alarm (excessive error in the stop state)
\#0 (502): Large spindle distribution (system error)
- Diagnostic data related to simple synchronous control

DGN 540 indicates the difference in the position error between the master and slave axes when a single axis pair is subjected to simple synchronous control. DGN 541 is used when two or more pairs are subjected to simple synchronous control. The position error is indicated for the master axis.

DGN 540 and 541 indicate values in detection units. They are displayed only with the M series.

- Diagnostic data related to the dual position feedback function
DGN $550 \square$ Closed loop error
[Data type] 2-word axis
[Unit of data] Detection units
[Valid data range] -99999999 to +99999999
DGN \square Semi-closed loop error
[Data type] 2-word axis
[Unit of data] Detection units
[Valid data range] -99999999 to +99999999
DGN $552 \quad$ Error between semi-closed and closed loops
[Data type] word axis
[Unit of data] Detection units
[Valid data range] -32768 to +32767
DGN $553 \quad$ Amount of dual position compensation
[Data type] 2-word axis
[Unit of data] Detection units
[Valid data range] -99999999 to +99999999

The data items displayed on the diagnosis screen are obtained at the following positions:

- Status after execution of manual tool compensation (for the T series only)
DGN 560 Status after execution of manual tool compensation

0 : Manual tool compensation ended normally.
1: The data of the T code command is out of the allowable range.
2 : The offset value is out of the allowable range.
3 : The offset number is out of the allowable range.
4 : The CNC is running automatically or moving the axes.
5 : The CNC is in tool tip radius compensation mode.
6 : The CNC is not in JOG or HNDL (INCR) mode.
7 : The setting of a CNC parameter is invalid.

1.9
 CNC STATE DISPLAY

(1) Mode selection status

MEM: Automatic operation (memory operation)
MDI: Manual data input/MDI operation
EDIT: Program editing
RMT: Remote operation
JOG: Jog feed
REF: Reference position return
INC: Incremental feed mode $=$ step feed (if no manual pulse generator is available)
HND: Manual handle feed mode
TJOG: Teaching in jog feed mode
THND: Teaching in handle feed mode
(2) Automatic operation status

STRT: Automatic operation has started (and program execution is under way).
HOLD:Automatic operation has been suspended (execution of a block has been discontinued, and automatic operation has stopped).
STOP: Automatic operation has stopped (a block has been finished, and automatic operation has stopped).
MSTR:The tool is returning or being repositioned when the tool retract and return function is executed.
****: Other status (when the power is switched on, or automatic operation has ended)
(3) Automatic operation status

MTN: Program-specified axis movement is under way.
DWL: Program-specified dwell command (G04) is being executed.
***: Other status
(4) Auxiliary function status

FIN: The completion signal FIN for an auxiliary function is being awaited.
***: Other status
(5) Emergency stop and reset status (displayed at the location of items mentioned in (3) and (4))
-EMG- : Emergency stop status
-RESET-: CNC reset status (The state in which the reset signal or the MDI RESET key remains active.)
(6) Alarm status

ALM : An alarm condition has been detected.
BAT : The lithium battery voltage is low (the battery is to be replaced).
Blank: Other status
(7) Clock display: Hour:minute:second
(8) Program editing/running status

Input: Data is being input.
Output:Data is being output.
SRCH: A data search is under way.
EDIT: Editing such as insertion or modification is under way.
LSK: Label skip enabled at data input (until valid information is read).
PTRR: Retract or return/re-positioning is under way when the tool retrack and return function is used.
HPCC: High-precision contour control mode.
AICC: AI contour control mode.
RVRS: Reversing based on the retrace function.
RTRY: Re-advancing based on the retrace function.
RVED: Reversing based on the retrace function has ended.
Blank: Editing is not under way.

1.10 WAVEFORM DIAGNOSTIC FUNCTION

Tuning becomes easier by graphically displaying servo error amount and torque command, etc. (Graphic option is required).

The following two types of waveform diagnosis functions are supported:
(1) One-shot type

The one-shot type waveform diagnosis function can graphically display, as a waveform, any variation in those data items listed below. The start of data sampling can be triggered by the rising or falling edge of a machine signal. This function facilitates the adjustment of the servo and spindle motors.
a. Error, pulse distribution amount, torque, speed, current, and thermal simulation data for the servo motor of each axis
b. Composite speed for the first, second, and third axes
c. Spindle motor speed and load meter value
d. On/off state of a machine signal specified with a signal address
(2) Storage type

The storage type waveform diagnosis function enables the storing of any variation in the data items listed below and, if a servo alarm occurs, the graphical display (as a waveform) of the stored data. The end of data sampling can be triggered by the rising or falling edge of a machine signal. This function facilitates the estimation of erroneous locations. Stored data can be output via the reader/punch interface.
a. Error, pulse distribution amount, torque, speed, current, and thermal simulation data for the servo motor for each axis

NOTE

1 To output stored waveform data, the optional reader/punch interface must have been installed.
2 The waveform diagnosis function is enabled when bit 0 (SGD) of parameter No. 3112 is set to 1 . Note, however, that a graphics card is necessary to display waveforms.

1.10.1
 Setting Parameters

(1) Set a parameter to utilize the servo waveform diagnostic function.

		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DGN	3112								SGD

\#0(SGD) 0 : Do not display servo waveform (usual graphic display).
1: Displays servo waveform (usual graphic display function cannot be used).
(2) Turn off the power once and turn it on again.

DGN $3120 \quad$ Time between servo alarm and sampling stop (storage type)
[Data type] Word
[Unit of data] ms
[Valid data range] 1 to 32760

1.10 .2
 Waveform Diagnostic Parameter Screen

1. Press the sstem key to display a system screen such as aparameter.
2. Press the continuous menu key \boxtimes several times, and the soft key [W.DGNS] is displayed.
3. Press [W.DGNS], then the parameter screen for the waveform diagnosis is displayed.

Set the necessary data items. Position the cursor to the item to be set, enter the corresponding data, then press INPuT. Data items for which ***** is displayed cannot be set. To assist in data setting, the frame on the right side of the screen displays help information for that data to which the cursor is positioned. Help information which cannot fit into a single frame is split into several pages, which the user can scroll through using the page keys $\underset{\substack{\text { pagE } \\ \boldsymbol{v}}}{ }$ and

(1) Display start condition

0 : Starts data sampling upon the [START] key being pressed, samples data for the specified period, then draws a waveform.
1: Starts data sampling upon the detection of the first rising edge of the trigger signal after the [START] key is pressed, samples data for the specified period, then draws a waveform.
2 : Starts data sampling upon the detection of the first falling edge of the trigger signal after the [START] key is pressed, samples data for the specified period, then draws a waveform.
(2) Sampling period: Set the period during which data will be sampled. Valid data range: 10 to 32760
Units: ms
(3) Trigger: Set the PMC address and bit for the signal used to trigger the start of data sampling, when 1 or 2 is set for the start condition.

Example) G0007.2: ST signal
(4) Data number: The table below lists the numbers of the data items for which a waveform can be displayed ($\mathrm{n}=1$ to 8).

Data No.	Description	Units
00	Does not display a waveform.	-
On	Servo error (8 ms) for the n-th axis (positional devi- ation)	Pulses (detection units)
1 n	Pulse distribution for the n -th axis (move command)	Pulses (inputincrements)
2 n	Torque for the n-th axis (actual current)	\% (relative to maxi- mum current)
$3 n$	Servo error (2 ms) for the n-th axis (positional devi- ation)	Pulses (detection units)
$5 n$	Actual speed for the n-th axis	min-1
$6 n$	Command current for the n-th axis	
\%num current)		

(5)Data units: Weight of data when 1 is specified. The data units are automatically specified for each data item and need not be set unless the units must be changed for some reason.
[Valid data range] 1 to 1000
[Unit] 0.001
(6) Signal address: PMC address and bit number. Set in the same way as that for trigger, when the data number is 99 .

- Waveform diagnosis parameters (storage type)
(1) Display start condition

100 : Draws a waveform for the stored data.
(2) Sampling period: Invalid
(3) Trigger: Invalid
(4) Data number: The table below lists the numbers of the data items for which a waveform can be displayed ($\mathrm{n}=1$ to 8). Numbers for which no data is stored cannot be specified.

Data No.	Description	Units
00	Does not display a waveform.	-
0 n	Servo error (8 ms) for the n -th axis (positional devi- ation)	Pulses (detection units)
nn	Pulse distribution for the n -th axis (move command)	Pulses (inputincrements)
2 n	Torque for the n-th axis (actual current)	\% (relative to maxi- mum current)
5 n	Actual speed for the n-th axis	min $^{-1}$
6 n	Command current for the n -th axis	$\%$ (relative to maxi- mum current)
7 n	Thermal simulation data for the n-th axis	$\%$ (OVC alarm ratio)

(5)Data units: Weight of data when 1 is specified. The data units are automatically specified for each data item and need not be set unless the units must be changed for some reason.
[Valid data range] 1 to 1000
[Unit] 0.001
(6) Signal address: Invalid

1.10 .3

Graphic of Wave Diagnosis data

1. Press soft key [W.GRPH], then graph of waveform diagnosis is displayed.

2. Press soft key [(OPRT)], then the following soft keys are displayed. The following three sets of soft keys are displayed by the \square key.
[START][TIME \rightarrow] [\leftarrow TIME] [H-DOBL] [H-DOBL]
[START][CH-1ヶ][CH-1 \downarrow][V-DOBL][V-HALF]
[START][CH-2个][CH-2ل][V-DOBL] [V-HALF]
1) [START] : Starts Graphic data
2) $[$ TIME $\rightarrow]$: Shift the waveform of channel 1 and 2 rightward
3) [\leftarrow TIME] : Shift the waveform of channel and 2 leftward
4) [H-DOBL] : Double the time scale of the waveform of channel 1 and 2
5) [H-HALF] : Half the time scale of the waveform of channel 1 and 2
6) [H-DOBL] : Double the height of waveform of channel 1 and 2
7) [V-HALF] : Half the height of waveform of channel 1 and 2
8) $[\mathbf{C H}-\mathbf{1} \uparrow]$: Shift the zero point of channel 1 upward
9) $[\mathbf{C H}-1 \downarrow]$: Shift the zero point of channel 1 downward
10) $[\mathbf{C H}-\mathbf{2} \uparrow]$: Shift the zero point of channel 2 upward
11) $[\mathbf{C H}-2 \downarrow]:$ Shift the zero point of channel 2 downward

- Drawing a waveform for one-shot type waveform diagnosis

The one-shot type waveform diagnosis function draws a waveform for a specified data item in real time as the data is sampled. The sampled data, however, is not stored and thus cannot be output later.

To sample data for one-shot type waveform diagnosis, press the [START] key on the WAVE DIAGNOS. (GRAPHIC) screen. Then, data is sampled when the specified start condition is satisfied. Data sampling continues for the specified period.

Pressing the [SATART] soft key starts data sampling. While sampling is being performed, SAMPLING blinks at the top of the screen. Once data sampling has been completed, a waveform is automatically displayed.

- Drawing a waveform for storage type waveform diagnosis

To use storage type waveform diagnosis, set 100 for the display start condition. The maximum data width for storage type waveform diagnosis is 32760 ms . Data must be sampled before starting drawing. The next page explains sampling in detail.

Pressing the [START] soft key loads stored data. While the data is being loaded, SAMPLING blinks at the top of the screen. Once the data has been loaded, a waveform is displayed. The date on which the data was stored is displayed at the top left of the screen. If the [START] soft key is pressed while data is being stored, storage is stopped and the waveform for the data stored up to that point is displayed. The WAVE DIAGNOS. (MEMORY) screen indicates whether data is being stored.

1.10.4
 Data Sampling for Storage Type Waveform Diagnosis

(1) Press the ssstem function key. Pressing the menu continuation key [$[\mathrm{D}]$ displays the [W.DGNS] soft key. Press this soft key to display the WAVE DIAGNOS. (PARAMETER) screen.
(2)Press the [W.MEM] soft key to display the WAVE DIAGNOS. (MEMORY) screen. The operation selection soft keys appear.
The configuration of the operation selection soft keys is as follows:

(3) The configuration of the operation selection soft keys is as follows:

Fig. 1.10.4 Soft keys
(4) Using the cursor, set the necessary data items. To set the sampling axes, position the cursor to the data item to be set, enter the names of the axes for which data will be sampled for that data item, then press [SELECT] or input. The axis names are displayed to the right of the data items.

Example) $\mathrm{XYZ}+$ [SELECT] or INPUT

Once the sampling axes have been selected, the sampling period for each axis is displayed. Subsequently pressing the [START] soft key starts data sampling.

CAUTION

1 Data items for which ***** is displayed cannot be set.
2 To change the sampling axes, enter new axis names then press the [SELECT] soft key. Pressing the [SLELCT] soft key without entering an axis name results in no sampling axis being set.
3 If the sampling axes are changed during data sampling, data sampling is stopped. In this case, press the [START] soft key to restart data sampling for the new sampling axes.
4 Initially, no sampling axis is set.

- Storage data parameters
(1) Storage stop condition

100: Stops data storage upon the issue of a servo alarm.
101: Stops data storage upon the issue of a servo alarm or the detection of the rising edge of the trigger signal.
102: Stops data storage upon the issue of a servo alarm or the detection of the falling edge of the trigger signal.
The maximum stored data width is 32760 ms . If the storage stop condition is not satisfied within 32760 ms , data is overwritten, starting with the oldest data.

Parameter No. 3120 can be used to delay data storage being stopped by a specified period (ms), after the issue of a servo alarm.
(2) Trigger: Set the PMC address and bit for the signal used to trigger the stopping of data storage, when 101 or 102 is set for the stop condition.

Example) G0007.2: ST signal
(3)Data type: The following table lists the types of data for which a waveform can be displayed.

Data type	Description	Units
POS ERROR	Servo error (8 ms) for the n-th axis	Pulses (detection units)
MOTION CMD	Pulse distribution for the n-th axis	Pulses (inputincrements)
CURRENT (\%)	Torque for the n-th axis	\% (relative to maxi- mum current)
SPEED (RPM)	Actual speed for the n-th axis	min-1
TORQUE CMD	Command current for the n-th axis	\% (relative to maxi- mum current)
HEAT SIMLT	Thermal simulation data for the n-th axis	\% (OVC alarm ratio)

(4) Sampling axis: The axes along which data will be sampled are displayed.
(5) Sampling period: The sampling period for each axis is displayed.
(6) Date of storage: While data is being sampled, MEMORY blinks in this field. When data sampling stops, the date at that point appears in this field.

1.10 .5
 Outputting Waveform Diagnosis Data (Storage Type)

- Output to FANUC Floppy Cassette or FA Card

Waveform diagnosis data of servo alarm format can be output to an I/O device, as follows:

1) Select EDIT mode.
2) Press the ssirem key, then display the WAVE DIAGNOS. (MEMORY) screen.
3) Press the $[\mathbf{W} . M E M], \triangleright,[\mathbf{P U N C H}]$, and $[$ EXEC] soft keys, in this order.

For details of input/output to/from the FANUC Floppy Cassette or FA Card, see "Output to FANUC Floppy Cassette or FA Card," below.

1) Select EDIT mode.
2) Press the sstren key, then display the WAVE DIAGNOS. (MEMORY) screen.
3) Open the write protect tab on the floppy disk or card.
4) Press the $[\mathbf{W} . M E M], \triangleright$, $[\mathbf{P U N C H}]$, and [EXEC] soft keys, in this order.
The waveform diagnosis data is output to a file named WAVE DIAGNOS, to which the number of the last file is assigned.
If a file named WAVE DIAGNOS already exists in the floppy disk or on the card, P / S alarm 86 is issued. A floppy disk or card can contain only one file for waveform diagnosis data. If the existing WAVE DIAGNOS file contains unnecessary waveform diagnosis data of servo alarm format, delete that file before attempting to output new data. The procedure for deleting a file is described later.

- Directory display
- Deleting a file

The directory in the cassette or card is displayed by means of the following procedure:

1) Select EDIT mode.
2) Press the Prog function key to select the program screen.
3) Press the continuous menu key \triangle, then press [FLOPPY].
4) Press page key

The directory is displayed.
A file stored on a cassette or card is deleted by means of the following procedure:

1) Select EDIT mode.
2) Press the Prog function key to select the program screen.
3) Set the write protect switch on the cassette or card to enable writing.
4) Press [FLOPPY].
5) Press [DELETE].
6) Enter the file number, then press [F SET].
7) Press [EXEC].

The file corresponding to the specified file number is deleted. The number of each file subsequent to the deleted file is decremented by one.

- Output format

In the servo alarm format, the header, date and time, selected axes, and waveform diagnosis data are output in this order. Data items are identified by nine identifier words. Output data other than the identifier words varies with the data type.

T(identifier word)
T0 $:$ Header
T60: Positional deviation
T61: Move command
T62: Actual current
T63: Actual speed
T64: Command current
T65: Thermal simulation
T68: Selected axes
T69: Date and time

1) Header

	T	0	C	W	A	V	E		D	I	A	G	N	O	S	$;$	

C: Data word
2) Data word

3) Selected axes

4) Waveform diagnosis data

NOTE

1 Records are classified into header records and data records.
2 "\%" is used as an end-of-record code.
3 Each record starts with an identifier and ends with an end-of-block code.
4 Either the ISO or EIA code system is used.
5 The output code type is specified with parameter ISO (bit 1 of No. 0100). For ISO code, parameter NCR (bit 3 of No. 0100) is used to specify whether the end-of-block code is <LF> only, or a sequence of <LF> <CR> <CR>.
6 Parameter NFD (bit 7 of No. 01X1, where X is the channel number) is used to specify whether a feed code is output before and after the data.
7 No identifier word is output for a data item for which no axis is selected.
8 The above file corresponds to a paper tape of about 200 m in length.

1.10.6

Notes

(1) Once the storage is full, the oldest data is overwritten.
(2) Stored-type waveform diagnostic data is not lost, even when the power is turned off.
(3) The waveform diagnostic function is disabled when parameter SGD (bit 0 of No. 3112) is set to 0 .
(4) Set the correct date and time using the setting screen.

1.11
 OPERATING MONITOR

Load meter of the servo axis and the serial spindle and the speed meter can be displayed.

1.11.1
 Display Method

1. Set a parameter to display operating monitor. (Bit 5 (OPM) of parameter No.3111)
2. Press the POS key to display the position display screen.
3. Press continuous menu key \triangleright, then soft key [MONI] is displayed.
4. Press the soft key [MONI], then the operating monitor screen is displayed.

CAUTION

1 The bar graph for the load meter shows load up to 200%.
2 The bar graph for the speed meter shows the ratio of the current spindle speed to the maximum spindle speed (100\%). Although the speed meter normally indicates the speed of the spindle motor, it can also be used to indicate the speed of the spindle by setting bit 6. (OPS) of parameter 3111 to 1.
3 The servo axes for their load meters are displayed are set to parameter No. 3151 to 3. If parameters 3151 to 3153 are all zero, the load meter of the basic axes are displayed.
4 For color display, the bar of the load meter that exceed 100\% shows purple color.

1.11.2

Parameters

[Data type] Bit

OPM Operating monitor display is:

0 : Disabled
1: Enabled
OPS The speed meter on the operating monitor screen displays:

[Data type] Byte
[Valid data range] $0,1, \ldots$ number of controlled axes
These parameters specify the numbers of the axes for which load meters for servo motors are to be displayed. Up to eight load meters can be displayed. Set 0 for those axes for which no load meter is to be displayed.

1.12

LIST OF
resekRATIONS

Function	Data protec- tion key	Param- eter write=1	Mode	Func- tion button	Operation
Resetting run hour			-	POS	[(OPRT)][RUNPRE] $\rightarrow[E X E C]$
Resetting no. of machined parts			-	POS	[(OPRT)][PTSPRE] $\rightarrow[E X E C]$
Resetting OT alarm			At Pow- er ON	-	P and CAN
Resetting alarm 100			-	-	CAN

Registration from MDI

Function	Data protection key	Parameter write=1	Mode	Function button	Operation
Inputting parameters		\bigcirc	MDI or E.Stop	SYSTEM (PA- RAM)	Parameter no. \rightarrow [NO.SRH] \rightarrow Data \rightarrow $\rightarrow \mathrm{PWE}=0 \rightarrow \text { RESET }$
Inputting offset values	OFF		-		Offset number \rightarrow [NO.SRH] \rightarrow Offset value \rightarrow INPUT
Inputting setting data	OFF		MDI	$\xrightarrow[\substack{\text { ORFSEI } \\ \text { cima }}]{ }$	Setting no. \rightarrow [NO.SRH]Data \rightarrow NPUT
Input of PMC parameters, counter and data table	OFF		MDI or	Sstrem	$[$ PMCPRM $] \rightarrow[$ COUNTR $]$ or $[$ DATA $] \rightarrow$ Data \rightarrow INPUT
Inputting PMC parameters (Timer, keep relay)		\bigcirc	E.Stop		[PMCPRM] \rightarrow [TIMER] or [KEEPRL] \rightarrow Data \rightarrow 1NPUT
Tool length measurement			JOG		(Display of relative coordinate)<AXIS> \rightarrow [ORIGIN] $\rightarrow \underset{\substack{\text { orsege } \\ \text { EHITC }}}{ } \rightarrow$ Jog the tool to measuring position Offset no. \rightarrow [NO.SRH] $\rightarrow<$ AXIS $>\rightarrow$ [INP.C]

Input/Output with FANUC Cassette

Function	Data protection key	Parameter write=1	Mode	Function button	Operation
Heading a file			EDIT	Prog	$\mathrm{N} \rightarrow$ File no. \rightarrow [$\gg \rightarrow[\mathrm{FSRH}] \rightarrow[$ XECC $]$
Deleting a file	OFF		EDIT	PROG	$\mathrm{N} \rightarrow$ File no. \rightarrow [\rightarrow [DELETE \rightarrow [EXEC $]$
Collating a program			EDIT	Prog	Heading a file \rightarrow \square O \rightarrow Program number $\rightarrow[(\mathrm{OPRT})]$ $\rightarrow[>] \rightarrow[$ READ $] \rightarrow[$ EXEC $]$

Inputting From FANUC Cassette

Function	Data protection key	Parameter write=1	Mode	Function button	Operation
Inputting parameters		\bigcirc	EDIT or E.Stop	$\begin{aligned} & \text { (PSA- } \\ & \text { (PAM) } \\ & \text { RAM) } \end{aligned}$	$[(\mathrm{OPRT})] \rightarrow[\mathrm{l}$] \rightarrow [READ] \rightarrow [EXEC $]$
Inputting PMC parameters		\bigcirc	E.Stop	(PMC)	[$>] \rightarrow[I / \mathrm{O}] \rightarrow($ CANNEL NO) 1 \square (DEVICE NAME) [FDCAS] \rightarrow (KIND OF DATA) [PARAM $] \rightarrow[$ READ $] \rightarrow$ (FILE NO) File no. $\operatorname{\text {INPUT}} \rightarrow[$ EXEC]
Inputting offset values	OFF		EDIT	(orsel	$($ Heading a file no. $) \rightarrow[($ OPRT $)] \rightarrow[\square] \rightarrow[$ READ $] \rightarrow[$ EXEC $]$
Registering a program	OFF		EDIT	PROG	$\mathrm{N} \rightarrow$ File no. \rightarrow INPUT $\rightarrow[\rightarrow] \rightarrow[$ READ $] \rightarrow$ [EXEC $]$
Inputting macro variables	OFF		EDIT	Prog	$\mathrm{N} \rightarrow \text { File no. } \rightarrow \text { NPPuT } \rightarrow[>] \rightarrow \mathrm{O} \rightarrow$ Program no. \rightarrow [READ] \rightarrow [EXEC]
			MEMO RY	PROG	<START>

Output to FANUC Cassette

Function	Data protection key	Parameter write=1	Mode	Function button	Operation
Output of parameter			EDIT		$[(\mathrm{OPRT})] \rightarrow[\mathrm{l}] \rightarrow[\mathrm{PUNCH}] \rightarrow[\mathrm{EXEC}]$
Output of PMC parameter			EDIT	$\underbrace{\text { SSSTEM }^{2}}_{\text {(PMC) }}$	[$>] \rightarrow[1 / \mathrm{O}] \rightarrow($ CANNEL NO) \square 1 \square \rightarrow (DEVICE NAME) [FDCAS] \rightarrow (KIND OF DATA) [PARAM] \rightarrow [WRITE] \rightarrow (FILE NO) \square \square 1 \square $\rightarrow[E X E C]$
Output of offset			EDIT		$[(\mathrm{OPRT})] \rightarrow[>] \rightarrow[\mathrm{PUNCH}] \rightarrow[\mathrm{EXEC}]$
Output of all programs			EDIT	PROG	$\bigcirc \rightarrow-9999 \rightarrow[\square] \rightarrow[\mathrm{PUNCH}] \rightarrow[$ EXEC $]$
Output of one program			EDIT	PROG	
Output of macro variables			EDIT		$[>] \rightarrow[\mathrm{MACRO}] \rightarrow[(\mathrm{OPRT})] \rightarrow[\mathrm{D}] \rightarrow[\mathrm{PUNCH}] \rightarrow[\mathrm{EXEC}]$

Search

Function	Data protection key	Parameter write=1	Mode	Function button	Operation
Searching a program number			$\begin{gathered} \hline \text { MEMO } \\ \text { RY } \\ \text { or EDIT } \end{gathered}$	Prog	$\bigcirc \rightarrow$ Program no. \rightarrow [O SRH]
Searching a sequence number			MEMO RY	PROG	Program no. search $\rightarrow \mathrm{N} \rightarrow$ Sequence number \rightarrow [NSRH]
Searching an address word			EDIT	PROG	Data to be searched $\rightarrow[$ SRH $\uparrow]$ or $[S R H \downarrow]$ or (cursor key)
Searching an address only			EDIT	PROG	Address to be searched [SRH \uparrow] or[SRH \downarrow] or (Cursor key)
Searching an offset number			-	¢ocrex	Offset no. \rightarrow [NO.SRH]
Searching a diagnostic number			-		Diagnostic number \rightarrow [NO.SRH]
Searching a parameter number			-	(PA- RAM)	Parameter no. \rightarrow [$\mathrm{NO} . \mathrm{SRH}$]

Edit

Function	Data protection key	Parameter write=1	Mode	Function button	Operation
Display of memory capacity used			EDIT	PROG	[LIB]
Deleting all programs	OFF		EDIT	PROG	$\bigcirc \rightarrow-9999 \rightarrow$-LLTE
Deleting a program	OFF		EDIT	PROG	$\bigcirc \rightarrow$ Program no. \rightarrow DELLTE
Deleting several blocks	OFF		EDIT	PROG	N \rightarrow Sequence no. \rightarrow \square (Deleted up to a block with a specified sequence no.)
Deleting a block	OFF		EDIT	PROG	EOB \rightarrow OELETE
Deleting a word	OFF		EDIT	PROG	Searching a word to be deleted \rightarrow DELIET
Changing a word	OFF		EDIT	PROG	Searching a word to be changed \rightarrow New Data \rightarrow ALTER
Inserting a word	OFF		EDIT	PROG	Searching a word immediately before a word to be searched \rightarrow New Data \rightarrow \square

Collation

Function	Data protec- tion key	Param- eter write $=1$	Mode	Func- tion button	Operation
Collating memory	ON		EDIT	PROG	$[(O P R T)] \rightarrow[\quad] \rightarrow[R E A D] \rightarrow[E X E C]$

Playback

Function	Data protection key	Parameter write=1	Mode	Function button	Operation
Input of NC data			$\begin{gathered} \text { TEACH } \\ \text {-IN } \\ \text { JOG/ } \\ \text { HAN- } \\ \text { DLE } \end{gathered}$	PROG	Jog the machine $\rightarrow \mathrm{X}, \mathrm{Y}$ or $\mathrm{Z} \rightarrow$ INSERT $\rightarrow \mathrm{NC} \text { data } \rightarrow \text { NSERT } \rightarrow \text { EOB } \rightarrow \text { NSERT }$

Clear

Function	Data protection key	$\begin{aligned} & \text { Param- } \\ & \text { eter } \\ & \text { write=1 } \end{aligned}$	Mode	Function key	Operation
Memory all clear			At power ON		M/T : RESET AND On 2path are controlled On 2path are controlled Path1: CAN AND 1 Path2 : CAN AND 2 Loader is controlled \square CAN AND
Parameter/offset clear		\bigcirc	At Power ON		M/T : RESET On 2path are controlled Path1: \square AND 1 Path2 : \square RESET AND \square \square 5
Clearing a program		\bigcirc			$\mathrm{M} / \mathrm{T} \quad:$ DELETE On 2path are controlled Path1 : \square AND \square 1 Path2 : \square AND 2 Loader is controlled \square RESET AND 5
Program under edition at power off(PS101)			-		PROG AND RESET
PMC RAM *			At Power ON		Main CPU : \square AND 0 \square (O) Loader is controlled : \square
Additional SRAM area clear			At Power ON		(O) AND \square On 2path are controlled Path1 : \square (O) AND \square 1 Path2 : \square (O) AND 2

[^0]
NOTE

For the $20 i$, memory all clear operation based on (7) and (9) is also effective.

Manual operation

Function	KEY SW	PWE $=1$	Mode	Func- tion key	Operation
Manual refer- ence point return		JOG		Turn on Reference point return switch \rightarrow Turn on $+X,-X,+Z$, or $-Z \rightarrow$ Reference point return switch LED lit.	
Jog feed			JOG		Turn on $+X,-X,+Z$, or $-Z \rightarrow$ Use JOG FEEDRATE to set jog feedrate \rightarrow Press Rapid traverse button, if required.
Incremental feed			INC		Use Move distance selection switch to select move distance \rightarrow Turn on $+X,-X,+Z$, or $-Z \rightarrow$ Press Rapid traverse button, if required.
Manual handle feed			HND		Use Axis selection switch to select axis to be operated \rightarrow Use Handle magnification selection to select magnification \rightarrow Turn manual pulse generator.

Display

Function	$\begin{aligned} & \text { KEY } \\ & \text { SW } \end{aligned}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Amount of program memory in use			EDIT	PROG	[DIR]
Command value display			MEM or MDI	PROG	Command value being executed, and previously specified modal value
					[CURRNT]
					Command value being executed, and next command value to be executed
					[NEXT]
					Command value entered from MDI, and previously specified modal value
					[MDI]
					Program in memory being executed
					[PRGRM]
					Executable blocks in memory and current position
					[CHECK]

Function	$\begin{gathered} \text { KEY } \\ \text { SW } \end{gathered}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Currentposition display					Representation of the position in the workpiece coordinate system
					[ABS]
					Representation of the position in the relative coordinate system
					[REL]
					General position indication
					[ALL]
Alarm display			-	Messace	[ALARM] when an alarm condition has occurred.
Alarm history display				wesmes	[HISTRY]
Screen erase			-	-	Press the \square can and function keys simultaneously. The function key causes re-display.
Screen switching between NC and loader					SHIFT and HELP

Graphics functions (T series)

Function	$\begin{gathered} \text { KEY } \\ \text { SW } \end{gathered}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Parameter setting				GRAPH	[G.PRM]
Tool path drawing				GRAPH	Select a graphics drawing screen.
					[GRAPH]
					Begins and ends drawing.
					During automatic operation or manual operation
					Erase a drawing screen.
					[(OPRT)] \rightarrow [ERASE]
					Enlarge graphics.
					[ZOOM]

NOTE

For the small-size MDI, read the बваिम function key in this table as the

Graphics function (M series)

Function	KEY SW	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Parameter setting				GRAPH	[PARAM]
Tool path drawing					Select a graphics drawing screen.
					[GRAPH]
					Begin and end drawing.
					During automatic operation or manual operation
Tool path diagram data setting				GRAPH	Press the \square key several times \rightarrow Display "PATH GRAPHIC (PARAMETER)" screen \rightarrow [PARAM] \rightarrow Enter numerals using numeric keys \rightarrow INPUT \square
Tool path drawing			MEM		Press the \square key several times \rightarrow Display "PATH GRAPHIC (PARAMETER)" screen \rightarrow [EXEC] \rightarrow [(OPRT)] \rightarrow [AUTO] or [START]
					Suspend drawing
					[STOP]
					Execute.
					Suspend [START]
					drawing Draw starting at the top of the program.
					[REWIND] \rightarrow [START]
Enlarging part of the tool path drawing				GRAPH	Press the GRAPH key several times \rightarrow Display "PATH GRAPHIC (PARAMETER)" screen \rightarrow [SCALE] $\rightarrow[($ OPRT $)][\leftarrow][\rightarrow][\downarrow][\uparrow] \rightarrow \mathrm{Pc}$ or $M \# \rightarrow$ [EXEC]
Current-tool position mark display				GRAPH	Press the \square key several times \rightarrow Display "SOLID GRAPHIC (PARAMETER)" screen \rightarrow [POS]
Machining profile drawing data setting				GRAPH	Press the \square GRAPH key several times \rightarrow "SOLID GRAPHIC (PARAMETER)" screen \rightarrow Enter numerals using numeric keys $\rightarrow \text { INPUT }$
Blank figure drawing				GRAPH	Press the \square key several times \rightarrow "SOLID GRAPHIC (PARAMETER)" screen $\rightarrow[$ BLANK $] \rightarrow[($ OPRT $)] \rightarrow[$ ANEW $] \rightarrow$ [+ ROT][-ROT][+TILT][-TILT]

Function	$\begin{aligned} & \text { KEY } \\ & \text { SW } \end{aligned}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Machining profile drawing					Press the \square key several times \rightarrow "SOLID GRAPHIC (PARAMETER)" screen \rightarrow [EXEC] \rightarrow [(OPRT)] \rightarrow [A.ST] or [F.ST]
					Suspend drawing
			MEM		[STOP]
					Execute.
					After drawing [A.ST] or [F.ST]
					is suspended Display the start of part program.
					[REWIND] \rightarrow [A.ST] or [F.ST]
Re-drawing of "SOLID GRAPHIC (PARAMETER)" in a different orientation				GRAPH	Press the GRAPH key several times \rightarrow "SOLID GRAPHIC (PARAMETER)" screen \rightarrow [REVIEW $] \rightarrow[($ OPRT $)] \rightarrow[$ ANEW $] \rightarrow$ [+ ROT][- ROT][+TILT][-TILT]
3-plane drawing				GRAPH	Press the \square key several times \rightarrow "SOLID GRAPHIC (PARAMETER)" screen $\rightarrow[>] \rightarrow[3-$ PLN $] \rightarrow[($ OPRT $)] \rightarrow[\Omega]$ $[\leftarrow][\rightarrow][\uparrow][\downarrow]$

NOTE

For the small-size MDI, read the Geaper function key in this table as the

Help function

Function	KEY SW	PWE $\mathbf{= 1}$	Mode	Func- tion key	Operation
Initial menu screen dis- play				HELP	HELP
Alarm detail screen dis- play				HELP	[ALARM] \rightarrow Alarm No. \rightarrow [SELECT]
Operation method screen dis- play				HELP	[OPERAT] \rightarrow Operation method item No. \rightarrow [SELECT]
Parameter table-of-con- tents screen display				HELP	[PARAM]

Self-diagnosis function

Function	KEY SW	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
Self-diagnosis screen display				SYSTEM	

Boot

Function	$\begin{gathered} \text { KEY } \\ \text { SW } \end{gathered}$	$\begin{gathered} \text { PWE } \\ =1 \end{gathered}$	Mode	Function key	Operation
System monitor screen display			Pow-er-on time	-	\triangle and a soft key at its left
Reading file from memory card					Place the cursor at 1. SYSTEM DATA LOADING on the system monitor screen \rightarrow [SELECT] \rightarrow Place the cursor at the target file \rightarrow [SELECT] \rightarrow [YES]
Listing files in flash ROM and displaying detail screen					Place the cursor at 2. SYSTEM DATA CHECK on the system monitor screen \rightarrow [SELECT] \rightarrow Place the cursor at the target item \rightarrow [SELECT]
Deleting file from flash ROM					Place the cursor at 3. SYSTEM DATA DELETE on the system monitor screen \rightarrow [SELECT] \rightarrow Place the cursor at the target file \rightarrow [SELECT] \rightarrow [YES]
Outputting file from flash ROM to memory card					Place the cursor at 4. SYSTEM DATA SAVE on the system monitor screen \rightarrow [SELECT] \rightarrow Place the cursor at the target file \rightarrow [SELECT] \rightarrow [YES]
Transferring contents between SRAM and memory card in batch					Place the cursor at 5. SRAM DATA BACKUP on the system monitor screen \rightarrow [SELECT] - Batch output to memory card Place the cursor at 1. SRAM BACK UP \rightarrow [SELECT] \rightarrow [YES] - Batch input from memory card Place the cursor at 2. RESTORE SRAM \rightarrow [SELECT] \rightarrow [YES]
Deleting file from memory card					Place the cursor at 6. MEMORY CARD FILE DELETE on the system monitor screen \rightarrow [SELECT] \rightarrow Place the cursor at the target file \rightarrow [SELECT] \rightarrow [YES]
Memory card formatting					Place the cursor at 7. MEMORY CARD FORMAT on the system monitor screen \rightarrow [SELECT] \rightarrow [YES]
Exiting system monitor					Place the cursor at 10. END on the system monitor screen \rightarrow [SELECT] \rightarrow [YES]

Reference
If no soft key is available as with a touch panel, use the numeric keys on the MDI keypad.

P-CODE loader

Function	KEY SW	PWE $=\mathbf{1}$	Mode	Func- tion key	Operation
Starting P-CODE loader			Pow- er-on time		CAN and PROG

1.13

WARNING SCREEN DISPLAYED WHEN
AN OPTION IS CHANGED

- Warning screen

This CNC displays a warning screen when the configuration of the options using the SRAM area is changed. The data for the function indicated on the screen is cleared the next time the system is turned on.

WARNING

YOU SET THE PARAMETER NO. $\square \square \square \square \# \square$

THE FOLLOWING DATA WILL BE CLEARED.

* PART PROGRAM MEMORY

PLEASE PRESS <DELETE> OR <CAN> KEY.
<DELETE> : CLEAR ALL DATA
<CAN> : CANCEL

NOTE

1 Mark* varies with the parameter settings. Two or more function names may be displayed.
2 For the $20 i,<9>-$ based operation rather than <DELETE>based operation is effective.

- Allocation error screen

When an option which uses the SRAM area is added, the system software may require more SRAM than is currently installed in the system. In this case, an allocation error screen appears the first time the system is turned on after the addition of the option, thus restoring the state existing before the addition.

FILE ALLOCATION ERROR
S-RAM CAPACITY IS NOT SUFFICIENT. ADDITIONAL S-RAM IS NECESSARY.

PLEASE PRESS <CAN> KEY :
RETURN TO THE STATE BEFORE
OPTION PARAMETER IS CHANGED.

NOTE
When replacing SRAM, perform all memory clear.
$($ RESET + DELETE $)$
For the $20 i$, all memory clear based on 7 and 9 are also effective.

1.14 WARNING SCREEN DISPLAYED WHEN SYSTEM SOFTWARE IS REPLACED (SYSTEM LABEL CHECK ERROR)

System software can be replaced only with compatible system software. Otherwise, the first time the CNC is turned on after the system software is replaced, the following screen will be displayed and the system will not be activated:

In this case, perform memory all clear (by holding down the RESET and MDI keys then turning on the power) or reinstall the original system software.

NOTE

For the $20 i$, all memory clear based on 7 and 9 are also effective.
1.15

MAINTENANCE INFORMATION SCREEN

The maintenance information screen is provided to record the history of maintenance performed by a service person of FANUC or machine tool builder.
The screen has the following features:

- MDI alphabetical input is allowed.
- The recording screen can be scrolled in units of lines.
- Edited maintenance information can be read and punched.
- The screen can be saved in flash ROM.

1.15.1

Screen Display and Operation

- Screen display

1. Press the ssstem function key.
2. Press the continuous menu key \boxtimes several times. [M-INFO] soft key appears.
3. Press the [M-INFO] soft key. The maintenance information screen appears.
When selected, the maintenance screen shows the latest information.
The recording screen has an input area of 40 characters by 11 lines.
The status (mode, number of empty character spaces, cursor line, column number) is displayed at the bottom of the screen.

11 lines	MAINTENANCE INFORM aaa bbb ccc ddd eee fff nnn			
	\|OVER	EDIT	spaces:2078	$33: 1$

Status display

. OVER/INSERT : - OVER : Overwrite mode ; INSERT: Insert mode

- EDIT/VIEW : --- EDIT : Editing allowed ; VIEW : Editing inhi bited
- Number of empty character spaces
- Current cursor line
- Current cursor column
- Screen operation

The maintenance information screen has view mode and edit mode, which are selected by pressing the [END] or [EDIT] soft key.
Initially, view mode is selected. To start editing, select edit mode by pressing the [(OPRT)] and [EDIT] keys. When the editing is completed, press the [END] key. Then, select [STORE] or [IGNORE]. Unless [STORE] is selected, the edited data will be lost at next power-up.
To scroll the screen showing the recorded information, press a cursor key or page key on the MDI panel.
The following keys are used for editing (character input) and viewing:

Operation table

Mode	Key	Description
View	Soft keys [EDIT] [JUMP]	Allows editing. Displays the beginning or the end.
	Cursor key	Scrolls the screen up or down.
	Page key	Scrolls the screen up or down in units of whole screens.
Edit	Soft keys [END] [ALLDEL] [//O] [JUMP]	Ends editing. Select whether to store the edited data. Clears all maintenance information. (This key is enabled when the MDC bit (bit 3 of parameter 3118) is set to 1.) Reads or punches the maintenance information. Moves the cursor to the beginning or end.
	Cursor key	Moves the cursor position up or down.
	Page key	Scrolls the screen up or down in units of whole screens.
	Alphanumeric/spe cial character keys	Allows alphabetical, numeric, or special character input.
		Selects either insert mode or overwrite mode.
		Deletes a single character.
	CAN key	Deletes a single character before the cursor position.
	INPUT key	Starts a new line.

Operation of the soft keys

1.15 .2

Maintenance Information Input/Output

The maintenance information can be read and punched.
When the maintenance information is input from or output to a memory card, a file name MAINTINF.DAT is used.
(1) Format

(2) Reading

When a MAINTINF.DAT file generated in the format shown above is read, the data is added at the end of the existing maintenance information.

NOTE

1 A TAB code is converted to one to four blanks, depending on the input position.
2 80h to 90h and E0h to EBh are assumed as prefix codes of double-byte characters. Reading these codes alone is inhibited.
3 Control codes (00 H to 1 FH) except TAB and LF are discarded in reading.
4 \%\% cannot be input.
(3) Punching

All maintenance information is output in the format shown above.

1.16
 COLOR SETTING SCREEN

When VGA screen display is selected (NVG bit (bit 7 of parameter 3119) is set to 0), the color scheme of the VGA screen can be set on the color setting screen.

1.16.1
 Screen Display

1. Press the \square function key.
2. Press the continuous menu key \square several times. The [COLOR] soft key appears.
3. Press the [COLOR] soft key. The color setting screen appears.

1.16.2
 Color Setting
 - Changing a color (color palette value)

1. Press the $[(\mathrm{OPRT})]$ soft key. The following operation soft keys appear.

	RED	GREEN	BLUE	BRIGHT	DARK	+

2. Move the cursor to the color number corresponding to the color palette value to be changed.
The current color palette values of individual color elements are displayed.
3. Select a desired color element by pressing the [RED], [GREEN], or [BLUE] operation soft key.
Two or more color elements can be simultaneously selected.
Each time the [RED], [GREEN], or [BLUE] operation soft key is pressed, the selection is made or canceled.
(If the [RED], [GREEN], and [BLUE] operation soft keys are not displayed, press the rightmost soft key.)

- Storing colors (color palette values)

4. Press the [LIGHT] or [DARK] operation soft key to change the luminance of the selected color element.

A specified color palette value can be stored.

	STORE	CALL	COLOR1	COLOR2	COLOR3	+

1. Select a desired storage area by pressing the [COLOR1], [COLOR2], or [COLOR3] operation soft key.
(If the [COLOR1], [COLOR2], and [COLOR3] operation soft keys are not displayed, press the rightmost soft key.)
COLOR1 - Standard color data parameters (6561 to 6595)
COLOR2 - Internal RAM
COLOR3
2. Press the [STORE] operation soft key. The following operation soft keys appear.

				CAN	EXEC	+

3. To store the current color palette values in the selected area, press the [EXEC] operation soft key. To cancel the storage, press the [CAN] operation soft key or the leftmost key.

	STORE	CALL	COLOR1	COLOR2	COLOR3	+

1. Select a color palette storage area by pressing the [COLOR1], [COLOR2], or [COLOR3] operation soft key.
(If the [COLOR1], [COLOR2], and [COLOR3] operation soft keys are not displayed, press the rightmost soft key.)
2. Press the [CALL] operation soft key. The following operation soft keys appear.

3. To call the color palette values from the selected area, press the [EXEC] operation soft key. If no color palette value is stored, this step cannot be executed.
To stop calling, press the [CAN] operation soft key or the leftmost key.

1.16.3
 Parameters

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3119 | | | | | | | |
| NVG | | | | | | | |

[Data type] Bit
NVG When a color display unit is used, the VGA screen display is:
0 : Selected.
1: Not selected. (Conventional display)

6561	Standard color data of graphic color 1
6562	Standard color data of graphic color 2
6563	Standard color data of graphic color 3
6564	Standard color data of graphic color 4
6565	Standard color data of graphic color 5
6566	Standard color data of graphic color 6
6567	Standard color data of graphic color 7
6568	Standard color data of graphic color 8
6569	Standard color data of graphic color 9
6570	Standard color data of graphic color 10
6571	Standard color data of graphic color 11
6572	Standard color data of graphic color 12
6573	Standard color data of graphic color 13
6574	Standard color data of graphic color 14
6575	Standard color data of graphic color 15
6581	Standard color data of text color 1
6582	Standard color data of text color 2
6583	Standard color data of text color 3
6584	Standard color data of text color 4
6585	Standard color data of text color 5
6586	Standard color data of text color 6
6587	Standard color data of text color 7
6588	Standard color data of text color 8
6589	Standard color data of text color 9

6590	Standard color data of text color 10
6591	Standard color data of text color 11
6592	Standard color data of text color 12
6593	Standard color data of text color 13
6594	Standard color data of text color 14
6595	Standard color data of text color 15

[Data type] Two-word
[Unit of data] Six-digit number rrggbb (rr: Red component value, gg: Green component value, bb: Blue component value)
When five digits or less are specified, the missing high-order digits are assumed as zeros.
[Valid data range] Each color component value: 00 to 15 (Equivalent to the color level on the color setting screen)
When 16 or a higher value is specified, 15 is assumed.
(Example) When specifying a color having red component value 1 , green component value 2 , and blue component value 3 , set the parameter value as 10203 .

1.16.4

Notes
(1) At power-up, the color scheme of the screen is determined by the setting in the COLOR1 area (parameters). If no data is stored in the COLOR1 area, the last color scheme before power-down is applied.
(2) The standard color data specified in parameters must not be changed by direct MDI key input. When changing the parameter data, set and store the new data on the color setting screen.
(3) When a wrong value is specified in a standard color data parameter, the screen may not be displayed. If this occurs, turn the power on again, while pressing the oelete and Reset keys. This clears the whole stored color scheme and restores the FANUC standard color scheme instead.
Be very careful when performing this operation, as all memory contents such as parameters and programs are lost.
1.17

CONTRAST ADJUSTMENT

Depending on the eye level and the viewing angle of the operator, the LCD may be hard to read. This problem can be solved by adjusting the contrast. The contrast of a monochrome LCD can be adjusted.

1. Press the $\underset{\substack{\text { orfser } \\ \text { sering }}}{\text { fildion key. }}$
2. Press the [SETTING] chapter selection soft key.

The LCD contrast item is displayed on the setting (handy) screen.

```
SETTING (HANDY)
PARAMETER WRITE = 1(0:DISABLE 1: ENABLE)
TV CHECK = 0(0:OFF 1:ON)
PUNCH CODE = 0(0:EIA 1:ISO)
INPUT UNIT = 0(0:MM 1:INCH)
I/O CHANNEL = 0(0-3:CHANNEL NO.)
SEQUENCE NO. = 0(0:OFF 1:ON)
TAPE EORMAT = 0(0:NO CNV 1:F15)
SEQUENCE STOP = 0(PROGRAM NO.)
SEQUENCE STOP = O(SEQUENCE NO.)
[ CONTRAST ]( + = [ ON:1 ] - = [ OFF:0 ])
>-
MDI **** *** *** 00:00:00
[NO.SRH] [ ON:1 ] [OFF:O] [+INPUT] [INPUT]
```

3. Move the cursor to "CONTRAST".
4. Adjust the contrast by pressing the operation soft key [ON:1] or [OFF:0].

1.18

POWER MOTION MANAGER

When the Power Motion series is used as an additional axis (slave) of the CNC, the power motion manager allows the slave data to be displayed and set by the CNC.
The power motion manager enables the following display and setting:
(1) Current position display (absolute/machine coordinates)
(2)Parameter display and setting
(3) Diagnosis display
(4) System configuration screen display
(5) Alarm display

The Power Motion series that can be used as the slave is a β amplifier with I/O Link.

1.18.1

Parameter

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
					PMN	MD2	MD1	SLV

[Data type] Bit
SLV When the power motion manager is selected, the screen shows the data of:
0 : A single slave.
1: Up to four slaves by dividing the screen into four segments.
MD1, MD2 The slave parameters are input from and output to the following devices:

MD2	MD1	I/O device
0	0	Part program storage
0	1	Memory card

The parameters are input or output in the program format, no matter which I/O device is selected.
PMN The power motion manager function is:
0 : Enabled.
1: Disabled. (Communication with the slave is not performed.)

1.18.2

Screen Display

1. Press the \square function key.
2. Press the continuous menu key \triangle several times. The [PMM] soft key appears.
3. Press the [PMM] soft key. The system configuration screen, which is the initial screen of the power motion manager, appears. The screen has the following soft keys (function selection soft keys).

The currently active soft key is displayed in reverse video. Pressing a soft key enables the corresponding function, as indicated below:

POS: Current position display
SYSTEM: System information
MSG: Alarm list
To select another function after one of the functions listed above is selected, press the return menu key \square several times until the soft keys are displayed as shown above. Then, select the desired function.
4. To terminate the power motion manager, repeatedly press the return menu key \square until the function selection keys are displayed as shown above. Then, press the return menu key once more. The soft keys of the CNC system appear, and the power motion manager terminates. The system configuration screen of this function is displayed as the termination screen.

Alternative termination method is to select another function while this function is enabled. To do this, press an MDI function key (POS , PROG, mescace , etc.).

NOTE

After another screen is displayed by pressing a function key, pressing the ssstem function key, restores the initial status of this function. That is, the soft keys shown above are restored. The data that was being input is canceled.

- System configuration screen

This screen displays the system software information of the slave. The screen is displayed first when the power motion manager function is selected. This screen is automatically displayed also at the termination of the function.

1. Press the [SYSTEM] function selection soft key. The following soft keys are displayed together with the screen displayed when SYSTEM was last selected. The currently active soft key is displayed in reverse video.

2. Press the [SYSTEM] soft key again. The system configuration screen appears. While this screen is displayed, the [SYSTEM] soft key is left displayed in reverse video.

POWER MOTION MANAGER	
SYSTEM CONFIGURATION	
1.GROUP $/ \beta$	
SYSTEM <SERIES/VERSION>	$88 A 1$ 01
[PARAM] [DGNOS] [

Sample screen: Series and edition of the servo unit β series system list

- Parameter screen

The parameters necessary for the functions of the slave must be specified in advance.

1. Press the [SYSTEM] function selection soft key. The following soft keys appear.
```
[ PARAM ][ DGNOS ][ ][SYSTEM] [ ]
```

2. Press the [PARAM] soft key. The parameter screen appears.

The screen displays just the bit and decimal data. For details of the parameters, refer to the connection manual of the corresponding Power Motion unit.

- Searching for a parameter

A search can be made for the parameter to be displayed.

1. Select the active slave.
2. Press the $[(\mathrm{OPRT})]$ soft key. The following soft keys appear.

3. Enter a desired number in the key-in field by using MDI numeric keys. Then, press the [NO.SRC] soft key. The search starts.

- Setting a parameter

A parameter of a slave Power Motion unit can be directly set from the CNC.

1. Select the active slave.
2. Press the $[(\mathrm{OPRT})]$ soft key. The following soft keys appear:

3. Move the cursor to the parameter to be set.
4. Enter desired data in the key-in buffer by using MDI numeric keys. Then, press the [INPUT] soft key. Alternatively, press the MDI INPUT key.

This screen shows the current status of the slave.

1. Press the [SYSTEM] function selection soft key. The following soft keys appear:
```
[ PARAM ][ DGNOS ] [ ][SYSTEM] [ ]
```

2. Press the [DGNOS] soft key. The diagnosis screen appears. The displayed data is basically the same as the data displayed on the parameter screen.
For details of the diagnosis information, refer to the connection manual of the corresponding Power Motion unit.

- Current position display

The screen shows the current position on the workpiece coordinate system or machine coordinate system.

1. Press the [POS] function selection soft key. The following soft keys appear:

2. To see the absolute coordinate screen, press the [WORK] soft key. To see the machine coordinate screen, press the [MACHIN] soft key.

- Alarm screen

If an alarm is issued during operation, the group number of the slave causing the alarm is indicated at the right end of the message field on the screen. Check the details on the alarm screen. For example, (13) means that the first and third power motion units are in the alarm state.

1. Press the [MSG] function selection soft key. Just the error code is displayed on the screen.

Up to forty codes can be displayed on the screen.
For details of the alarm, refer to the connection manual of the corresponding Power Motion unit.

- Operating the active slave

- Single-slave display/ Four-slave display

The active slave is subjected to the ZOOM function, which will be described later, and parameter overwrite. The title of the active slave is displayed in a color different from the display color of the other slave titles.

The active slave can be selected by pressing the [$\downarrow \mathrm{NEXT}]$ or $[\uparrow \mathrm{BACK}]$ soft key, which is displayed after the continuous menu key \triangle is pressed several times.
[\downarrow NEXT]: Displays the screen of the Power Motion unit connected after the currently active slave. The equipment other than the Power Motion unit is ignored.
[\uparrow BACK]: Displays the screen of the Power Motion unit connected before the currently active slave.

Whether the screen displays the data of just a single unit or of four units in four segments is specified in the SLV bit (bit 0 of parameter 960).

To switch the four-slave display to the single-slave display, press the [ZOOM] soft key, which is displayed after the continuous menu key \square is pressed several times. The single-slave display shows the data of the active slave. To switch the single-slave display to the four-slave display showing the data of four slaves including the active slave, press the [ZOOM] key.

When five or more slaves are connected, the four-slave display has two or more pages. To see the slave data that is not displayed on the current page, press soft key [\downarrow NEXT].

The figure above shows a sample four-slave display screen on a display unit with twelve soft keys. A unit with seven soft keys can also display the four-slave display screen.

The figure above shows a sample single-slave display screen on a display unit with seven soft keys. A unit with twelve soft keys can also display the single-slave display screen.

While the following soft keys are being displayed, a guidance message is displayed in the message field.


```
[ PARAM ][ DGNOS ][ ][SYSTEM] [(OPRT) ]
```

When the soft keys are displayed as shown above, "SELECT ACTIVE SLAVE [$>$]" is displayed.

```
[ \downarrowNEXT ][ ^BACK ][ ZOOM ][ ][ ]
```

When the soft keys are displayed as shown above, "SELECT ACTIVE SLAVE [\downarrow] [\uparrow]" is displayed.

- Key-in field

When the [(OPRT)] soft key is pressed, the message line may turn into a key-in field as required. The numeric data input by using MDI keys is displayed after the prompt (>).

On the parameter and diagnosis screens, the key-in field appears when just a numeric value is input. The soft key $[(O P R T)]$ need not be pressed.

1.18.3
 Parameter Input/Output

- Saving parameters

Parameters can be saved in CNC memory or a memory card as a data file of program format. Specify the first digit of the registration program number in parameter 8760. Programs with predetermined numbers are created for individual slaves. When the parameters are saved in CNC memory, a program having the specified program number is created. When the parameters are saved in a memory card, a file is created, to which the file name consists of the specified program number and an extension PMM.

Example: When parameter 8760 is set to 8000
The program number for group n is $8000+n * 10$.
The group number n is indicated in the title area of each slave.

CAUTION

In case that the parameters are saved in a memory card, If the specified program number already exists on memory card, the corresponding program is overwritten with new data.

Specify a desired input device in the MD1 and MD2 bits (bits 1 and 2 of parameter 960). Connect a memory card. Alternatively, check the free area of CNC memory. Then, follow the steps given below:

1. Select the active slave.
2. Press the $[(\mathrm{OPRT})]$ soft key. The following soft keys appear:

3. Press the continuous menu key \triangleright. The following soft keys appear:

4. Press the [READ] soft key. The following soft keys appear:

5. Press the [EXEC] soft key.

During input, "INPUT" blinks in the message field.

- Writing parameters

The data file of parameters saved in CNC memory or a memory card as a program is written into the slave determined by the program number. The program number and memory device are determined as described in "Saving parameters."

1. Select the active slave.
2. Press the $[(\mathrm{OPRT})]$ soft key. The following soft keys appear:
```
[ NO.SRC ][ ][ ][ ][ INPUT ]
```

3. Press the next-menu key. The following soft keys appear:

4. Press the $[\mathrm{PUNCH}]$ soft key. The following soft keys appear:

5. Press the [EXEC] soft key.

During output, "INPUT" blinks in the message field.
The screen cannot be changed to another screen during parameter input/output.

When the RESET key is pressed, or when an alarm status is detected in communication, the input/output stops.

1.18.4

Notes

- Connecting an I/O Link
- Ignoring the power motion manager function

When the Power Motion series is used as a slave of an I/O Link, the CNC assigns I/O addresses. The salve data is input and output in units of 16 bytes. Therefore, 128 input/output points are necessary. Up to eight slaves can be connected.

The module name is OC021 (16-byte input) or OC020 (16-byte output). BASE is always 0 , and SLOT is always 1 .

After the data necessary for each slave connected is set and checked, the communication of the power motion manager (PMM) can be stopped to send a command from the CNC ladder to the slave.

When the PMN bit (bit 3 of parameter 960) is set to 1 , all communication between CNC and the slave via the I/O Link is open to the ladder.

While the bit is held 1 , the screen shows just the title, function name, and other items that are independent of the communication. The following message appears to indicate that communication has stopped.

- Data input/output by I/O Link
- Alarm
- Data protection key

When the power motion manager is used, the function for data input/output by I/O Link cannot be used.
(1) CNC

When a CNC alarm status is detected, the screen is automatically switched to the CNC alarm screen. Check the details of the alarm. If necessary, display and select the power motion manager screen again by pressing function key \qquad
(2) Slave

A guidance message is usually displayed in the message field. If a slave alarm is detected, the corresponding slave group number is displayed at the right end.
Display the alarm screen to check the details.
When the data protection key of the CNC is turned on, parameters cannot be input to CNC memory.
1.19

PERIODIC MAINTENANCE SCREENS

Using the periodic maintenance screens makes it easy to manage consumables (such as LCD unit backlight and backup battery) that are to be replaced periodically.

Setting the name and service life of consumables, and the countdown method to be used for them enables counting of the remaining service time according to the specified countdown method and displaying of the result.

1.19.1
 Overview

- Screen configuration
- Procedure

The following periodic maintenance screens are available:
(1) Status screen: Displays item names, remaining service time, countdown status, and lets you specify item names.
(2) Setting screen: Lets you specify service life, remaining service time, and count type (countdown method).
(3) Machine system menu screen: Enables registering the names of consumables used in the machine.
(4) NC system menu screen: Displays the names of registered consumables used in the NC.

To use this function, follow the steps below:
(1) Select a number for registration (using the cursor key on the status screen).
(2) Specify an item name.

The following two methods are available.

- Selecting a name from a menu screen (machine or NC system menu screen).
- Entering a name to the status screen directly from the MDI.

Using the machine system menu screen requires that item names be registered previously.
(3) Specify the service life, remaining service time, and count type for a target item.
Once they are specified, the remaining service time can be checked on the status screen.

1.19 .2

Screen Display and Setting

1 Press the ssstem function key.
2 Press the \square continuous menu key several times. Soft key [MAINTE] appears.
3 Press soft key [MAINTE]. A periodic maintenance screen appears.
There are two periodic maintenance screens, status and setting screens. Either screen can be selected using soft key [CHANGE].

1.19.3
 Status Screen Display and Setting

Up to 10 consumable items can be registered for management. Their remaining service time and count status are displayed on the status screen.

```
MERIODICAL MAINTENANCE 
```

[CHANGE] [ENTRY] [CLEAR] [+INPUT] [INPUT]

(1) Item name

The name of an item to be subjected to periodic maintenance is specified under "Item name."
Two methods can be used to specify item names. The first method uses the menu screen, and the second, the MDI keypad.
(1) Method of using the menu screen

1 Place the cursor on the target item name, and press soft key [ENTRY]. A menu screen appears. The menu screen is either the machine or NC system menu screen.
2 Press soft key [MACHIN] or [NC]. A machine system menu appears. It holds the names of consumables typical to the machine system or NC system.
3 Place the cursor on a registered item name, and press soft key [SELECT], then soft key [EXEC]. The status screen appears again, enabling the selected item to be set up.
4 Press soft key [CAN]. The previous soft key displays appear again.
5 Press soft key [MAINTE]. The status screen appears again.
Using the machine system menu screen requires that item names be registered on the screen previously.
This can be done using two methods, (a) and (b).
(a) Program-based registration

Executing a program in the following format enables item names to be registered on the machine system menu screen.

Format

G10 L61 Px [n]

x... Registration number
n... Item name
[Alphanumeric characters*two-byte characters*alphanumeric characters]
(b) MDI keypad-based registration

An item name can be registered on the machine system menu screen by first entering it in the following format, then pressing soft key [INPUT] (or INPUT function key).

Pressing soft key [+INPUT] adds the item name to the list of previously registered item names.

Format

Alphanumeric characters*two-byte characters*alphanumeric characters

The two-byte characters shall comply with the FANUC code. (See Section 1.19.6.)
When entering a two-byte character, sandwich it with an "*" pair.
The item name can consist of up to 24 alphanumeric characters (if no two-byte character is included) or 12 two-byte characters (if no alphanumeric character is included).
Example) To register "LCD backlight," enter:
>LCD*110E10F410CC114010B610FE_

NOTE

1 "*" cannot be used in item names, because it is used as control code. "[", "]", "(", or ")" also cannot be used in item names.
2 When both alphanumeric and two-byte characters are used in an item name to be registered, the warning message "DATA IS OUT OF RANGE" may appear even if the maximum allowable number of characters has not been exceeded.
3 If a blank item name is selected from the machine system screen, the warning message "EDIT REJECTED" appears. If a blank item name is selected from the NC system screen, a blank is set up.

To erase the registered data for an item, place the cursor on the target item name, and press soft key [CLEAR], then soft key [EXEC].
[Machine system] menu screen

```
PERIODICAL MAINTENANCE OOO01 N12345
(MACHINE)
            ITEM NAME
    01
        02
        0 3
        04
        05
        06
        07
        0 8
        09
        10
    >
EDIIT *** ***** *** **** 19:27:05
[ ][ STATUS ][ MACHIN ] [ NC ] [ (OPRT) ]
```

[SELECT] [][CLEAR] [+INPUT] [INPUT]

[NC system] menu screen

```
PERIODICAL MAINTENANCE
O0001 N12345
    (NC)
        ITEM NAME
        BATTERY FOR CONTROLLER
        BATTERY FOR PULSECODER
        FAN MOTOR
        LCD BACK LIGHT
    0 5
    06
    07
    0
    09
    10
>
EDIT *** ***** *** **** 19:27:05
[ ][ STATUS ][ MACHIN ][ NC ] [ (OPRT) ]
```


NOTE

On the NC system screen, no item name can be registered, erased, input, or output.
(2) MDI keypad-based setting

An item name can be registered on the status screen by first entering it in the following format using keys, then pressing soft key [INPUT] (or the NPNu key).
Pressing soft key [+INPUT] adds the item name to the list of previously registered item names.

Format

Alphanumeric characters*two-byte characters*alphanumeric characters
The two-byte characters shall comply with the FANUC code. (See Section 1.19.6.)
When entering a two-byte character using keys, sandwich it with an "**" pair.
The item name can consist of up to 24 alphanumeric characters (if no two-byte character is included) or 12 two-byte characters (if no alphanumeric character is included).
Example) To register "LCD backlight," enter:
>LCD*110E10F410CC114010B610FE_

NOTE

1 "*" cannot be used in item names, because it is used as control code. "[", "]", "(", or ")" also cannot be used in item names.
2 When both alphanumeric and two-byte characters are used in an item name to be registered, the warning message "DATA IS OUT OF RANGE" may appear even if the maximum allowable number of characters has not been exceeded.

To erase the registered data for an item, place the cursor on the target item name, press soft key [CLEAR], then [EXEC].
When an item name is deleted, the related service life, remaining service time, and count type are also deleted.
(2) Remaining service time

The remaining service time of an item (the time allowed before the item is replaced) is obtained by count-down and displayed under "Remaining service time." When the remaining service time decreases to a specified percentage (specified in parameter No. 8911) of the service life or lower, it is displayed in red.
Count-down continues even after the service life has expired.

NOTE

Setting is impossible on the status screen. It should be done on the setting screen.

(3) Count status

The count status is displayed at the left of the corresponding item number, as listed below:

Display	Count status
Blank	Countsuspended
@	Count under way
$*$	The service life has expired.

1.19.4
 Setting Screen Display and Setting

The setting screen lets you specify the service life, the remaining service time, and count type for a registered item name.
It also displays the same count status information as displayed on the status screen.

(1) Service life

The service life of a consumable item is to be specified under "Service life."
First place the cursor on the service life of a target registration number, enter a desired service life value using numeric keys, then press soft key [INPUT] (or the INOT key). The specified service life is set up, and the same value is set up also under "Remaining service time." In addition, the count type for the item changes to: " \qquad "
Pressing soft key [+INPUT] adds the newly specified service life value to the previously specified life value. The added service life value is reflected to the remaining service time.
The valid data range for the service life is: 0 to 65535 (hours)

NOTE

1 An attempt to set up the service life for a non-registered item results in the warning message "EDIT REJECTED".
2 An attempt to enter a value that is out of the valid data range results in the warning message "DATA IS OUT OF RANGE".
3 An attempt to enter a value that would make the service life or remaining service time 0 or lower, it is clamped at 0 .
4 Pressing soft keys [CLEAR] and [TYPE] results in the warning message "EDIT REJECTED".
(2) Remaining service time

The remaining service time of an item (the time allowed before the item is replaced) is determined by count-down and displayed under "Remaining service time." When the remaining service time decreases to a specified percentage (specified in parameter No. 8911) of the service life or lower, it is displayed in red.
Count-down continues even after the service life has expired.
First place the cursor on the remaining service time of a target registration number, enter a desired remaining service time value using numeric keys, then press soft key [INPUT] (or the INPUT key).
Pressing soft key [+INPUT] adds the newly specified remaining service time to the previously specified remaining service time.
The valid data range for the remaining service time is: 0 to (service life)
After soft key [CLEAR] is pressed, pressing soft key [EXEC] sets the remaining service time with the same value as for the service life.

NOTE

1 An attempt to set up the remaining service time for a nonregistered item or an item for which the service life has not been set up results in the warning message "EDIT REJECTED".
2 An attempt to enter a value that is out of the valid data range results in the warning message "DATA IS OUT OF RANGE".
3 An attempt to enter a value that would make the remaining service time 0 or lower, it is clamped at 0.
4. Pressing soft key [TYPE] results in the warning message "EDIT REJECTED".
(3) Count type

The type of a selected count method is specified under "Count type." After the cursor is placed on the count type of a target registration number, pressing soft key [TYPE] displays the next count type as a soft key. Select it and press soft key [EXEC].

Soft key	Meaning	Display
[NO CNT]	Not counting (suspended).	-
[ALL]	Always count.	All times
[PWR ON]	Count while the power is supplied.	Power-ontime
[RUN]	Count while operation is under way.	Operating
[CUT]	Count while cutting is under way.	Cutting

NOTE

1 An attempt to set up the count type for a non-registered item or an item for which the service life has not been set up results in the warning message "EDIT REJECTED".
2 Soft keys [INPUT] and [+INPUT] are ignored.
3 In leap years, an error of 24 hours occurs in the all-time count.
4 Pressing soft key [CLEAR] results in the warning message "EDIT REJECTED".

1.19 .5
 Registered Data Input/Output

Pressing soft key [PUNCH] enables registered data to be output to an external unit.
Pressing soft key [READ] enables data to be input from an external unit. These operations can be done on the status, setting, and machine system menu screens.

After the EDIT mode is selected, pressing soft key [PUNCH] outputs the registered data in the following format.

Format for output from the status and setting screens
G10 L60 P01 Aa Rr [n] Qq ;
G10 L60 P02 Aa Rr [n] Qq ;
G10 L60 P03 Aa Rr [n] Qq ;
:
\square Format for output from the machine system menu
G10 L61 P01 [n] ;
G10 L61 P02 [n] ;
G10 L61 P03 [n] ;

Format

After the EDIT mode is selected, pressing soft key [READ] causes data to be registered with item names according to the format in which the data is input (G10).
Data registration can be done even by executing the format (G10) once input to the program memory.
This requires a programmable data input option.

NOTE

If the input format (G10) differs from the output format, registration may fail.

Parameter

\square Percentage to the service life of each item displayed on the periodic maintenancescreen
[Data type] Byte
[Unit of data] 1%
[Valid data range] 0 to 100
On the periodic maintenance screens, any remaining service time value smaller than the specified percentage to the service life is displayed in red for warning purposes.

1.19.6

FANUC Two-Byte

Character Code Table

0400	禁復帰書個桁稼由両半逃底逆下空四
0420	触平代辺格子周心本群停止巾微状路
044	範囲倍率注㑡特殊距離連続増隔件初
04	期条経握圧扱陰隠右押横黄億屋化何
0480	絵階概該漛換気起軌技疑供共境強教
04A0	掘繰係傾型検権研肩見験元弦減孔巧
04.0	控更校構根左差雑参散産算治耳式失
048	修十従勝商少尚昇植色食伸信侵振浸
0500	真暗以意異影鋭越価可科果箇課各拡
0520	核学掛漢簡䂓関合却客休急業曲均筋
0540	継計軽言限互降採済細姿思写射斜者
0560	車借縌重出述術渉照省章証象身進人
05	図違印沿遠央奥往応会解改割活願基
05A0	奇寄岐既近区矩駆偶旧求球究級欠結
0550	口語誤交厚項刻告黑財策糸試資事持
05 B	似釈弱受収純順所序剰場常飾水錐据
060	制整製前全然則属即他多存谷探短徵
062	鎖調頂鉄添頭同導道熱年濃箱発抜伴
064	密百複物文聞併忘末密有余与裏立略
066	青席石積赤接折粗創双搜太打体待態
0680	替段知地致遅追通伝得読凸凹突鈍敗
06	杯背配品不布並頁別片返勉弁保明滅
0660	木目歪摇様溶要抑良輪和話枠節說絶
068	千専浅旋総走退台第題卓室着柱鋳丁
0700	低訂肉日白薄比皮被非美普伏歩包門
0720	問絡列万利訳礼乱放枚約練油劣例郭
0740	戻冷垂緑紫許湘精効 \rightarrow 年
0760	
0780	
07a0	納義丸汎固每当的詳鳥適論額縁温給
0760	界混監締護己称樹脂料落確認報排性
07E0	

0800	
0820	慰易為維緯胃衣遺医井育一稻買尥飲
0840	
0860	
0880	
08A0	菓貪諓牙芽賀雅介溒廻快怪海灭皆見
08C0	
08E0	乾穾刊勧喚官筧干幹感慣聁歓汗環甘
0900	看緩午肝還鑑閉陷韓館岸眼岩顔企施
0920	
0940	議菊詰脚丘久及吸宫戸救泣牛居巨拒
0960	
0980	
09A0	屈能召訓軍郡刑兄契揭敬景荎警芸迎
09C0	劇激隙淘血月佮健兼券剣圏堅建憲拳
09E0	犬献絹県謙軒鍵敛枵古庫戸故湖狐誇
OA00	顧五午侯侯光公勾喉好孝幸康弘拘攻
0A20	江港甲稿絞綱考肯衡講購郊鎕香剛克
0A40	国桲酷腰骨比媲今利婚査砂債表彩才
0A60	
0A80	
0AAO	土姉市皈支枝死私紙詞詩字寺磁辞七
0aC0	湿芝縞捨者社謝尺若酒首授需秋習臭
OAEO	舟週住柔䈹祝縮熟春瞬看巡暑真傷唱
OB00	奨将床承招昭焼焦笑紹衝賞障乗城情
0B20	
0B40	陣須酢吹粋遂格裾澄世是勢征政星晴
0B60	清盛聖声西誓請静税昔析籍責跡雪舌
0B80	占皃尖川戦局栓倪洗锬潜船銑鮮善組
Oba0	訴倉層掃単争窓草騷像臓蔵贈捁促息
OBCO	束俗萃其揃尊村誚陏需耐帯急滞袋貸
OBEO	隊滝宅拓雏託濁学雄棚誰嘆担淡団弾

0 000	暖男談池築亩竹筑秩茶亘虫駐貯帳
$0 ¢ 20$	彫挑朝町脤腸跳沈珍賃藦痛塚爪吊釣
oc40	庭廷提釘泥摘滴笛典天展店貼殿田吐
oc60	塗徒都砥努土怒倒冬凁刀島東湯灯答
$0 ¢ 80$	筒統到藤討踏透働堂胴銅峠徳毒届䒼堂
осао	謎鍋縄南軟難二匂乳尿念燃粘悩脳農
occo	把波派廃拝肺買売博拍泊舶麦肌畑八
осео	䀛版犯班繁販飯盤否彼悲扉批疲秘肥
0000	費避飛尾鼻菱筆俵氷票評病浜貧敏夫
0020	婦富怖浮父符腐武舞封風服福腹払沸
0040	噴憤奮紛丙兵幣柄米壁癖偏便捕募墓
0060	母簿宝崩捧泡胞芳訪豊飽亡傍剖妨帽
0880	忙房暴望紡肪膨防北僕撲釦没翻磨魔
ODA	幕膜迄満味魅脈妙民務夢矛迷鳴免綿
odco	模茂毛言網黙紋冶夜野矢役薬躍諭輸
odeo	優友遊郵融誉預幼揚曜洋葉陽養浴翼
OEOO	螺来頼欄陸律流留粒旅療棱林臨隣涙
OE20	累励鈴暦歴烈裂労漏老六脇惑詫湾腕
OE40	翰椅荷宇嘘閲宴欧懐拐涯穫閣潟渴冠
OE	患汽貴鬼偽戯欺喫笨紏拠漁恐狂叒仰
0880	緊愚遇靴据慶憩携撃傑嫌懸厳雇娯洪
oeao	紅耕航䀼挫催栽崎柵拶傘志施旨至誌
oeco	識狩趣就秀衆辠蹴充渋緒署諸叙掌訟
оebo	鐘壤織紳酔瀬誠繊漸繕塑礎阻奏族惰
ofoo	戴諾叩旦誕恥仲宙忠抽兆懲抵敵撤党
OF20	盗糖陶闘督馴羁媒爆縛䯭閥泌匹府敷
OF40	仏慕綘之霧盟重誘踻裸雷卵里隆慮盧
Of60	
0f80	－abcdefghijklmnopqrstuvwxyz\｛：${ }^{\sim}$
ofao	
ofco	
OFBO	

1000	A B C D EFGH I J K L M NOP
1020	QR S T U VWX Y Z a b c d e f
104	g h i j k l m n o p q r s t u v
106	
108	
10a 0	
1000	才オカがキギクグケゲコゴサザジ゙
${ }^{108}$	スズセゼソゾ多ダチヂッツヅテデト
1100	ドナニヌネノハバパヒビピフブプへ
1120	べペホボポマミムメモヤヤュュョヨ
1140	
1180	
11 A	
1150	
11 EO	
1200	¢ £ \％才 \＆＊＠§ 心大○○（0）
1220	
124	$1 / 12 / 23 / 34 / 45 / 56 / 6 \square[0]\left[\mathrm{mm} \mathrm{cm} \mathrm{km} \mathrm{cmin} \mathrm{m} \mathrm{mm}^{2} \mathrm{cma}^{3} \mathrm{~m}^{3}\right.$
126	$\mathrm{mg} \mathrm{kg} \mathrm{cc} d \ell \ell k \ell \mathrm{~ms} \mu \mathrm{~s} \mathrm{~ns} \mathrm{P} \mathrm{Ps} \mathrm{Hz}$ 株（C）
${ }^{128}$	亜芦尉壱冕芉姻韻詠疫悦謁猿殴翁盧
1240	卸嫁禍彦蚊餓悔瑰戒嚇岳樫喝褐轄且
120	勘堪棺款憾艦頑忌紀飢棋宜儀吉虐朽
12E0	凶峓恭矯暁斤桐菌謹缽吟隈勲薫恵渓
1300	蛍鶏鯨遣賢蘭顕㐬孤枯鼓呉悟基后恒
1320	
1340	斎歳搾戥虫惨暂氏司祉肢嗣飼雃賜諮
1360	児侍滋慈雲疾執漆含赦遮邪蛇勺酌爵
1380	寂朱珠儒囚州宗拾愁酬醜汁銃獣叔淑
1340	肃塾俊旬准殉循㵋遵庶如徐升召匠肖
1350	賽抾昌晶松沼筲症祥硝粧詔彰礁丈冗
1380	畳嬢譲醸殖嘱辱臣桭慎薪仁迅甚尋炊

1400	帥衰睡䅹錘随髄殹崇菅畋姓斉牲逝婿
1420	脆夕斥隻惜拙锰檪仙践銭遷廌禅祖租
1440	措疎壮荘桑曹显葬僧遭槽燥藻霜憎賊
1460	孫駄舵胎泰逮瀧沢但丹胆鍛壇痴稚畜
1480	逐空嫡叓者韦眺湖聴栜朕陳鎮津漬坪
1440	呈弟邹亭昼帝艇遮偵提迭哲徹澱斗渡
14.0	奴桃悼棟嘡唐塔搭滕豆騰洞童匿篤出
14 E 0	豚尼武妊忍寧瀠俳輩梅培陪賠伯迫漠
	鉢伐帆畔煩頒藩晚蛮妃披卑碑罯姫漂
15	苗猫賓頻瓶扶赴盧賦附譜侮覆雾墳陛
154	塀弊遍舗暮邦奉峰抱俸砲褒坊某冒貿
150	謀朴牧墨堀奔凡盆麻妹埋又抹慢漫岬
1580	
154	羊庸 窒擁謡翌羅酪濫吏痢履柳竜硫涼
150	絾陵僚糧厘倫零齡麗廉錬炉露朗廊楼
15 E0	賄國摇條櫻澤濾碌緞鐵靱靖槻浩郁

LCD-MOUNTED TYPE i SERIES HARDWARE

This chapter describes the printed-circuit board in the i series CNC control unit of LCD-mounted type and the functions of the card PCBs mounted on the printed-circuit board. It also explains how to replace consumables.
2.1 STRUCTURE 148
2.2 OVERVIEW OF HARDWARE 149
2.3 TOTAL CONNECTION DIAGRAMS 154
2.4 CONFIGURATION OF PRINTED CIRCUIT BOARD CONNECTORS AND CARDS 162
2.5 LIST OF UNITS AND PRINTED CIRCUIT BOARDS 245
2.6 REPLACING THE MOTHERBOARD 264
2.7 MOUNTING AND REPLACING THE PC CARD (MMX PENTIUM) 267
2.8 MOUNTING AND REPLACING THE CE CARD 271
2.9 REPLACING FUSE ON CONTROL UNIT 275
2.10 REPLACING BATTERY 277
2.11 REPLACING FAN MOTORS 281
2.12 REPLACING LCD BACKLIGHT 284
2.13 HEAT GENERATED IN EACH UNIT 291

2.1

STRUCTURE

2.2
 OVERVIEW OF
 HARDWARE

2.2.1

Series 16i/160i/160is

Serial communication board
Remote buffer/DNC1/DNC2

Sub-CPU board
Sub-CPU for 2-path control
2-axis to 8-axis control
- Spindle interface
- Analog output

C board
C function for PMC

On a unit with option slots, as many option boards as the number of option slots can be mounted. However, some option boards cannot fit into the center slot of a unit with 3 option slots or the slot farthest from the LCD in a unit with 4 option slots (because of their height).

Without slots, or with 2 slots, or with 3 slots, or with 4 slots

CNC control
Power supply

- 2-axis to 8-axis control
- Spindle control
- LCD/MDI
- I/O link
- PMC-RB5/RB6
- Analog output/high-speed DI
. RS-232C x 2
- Memory card interface
- Personal computer function (160i/160is)

Basic system

2.2.2
 Series 18i/180i/180is

Serial communication board
Remote buffer/DNC1/DNC2/HDLC
Sub-CPU board
Sub-CPU for 2-path control 2-axis to 6-axis control - Spindle interface - Analog output

C board
C function for PMC

[^1]
2.2.3

Series 21i/210i/210is

2.2.4

Series 20i

2.3
 TOTAL CONNECTION DIAGRAMS

Motherboard specification

The connections shown below are added to a PC-equipped version of the 160i/180i/210i.
Motherboard specification: A20B-8100-014X

NOTE

1 The hard disk unit cables, PC interface connection unit cable, and FA full keyboard cable in the above diagram are supplied by FANUC.
2 The units to be connected to the control section or unit must not generate hazardous voltage even if an abnormality such as malfunction occurs.

The connections shown below are added to a PC-equipped version of the 160i/180i/210i.
Motherboard specification: A20B-8100-046X

NOTE

1 The hard disk unit cables, PC interface connection unit cable, and FA full keyboard cable in the above diagram are supplied by FANUC.
2 The units to be connected to the control section or unit must not generate hazardous voltage even if an abnormality such as malfunction occurs.

The connections shown below are added to a PC-equipped version of the 160is/180is/210is. Motherboard specification: A20B-8100-054X

When option boards are provided

2.4 CONFIGURATION OF PRINTED CIRCUIT
 BOARD
 CONNECTORS
 AND CARDS

2.4.1

FS16i/18i/21i/20i
Motherboard

- Specification

Name	Specification
Series 16imotherboard	A20B-8100-0130
Series 18imotherboard	A20B-8100-0135
Series 21imotherboard (PMC-SA1)	A20B-8100-0137
Series 21imotherboard (PMC-SA5)	A20B-8100-0136
Series 20imotherboard (PMC-SA1)	A20B-8100-0139
Series 20imotherboard (PMC-SA5)	A20B-8100-0138

- Connector mounting location

Connector number	Application
COP10A	Servo motor (FSSB)
CA55	MDI
CA54	Servo check
JD36A	RS-232C serial port
JD36B	RS-232C serial port
JA40	Analogoutput/high-speedDI
JD1A	I/O link
JA41	Serial spindle/positioncoder
CP1B	DC24V-OUT
CP1A	DC24V-IN
JNA	F-businterface
CN8B	Video signal interface
MCRD1	PCMCIA interface

- Card mounting location

No.	Name	Specification	Function		Remarks
(1)	Axis control card	A17B-3300-0100 A17B-3300-0102	Axis control	8-axes	Applicable servo software: Series 9090
		A17B-3300-0101 A17B-3300-0103		6-axes	
		A20B-3300-0030 A20B-3300-0032		4-axes	
		A20B-3300-0031 A20B-3300-0033		2-axes	
		A17B-3300-0200		8-axes	Applicable servo
		A17B-3300-0201		6-axes	and 90A3
		A20B-3300-0120		4-axes	
		A20B-3300-0121		2-axes	
		A17B-3300-0300		6-axes	Applicable servo software: Series 90A7

No.	Name	Specification	Function	Remarks
(2)	Display control card	$\begin{aligned} & \text { A20B-3300-0020 } \\ & \text { A20B-3300-0150 } \end{aligned}$	Text display/ graphic control	10.4" color
		$\begin{aligned} & \text { A20B-3300-0021 } \\ & \text { A20B-3300-0151 } \end{aligned}$		8.4" color
		$\begin{aligned} & \text { A20B-3300-0023 } \\ & \text { A20B-3300-0153 } \end{aligned}$		9.5" monochrome with graphic function
		$\begin{aligned} & \text { A20B-3300-0024 } \\ & \text { A20B-3300-0154 } \end{aligned}$		7.2" monochrome with graphic function
		$\begin{aligned} & \text { A20B-3300-0025 } \\ & \text { A20B-3300-0091 } \end{aligned}$		7.2" monochrome without graphic function
		A20B-3300-0090		9.5" monochrome without graphic function
(3)	CPU card	A20B-3300-0050	CNC control	16i/18i
		A20B-3300-0170		16i/18i
		A20B-3300-0070		21i/20i

- DIMM module mounting

location

No.	Name	Specification	Function	Remarks
(1)	FROM module	$\begin{aligned} & \text { A20B-3900-0010 } \\ & \text { A20B-3900-0070 } \end{aligned}$	CNC system Servo system	16M
		$\begin{aligned} & \text { A20B-3900-0011 } \\ & \text { A20B-3900-0071 } \end{aligned}$		12M
		$\begin{aligned} & \text { A20B-3900-0012 } \\ & \text { A20B-3900-0072 } \end{aligned}$		8M
		$\begin{aligned} & \text { A20B-3900-0013 } \\ & \text { A20B-3900-0073 } \end{aligned}$		6M
		$\begin{aligned} & \text { A20B-3900-0014 } \\ & \text { A20B-3900-0074 } \end{aligned}$		4M
		$\begin{aligned} & \text { A20B-3900-0015 } \\ & \text { A20B-3900-0075 } \end{aligned}$		2M
(2)	SRAM module	A20B-3900-0020	SRAM for the system	3M
		A20B-3900-0060		2M
		A20B-3900-0061		1M
		A20B-3900-0052		512K
		A20B-3900-0053		256K

- DIMM module mounting location (continued)

No.	Name	Specification	Function		Remarks
(3)	DRAM module	A20B-3900-0040	CNC system RAM	12M	
		A20B-3900-0041		8M	
		A20B-3900-0042		4M/2M	
		A20B-3900-0030		2M	
		A20B-3900-0130		12M	CPU card: For
		A20B-3900-0131		8M	
		A20B-3900-0132		4M	

- Block diagram

- LED indication

(1) Changes in status LED (green) indication at power-on time

No.	Status LED	Status
1	$\square \square$	Power is not supplied.
2	\square	Initial status immediately after power is switched on; boot is running.
3	\square	Waiting for each processor ID in the system to be set up.
4	\square	Each processor ID in the system has been set up.
5	\square	FANUC bus initialized.
6	\square	\square

(2) Alarm LED (red) indication at system alarm occurrence If any of these LEDs lights, it is likely that the hardware is defective.

Alarm LED	Meaning
SVALM	Servo alarm.
SYSEMG	Lights when a system alarm occurs. The hardware has detected a failure in the system.
SYSFAIL	Lights when a system alarm occurs. Used by the software to stop the system. Lights while boot is under way.
PARITY	SRAM parity or ECC alarm.

- Cautions for replacing the motherboard, CPU card, and boot software

Before starting to replace the motherboard, CPU card, or boot software, make a backup copy of SRAM data. After replacement, re-enter the SRAM data.

NOTE

For SRAM data in the i series, an ECC check has superseded a parity check in the following editions of the motherboard and boot software. If the motherboard, CPU card, or boot software is replaced with one with a different SRAM data check method, and an SRAM data mismatch occurs, a parity alarm or ECC alarm may occur when the power is switched on, leading to loss of the SRAM data. This problem does not occur if the previous SRAM data restored from a backup copy is used after replacement or if the system is started after all memory clear.

Motherboard supporting the ECC check function

Model	Specification	General edition
$16 i / 160 i$	A20B-8100-0130	10 D and subsequent editions
$18 i / 180 i$	A20B-8100-0135	10 D and subsequent editions
$21 i / 210 i($ PMC-SA1)	A20B-8100-0137	06B and subsequent editions
$21 i / 210 i($ PMC-SA5)	A20B-8100-0136	08D and subsequent editions
$20 i($ PMC-SA1)	A20B-8100-0139	01A and subsequent editions
$20 i($ PMC-SA5)	A20B-8100-0138	01A and subsequent editions

Boot software supporting the ECC check function

Series	Edition
60 M 3	07 and subsequent editions

2.4.2
 PC Function-Equipped
 FS160i/180i/210i Motherboards

- Specification

Name	Specification	Remarks
Series 160i mother- board	A20B-8100-0140	PC card: 486DX4 supported
	A20B-8100-0142	PC card: Pentium supported
	A20B-8100-0460	PC card: MMX Pentium supported
Series 180i mother- board	A20B-8100-0145	PC card: 486DX4 supported
	A20B-8100-0144	PC card: Pentium supported
	PC card: MMX Pentium supported	
Series 210i mother- board (PMC-SA1)	A20B-8100-0148	PC card: 486DX4 supported
	A20B-8100-0149	PC card: Pentium supported
	A20B-8100-0463	PC card: MMX Pentium supported
Series 210i mother- board (PMC-SA5)	A20B-8100-0147	PC card: 486DX4 supported
	A20B-8100-0146	PC card: Pentium supported
	A20B-8100-0462	PC card: MMX Pentium supported

- Connector mounting location

Connector number	Application
JD33	RS-232C on the PC side
COP10A	Servo motor (FSSB)
CA55	MDI
CA54	Servo check
JD36A	RS-232C serial port
JD36B	RS-232C serial port
JA40	Serial spindle/position coder
JD1A	DC24V-OUT
JA41	DC24V-IN
CP1B	PC expansion
CP1A	FDD signal
CNY1	HDD
CD34	FDD power supply
CNH1	Fullkeyboard
CN2	Mouse
CD32A	F-businterface
CD32B	Video signal interface
JNA	PCMCIA interface
CN8B	

Printed-circuit board specification: A20B-8100-046x
Inverter PCB or connector unit

Connector number	Application
JD33	PC RS-232C
COP10A	Servo motor (FSSB)
CA55	MDI
CA54	Servo check
JD36A	RS-232C serial port
JD36B	RS-232C serial port
JA40	Analogoutput/high-speed DI
JD1A	I/O link
JA41	Serial spindle/position coder
CP1B	DC24V-OUT
CP1A	DC24V-IN
CNY1	PC expansion
CD34	FDD signal
CNH3	HDD
CN2	FDD power supply
CN2B	HDD power supply
CD32A	Full keyboard
CD32B	Mouse
JNA	F-BUS interface
CN8B	Video signal interface
CN2	PCMCIA interface
CN39	HDD fan

- Card mounting location

No.	Name	Specification	Function		Remarks
(1)	Axis control card	$\begin{array}{\|l\|} \hline \text { A17B-3300-0100 } \\ \text { A17B-3300-0102 } \end{array}$	Axis control	8-axes	Applicable servo software: Series 9090
		A17B-3300-0101 A17B-3300-0103		6-axes	
		$\begin{aligned} & \text { A20B-3300-0030 } \\ & \text { A20B-3300-0032 } \end{aligned}$		4-axes	
		$\begin{aligned} & \text { A20B-3300-0031 } \\ & \text { A20B-3300-0033 } \end{aligned}$		2-axes	
		A17B-3300-0200		8-axes	Applicable servo soft-
		A17B-3300-0201		6-axes	90A3
		A20B-3300-0120		4-axes	
		A20B-3300-0121		2-axes	
		A17B-3300-0300		6-axes	Applicable servo software: Series 90A7

No.	Name	Specification	Function	Remarks	
(2)	PC card	A15L-0001-0052\#4A	PC function	486DX4	
		A02B-0236-C261		Pentium	
		A02B-0207-J560\#6130		MMX Pentium For 10.4" LCD	NOTE
		A02B-0207-J560\#6131		MMX Pentium For 12.1" LCD	
(3)	CPU card	A20B-3300-0050	CNC control	16i/18i	
		A20B-3300-0070		16i/18i	
		A20B-3300-0070		$21 i$	

NOTE

The PC card (MMX Pentium) has a special structure. See Section 2.7 for explanations about how to mount and replace this card.

- DIMM module mounting

location

No.	Name	Specification	Function	Remarks
(1)	FROM module	A20B-3900-0010 A20B-3900-0070	CNC system servo system	16M
		$\begin{aligned} & \text { A20B-3900-0011 } \\ & \text { A20B-3900-0071 } \end{aligned}$		12M
		$\begin{array}{\|l} \text { A20B-3900-0012 } \\ \text { A20B-3900-0072 } \end{array}$		8M
		$\begin{aligned} & \text { A20B-3900-0013 } \\ & \text { A20B-3900-0073 } \end{aligned}$		6M
		$\begin{aligned} & \text { A20B-3900-0014 } \\ & \text { A20B-3900-0074 } \end{aligned}$		4M
		$\begin{aligned} & \text { A20B-3900-0015 } \\ & \text { A20B-3900-0075 } \end{aligned}$		2M
(2)	SRAM module	A20B-3900-0020	SRAM for system use	3M
		A20B-3900-0060		2M
		A20B-3900-0061		1M
		A20B-3900-0052		512K
		A20B-3900-0053		256K

- DIMM module mounting location (continued)

No.	Name	Specification	Function		Remarks
(3)	DRAM module	A20B-3900-0040	CNC system RAM	12M	
		A20B-3900-0041		8M	
		A20B-3900-0042		4M/2M	
		A20B-3900-0030		2M	
		A20B-3900-0130		12M	CPU card: For
		A20B-3900-0131		8M	
		A20B-3900-0132		4M	

- DIMM module mounting location (continued)

No.	Name	Specification	Function	Remarks
(4)	DRAM module (for PC card)	A76L-0500-0008		8 M (for 486DX4)
		A76L-0500-0009		16 M (for 486DX4)
		A76L-0500-0010		16 M (for Pentium)
		A76L-0500-0011		32 M (for Pentium/MMX Pentium)
		A76L-0500-0012		64 M (for Pentium/MMX Pentium)

- Block diagram

- LED indication

Note) LED1 to LED4: NC status LED5 to LED8: PC status
(1) Changes in status LED (NC status, green) indication at power-on time

No.	Status LED (LED1 to 4)	Status
1	$\square \square \square$	Power is not supplied.
2	$\square \square \square$	Initial status immediately after power is switched on; boot is running.
3	$\square \square \square$	Waiting for each processor ID in the system to be set up.
4	$\square \square \square$	Each processor ID in the system has been set up.
5	$\square \square$	FANUC bus initialized.
6	$\square \square \square$	PMC initialized.
7	$\square \square \square$	Information about the hardware configuration of each printed-circuit board in the system has been set up.
8	$\square \square \square$	PMC ladder initialized.
9	$\square \square \square$	Waiting for digital servo to be initialized.
10	$\square \square \square \square$	Initialization completed, and usual operation under way.
$\square: ~ O n ~$	$\square:$ Off	

(2) Changes in status LED (PC status, green) indication at power-on time

No.	Status LED (LED5 to 8)	Status
1	$\square \square \square \square$	Power is not supplied.
2	$\square \square \square$	Immediately after power-on.
3	$\square \square \square$	NC-to-PC interface initialization under way.
4	$\square \square \square$	Waiting for PC boot to be executed.
5	$\square \square \square \square$	NC screen being displayed on the PC.
6	$\square \square \square \square$	Started normally; usual operation under way.
$\square:$ On $\quad \square:$ Off		

(3) Alarm LED (red) indication at system alarm occurrence If any of these LEDs lights, it is likely that the hardware is defective.

Alarm LED	Meaning
SVALM	Servo alarm.
SYSEMG	Lights when a system alarm occurs. The hardware has detected a failure in the system.
SYSFAIL	Lights when a system alarm occurs. Used by the software to stop the system. Lights while boot is under way.
PARITY1	SRAM parity alarm.
PARITY2	RAM parity alarm common to NC and PC.

(4) Status LED (PC, green) indication at error occurrence

Status LED (LED5 to 8)	Meaning
$\square \square \square$	A thermal error has been detected. The hard disk is out of a usable temperature range. When the LEDs light with this pat- tern, the system will not start. It waits until lhe hard disk gets back to within the usable temperature range.
$\square \square \square$	RAM parity alarm common to NC and PC.
$\square \square$	

\square : On \square : Off
(5) The HD LED (green) lights when the hard disk is being accessed.

- Cautions for replacing the motherboard, CPU card, and boot software

Before starting to replace the motherboard, CPU card, or boot software, make a backup copy of SRAM data. After replacement, re-enter the SRAM data.

NOTE

For SRAM data in the i series, an ECC check has superseded a parity check in the following editions of the motherboard and boot software. If the motherboard, CPU card, or boot software is replaced with one with a different SRAM data check method, and a SRAM data mismatch occurs, a parity alarm or ECC alarm may occur when the power is switched on, leading to loss of the SRAM data.
This problem does not occur if the previous SRAM data restored from a backup copy is used after replacement or if the system is started after all memory clear.

Motherboard supporting the ECC check function

Model	Specification	General edition
$160 i$	A20B-8100-0140	09G and subsequent editions
	A20B-8100-0142	03C and subsequent editions
	A20B-8100-0460	02B and subsequent editions
	A20B-8100-0144	03C and subsequent editions
	A20B-8100-0145	06D and subsequent editions
	A20B-8100-01461	02B and subsequent editions
$210 i$ (PMC-SA1)	A20B-8100-0148	05C and subsequent editions
	A20B-8100-0149	02B and subsequent editions
	A20B-8100-0463	02B and subsequent editions
$210 i(P M C-S A 5)$	A20B-8100-0146	03C and subsequent editions
	A20B-8100-0147	06D and subsequent editions
	A20B-8100-0462	02B and subsequent editions

Boot software supporting the ECC check function

Series	Edition
60 M 3	07 and subsequent editions

- Rotary switch setting

The power-on start sequence can be modified using the rotary switch on the motherboard. Usually the rotary switch should be set to the " 1 " position.

Setting	Description
0	Setting for maintenance. The start menu is displayed. It is possible to start boot and IPL from the PC.
1	Setting for usual operation. The start menu is not displayed. It is impossible to start boot or IPL from the PC.
2	The NC and PC are started independently of each other. The start menu is not displayed. It is impossible to start boot or IPL from the PC.

See Appendix, "Maintenance of Open CNC (Boot-Up and IPL)" for detailed descriptions about how to operate boot and IPL when the rotary switch is set to the " 0 " position.

Rotary switch location
Rotary switch on A20B-8100-014x

Rotary switch on A20B-8100-046x

2.4.3

PC Function-Equipped FS160is/180is/210is Motherboard

Name	Specification
Series 160is motherboard	A20B-8100-0540
Series 180is motherboard	A20B-8100-0541
Series 210is motherboard (PMC-SA1)	A20B-8100-0543
Series 210is motherboard (PMC-SA5)	A20B-8100-0542

Connector number	Application
JD40	PC-side RS-232C
COP10A	Servo motor (FSSB)
CA55	MDI
CA54	Servo check
JD36A	RS-232C serial port
JD36B	Analogoutput/high-speed DI
JA40	I/O link
JD1A	Serial spindle/positioncoder
JA41	DC24V-OUT
CP1B	DC24V-IN
CP1A	Ethernet(10BASE-T)
CD38	Touch panel
TP1	Backup unit
CN9	F-BUS interface
JNA	Video signal interface
CN8B	PCMCIA interface
CN2	

- Card location

No.	Item	Code A17B-3300-0100 A17B-3300-0102	Function Axis control	Remarks	
(1)	Axis control card		Axis control	8-axes	Applicable servo software: Series 9090
		$\begin{aligned} & \text { A17B-3300-0101 } \\ & \text { A17B-3300-0103 } \end{aligned}$		6-axes	
		$\begin{aligned} & \text { A20B-3300-0030 } \\ & \text { A20B-3300-0032 } \end{aligned}$		4-axes	
		A20B-3300-0031 A20B-3300-0033		2-axes	
		A17B-3300-0200		8-axes	Applicable servo soft-
		A17B-3300-0201		6-axes	90A3
		A20B-3300-0120		4-axes	
		A20B-3300-0121		2-axes	
		A17B-3300-0300		6-axes	Applicable servo software: Series 90A7
(2)	CE card	A20B-3300-0220	PC function	Window (NOTE)	
(3)	CPU card	A20B-3300-0050	CNC control	16i/18i	
		A20B-3300-0170		16i/18i	
		A20B-3300-0070		$21 i$	

NOTE

The CE card holds a card engine and compact flash card. See Section 2.8 for explanations about how to mount and replace the CE card.

- Card engine location

Name	Specification	Function	Remarks
Card engine	A15L-0001-0067\#08AE	Windows CE system	English version
	A15L-0001-0067\#16AJ		Japanese language supported

NOTE

The card engine and CE card are linked also with an FP cable.

- Compact flash card location

Name	Specification	Function	Remarks
Compact flash card	A87L-0001-0173\#016MB	Application	16 MB
	A87L-0001-0173\#032MB		32 MB
	A87L-0001-0173\#048MB		48 MB

- DIMM module location

No.	Item	Code	Function	Remarks
(1)	FROM module	$\begin{aligned} & \text { A20B-3900-0010 } \\ & \text { A20B-3900-0070 } \end{aligned}$	CNC system servo system	16M
		$\begin{aligned} & \text { A20B-3900-0011 } \\ & \text { A20B-3900-0071 } \end{aligned}$		12M
		$\begin{aligned} & \text { A20B-3900-0012 } \\ & \text { A20B-3900-0072 } \end{aligned}$		8M
		$\begin{aligned} & \text { A20B-3900-0013 } \\ & \text { A20B-3900-0073 } \end{aligned}$		6M
		$\begin{aligned} & \text { A20B-3900-0014 } \\ & \text { A20B-3900-0074 } \end{aligned}$		4M
		$\begin{aligned} & \text { A20B-3900-0015 } \\ & \text { A20B-3900-0075 } \end{aligned}$		2M
(2)	SRAM module	A20B-3900-0020	SRAM for system use	3M
		A20B-3900-0060		2M
		A20B-3900-0061		1M
		A20B-3900-0052		512K
		A20B-3900-0053		256K

- DIMM module location (continued)

No.	Name	Specification	Function	Remarks	
(3)	DRAM module	A20B-3900-0040		12M	
		A20B-3900-0041		8M	
		A20B-3900-0042		4M/2M	
		A20B-3900-0030		2M	
		A20B-3900-0130		12M	CPU card: For
		A20B-3900-0131		8M	
		A20B-3900-0132		4M	

- Block diagram

- LED indication

Note) LED1 to LED4: NC status LED5 to LED8: PC status
(1) Changes in status LED (NC status, green) indication at power-on time

No.	Status LED (LED1 to 4)	Status
1	$\square \square \square$	Power is not supplied.
2	$\square \square \square$	Initial status immediately after power is switched on; boot is running.
3	$\square \square \square$	Waiting for each processor ID in the system to be set up.
4	$\square \square \square$	Each processor ID in the system has been set up.
5	$\square \square \square$	FANUC bus initialized.
6	$\square \square \square$	PMC initialized.
7	$\square \square \square \square$	Information about the hardware configuration of each printed-circuit board in the system has been set up.
8	$\square \square \square$	PMC ladder initialized.
9	$\square \square \square$	Waiting for digital servo to be initialized.
10	$\square \square \square \square$	Initialization completed, and usual operation under way.

(2) Changes in status LED (PC status, green) indication at power-on time

No.	Status LED (LED5 to 8)	Status
1	$\square \square \square \square$	Power is not supplied.
2	$\square \square \square$	Immediately after power-on.
3	$\square \square \square$	NC-to-PC interface initialization under way.
4	$\square \square \square \square$	Waiting for PC boot to be executed.
5	$\square \square \square \square$	NC screen being displayed on the PC.
6	$\square \square \square \square$	Started normally; usual operation under way.
$\square:$ On	$\square:$ Off	

(3) Alarm LED (red) indication at system alarm occurrence If any of these LEDs lights, it is likely that the hardware is defective.

Alarm LED	Meaning
SVALM	Servo alarm.
SYSEMG	Lights when a system alarm occurs. The hardware has detected a failure in the system.
SYSFAIL	Lights when a system alarm occurs. Used by the software to stop the system. Lights while boot is under way.
PARITY1	SRAM parity alarm.
PARITY2	RAM parity alarm common to NC and PC.

(4) Status LED (PC, green) indication at error occurrence

Status LED (LED5 to 8)	Meaning
$\square \square \square \square$	RAM parity alarm common to NC and PC.

\square : On \square : Off
(5)PC POWER (green LED) indicates that the CE card is supplied with power.

- Rotary switch setting

The power-on start sequence can be modified using the rotary switch on the motherboard. Usually the rotary switch should be set to the " 1 " position.

Setting	Description
0	Setting for maintenance. The start menu is displayed. It is possible to start boot and IPL from the PC.
1	Setting for usual operation. The start menu is not displayed. It is impossible to start boot or IPL from the PC.
2	The NC and PC are started independently of each other. The start menu is not displayed. It is impossible to start boot or IPL from the PC.

See Appendix, "Maintenance of Open CNC (Boot-Up and IPL)" for detailed descriptions about how to operate boot and IPL when the rotary switch is set to the " 0 " position.

Rotary switch location

Rotary switch location

Rotary switch

2.4.4

Inverter PCBs and Connector Units

Name		Specification
Inverter	10.4" color: For no-slot and 2-slot types	A20B-2002-0500
	8.4" color: For no-slot and 2-slot types	A20B-2002-0501
	10.4" color: For 3-slot and 4-slot types	A20B-8100-0200
	8.4" color: For 3-slot and 4-slot types	A20B-8100-0201
	7.2" and 9.5" monochrome: For no-slot and 2-slot types	A20B-2002-0480
	$7.2^{\prime \prime}$ and 9.5" monochrome: For 3-slot and 4-slot types	A20B-2002-0550
	For monochrome LCD (connector unit type)	A20B-8001-0910
	For 10.4" color LCD (connector unit type)	A20B-8001-0920
	For 8.4" color LCD (connector unit type)	A20B-8001-0921
	For high-intensity $8.4^{\prime \prime}$ color LCD (connector unit type)	A20B-8001-0922
	For 12.1" color LCD	A20B-2002-0890
Connector unit	For unit with no option slot	A15L-0001-0060\#B
	For unit with two option slots	A15L-0001-0060\#A
	For unit with three or four option slots	A15L-0001-0060\#C

NOTE

The connector unit is fastened to the case with self-tapping screws.

- Connector mounting

1) For 3 or 4 slots location

Rear of unit

2) For without slot or 2 slots

- Connector mounting location (continued)
(3) Connector unit type with 3 or 4 slots

Rear of unit
(4) Connector unit type with 2 slots

(5) Connector unit type with no slot

- Connector location (printed-circuit board)
(1) Inverter PCB for 3-slot and 4-slot types (except for 12.1" LCD)

(2) Inverter PCB for no-slot and 2-slot types (except for 12.1" LCD)

(3) Inverter PCB for connector unit type (12.1" LCD and connector PCB)

(4) Connector unit for no slot type

(5) Connector unit for 2-slot type

(6) Connector unit for 3-slot and 4-slot types

Connector number	
CN39A	
CN39B	
CN39C	
CN39D	Power supply for LCD backlight
CP8	Power supply for inverter PCB
CP1	
CN3	

- Connector location for 12.1" LCD type

The following diagram applies to a $12.1^{\prime \prime}$ LCD type.

The case and inverter cover have been removed in the following figure

2.4.5

C Board, Serial
Communication Board,
CAP-II Board, and
Symbol CAP iT Board

- Specification

Name			Specification
PMC-RE board			A20B-8100-0150
C board		Old	A20B-8100-0151
		New	A20B-8100-0261
Serialcommunication board A	Remote buffer/DNC2	Old	A20B-8100-0152
		New	A20B-8100-0262
Serialcommunication board B	DNC1	Old	A20B-8100-0153
		New	A20B-8100-0263
CAP-II board		Old	A20B-8100-0154
		New	A20B-8100-0264
Symbol CAP i T board		Old	A20B-8100-0154
		New	A20B-8100-0264

NOTE

The PMC-RE board or any old-specification board (A20B-8100-015x) cannot fit into any of the following slots.

- Center slot of a unit with 3 option slots
- Option slot farthest from the LCD in a unit with 4 option slots
The new-specification boards (A20B-8100-026x) can fit into any option slot.
(1)PMC-RE board

(2) C board

(3) Serial communication board A remote buffer/DNC2

(4) Serial communication board B

DNC1

(5) CAP-II board/Symbol CAP i T board

Connector number	Application
JD1A2	I/O link
JD38B	RS-232C serial port
JD38A	RS-232C serial port
JD28A	RS-232C serial port
JD6A	RS-422 serial port
CP8B	SRAM backup battery

- Card and DIMM module A20B-8100-015x

locations

Note) The DRAM module is mounted on the CPU card.
PMC-RE/C board/serial communication board/CAP-II board/Symbol CAP iT board

A20B-8100-026x

Note) The functions equivalent to the CPU card are mounted on the printed-circuit board.
PMC-RE/C board/serial communication board/CAP-II board/Symbol CAP i T board

No.	Name	Specification	Function	Remarks
(1)	CPU card	A20B-3300-0070	PMC/communication/conversatio nal function	
(2)	DRAM module	A20B-3900-0030	DRAM for PMC/communication/ conversational function	2 M
		A20B-3900-0042	$4 \mathrm{M} / 2 \mathrm{M}$	

NOTE

The CPU card is mounted on the A20B-8100-015x board. The CPU card need not be mounted on the A20B-8100-026x board, because the board contains the functions equivalent to the CPU card.

- Block diagram

- LED indication

Alarm LED (red) indication at system alarm occurrence

Alarm:123	Cause
$\square \square \square$	Usual operation under way
$\square \square \square$	Bus error (L-bus alarm)
$\square \square \square$	Bus error or DRAM parity (L-bus EMG)
$\square \square \square$	Reset under way
$\square \square \square$	I/O link error
$\square \square \square$	
$\square \square \square$	SRAM parity
$\square \square \square$	I/O SRAM parity
\square	

\square : On \square : Off

NOTE

The alarm LED indicates that a reset is under way immediately after the power is switched on.

2.4 .6
 Sub-CPU Board

- Specification

Name	Specification
Sub-CPU board	A20B-8001-0630

NOTE

The sub-CPU board cannot fit into any of the following slots.

- Center slot of a unit with 3 option slots
- Option slot farthest from the LCD in a unit with 4 option slots
- Connector mounting location

Connector number	Application
CA54	Servo check
JA41	Serial spindle/position coder
JA40	Analog output

- Card and DIMM module locations

The DRAM module is mounted on the CPU card.

No.	Name	Specification	Function	Remarks	
(1)	Axis control card	$\begin{aligned} & \hline \text { A17B-3300-0100 } \\ & \text { A17B-3300-0102 } \end{aligned}$	Axis control	8-axes	Applicable servo software: Series 9090
		$\begin{aligned} & \text { A17B-3300-0101 } \\ & \text { A17B-3300-0103 } \end{aligned}$		6-axes	
		$\begin{aligned} & \text { A20B-3300-0030 } \\ & \text { A20B-3300-0032 } \end{aligned}$		4-axes	
		$\begin{aligned} & \text { A20B-3300-0031 } \\ & \text { A20B-3300-0032 } \end{aligned}$		2-axes	
		A17B-3300-0200		8-axes	Applicable servo software: Series 90A0 and 90A3
		A17B-3300-0201		6-axes	
		A20B-3300-0120		4-axes	
		A20B-3300-0121		2-axes	
		A17B-3300-0300		6-axes	Applicable servo software: Series 90A7
(2)	CPU card	A20B-3300-0050	CNC control		
		A20B-3300-0170			
(3)	DRAM module	A20B-3900-0040	CNC system RAM	12M	
		A20B-3900-0041		8M	
		A20B-3900-0042		4M	
		A20B-3900-0130		12M	CPU card: For A20B-3300-0170
		A20B-3900-0131		8M	
		A20B-3900-0132		4M	

- Block diagram

- LED indication

(1) Changes in status LED (green) indication at power-on time

No.	Status LED (LED1, 2)	Status
1	$\square \square$	Power is not supplied.
2	$\square \square$	Initial status immediately after power is switched on; the sub-CPU has not started.
3	$\square \square$	RAMinitialization.
4	$\square \square$	Waiting for system ID to be set up.
5	$\square \square$	Waiting for software initialization to be completed No. 1
6	$\square \square$	Waiting for software initialization to be completed No. 2
7	$\square \square$	Initialization of position coder, digital servo circuit, etc.
8	$\square \square$	Initialization completed, and usual operation under way

(2) Alarm LED (red) indication at system alarm occurrence

Alarm LED	Meaning
ALM1	Bus error on sub-CPU board.
ALM2	Servo alarm.
ALM3	Bus error on other than sub-CPU board (F-BUS).

2.4 .7

RISC Board

- Specification

Name		Specification
RISC board	Old	A20B-8100-0170
	New	A20B-8100-0171

NOTE

The old-specification RISC board (A20B-8100-0170) cannot fit into any of the following slots.

- Center slot of a unit with 3 option slots
- Option slot farthest from the LCD in a unit with 4 option slots
The new-specification RISC board (A20B-8100-0171) can fit into any option slot.
- Connector mounting location
- Card mounting location

No card is mounted on the RISC board.

- LED indication

(1) Changes in status LED (green) indication at power-on time

No.	Status LED (LED4 to LED1)	Status
1	$\square \square \square$	Power is not supplied.
2	$\square \square \square$	State immediately after power is switched on; the RISC CPU has not started.
3	$\square \square \square$	Local DRAM being tested; if an error is detected in the test, the LEDs keep this indication.
4	$\square \square \square$	System area in shared DRAM being tested; if an error is detected in the test, the LEDs keep this indication.
5	$\square \square \square$	Waiting for a main CPU request. (1)
6	$\square \square \square$	Waiting for a main CPU request. (2)
7	$\square \square \square$	Waiting for a main CPU request. (3)
8	$\square \square \square$	Waiting for a main CPU request. (4)

\square : On
\square : Off
(2) Status LED (green) indication during operation

Status LED (LED4 to LED1)	Status
$\star \square \square \square$	Waiting for RISC mode
$\star \square \star \square$	Waiting for NC statement to be input
$\square \star \star \square$	Command being executed in RISC mode
$\square \square \square \star$	Reset under way
$\star \star \square \star$	Post-interpolation acceleration/deceleration override 0 (waiting for the override value to be changed)

Off
*: Blinking
(3) Status LED (green) indication at error occurrence

Status LED (LED4 to LED1)	Status
$\square \square \square \square$	An error has occurred in a test of local or shared DRAM on the RISC board.
$\square \square \square \square$	A checksum error has occurred in the system area of shared RAM on the RISC board.
$\square \square \square$	A synchronization signal from the main CPU cannot be de- tected.
$\square \square \square$	An error has occurred in access to the F-BUS.
$\square \square \square$	System error.
$\square \square \square$	Stack overflow.
$\square \square \square$	The CPU attempted to access an invalid area.
$\square \square \square \square$	Cache error.
$\square \square \square \square \square$	

\square : On \square : Off
(4) Alarm LED (red) indication

Alarm LED (LED8 to LED5)	Status
$\square \square \square \square$	A RISC CPU error or local DRAM parity error has occurred.
$\square \square \square \square$	The RISC CPU has not started.
$\square \square \square$	A shared DRAM parity error has occurred.
$\square \square \square \square$	An L-bus error has occurred.

\square : On \square : Off

2.4.8
 Data Server Board

- Specification

Name	Specification
Data server board (old specification, hard disk version) Add-onboard A20B-8100-0160 Data server board (new specification, hard disk version) A20B-2002-0590 Data server board (ATA card version) A20B-8100-0271 Add-onboard	A20B-8100-0271

NOTE

The data server board (old-specification, hard disk version) cannot fit into any of the following slots.

- Center slot of a unit with 3 option slots
- Option slot farthest from the LCD in a unit with 4 option slots
The data server board (new-specification, hard disk version) cannot fit into the option slot nearest to the LCD.
The data server board (ATA card version) cannot fit into any of the following slots.
- Option slot nearest to the LCD
- Center slot of a unit with 3 option slots
- Option slot farthest from the LCD in a unit with 4 option slots

- Connector mounting

 location

Connector number	Application
CNH1	IDE hard disk interface
CD27	AUl interface

Data server board (new specification, hard disk version)

Data server board (ATA card version)

CNH6 is mounted on the add-on board.

Connector number	Application
CNH6	ATA card interface
CD38	10BASE-TEthernetinterface

- LED indication

Data server board (old specification, hard disk version)

(1) Changes in status LED (green) indication at power-on time

No.	$\begin{aligned} & \text { Status LED } \\ & \text { (LED1 to LED4) } \end{aligned}$		Status
1	$\square \square \square \square$	Power is not supplied.	
2	■■■■	Initial status immediately after power is switched on.	
3	$\square \square \square$	Hardware check under way.	Main memory test.
4	$\square \square \square$		Ethernet RAM text.
5	$\square \square \square$		Common-RAMtest.
6	$\square \square \square$		System area initialization.
7	$\square \square \square \square$		F-BUS interrupt test 1.
8	$\square \square \square \square$		F-BUS interrupt test 2.
9	$\square \square \square \square$		F-BUS interrupt test 3.
10	$\square \square \square$		F-BUS interrupt test 4.
11	$\square \square \square$		Interruptcontrollerinitialization.
12	$\square \square \square$	Data server software has started.	BIOS initialization.
13	$\square \square \square$		Programloading.
14	$\square \square \square$	Data server board has started, and usual operation under way.	

\square : On
\square : Off
(2) Status LED (green) indication at error occurrence When an error occurs, the STATUS LEDs repeat LONG and SHORT patterns. The LONG and SHORT patterns correspond to long and short lighting intervals, respectively.

Status LED		Status
$\begin{aligned} & \text { LONG } \\ & 1234 \end{aligned}$	$\begin{aligned} & \text { SHORT } \\ & 1234 \end{aligned}$	
$\square \square \square \square$	$\square \square \square \square$	Main memory failure
$\square \square \square$	$\square \square \square$	Ethernet RAM failure
$\square \square \square \square$	$\square \square \square$	Common-RAMfailure.
$\square \square \square$	$\diamond \diamond \diamond \diamond$	An interrupt made to the CPU is invalid.
$\square \square \square$	$\diamond \diamond \diamond \diamond$	An interrupt made to the CPU is invalid.
■■ \square	$\diamond \diamond \diamond \diamond$	An interrupt made to the CPU is invalid.
$\square \square \square$	$\square \square \square \square$	A system error has occurred in the data server board.
$\square \square \square$	$\square \square \square \square$	An F-BUS error has occurred.
$\square \square \square$	$\square \square \square \square$	A main memory parity error occurred.
$\square \square \square$	$\square \square \square \square$	An Ethernet RAM parity error has occurred.
$\square \square \square$	$\square \square \square \square$	A common-RAM parity error has occurred.

\square : On \square : Off \diamond : Irrelevant
(3) Alarm LED (red) indication at error occurrence

Alarm LED	Meaning
Parity Alarm	A parity error has occurred in main memory, Ethernet RAM, or common RAM.
CPU HALT	The CPU has halted or been shut down.

Data server board (new specification, hard disk version) Data server (ATA card version)

LED indication transition at power-on time

No.	LED indication 1234	Ethernet board status
1	STATUS $\square \square \square \square$	Power off.
2	STATUS $\square \square \square \square$	Initial status immediately after power is switched on.
3	STATUS $\square \square \square \square$	MPU initializationcompleted.
4	STATUS $\square \square \square \square$	Firmware download completed.
5	STATUS $\square \square \square \square$	Control passed to the OS.
6	STATUS $\square \square \square \square$	OS PHASE 1
7	STATUS $\square \square \square \square$	OS PHASE 2
8	STATUS $\square \square \square \square$	OS PHASE 3
9	STATUS $\square \square \square \square$	OS PHASE 4
10	STATUS$\because \square \square \square$	Start sequence completed.

When the Ethernet board is started normally, the STATUS LEDs light as shown at No. 10. This condition is preserved unless an abnormal condition occurs.

Communication status LED indication

No.	LED indication		Ethernet communication status
1	RXLED	■	Lights during data reception.
2	TXLED	■	Lights during data transmission.
3	TPPIL	■	Lights to indicate normal connection with the hub.
4	COLLED	■	Lights to indicate a data collision.

NOTE

TPPIL: If this LED is off, communication does not occur. It is likely that the Ethernet board is not connected with the hub normally. The LED does not light also when the power to the hub is off. It remains to be on when the Ethernet board is connected to the hub normally.
COLLED: This LED lights frequently if Ethernet communication traffic (amount of communication) is heavy or noise in the surrounding is high.

LED indication（STATUS）at error occurrence
The STATUS LEDs repeat LONG and SHORT patterns．The LONG and SHORT patterns correspond to long and short lighting intervals， respectively．

No．	LED indication （STATUS）		Ethernet board status
	$\begin{aligned} & \text { LONG } \\ & 1234 \end{aligned}$	$\begin{aligned} & \text { SHORT } \\ & 1234 \end{aligned}$	
1	$\square \square \square$	■ $\square \square$	Reset exception
2	$\square \square \square \square$	$\square \square \square$	General machine check exception
3	$\square \square \square \square$	$\square \square \square \square$	Data Storage
4	$\square \square \square$	$\square \square \square$	Instruction Storage
5	$\square \square \square \square$	$\square \square \square$	Alignment
6	$\square \square \square$	$\square \square \square$	Program
7	■ロロ■	$\square \square \square$	Floating Point Unavailable
8	■ロロ■	■ $\square \square$	Decrementer
9	$\square \square \square$	$\square \square \square$	Trace
10	■ロロ■	$\square \square \square \square$	Floating Point Assist
11	$\square \square \square$	$\square \square \square \square$	ImplementationDependentSoftware Emulation
12	$\square \square \square$	■ $\square \square$	Implementation Dependent Instruction TLB Miss
13	$\square \square \square$	$\square \square \square \square$	Implementation Dependent Data TLB Miss
14	$\square \square \square$	$\square \square \square \square$	Implementation Dependent Instruction TLB Error
15	$\square \square \square$	$\square \square \square$	Implementation Dependent Data TLB Error
16	$\square \square \square$	$\square \square \square$	Implementation Dependent Data Breakpoint
17	$\square \square \square$	$\square \square \square$	Implementation Dependent Instruction Breakpoint
18	$\square \square \square$	$\square \square \square \square$	Implementation DependentPeripheral Breakpoint
19	$\square \square \square$	$\square \square \square$	Implementation Dependent Non Maskable Development
20	$\square \square \square$	$\square \square \square \square$	DRAM Parity Alarm
21	$\square \square \square$	$\square \square \square \square$	Other NMI
22	$\square \square \square$	■ $\square \square$	Invalidinterrupt

LED indication（ALARM）at error occurrence

No．	LED indication	Ethernet board status
1	Parity Alarm	$\boxed{ }$

2.4.9
 Loader Control Board

- Specification

Name	Specification
Loadercontrol board	A20B-8100-0190

NOTE

The loader control board cannot fit into any of the following slots.

- Center slot of a unit with 3 option slots
- Option slot farthest from the LCD in a unit with 4 option slots
- Connector mounting location

Connector number	Application
CA54	Servo check
JD1A	I/O link

- Card mounting location

No.	Name	Specification	Function	Remarks
(1)	Axis control card	$\begin{array}{\|l} \text { A20B-3300-0030 } \\ \text { A20B-3300-0032 } \end{array}$	Axis control	4-axes
		$\begin{array}{\|l} \text { A20B-3300-0031 } \\ \text { A20B-3300-0033 } \end{array}$		2-axes
(2)	CPU card	A20B-3300-0070	CNC control	
(3)	DRAM module	A20B-3900-0040	CNC system RAM	12M
		A20B-3900-0041		8M
		A20B-3900-0042		4M

- Block diagram

- LED indication

(1) Changes in status LED (green) indication at power-on time

No.	Status LED (LED1 to 4)	Status
1	$\square \square \square$	Power is not supplied.
2	$\square \square \square$	Initial status immediately after power is switched on; the loader CPU has not started.
3	$\square \square$	RAMinitialization
4	$\square \square \square$	Waiting for system ID to be set up.
5	$\square \square \square$	Waiting for software initialization to be completed No. 1
6	$\square \square \square$	Waiting for software initialization to be completed No. 2
7	$\square \square \square$	Waiting for digital servo to be initialized.
9	$\square \square \square \square$	Initialization completed, and usual operation under way.

\square : On \square : Off
(2) Alarm LED (red) indication at system alarm occurrence

When any of these alarm LEDs lights, it is likely that the hardware is defective.

Alarm LED	Meaning
ALM1	SRAM parity alarm.
ALM2	Servo alarm.
ALM3	Lights when a system alarm occurs. Used by the software to stop the system.
ALM4	Lights when a system alarm occurs. The hardware has detected a failure in the system..

2.4.10

HSSB Interface Board

- Specification

Name		Specification
HSSB interface board	Old type	A20B-8001-0640
	New type	A20B-8001-0641

- Connector mounting location

No card is mounted on the HSSB interface board.

Connector number	Application
COP7	High-speed serial bus interface

- Card mounting location

- LED indication

(1) Changes in status LED (green) indication at power-on time

No.	Status LED (ST4 to 1)	Status
1	$\square \square \square \square$	Power is not supplied.
2	$\square \square \square$	Initial status immediately after power is switched on.
3	$\square \square \square$	HSSB board being initialized.
4	$\square \square \square$	Waiting for PC boot to be executed.
5	$\square \square \square \square$	CNC screen being displayed on the PC.
6	$\square \square \square \square$	Initialization completed, and usual operation under way.

(2) Status LED (PC status, green) indication at error occurrence

Status LED (ST4 to 1)	Status
$\square \square \square \square$	A thermal error has occurred at the intelligent terminal.
$\square \square \square \square$	HSSB communication was discontinued.
$\square \square \square \square$	Parity alarm in NC/PC common RAM.
$\square \square \square \square$	An HSSB communication error has occurred.
$\square \square \square$	A battery alarm has occurred at the intelligent terminal.
$\square:$ On $\square:$ Off	

\square : On \square : Off
(3) Alarm LED (red) indication at error occurrence

Alarm LED	Meaning
AL1	HSSB communication was discontinued.
AL2	Parity alarm in NC/PC common RAM.

- Rotary switch (SW1) setting

Setting	Description
0	Setting for maintenance. The start menu is displayed. It is possible to start boot and IPL from the PC.
1	Setting for usual operation. The start menu is not displayed. It is impossible to start boot or IPL from the PC.
2	The NC and PC are started independently of each other. The start menu is not displayed. It is impossible to start boot or IPL from the PC.

See Appendix, "Maintenance of Open CNC (Boot-Up and IPL)" for detailed descriptions about how to operate boot and IPL when the rotary switch is set to the " 0 " position.

2.4.11

I/O Link-II Board

Name	Specification
FANUC I/O Link-II board	A20B-8100-0250

- Connector location

Connector number	Application
TB1	Terminal board for FANUC I/O Link-II interface

- Card location

No card is mounted on the FANUC I/O Link-II board.

- LED indication

(1) Hardware control LEDs

LED No.	Meaning
LED5	Lights when the CPU on the FANUC I/O Link-II board is run- ning. When the LED is off, it means that the CPU has been reset.
LED6	Lights when a DRAM parity error is detected. It is likely that the hardware is defective.

(2) Soft control LEDs

Status LED (ST4 to 1)	Meaning
$\square \square \square$	Immediately after power is switched on.
$\square \square \square$	Communication board being initialized.
~ $\square \square \square$	DI/DO data is being transferred normally.
$\square \square \square \square$	A RAM parity error has occurred. It is likely that the hardware is defective.
$\square \square \square$	An F-BUS error has occurred.
$\square \square \square$	An F-BUS system emergency condition has occurred. Alternatively, a communication error (FCS error, command error, frame length error, response time-out, etc.) has occurred.
	A communication error has occurred, resulting in error log being stored. Communication with a slave station has restarted. LED2 goes off when a log command (monitor function) is used. It goes off also when the communication error log is erased using a clear command.

\square : On \square : Off λ : Blinking

2.4.12

PROFIBUS Board

Name	Specification
PROFIBUS board (master function)	A20B-8100-0430
	Add-on board (slave function)
A20B-2100-0430	

NOTE

The PROFIBUS board cannot fit into any of the following slots.

- Center slot of a unit with 3 option slots
- Option slot farthest from the LCD in a unit with 4 option slots
- Connector location

Connector number	Application
JN1	Adapter unit interface for master station
JN1	Adapter unit interface for slave station

- Card location

No card is mounted on the PROFIBUS board.

- LED indication

(1) LEDs for master function

LED No. (abbreviation)	Meaning
LED1 (CPU)	Lights to indicate the CPU for the master function is running.
LED2 (TOKEN)	Lights when the communication LSI (ASPC2) has a token (right to transmit).
LEDB (PALM)	Lights when a memory parity alarm occurs in the master function circuit. It is likely that the hardware is defective.

(2)LEDs for slave function (mounted on the add-on board)

LED No. (abbreviation)	Meaning
LED1 (CPU)	Lights to indicate the CPU for the slave function is running.
LED2 (COMM)	Lights when PROFIBUS communication starts. It remains to be on after the PROFIBUS communication is suspended, however.
LED3 (RUN)	Lights to indicate that PROFIBUS communication is being performednormally.
LEDB (PALM)	Lights when a memory parity alarm occurs in the slave function circuit. It is likely that the hardware is defective.

2.4.13
 Ethernet Board

Name	Specification
Ethernetboard	A20B-8100-0270
	A20B-8100-0271

NOTE

The Ethernet board cannot fit into the option slot nearest to the LCD.

- Connector location

Connector number	Application
CD38	10BASE-TEthernet interface

- Card location

No card is mounted on the Ethernet board.

- LED indication

LED indication transition at power-on time

No.	LED indication 1234	Ethernet board status
1	STATUS $\square \square \square \square$	Power off
2	STATUS $\square \square \square \square$	Initial status immediately after power is switched on.
3	STATUS $\square \square \square \square$	MPU initializationcompleted.
4	STATUS $\square \square \square \square$	Firmware download completed.
5	STATUS $\square \square \square \square$	Control passed to the OS.
6	STATUS $\square \square \square \square$	OS PHASE 1
7	STATUS $\square \square \square \square$	OS PHASE 2
8	STATUS $\square \square \square \square$	OS PHASE 3
9	STATUS $\square \square \square \square$	OS PHASE 4
10	STATUS$\because \square \square \square$	Start sequence completed.

When the Ethernet board is started normally, the STATUS LEDs light as shown at No. 10. This condition is preserved unless an abnormal condition occurs.

Communication status LED indication

No.	LED indication	Ethernet communication status	
1	RXLED	\square	Lights during data reception.
2	TXLED	\square	Lights during data transmission.
3	TPPIL	\square	Lights to indicate a normal connection with the hub.
4	COLLED	\square	Lights to indicate a data collision.

NOTE

TPPIL: If this LED is off, communication does not occur. It is likely that the Ethernet board is not connected with the hub normally. The LED does not light also when the power to the hub is off. It remains to be on when the Ethernet board is connected to the hub normally.
COLLED: This LED lights frequently if Ethernet communication traffic (amount of communication) is heavy. It also lights frequently if noise in the surrounding is high.

LED indication（STATUS）at error occurrence
The STATUS LEDs repeat LONG and SHORT patterns．The LONG and SHORT patterns correspond to long and short lighting intervals， respectively．

No．	LED indication （STATUS）		Ethernet board status
	$\begin{aligned} & \text { LONG } \\ & 1234 \end{aligned}$	$\begin{gathered} \text { SHORT } \\ 1234 \end{gathered}$	
1	$\square \square \square \square$	■ $\square \square \square$	Reset exception
2	$\square \square \square$	$\square \square \square$	General machine check exception
3	$\square \square \square \square$	$\square \square \square$	Data Storage
4	$\square \square \square$	$\square \square \square$	Instruction Storage
5	$\square \square \square$	$\square \square \square$	Alignment
6	$\square \square \square$	$\square \square \square$	Program
7	■ロロ■	$\square \square \square$	Floating Point Unavailable
8	■ロロ■	■ $\square \square$	Decrementer
9	■ $\square \square$	$\square \square \square$	Trace
10	■ \square ■	$\square \square \square$	Floating Point Assist
11	$\square \square \square$	$\square \square \square \square$	ImplementationDependentSoftware Emulation
12	$\square \square \square$	■ $\square \square$	Implementation Dependent Instruction TLB Miss
13	$\square \square \square$	$\square \square \square$	Implementation Dependent Data TLB Miss
14	$\square \square \square$	$\square \square \square$	Implementation Dependent Instruction TLB Error
15	$\square \square \square$	$\square \square \square$	Implementation Dependent Data TLB Error
16	$\square \square \square$	$\square \square \square$	Implementation Dependent Data Breakpoint
17	$\square \square \square$	$\square \square \square \square$	Implementation Dependent Instruction Breakpoint
18	$\square \square \square$	$\square \square \square$	ImplementationDependentPeripheral Breakpoint
19	$\square \square \square$	$\square \square \square$	Implementation Dependent Non Maskable Development
20	$\square \square \square \square$	$\square \square \square \square$	DRAM Parity Alarm
21	$\square \square \square \square$	$\square \square \square \square$	Other NMI
22	$\square \square \square$	■ $\square \square$	Invalidinterrupt

LED indication（ALARM）at error occurrence

No．	LED indication	Ethernet board status
1	Parity Alarm	\square

2.4.14

DeviceNet Interface

Board

Name	Specification
DeviceNetinterface board	A20B-8100-0880

NOTE

The DeviceNet board cannot fit into the center option slot of a unit with 3 option slots

- Connector mounting location

Connector number	Application
TB1	DeviceNetinterface

2.5

LIST OF UNITS AND
PRINTED CIRCUIT
BOARDS

2.5.1

Basic Unit

Model	Name		Drawing number	Remarks
16i/160i	8.4" color basic unit with soft keys $(5+2)$	No slot	A02B-0236-B501	
		2 slots	A02B-0236-B502	
		3 slots	A02B-0236-B508	
		4 slots	A02B-0236-B503	
	10.4" high-intensity color basic unit with soft keys (10 + 2)	No slot	A02B-0236-B611	
		2 slots	A02B-0236-B612	
		3 slots	A02B-0236-B618	
		4 slots	A02B-0236-B613	
	10.4" high-intensity color basic unit with touch panel	No slot	A02B-0236-B621	
		2 slots	A02B-0236-B622	
		3 slots	A02B-0236-B628	
		4 slots	A02B-0236-B623	
	7.2" monochrome basic unit with soft keys $(5+2)$	No slot	A02B-0236-B531	
		2 slots	A02B-0236-B532	
		3 slots	A02B-0236-B538	
		4 slots	A02B-0236-B533	
	9.5" monochrome basic unit with soft keys $(10+2)$	No slot	A02B-0236-B541	
		2 slots	A02B-0236-B542	
		3 slots	A02B-0236-B548	
		4 slots	A02B-0236-B543	
	$10.4^{\prime \prime}$ color basic unit (old type) with soft keys $(10+2)$	No slot	A02B-0236-B511	
		2 slots	A02B-0236-B512	
		3 slots	A02B-0236-B518	
		4 slots	A02B-0236-B513	
	$10.4^{\prime \prime}$ color basic unit (old type) with touch panel	No slot	A02B-0236-B521	
		2 slots	A02B-0236-B522	
		3 slots	A02B-0236-B528	
		4 slots	A02B-0236-B523	

Model	Name		Drawing number	Remarks
$160 i$ with PC functions	10.4" high-intensity color basic unit with soft keys (10 + 2) PC CPU: MMX Pentium	No slot	A02B-0236-B801	
		2 slots	A02B-0236-B802	
		3 slots	A02B-0236-B803	
		4 slots	A02B-0236-B804	
	10.4" high-intensity color basic unit with touch panel PC CPU: MMX Pentium	No slot	A02B-0236-B811	
		2 slots	A02B-0236-B812	
		3 slots	A02B-0236-B813	
		4 slots	A02B-0236-B814	
	10.4" high-intensity color basic unit with no soft key PC CPU: MMX Pentium	No slot	A02B-0236-B821	
		2 slots	A02B-0236-B822	
		3 slots	A02B-0236-B823	
		4 slots	A02B-0236-B824	
	12.1" color basic unit with soft keys (10 + 2) PC CPU: MMX Pentium	No slot	A02B-0236-B831	
		2 slots	A02B-0236-B832	
		3 slots	A02B-0236-B833	
		4 slots	A02B-0236-B834	
	12.1" color basic unit with touch panel PC CPU: MMX Pentium	No slot	A02B-0236-B841	
		2 slots	A02B-0236-B842	
		3 slots	A02B-0236-B843	
		4 slots	A02B-0236-B844	
	12.1" color basic unit with no soft key PC CPU: MMX Pentium	No slot	A02B-0236-B851	
		2 slots	A02B-0236-B852	
		3 slots	A02B-0236-B853	
		4 slots	A02B-0236-B854	
	10.4" color basic unit (old type) with soft keys (10 + 2) PC CPU: 486DX4	No slot	A02B-0236-B551	
		2 slots	A02B-0236-B552	
		3 slots	A02B-0236-B558	
		4 slots	A02B-0236-B553	
	$10.4^{\prime \prime}$ color basic unit (old type) with touch panel PC CPU: 486DX4	No slot	A02B-0236-B561	
		2 slots	A02B-0236-B562	
		3 slots	A02B-0236-B568	
		4 slots	A02B-0236-B563	

Model	Name		Drawing number	Remarks
$160 i$ with PC functions	$10.4^{\prime \prime}$ color basic unit (old type) with no soft key PC CPU: 486DX4	No slot	A02B-0236-B571	
		2 slots	A02B-0236-B572	
		3 slots	A02B-0236-B578	
		4 slots	A02B-0236-B573	
	10.4" high-intensity color basic unit with soft keys (10 + 2) PC CPU: 486DX4	No slot	A02B-0236-B651	
		2 slots	A02B-0236-B652	
		3 slots	A02B-0236-B658	
		4 slots	A02B-0236-B653	
	10.4" high-intensity color basic unit with touch panel PC CPU: 486DX4	No slot	A02B-0236-B661	
		2 slots	A02B-0236-B662	
		3 slots	A02B-0236-B668	
		4 slots	A02B-0236-B663	
	10.4" high-intensity color basic unit with no soft key PC CPU: 486DX4	No slot	A02B-0236-B671	
		2 slots	A02B-0236-B672	
		3 slots	A02B-0236-B678	
		4 slots	A02B-0236-B673	
	10.4" high-intensity color basic unit with soft keys $(10+2)$ PC CPU: Pentium	No slot	A02B-0236-B751	
		2 slots	A02B-0236-B752	
		3 slots	A02B-0236-B758	
		4 slots	A02B-0236-B753	
	10.4" high-intensity color basic unit with touch panel PC CPU: Pentium	No slot	A02B-0236-B761	
		2 slots	A02B-0236-B762	
		3 slots	A02B-0236-B768	
		4 slots	A02B-0236-B763	
	10.4" high-intensity color basic unit with no soft key PC CPU: Pentium	No slot	A02B-0236-B771	
		2 slots	A02B-0236-B772	
		3 slots	A02B-0236-B778	
		4 slots	A02B-0236-B773	
160is with PC functions	10.4" high-intensity color basic unit with soft keys (10 + 2)	No slot	A02B-0269-B501	
		2 slots	A02B-0269-B502	
		3 slots	A02B-0269-B503	
		4 slots	A02B-0269-B504	

Model	Name		Drawing number	Remarks
160 is with PC functions	10.4" high-intensity color basic unit with touch panel	No slot	A02B-0269-B511	
	2 slots	A02B-0269-B512		
		3 slots	A02B-0269-B513	
	4 slots	A02B-0269-B514		

Model	Name		Drawing number	Remarks
18i/180i	8.4" color basic unit with soft keys ($5+2$)	No slot	A02B-0238-B501	
		2 slots	A02B-0238-B502	
		3 slots	A02B-0238-B508	
		4 slots	A02B-0238-B503	
	10.4" high-intensity color basic unit with soft keys ($10+2$)	No slot	A02B-0238-B611	
		2 slots	A02B-0238-B612	
		3 slots	A02B-0238-B618	
		4 slots	A02B-0238-B613	
	10.4" high-intensity color basic unit with touch panel	No slot	A02B-0238-B621	
		2 slots	A02B-0238-B622	
		3 slots	A02B-0238-B628	
		4 slots	A02B-0238-B623	
	7.2" monochrome basic unit with soft keys $(5+2)$	No slot	A02B-0238-B531	
		2 slots	A02B-0238-B532	
		3 slots	A02B-0238-B538	
		4 slots	A02B-0238-B533	
	9.5" monochrome basic unit with soft keys $(10+2)$	No slot	A02B-0238-B541	
		2 slots	A02B-0238-B542	
		3 slots	A02B-0238-B548	
		4 slots	A02B-0238-B543	
	$10.4^{\prime \prime}$ color basic unit (old type) with soft keys $(10+2)$	No slot	A02B-0238-B511	
		2 slots	A02B-0238-B512	
		3 slots	A02B-0238-B518	
		4 slots	A02B-0238-B513	
	$10.4^{\prime \prime}$ color basic unit (old type) with touch panel	No slot	A02B-0238-B521	
		2 slots	A02B-0238-B522	
		3 slots	A02B-0238-B528	
		4 slots	A02B-0238-B523	

Model	Name		Drawing number	Remarks
$180 i$ with PC functions	10.4" high-intensity color basic unit with soft keys (10 + 2) PC CPU: MMX Pentium	No slot	A02B-0238-B801	
		2 slots	A02B-0238-B802	
		3 slots	A02B-0238-B803	
		4 slots	A02B-0238-B804	
	10.4" high-intensity color basic unit with touch panel PC CPU: MMX Pentium	No slot	A02B-0238-B811	
		2 slots	A02B-0238-B812	
		3 slots	A02B-0238-B813	
		4 slots	A02B-0238-B814	
	10.4" high-intensity color basic unit with no soft key PC CPU: MMX Pentium	No slot	A02B-0238-B821	
		2 slots	A02B-0238-B822	
		3 slots	A02B-0238-B823	
		4 slots	A02B-0238-B824	
	12.1" color basic unit with soft keys (10 + 2) PC CPU: MMX Pentium	No slot	A02B-0238-B831	
		2 slots	A02B-0238-B832	
		3 slots	A02B-0238-B833	
		4 slots	A02B-0238-B834	
	12.1" color basic unit with touch panel PC CPU: MMX Pentium	No slot	A02B-0238-B841	
		2 slots	A02B-0238-B842	
		3 slots	A02B-0238-B843	
		4 slots	A02B-0238-B844	
	12.1" color basic unit with no soft key PC CPU: MMX Pentium	No slot	A02B-0238-B851	
		2 slots	A02B-0238-B852	
		3 slots	A02B-0238-B853	
		4 slots	A02B-0238-B854	
	$10.4^{\prime \prime}$ color basic unit (old type) with soft keys $(10+2)$ PC CPU: 486DX4	No slot	A02B-0238-B551	
		2 slots	A02B-0238-B552	
		3 slots	A02B-0238-B558	
		4 slots	A02B-0238-B553	
	10.4" color basic unit (old type) with touch panel PC CPU: 486DX4	No slot	A02B-0238-B561	
		2 slots	A02B-0238-B562	
		3 slots	A02B-0238-B568	
		4 slots	A02B-0238-B563	

Model	Name		Drawing number	Remarks
$180 i$ with PC functions	10.4" color basic unit (old type) with no soft key PC CPU: 486DX4	No slot	A02B-0238-B571	
		2 slots	A02B-0238-B572	
		3 slots	A02B-0238-B578	
		4 slots	A02B-0238-B573	
	10.4" high-intensity color basic unit with soft keys (10 + 2) PC CPU: 486DX4	No slot	A02B-0238-B651	
		2 slots	A02B-0238-B652	
		3 slots	A02B-0238-B658	
		4 slots	A02B-0238-B653	
	10.4" high-intensity color basic unit with touch panel PC CPU: 486DX4	No slot	A02B-0238-B661	
		2 slots	A02B-0238-B662	
		3 slots	A02B-0238-B668	
		4 slots	A02B-0238-B663	
	10.4" high-intensity color basic unit with no soft key PC CPU: 486DX4	No slot	A02B-0238-B671	
		2 slots	A02B-0238-B672	
		3 slots	A02B-0238-B678	
		4 slots	A02B-0238-B673	
	10.4" high-intensity color basic unit with soft keys (10 + 2) PC CPU: Pentium	No slot	A02B-0238-B751	
		2 slots	A02B-0238-B752	
		3 slots	A02B-0238-B758	
		4 slots	A02B-0238-B753	
	10.4" high-intensity color basic unit with touch panel PC CPU: Pentium	No slot	A02B-0238-B761	
		2 slots	A02B-0238-B762	
		3 slots	A02B-0238-B768	
		4 slots	A02B-0238-B763	
	10.4" high-intensity color basic unit with no soft key PC CPU: Pentium	No slot	A02B-0238-B771	
		2 slots	A02B-0238-B772	
		3 slots	A02B-0238-B778	
		4 slots	A02B-0238-B773	
180is with PC functions	10.4" high-intensity color basic unit with soft keys (10 + 2)	No slot	A02B-0270-B501	
		2 slots	A02B-0270-B502	
		3 slots	A02B-0270-B508	
		4 slots	A02B-0270-B504	

Model	Name		Drawing number	Remarks
180is with PC functions	10.4" high-intensity color basic unit with touch panel	No slot	A02B-0270-B511	
	2 slots	A02B-0270-B512		
		3 slots	A02B-0270-B513	
		4 slots	A02B-0270-B514	

Model	Name		Drawing number	Remarks
21i/210i	8.4" color basic unit with soft keys $(5+2)$	No slot	A02B-0247-B501	PMC-SA1
		2 slots	A02B-0247-B502	PMC-SA1
		3 slots	A02B-0247-B505	PMC-SA5
		4 slots	A02B-0247-B506	PMC-SA5
	10.4" high-intensity color basic unit with soft keys $(10+2)$	No slot	A02B-0247-B611	PMC-SA1
		2 slots	A02B-0247-B612	PMC-SA1
		3 slots	A02B-0247-B615	PMC-SA5
		4 slots	A02B-0247-B616	PMC-SA5
	10.4" high-intensity color basic unit with touch panel	No slot	A02B-0247-B621	PMC-SA1
		2 slots	A02B-0247-B622	PMC-SA1
		3 slots	A02B-0247-B624	PMC-SA5
		4 slots	A02B-0247-B625	PMC-SA5
	7.2" monochrome basic unit with soft keys $(5+2)$	No slot	A02B-0247-B531	PMC-SA1
		2 slots	A02B-0247-B532	PMC-SA1
		3 slots	A02B-0247-B535	PMC-SA5
		4 slots	A02B-0247-B536	PMC-SA5
	9.5" monochrome basic unit with soft keys $(10+2)$	No slot	A02B-0247-B541	PMC-SA1
		2 slots	A02B-0247-B542	PMC-SA1
		3 slots	A02B-0247-B545	PMC-SA5
		4 slots	A02B-0247-B546	PMC-SA5
	10.4" color basic unit (old type) with soft keys $(10+2)$	No slot	A02B-0247-B511	PMC-SA1
		2 slots	A02B-0247-B512	PMC-SA1
		3 slots	A02B-0247-B515	PMC-SA5
		4 slots	A02B-0247-B516	PMC-SA5

Model	Name		Drawing number	Remarks
$210 i$ with PC functions	10.4" high-intensity color basic unit with soft keys (10 + 2) PC CPU: MMX Pentium	No slot	A02B-0247-B801	PMC-SA1
		2 slots	A02B-0247-B802	PMC-SA1
		3 slots	A02B-0247-B805	PMC-SA5
		4 slots	A02B-0247-B806	PMC-SA5
	10.4" high-intensity color basic unit with touch panel PC CPU: MMX Pentium	No slot	A02B-0247-B811	PMC-SA1
		2 slots	A02B-0247-B812	PMC-SA1
		3 slots	A02B-0247-B815	PMC-SA5
		4 slots	A02B-0247-B816	PMC-SA5
	10.4" high-intensity color basic unit with no soft key PC CPU: MMX Pentium	No slot	A02B-0247-B821	PMC-SA1
		2 slots	A02B-0247-B822	PMC-SA1
		3 slots	A02B-0247-B825	PMC-SA5
		4 slots	A02B-0247-B826	PMC-SA5
	12.1" color basic unit with soft keys (10 + 2) PC CPU: MMX Pentium	No slot	A02B-0247-B831	PMC-SA1
		2 slots	A02B-0247-B832	PMC-SA1
		3 slots	A02B-0247-B835	PMC-SA5
		4 slots	A02B-0247-B836	PMC-SA5
	12.1" color basic unit with touch panel PC CPU: MMX Pentium	No slot	A02B-0247-B841	PMC-SA1
		2 slots	A02B-0247-B842	PMC-SA1
		3 slots	A02B-0247-B845	PMC-SA5
		4 slots	A02B-0247-B846	PMC-SA5
	12.1" color basic unit with no soft key PC CPU: MMX Pentium	No slot	A02B-0247-B851	PMC-SA1
		2 slots	A02B-0247-B852	PMC-SA1
		3 slots	A02B-0247-B855	PMC-SA5
		4 slots	A02B-0247-B856	PMC-SA5
	$10.4^{\prime \prime}$ color basic unit (old type) with soft keys (10 + 2) PC CPU: 486DX4	No slot	A02B-0247-B551	PMC-SA1
		2 slots	A02B-0247-B552	PMC-SA1
		3 slots	A02B-0247-B555	PMC-SA5
		4 slots	A02B-0247-B556	PMC-SA5
	$10.4^{\prime \prime}$ color basic unit (old type) with touch panel PC CPU: 486DX4	No slot	A02B-0247-B561	PMC-SA1
		2 slots	A02B-0247-B562	PMC-SA1
		3 slots	A02B-0247-B565	PMC-SA5
		4 slots	A02B-0247-B566	PMC-SA5

Model	Name		Drawing number	Remarks
$210 i$ with PC functions	$10.4^{\prime \prime}$ color basic unit (old type) with no soft key PC CPU: 486DX4	No slot	A02B-0247-B571	PMC-SA1
		2 slots	A02B-0247-B572	PMC-SA1
		3 slots	A02B-0247-B575	PMC-SA5
		4 slots	A02B-0247-B576	PMC-SA5
	10.4" high-intensity color basic unit with soft keys (10 + 2) PC CPU: 486DX4	No slot	A02B-0247-B651	PMC-SA1
		2 slots	A02B-0247-B652	PMC-SA1
		3 slots	A02B-0247-B655	PMC-SA5
		4 slots	A02B-0247-B656	PMC-SA5
	10.4" high-intensity color basic unit with touch panelPC CPU: 486DX4	No slot	A02B-0247-B661	PMC-SA1
		2 slots	A02B-0247-B662	PMC-SA1
		3 slots	A02B-0247-B665	PMC-SA5
		4 slots	A02B-0247-B666	PMC-SA5
	10.4" high-intensity color basic unit with no soft keyPC CPU: 486DX4	No slot	A02B-0247-B671	PMC-SA1
		2 slots	A02B-0247-B672	PMC-SA1
		3 slots	A02B-0247-B675	PMC-SA5
		4 slots	A02B-0247-B676	PMC-SA5
	10.4" high-intensity color basic unit with soft keys (10 + 2) PC CPU: Pentium	No slot	A02B-0247-B751	PMC-SA1
		2 slots	A02B-0247-B752	PMC-SA1
		3 slots	A02B-0247-B755	PMC-SA5
		4 slots	A02B-0247-B756	PMC-SA5
	10.4" high-intensity color basic unit with touch panel PC CPU: Pentium	No slot	A02B-0247-B761	PMC-SA1
		2 slots	A02B-0247-B762	PMC-SA1
		3 slots	A02B-0247-B765	PMC-SA5
		4 slots	A02B-0247-B766	PMC-SA5
	10.4" high-intensity color basic unit with no soft key PC CPU: Pentium	No slot	A02B-0247-B771	PMC-SA1
		2 slots	A02B-0247-B772	PMC-SA1
		3 slots	A02B-0247-B775	PMC-SA5
		4 slots	A02B-0247-B776	PMC-SA5
210is with PC functions	10.4" high-intensity color basic unit with soft keys (10 + 2)	No slot	A02B-0271-B501	PMC-SA1
		2 slots	A02B-0271-B502	PMC-SA1
		3 slots	A02B-0271-B505	PMC-SA5
		4 slots	A02B-0271-B506	PMC-SA5

Model	Name		Drawing number	Remarks
210is with PC functions	10.4" high-intensity color basic unit with touch panel	No slot	A02B-0271-B511	PMC-SA1
	2 slots	A02B-0271-B512	PMC-SA1	
	No slot	A02B-0271-B515	PMC-SA5	
		2 slots	A02B-0271-B516	PMC-SA5

Model	Name		Drawing number	Remarks
$20 i$	8.4" high-intensity color basic unit with soft keys (5 + 2)	No slot	A02B-0277-B501	PMC-SA1
	2 slots	A02B-0277-B502	PMC-SA1	
		No slot	A02B-0277-B505	PMC-SA5
		2 slots	A02B-0277-B506	PMC-SA5

Model	Name		Drawing number	Remarks
$\begin{aligned} & 16 i / 160 i / 18 i / \\ & 180 i / 21 i / 210 i / \\ & 20 i \end{aligned}$	Case with connector unit	No slot	A02B-0236-D100\#0C	
		2 slots	A02B-0236-D100\#2C	
		3 slots	A02B-0236-D100\#3C	
		4 slots	A02B-0236-D100\#4C	
$\begin{aligned} & \hline 160 i / 180 i / \\ & 210 i \text { with PC } \\ & \text { functions } \end{aligned}$	Case with connector unit	No slot	A02B-0236-D100\#0D	
		2 slots	A02B-0236-D100\#2D	
		3 slots	A02B-0236-D100\#3D	
		4 slots	A02B-0236-D100\#4D	

2.5.2
 MDI Unit

Model	Name		Drawing number	Remarks
$\begin{aligned} & \text { FS16i/18i/ } \\ & 21 i \\ & 160 i / 180 i / \\ & 210 i \end{aligned}$	Stand-alonetype MDI, small keys For 8.4"/7.2" LCD (horizontaltype)	T	A02B-0236-C120\#TBR	English keys
			A02B-0236-C120\#TBS	Symbolic keys
		M	A02B-0236-C120\#MBR	English keys
			A02B-0236-C120\#MBS	Symbolic keys
	Stand-alonetype MDI, standard keys For 8.4"/7.2" LCD (horizontal/vertical type)	T	A02B-0236-C121\#TBR	English keys
			A02B-0236-C121\#TBS	Symbolic keys
		M	A02B-0236-C121\#MBR	English keys
			A02B-0236-C121\#MBS	Symbolic keys
	Stand-alonetype MDI, standard keys For 10.4"/9.5" LCD (horizontaltype)	T	A02B-0236-C125\#TBR	English keys
			A02B-0236-C125\#TBS	Symbolic keys
		M	A02B-0236-C125\#MBR	English keys
			A02B-0236-C125\#MBS	Symbolic keys
	Stand-alonetype MDI, standard keys For 10.4"/9.5" LCD (vertical type)	T	A02B-0236-C126\#TBR	English keys
			A02B-0236-C126\#TBS	Symbolic keys
		M	A02B-0236-C126\#MBR	English keys
			A02B-0236-C126\#MBS	Symbolic keys
	Stand-alonetype MDI for CAP-II	T	A02B-0236-C125\#TFBR	English keys
	For 10.4"/9.5" LCD (horizontal type)		A02B-0236-C125\#TFBS	Symbolic keys
	Stand-alonetype MDI for CAP II, standard keys	T	A02B-0236-C126\#TFBR	English keys
	For 10.4"/9.5" LCD (vertical type)		A02B-0236-C126\#TFBS	Symbolic keys
$20 i$	Stand-alonetype MDI, small-size keys For 8.4" LCD (horizontal type)	T	A02B-0236-C120\#TBR	English keys
			A02B-0236-C120\#TBS	Symbolic keys
		F	A02B-0236-C120\#MBR	English keys
			A02B-0236-C120\#MBS	Symbolic keys
160i/180i/ $210 i$ with PC functions	Stand-alonetype MDI, standard keys For 10.4" LCD (vertical type) (NOTE 1)	T	A02B-0236-C127\#TBR	English keys
			A02B-0236-C127\#TBS	Symbolic keys
		M	A02B-0236-C327\#MBR	English keys
			A02B-0236-C327\#MBS	Symbolic keys
		T	A02B-0236-C327\#TBR	English keys
			A02B-0236-C327\#TBS	Symbolic keys

Model	Name	Drawing number	Remarks
$\begin{aligned} & \hline 160 i / 180 i / \\ & 210 i \end{aligned}$		A02B-0236-C327\#MBR	English keys
		A02B-0236-C327\#MBS	Symbolic keys
	Stand-alonetype MDI, standard keys For 12.1" LCD (vertical type)	A02B-0236-C321\#TBR	English keys
		A02B-0236-C321\#TBS	Symbolic keys
		A02B-0236-C321\#MBR	English keys
		A02B-0236-C321\#MBS	Symbolic keys
	Stand-alone type FA full keyboard For 10.4" LCD (vertical type) (NOTE 2)	A02B-0236-C130\#EC	English keys
		A02B-0236-C130\#JC	Japanese language keys
		A02B-0236-C131\#EC	English keys
		A02B-0236-C131\#JC	Japanese language keys
	Stand-alone type FA full keyboard For 12.1" LCD (vertical type)	A02B-0236-C132\#EC	English keys
		A02B-0236-C132\#JC	Japanese language keys

NOTE

1 MDI unit for 10.4" LCD (vertical type): A02B-0236 -C127\#xxx and A02B-0236-C327\#xxx are not compatible with each other; they differ in the way the hard disk is mounted. A02B-0236-C327\#xxx must be used in a combination of the 160i/180i/210i with PC functions and the MMX Pentium as the PC CPU.
2 FA full keyboard for 10.4" LCD (vertical type): A02B-0236 -C130\#xx and A02B-0236-C131\#xx are not compatible with each other; they differ in the way the hard disk is mounted. A02B-0236-C131\#xx must be used in a combination of the $160 i / 180 i / 210 i$ with PC functions and the MMX Pentium as the PC CPU.

2.5.3

Printed Circuit Boards of the Control Unit

Model	Name		Drawing number	ID	Remarks
Master PCB	Motherboard	Without PC function	A20B-8100-0130	D5	$16 i$
			A20B-8100-0135	C5	$18 i$
			A20B-8100-0136	D7	$21 i$ (PMC-SA5)
			A20B-8100-0137	D7	$21 i(\mathrm{PMC}-\mathrm{SA} 1)$
			A20B-8100-0138	D7	$21 i($ PMC-SA5)
			A20B-8100-0139	D7	$21 i$ (PMC-SA1)
		With PC functions	A20B-8100-0140	CC	$\begin{aligned} & 160 i \\ & \text { PC CPU: 486DX4 } \end{aligned}$
			A20B-8100-0142	CC	$160 i$ PC CPU: Pentium
			A20B-8100-0460	CC	$\begin{array}{\|l} 160 i \\ \text { PC CPU: MMX Pentium } \end{array}$
			A20B-8100-0540	54	160is
			A20B-8100-0145	EC	$\begin{aligned} & 180 i \\ & \text { PC CPU: 486DX4 } \end{aligned}$
			A20B-8100-0144	EC	$\begin{aligned} & 180 i \\ & \text { PC CPU: Pentium } \end{aligned}$
			A20B-8100-0461	EC	$\begin{aligned} & 180 i \\ & \text { PC CPU: MMX Pentium } \end{aligned}$
			A20B-8100-0541	55	180is
			A20B-8100-0147	DC	$210 i$ (PMC-SA5) PC CPU: 486DX4
			A20B-8100-0148	DC	$210 i$ (PMC-SA1) PC CPU: 486DX4
			A20B-8100-0146	DC	$210 i$ (PMC-SA5) PC CPU: Pentium
			A20B-8100-0149	DC	$210 i(P M C-S A 1)$ PC CPU: Pentium
			A20B-8100-0462	DC	$210 i$ (PMC-SA5) PC CPU: MMX Pentium
			A20B-8100-0463	DC	$210 i$ (PMC-SA1) PC CPU: MMX Pentium
			A20B-8100-0542	56	210is (PMC-SA5)
			A20B-8100-0543	56	210is (PMC-SA1)

Model	Name		Drawing number	ID	Remarks
Card PCB	CPU card		A20B-3300-0050	01	
			A20B-3300-0070	09	
			A20B-3300-0170	11	
	Display control card	10.4" color	A20B-3300-0150	OE	Graphic (60V2 series)
			A20B-3300-0020		Graphic (600W series)
		8.4" color	A20B-3300-0151	OA	Graphic (60V2 series)
			A20B-3300-0021		Graphic (600W series)
		9.5" monochrome	A20B-3300-0153	06	Graphic (60V2 series)
			A20B-3300-0023		Graphic (600W series)
		7.2" monochrome	A20B-3300-0154	02	Graphic (60V2 series)
			A20B-3300-0024		Graphic (600W series)
		7.2" monochrome	A20B-3300-0091	03	Characters only
			A20B-3300-0025		Characters only
		9.5" monochrome	A20B-3300-0090	07	Characters only
	Axis control card	Applicable servo software: Series 9090	A17B-3300-0100	03	8-axes
			A17B-3300-0102		
			A17B-3300-0101	02	6-axes
			A17B-3300-0103		
			A20B-3300-0030	01	4-axes
			A20B-3300-0032		
			A20B-3300-0031	00	2-axes
			A20B-3300-0033		
		Applicable servo software: Series 90A0 and 90A3	A17B-3300-0200	07	8-axes
			A17B-3300-0201	06	6-axes
			A20B-3300-0120	05	4-axes
			A20B-3300-0121	04	4-axes
		Applicable servo software: Series 90A7	A17B-3300-0300	06	6-axes
	PC card		A15L-0001-0052\#4A	C9	486DX4
			A02B-0236-C261	C9	Pentium
			A02B-0207-J560\#6130	C9	MMX Pentium 10.4" LCD
			A02B-0207-J560\#6131	C9	MMX Pentium 12.1" LCD

Model	Name	Drawing number	ID	Remarks
DIMM module	DRAM module	A20B-3900-0040	87	12M
		A20B-3900-0041	86	8M
		A20B-3900-0042	85	4M/2M
		A20B-3900-0030	82	2M
		A20B-3900-0130	A7	CPU card: For A20B-3300-0170
		A20B-3900-0131	A6	
		A20B-3900-0132	A5	
	SRAM module	A20B-3900-0020	25	3M
		A20B-3900-0060	04	2M
		A20B-3900-0061	03	1M
		A20B-3900-0052	02	512K
		A20B-3900-0053	01	256K
	FROM module	A20B-3900-0010	47	16M
		A20B-3900-0070	57	
		A20B-3900-0011	45	12M
		A20B-3900-0071	55	
		A20B-3900-0012	43	8M
		A20B-3900-0072	53	
		A20B-3900-0013	42	6M
		A20B-3900-0073	52	
		A20B-3900-0014	41	4M
		A20B-3900-0074	51	
		A20B-3900-0015	40	2M
		A20B-3900-0075	50	
	DRAM module (for PC card)	A76L-0500-0008	-	8M for 486DX
		A76L-0500-0009	-	16M for 486DX
		A76L-0500-0010	-	16M for Pentium
		A76L-0500-0011	-	32M for Pentium/MMX Pentium
		A76L-0500-0012	-	64M for Pentium/MMX Pentium

Model	Name			Drawing number	ID	Remarks
Option PCB	PMC-RE board			A20B-8100-0150	1xCD	
	C board		Old	A20B-8100-0151	0xCD	
			New	A20B-8100-0261		
	Serial communication board A (remote buffer/ DNC2)		Old	A20B-8100-0152	$2 \times C D$	
			New	A20B-8100-0262		
	Serial communication board B (DNC1)		Old	A20B-8100-0153	$3 \times C D$	
			New	A20B-8100-0263		
	CAP-II board/Symbol CAP iT board		Old	A20B-8100-0154	$4 \times C D$	
			New	A20B-8100-0264		
	Sub-CPU board			A20B-8001-0630	0xCE	
	RISC board		Old	A20B-8100-0170	0xCF	
			New	A20B-8100-0171		
	Data server board (hard disk version)	Main board		A20B-8100-0160	1xA3	Old specification
		Add-on board		A20B-2002-0590	-	
	Data server board (hard disk version)			A20B-8100-0271	$3 \times D B$	New specification
	Data server board (ATA card version)	Main board		A20B-8100-0271	$3 \times$ DB	
		Add-on board		A20B-2002-0960	-	
	Loader control board			A20B-8100-0190	0xD3	
	HSSB interface board		Old	A20B-8001-0640	AxAA	
			New	A20B-8100-0641	ExAA	
	I/O Link-II board			A20B-8100-0250	0x95	
	PROFIBUS board	Main board		A20B-8100-0430	$0 \times B B$	
		Add-on board		A20B-2100-0430	-	
	Ethernet board		Old	A20B-8100-0270	1xDB	
			New	A20B-8100-0271	$3 x$ DB	
	DeviceNet interface board			A20B-8001-0880	1xF3	
Backpanel	Backpanel			A20B-2100-0220	-	2 slots
				A20B-2100-0290	-	3 slots
				A20B-2100-0230	-	4 slots

Model	Name		Drawing number	ID	Remarks
Distributed I/O	Operator's panel I/O module		A20B-2002-0470	-	Matrix DI supported With MPG interface
			A20B-2002-0520	-	General-purpose DI input With MPG interface
			A20B-2002-0521	-	General-purpose DI input Without MPG interface
	Connector panel I/O module	Basic	A20B-2100-0150	-	
		Expansion	A20B-2100-0410	-	With MPG intersection
			A20B-2002-0400	-	With MPG intersection Old PCB
			A20B-2100-0411	-	Without MPG interface
			A20B-2002-0401	-	Without MPG interface Old PCB
			A20B-2100-0320	-	2 A output
			A20B-2100-0190	-	Analog input
Others	Inverter	For no- or 2-slot type	A20B-2002-0500	-	10.4" color
			A20B-2002-0501	-	8.4" color
			A20B-2002-0480	-	Monochrome
		3- or 4-slot type	A20B-8100-0200	-	10.4" color
			A20B-8100-0201	-	8.4" color
			A20B-2002-0550	-	Monochrome
	Inverter (connector unit type)	For monochrome	A20B-8001-0910	-	
		For color	A20B-8001-0920	-	10.4" color
			A20B-8001-0921	-	8.4" color
			A20B-8001-0922	-	8.4" high-intensity color
			A20B-2002-0890	-	12.1" color
	Operator's panel connection unit	(64/32)	A16B-2200-0661	-	Sink-type output
		(96/64)	A16B-2200-0660	-	Sink-type output
		(64/32)	A16B-2202-0731	-	Source-type output
		(96/64)	A16B-2202-0730	-	Source-type output
	Machine operator's panel interface unit		A16B-2201-0110	-	
	PCB for FSO type standard machine operator's panel		A20B-8001-0721	-	
			A20B-8001-0720	-	Old PCB
			A16B-2300-0210	-	Old PCB

Model	Name	Drawing number	ID	Remarks
Others	Loader I/O card Old New	A20B-2002-0620	-	
		A20B-2100-0280	-	
		A20B-2100-0281	-	Matrix supported
	Touch panel control board	A20B-8001-0620	-	
	PCB for separate detector interface unit	A20B-2100-0270	-	4 basic axes
		A20B-2002-0570	-	4 additional axes
	PC-side HSSB board	A20B-8001-0583	-	For channel 1
		A20B-8001-0581	-	For channel 1 (old)
		A20B-8001-0582	-	For channel 2
		A20B-8001-0580	-	For channel 2 (old)
		A20B-8100-0100	-	Old PCB

2.5.4 Others

Name		Drawing number	Remarks
Separatedetector interface unit	Four basic axes	A02B-0236-C203	
		A02B-0236-C201	Old unit
	Fouradditional axes	A02B-0236-C204	
		A02B-0236-C202	Old unit
Connectorpanel I/O module	Basic module	A03B-0815-C001	
	Expansionmodule	A03B-0815-C002	With MPG interface
		A03B-0815-C003	Without MPG interface
		A03B-0815-C004	DO only
		A03B-0815-C005	Analog input
Distributed I/O machine operator's panel	Small type	A02B-0236-C141\#xx	DI $=24$, with MPG interface
	Standard type	A02B-0236-C140\#xx	DI $=24$, with MPG interface
	290 mm wide	A02B-0236-C150\#xx	DI $=24$, with MPG interface
Loader I/O board		A02B-0236-C160	
		A02B-0236-C161	Matrix supported
PROFIBUS adapter unit		A02B-0236-C221	
Spindle connector adapter		A13B-0180-B001	
PC interface connector unit		A20B-8001-0610	
		A20B-8001-0970	PC card: MMX Pentium supported
ISA expansion unit		A20B-9002-0210	

2.6 REPLACING THE MOTHERBOARD

WARNING

Only those personnel who have received approved safety and maintenance training may perform this replacement work.
When opening the cabinet and replacing the board, be careful not to touch the high-voltage circuits (marked \triangle and fitted with an insulating cover). Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

CAUTION

Before starting replacement work, back up the contents (such as parameters and programs) of the SRAM memory of the CNC. Otherwise, the contents of the SRAM memory may be lost during replacement work.

CAUTION

If the SRAM data check method (parity or ECC check) to be used after the motherboard is replaced differs from the one used before replacement, a parity alarm or ECC alarm will occur when the power is switched on, possibly leading to loss of the SRAM memory contents. To avoid this problem, make a backup copy of the SRAM memory before replacing the motherboard, and restore the SRAM memory contents using the backup copy after motherboard replacement.

- Replacement procedure

1) Unplug the connectors for the fans and memory backup battery from the top of the CNC unit, then remove the yellow cover.
For the connector unit type basic unit, no connector need be removed.

CAUTION

With a CNC unit that has an indicator for the touch pad, the connectors CN1 and CD37 connected to the left side of the unit, as viewed from the rear of the unit, must be unplugged before removing the yellow cover.
2) Unplug the connectors MCRD1 (or PCMCIA2), CN3, and CN8 from the printed circuit board, then replace the motherboard.
If the an MMX Pentium PC card is mounted on the motherboard, first remove the card and the mounting studs for the card, then replace the motherboard.

2.7
 MOUNTING AND REPLACING THE PC CARD (MMX PENTIUM)

WARNING

This replacement task shall be performed by those who have been sufficiently trained in maintenance and safety. When opening the cabinet and replacing the card PCB, be careful not to touch the high-voltage section (marked with \triangle and provided with an electric shock prevention cover). If you touch the high-voltage section directly (with the electric shock prevention cover removed), you will get an electric shock.

CAUTION

Before replacing the PC card, make a backup copy of the CNC SRAM memory contents (such as parameters and programs), as the contents may be lost during replacement.

The structure of the PC card (MMX Pentium) differs from that of other card printed-circuit boards.
The PC card is factory-fastened to the studs on the motherboard using bolts supplied together with the PC card.

Removing procedure

1. Remove the retaining bolts (4 places) from the PC card, and dismount the PC card from the studs on the motherboard.

2. Hold the PC card at the FP cable connector portions, and pull it out from the motherboard.

3. Remove the retaining bolts from the heat sink, and dismount it.

4. Pull out the PC card from the FP cable.

5. Remove the DRAM module from the PC card. See Section 4.2 for explanations about how to remove.

Mounting procedure

FP cable specification

Reverse steps 1 to 5 of the removing procedure.

FANUC in-house specification: A66L-2050-0017

2.8
 MOUNTING AND REPLACING THE CE CARD

WARNING

This replacement task shall be performed by those who have been sufficiently trained in maintenance and safety. When opening the cabinet and replacing the card PCB, be careful not to touch the high-voltage section (marked with \triangle and provided with an electric shock prevention cover). If you touch the high-voltage section directly (with the electric shock prevention cover removed), you will get an electric shock.

CAUTION

Before replacing the CE card, make a backup copy of the CNC SRAM memory contents (such as parameters and programs), as the contents may be lost during replacement.

The structure of the CE card differs from that of other card printed-circuit boards. The CE card holds a card engine and compact flash card. The CE card is connected to the card engine with not only a connector but also an FP cable.

1. Remove the CE card from the motherboard by referencing Section 4.1.
2. The compact flash card is on side B (the side where the connector for connection with the motherboard is mounted). Remove the holding metal from the compact flash card to allow the compact flash card to be removed.

3. The card engine is on side A. First remove the holding metal from the card engine by unlatching (2 places).

4. Remove the FP cable from connector CN4 on the card engine by sliding up the brown part on the FP cable connector.

5. Remove the FP cable from connectors CN 12 and CN 34 on side A of the CE card.

6. Remove the FP cable from $\mathrm{CN} 1, \mathrm{CN} 2$, and CN 3 on the card engine.

7. Remove the card engine. See Section 4.2 for explanations about how to remove.

Reverse steps 1 to 7 of the removing procedure.

FANUC in-house specification: A66L-2050-0020

2.9

REPLACING FUSE ON CONTROL UNIT

WARNING

Before replacing a blown fuse, locate and remove the cause of the blown fuse.
For this reason, only those personnel who have received approved safety and maintenance training may perform this replacement work.
When opening the cabinet and replacing a fuse, be careful not to touch the high-voltage circuits (marked Δ and fitted with an insulating cover). Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

- Fuse mounting location of the FS16i/18i/21i/20i

- Fuse mounting location of the FS160i/180i/210i/ 160is/180is/210is with the PC function

- Ordering codes of fuses

Basic unit	Ordering code	Rating	Parts specification
FS16i/18i/21i	A02B-0236-K100	5 A	A60L-0001-0290\#LM50
FS160i/180i/210i FS160is/180is/210is	A02B-0236-K101	7.5 A	A60L-0001-0046\#7.5

2.10

REPLACING BATTERY

When a lithium battery is used
Prepare a new lithium battery (ordering code: A02B-0200-K102 (FANUC specification: A98L-0031-0012)).

1) Turn on the power to the CNC. After about 30 seconds, turn off the power.
2) Remove the old battery from the top of the CNC control unit.

First, unplug the battery connector, then take the battery out of its case.
The battery case of a control unit without option slots is located at the top end of the unit as shown in the figure of the previous page. The battery case of a control unit with 2 slots or 4 slots is located in the central area of the top of the unit (between fans).
3) Insert a new battery and reconnect the connector.

WARNING

Using other than the recommended battery may result in the battery exploding. Replace the battery only with the specified battery (A02B-0200-K102).

CAUTION

Steps 1) to 3) should be completed within 30 minutes (or within 5 minutes for the 160i/180 i with the PC function). Do not leave the control unit without a battery for any longer than the specified period. Otherwise, the contents of memory may be lost.
If steps 1) to 3) may not be completed within 30 minutes, save all contents of the CMOS memory to the memory card beforehand. Thus, if the contents of the CMOS memory are lost, the contents can be restored easily.
For the method of operation, refer to 4.8 or C.2.2.

When discarding a battery, observe the applicable ordinances or other rules of your local government. Also, cover the terminals of the battery with vinyl tape or the like to prevent a short-circuit.

When using commercial

 alkaline dry cells (size D)
- Method of connection

Power from the external batteries is supplied through the connector to which the lithium battery is connected.

The lithium battery, provided as standard, can be replaced with external batteries in the battery case (A02B-0236-C281) according to the battery replacement procedure described above.

CAUTION

1 Install the battery case (A02B-0236-C281) in a location where the batteries can be replaced even when the power to the control unit is on.
2 The battery cable connector is attached to the control unit by means of a simple lock system. To prevent the connector from being disconnected due to the weight of the cable or tension within the cable, fix the cable section within 50 cm of the connector.

Replacing commercial alkaline dry cells (size D)

1) Prepare two alkaline dry cells (size D) commercially available.
2) Turn on the power to the Series $16 i / 18 i / 160 i / 180 i$.
3) Remove the battery case cover.
4) Replace the cells, paying careful attention to their orientation.
5) Reinstall the cover onto the battery case.

CAUTION

When replacing the alkaline dry cells while the power is off, use the same procedure as that for lithium battery replacement described above.

2.11

REPLACING FAN MOTORS

WARNING

When opening the cabinet and replacing a fan motor, be careful not to touch the high-voltage circuits (marked \triangle and fitted with an insulating cover).
Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

- Fan ordering information

	Ordering information	Required quantity
Unit with no option slot	A02B-0236-K120	2
Unit with 2 option slots	A02B-0236-K121	2
Unit with 3 option slots	A02B-0236-K121	2
	A02B-0236-K122	2
	A02B-0236-K121	4

Replacement procedure

- For units with no expansion slots and units with 2 expansion slots

1. Before replacing a fan motor, turn off the power to the CNC.
2. Unplug the connector of a fan motor to be replaced ((1) of Fig. a). The connector is latched. So, when unplugging the connector, hold down the latch placed at the lower part of the connector with a flat-blade screwdriver.
3. Detach the latch securing the fan motor, then demount the fan motor ((2) of Fig. a).
4. Insert a new fan motor into the fan case ((3) of Fig. a), then reconnect the connector.

Fig. a

- For units with 4 expansion slots

1. Before replacing a fan motor, turn off the power to the CNC.
2. Unplug the connector of a fan motor to be replaced ((1) of Fig. b). The connector is latched. So, when unplugging the connector, hold down the latch placed at the lower part of the connector with a flat-blade screwdriver.
3. Detach the latch securing the fan cover ((3) of Fig. b), then demount the fan cover from the unit.
4. The fan is secured to the fan cover. Detach the latch, then demount the fan motor ((2) of Fig. b).
5. Install a new fan motor onto the fan cover. Then, reinstall the fan cover onto the unit, and reconnect the connector.

Fig. b

2.12

REPLACING LCD BACKLIGHT

WARNING

Only those personnel who have received approved safety and maintenance training may perform this replacement work.
When opening the cabinet and replacing a unit, be careful not to touch the high-voltage circuits (marked Δ and fitted with an insulating cover).
Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

CAUTION

Before starting replacement work, back up the contents (such as parameters and programs) of the SRAM memory of the CNC. Otherwise, the contents of the SRAM memory may be lost during replacement work.

Backlight	Ordering information	Individual ordering information	
For 7.2" LCD	Made by Hitachi	A02B-0236-K112	A61L-0001-0142\#BL
For 7.2" LCD	Made by Sharp		
For 8.4" LCD	A02B-0236-K113	A61L-0001-0162\#BL	
For high-intensity 8.4" LCD (for FS20i)	A02B-0236-K119	A61L-0001-0176\#BL	
For 9.5" LCD	A02B-0236-K114	A61L-0001-0154\#BL	
For 10.4" LCD (old type)	A02B-0236-K115	A61L-0001-0163\#BL	
For high-intensity 10.4" LCD	A02B-0236-K116	A61L-0001-0168\#BL	
For 12.1" LCD	A02B-0236-K117	A61L-0001-0174\#BL	

- Replacement procedure 1) Detach the escutcheon from the CNC.

2) As shown below, unplug the connectors CP 1 and CN 8 to detach the LCD unit from the CNC unit. (For the $12.1^{\prime \prime}$ LCD, remove also CP31.)

3)-1 For the 8.4" LCD unit (color)

Remove the three screws from the left part on the rear of the LCD unit, and remove the cover. Then, the backlight is exposed. Replace the backlight with a new one.

3)-2 For the $10.4^{\prime \prime}$ LCD unit (color) (old type)

As shown below, remove the screw, and pull out the case containing the backlight. Replace the backlight with a new one.

3)-3 For the 7.2" and 9.5" LCD units (monochrome) manufactured by Hitachi
Remove the three brackets from the left part on the front of the LCD unit, and remove the cover. Then, the backlight is exposed. Replace the backlight with a new one.

3)-4 For the 7.2" LCD unit (monochrome) manufactured by Sharp Remove the three screws from the left part on the front of the LCD unit, and remove the cover. Then, the backlight is exposed. Replace the backlight with a new one.

3)-5 For the high-intensity $10.4^{\prime \prime}$ LCD (color)

As shown below, press the projection to unlatch the backlight case, and pull out the backlight case, then replace the backlight.

3)-6 For the $12.1^{\prime \prime} \mathrm{LCD}$ (color)

Two backlights are provided on the rear of the LCD unit, the first at the top and the second at the bottom. To dismount the backlights, remove two bolts from each backlight and slide it to the left.

3)-7 For the high-intensity $8.4^{\prime \prime}$ LCD (color)

As shown below, remove two bolts, remove the backlight case by pulling it down and sliding it slightly to the left, then replace the backlight.

4) Upon completion of replacement, reassemble the unit by reversing the steps 1 through 3 above.
2.13

HEAT GENERATED IN EACH UNIT

Unit		Amount of generated heat	Remarks
Control unit	No option slot	$33 W$	(NOTE 1)
	2 option slots	37W	
	3 option slots	39W	
	4 option slots	40W	
Control unit with PC functions PC CPU: 486DX4	No option slot	45W	(NOTE 2)
	2 option slots	52W	
	3 option slots	53W	
	4 option slots	54W	
Control unit with PC functions PC CPU: Pentium	No option slot	54W	
	2 option slots	61 W	
	3 option slots	62W	
	4 option slots	63W	
Control unit with PC functions PC CPU: MMXPentium	No option slot	54W	
	2 option slots	61 W	
	3 option slots	62W	
	4 option slots	63W	
Control unit with PC functions (is)	No option slot	45W	(NOTE 1)
	2 option slots	52W	
	3 option slots	53W	
	4 option slots	54W	

Unit		Amount of generated heat	Remarks
Option boards	HSSB board	3W	
	Sub-CPUboard	13W	
	Loader control board	10W	
	PMC C board	5W	
	Serialcommunication board	6 W	
	CAP-IIboard	10W	
	Symbol CAP iT board	10W	
	RISC board	9 W	
	Data server board (hard disk version)	9W	Old board Hard disk included
	Data server board (ATA card version)	6.3	0.3 W generated in ATA card included (NOTE 4)
	Data server board (hard disk version)	19W	New board Hard disk included
	I/O link II board	9W	
	Ethernetboard	6 W	
	DeviceNet interface board	4W	
	PROFIBUS board	9W	
ISA expansion board			(NOTE 3)
PC interface connector unit		OW	

NOTE

1 The amount of heat generated in the LCD and MDI units is included, but that in each option board is not.
2 The amount of heat generated in the LCD, MDI units, hard disk, and floppy disk drives is included, but that in each board is not.
3 The amount of heat generated in the ISA expansion board varies from one model to another. Add the amount of heat generated in the ISA board to be used.
4 The amount of heat generated in the ATA flash card may vary depending on its memory capacity, changes made to the card specification, and other factors.
5 When using option boards, keep the total amount of heat generated in the selected option boards to within the corresponding value listed in the following table.

Option slot	Total amount of generated heat
2 slots	26 W
3 slots	38 W
4 slots	38 W

Unit	Amount of generated heat	Remarks
MDI unit	0W	
Operator's panel I/O module	12 W	(NOTE 1)
Connector panel I/O module (basic)	8 W	(NOTE 1)
Connector panel I/O module (expansion)	5 W	(NOTE 1)
Separate detector interface unit	9 W	Only for unit with four ba- sic axes
Separate detector interface unit	14 W	Four basic axes and four additional axes (NOTE 2)

NOTE

1 This value applies when 50% of the module inputs are on.
2 The amount of heat generated in the separate detector is not included.

3
 STAND-ALONE TYPE i SERIES HARDWARE

This chapter describes the printed circuit boards of the CNC control unit of the stand-alone type i series and card PCB functions on the printed circuit boards. The chapter also describes procedures for replacing consumable items.
3.1 HARDWARE CONFIGURATION 295
3.2 HARDWARE OVERVIEW 296
3.3 TOTAL CONNECTION DIAGRAMS 300
3.4 CONNECTOR AND CARD CONFIGURATIONS OF PRINTED CIRCUIT BOARDS 304
3.5 UNITS AND PRINTED CIRCUIT BOARDS 335
3.6 MOUNTING AND REMOVING AN OPTION BOARD 341
3.7 MOUNTING AND REMOVING THE BACK PANEL 346
3.8 REPLACING THE FUSE OF THE CONTROL UNIT 348
3.9 REPLACING THE BATTERY 350
3.10 REPLACING A FAN UNIT 353
3.11 REPLACING THE FUSE OF THE LCD UNIT 354
3.12 REPLACING THE LCD BACKLIGHT 355
3.13 HEAT GENERATION OF THE UNITS 358

3.1
 HARDWARE CONFIGURATION

3.2

HARDWARE OVERVIEW
3.2.1

Series 16i/160i

High-speed serial bus interface
(160i basic option)

Mounted in slot 1
Basic system

1-slot cabinet or
3-slot cabinet

The mounting position of an option board depends on the board type, as shown below:
The option board marked with *1 fits into option slot 2.
The option board marked with *2 fits into option slot 3 .
The option board marked with *3 fits into a mini slot (of any slot).

3.2.2
 Series 18i/180i

Sub-CPUboard(*2)
Sub-CPU for two-path control
2-axis to 6-axis control
- Spindle interface
- Analog output

RISC + data server board (M series only)(*1)
High-precision contour control function
Data server function (ATA card)

1-slot cabinet or
3-slot cabinet
 options

The mounting position of an option board depends on the board type, as shown below:
The option board marked with *1 fits into option slot 2.
The option board marked with *2 fits into option slot 3.
The option board marked with *3 fits into a mini slot (of any slot).

3.2.3
 Series 21i/210i

3.3
 TOTAL CONNECTION DIAGRAMS

Stand-alone type control unit

When an option board is used

3.4
 CONNECTOR AND
 CARD
 CONFIGURATIONS
 OF PRINTED CIRCUIT
 BOARDS

3.4.1
 Main CPU Board of Series 16i/18i/21i

- Specifications

Item	Code
Main CPU board of Series $16 i / 160 i$	A16B-3200-0320
Main CPU board of Series 18i/180i	A16B-3200-0325
Main CPU board of Series 21i/210i (PMC-SA5)	A16B-3200-0326

- Mounting positions of connectors, LEDs, etc.
CNM1B: Memory card

STATUS 7-segment LED: Used for setting and maintenance operations, in combination with the MTSW rotary switch and PSW push switch described below.
MTSW rotary switch: This rotary switch is used for setting and maintenance operations, in combination with the STATUS 7-segment LED and the PSW push switch.

PSW push switch:
This push switch is used for setting and maintenance operations, in combination with the STATUS 7-segment LED and the MTSW rotary switch.
(For the setting and maintenance operations using these switches, see Appendix E, "LED Display and Maintenance of Stand-alone Type Unit.")

- Mounting positions of cards and DIMM modules

The DRAM module is mounted on the CPU card.

No.	Item	Code	Function	Remarks
(1)	CPU card	A20B-3300-0050	CNC control	16i/18i
		A20B-3300-0170		16i/18i
		A20B-3300-0070		$21 i$
(2)	Display control card	A20B-3300-0161	Display interface	LCD/MDI
		A20B-3300-0162		Display link
		A20B-3300-0190		MDI only
(3)	Axis control card	A17B-3300-0200	Axis control	Servo software: 90A0 series supported
		A17B-3300-0201		
		A20B-3300-0120		
		A20B-3300-0121		
(4)	DRAM module	A20B-3900-0040	CNC system RAM	12M
		A20B-3900-0041		8M
		A20B-3900-0042		4M/2M
		A20B-3900-0030		2M
		A20B-3900-0130		CPU card: For A20B-3300-0170
		A20B-3900-0131		
		A20B-3900-0132		
(5)	FROM module	$\begin{aligned} & \text { A20B-3900-0070 } \\ & \text { A20B-3900-0010 } \end{aligned}$	CNC system servo system	16M
		$\begin{aligned} & \text { A20B-3900-0071 } \\ & \text { A20B-3900-0011 } \end{aligned}$		12M
		$\begin{aligned} & \text { A20B-3900-0072 } \\ & \text { A20B-3900-0012 } \end{aligned}$		8M
		$\begin{aligned} & \text { A20B-3900-0073 } \\ & \text { A20B-3900-0013 } \end{aligned}$		6M
		$\begin{aligned} & \text { A20B-3900-0074 } \\ & \text { A20B-3900-0014 } \end{aligned}$		4M
(6)	SRAM module	A20B-3900-0020	System SRAM	3M
		A20B-3900-0060		2M
		A20B-3900-0061		1M
		A20B-3900-0052		512K
		A20B-3900-0053		256K

- LED display
- Fuse burn-out detection LED

FUSE (Red)	Lit if the fuse is blown.

- LED status transition at power-up \square : Off \square : On

$\begin{gathered} \text { 7-segment } \\ \text { LED } \end{gathered}$	STATUS	Status
Not lit	$\square \square \square \square$	Power off
8	$\square \square \square \square$	CPU not activated after power-up
F		NC system loading started by boot system
9	$\square \square \square \square$	NC system started-up and RAM initialization completed
8	■	Waiting for system processor ID setting
7	$\square \square \square \square$	System processor ID setting completed Display circuit initialization completed
6	\square	FANUC bus initialization completed
5	$\square \square \square \square$	Loading from flash memory completed PMC initialization completed Series and edition screen displayed
4	$\square \square \square \square$	Hardware configuration information setting completed for each printed circuit board of the system
3	$\square \square \square \square$	PMC ladder initialization completed
2	$\square \square \square \square$	Waiting for digital servo and spindle initialization
1	$\square \square \square \square$	Digital servo and spindle initialization completed
0	$\square \square \square \square$	Initialization completed, normal operation state

- LED display during automatic operation start-up

While automatic operation start-up in progress signal STL (F0.5) is held to 1 , the 7 -segment LED cyclically displays the following patterns:

- LED display when a battery alarm occurs

ALARM $\square \square \square$	SRAM backup battery is weak.

 （if CPU card A20B－3300－0170 is used）

ALARM $\square \square \square$	System failure．The software detected an error and stopped the system．
ALARM $\square \square \square$	An error occurred on the local bus in the main CPU board．
ALARM $\square \square \square$	System emergency．The hardware detected an error．
ALARM \square n	A disconnection was found in the optical fiber cable between the CNC and LCD． Alternatively，a printed circuit board on the LCD side is defective． lf a disconnection occurs，the dot of the 7－segment LED is also lit． If a disconnection occurs，the display of the LCD unit blinks．
ALARM $\square \square$	An SRAM parity error or SRAM ECC error was de－ tected．
ALARM $\square \square \square$	A DRAM parity was detected．
ALARM 云云云	A bus error occurred in the main CPU．

（If CPU card A20B－3300－0050 or－0070 is used）

ALARM $\square \square \square$	System failure．The software detected an error and stopped the system．
ALARM $\square \square \square$	An error occurred on the local bus in the main CPU board． Alternatively，a bus error occurred in the main CPU． Alternatively，a DRAM parity error was detected．
ALARM $\square \square \square$	System emergency．The hardware detected an error． Alternatively，a bus error occurred in the main CPU． Alternatively，a DRAM parity error was detected．
ALARM $\square \square \square$	A disconnection was found in the optical fiber cable between the CNC and LCD． Alternatively，a printed circuit board on the LCD side is defective． lf a disconnection occurs，the dot of the 7－segment If a disconnection also lit． LCD unit blinks．
ALARM $\square \square \square$	An SRAM parity error or SRAM SRlay of the tected．

NOTE

1 If any of the system alarms occurs，the hardware may be defective．
2 If a disconnection is detected in the optical fiber cable between CNC and LCD at power－up，the ALARM LEDs alternately display these patterns：

- 7-segment LED display when a system alarm occurs If a system alarm occurs, a number blinks as shown below, depending on the system alarm number.

7-segment LED	System alarm num- ber	System alarm type
0	900 to 909	ROM parity alarm. System ROM parity stored in FROM
1	910 to 919	SRAM or DRAM parity alarm
2	920 to 929	Servo alarm
3	930 to 399	CPU interrupt or SRAM ECC error
5	950 to 959	PMC system alarm
7	970 to 979	Bus error or non-maskable interrupt
8	Others	Other system alarms

NOTE

If any of the system alarms occurs, the hardware may be defective.

- Block diagram

3.4 .2
 Sub-CPU Board

- Specifications

Item	Code
Sub-CPUboard	A16B-2203-0431

- Mounting positions of connectors, LEDs, etc.

- Mounting positions of cards and DIMM module

No.	Item	Code	Function	Remarks	
(1)	CPU card	A20B-3300-0050	CNC control		
		A20B-3300-0170			
(2)	Axis control card	A17B-3300-0200	Axis control	8-axes	Servo software: 90A0 series supported
		A17B-3300-0201		6-axes	
		A20B-3300-0120		4-axes	
		A20B-3300-0121		2-axes	
(3)	DRAM module	A20B-3900-0040	CNC system RAM	12M	
		A20B-3900-0041		8M	
		A20B-3900-0042		4M/2M	
		A20B-3900-0030		2M	
		A20B-3900-0130		12M	$\begin{array}{\|l} \hline \text { CPU card: For } \\ \text { A20B-3300-0170 } \end{array}$
		A20B-3900-0131		8M	
		A20B-3900-0132		4M	

- LED display
- LED display at power-up \square : Off \quad : On

STATUS $\square \square \square \square$	Power off
STATUS S STATUS $\square \square \square \square$ CPU not activated after power-up	

- LED display when a system alarm occurs \square : Off \quad : On 录: Blink

ALARM $\square \square \square$	Servo alarm
ALARM $\square \square \square$	A DRAM parity error was detected. Note) Only when CPU card A20B-3300-0170 is used
ALARM幺 $\square \square$	A bus error occurred in a sub-CPU. Note) Only when CPU card A20B-3300-0170 is used

NOTE

If any of the system alarms occurs, the hardware may be defective.

- Block diagram

3.4 .3
 RISC Board, Data Server Board, RISC + Data Server Board

The RISC function and data server function are provided on a single option board. If the RISC function alone is needed, a RISC board is used. If just the data server function is needed, a data server board is used. If the two functions are needed, a RISC + data server board is used. If the data server function is used, an ATA card adapter is mounted on the board. This board and ATA card adapter are connected by a flat cable.

- Specifications

Item	Code
RISC + Data server board	A16B-3200-0350
RISC board	A16B-3200-0351
Data server board	A16B-3200-0352
ATA card adapter	A20B-2100-0500

- Mounting positions of connectors, LEDs, etc.

- LED display of the RISC function

The RISC function uses the green STATUS LEDs and red ALARM LEDs in the upper part of the face plate. The red ALARM LEDs are used also by the data server function.

- Status transition at power-up, displayed by the green STATUS LEDs \square : Off ■: On

STATUS $\square \square \square \square$	Power off
STATUS ■■■■	Just after power-up, RISC CPU not activated
STATUS $\square \square \square \square$	Local DRAM testing in progress (If the test detects an error, this pattern is held.)
STATUS $\square \square \square \square$	Testing of system area in shared DRAM in progress (If the test detects an error, this pattern is held.)
STATUS $\quad \square \square \square$	Waiting for a request from main CPU (1)
STATUS ■ $\square \square \square$	Waiting for a request from main CPU (2)
STATUS $\quad \square \square \square$	Waiting for a request from main CPU (3)
STATUS \quad ■ $\square \square$	Waiting for a request from main CPU (4)

- Status transition during operation, displayed by the green STATUS LEDs \square : Off \square : On

STATUS $\square \square \square$	RISC mode wait state
STATUS $\square \square \square$	NC statement input wait state
STATUS $\square \square \square$	Command execution in progress in the RISC mode
STATUSQ STATUS $\square \square \square \square$	Resetting

- Status transition when an error occurs, displayed by the green STATUS LEDs
\square : Off ■: On

STATUS $\square \square \square \square$	An error occurred in the testing of the local DRAM or shared DRAM on the RISC board.
STATUS $\square \square \square \square$	A check sum error occurred in system area of the shared DRAM on the RISC board.
STATUS $\square \square \square \square$	No sync signal can be detected from the main CPU.
STATUS $\square \square \square \square$	An error occurred during access to the F-bus.
STATUS $\square \square \square \square$	Stack overflow
STATUS $\square \square \square \square$	The CPU accessed an illegal area.
STATUS $\square \square \square \square$	Cache error
STATUS $\square \square \square \square$	$\square \square \square$

- ALARM LED display (red) \square : Off \square : On

ALARM $\square \square \square$	The RISC CPU is not active.
ALARM $\square \square \square$	A bus error occurred in the L-bus.
ALARM $\square \square \square$	A parity error occurred in the shared DRAM.
ALARM $\square \square \square$	An error occurred in the RISC CPU. Alternatively, a parity error occurred in the local DRAM (slave).
ALARM $\square \square \square$	An error occurred in the RISC CPU. Alternatively, a parity error occurred in the local DRAM (master).

NOTE

The LEDs display any other pattern if an error occurs in the data server option.

- LED display of the data server function

The data server board function uses four green STATUS LEDs for status display and red LEDs for alarm display (used also by the RISC function). The function uses other green LEDs and a single red LED for communication status display.

LED status transition at power-up
LED statuses
O: Off

- : On
z: Blink
\diamond : Don't care

No.	$\begin{array}{c}\text { LED display } \\ \text { (L1 to L4) }\end{array}$	Board status
1	00	Power off
2	00	

If the board is normally activated, the LEDs display the pattern of No. 10 and keep this state until an error is detected.

LED display when an error occurs (STATUS L1 to L4)
The STATUS LEDs alternately display the LONG and SHORT patterns. The LONG pattern is held longer than the SHORT pattern.
LED statuses
O: Off

- O
On
却: Blink
$\diamond:$ Don't care

No.	LED display (STATUS)		Board status
	LONG	SHORT	
1	$\bigcirc 0$	$\stackrel{\rightharpoonup}{\bullet \bullet}$	Reset exception
2	\bigcirc	$\begin{aligned} & \circ \bigcirc \\ & \bullet \end{aligned}$	General machine check exception
3	\bigcirc	$\bullet \bullet$	Data Storage
4	$\bigcirc 0$	$\begin{aligned} & 00 \\ & 0 \end{aligned}$	Instruction Storage
5	\bigcirc	$\begin{aligned} & \circ 0 \\ & \bullet \bullet \end{aligned}$	Alignment

No.
Board status

	LONG	SHORT	
6	0	\bullet	Program
7	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \mathrm{OO} \\ & 00 \end{aligned}$	Floating Point Unavailable
8	$\stackrel{+0}{\circ}$	$\begin{aligned} & 0 \bigcirc \\ & 00 \end{aligned}$	Decrementer
9	$\stackrel{\circ}{\circ}$	\bigcirc	Trace
10	\bigcirc	$\begin{aligned} & \text { ○○ } \\ & \bullet \end{aligned}$	Floating Point Assist
11	\bigcirc	$\begin{aligned} & \text { OO } \\ & 00 \end{aligned}$	ImplementationDependentSoftware Emulation
12	\bigcirc	\bigcirc	Implementation Dependent Instruction TLB Miss
13	\bigcirc	$\begin{aligned} & \circ \bigcirc \\ & \bullet \bigcirc \end{aligned}$	Implementation Dependent Data TLB Miss
14	\bigcirc	\bigcirc	Implementation Dependent Instruction TLB Error
15	\bigcirc	$\begin{aligned} & \circ \bigcirc \\ & 0 \\ & \hline \end{aligned}$	Implementation Dependent Data TLB Error
16	$\bullet \bigcirc$	$\begin{aligned} & \circ 0 \\ & 0 \end{aligned}$	Implementation Dependent Data Breakpoint
17	\bullet	\bigcirc	Implementation Dependent Instruction Breakpoint
18	\bullet	$\begin{aligned} & \circ \\ & \bullet \\ & \bullet \end{aligned}$	ImplementationDependentPeripheralBreakpoint
19	\bullet	\bullet	Implementation Dependent Non Maskable Development
20	\bigcirc	$\begin{aligned} & 0 \bigcirc \\ & 00 \end{aligned}$	DRAM Parity Alarm
21	\bigcirc	$\begin{aligned} & \circ \bigcirc \\ & \bullet \bigcirc \end{aligned}$	Other NMI
22	$\begin{aligned} & \circ \\ & \bullet 0 \end{aligned}$	$\begin{aligned} & 0 \bigcirc \\ & 00 \end{aligned}$	Invalid interrupt

NOTE

If any of the errors occurs, contact FANUC.

LED display when an error occurs (ALARM)
LED statuses
\square : Off
On

No.	LED display $\mathbf{1 2 3}$	Board status
1	$\square \square \square$	An MPU transfer error occurred.
2	$\square \square \square$	A parity error occurred in the main memory.

NOTE

Any other pattern is displayed if an error occurs in the RISC option.

LED display for communication status
Communication status (L5 to L8)
LED statuses \bigcirc : Off \bigcirc : On $\underset{\sim}{*}:$ Blink \diamond : Don't care

No.	LED display	Communication status
1	$\diamond \diamond$	Data transmission in progress
2	$\diamond \diamond$	Data reception in progress
3	$\diamond \diamond$ $\diamond \diamond$	Hub normally connected

Communication status (COL)

No.	LED display	Communication status
1	\bullet	Lit when a data collision occurs.

COL: This LED is frequently lit if the traffic of Ethernet communication is large or if the peripheral noise is large.

3.4.4

C Board, Serial

Communication Board

- Specifications

Item		Code
C board	A20B-8100-0330	
Serial communication board	R.B./DNC2: RS232C I/F	A20B-8100-0334
	R.B./DNC2: RS422 I/F	A20B-8100-0335
	DNC1: RS485 I/F	A20B-8100-0336

- Mounting positions of connectors, LEDs, etc.

NOTE

1 The LEDs display this pattern because the CPU is in the reset state immediately after power-up.
2 If the LEDs display any of the patterns, the hardware may be defective (except in the reset state at power-up).

- Mounting positions of

 card and DIMM module

No.	Item	Code	Function	Remarks
(1)	DRAM module	A20B-3900-0042	System RAM	$4 M B$

3.4.5
 HSSB Interface Board

- Specifications

Item	Code
HSSB interface board	A20B-8001-0730

- Mounting positions of connectors, LEDs, etc.

- LED display

LEDB	Red	HSSB communication has been interrupted.
LEDA	Red	A RAM parity alarm occurred in the common RAM on the board. The common RAM is mounted on this board. The RAM is used to exchange information between the CNC and personal computer and is not battery-backed.

Status display of the green LEDs
\square : Off
: On

4321	Status
$\square \square \square \square$	Immediately after power-up
$\square \square \square \square$	HSSB board initialization in progress
$\square \square \square \square$	Waiting for the booting of the PC side
$\square \square \square \square$	CNC screen displayed on the PC
$\square \square \square \square$	Thermal error detected by the intelligent terminal normally terminated, normal operation in progress
$\square \square \square \square$	HSSB communication interrupted
$\square \square \square \square$	Parity alarm in the common RAM
$\square \square \square \square$	Communicationerror
$\square \square \square \square$	Battery alarm in the intelligent terminal
$\square \square \square \square$	$\square \square \square \square$

- High-speed serial bus setting switch

Setting	Description
0	Setting for maintenance. The activation menu is displayed, and the PC can perform boot- up and IPL.
1	Normal setting The activation menu is not displayed. The PC cannot perform boot-up or IPL.
2	The NC and PC start up independently of each other. The activation menu is not displayed. The PC cannot perform boot-up or IPL.

For details of the boot-up and IPL when the rotary switch is set to 0 , see Appendix, "Maintenance of Open CNC (Boot-Up and IPL)."

3.4.6

CAP-II Board

- Specifications

Item	Code
CAP-II board	A20B-8100-0560

- Mounting positions of connectors, LEDs, etc.

- LED display

Status display of the red LEDs
]: Off
On

CAB	Status
$\square \square \square$	An error occurred in the local bus on this board.
$\square \square$	An error occurred in the local bus on this board. Alter- natively, an error occurred on the main CPU board or another option board.
$\square \square \square$	The CPU is not yet started (reset state).(*1)
$\square \square \square$	A parity alarm occurred in the SRAM.
$\square \square \square$	A bus error occurred in the CPU on this board.
$\square \square$	A parity alarm occurred in the DRAM.
\square	

NOTE

1 The LEDs display this pattern because the CPU is in the reset state immediately after power-up.
2 If the LEDs display any of the patterns, the hardware may be defective (except in the reset state at power-up).

- Setting pin TM1 and connector CP8B
- Mounting positions of card and DIMM module

Setting pin TM1 and connector CP 8 B are provided for testing at FANUC. The setting of the pin must not be changed.

No.	Item	Code	Function	Remarks
(1)	DRAM module	A20B-3900-0042	System RAM	4 MB

3.4.7

I/O Link-II Board

- Specifications

Item	Code
I/O Link-II board	A20B-8100-0380

- Mounting positions of connectors, LEDs, etc.

- LED display

- Status LED display (green)

	Status
LED1	Lit when the board is released from the reset state and starts operating.
LED2	Lit when communication starts. This LED is left on until a reset occurs.
LED3	Lit each time transmission is performed. (Actually, this LED appears to be lit continuously.)
LED4	Reserved

- Alarm LED display (red)

	Status
LED1	Lit when the board is released from the reset state and starts operating.
LEDA	Lit if any of the following errors is detected when data is re- ceived. This LED goes off when normal data is received next. - Reception buffer overflow - Fractional bit data detection - Overrun error detection - CRC error detection - Abort error detection
LEDB	Lit when a parity alarm occurs in the DRAM on this board.

- Setting pin SH1

This pin is used to set the I/O Link-II board as the master or slave.

3.4.8
 Ethernet Board

- Specifications

Item	Code
Ethernetboard	A20B-8100-0450

- Mounting positions of connectors, LEDs, etc.

- LED display
- Status transition at power-up, displayed by the green LEDs

No.	$\mathbf{4 3 2 1}$	Ethernet board status
1	$\square \square \square \square$	Power off
2	$\square \square \square$	Initial state immediately after power-up
3	$\square \square \square$	MPU initialization completed
4	$\square \square \square \square$	Firmwaredownloading completed
5	$\square \square \square \square$	Control transferred to OS
6	$\square \square \square$	OS PHASE 1
7	$\square \square \square$	OS PHASE 2
8	$\square \square \square$	OS PHASE 3
9	$\square \square \square \square$	OS PHASE 4
10	$\square \square \square$ in	Start-upcompleted

If the board has normally started up, the LEDs display the pattern of No.10. The LEDs keep this pattern until an error occurs.
－Status LED display when an error occurs（green）
The status LEDs alternately display the LONG and SHORT patterns． The LONG pattern is held longer than the SHORT pattern．

No．	Status LED display （STATUS）		Ethernet board state
	$\begin{aligned} & \text { LONG } \\ & 4321 \end{aligned}$	$\begin{aligned} & \text { SHORT } \\ & 4321 \end{aligned}$	
1	$\square \square \square \square$	$\square \square \square \square$	Reset exception
2	$\square \square \square \square$	$\square \square \square \square$	General machine check exception
3	$\square \square \square \square$	$\square \square \square$	Data Storage
4	$\square \square \square \square$	$\square \square \square \square$	Instruction Storage
5	$\square \square \square \square$	$\square \square \square \square$	Alignment
6	$\square \square \square \square$	$\square \square \square$	Program
7	$\square \square \square \square$	$\square \square \square \square$	Floating Point Unavailable
8	■ロロ■	$\square \square \square$	Decrementer
9	■■ロ■	$\square \square \square$	Trace
10	■ $\square \square$	$\square \square \square \square$	Floating Point Assist
11	$\square \square \square \square$	$\square \square \square \square$	ImplementationDependentSoftware Emulation
12	$\square \square \square \square$	$\square \square \square \square$	Implementation Dependent Instruction TLB Miss
13	$\square \square \square \square$	$\square \square \square \square$	Implementation Dependent Data TLB Miss
14	$\square \square \square \square$	$\square \square \square \square$	Implementation Dependent Instruction TLB Error
15	$\square \square \square \square$	$\square \square \square \square$	Implementation Dependent Data TLB Error
16	$\square \square \square$	$\square \square \square \square$	Implementation DependentData Breakpoint
17	$\square \square \square \square$	$\square \square \square$	Implementation Dependent Instruction Breakpoint
18	$\square \square \square$	$\square \square \square \square$	Implementation DependentPeripheral Breakpoint
19	$\square \square \square$	$\square \square \square$	Implementation Dependent Non Maskable Develop－ ment
20	$\square \square \square \square$	$\square \square \square \square$	DRAM Parity Alarm
21	$\square \square \square \square$	$\square \square \square \square$	Other NMI
22	$\square \square \square$	$\square \square \square$	Invalid interrupt

NOTE

If any of the errors occurs，contact FANUC．

- Alarm LED display (red) when an alarm occurs

	State
LEDB	Lit when a parity alarm occurs in the main memory on this board.

- Communication status LED display (red)

LED6 (RX)	Lit when data is received.
LEDA (COL)	Lit when a data collision occurs.

NOTE

LEDA (COL) is frequently lit if the traffic of Ethernet communication is large or if the peripheral noise is large.

3.4.9

DeviceNet Board

- Specifications

Item	Code
DeviceNetboard	A20B-8100-0490

- Mounting positions of connectors, LEDs, etc.

- LED display

- Master/slave setting pin
- Precautions
- Meaning of red LED

LEDA	Lit when an error occurs on the daughter board. If this LED is lit, replace the DeviceNet board.

- Meanings of green LEDs

$\mathbf{3 2 1}$	Status
$\square \square \square$	This board is set as the master.
$\square \square \square$	This board is set as the slave.

- LEDs on the daughter board

MNS	DeviceNet module/network status LED This LED indicates whether the DeviceNet board is turned on and whether the DeviceNet communication is normally per- formed. For the meanings of statuses indicated by this LED, refer to the specifications supplied by ODVA.
HEALTH	Daughter board status LED After the board is turned on, the LED is lit in red. If the firmware is loaded into the internal daughter board, the LED is lit in green. This green state continues. If the LED is not lit in green, replace the DeviceNet board.

This setting pin is used to switch around the master function and slave function of DeviceNet.

This DeviceNet board can be removed after the main CPU board is removed. For the procedure, see "Mounting and Removing an Option Board."
A daughter board of a different manufacturer is mounted on the DeviceNet board. The daughter board alone cannot be replaced.

3.4.10

PROFIBUS Master

Board

- Specifications

Item	Code
PROFIBUS master board	A20B-8100-0470

- Mounting positions of connectors, LEDs, etc.

3.4.11

PROFIBUS Slave

Board

- Specifications

Item	Code
PROFIBUS slave board	A20B-8100-0440

- Mounting positions of connectors, LEDs, etc.

CN2: PROFIBUS interface

- LED display
- Status LED display (green)

	State
LED1	Lit when this board is released from the reset state and starts operating. This LED is not lit at power-up.
LED2	Lit when the communication starts. The LED is not lit at power-up. The LED is not lit also in the following cases: - When no parameter configuration data is received - When illegal parameter configuration data is received
LED3	Lit when the communication is normally performed. This LED is not lit at power-up.
LEDB	Lit when a RAM parity alarm occurs on this board.

3.4.12
 FL-net Board

- Specifications

Item	Code
FL-netboard	A20B-8100-0530

- Mounting positions of connectors, LEDs, etc.

- LED display
- Meanings of red LEDs

HER	Lit when a parity alarm occurs in the DRAM on the FL-net board. The board may be defective.
COL	Lit if a data collision occurs on the line.

- Meanings of green LEDs

COM	Lit during data transmission or reception.
POK	Lit when the parameters are normally set.
LNK	This LED indicates the link state and is lit if the board partici- pates in the FA link.
RES	Reserved. This LED is normally lit.
ROS	Lit while the OS is running on the FL-net board.
LIL	Lit when a hub is normally connected.

This setting pin is always set to position B. The setting should not be changed.

3.5
 UNITS AND PRINTED
 CIRCUIT BOARDS

3.5.1
 Basic Units

Type	Item	Drawing No.	Remarks
$16 i / 160 i$	Basic unit with 1 slot	A02B-0265-B501	
	Basic unit with 3 slots	A02B-0265-B503	
$18 i / 180 i$	Basic unit with 1 slot	A02B-0266-B501	
	Basic unit with 3 slots	A02B-0266-B503	
$21 i / 210 i$	Basic unit with 1 slot	A02B-0267-B501	

3.5.2
 Printed Circuit Boards of Control Unit

Type	Item		Drawing No.	ID	Remarks
Master PCB	Main CPU board		A16B-3200-0320	E8	$16 i$
			A16B-3200-0325	E9	$18 i$
			A16B-3200-0326	EA	$21 i$
Card PCB	CPU card		A20B-3300-0050	01	
			A20B-3300-0070	09	
			A20B-3300-0170	11	
	Display control card	LCD/MDI	A20B-3300-0161	-	
		For CRT link	A20B-3300-0162	-	
		MDI only	A20B-3300-0190	-	
	Axis control card	Servo software 90A0 series supported 90A3 series supported	A17B-3300-0200	07	8-axes
			A17B-3300-0201	06	6-axes
			A20B-3300-0120	05	4-axes
			A20B-3300-0121	04	2-axes
		Servo software 90A7 series supported	A17B-3300-0300	06	6-axes
	Display control card (LCD unit side)	10.4" color	A20B-3300-0150	OE	Graphic
		9.5" monochrome	A20B-3300-0153	06	Graphic
		9.5" monochrome	A20B-3300-0090	07	Character only

Type	Item	Drawing No.	ID	Remarks		
DIMM module	DRAM module	A20B-3900-0040	87	12M		
		A20B-3900-0041	86	8M		
		A20B-3900-0042	85	4M/2M		
		A20B-3900-0030	82	2M		
		A20B-3900-00130	A7	12M	$\begin{aligned} & \text { CPU card: } \\ & \text { For } \\ & \text { A20B-3300 } \\ & -0170 \end{aligned}$	
		A20B-3900-00131	A6	8M		
		A20B-3900-00132	A5	4M		
	SRAM module	A20B-3900-0020	25	3M		
		A20B-3900-0060	04	2M		
		A20B-3900-0061	03	1M		
		A20B-3900-0052	02	512K		
		A20B-3900-0053	01	256K		
	FROM module	A20B-3900-0010	47	16M		
		A20B-3900-0070	57			
		A20B-3900-0011	45	12M		
		A20B-3900-0071	55			
		A20B-3900-0012	43	8M		
		A20B-3900-0072	53			
		A20B-3900-0013	42	6 M		
		A20B-3900-0073	52			
		A20B-3900-0014	41	4M		
		A20B-3900-0074	51			
		A20B-3900-0015	40	2M		
		A20B-3900-0075	50			

Type	Item		Drawing No.	ID	Remarks
Option PCB	Sub-CPU board		A16B-2203-0431	0xF1	
	RISC + data server board		A16B-3200-0350	$\begin{aligned} & 0 \times F 4 \\ & 0 \times F 5 \end{aligned}$	
	RISC board		A16B-3200-0351	0xF4	
	Data server board		A16B-3200-0352	0xF5	
	ATA card adapter		A20B-2100-0500	-	For data server
	Serial communication board (RB/DNC2, RS232C I/F)		A20B-8100-0334	1xE1	
	Serial communication board (RB/DNC2, RS422 I/F)		A20B-8100-0335	2xE1	
	Serial communication boar (DNC1)		A20B-8100-0336	3xE2	
	C board		A20B-8100-0330	xxE0	
	HSSB interface board		A20B-8001-0730	xxAA	
	CAP-II board		A20B-8100-0560	xx1F	
	I/O Link-II board		A20B-8100-0380	xxF9	
	Ethernet board		A20B-8100-0450	xxE6	
	DeviceNet board		A20B-8100-0490	xxEF	
	PROFIBUS master board		A20B-8100-0470	xxFC	
	PROFIBUS slave board		A20B-8100-0440	xxE3	
	FL-net board		A20B-8100-0530	xx59	
Back panel	Back panel		A20B-2002-0850	-	1 slot
			A20B-2002-0800	-	3 slots
Distributed I/O	Operator's panel I/O module		A20B-2002-0470	-	Matrix DI supported With MPG interface
			A20B-2002-0520	-	General-purpose DI input With MPG interface
			A20B-2002-0521	-	General-purpose DI input Without MPG interface
	Connector panel I/O module	Basic	A20B-2100-0150	-	
		Expansion	A20B-2100-0410	-	With MPG interface
			A20B-2100-0411	-	Without MPG interface
			A20B-2100-0320	-	DO only
			A20B-2100-0190	-	Analog input

Type	Item		Drawing No.	ID	Remarks
Others	LCD control printed circuit board		A20B-8100-0410	-	
	Inverter		A20B-2002-0500	-	Color
			A20B-8001-0920	-	
			A20B-2002-0480	-	Monochrome
			A20B-8001-0910	-	
	Operator's panel connection unit	(64/32)	A16B-2200-0661	-	Sink output
		(96/64)	A16B-2200-0660	-	Sink output
		(64/32)	A16B-2202-0731	-	Source output
		(96/64)	A16B-2202-0730	-	Source output
	Machine operator's panel interface unit		A16B-2201-0110	-	
	Touch panel control board		A20B-8001-0620	-	
	PCB for separate detector interface unit		A20B-2100-0270	-	
	HSSB board on the personal computer side		A20B-8001-0583	-	For 1 channel
			A20B-8001-0581	-	For 1 channel (old)
			A20B-8001-0582	-	For 2 channels
			A20B-8001-0580	-	For 2 channels (old)
			A20B-8100-0100	-	Old PCB

3.5.3

LCD/MDI Unit

Item			Drawing No.	Remarks	
9.5" monochrome LCD unit			A20B-0265-C061		
9.5" monochrome LCD unit			A20B-0265-C066	Character only	
10.4" color LCD unit			A20B-0265-C071		
10.4" color LCD unit			A20B-0265-C081	With touch panel	
For display link	7.2" monochrome LCD unit		A02B-0166-C251		
	7.2" monochrome LCD/MDI unit	T series	A02B-0166-C261\#TR	Alphabetic keys	
			A02B-0166-C261\#TS	Symbolic keys	
		M series	A02B-0166-C261\#R	Alphabetic keys	
			A02B-0166-C261\#S	Symbolic keys	
	Detachable 7.2" monochrome LCD/MDI unit	T series	A02B-0166-C271\#TR	Alphabetic keys	
			A02B-0166-C271\#TS	Symbolic keys	
		M series	A02B-0166-C271\#R	Alphabetic keys	
			A02B-0166-C271\#S	Symbolic keys	
	Stand-alone type MDI	T series	A02B-0166-C210\#TR	Alphabetic keys	
			A02B-0166-C210\#TS	Symbolic keys	
		M series	A02B-0166-C210\#R	Alphabetic keys	
			A02B-0166-C210\#S	Symbolic keys	
Stand-alone type MDI standard key (landscape type)		T series	A02B-0236-C125\#TBR	Alphabetic keys	
		A02B-0236-C125\#TBS	Symbolic keys		
		M series	A02B-0236-C125\#MBR	Alphabetic keys	
		A02B-0236-C125\#MBS	Symbolic keys		
Stand-alone type MDI standard key (portrait type)			T series	A02B-0236-C126\#TBR	Alphabetic keys
		A02B-0236-C126\#TBS		Symbolic keys	
		M series	A02B-0236-C126\#MBR	Alphabetic keys	
		A02B-0236-C126\#MBS	Symbolic keys		

3.5.4
 Other Units

Item		Drawing No.	Remarks
Separate detector interface unit	4 basic axes	A02B-0236-C203	
	4 additional axes	A02B-0236-C204	
Connector panel I/O module	Basic module	A03B-0815-C001	
	Expansion module	A03B-0815-C002	With MPG interface
		A03B-0815-C003	Without MPG interface
		A03B-0815-C004	2A DO
		A03B-0815-C005	Analog input
Distributed I/O machine operator's panel	Compact type	A02B-0236-C141\#xx	DI $=24$, with MGP interface
	Standard type	A02B-0236-C140\#xx	DI $=24$, with MGP interface
	290-mm wide	A02B-0236-C150\#xx	DI $=24$, with MGP interface
Spindle connection adapter		A13B-0180-B001	
Fan unit	For 1 slot	A02B-0265-C101	
	For 2 slots	A02B-C260-C021	

3.6
 MOUNTING AND
 REMOVING AN
 OPTION BOARD

WARNING

The replacement described here should be performed by a person fully trained in maintenance and safety. If the cabinet is opened to replace the option board, take extreme care not to touch any high-voltage area (marked with Δ and covered by a shock prevention cover). If the area is uncovered, direct contact with this area will result in an electric shock.

NOTE

Before starting the replacement, take a back-up copy of the contents (parameters, programs, etc.) of the SRAM memory of the CNC. The backup copy can be used in case the contents of the SRAM memory are lost during the replacement.

3.6.1
 Mounting and Removing the Main CPU Board and a Full-Size Option Board

3.6.1.1
 Removing the board

(1) Remove cables other than the battery cable. (The battery cable is connected only to the main CPU board.)
(2) Hold handles A and B.
(3) Pushing down the hook of handle A and pushing up the hook of handle B, pull out the printed circuit board.

NOTE

1 The battery is mounted on the face place of the main CPU board. The battery is pulled out together with the main CPU board.
2 The main CPU board or a full-size option board can be removed without removing mini-slot option boards. (If a cable connected to a mini-slot option board obstructs the removal, the cable must be removed.)

3.6.1.2
 Mounting the board

(1) Holding handles A and B , insert the board into the cabinet until the connector on the back panel is connected.
(2) Connect the removed cables to correct positions.

3.6.2
 Mounting and Removing a Mini-Slot Option Board (Except DeviceNet Board)

3.6.2.1
 Removing the board

(1)Remove cables connected to the target mini-slot option board. Remove other cables that would obstruct the removal of the mini-slot option board.
(2) Hold handles C and D.
(3)Pushing the latch of handle C to the right, pull out the printed circuit board.

NOTE

The mini-slot option board can be removed without removing the main CPU option board or full-size option board.

3.6.2.2
 Mounting the board

(1)Holding handles C and D , insert the board into the cabinet until the connector on the back panel is connected.
(2) Connect the removed cables to correct positions.

3.6.3
 Mounting and
 Removing the
 DeviceNet Board

3.6.3.1
 Removing the board

3.6.3.2
 Mounting the board

(1) Before mounting the DeviceNet board, remove the main CPU board.

NOTE

The DeviceNet board can be mounted after the main CPU board is removed. If an attempt is made to mount the DeviceNet board without removing the main CPU board, the printed circuit may be damaged.
(2) Remove the terminal block from the connector on the DeviceNet board. (See the removal procedure described above.)
(3) Mount the DeviceNet board in the cabinet without the main CPU board. Holding handles C and D, insert the board into the cabinet until the connector on the back panel is connected.
(4) After mounting the DeviceNet board, mount the main CPU board.
(5) Mount the terminal block removed in (2) to the connector. Securely tighten the screws.

3.7
 MOUNTING AND REMOVING THE BACK PANEL

WARNING

The replacement described here should be performed by a person fully trained in maintenance and safety. If the cabinet is opened to replace the back panel, take extreme care not to touch any high-voltage area (marked with \triangle and covered by a shock prevention cover). If the area is uncovered, direct contact with this area will result in an electric shock.

NOTE

Before starting the replacement, take a back-up copy of the contents (parameters, programs, etc.) of the SRAM memory of the CNC. The backup copy can be used in case the contents of the SRAM memory are lost during the replacement.

3.7.1 Removing the Panel

3.7.2
 Mounting the Back Panel

(1) Remove the main CPU board and all option boards, following the steps described in Section 3.6.
(2) Remove the connector of the fan connected to the back panel.
(3)Push down the latch securing the back panel until the latch is disengaged.
(4)Pull down and detach the back panel to the rear.
(1) Aligning the positioning hole of the back panel with the positioning pin, fit the back panel on from the rear.
(2) Pull up the back panel until the latch is engaged.
(3) Connect the fan connector to the back panel.
(4) Mount the main CPU board and option boards, following the steps described in Section 3.6.

3.8
 REPLACING THE
 FUSE OF THE CONTROL UNIT

WARNING

Before starting the replacement of a fuse, remove the cause of the fuse burn-out.
Accordingly, the replacement should be performed by a person fully trained in maintenance and safety. If the cabinet is opened to replace the fuse, take extreme care not to touch any high-voltage area (marked with Δ and covered by a shock prevention cover). If the area is uncovered, direct contact with this area will result in an electric shock.

- Mounting position of the fuse of the control unit

The fuse of the control unit is mounted on the main CPU board.

- Ordering information of the fuse

Ordering information	Rating	Individual information
A02B-0265-K100	7.5 A	A60L-0001-0046\#7.5

3.9
 REPLACING THE BATTERY

- Replacing the battery

If a lithium battery is used, have A02B-0200-K102 (FANUC internal code: A98L-0031-0012) handy.
(1) Turn the CNC on. About 30 seconds later, turn the CNC off.
(2) Remove the battery from the top area of the CNC unit.

Disconnect the connector first. Then, remove the battery from the battery case.
The battery case is provided in the top area of the face plate of the main CPU board.
(3) Replace the battery, then connect the connector.

WARNING

The incorrect mounting of the battery may cause an explosion. Avoid using any battery other than the one specified here (A02B-0200-K102).

NOTE

Complete steps (1) to (3) within 30 minutes.
If the battery is left removed for a long time, the memory would lose the contents.
If there is a danger that the replacement cannot be completed within 30 minutes, save the whole contents of the CMOS memory to a memory card. The contents of the memory can be easily restored with the memory card in case the memory loses the contents.

Discard the dead battery, observing appropriate municipal rules and regulations. When discarding the battery, insulate the terminal with a tape so that no short-circuit would occur.

When using commercial D-size alkaline dry cells

- General method

Use the connector connected to the lithium battery for an external battery. Following the battery replacement procedure described above, replace the standard lithium battery with an external battery in a battery case (A02B-0236-C281).

NOTE

1 Place the battery case in such a position that the battery can be replaced even while the control unit is active.
2 The connector of the battery cable uses a simple lock system. Fix the cable within an area of 50 cm from the connector, removing tension on the cable. This is required to prevent the connector from coming off because of the weight of the cable or tension on the cable.

- Replacing the battery
(1) Have commercial D-size alkaline dry cells handy.
(2) Turn the CNC on.
(3) Remove the lid from the battery case.
(4) Replace the old dry cells with new ones. Mount the dry cells in a correct orientation.
(5) Replace the lid on the battery case.

NOTE

In the power-off state, the battery should be replaced as in the case of the lithium battery, which is descried above.

3.10
 REPLACING A FAN UNIT

WARNING

If the cabinet is opened to replace a fan unit, take extreme care not to touch any high-voltage area (marked with \triangle and covered by a shock prevention cover). If the area is uncovered, direct contact with this area will result in an electric shock.

- Ordering information of fan units

	Ordering information	Quantity
For 1-slot cabinet	A02B-0265-C101	1
For 2-slot cabinet	A02B-0260-C021	1

- Replacing a fan unit
(1) Before starting the replacement of a fan unit, turn the CNC off.
(2) Pull the fan unit to be replaced.
(3)Lift the pulled fan unit until the fan unit is detached from the cabinet.
(4)Place a new fan unit on the cabinet.
(5)Push the new unit as far as it goes. When a click is heard, the unit is connected to the fan connector.

3.11

REPLACING THE FUSE OF THE LCD UNIT

WARNING

Before starting the replacement of the fuse, remove the cause of the fuse burn-out.
Accordingly, the replacement should be performed by a person fully trained in maintenance and safety. If the cabinet is opened to replace the fuse, take extreme care not to touch any high-voltage area (marked with \triangle and covered by a shock prevention cover). If the area is uncovered, direct contact with this area will result in an electric shock.

- Mounting position of the fuse

Fuse

- Information of the fuse

Ordering information: A02B-0265-K101
Rating: 2.0 A
Individual information: A60L-0001-0290\#LM20C

3.12

REPLACING THE LCD BACKLIGHT

WARNING

The replacement described here should be performed by a person fully trained in maintenance and safety. If the cabinet is opened to replace the unit, take extreme care not to touch any high-voltage area (marked with \triangle and covered by a shock prevention cover). If the area is uncovered, direct contact with this area will result in an electric shock.

- Ordering information of the backlight
- Replacing the backlight

Backlight	Ordering information	Individual information
For 9.5" LCD	A02B-0236-K114	A61L-0001-0154\#BL
For high-intensity 10.4" LCD	A02B-0236-K116	A61L-0001-0168\#BL

(1) Remove soft key cable connector CK2, then remove the escutcheon from the LCD unit.
If the unit has a touch panel, remove touch panel signal cable connector CN1 as well.

(2) Disconnect inverter cable connector CP1 and video signal cable connector CN8, then remove the LCD panel from the unit.

(3)-1 For high-intensity $10.4^{\prime \prime}$ color LCD

Press the small button to disengage the latch, pull out the case containing the backlight, then replace the backlight, as illustrated below.

(3)-2 For $9.5^{\prime \prime}$ monochrome LCD

(4) After replacing the backlight, assemble the unit, reversing the disassembly procedure of steps (1) to (3).
During the assembly, take care to keep dust out.

3.13

HEAT GENERATION OF THE UNITS

Unit		Heat generation	Remarks
Control unit	1-slot cabinet	35W	(*1)
	3-slot cabinet	46W	
Option board	HSSB board	4W	
	Sub-CPUboard	14W	
	PMC C board	7W	
	Serialcommunication board	7W	
	CAP-II board	10W	
	RISC board	9W	
	Data server board	6.3W	Including 0.3 W of the ATA card(*2)
	RISC + data server board	15.3W	Including 0.3 W of the ATA card(*2)
	I/O Link II board	9W	
	Ethernetboard	6W	
	DeviceNetinterface board	4W	
	PROFIBUS board	9W	
	FL-netboard	7W	

NOTE

1 The values of the main CPU board and MDI unit are included. The values of option boards are not included.
2 The heat generation of the ATA flash card may be different if a large-capacity card is used or if the card specifications are changed.

Unit	Heat generation	Remarks
MDI unit	0 W	
Operator's panel I/O module	12 W	$\left({ }^{*} 1\right)$
Connector panel I/O module (ba- sic)	8 W	$\left({ }^{*} 1\right)$
Connector panel I/O module (ex- pansion)	5 W	$\left({ }^{*} 1\right)$
Separate detector interface unit	9 W	Unit with 4 basic axes only
Separate detector interface unit	14 W	4 basic axes + 4 additional axes(*2)

NOTE

1 The values are taken when 50% of the module inputs are turned on.
2 The heat generated in the separate detector is not included.

4
 MATTERS COMMON TO BOTH LCD-MOUNTED TYPE AND STAND-ALONE TYPE i SERIES (HARDWARE)

This chapter describes the hardware common to the LCD-mounted type i series and stand-alone type i series.
4.1 MOUNTING AND DEMOUNTING CARD PCBS 361
4.2 MOUNTING AND DEMOUNTING DIMM MODULES 364
4.3 MAINTENANCE OF HEAT EXCHANGER OF HEAT PIPE TYPE 366
4.4 LIQUID CRYSTAL DISPLAY (LCD) 370
4.5 DISTRIBUTED I/O SETTING 373
4.6 REPLACING FUSES ON VARIOUS UNITS 376
4.7 ENVIRONMENTAL CONDITIONS OUTSIDE CABINET 381
4.8 COUNTERMEASURES AGAINST NOISE 382
4.9 NOTES ON USING THE MDI UNIT 392

4.1

MOUNTING AND DEMOUNTING CARD PCBS

WARNING

Only those personnel who have received approved safety and maintenance training may perform this replacement work.
When opening the cabinet and replacing a card PCB, be careful not to touch the high-voltage circuits (marked \triangle and fitted with an insulating cover). Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

CAUTION

Before starting replacement work, back up the contents (such as parameters and programs) of the SRAM memory of the CNC. Otherwise, the contents of the SRAM memory may be lost during replacement work.
4.1.1 Demounting a Card PCB

1) Pull outward the claw of each of the four spacers used to secure the card PCB, then release each latch. (See Fig. a.)
2) Extract the card PCB upward. (See Fig. b.)

4.1.2

Mounting a Card PCB

1) Check that the claw of each of the four spacers is latched outward, then insert the card PCB into the connector. (See Fig. c.)
2) Push the claw of each spacer downward to secure the card PCB. (See Fig. d.)

4.2
 MOUNTING AND DEMOUNTING DIMM MODULES

WARNING

Only those personnel who have received approved safety and maintenance training may perform this replacement work.
When opening the cabinet and replacing a module, be careful not to touch the high-voltage circuits (marked \triangle and fitted with an insulating cover). Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

CAUTION

Before starting replacement work, back up the contents (such as parameters and programs) of the SRAM memory of the CNC. Otherwise, the contents of the SRAM memory may be lost during replacement work.
Before replacing an SRAM module, be sure to back up the contents of the SRAM module.

4.2.1
 Demounting a DIMM Module

1) Open the claw of the socket outward. (See Fig. a.)
2) Extract the module slantly upward. (See Fig. b.)

4.2.2

Mounting a DIMM Module

1) Insert the module slantly into the module socket, with side B facing upward. (See Fig. b.)
2) Push the module downward until it is locked. (See Fig. c.)

Fig. a

Fig. b

Fig. c

4.3
 MAINTENANCE OF HEAT EXCHANGER OF HEAT PIPE TYPE

The performance of the heat exchanger degrades due to a buildup of dirt. Clean the heat exchanger periodically. The cleaning interval depends on the installation environment. So, clean the heat exchanger at appropriate intervals according to the level of dirt built up.

WARNING

High voltage is applied to the heat exchanger of heat pipe type. Before maintaining the heat exchanger of heat pipe type, always turn off the power to the CNC.
When opening the cabinet and replacing a heat exchanger of heat pipe type, be careful not to touch the high-voltage circuits (marked $\mathbb{\Delta}$ and fitted with an insulating cover). Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

Cleaning and replacing the air filter

Procedure for cleaning and replacing the air filter

1 Before cleaning and replacing the air filter, turn off the fan power supply.

2 Remove the filter cover, then demount the filter.

3 Blow air against both sides of the filter to remove dust.

4 When the filter is dirty extremely, wash it with a solution of water and neutral detergent, and rinse it with fresh water, then allow it dry naturally.
Alternatively, replace it with a new filter (use only the specified filter).
5 Set the cleaned or new filter. Next, align the claws with the grooves, then press them to reinstall the cover. Check that the cover is not removed when it is pulled toward you.

Cleaning the heat exchanger

Procedure for cleaning the heat exchanger

1 Before cleaning the heat exchanger, turn off the fan power supply.
2 Demount the external fan unit from the main body of the heat exchanger.

Remove the two mounting screws (A) used for mounting the external fan unit, then demount the unit by sliding it downward. Next, disconnect the fan power cable and ground wire. Remove mounting screw (B).

- Cleaning the fan unit

Procedure for cleaning the fan unit

1 Remove any buildup of dust, dirt, and mist from the fan motor and fan mounting case with a dry waste cloth. If dirt such as mist cannot be removed easily, use a waste cloth moistened with a solution of water and neutral detergent after squeezing it softly. In this case, be careful not to allow a solution of water and neutral detergent to enter the electric circuitry such as the rotor of the fan motor.

- Cleaning the fan of the heat exchanger

Procedure for cleaning the fan of the heat exchanger

1 Demount the heat exchanger from the unit, then remove dust and mist from the fan by blowing air or by using a dry waste cloth or brush.

1 Detach the internal fan unit, terminal block, and cables from the main body.

2 Clean the fan by using a brush and a solution of water and neutral detergent. At this time, be careful not to bend a vane.

3 After cleaning, dry the heat exchanger and fan unit sufficiently.

- Reassembly

Procedure for reassembly after cleaning

After cleaning the fan unit and heat exchanger, follow the steps below.
1 Reinstall the terminal block and cables at the original locations.
2 Reinstall the fan unit at the original location. At this time, reconnect the fan power cable and ground wire correctly.

4.4
 LIQUID CRYSTAL DISPLAY (LCD)

Brightness of the
monochrome LCD

Protection sheet of the touch panel

When the ambient temperature is low, the brightness of the LCD decreases. (The LCD screen is dark particularly immediately after the power is turned on.) This phenomenon is not a failure but is a property specific to the LCD. When the ambient temperature increases, the LCD screen becomes brighter. The monochrome LCD has a brightness control function. For the method of adjustment, see Section 1.17.

The touch panel is operated by directly touching the LCD screen. For this operation, be sure to use a FANUC-supplied pen (A02B-0236-K111) dedicated to the touch panel. If a sharp-pointed pen is used, for example, to touch the LCD screen, the LCD surface may be flawed or damaged. Moreover, do not touch the LCD screen directly with a finger. Otherwise, the operability of the LCD may deteriorate, and the LCD screen may get dirty.

The LCD with a touch panel has a protection sheet attached on the front to protect the thin film of the touch panel and LCD. On the protection sheet, a protection film is attached to protect against flaws that may be caused by friction during transportation. After integrating the CNC with the machine, peel off the protection film as shown below. The protection film is not transparent, so that the display screen is less visible if the protection film is not removed.

When replacing the protection sheet with a new one, use the procedure below.

- Remove the old protection sheet from the front of the LCD screen. Wipe off any moisture and oil on the front of the LCD screen.
- Peel off the white protection sheet attached to the back side (which is adhered to the LCD screen) of a new protection sheet.
- When the white protection sheet is removed, the new protection sheet is adhesive on its periphery. Attach the new protection sheet to the front of the LCD screen. At this time, be careful not to allow dust and dirt between the protection sheet and the LCD screen.
- Peel off the protection film attached to the front of the protection sheet. The ordering information of a protection sheet for replacement is as follows:
For the 10.4" LCD: A02B-0236-K110
For the 12.1" LCD: A02B-0236-K118

White protection sheet on the back side of a new protection sheet

Touch panel compensation

- Condition that requires compensation

Touch panel compensation is required:
1 When the LCD unit is replaced
2 When the touch panel is replaced
3 When the touch panel control printed circuit board is replaced
4 Memory is all cleared.

- Parameter setting

3113

[Data type] Bit
\#5 (DTPCL) The compensation function for the touch panel on the display is:
0 : Disabled
1: Enabled

- Method of compensation

1 Set bit 5 (DTPCL) of parameter No. 3113 to 1.
2 Press function key <SYSTEM>.
3 Pressing the continuous menu key several times displays soft key [TP CAL].

4 Pressing soft key [TP CAL] displays the touch panel compensation screen.

+	+	+
	Calibration of touch panel	
	pLEASE PUSH CALIBRATED POINTS. F CALIBRATION IS ENDED, PLEASE PUSH <INPUT> KEY. IF CALIBRATION IS CANCELED, PLEASE PUSH <CAN> KEY. IF OPERATION IS ENDED, PLEASE PUSH FUNCTION KEY.	
$+$	$+$	$+$
+	+	+

5 Press the nine compensation points (marked with +) with touch panel pen. You may press the nine points in any order. When you press a + mark correctly, the + mark blinks. When you press a + point incorrectly, the message "CALIBRATED POINT DOES NOT MATCH, PLEASE PUSH AGAIN." appears.

6 After pressing all of the nine compensation points, press the <INPUT> key to terminate compensation. To cancel compensation or start all over again, press the <CAN> key.

7 Upon normal termination, the message "CALIBRATION WAS ENDED." appears.

8 Pressing the function key exits from the touch panel compensation screen, and terminates or stops compensation operation.

9 Upon termination of compensation operation, set bit 5 (DTPCL) of parameter No. 3113 to 0 .

4.5
 DISTRIBUTED I/O SETTING

By changing the setting (rotary switch) on an expansion module, a connection can be made to skip an expansion module or expansion modules as shown below.

Method of setting (control and setting method)

A control (rotary switch) is provided on the location shown below of each expansion module. When changing the setting, turn the rotary switch with a flat-blade screwdriver with a tip diameter of about 2.5 mm .

Each setting position of the rotary switch has the meaning as indicated below.

Setting position	Indication	Meaning of setting
0	0	Standard setting. The rotary switch is set to this position at the time of shipment from FANUC.
1	-	Set the rotary switch of an expansion module to this position when the one preceding expansion module is skipped.

Setting position	Indication	Meaning of setting
2	2	Set the rotary switch of an expansion module to this position when the two preceding expansion mod- ules are skipped.
3	-	Setting prohibited
$4 \sim$ F	$4,-, 6,-$, $8,-$, A,,- C, $-, ~ E,-$,	4,8, or C has the effect of 0. 5,9, or D has the effect of 1. $6, A$, or E has the effect of 2. 7, B, or F has the effect of 3.

Examples of setting

This function was not available initially, but was recently added. This function became available, depending on the type of module, as indicated below.

Expansion module B (DI/DO $=$ $24 / 16$, without a manual pulse generatorinterface $)$	A03B-0815-C003	Available starting with shipment in June 1998 and later
Expansion module C (DO = 16, $24 A$ output $)$	A03B-0815-C004	Available starting with shipment in August 1998 and later
Expansion module D (analog input)	A03B-0815-C005	Available starting with shipment in August 1998 and later

NOTE

To expansion module A (DI/DO = 24/16, with a manual pulse generator interface) (A03B-0815-C002), a rotary switch is added as the other modules are modified. However, expansion module A is always installed at the location of expansion module 1, so that the setting of expansion module A need not be changed.

4.6
 REPLACING FUSES ON VARIOUS UNITS

WARNING

Before replacement of a blown fuse, the cause of the blown fuse must be corrected. So, fuse replacement work must be done only by a person who is trained in the related maintenance and safety requirements. When opening the cabinet and replacing a fuse inside, be careful not to touch the high-voltage circuits (marked with Δ and fitted with an insulating cover). Touching the uncovered high-voltage circuits presents an extremely dangerous electric shock hazard.

For the specification of the fuse of each unit, see the list of consumables in Appendix B.

- Fuse mounting location on the connector panel I/O modules

Expansion module 2
Expansion module 1

Basic module
(A03B-0815-C001)
Cable for the I/O Link

Cable for a manual pulse generator

NOTE

No fuse is provided on the expansion modules. A fuse is provided on the basic module only.

- Fuse mounting location on the operator's panel I/O modules

- Fuse mounting location on the operator's panel connection units

This drawing is for A20B-2200-0660, A20-2200-661, A16B-2202-0730, and A16B-2202-0731.

- Fuse mounting locations
on the machine
operator's panel
interface unit

FU1: Fuse for +24 V (for protection of general-purpose DO and the power supply of this printed circuit board)
FU2: Fuse for +5 V (for protection of the IC power supply and manual pulse generator)
FU3: Fuse for +5 E (for protection of general-purpose DI)
This drawing is for A16B-2201-0110.

NOTE

FU2 is not mounted with Edition 05A and later.

- Fuse mounting location on the distributed I/O machine operator's panels

4. MATTERS COMMON TO BOTH LCD-MOUNTED TYPE AND STAND-ALONE TYPE i SERIES (HARDWARE)

- Fuse mounting location on the separate detector interface unit

4.7
 ENVIRONMENTAL CONDITIONS OUTSIDE CABINET

The control units and various peripheral units supplied from FANUC are designed assuming that those units are accommodated in enclosed cabinets. The cabinets mentioned here include:

- Cabinet that is manufactured by a machine tool builder to house control units and peripheral units
- Operation pendant that is manufactured by a machine tool builder to house control units and an operator's panel
- Similar products

The table below indicates the environment conditions for installing control units in these cabinets.

	Condition	Display LCDmounted type control unit and display unit (excluding units with a data server)	Display standalone type control unit	Display LCDmounted type control unit with the personal computer function and data server function
Ambient temperature of units	Operating	$0^{\circ} \mathrm{C}$ to $58^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$ to $53^{\circ} \mathrm{C}$
	Storage and transportation	$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$		
Change in temperature		1.1 degrees $\mathrm{C} /$ minute max.		0.3 degrees C/ minute max.
Humidity	Normal	Relative humidity: 75% or less No condensation		Relativehumidity: 10\% to 75\% No condensation
	Short term (notexceeding 1 month)	Relative humidity: 95% or less No condensation		Relativehumidity: 10\% to 90\% No condensation
Vibration	Operating	0.5 G or less		
	Non-operating	1.0 G or less		
Height above sea level	Operating	$\sim 1000 \mathrm{~m}$		$\sim 1000 \mathrm{~m}$
	Non-operating	$\sim 12000 \mathrm{~m}$		~12000m
Atmosphere		Normal machine plant environment (When a control unit is used in an environment where the control unit is exposed to a high level of dust and a high concentration of coolants an organic solutions, a separate study is required.)		

4.8 COUNTERMEASURES AGAINST NOISE

The CNC is becoming increasingly smaller as the surface mount technology and custom LSI technology advance.

In many cases, as the CNC becomes more compact, the mounting locations of its constituent units become closer to a noise source in the power magnetics cabinet.

In general, noise is generated by electrostatic coupling, electromagnetic induction, or a grounding loop, and is induced into the CNC.

The CNC incorporates sufficient countermeasures against external noise. However, it is difficult to measure the level and frequency of noise quantitatively, and many unknown factors are involved. So, to improve the operation stability of a CNC machine tool system, noise generation must be minimized, and the induction of generated noise into the CNC must be suppressed.

For design of equipment including a power magnetics cabinet, take these countermeasures on the machine side against noise into consideration.

4.8.1
 Separation of Signal Lines

The cables used with a CNC machine tool are classified as indicated below. Handle the cables of each group according to the descriptions in the "Action" column.

Group	Signal	Action
A	Primary side AC power line	Bind the cables of this group separately from the cables of groups B and C(*1), or electromagnetically shield the cables of this group from the cables of groups B and $C(* 2)$. According to the descriptions of noise suppressors in Section 3.6.4, attach a spark killer or diode to the solenoid and relay.
	Secondary side AC power line	
	AC/DC power lines (including servo motor and spindle motor power lines)	
	AC/DC solenoid	
	AC/DC relay	
B	DC solenoid (24 VDC)	Attach a diode to the DC solenoid and relay. Bindthe cables of this group separately from the cables of group A, or electromagnetically shield the cables of this group from the cables of group A. Separatethe cables of this group from the cables of group C as far as possible. Shielding is recommended.
	DC relay (24 VDC)	
	DI-DO cable between I/O unit power magnetics cabinets	
	DI-DO cable between I/O unit machines	
C	CNC-I/O unit cable	Bindthe cables of this group separately from the cables of group A, or electromagnetically shield the cables of this group from the cables of group A. Separatethe cables of this group from the cables of group B as far as possible. Shielding according to Section 3.6 .5 is required.
	Cables for position loopback and velocity loopback	
	CNC-spindle amplifier cable	
	Position coder cable	
	Manual pulse generator cable	
	CNC-MDI cable(*3)	
	RS-232C and RS-422 cables	
	Battery cable	
	Other cables whose shielding is specified	

NOTE

1 Separate binding is to separate the bound cables of one group at least 10 cm from the bound cables of another group.
2 Electromagnetic shielding is to shield the bound cables of one group from the bound cables of another group with a grounded metal (iron) plate.
3 If the CNC-MDI cable is not longer than 30 cm , shielding is not required.

Cross-sectional view of the duct

4.8.2
 Grounding

With a CNC machine tool, three ground systems are used.
(1) Signal ground system (SG)

Signal ground (SG) provides a reference voltage (0 V) for the electric signal system.
(2) Frame ground system (FG)

The purposes of frame ground (FG) are to ensure safety and to provide shielding from external and internal noises. Specifically, the frames of equipment, unit cases, panels, inter-unit interface cables, and so forth are shielded.
(3) Protective earth (PE)

The protective earth (PE) is designed so that the protective grounds provided between the units are connected to ground at one point from a system point of view.

Notes on ground system wiring

- The grounding resistance of the protective earth (PE) must be 100 ohms or less (class-D grounding).
- The connection cable for the protective earth (PE) needs to have a cross-sectional area sufficient for flowing an accidental current that flows to the protective earth (PE) when an accident such as a short circuit occurs. (In general, a cross-sectional area equal to or greater than that of the AC power line is required.)
- As a connection cable for the protective earth (PE), use a cable integrated with an AC power line so that power is not fed when the ground wire is disconnected.

4.8.3

Signal Ground (SG) Connection of Control Unit

Connect the 0 V line inside the control unit to the ground plate of the cabinet through the signal ground terminal (shown above).

For the ground terminal locations of other units, see the external unit views in the appendix.

Display stand-alone type control unit

Connect the 0 V line of the electronic circuitry in the control unit to the ground plate of the cabinet via the ground terminal for signals.

Note that the method of ground connection varies, depending on whether optional slots are provided.

Use a Faston terminal of the FANUC specification A02B-0166-K330. See Appendix A.

4.8.4
 Noise Suppressor

Notes on spark killer selection

With a power magnetics cabinet, components such as an AC/DC solenoid and AC/DC relay are used. When turned on and off, these components generate a high-energy pulse voltage due to coil inductance.

Such a pulse voltage is induced into cables, for example, and can interfere with electric circuitry.

- Select a CR-type spark killer (for use with AC circuitry) (A varistor has a function for clamping the peak voltage of a pulse voltage, but cannot suppress a spike-like voltage. For this reason, the use of a CR-type spark killer is recommended.)
- As the CR values of a spark killer, use the following with the steady-state coil current (I (A)) and DC resistance used as references:

1) Resistance (R): Coil DC resistance
2) Electrostatic capacitance (C): $\frac{\mathrm{I}^{2}}{10}$ to $\frac{\mathrm{I}^{2}}{20} \quad(\mu \mathrm{~F})$

I: Coil steady-state current (A)

NOTE

Use a CR-type noise suppressor. A varistor has a function for clamping the peak voltage of a pulse voltage, but cannot suppress a spike-like voltage.

4.8.5

Cable Clamping and Shielding

According to the figure below, clamp all cables that require shielding and are run to the CNC, servo amplifier, spindle amplifier, and so forth. This clamping method not only secures cables, but also shields cables. Cable clamping and shielding are a key to stable system operation. Always perform cable clamping and shielding according to the method described here.

As shown below, peel off a part of the outer sheath of each cable so that the shield cover is exposed, then press and retain the exposed part of the shield against the ground plate with a clamp.

Install a ground plate manufactured by the machine tool builder, as shown below.

Fig. 4.8.5(a) Cable clamp (1)

Fig. 4.8.5(b) Cable clamp (2)
Prepare a ground plate as shown below.

Fig. 4.8.5(c) Ground plate
For a ground plate, use an iron plate that is as thick as 2 mm or more and is plated with nickel.

Fig. 4.8.5(d) Ground plate hole diagram
Reference: Outline drawing of the clamp

Fig. 4.8.5(e) Outline drawing of clamp
Ordering code of the clamp: A02B-0124-K001 (set of 8 clamps)

4.9
 NOTES ON USING THE MDI UNIT

An MDI unit usable with a 12.1 " LCD has a connector panel that allows various interface connectors to be placed on the front. The connector panel has a cover. The cover is opened and closed when the connector panel is used. Be careful not to have your fingers caught when opening/closing (particularly opening) the cover.

CAUTION

Be careful not to have your fingers caught when opening/closing the connector panel on the MDI unit.

INPUT AND OUTPUT OF DATA

5

After you change a SRAM module, you must set various data again.
This chapter describes the procedures to input and output the parameters,
the part programs and the tool offset values.
5.1 SETTING PARAMETERS FOR INPUT/OUTPUT 394
5.2 INPUTTING/OUTPUTTING DATA 396
5.3 INPUT/OUTPUT SUPER CAP DATA 405
5.4 INPUTTING/OUTPUTTING CAP-II DATA (16i-T) 417
5.5 DUMP / RESTORE OF CAP-II DATA ($16 i-\mathrm{T}$) 419
5.6 CLEARING CAP-II DATA ($16 i-\mathrm{T}$) 420
5.7 DATA INPUT/OUTPUT ON THE ALL IO SCREEN 422
5.8 DATA INPUT/OUTPUT USING A MEMORY CARD 437

5.1
 SETTING
 PARAMETERS FOR INPUT/OUTPUT

- Setting procedure of parameters

1. Set to MDI mode or emergency stop state.
2. Press key several times or press soft key [SETING] to display SETTING (HANDY) screen.
3. Set the cursor to PARAMETER WRITE and, press 1 and 1 wour keys in this order. Here alarm 100 will be displayed.
4. Press sestem several times to display the following screen.

To make the cursor display in bit unit, press the cursor key
5. Press soft key[(OPRT)] and the following operation menu is displayed.

1) Soft key [NO. SRH] : Searched by number.

Examination) Parameter number \rightarrow [NO. SRH].
2) Soft key [ON: 1]: Item with cursor position is set to 1 (bit parameter)
3) Soft key $[\mathbf{O F F}: \mathbf{0}]$: Item with cursor position is set to 0 (bit parameter)
4) Soft key [+INPUT] : Input value is added to the value at cursor (word type)
5) Soft key [INPUT] : Input value is replaced with the value at cursor (word type)
6) Soft key [READ] : Parameters are input from reader/puncher interface.
7) Soft key [PUNCH] : Parameters are output to reader/puncher interface.
6. After the parameters have been input, set PARAMETER WRITE on the SETTING screen to 0 . Press REEET to release alram 100 .
7. Convenient method

1) To change parameters in bit unit, press cursor key

then the cursor becomes bit length and you can set parameters bit by bit (Bit parameter only).
2) To set data consecutively, use EOB key.

This key sequence sets data as follows:

0		1234
0	\Rightarrow	4567
0		9999
0		0

This key sequence sets data as follows:

0		1234
0	\Rightarrow	0
0		9999
0		0

3) To set the same data sequentially, press $\square=$.

This key sequence sets data as follows:

0		1234
0	\Rightarrow	1234
0		1234
0		0

4) Bit parameters can be set as follows:

This key sequence sets data as follows:
$00000000 \quad 00011000$
$00000000 \Rightarrow 00011000$
$00000000 \quad 000 \boldsymbol{1} 000$
$00000000 \quad 00000000$
8. After the required parameters are set, set PARAMETER WRITE to 0.

5.2
 INPUTTING/ OUTPUTTING DATA

The main CPU memorized the following data.
Outputting the data $1 / \mathrm{O}$ device while the CNC is rurnning normally
(1) CNC paramter
(2) PMC parameter
(3)Pitch error compensation amount
(4) Custom macro variable values
(5) Tool compensation amount
(6)Part program (machining program, custom macro program)

5.2.1
 Confirming the
 Parameters Required for
 Data Output

Be sure that data output cannot be done in an alarm status.
Parameters required for output are as follows :

0000

\#1 (ISO) 0 : Output with EIA code
1: Output with ISO code (FANUC cassette)

0 : Channel 1 (JD36A of mother board)
1 : Channel 1 (JD36A of mother board)
2 : Channel 2 (JD36B of mother board)
3 : Channel 3 (JD38A of serial communication board)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
NFD				ASI			SB2

\#7 (NFD) $0:$ Feed is output when data is output.
1: Feed is not output when data is output.
\#3 (ASI) $\star<0$: EIA or ISO code is used for input/output data.
1: ASCII code is used.
\# ((SB2) $0:$ No. of stop bits is 1 .
) 1: No. of stop bits is 2 .

0	RS-232-C (control codes DC1 to DC4 used)
1	FANUC bubble cassette B1/B2
2	FANUC Floppy cassette adapter F1
3	PROGRAM FILE Mate. FANUC FA card adapter ,FANUC Floppy cassette adapter, FSP-H
4	Not used
5	Portable tape reader
6	FANUC PPR, FSP-G, FSP-H

5.2.2
 Outputting CNC Parameters

In case of PPR, steps 2 and 3 are not required.

1. Select EDIT mode.
2. PROG Press PROG key and soft key PRGRM to select a program text.
3. Press soft key [(OPRT)] and soft key \triangle.

And then, put out the head of file by pressing [FSRH]
0
[EXEC].
4. Press ssstem key and soft key [PARAM] to display parameter screen.
5. Press soft key [(OPRT)] , and soft key \triangle.
6. Press soft key $[\mathbf{P U N C H}]$ and [EXEC], and the parameters are started to be output.

5.2.3
 Outputting PMC Parameters

1. Select MDI mode.

2. Set the cursor to PARAMETER WRITE and input 1 and Input. At this time, alarm 100 will be generated.
3. Press ssstem key and soft key [PMC].
4. Press soft key [PMCPRM] and soft key [KEEPRL]
5. Set the cursor to K17 and set the first bit to 1 .

Where, mark x is a former value
Thus, data input/output screen has been selected.
7. Select EDIT mode.
8. Press soft key \square then key \triangleright.
9. Press soft key [I/O] and set the parameters on I/O.

Item selection cursor moves to the following item after data of an item is set.
10.In CHANNEL NO item, input 1 input to select I/O channel 1.
11.In DEVICE item, press soft key [FDCAS] to select the floppy cassette.
12.In KIND DATA item, press soft key [PARAM].
13.In FUNCTION item, press soft key [WRITE].
14. In FILE No item, specify a file name. In this example input as follows:

15.Press soft key [EXEC]. Then PMC parameters are started to be output.
16.After the PMC parameters have been output, set PARAMETER WRITE to 0.
17.Press RESET to release alarm 100.

5.2.4

Outputting Pitch Error Compensation Amount

1. Select EDIT mode.
2. Press ssstem key several times, press soft key [PARAM], \square and [PITCH] to select the SETTING screen for pitch error amount.
3. Press soft key [(OPRT)] and \triangle.
4. Press soft key [PUNCH] and [EXEC], then pitch error compensation amount is started to be output.

5.2.5
 Outputting Custom Macro Variable Values

When custom macro function is equipped, values of variable no. 500 and later are output.

1. Press $\xlongequal[\substack{\text { orfsel } \\ \text { semina }}]{\text { key. }}$
2. Press \boxtimes key and soft key [MACRO] to select custom macro variable screen.
3. Press soft key [(OPRT)] and then key \triangleright.
4. Press soft key [PUNCH] and [EXEC], then custom macro variable values are output.

5.2.6
 Outputting Tool Compensation Amount

1. Select EDIT mode.
 compensation amount screen.
2. Press [(OPRT)] key and soft key \triangle.
3. Press soft key [PUNCH] an [EXEC] key, and the tool compensation amount is started to be output.

5.2.7 Outputting Part Program

1. Confirm the following parameters. If 1 is set, set to the MDI mode and set it to 0 .

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3202 | | | | | | | |
| | | | NE9 | | | | NE8 |

\#4 (NE9) it $0:$ Programs of 9000s are edited.
1: Programs of 9000s can be protected.
\#0 (NE8) $\lambda \quad 0:$ Programs of 8000 s are edited.
1: Programs of 8000s can be protected.
2. Select EDIT mode.
3. Press PROG key and press soft key [PRGRM] to display program text.
4. Press [(OPRT)] key and press soft key \triangleright.
5. Input a program number to be output. To output all programs input as:

6. Press [PUNCH] and [EXEC] key, then program output is started.

5.2.8
 Inputting CNC Parameters

1. Set to the emergency stop state.
2. Confirm that the patameters required to input data is correct.
1) Press OFFSET/SETTING key several times, and press [SETING] to display SETTING screen.
2) Confirm that PARAMETER WRITE=1.
3) Press SYSTEM key to select the parameter screen.
4)

it 0 : Channel 1 (JD36A of mother board)
1: Channel 1 (JD36A of mother board)
2: Channel 2 (JD36B of mother board)
3: Channel 3 (JD38A of serial communication board)
5)

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
0101	NFD				ASI			SB2

\#7 (NFD) 0: Feed is output when punching out.
1: Feed is not output when punching out.
\#3 (ASI) 0: EIA or ISO code is used.
1: ASCII code is used.
\#0 (SB2) 0: No. of stop bits is 1 .
is 1: No. of stop bits is 2 .
6)

0	RS-232-C (control codes DC1 to DC4 are used.)
1	FANUC Bubble cassette B1/B2
2	FANUCFloppy cassette F1
3	PROGRAM FILE Mate, FANUC FA Card adapter, FANUC Floppy casette adapter, FSP-H, FANUC Handy File
4	Not used
5	Portable tape reader
6	FANUC PPR, FSP-G, FSP-H

7)

Baud rate							
$1:$	50	$5:$	200	$9:$	2400		
$2:$	100	$6:$	300	公 $10:$	4800		
$3:$	110	$7:$	600	$11:$	9600		
$4:$	150	$8:$	1200	$12:$	19200 [BPS]		

3. Press soft key $[($ OPRT $)]$ and soft key \triangle
4. Press soft key [READ] and [EXEC]. Then input of parameters are started.
5. Because alarm 300 will generate for the system with absolute pulse coder, set parameter 1815\#5 to 0 .
6. Alarm 300 is issued if the system employs an absolute pulse coder. In such a case, perform reference position return again.

5.2.9
 Inputting PMC Parameters

Set the emergency stop state.
Operation of 12 is not required when PPR is used.

1. Turn off $(\mathrm{KEY} 4=1)$ the program protect key.
2. Press $\xlongequal[\substack{\text { ofegs } \\ \text { serme }}]{\text { key and soft key [SETTING] to select the SETTING }}$ screen.
3. Confirm that PARAMETER WRITE=1.
4. Press ssstem key and soft key [PMC].
5. Press soft key [PMCPRM] and soft key [KEEPRL].
6. Set the cursor to K17 and set bit 1 to 1 .

7. Press \square key and \square key.
8. Press soft key [I/O] and set the parameters required for I/O.

Item selection cursor displays the next item after an item is set.
9. In CHANNEL item, press 1 input to select channel 1.
10.In DEVICE item, press [FDCAS] key to select the floppy cassette.
11.In FUNCTION item, press soft key [READ] to input data
12.In FILE NO item, press 2 input to select file no. 2.
13.Press soft key [EXECT] and the PMC parameters are started to be input.
14. After data has been read, turn off power and turn it on.

5.2.10

Inputting Pitch Error Compensation Amount

1. Release the emergency stop and select EDIT mode.
2. Confirm that PARAMETER WRITE=1 on the setting screen.
3. Press PROG key and soft key [PRGRM] to display program contents.
4. Press soft key $[(\mathbf{O P R T})], \square,[$ SRH $]$, and 3 [EXEC] to select the pitch error compensation file.
5. Press svstem key several times, soft key [PARAM], \triangle and [PITCH] to select the screen for pitch error compensation amount.
6. Press soft key [(OPRT)] and \triangleright key.
7. Press soft key [READ] and [EXEC], then the pitch error compensation amount is started to be input.
8. After data has been input, press SETTING screen and return the PARAMETER WRITE to 0.

5.2.11
 Inputting Custom Macro Variable Values

If the system is equipped with the custom macro fucntion, input the variable values.
For PPR, item 4 is not required.

1. Confirm that EDIT mode is selected.
2. Turn off the program protect key $($ KEY2 $=1$).
3. Press PROG key then soft key [PRGRM] to display program contents.
4. Press soft key $[($ OPRT $)], \square,[$ SRH $]$, and 4 [EXEC] to select a file.
5. Press soft key [(OPRT)] and key \triangleright.
6. Press address O , a program number (0001 for example), soft key [READ] and [EXEC] key, then custom macro variable values are started to be input.
Input a program number that is not used.
7. Select MEMORY mode on the machine operator's panel and press cycle start button.
When the program is executed, macro variables are set.
8. Press $\underset{\substack{\text { orfeg } \\ \text { eFITM }}}{ }$ key, \boxtimes key and soft key [MACRO] to select the custom macro variable screen.
9. Press 500 and soft key [NO SRH] to display variable number 500 and confirm the custom macro variables are set correctly.
Of the data displayed, 0 and vacant differ in meaning.
Vacant is an undefined variable. To set vacant, press soft key [INPUT].
10. Select EDIT mode again.
11.Press PROG key to select the program display screen.
12.Press address O and a program number (0001 for example) ,then press Delete to delete the program.
5.2.12
Inputting Tool
Compensation Amount

Item 4 is not required for PPR.

1. Select the EDIT mode.
2. Turn off the program protect $(\mathrm{KEY}=1)$.
3. Press PROG key, and press soft key[PRGRM] to display the program contents screen.
4. Press soft key $[(\mathbf{O P R T})], \square,[$ SRH $]$, and 5 [EXEC] to select the tool compensation amount file.
5. Press $\substack{\begin{subarray}{c}{\text { orsse } \\ \text { EETNG }} }} \end{subarray}$ key, and soft key [OFFSET] to display the tool compensation amount screen.
6. Press soft key [(OPRT)] and \boxtimes key.
7. Press [READ] key and [EXEC] key and data input is started.

5.2.13 Inputting Part Programs
 Confirm the following parameters. If 1 is set, set it to 0 . (Change it in MDI mode).

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	NPE					RAL	

\#6 (NPE) When programs are registered in part program storage area, M02,M30 and M99 are:

0 : regarded as the end of program.
t. 1: not regarded as the end of porgram.
\#1 (RAL) When programs are registered:
© 0: All programs are registered.
1: Only one program is registered.

\#4 (NE9)
访 0 : Programs of 9000 s can be edited.
1 : Programs of 9000 s are protected.
\#0 (NE8)

* 0 : Programs of 8000 s can be edited.

1 : Programs of 8000 s are protected.
For PPR, item 4 is not required.

1. Confirm that mode is EDIT mode.
2. Turn off the program protect $(\mathrm{KEY} 3=1)$.
3. Press PROG key and press soft key [PRGRM] to select a part program file.
4. Press soft key [(OPRT)], \triangleright [F SRH], and 6 [EXEC] to select a part program file.
5. Press soft \square key, [(OPRT)] and \triangle key.
6. Press soft key [READ] and [EXEC], then data input is started.

5.3
 INPUT/OUTPUT
 SUPER CAP DATA

5.3.1

Input/Output of Conversational Data in a Lump(Super CAP M)

The following operation allows all the data used for Super CAP M to be input and output in a lump.

1. Confirm the parameters shown below:

P0020: I/O CHANNEL (select I/O device) : 0
P0102: I/O device number : 3
P0103: Baud rate for 4800 bauds : 10 for 9600 bauds : 11
2. Select EDIT mode.
3. Press function key PROG and press soft key [CAP].
4. Press soft key [8] (C.A.P DATA) on the basic menu screen.Serial $16 i$ Conversational Data Screen

C.A.P. DATA

5. Press soft key [DATA I/O].

Series $16 i$ Conversational Data Screen

DATA I/O

SELECT FROM SOFT-KEY

$<$FLOPPY DIR	READ	PUNCH				ALL DATA	DEF. FILE	PRE- TOOL	TOOL FILE	F.S. FILE

6. Press soft key [READ] or [PUNCH].
7. Press soft key [ALL DATA].
8. For read, input a file no. and press soft key [READ EXEC].(Specify a file no. for all data).

For punch, press soft key [PUNCH EXEC].

The above operation reads and punches default data, pre-tool list, tool file and F.S. file in a lump.

5.3.2
 Input and Output of Each File (Super CAP M)

You can input and output files individually.
Execute the same operations from step $\mathbf{1}$ to $\mathbf{6}$ in the previous section 3.3.1.
(1) Reading or Punching default files

7 Press [DEF. FILE].
8 - For reading, input a file no. for default data and press soft key [READ EXEC]. (Specify a file number of default file).

- For punching, press [PUNCH EXEC].
(2) Reading or punching pre-tool list

7 Press PRE-TOOL.
8 - For reading, press a file number and soft key [READ EXEC]. (Specify a file number of pre-tool list).

- For punching, press soft key [PUNCH EXEC].
(3) Reading or Punching tool file

7 Press TOOL FILE.
$8 \cdot$ For reading, press a file number and pres soft key
[READ EXEC]. (Specify file number of tool file).

- For punching, press [PUNCH EXEC].
(4) Reading or Punching F, S file

7 Press F.S. FILE.
8 - For reading, press a file no. and press soft key
[READ EXEC].(Specify a file no. of F.S. FILE).

- For punching, press [PUNCH EXEC].

5.3.3
 Input and output of
 CAP Data
 (Super CAP T)

This feature allows NC parameters, offsets, NC programs, PMC parameters and so on to be input/output from/to a general I/O device such as FANUC cassette adapter or the like.

1. Data that can be input/output
(1) NC parameters: All parameters except for optional parameters and a parameter that specifies the no. of axes.(No. 1010)
(2) Offset values: All data of wear/geometry data
(3) NC programs: All the NC programs
(4) PMC parameters: All data of counter, keep relay, timer and other data
(5) Tool File: All data of tool data file, F.S. data, roughness data, pre-tool list and chuck/tailstock figure data.

All the CAP program (Cannot input/output individual program)

CAUTION

You should input/output NC parameters separately. You can input/output other data in a lump.

Output of conversutional data in a lump

Operation for outputting data in a lump
(1) Connect external I/O device and set necessary parameters.

- Channel at NC side=0
- Stop bit=2
- Parity=No
- Length of character=8
- Baud rate=Depends on NC parameter no. 0103.
- XON/OFF control=Yes
(2) Select EDIT mode. For path 2, select screen of tool post 1.
(3) Display basic menu screen, press [+] key to display the 2 nd page soft keys.
(4) Press [17] to display the following data I/O menu screen.
[Data I/O menu Screen]

CAUTION

For one-path control CNC, data select menu on tool post 2 is not displayed.
(5) Press [PUNCH] and the following screen is displayed.

NOTE

For one-path control CNC, the following soft keys are displayed.

$<$	NC PARAM	NC	NFFSET	PC PROG	PMC PARAM

CAP- PROG		I/O SET UP	RE-PG	SELECT END	+

(6) Press a soft key corresponding to data to be output. Selected data is displayed by green character in reverse video. Select all the data to be output and press [SELECT END].

CAUTION

NC parameters can be output only separately. If NC parameters are selected to be output with other data, other data is canceled.

[NC PROG] or [NC HD2 PROG]

(For path 2, when [NC PROG] is pressed, the following screen is displayed.)

[ALL SELECT] Press this key to output all the programs.When you press this key, the following menu is displayed.

To execute punching all the programs, press [EXEC] and when it is not needed, press [CANCEL].
[ALL CANCEL] Press this key to cancel outputting all the data. When this key is pressed, the same soft key as when [ALL SELECT] is pressed is displayed. To execute cancelling, press [EXEC]; to cancel cancelling, press [CANCEL].
When you specify a NC program to be punched, move the cursor to the program number and press this key.
[CANCEL] To cancel outputting NC programs, press this key.
[SELECT END] When you finsh specification of punching, press this key.
(7) The following screen is displayed when you press [SELECT END]. To start punching, press [EXEC] and to cancel punching, press [CANCEL].

When data punching starts, "OUTPUTTING" blinks on the lower right corner of the screen. The data being output is indicated by blinks of yellow characters in reverse video. When data outputting finishes, the data is shown in blue color. If outputting finishes with an error generated, the data is shown in red.

NOTE

1 The data format output by the above funciton is different from the data format input/output in an individual operation. Therefore, output data by this function cannot be used for inputting.
2 Data format is different between 1-path and 2-path for two-path control.
3 The data that can be input by the input/output in a lump function is limited to data output by the same function.
4 The range of PMC parameters to be output can be specified by the following NC parameter.
NC parameter

Input of conversational data in a lump

Data output by using the function for inputting/outputting data in a lump can also be input by using that function.

1. Set optional parameters and the parameter for specifying the number of axes (parameter No. 1010) manually before reading NC parameters.
2. In the same way as output operation, connect an external I/O device and set necessary parameters, such as device selection.
3. Select EDIT mode. For a two-path system, select the screen for tool post 1.
4. Release protection for each data item to be input.
1) NC parameter: Set "PARAMETER WRITE" in the setting data to 1.
2) Offset: Turn off offset data protection (KEY1 = 1).
3) NC program: Turn off program protection (KEY3 = 1).
4) PMC parameter: Set "PARAMETER WRITE" in the setting data to 1.
5) Tool file: Turn off offset data protection (KEY1 = 1).
6) Conversational program: Turn off program protection $(\mathrm{KEY} 3=1)$.
5. Display the data input/output menu screen.
6. Press [READ] to display the following screen.

CAUTION

1 For a single-path system, the data selection menu for tool post 2 is not displayed.
2 When the I/O device is other than the FANUC cassette adapter, soft keys [NC PARAM], [OTHERS], and [NC HD2 PARAM] are not displayed.
7. Make preparations for the data to be read (including a search for the beginning of the data) when an I/O device other than the FANUC cassette adapter is used.
When the FANUC cassette adapter is used, the data can be retrieved automatically, such that no preparation is required.
8. To input NC parameters for tool post 1, press [NCPARAM]. To input NC parameters for tool post 2, press [NC HD2 PARAM].
To input data other than NC parameters, press [OTHERS]. The selected data is indicated by green characters in reverse video. When input of data other than parameters is specified, however, all the data is indicated by green characters in reverse video because the data to be actually read is not determined beforehand.
9. Press [EXEC] to display the following soft keys.

10.Press [EXEC] to start data input or press [CAN] to cancel data input. For data other than NC parameters, if multiple data items have been output at a time, they can also be input at a time.
During data input, "INPUTTING" blinks on the lower-right corner of the screen. The data being input is displayed by blinks of yellow characters in reverse video. When data input terminates normally, it is indicated by blue characters; if data input terminates with an error, the data is indicated by red characters.

5.3.4
 Input and Output of Each File (Super CAP T)
 Output of conversational machining programs

Files can be read and punched individually.

Conversational machining programs can be output and saved to an external memory unit via a reader/punch interface.
After switching to EDIT mode, display the registered program list screen for editing. Enter the number of the machining program to be output using numeric keys, or position the cursor to the program number then press [PUNCH]. The following soft keys used to confirm operation are displayed.

When [EXEC] is pressed, punch-out of the specified program starts.
When [CAN] is pressed, punch-out operation is canceled and the previous state is restored.
To output all the machining programs, specify -9999 for the program number.
When the output device is the FANUC cassette adapter, a new file is created immediately after the existing files.
Upon the start of outputting machining programs, "OUTPUTTING" blinks at the bottom of the screen, until the output operation ends.

NOTE

Only a machining program created with the conversational input function can be output by applying the above procedure.
A machining program created using the NC program screen cannot be output by applying the above procedure.

Input of conversational machining programs

The machining program punched out by applying the procedure described on the previous page can be read into the NC via a reader/punch interface. Before attempting to read a program, release the memory protect switch on the machine operator's panel.
After switching to EDIT mode, display the registered program list screen for editing, then press [READ]. The following message prompting the user to input the file number is displayed, as well as the soft keys used to confirm operation.

Enter the number of the file containing the machining program to be input, using numeric keys, then press [EXEC]. Reading of the machining program starts. When the input device is FANUC PPR, press [EXEC] without inputting a file number.
When [CAN] is pressed, read operation is canceled and the previous state is restored.
Upon the start of inputting machining programs, "INPUTTING" blinks at the bottom of the screen, until the input operation ends.

NOTE

Only a machining program created with the conversational input function can be input by applying the above procedure.
A machining program created using the NC program screen cannot be input by applying the above procedure.

Output of conversational tool setting data

Input of conversational tool setting data

Clearing of conversational tool setting data

The tool data file, cutting condition data, surface roughness data, pre-tool list, and chuck/tailstock figure data can be punched out to an external I/O device.
(1) Connect an external I/O device and set necessary parameters, such as device selection.
(2) Select EDIT mode.
(3)Display the tool data menu screen, then press [+]. The following soft keys appear. Press [PUNCH].

| | READ | PUN
 CH | CLEA
 R | \backslash |
| :--- | :--- | :--- | :--- | :--- | :--- |

The setting data punched out in the previous section can be read.
(1) Connect an external I/O device and set necessary parameters, such as device selection.
(2) Set "PARAMETER WRITE" in the setting data to 1.
(3) When the FANUC cassette adapter is used, set the file number for parameter No. 9887 (TLFLNO).
(4)Display the tool data menu screen and place the system in the emergency stop state.
(5) Press [READ].

The tool data file, cutting condition data, surface roughness data, pre-tool list, and chuck/tailstock figure data can be cleared.
(1) Set "PARAMETER WRITE" in the setting data to 1.
(2)Display the tool data menu screen. After switching to EDIT mode, place the system in the emergency stop state.
(3) Press [CLEAR].

5.4
 INPUTTING/ OUTPUTTING CAP-II DATA (16i-T)

[TABLE 1] Input/Output of Family Program

I/O	Item	Operation on I/O device		Remarks
Input	Family program	2, n	[INPUT]	$n=P \Rightarrow F A N U C$ PPR $n=B \Rightarrow F A N U C$ Cassette $\mathrm{n}=\mathrm{C} \Rightarrow$ Sub Memory *When n is omitted, parameter no. 15 becomes valid.
	Sub cycle	5, n	[INPUT]	
Output	Family program	1, n	[INPUT]	
	Sub cycle	4, n	[INPUT]	

[TABLE 2] Input/Output of Material Data

I/O	Item	Operation on I/O device		Remarks
Input	Material data	5, n	[INPUT]	$n=P \Rightarrow F A N U C$ PPR $n=B \Rightarrow F A N U C$ Cassette $\mathrm{n}=\mathrm{C} \Rightarrow$ Sub Memory *When n is omitted, parameter no. 15 becomes valid.
	Toolinginformation	8, n	[INPUT]	
Output	Material data	4, n	[INPUT]	
	Toolinginformation	7, n	[INPUT]	

[Table 3] Input/Output of system parameters and other data.

I/O	Item	Operation on I/O device		Remarks
Input/ Read	System parameter	3, n	[INPUT]	1[INPUT] \Rightarrow [SAVE END]
	MTF	7, n	[INPUT]	$5[$ INPUT] $\Rightarrow[$ SAVE END]
	Tool data	11, n	[INPUT]	$9[$ INPUT $] \Rightarrow[$ SAVE END]
	Setting	14, n	[INPUT]	$\mathrm{n}=\mathrm{P} \Rightarrow$ FANUC PPR $n=B \Rightarrow F A N U C$ Cassette
	Graphic data	16, n	[INPUT]	
Output/ Regis-teration	System parameter	2, n	[INPUT]	
	MTF	6, n	[INPUT]	
	Tool data	10, n	[INPUT]	
	Setting	13, n	[INPUT]	
	Graphic data	15, n	[INPUT]	
Collation	System parameter	4, n	[INPUT]	
	MTF	8, n	[INPUT]	
	Tool data	12, n	[INPUT]	

5.5
 DUMP/RESTORE OF CAP-II DATA (16i-T)

The sub memory is stored in RAM module on the Option 3 board (board for CAP-II). The procedure below describes a method to input and output the data in sub memory, which is used when Option 3 board or RAM module is replaced.

5.5.1

Kind of Data in Sub Memory

1. System parameter (FAPT-SYS. PARAM.)
2. MTF (FAPT-MTF)
3. Setting data (FAPT-SETTING)
4. Tool data \quad L_ $\begin{aligned} & \text { Turning tool } \\ & \text { C-axis tool }\end{aligned} \quad$ (FAPT-TOOL)
5. Graphic data (FAPT-GRAPHIC)
6. Files
 Family program Material file (FAPT-MATERIAL) Sub cycle file (FAPT-SUB. CYCLE)
7. Initial screen registration command data

5.5.2
 Operation

- Outputting data (Dump)

- Inputting data (Restore)

1. Display the screen of Symbolic FAPT TURN.
2. To output data on FANUC Cassette, press keys as follows:

Be careful that data is memorized from top of the file. To output data on FANUC PPR, press keys as follows:

1. Hold Sp key and turn on power.
2. To input data from FANUC Cassette, press keys as follows :

To input data from FANUC PPR, press keys as follows :

3. Turn off the power once.

5.6
 CLEARING CAP-II
 DATA ($16 i-\mathrm{T}$)

5.6.1 Files

5.6.2 Press 5
while turning on power.
Clearing CAP-II Memory

5.7

DATA INPUT/OUTPUT ON THE ALL IO SCREEN

To input/output a particular type of data, the corresponding screen is usually selected. For example, the parameter screen is used for parameter input from or output to an external input/output unit, while the program screen is used for program input or output. However, programs, parameters, offset data, and macro variables can all be input and output using a single common screen, that is, the ALL IO screen.

Fig. 5.7 ALL IO screen (when channel 3 is being used for input/output)
5.7.1

Setting

Input/Output-Related
Parameters

Input/output-related parameters can be set on the ALL IO screen. Parameters can be set, regardless of the mode.

Setting input/output-related parameters

Procedure

1 Press function key

2 Press the rightmost soft key \boxtimes (continuous menu key) several times.

3 Press soft key [ALL IO] to display the ALL IO screen.

NOTE

1 If program or floppy is selected in EDIT mode, the program directory or floppy screen is displayed.
2 When the power is first turned on, program is selected by default.

NOTE

Baud rate clock, CD check (232C), reset/alarm report, and the parity bit for parameter No. 134, as well as the communication code, end code, communication protocol, interface, and SAT command for parameter No. 135 are displayed only when channel 3 is being used for input/output.

4 Select the soft key corresponding to the desired type of data (program, parameter, and so forth).

5 Set the parameters corresponding to the type of input/output unit to be used. (Parameter setting is possible regardless of the mode.)
Tip
First, set an I/O channel. The parameters on this screen change to those corresponding to a specified I/O channel.

- I/O channel (0 to 3)

Setting	Corresponding parameter
0	No. 101 to 103
1	No. 111 to 113
2	No. 121 to 123
3	No. 131 to 135

- Device number

Setting	Input/output device
0	RS-232-C (The control codes DC1 through DC4 are used.)
1	FANUC CASSETTE ADAPTOR 1 (FANUC CASSETTE B1/B2)
2	FANUC CASSETTE ADAPTOR 3 (FANUC CASSETTE F1)
3	FANUC PROGRAM FILE MATE, FANUC FA Card Adaptor FANUC FLOPPY CASSETTE ADAPTOR, FANUC Handy File FANUC SYSTEM P-MODEL H
4	RS-232-C (The control codes DC1 through DC4 are not used.)
5	Portable tape reader
6	FANUC PPR FANUC SYSTEM P-MODEL G, FANUC SYSTEM P-MODEL H

- Baud rate (bps)

Set a desired baud rate value indicated below.

Baud rate (bps)
50
100
110
150
200
300
600
1200
2400
4800
9600
19200

5.7.2
 Inputting and Outputting Programs

A program can be input and output using the ALL IO screen.
When entering a program using a cassette or card, the user must specify the input file containing the program (file search).

File search

Procedure

1 Press soft key [PRGRM] on the ALL IO screen, described in Section 5.7.1.

2 Select EDIT mode. A program directory is displayed.
3 Press soft key [(OPRT)]. The screen and soft keys change as shown below.

- A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

4 Enter address N.
5 Enter the number of the file to be found.

- N0

The first floppy file is found.

- One of N1 to N9999

Among the files numbered from 1 to 9999 , a specified file is found.

- N-9999

The file immediately after that used most recently is found.

- N-9998

When -9998 is specified, the next file is found. Then, each time a file input/output operation is performed, N-9999 is automatically inserted. This means that subsequent files can be sequentially found automatically.
This state is canceled by specifying N0, N1 to N9999, or N-9999, or upon a reset.

6 Press soft keys [F SRH] and [EXEC].
The specified file is found.

Inputting a program

Procedure

1 Press soft key [PRGRM] on the ALL IO screen, described in Section 5.7.1.

2 Select EDIT mode. A program directory is displayed.
3 Press soft key [(OPRT)]. The screen and soft keys change as shown below.

- A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

4 To specify a program number to be assigned to an input program, enter address O , followed by the desired program number.
If no program number is specified, the program number in the file or on the NC tape is assigned as is.

5 Press soft key [READ], then [EXEC].
The program is input with the program number specified in step 4 assigned.
To cancel input, press soft key [CAN].
To stop input prior to its completion, press soft key [STOP].

Outputting programs

Procedure

1 Press soft key [PRGRM] on the ALL IO screen, described in Section 5.7.1.

2 Select EDIT mode. A program directory is displayed.
3 Press soft key [(OPRT)]. The screen and soft keys change as shown below.

- A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

4 Enter address O.
5 Enter a desired program number.
If -9999 is entered, all programs in memory are output.
To output a range of programs, enter $\mathrm{O} \Delta \Delta \Delta \Delta$, $\mathrm{O} \square \square \square \square$. The programs numbered from $\Delta \Delta \Delta \Delta$ to $\square \square \square \square$ are output.
When bit 4 (SOR) of parameter No. 3107 for sorted display is set to 1 on the program library screen, programs are output in order, starting from those having the smallest program numbers.

6 Press soft key [PUNCH], then [EXEC].
The specified program or programs are output. If steps $\mathbf{4}$ and $\mathbf{5}$ are omitted, the currently selected program is output.
To cancel output, press soft key [CAN].
To stop output prior to its completion, press soft key [STOP].

Deleting files

Procedure
1 Press soft key [PRGRM] on the ALL IO screen, described in Section 5.7.1.

2 Select EDIT mode. A program directory is displayed.
3 Press soft key [(OPRT)]. The screen and soft keys change as shown below.

- A program directory is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

4 Press soft key [DELETE].

5 Enter a file number, from 1 to 9999 , to indicate the file to be deleted.

6 Press soft key [EXEC].
The k -th file, specified in step 5 , is deleted.
5.7.3

Inputting and Outputting Parameters

Parameters can be input and output using the ALL IO screen.

Inputting parameters

Procedure

1 Press soft key [PARAM] on the ALL IO screen, described in Section 5.7.1.

2 Select EDIT mode.
3 Press soft key [(OPRT)]. Soft keys change as shown below.

4 Press soft key [READ], then [EXEC].
The parameters are read, and the "INPUT" indicator blinks at the lower-right corner of the screen. Upon the completion of input, the "INPUT" indicator is cleared from the screen.
To cancel input, press soft key [CAN].

Outputting parameters

Procedure

1 Press soft key [PARAM] on the ALL IO screen, described in Section 5.7.1.

2 Select EDIT mode.
3 Press soft key [(OPRT)]. Soft keys change as shown below.

4 Press soft key [PUNCH], then [EXEC].
The parameters are output, and the "OUTPUT" indicator blinks at the lower-right corner of the screen. Upon the completion of output, the "OUTPUT" indicator is cleared from the screen.
To cancel output, press soft key [CAN].

Inputting offset data

Procedure

1 Press soft key [OFFSET] on the ALL IO screen, described in Section 5.7.1.

2 Select EDIT mode.
3 Press soft key [(OPRT)]. Soft keys change as shown below.

4 Press soft key [READ], then [EXEC].
The offset data is read, and the "INPUT" indicator blinks at the lower-right corner of the screen.
Upon the completion of input, the "INPUT" indicator is cleared from the screen.
To cancel input, press soft key [CAN].

Outputting offset data

Procedure

1 Press soft key [OFFSET] on the ALL IO screen, described in Section 5.7.1.

2 Select EDIT mode.
3 Press soft key [(OPRT)]. Soft keys change as shown below.

4 Press soft key [PUNCH], then [EXEC].
The offset data is output, and the "OUTPUT" indicator blinks at the lower-right corner of the screen. Upon the completion of output, the "OUTPUT" indicator is cleared from the screen.
To cancel output, press soft key [CAN].
5.7.5

Outputting Custom
Macro Common Variables

Custom macro common variables can be output using the ALL IO screen.

Outputting custom macro common variables

Procedure

1 Press soft key [MACRO] on the ALL IO screen, described in Section 5.7.1.

2 Select EDIT mode.
3 Press soft key [(OPRT)]. Soft keys change as shown below.

4 Press soft key [PUNCH], then [EXEC].
The custom macro common variables are output, and the "OUTPUT" indicator blinks at the lower-right corner of the screen. Upon the completion of output, the "OUTPUT" indicator is cleared from the screen.
To cancel output, press soft key [CAN].

NOTE

To input a macro variable, read the desired custom macro statement as a program, then execute the program.
5.7.6

Inputting and Outputting Floppy Files

The ALL IO screen supports the display of a directory of floppy files, as well as the input and output of floppy files.

Displaying a file directory

Procedure

1 Press the rightmost soft key \triangle (continuous menu key) on the ALL IO screen, described in Section 5.7.1.

2 Press soft key [FLOPPY].
3 Select EDIT mode. The floppy screen is displayed.
4 Press soft key [(OPRT)]. The screen and soft keys change as shown below.

- The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

5 Press soft key [F SRH].

6 Enter the number of the desired file, then press soft key [F SET].
7 Press soft key [EXEC]. A directory is displayed, with the specified file uppermost. Subsequent files in the directory can be displayed by pressing the page key.

A directory in which the first file is uppermost can be displayed simply by pressing the page key. (Soft key [F SRH] need not be pressed.)

Inputting a file

Procedure

1 Press the rightmost soft key \triangle (continuous menu key) on the ALL IO screen, described in Section 5.7.1.

2 Press soft key [FLOPPY].
3 Select EDIT mode. The floppy screen is displayed.
4 Press soft key [(OPRT)]. The screen and soft keys change as shown below.
The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

5 Press soft key [READ].
6 Enter the number of a file or program to be input.

- Setting a file number: Enter the number of the desired file, then press soft key [F SET].
- Setting a program number: Enter the number of the desired program, then press soft key [O SET].
7 Press soft key [EXEC].
The specified file or program is read, and the "INPUT" indicator blinks at the lower-right corner of the screen. Upon the completion of input, the "INPUT" indicator is cleared from the screen.

Outputting a file

Procedure

〔FSET〕（O SET）（STOP）〔CAN〕（EXEC）

1 Press the rightmost soft key \square（continuous menu key）on the ALL IO screen，described in Section 5．7．1．

2 Press soft key［FLOPPY］．
3 Select EDIT mode．The floppy screen is displayed．
4 Press soft key［（OPRT）］．The screen and soft keys change as shown below．
The floppy screen is displayed only in EDIT mode．In all other modes，the ALL IO screen is displayed．

5 Press soft key［PUNCH］．
6 Enter the number of the program to be output，together with a desired output file number．
－Setting a file number：Enter the number of the desired file，then press soft key［F SET］．
－Setting a program number：Enter the number of the desired program，then press soft key［O SET］．
7 Press soft key［EXEC］．
The specified program is output，and the＂OUTPUT＂indicator blinks at the lower－right corner of the screen．Upon the completion of output，the＂OUTPUT＂indicator is cleared from the screen．
If no file number is specified，the program is written at the end of the currently registered files．

Deleting a file

Procedure

1 Press the rightmost soft key \square (continuous menu key) on the ALL IO screen, described in Section 5.7.1.

2 Press soft key [FLOPPY].
3 Select EDIT mode. The floppy screen is displayed.
4 Press soft key [(OPRT)]. The screen and soft keys change as shown below.
The floppy screen is displayed only in EDIT mode. In all other modes, the ALL IO screen is displayed.

5 Press soft key [DELETE].

6 Enter the number of the desired file, then press soft key [F SET].
7 Press soft key [EXEC]. The specified file is deleted. After the file has been deleted, the subsequent files are shifted up.

5.8
 DATA INPUT/OUTPUT USING A MEMORY CARD

By setting the I/O channel (parameter No. 20) to 4, files on a memory card can be referenced, and different types of data such as part programs, parameters, and offset data on a memory card can be input and output in text file format.
The major functions are listed below.

- Displaying a directory of stored files

The files stored on a memory card can be displayed on the directory screen.

- Searching for a file

A search is made for a file on a memory card and, if found, it is displayed on the directory screen.

- Reading a file

Text-format files can be read from a memory card.

- Writing a file

Data such as part programs can be stored to a memory card in text file format.

- Deleting a file

A file can be selected and deleted from a memory card.

Displaying a directory of stored files

Procedure

1 Press the EDIT switch on the machine operator's panel.
2 Press function key PROG.
3 Press the rightmost soft key \triangle (continuous menu key).
4 Press soft key [CARD]. The screen shown below is displayed. Using page keys $\boldsymbol{\uparrow}$ and \downarrow, the screen can be scrolled.

5 Comments relating to each file can be displayed by pressing soft key [DIR+].

6 Repeatedly pressing soft key [DIR+] toggles the screen between the display of comments and the display of sizes and dates.
Any comment described after the O number in the file is displayed.
Up to 18 characters can be displayed on the screen.

Searching for a file

Procedure

1 Press the EDIT switch on the machine operator's panel.
2 Press function key PROG.
3 Press the rightmost soft key \triangle (continuous menu key).
4 Press soft key [CARD]. The screen shown below is displayed.

5 Press soft key [(OPRT)].
6 Set the number of the desired file number with soft key [F SRH]. Then, start the search by pressing soft key [EXEC]. If found, the file is displayed at the top of the directory screen.

When a search is made for file number 19

DIRECTORY (M-CARD)	O0034 N00045	
No.	FILE NAME	COMMENT
0019	O1000	(MAIN PROGRAM)
0020	O1010	(SUBPROGRAM-1)
0021	O1020	(COMMENT
0022	O1030	(COMMENT $)$

Reading a file

Procedure

1 Press the EDIT switch on the machine operator's panel.
2 Press function key PROG.
3 Press the rightmost soft key (continuous menu key).
4 Press soft key [CARD]. Then, the screen shown below is displayed.

5 Press soft key [(OPRT)].
6 To specify a file number, press soft key [F READ]. The screen shown below is displayed.

7 Enter file number 20 from the MDI panel, then set the file number by pressing soft key [F SET]. Next, enter program number 120, then set the program number by pressing soft key [O SET]. Then, press soft key [EXEC].

- File number 20 is registered as O0120 in the CNC.
- Set a program number to register a read file with a separate O number. If no program number is set, the O number in the file name column is registered.

8 To specify a file with its file name, press soft key [N READ] in step 6 above. The screen shown below is displayed.

9 To register file name TESTPRO as O1230, enter file name TESTPRO from the MDI panel, then set the file name with soft key [F NAME]. Next, enter program number 1230, then set the program number with soft key [O SET]. Then, press soft key [EXEC].

Writing a file

Procedure

1 Press the EDIT switch on the machine operator's panel.
2 Press function key PRog.
3 Press the rightmost soft key \triangle (continuous menu key).
4 Press soft key [CARD]. The screen shown below is displayed.

5 Press soft key [(OPRT)].
6 Press soft key [PUNCH].
7 Enter a desired O number from the MDI panel, then set the program number with soft key [O SET].
When soft key [EXEC] is pressed after the setting shown below has been made, for example, the file is written under program number O1230.

8 In the same way as for O number setting, enter a desired file name from the MDI panel, then set the file name with soft key [F SET].
When soft key [EXEC] is pressed after the setting shown below has been made, for example, the file is written under program number O1230 and file name ABCD12.

Deleting a file

Procedure

1 Press the EDIT switch on the machine operator's panel.
2 Press function key PRog.
3 Press the rightmost soft key \triangle (continuous menu key).
4 Press soft key [CARD]. The screen shown below is displayed.

5 Press soft key [(OPRT)].
6 Set the number of the desired file with soft key [DELETE], then press soft key [EXEC]. The file is deleted, and the directory screen is displayed again.

When file number 21 is deleted

File name O 1020 is deleted.

File number 21 is assigned to the next file name.

Batch input/output with a memory card

Procedure

On the ALL IO screen, different types of data including part programs, parameters, offset data, pitch error data, custom macros, and workpiece coordinate system data can be input and output using a memory card; the screen for each type of data need not be displayed for input/output.

1 Press the EDIT switch on the machine operator's panel.
2 Press function key \square
3 Press the rightmost soft key \square (continuous menu key) several times.

4 Press soft key [ALL IO]. The screen shown below is displayed.

Upper part : Directory of files on the memory card Lower part : Directory of registered programs

5 With cursor keys \uparrow and \downarrow, the user can choose between upper part scrolling and lower part scrolling. (An asterisk $\left(^{*}\right.$) displayed at the left edge indicates the part for which scrolling is possible.)
\uparrow : Used for memory card file directory scrolling.
\downarrow : Used for program directory scrolling.

6 With page keys \uparrow and \downarrow, scroll through the file directory or program directory.

7 When this screen is displayed, the program data item is selected. The soft keys for other screens are displayed by pressing the rightmost soft key \triangleright (continuous menu key). Soft key [M-CARD] represents a separate memory card function for saving and restoring system RAM

When a data item other than program is selected, the screen displays only a file directory.
A data item is indicated, in parentheses, on the title line.

READ/PUNCH (PARAMETER)	O0001 N00001		
No.	FILE NAME	SIZE	DATE
0001	O0222	32010	$96 / 04 / 06$
0002	O1003	4450	$96 / 05 / 04$
0003	MACROVAR.DAT	653400	$96 / 05 / 12$
0004	O0003	4610	$96 / 05 / 04$
0005	O0001	4254	$96 / 06 / 04$
0006	O0002	750	$96 / 06 / 04$
0007	CNCPARAM.DAT	34453	$96 / 06 / 04$

8 Display the following soft keys with soft key [(OPRT)].

The operation of each function is the same as on the directory (memory card) screen. Soft key [O SET], used for program number setting, and the "PROGRAM NUMBER =" indication are not displayed for data items other than program.
[F SRH] : Finds a specified file number.
[F READ] : Reads a specified file number.
[PUNCH] : Writes a file.
[N READ] : Reads a file under a specified file name.
[DELETE]: Deletes a specified file number.

NOTE

With a memory card, RMT mode operation and the subprogram call function (based on the M198 command) cannot be used.

Error codes

Memory card error codes

Code	Meaning
007	The memory card is protected.
030	The memory card is not inserted into its slot.
032	The memory card's battery is exhausted.
102	The memory card does not have sufficient free space.
105	No memory card is mounted.
106	A memory card is already mounted.
110	The specified directory cannot be found.
111	There are too many files under the root directory to allow a
114	directory to be added.
115	The specified file cannot be found.
117	The specified file is protected.
118	The file has not yet been opened.
119	The file is already open.
122	The file is locked.
124	The specified file name is invalid.
129	The extension of the specified file is invalid.
130	A non-corresponding function was specified.
131	The specification of a device is invalid.
133	The specification of a pathname is invalid.
135	Multiple files are open at the same time.
140	The device is not formatted.

INTERFACE BETWEEN CNC AND PMC

6

This chapter describes the signals between the machine operator's panel, magnetics cabinet and the PMC, connection of the signals between PMC and CNC, and confirmation method of on/off state of these signals. It also describes system configuration of PMC, parameters of PMC, ladder and how to display time chart of the signals on the screen. It also describes a method of inputting/outputting PMC parameters to an external device.
6.1 GENERAL OF INTERFACE 448
6.2 SPECIFICATION OF PMC 449
6.3 PMC SCREEN 456
6.4 LIST OF SIGNALS BY EACH MODE 475
6.5 LIST OF INPUT/OUTPUT SIGNALS 477
6.6 LIST OF ADDRESSES 497

6.1

GENERAL OF INTERFACE

6.2
 SPECIFICATION OF PMC

6.2.1
 Specification

Model	Series 16i-MODEL A/Series 18i-MODEL A	
	PMC-SB5	PMC-SB6
Programmingmethod language	Ladder	Ladder
	C-language	Step sequence
(Option)	C-language	
(Option)		

Model	Series 20i-MODEL A/Series 21i-MODEL A	
	PMC-SA1	PMC-SA5
Programming system	Ladder C language (option)(Note)	Ladder C language (option)(Note)
Number of ladder levels	2	2
First-level execution period	8 ms	8 ms
Basic instruction processing time	$5.0 \mu \mathrm{sec} / \mathrm{step}$	$0.085 \mu \mathrm{sec} / \mathrm{step}$
Program size - Ladder (step) - Symbol Comment - Message	Approx. 3,000 Approx. 5,000 1 to 128 KB 0.1 to 64 KB	Approx. 3,000 Approx. 5,000 Approx. 8,000 Approx. 12,000 Approx. 16,000 1 to 128 KB 0.1 to 64 KB
Instruction (Basic instruction) (Functioninstruction)	$\begin{aligned} & 12 \\ & 49 \end{aligned}$	$\begin{aligned} & 14 \\ & 66 \end{aligned}$
Internal relay (R) Message request (A) Nonvolatilememory Variable timer (T) • Counter (C) • Keep relay (K) \quad Data table (D) Subprogram (P) Label (L) Fixed timer	1100 byte 25 bytes (200 points) 80 bytes (40 each) 80 bytes (20 each) 20 byte 1860 byte - -	1118 byte25 bytes (200 points)80 bytes (40 each)80 bytes (20 each)20 byte1860 byte512 each9999 each \quad100 each (Timer num- ber specification)
I/O - I/O Link (Input) (Output)	1024 points max. 1024 points max.	1024 points max. 1024 points max.
Sequenceprogram Storage media (Ladder) (Clanguage) (Note)	Flash ROM 128 KB 256 KB 512 KB 1 MB 2 MB	Flash ROM 128 KB 256 KB 512 KB 1 MB 2 MB

NOTE

Applicable to the Series $21 i$

6.2.2

Address

Character	Signal description	Model	
		Series 16i-MODEL A/Series 18i-MODEL A	
		PMC-SB5	PMC-SB6
X	Input signal from the machine to the PMC (MT to PMC)	X0 to X127 (Note)	
Y	Output signal from the PMC to the machine (PMC to MT)	Y0 to Y127 (Note)	
F	Input signal from the NC to the PMC (NC to PMC)	$\begin{array}{\|l} \text { F0 to F255 } \\ \text { F1000 to F1255 } \end{array}$	F0 to F511 F1000 to F1511 F2000 to F2511
G	Output signal from the PMC to the NC (PMC to NC)	$\begin{aligned} & \text { G0 to G255 } \\ & \text { G1000 to G1255 } \end{aligned}$	G0 to G511 G1000 to G1511 G2000 to G2511
R	Internal relay	R0 to R1499 R9000 to R9117	R0 to R2999 R9000 to R9199
A	Message request signal	A0 to A24	A0 to A124
C	Counter	C0 to C79	C0 to C199
K	Keep relay	K0 to K19	K0 to K39 K900 to K909
T	Data table	T0 to T79	T0 to T299
D	Variable timer	D0 to D2999	D0 to D7999
L	Labelnumber	L1 to L9999	L1 to L9999
P	Subprogramnumber	P1 to P512	P1 to P2000

NOTE

The addresses (X1000 and up, Y1000 and up) for built-in I/O cards are also reserved. I/O allocation in these areas is not allowed. Do not use X1000 and up and Y1000 and up.

Character	Signal description	Model	
		Series 20i-MODEL A/Series 21i-MODEL	
		PMC-SA1	PMC-SA5
X	Inputsignal from the machine to PMC (MT to PMC)	X0 to X127 (Note)	
Y	Output signal from the PMC to machine (PMC to MT)	Y0 to Y127 (Note)	
F	Input signal from the NC to PMC (NC to PMC)	$\begin{aligned} & \text { F0 to F255 } \\ & \text { F1000 to F1255 } \end{aligned}$	F0 to F511
G	Output signal from the PMC to NC (PMC to NC)	$\begin{aligned} & \text { G0 to G255 } \\ & \text { G1000 to G1255 } \end{aligned}$	$\begin{aligned} & \text { G0 to G255 } \\ & \text { G1000 to G1255 } \end{aligned}$
R	Internal relay	R0 to R999 R9000 to R9099	R0 to R999 R9000 to R9117
A	Message request signal	A0 to A24	A0 to A24
C	Counter	C 0 to C 79	C0 to C79
K	Keep relay	K0 to K19	K0 to K19
T	Variable timer	T0 to T79	T0 to T79
D	Datatable	D0 to D1859	D0 to D1859
L	Label number	-	L1 to L9999
P	Subprogramnumber	-	P1 to P512

NOTE

The addresses (X1000 and up, Y1000 and up) for built-in I/O cards are also reserved. I/O allocation in these areas is not allowed. Do not use X1000 and up and Y1000 and up.
6.2.3

Built-in Debug Function

Function	Contents
Display of sequence program	Dynamic display of ladder diagram
Diagnostic function	- Title data display - signal status (symbol can be displayed) - PMC alarm display - Signal trace - Memory contents display - Signal waveform display - Task status display (PMC-RC3/RC4 only)
Setting and displaying data	- Timer - Counter - Keep relay - Data table
Sequence program edit function	Ladder diagram editing (A ladder edit module is required It is not required when PMC language board is used.)

6.2.4
 System Reserve Area of Internal Relay

(1) R9000 (Operation output register for the ADD, SUB, MULB, DIVB, and COMPB functional instructions)

(2) R9000 (Error output for the EXIN, WINDR, WINDW, MMCWR, MMCWW, MMC3R, and MMC3W functional instructions)

(3) R9002 to R9005 (Operation output registers for the DIVB functional instruction)
The data remaining after the DIVB functional instruction is executed in output.

(4) R9091 (System timer)

4 signals can be used as system timer.
The specifications of every signal are as following.

CAUTION

Each signal is initially off. R9091.0 and R9091.1 are set cyclically at the beginning of the first ladder level.
Each signal (ON-OFF signal) has an accuracy of $\pm 8 \mathrm{~ms}$.

6.2.5

Execution Period of
PMC

6.3
 PMC SCREEN

6.3.1
 Display Method

1. Press
2. Press soft key [PMC], then PMC screen is displayed and the following soft keys are displayed:

The no. of menus to be displayed changes depending on presence/ absence of built-in programmer.

	PMC-SB5/SB6 (Without memory card for editing)	PMC-SB5/SB6 (With memory card for editing)	PMC-SB5/SB6 (With C language board)
RUN/STOP	\bigcirc	\bigcirc	\bigcirc
EDIT	\times	\bigcirc	\bigcirc
I/O	\bigcirc	\bigcirc	\bigcirc
SYSPRM	\times	\bigcirc	\bigcirc

\times : Cannot be displayed nor used.

6.3.2 PMCLAD Screen

- Contents displayed
- Search method

Press soft key [PMCLAD], and a sequence program is displayed dynamically and operation monitoring can be confirmed :

Other soft keys

$$
\begin{gathered}
(\text { F-SCRH })(\quad)(\text { ADRESS }) \\
\text { 』 }) \\
(\text { SYMBOL })
\end{gathered} \begin{gathered}
\text { Switched each } \\
\text { time pressed }
\end{gathered}
$$

1. 1 Green (Low brightness) display Contacts :open Relay :off
2. White (High brightness) display Contacts : closed Relay : on
 display positions.
3. [TOP]:Searches top of ladder.
4. [BOTTOM]:Search bottom of ladder.
5. Address.bit,[SRCH] or Signal name, [SRCH]
6. Address.bit,[W-SRCH] or Signal name ,[W-SRCH]
7. Net no.[N-SRCH]:Ladder is displayed from the specified net.
8. Functional instruction no. [F-SRCH] or Functional instruction name[F-SRCH]
9. [ADRESS]:Signal is displayed by address and bit no.
10. [SYMBOL]:Signal is displayed by signal name (symbol).
(If symbol is not registered at program preparation time, the address of the signal is displayed).

[Remarks]

The search function searches a signal in the forward direction and displays the ladder with the searched signal at its head. Because there may exist plural contacts, repeat the search operation to find plural locations, repeat the search operation to find plural locations with the specified signal.
If a specified signal is not found up to the end of the program (ladder), execution returns to the head of a program and search continues.

Ladder diagram and signal status dump can displayed together.
The dump is displayed over 2 lines at the last line of ladder diagram by pressing the [DUMP] soft key.
$\underset{\text { PAGE }}{\boldsymbol{p}} \underset{\substack{\text { PRGE } \\ \boldsymbol{y}}}{ }$ keys or [SEARCH] soft key is used for changing of PMC address.

The [DUMP] soft key has the follwing functions.
(1) [BYTE]: Byte type display (1 BYTE)
"G0000 001400000100000000000000000000 00"

$$
\text { "G001600 } 0000000000000000000000000000 \text { 00" }
$$

(2)[WORD]: Word type display (2 BYTE)
"G0000 14000000000100000000000000000000 "
"G0016 0000000000000000000000000000 0000"
(3) [D.WORD]: Long word type display (4 BYTE) "G0000 $00001400000000010000000000000000 "$ "G0016 $00000000000000000000000000000000 "$

The value of parameter of a functional instruction is displayed in the functional instruction of a ladder diagram.

The function of the soft key is as follows:
(1)[DPARA] : The value of parameter is displayed in functional instruction.
(2) [NDPARA] : The value of parameter is not displayed in functional instruction.

The ladder display can be stopped by manual operation or trigger of signal.
The former ladder diagram display renews signal status every moment. But by using this function, all the ladder diagram at the specified moment can be checked.
The stop conditions as a trigger are specified by rising or falling edge detection of the designated signal.

- Display of setting trigger

The setting address, condition and counter are displayed at the title line.
"MODE:ON : X0000. 0 : 0 : 0001"

* Setting form adr ;p1;p2+[TRGON/TRGOFF]soft key

NOTE

";"="EOB" adr (trigger address) ;p1 (trigger point) ;p2 (trigger checking number (1~65535))

* Because parameters are stored in the nonvolatile memory, they are not lost even if the power is turned off.
When bit 2 of keep relay K18 (K901 for SB6) is set to 1 after parameters for sampling are specified, the trigger function automatically starts when the power is turned on.
For this operation, depress [TRIGER] soft key to bring the following menu.

The function of the [TRIGER] soft key is explained below:
(1)[TRGON] : The trigger function is stopped when a specified address signal goes high (is turned ON).
(2) [TRGOFF]: The trigger function is stopped when a specified address signal goes low (is turned OFF).
(3)[START] : Pressing this key switches between trigger function execution and trigger function termination. While the trigger function is being executed, the "TRG" indication blinks.
(4)[TRGSRC]: An instruction at which the trigger function has been stopped by a specified address signal is searched for and indicated by blinking.
(5) [INIT] : The trigger setting is initialized.

- Divided display of Iadder diagram

This function is used for displaying the divided screen. It can display max. six division.
For this operation, depress [WINDOW] soft key to bring the following menu.

The function of the soft key [WINDOW] is as follows:
(1)
[DIVIDE] : The screen will be divided. The dividing display of ladder diagram can be displayed for the designated NET number. (NET number+[DIVIDE])
(2) [CANCEL] : The dividing display of ladder diagram display ends. (The screen returns to normal display.)
(3) [DELETE] : The screen division subject to operation is ended.
(4) [SELECT] : Change the screen subject to division operation. The screen in operation is displayed by "purple" title line, another screen is displayed by "blue" title line. In monochrome, the screen is displayed by changing brightness.
(5) [WIDTH] : Change the width of division by using [EXPAND] or [SHRINK] soft key.
(6) [EXPAND] : The divided screen is expanded.
(7) [SHRINK] : The divided screen is shrank.

When bit 1 in the keep relay K 17 (K900 for SB6) is 1, this function is available and [ONLEDT] soft key is displayed.

When the ladder program is executing, a part of the ladder program can be changed.

- Change the type of contact (A contact, B contact)
- Change address of contact and coil.
- Change address parameter of functional instruction.

This function don't change the size.
(Cannot be Addition, deletion and chanegable data size)
When bit 3 in the keep relay K18 (K901 for SB6) is 1, this program is automatically transferred to backup RAM after on-line edit.
When bit 3 in the keep relay K18 (K901 for SB6) is 0 , transfer to backup RAM with COPY function of I/O screen. If power is off without this operation, edited data is lost.

6.3.3
 PMCDGN Screen

Press soft key [PMCDGN] then PMC's diagnostic screen is displayed.

- TITLE screen

The title data registered when a ladder program is prepared is displayed.

- STATUS screen

- Alarm screen

On/Off state of input/output signals and internal relay is displayed.

[Search Method]

- | Penee |
| :---: |
| \boldsymbol{y} | key :Forward and Backward by screen
- $\dagger \uparrow$ key :Forward and Backward by diagnostic number
- To search a specified address or signal name, input an address number or signal name and press [SEARCH].

Displays an alarm generated in PMC.

- TRACE screen

Every time a specified signal changes, the signal status is memorized in the trace memory. This function is useful for identifying intermittent troubles.

1 Trace parameter screen

Select each item by cursor key
a. TRACE MODE: Select the trace mode
$0=$ Records changes of 1 -byte signals
$1=$ Records changes of independent 2-byte signals
$2=$ Records changes of consecutive 2 -byte signals
b. ADDRESS TYPE:
$0=$ PMC address is used for tracing address.
1=Physical address is used for tracing address.
(Mainly used for C-language program)
c. ADDRESS:Set a tracing address.
d. MASK DATA: The bits to be traced are specified by a hexadecimal number (2 digits).
For example, to trace the signals at bit $7,6,5$ and 0 , set E1 (hexadecimal) to MASK DATA.
\#7 \#6 \#5 \#4 \#3 \#2 \#1 \#0
$\begin{array}{lllllllll}\mathrm{E} 1 \% & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$
However, even if bit 4,3,2 and 1 changes, tracing (memory registration) cannot be done but signal status is memorized when a tracing is executed.
[Correspondence of binary and hexadecimal number]

$0000_{2}: 0_{16}$	$0001_{2}: 1_{16}$	$0010_{2}: 2_{16}$	$0011_{2}: 3_{16}$
$0100_{2}: 4_{16}$	$0101_{2}: 5_{16}$	$0110_{2}: 6_{16}$	$0111_{2}: 7_{16}$
$1000_{2}: 8_{16}$	$1001_{2}: 9_{16}$	$1010_{2}: \mathrm{A}_{16}$	$1011_{2}: \mathrm{B}_{16}$
$1100_{2}: \mathrm{C}_{16}$	$1101_{2}: \mathrm{D}_{16}$	$1110_{2}: \mathrm{E}_{16}$	$1111_{2}: \mathrm{F}_{16}$

2 Trace memory contents display screen

a. Soft key [TRCPRM]: Return to the trace parameter setting screen (screen of previous page)
b. Soft key [EXEC]: Starts tracing.

Trace memory is cleared and each time a specified signal changes, its status is recorded. Trace memory is 256 bytes and if tracing is executed 128 times by 2-byte tracing, tracing is executed again from the head of memory.
c. Soft key [STOP]: Ends the tracing.
*The tracing parameters are held even if the power is turned off.

(K900 for SB6)
\#5 0: Tracing starts by [EXEC].
1: Tracing starts automatically after power on

6.3.4 Memory Display (M.SRCH)

- Display of Screen and Operation
- Function of store memory

1) Pressing the [M.SRCH] soft key changes the screen to that shown in Fig. 3.5. The displayed soft keys also change.
2) Enter a physical address in hexadecimal from which the contents of the memory are to be displayed. Then pressing the [SEARCH] key displays 256 byte of stored data starting from the specified address.
Example) Enter 100000, then pressing the [SEARCH] keydisplays the contents of the memory starting from 100000 H .
3) An address can be changed using the $\left.\begin{array}{c}\text { PAGE } \\ \boldsymbol{y}\end{array}\right]$ or $\underset{\substack{\mathrm{P} \\ \text { PAGE }}}{ }$ key.
4) Pressing either the [BYTE], [WORD], or [D.WORD] soft key displays data of the corresponding type.
If an address at which the memory is not used is specified, a system error occurs.

To store data in memory, set bit 4 of keep relay K17 to 1, move the cursor to a position at which the address of the data to be changed in RAM is displayed, and enter data in units of data type in hexadecimal.
Example) Entering 0F41, then pressing the INPUT key stores
0F41 at the address specified by the cursor

- ANALYS screen (Ladder editing card is required not usable with SA1.)

Change of signals is displayed as the same display as that on the oscilloscope.
1 Parameter setting screen (1st page)

(a) Set a sampling time.
(b) Specifies an address from which recording of signals is started.
(c) Set a condition under which recording is initiated.

0 : Started by soft key [START]
1: Started by rise of a trigger signal after you press the soft key [START]
2 : Started by fall of a trigger signal after you press the soft key [START]
(d) Set a trigger mode

0 : Record signal status after the trigger condition is satisfied
1: Record signal status before and after the trigger condition is satisfied.
2 : Record signal status before the trigger condition is satisfied.
3: Record signal status when the trigger condition is satisfied. (Display is same as trace memory).

2 Parameter setting screen (2nd page)

```
PMC SIGNAL ANALYSIS (PARAM) MONIT RUN
SIGNAL ADDRESS
1 : X0000.0 9 : Y0000.0
2 : X0000.1 10 : R0000.1
3 : X0002.0 11 :
4 : X0005.0 12 :
5 : 13 :
6 : 14 :
7 : 15 :
8 : 16 :
\((\) SCOPE \()(\) DELETE \()(\) INIT \()(\) ADDRESS \()(\)
```

Up to 16 signals
a. Soft key [SCOPE]:Select signal waveform display screen
b. Soft key [DELETE]:Delete data on the cursor position
c. Soft key [INIT] :Initialize parameters of signal waveform display
d. Soft key [ADDRESS] or [SYMBOL]:Switch addresses and symbols for display

3 SCOPE screen

The above screen is for a system with graphic display.
" \square " and "-" are used for display if graphic function is not equipped.
a. Soft key [SGNPRM] : Returns to parameter screen.
b. Soft key [START] or [STOP] :Start or stop the record.
(If TRIGGER MODE=3, signal is displayed when you press STOP key.)
c. Soft key [T.SRCH] :Displayed for a specified time.
d. Soft key [ADDRESS] or [SYMBOL]:Switch addresses and symbols for display
e. Soft key [EXCHG] : Change order of signals displayed.
-Press soft key [EXCHG]
-Move the cursor to a signal to be changed.
-Press soft key [SELECT].
-Move the cursor to the destination.
Press [TO] and [EXEC], then the signal changes its order.
f. Soft key [SCALE]: Changes time scale for graphic display. Scale changes from 256 to 512 , and to 1024 msec every time you press the key.
g. Cursor key $\leftarrow \square$: Scrolls time axis forward and backward

6.3.5
 PMCPRM Screen

- Inputting PMC

 parameters from the MDI- TIMER screen

1 Set to MDI mode or emergency stop state.
2 Set PARAMETER WRITE (on setting screen) to 1 or set the program protect signal (KEY4) to 1 .

	PWE	KEY4
Timer	\bigcirc	-
Counter	\bigcirc	\bigcirc
Keep relay	\bigcirc	-
Data table	\bigcirc	\bigcirc

3 Press a soft key and select a required screen.
[TIMER] :Timer screen
[COUNTR] :Counter screen
[KEEPRL] :Keep relay screen
[DATA] :Data table screen
4 Press cursor key and move the cursor to a desired number.
5 Input a numeric key and press key and data is input.

6 After the data is input, set PARAMETER WRITE or KEY4 on setting screen to 0 .

This screen is used for setting timer time of the functional instruction (SUB 3).

Page no. (screen is scrolled by page key)

Timer set time : Timer no. $1-8$ is max. 1572.8 sec and its accuracy is 48 ms .
Timer no. 9 is max. 262.1 sec and its accuracy is 8 ms .

- COUNTER screen

This screen sets and displays max. value of counter and current value of the counter instruction (SUB 4).

- KEEP RELAY screen

- Address specified by ladder			
PMC PARAMETER (KEEP REALAY) \#00才 MONIT R			
no. ADDRESS	DATA	NO. ADDRESS	DATA
$01 \mathrm{k00}$	00000000	11 K 10	00000000
$02 \mathrm{k01}$	00000000	12 K 11	00000000
$03 \mathrm{K02}$	00000000	13 K 12	00000000
04 к03	00000000	14 K 13	00000000
05 k04	00000000	15 K 14	00000000
06 к05	00000000	16 K 15	00000000
07 к06	00000000	17 K 16	
08 к07	00000000	18 K 17	
09 к08	00000000	19 K 18	
$10 \mathrm{K09}$	00000000	20 K 19	
$(\text { TIMER })(\text { (countr })(\text { KEEPRL })(\text { DATA })()$			
— Address speecified by ladder V// Used by PMC system			

1 Nonvolatile memory control

\#7(MWRTF2) : For checking the writing status in nonvolatile memory \#6(MWRTF1): Writing status in nonvolatile memory
2 PMC system parameter
The following keep relays are used by the system, therefore they cannot be used in the sequence program.

K017

(K900 for SB6)
\#7(DTBLDSP) $0:$ The PMC parameter data table control screen is displayed.
1: The PMC parameter data table control screen is not displayed.
\#6(ANASTAT) 0 : Pressing [EXEC] key initiates sampling by signal waveform display function.

1: Turning power to on initiates sampling by signal waveform display function.
\#5(TRCSTAT) 0: Signal tracing starts by soft key [EXEC] in signal trace function.
1: Signal tracing starts automatically by power on in signal trace function.
\#4(MEMINP) 0 : Data input cannot be done in memory contents display function.
1: Data input can be done in memory contents display function.
\#2(AUTORUN) 0 : A sequence program is executed automatically after the power is turned on.

1: A sequence program is executed by sequence program soft key.
\#1(PRGRAM) 0: Built-in programmer is not used.
1 : Built-in programmer is used.
\#0(LADMASK) 0 : Dynamic display of ladder is executed.
1: Dynamic display of ladder is not executed.
(K901 for SB6)
\#7(IGNDINT) $0:$ When the screen is switched to the PCMMDI screen, the screen is initialized.
1: When the screen is switched to the PCMMDI screen, the screen is not initialized.
*It is effective for PMC-SC3/SC4
\#5(CHKPRTY) 0 : The parity check is performed for the system ROM and program ROM/RAM.
1: The parity check is not performed for the system ROM and program ROM/RAM.
\#4(CALCPRTY) 0 : The built-in programmer function performs RAM parity calculation.
1: The built-in programmer function does not perform RAM parity calculation.
\#3(TRNSRAM) 0 : A ladder program is not automatically sent to the backup RAM after on-line editing is completed.
1: A ladder program is automatically sent to the backup RAM after on-line editing is completed.
\#2(TRGSTAT) $0:$ The trigger stop function does not automatically start when the power is turned on.
1: The trigger stop function automatically starts when the power is turned on.
\#1(DBGSTAT) 0: In the C language debug function, the automatic break processing does not start when the power is turned on.
1: In the C language debug function, the automatic break processing starts when the power is turned on. *This flag is effective for the PMC-SC3/SC4.
\#0(IGNKEY) 0 : Function keys are enabled when a user program displays the user screen.
1: Function keys are disabled when a user program displays the user screen.
*This flag is effective for the PMC-SC3/SC4.
When this bit is set to 1 of the user screen, the screen cannot be switch to the NC screen using function keys. A program which always sets this bit to 0 or which changes the screen to the NC screen is required.

(K902 for SB6)
\#1(C-REJECT) 0 : A C-language program is activated.
1: A C-language program is forcibly activated.
*The flag is effective for the PMC-SC3/SC4.
These bits are status of not used for PMC management software are used by system. Do not change the values.
Usually all the bits are 0 .

1 Data table setting screen

a. Soft key [G.DATA] : Select data display screen of data table. (Next screen)
b. No. OF GROUPS
[G.CONT]: Set the no. of groups of data table.
c. Group No. [NO.SRH]: Move the cursor to a specified group.
d. Soft key [INIT]: Initializes the setting of data table.

No. of groups is 1 , ADDRESS is D0000, PARAMETER is 0000000 , TYPE is 0 , NO. OF DATA is 1860 .

This operation is done usually when a sequence program is prepared. When PMC parameters are set, internal parameters are not affected.

PARAMETER

0 : Binary format or BCD format (Bit 0 is valid)
1 : Hex format (Bit 0 is not valid)

TYPE

0:1-byte length 1:2-byte length 2:4-byte length
e. Using the page key selected.

2 Data display screen

a. Soft key [C.DATA] :Returns to the data table setting screen. (Previous screen)
b. Group No. [G-SRCH]: Head of the specified group is selected.
c. Address [SEARCH]: Searches an address in a group currently selected.

6.4
 LIST OF SIGNALS BY
 EACH MODE

- Automatic operation

MODE		INPUT/OUTPUT SIGNAL	FEED RATE, ETC
$\begin{aligned} & \text { A } \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{O} \\ & \mathrm{M} \\ & \mathrm{~A} \\ & \mathrm{~T} \\ & \mathrm{I} \\ & \mathrm{C} \\ & \mathrm{O} \\ & \mathrm{P} \\ & \mathrm{E} \\ & \mathrm{R} \\ & \mathrm{~A} \\ & \mathrm{~T} \\ & \mathrm{I} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	EDIT	$\begin{aligned} & \text { [PMC } \Rightarrow \text { CNC] } \\ & \text { KEY3(Program protect key) } \end{aligned}$	
	MEM MDI RMT		[PMC $\Rightarrow \mathrm{CNC}$] *FV0~7 (Feed rate override) *AFV0~7 (2nd feed rate override) OVC (Override can- cel) ROV1,ROV2, HROV, *HROVO~6 (Rapid traverse override) SOV0~7 (Spindle speed override)

- Manual operation

MODE		INPUT/OUTPUT SIGNAL	FEED RATE, ETC
M	Handle/ incremental	[PMC $\Rightarrow \mathrm{CNC}]$ HSnA~D (Axis selection) n:1~3(No. of MPGs) $+\alpha,-\alpha \quad$ (Jog feed)	$[\mathrm{PMC} \Rightarrow \mathrm{CNC}]$ MP1, MP2 (Multiplier)
U A L	JOG	$\stackrel{[\mathrm{PMC}}{\mathrm{RT}} \Rightarrow \underset{\text { (Rapid traverse) }}{\mathrm{CNC}]}$	$\begin{aligned} & {[\mathrm{PMC} \Rightarrow \mathrm{CNC}]} \\ & \text { *JV0~15 } \\ & \text { (Manual fee- } \end{aligned}$
O P E R A T I O N		[$\mathrm{PMC} \Rightarrow \mathrm{CNC}$] ZRN(Reference position return mode) [MT \Rightarrow CNC] *DEC α (Referenceposition deceleration) $\begin{aligned} & {[\mathrm{CNC} \Rightarrow \mathrm{PMC}]} \\ & \mathrm{ZP} \alpha \\ & \mathrm{ZP} 2 \alpha, \mathrm{ZP} 3 \alpha, \mathrm{ZP} 4 \alpha \end{aligned}$ (Reference position return completion)	drate override) $+\alpha,-\alpha \quad$ (Man ual feed move command) ROV1, ROV2 HROV *HROV0~6 (Rapid traverse override)

- Others

Others	[PMC $\Rightarrow \mathrm{CNC}]$ MD1~4 (Modeselection) *ESP (Emergency stop) KEY1~4 (Memory protection key) MLK,MLK \quad (All axes/ each axis machine lock) *IT,*IT α (All axes/ each axis machine lock) ${ }^{*} \pm$ MIT α (interlock per axis and direction:M series) STLK (Start lock:T series) *ABSM (Manualabsolute) SVF α (Servo off) *FLWP (Followup) ERS (External reset) RRW (Reset \& Rewind) EXLM (Stored stroke limit external switching) $\pm \mathrm{LM} \alpha$, RLSOT (Software limit external setting M series) ${ }^{*} \pm \mathrm{L} \alpha \quad$ (Overtravellimit) ${ }^{*} \pm E D \alpha \quad$ (External deceleration of each axis)
	[CMC \Rightarrow PMC] MA (NC ready) SA (Servo ready) AL (NC alarm) RST (Resetting) BAL (Battery alarm) INP α (In-position) MV α (Axis moving) TAP (Tapping)

6.5
 LIST OF INPUT/ OUTPUT SIGNALS

(1) For 1-path control

The relationship of the addresses of the interface signals transferred between the CNC and PMC are shown below.

(2) For 2-path control

The relationship of the addresses of the interface signals transferred between the CNC and PMC are shown below. Some signals common to both paths are included in the signals of path 1 .

- List of input/output signals

O: Usable
: Usable only with 2-path control

- : Not usable

Symbol	Signal name	Address	T series	M series
*+ED1 to *+ED8	External deceleration signal	G118	\bigcirc	\bigcirc
*+L1 to *+L8	Overtravel signal	G114	\bigcirc	\bigcirc
*-ED1 to *-ED8	External deceleration signal	G120	\bigcirc	\bigcirc
*-L1 to *-L8	Overtravel signal	G116	\bigcirc	\bigcirc
*ABSM	Manual absolute signal	G006\#2	\bigcirc	\bigcirc
*AFV0 to *AFV7	Second feedrate override signal	G013	\bigcirc	\bigcirc
*BECLP	B-axis clamp completion signal	G038\#7	-	\bigcirc
*BEUCP	B-axis unclamp completion signal	G038\#6	-	\bigcirc
*CHLD	Chopping hold signal	G051\#7	-	\bigcirc
*CHP8 to *CHP0	Chopping feedrate override signal	G051\#0 to \#3	-	\bigcirc
*CRTOF	Automatic screen erasure disable signal	G062\#1	\bigcirc	\bigcirc
*DEC1 to *DEC8	Deceleration signal for reference position return	X009	\bigcirc	\bigcirc
*EAXSL	Controlled axis selection state signal (PMC axis control)	F129\#7	\bigcirc	\bigcirc
*ESP		X008\#4	\bigcirc	\bigcirc
*ESP		G008\#4	\bigcirc	\bigcirc
*ESPA		G071\#1	\bigcirc	\bigcirc
*ESPB	Emergency stop signal (serial spindle)	G075\#1	\bigcirc	\bigcirc
*ESPC		G205\#1	\bigcirc	\bigcirc
*FLWU	Follow-up signal	G007\#5	\bigcirc	\bigcirc
*FV0 to *FV7	Feedrate override signal	G012	\bigcirc	\bigcirc
*FV0E to *FV7E	Feedrate override signal (PMC axis control)	G151	\bigcirc	\bigcirc
*FV00 to *FV70	Software operator's panel signal (*FV0 to *FV7)	F078	\bigcirc	\bigcirc
*HROV0 to *HROV6	1\% rapid traverse override signal	G096\#0 to \#6	\bigcirc	\bigcirc
*IT	All-axis interlock signal	G008\#0	\bigcirc	\bigcirc
*IT1 to *IT8	Specified-axis interlock signal	G130	\bigcirc	\bigcirc
*JV0 to *JV15	Manual feedrate override signal	G010, G011	\bigcirc	\bigcirc
*JV0O to *JV150	Software operator's panel signal (*JV0 to *JV15)	F079, F080	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
*PLSST	Polygon spindle stop signal	G038\#0	\bigcirc	-
*SCPF	Spindle clamp completion signal	G028\#5	\bigcirc	-
*SP	Automatic operation hold signal	G008\#5	\bigcirc	\bigcirc
*SSTP	Spindle stop signal	G029\#6	\bigcirc	\bigcirc
*SSTP1	Specified-axis stop signal	G027\#3	\bigcirc	-
*SSTP2		G027\#4	\bigcirc	-
*SSTP3		G027\#5	\bigcirc	-
*SUCPF	Spindle unclamp completion signal	G028\#4	\bigcirc	-
*TLV0 to *TLV9	Tool life count override signal	$\begin{aligned} & \text { G049\#0 to } \\ & \text { G050\#1 } \end{aligned}$	-	\bigcirc
*TSB	Tailstock barrier select signal	G060\#7	\bigcirc	-
+J1 to +J8	Feed axis direction select signal	G100	\bigcirc	\bigcirc
+J1O to +J4O	Software operator's panel signal (+J1 to +J4)	$\begin{aligned} & \text { F081\#0, \#2, } \\ & \text { \#4, \#6 } \end{aligned}$	\bigcirc	\bigcirc
+Jg, -Jg, +Ja, -Ja	Feed axis direction select signal	G086\#0 to \#3	\bigcirc	\bigcirc
+LM1 to +LM8	Stroke limit external setting signal	G110	-	\bigcirc
+MIT1, +MIT2	Manual feed interlock signal in each axis direction	X004\#2, \#4	\bigcirc	-
+MIT1, +MIT2	Tool compensation amount write signal	X004\#2, \#4	\bigcirc	-
+MIT1 to +MIT4	Interlock signal in each axis direction	G132\#0 to \#3	-	\bigcirc
-J1 to -J8	Feed axis direction select signal	G102	\bigcirc	\bigcirc
-J1O to -J4O	Software operator's panel signal (-J1 to -J4)	$\begin{aligned} & \text { F081\#1, \#3, } \\ & \# 5, \# 7 \end{aligned}$	\bigcirc	\bigcirc
-LM1 to -LM8	Stroke limit external setting signal	G112	-	\bigcirc
-MIT1, -MIT2	Manual feed interlock signal in each axis direction	X004\#3, \#5	\bigcirc	-
-MIT1, -MIT2	Tool compensation amount write signal	X004\#3, \#5	\bigcirc	-
-MIT1 to -MIT4	Interlock signal in each axis direction	G134\#0 to \#3	-	\bigcirc
ABTQSV	Servo axis abnormal load detection signal	F090\#0	\bigcirc	\bigcirc
ABTSP1	First spindle abnormal load detection signal	F090\#1	\bigcirc	\bigcirc
ABTSP2	Second spindle abnormal load detection signal	F090\#2	\bigcirc	\bigcirc
ABTSP3	Third spindle abnormal load detection signal	F090\#3	\bigcirc	\bigcirc
AFL	Auxiliary function lock signal	G005\#6	\bigcirc	\bigcirc
AL	Alarm in-progress signal	F001\#0	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
ALMA	Alarm signal (serial spindle)	F045\#0	\bigcirc	\bigcirc
ALMB		F049\#0	\bigcirc	\bigcirc
ALMC		F168\#0	\bigcirc	\bigcirc
ALNGH	Tool axis direction handle feed mode signal	G023\#7	-	\bigcirc
AR0 to AR15	Actual spindle speed signal	F040, F041	\bigcirc	-
ARSTA	Alarm reset signal (serial spindle)	G071\#0	\bigcirc	\bigcirc
ARSTB		G075\#0	\bigcirc	\bigcirc
ARSTC		G205\#0	\bigcirc	\bigcirc
B00 to B31	Second auxiliary function code signal	F030 to F033	\bigcirc	\bigcirc
BAL	Battery alarm signal	F001\#2	\bigcirc	\bigcirc
BCLP	B-axis clamp signal	F061\#1	-	\bigcirc
BDT1, BDT2 to BDT9	Optional block skip signal	G044\#0, G045	\bigcirc	\bigcirc
BDTO	Software operator's panel signal (BDT)	F075\#2	\bigcirc	\bigcirc
BF	Second auxiliary function strobe signal	F007\#4	\bigcirc	-
BF		F007\#7	-	\bigcirc
BFIN	Second auxiliary function completion signal	G005\#4	\bigcirc	-
BFIN		G005\#7	-	\bigcirc
BGEACT	Background in-use signal	F053\#4	\bigcirc	\bigcirc
BGEN	Power Mate background in-use signal	G092\#4	\bigcirc	\bigcirc
BGIALM	Power Mate read/write alarm signal	G092\#3	\bigcirc	\bigcirc
BGION	Power Mate read/write in-progress signal	G092\#2	\bigcirc	\bigcirc
BUCLP	B-axis unclamp signal	F061\#0	-	\bigcirc
CDZ	Chamfering signal	G053\#7	\bigcirc	-
CFINA	Spindle switching completion signal (serial spindle)	F046\#1	\bigcirc	\bigcirc
CFINB		F050\#1	\bigcirc	\bigcirc
CFINC		F169\#1	\bigcirc	\bigcirc
CHPA	Power line switch signal (serial spindle)	F046\#0	\bigcirc	\bigcirc
CHPB		F050\#0	\bigcirc	\bigcirc
CHPC		F169\#0	\bigcirc	\bigcirc
CHPCYL	Chopping in-operation signal	F039\#3	-	\bigcirc
CHPMD	Chopping in-progress signal	F039\#2	-	\bigcirc
CHPST	Chopping activation signal	G051\#6	-	\bigcirc

Symbol	Signal name	Address	T series	M series
CLRCH1 to CLRCH8	Torque limit reached signal for butt-type reference position setting	F180	\bigcirc	\bigcirc
CON	Cs contour control switch signal	G027\#7	\bigcirc	\bigcirc
COSP	Spindle command signal	F064\#5	-	-
CSS	Constant surface speed signal	F002\#2	\bigcirc	\bigcirc
CTH1A, CTH2A	Clutch/gear signal (serial spindle)	G070\#3, \#2	\bigcirc	\bigcirc
CTH1B, CTH2B		G074\#3, \#2	\bigcirc	\bigcirc
CTH1C, CTH2C		G204\#3, \#2	\bigcirc	\bigcirc
CUT	Cutting feed in-progress signal	F002\#6	\bigcirc	\bigcirc
DEFMDA	Differential speed mode command signal (serial spindle)	G072\#3	\bigcirc	\bigcirc
DEFMDB		G076\#3	\bigcirc	\bigcirc
DEFMDC		G206\#3	\bigcirc	\bigcirc
DEN	Distribution completion signal	F001\#3	\bigcirc	\bigcirc
DM00	M decode signal	F009\#7	\bigcirc	\bigcirc
DM01		F009\#6	\bigcirc	\bigcirc
DM02		F009\#5	\bigcirc	\bigcirc
DM30		F009\#4	\bigcirc	\bigcirc
DMMC	Direct operation select signal	G042\#7	\bigcirc	\bigcirc
DNCI	DNC operation select signal	G043\#5	\bigcirc	\bigcirc
DRN	Dry run signal	G046\#7	\bigcirc	\bigcirc
DRNE	Dry run signal (PMC axis control)	G150\#7	\bigcirc	\bigcirc
DRNO	Software operator's panel signal (DRN)	F075\#5	\bigcirc	\bigcirc
DSP1, DSP2, DSP3	Spindle motor speed detection signal	$\mathrm{Y}(\mathrm{n}+1) \# 0$ to \#2	\bigcirc	\bigcirc
DSV1 to DSV8	Servo motor speed detection signal	$\mathrm{Y}(\mathrm{n}+0)$	\bigcirc	\bigcirc
DTCH1 to DTCH8	Controlled axis detach signal	G124	\bigcirc	\bigcirc
EA0 to EA6	Address signal for external data input	G002\#0 to \#6	\bigcirc	\bigcirc
EABUFA	Buffer full signal (PMC axis control)	F131\#1	\bigcirc	\bigcirc
EABUFB		F134\#1	\bigcirc	\bigcirc
EABUFC		F137\#1	\bigcirc	\bigcirc
EABUFD		F140\#1	\bigcirc	\bigcirc
EACNT1 to EACNT8	Control in-progress signal (PMC axis control)	F182	\bigcirc	\bigcirc
EADEN1 to EADEN8	Distribution completion signal (PMC axis control)	F112	\bigcirc	\bigcirc
EAX1 to EAX8	Controlled axis select signal (PMC axis control)	G136	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
EBSYA	Axis control command read completion signal (PMC axis control)	F130\#7	\bigcirc	\bigcirc
EBSYB		F133\#7	\bigcirc	\bigcirc
EBSTC		F136\#7	\bigcirc	\bigcirc
EBSYD		F139\#7	\bigcirc	\bigcirc
EBUFA	Axis control command read signal (PMC axis control)	G142\#7	\bigcirc	\bigcirc
EBUFB		G154\#7	\bigcirc	\bigcirc
EBUFC		G166\#7	\bigcirc	\bigcirc
EBUFD		G178\#7	\bigcirc	\bigcirc
EC0A to EC6A	Axis control command signal (PMC axis control)	G143\#0 to \#6	\bigcirc	\bigcirc
EC0B to EC6B		G155\#0 to \#6	\bigcirc	\bigcirc
EC0C to EC6C		G167\#0 to \#6	\bigcirc	\bigcirc
EC0D to EC6D		G179\#0 to \#6	\bigcirc	\bigcirc
ECKZA	Accumulated pulse zero check in-progress signal (PMC axis control)	F130\#1	\bigcirc	\bigcirc
ECKZB		F133\#1	\bigcirc	\bigcirc
ECKZC		F136\#1	\bigcirc	\bigcirc
ECKZD		F139\#1	\bigcirc	\bigcirc
ECLRA	Reset signal (PMC axis control)	G142\#6	\bigcirc	\bigcirc
ECLRB		G154\#6	\bigcirc	\bigcirc
ECLRC		G166\#6	\bigcirc	\bigcirc
ECLRD		G178\#6	\bigcirc	\bigcirc
ED0 to ED15	Data signal for external data input	G000, G001	\bigcirc	\bigcirc
EDENA	Auxiliary function execution in-progress signal (PMC axis control)	F130\#3	\bigcirc	\bigcirc
EDENB		F133\#3	\bigcirc	\bigcirc
EDENC		F136\#3	\bigcirc	\bigcirc
EDEND		F139\#3	\bigcirc	\bigcirc
EDGN	Slave diagnose select signal	F177\#7	\bigcirc	\bigcirc
EF	External operation signal	F008\#0	-	\bigcirc
EFD	External operation signal for high-speed interface	F007\#1	-	\bigcirc
EFIN	External operation function completion signal	G005\#1	-	\bigcirc

Symbol	Signal name	Address	T series	M series
EFINA	Auxiliary function completion signal (PMC axis control)	G142\#0	\bigcirc	\bigcirc
EFINB		G154\#0	\bigcirc	\bigcirc
EFINC		G166\#0	\bigcirc	\bigcirc
EFIND		G178\#0	\bigcirc	\bigcirc
EGENA	Axis movement in-progress signal (PMC axis control)	F130\#4	\bigcirc	\bigcirc
EGENB		F133\#4	\bigcirc	\bigcirc
EGENC		F136\#4	\bigcirc	\bigcirc
EGEND		F139\#4	\bigcirc	\bigcirc
EIALA	Alarm in-progress signal (PMC axis control)	F130\#2	\bigcirc	\bigcirc
EIALB		F133\#2	\bigcirc	\bigcirc
EIALC		F136\#2	\bigcirc	\bigcirc
EIALD		F139\#2	\bigcirc	\bigcirc
EID0A to EID31A	Axis control data signal (PMC axis control)	G146 to G149	\bigcirc	\bigcirc
EID0B to EID31B		G158 to G161	\bigcirc	\bigcirc
EID0C to EID31C		G170 to G173	\bigcirc	\bigcirc
EID0D to EID31D		G182 to G185	\bigcirc	\bigcirc
EIF0A to EIF15A	Axis control feedrate signal (PMC axis control)	G144, G145	\bigcirc	\bigcirc
EIF0B to EIF15B		G156, G157	\bigcirc	\bigcirc
EIF0C to EIF15C		G168, G169	\bigcirc	\bigcirc
EIF0D to EIF15D		G180, G181	\bigcirc	\bigcirc
EINPA	In-position signal (PMC axis control)	F130\#0	\bigcirc	\bigcirc
EINPB		F133\#0	\bigcirc	\bigcirc
EINPC		F136\#0	\bigcirc	\bigcirc
EINPD		F139\#0	\bigcirc	\bigcirc
EKC0 to EKC7	Key code signal	G098	\bigcirc	\bigcirc
EKENB	Key code read completion signal	F053\#7	\bigcirc	\bigcirc
EKSET	Key code read signal	G066\#7	\bigcirc	\bigcirc
EM11A to EM48A	Auxiliary function code signal (PMC axis control)	F132, F142	\bigcirc	\bigcirc
EM11B to EM48B		F135, F145	\bigcirc	\bigcirc
EM11C to EM48C		F138, F148	\bigcirc	\bigcirc
EM11D to EM48D		F141, F151	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
EMBUFA	Buffering prohibition signal (PMC axis control)	G142\#2	\bigcirc	\bigcirc
EMBUFB		G154\#2	\bigcirc	\bigcirc
EMBUFC		G166\#2	\bigcirc	\bigcirc
EMBUFD		G178\#2	\bigcirc	\bigcirc
EMFA	Auxiliary function strobe signal (PMC axis control)	F131\#0	\bigcirc	\bigcirc
EMFB		F134\#0	\bigcirc	\bigcirc
EMFC		F137\#0	\bigcirc	\bigcirc
EMFD		F140\#0	\bigcirc	\bigcirc
EMSBKA	Block stop prohibition signal (PMC axis control)	G143\#7	\bigcirc	\bigcirc
EMSBKB		G155\#7	\bigcirc	\bigcirc
EMSBKC		G167\#7	\bigcirc	\bigcirc
EMSBKD		G179\#7	\bigcirc	\bigcirc
ENB	Spindle enable signal	F001\#4	\bigcirc	\bigcirc
ENB2		F038\#2	\bigcirc	-
ENB3		F038\#3	\bigcirc	-
ENBKY	External key input mode select signal	G066\#1	\bigcirc	\bigcirc
EOTNA	Overtravel negative direction signal (PMC axis control)	F130\#6	\bigcirc	\bigcirc
EOTNB		F133\#6	\bigcirc	\bigcirc
EOTNC		F136\#6	\bigcirc	\bigcirc
EOTND		F139\#6	\bigcirc	\bigcirc
EOTPA	Overtravel positive direction signal (PMC axis control)	F130\#5	\bigcirc	\bigcirc
EOTPB		F133\#5	\bigcirc	\bigcirc
EOTPC		F136\#5	\bigcirc	\bigcirc
EOTPD		F139\#5	\bigcirc	\bigcirc
EOVO	Override 0\% signal (PMC axis control)	F129\#5	\bigcirc	\bigcirc
EPARM	Slave parameter select signal	F177\#6	\bigcirc	\bigcirc
EPRG	Slave program select signal	F177\#4	\bigcirc	\bigcirc
ERDIO	Slave external read start signal	F177\#1	\bigcirc	\bigcirc
EREND	Read completion signal for external data input	F060\#0	\bigcirc	\bigcirc
ERS	External reset signal	G008\#7	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
ESBKA	Block stop signal (PMC axis control)	G142\#3	\bigcirc	\bigcirc
ESBKB		G154\#3	\bigcirc	\bigcirc
ESBKC		G166\#3	\bigcirc	\bigcirc
ESBKD		G178\#3	\bigcirc	\bigcirc
ESEND	Search completion signal for external data input	F060\#1	\bigcirc	\bigcirc
ESKIP	Skip sheet (PMC axis control)	X004\#6	\bigcirc	\bigcirc
ESOFA	Servo-off signal (PMC axis control)	G142\#4	\bigcirc	\bigcirc
ESOFB		G154\#4	\bigcirc	\bigcirc
ESOFC		G166\#4	\bigcirc	\bigcirc
ESOFD		G178\#4	\bigcirc	\bigcirc
ESRSYC	Spindle simple synchronization control	G064\#6	\bigcirc	\bigcirc
ESTB	Read signal for external data input	G002\#7	\bigcirc	\bigcirc
ESTPA	Axis control temporary stop signal (PMC axis control)	G142\#5	\bigcirc	\bigcirc
ESTPB		G154\#5	\bigcirc	\bigcirc
ESTPC		G166\#5	\bigcirc	\bigcirc
ESTPD		G178\#5	\bigcirc	\bigcirc
ESTPIO	Slave read/write stop signal	F177\#2	\bigcirc	\bigcirc
EVAR	Slave macro variable select signal	F177\#5	\bigcirc	\bigcirc
EWTIO	Slave external write start signal	F177\#3	\bigcirc	\bigcirc
EXHPCC	HPCC in-operation signal	F066\#7	-	\bigcirc
EXLM	Stored stroke limit switch signal	G007\#6	\bigcirc	\bigcirc
EXRD	External read start signal	G058\#1	\bigcirc	\bigcirc
EXSTP	External read/punch stop signal	G058\#2	\bigcirc	\bigcirc
EXWT	External punch start signal	G058\#3	\bigcirc	\bigcirc
F1D	F1 digit feed select signal	G016\#7	-	\bigcirc
FIN	Completion signal	G004\#3	\bigcirc	\bigcirc
FRP1 to FRP8	Floating reference position return completion signal	F116	\bigcirc	\bigcirc
FSCSL	Cs contour control switching completion signal	F044\#1	\bigcirc	\bigcirc
FSPPH	Spindle phase synchronization control completion signal	F044\#3	\bigcirc	\bigcirc
FSPSY	Spindle synchronization speed control completion signal	F044\#2	\bigcirc	\bigcirc
G08MD	Advanced preview mode signal	F066\#0	-	\bigcirc

Symbol	Signal name	Address	T series	M series
GOQSM	Tool compensation amount write mode select signal	G039\#7	\bigcirc	-
GR1, GR2	Gear select signal (input)	G028\#1, \#2	\bigcirc	\bigcirc
GR1O, GR2O, GR3O	Gear select signal (output)	F034\#0 to \#2	-	\bigcirc
GR21	Gear select signal (input)	G029\#0	\bigcirc	-
GR31		G029\#2	\bigcirc	-
HDO0 to HDO7	High-speed skip state signal	F122	\bigcirc	\bigcirc
HEAD	Path select signal (tool post select signal)	G063\#0	-	-
HROV	1\% rapid traverse override select signal	G096\#7	\bigcirc	\bigcirc
HS1A to HS1D	Manual handle feed axis select signal	G018\#0 to \#3	\bigcirc	\bigcirc
HS1AO	Software operator's panel signal (HS1A)	F077\#0	\bigcirc	\bigcirc
HS1BO	Software operator's panel signal (HS1B)	F077\#1	\bigcirc	\bigcirc
HS1CO	Software operator's panel signal (HS1C)	F077\#2	\bigcirc	\bigcirc
HS1DO	Software operator's panel signal (HS1D)	F077\#3	\bigcirc	\bigcirc
HS1IA to HS1ID	Manual handle interrupt axis select signal	G041\#0 to \#3	\bigcirc	\bigcirc
HS2A to HS2D	Manual handle feed axis select signal	G018\#4 to \#7	\bigcirc	\bigcirc
HS2IA to HS2ID	Manual handle interrupt axis select signal	G041\#4 to \#7	\bigcirc	\bigcirc
HS3A to HS3D	Manual handle feed axis select signal	G019\#0 to \#3	-	\bigcirc
HS3IA to HS3ID	Manual handle interrupt axis select signal	G042\#0 to \#3	-	\bigcirc
IGNVRY	All-axis VRDY OFF alarm ignore signal	G066\#0	\bigcirc	\bigcirc
IGVRY1 to IGVRY8	Specified-axis VRDY OFF alarm ignore signal	G192	\bigcirc	\bigcirc
INCH	Inch input signal	F002\#0	\bigcirc	\bigcirc
INCMDA	Orientation signal of incremental command external setting type (serial spindle)	G072\#5	\bigcirc	\bigcirc
INCMDB		G076\#5	\bigcirc	\bigcirc
INCMDC		G206\#5	\bigcirc	\bigcirc
INCSTA	Incremental orientation mode signal (serial spindle)	F047\#1	\bigcirc	\bigcirc
INCSTB		F051\#1	\bigcirc	\bigcirc
INCSTC		F170\#1	\bigcirc	\bigcirc
INDXA	Orientation stop position change command signal (serial spindle)	G072\#0	\bigcirc	\bigcirc
INDXB		G076\#0	\bigcirc	\bigcirc
INDXC		G206\#0	\bigcirc	\bigcirc
INFD	In-feed cutting start signal	G063\#6	-	\bigcirc
INHKY	Key input disable signal	F053\#0	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
INP1 to INP8	In-position signal	F104	\bigcirc	\bigcirc
INTGA	Speed integration control signal (serial spindle)	G071\#5	\bigcirc	\bigcirc
INTGB		G075\#5	\bigcirc	\bigcirc
INTGC		G205\#5	\bigcirc	\bigcirc
IOLACK	I/O Link confirmation signal	G092\#0	\bigcirc	\bigcirc
IOLNK	Slave I/O Link select signal	F177\#0	\bigcirc	\bigcirc
IOLS	I/O Link specification signal	G092\#1	\bigcirc	\bigcirc
KEY1 to KEY4	Memory protection signal	G046\#3 to \#6	\bigcirc	\bigcirc
KEYO	Software operator's panel signal (KEY1 to KEY4)	F075\#6	\bigcirc	\bigcirc
LDT1A	Load detection signal 1 (serial spindle)	F045\#4	\bigcirc	\bigcirc
LDT1B		F049\#4	\bigcirc	\bigcirc
LDT1C		F168\#4	\bigcirc	\bigcirc
LDT2A	Load detection signal 2 (serial spindle)	F045\#5	\bigcirc	\bigcirc
LDT2B		F049\#5	\bigcirc	\bigcirc
LDT2C		F168\#5	\bigcirc	\bigcirc
M00 to M31	Auxiliary function code signal	F010 to F013	\bigcirc	\bigcirc
M200 to M215	Second miscellaneous function code signal	F014 to F015	\bigcirc	\bigcirc
M300 to M315	Third miscellaneous function code signal	F016 to F017	\bigcirc	\bigcirc
MA	Read signal	F001\#7	\bigcirc	\bigcirc
MABSM	Manual absolute confirmation signal	F004\#2	\bigcirc	\bigcirc
MAFL	Auxiliary function lock confirmation signal	F004\#4	\bigcirc	\bigcirc
MBDT1, MBDT2 to MBDT9	Optional block skip confirmation signal	F004\#0, F005	\bigcirc	\bigcirc
MCFNA	Power line switching completion signal (serial spindle)	G071\#3	\bigcirc	\bigcirc
MCFNB		G075\#3	\bigcirc	\bigcirc
MCFNC		G205\#3	\bigcirc	\bigcirc
MD1, MD2, MD4	Mode select signal	G043\#0 to \#2	\bigcirc	\bigcirc
MD1O	Software operator's panel signal (MD1)	F073\#0	\bigcirc	\bigcirc
MD2O	Software operator's panel signal (MD2)	F073\#1	\bigcirc	\bigcirc
MD4O	Software operator's panel signal (MD4)	F073\#2	\bigcirc	\bigcirc
MDRN	Dry run confirmation signal	F002\#7	\bigcirc	\bigcirc
MDTCH1 to MDTCH8	Controlled axis detach in-progress signal	F110	\bigcirc	\bigcirc
MEDT	Memory editing selection confirmation signal	F003\#6	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
MF	Auxiliary function strobe signal	F007\#0	\bigcirc	\bigcirc
MF2	Second miscellaneous function strobe signal	F008\#4	\bigcirc	\bigcirc
MF3	Third miscellaneous function strobe signal	F008\#5	\bigcirc	\bigcirc
MFIN	Auxiliary function completion signal	G005\#0	\bigcirc	\bigcirc
MFIN2	Second miscellaneous function completion signal	G004\#4	\bigcirc	\bigcirc
MFIN3	Third miscellaneous function completion signal	G004\#5	\bigcirc	\bigcirc
MFNHGA	Spindle switching main side MCC contact state signal (serial spindle)	G072\#6	\bigcirc	\bigcirc
MFNHGB		G076\#6	\bigcirc	\bigcirc
MFNHGC		G206\#6	\bigcirc	\bigcirc
MH	Manual handle feed selection confirmation signal	F003\#1	\bigcirc	\bigcirc
MHPCC	HPCC mode signal	F066\#6	-	\bigcirc
MI1 to MI8	Mirror image signal	G106	\bigcirc	\bigcirc
MINC	Incremental feed selection confirmation signal	F003\#0	\bigcirc	\bigcirc
MINP	Program input external activation signal	G058\#0	\bigcirc	\bigcirc
MIX1 to MIX7	Composite control axis select signal	G128\#0 to \#6	-	-
MJ	Jog feed selection confirmation signal	F003\#2	\bigcirc	\bigcirc
MLK	All-axis machine lock signal	G044\#1	\bigcirc	\bigcirc
MLK1 to MLK8	Specified-axis machine lock signal	G108	\bigcirc	\bigcirc
MLKO	Software operator's panel signal (MLX)	F075\#4	\bigcirc	\bigcirc
MMDI	Manual data input selection confirmation signal	F003\#3	\bigcirc	\bigcirc
MMEM	Automatic operation selection confirmation signal	F003\#5	\bigcirc	\bigcirc
MMI1 to MMI8	Mirror image confirmation signal	F108	\bigcirc	\bigcirc
MMLK	All-axis machine lock confirmation signal	F004\#1	\bigcirc	\bigcirc
MORA1A	Magnetic sensor based orientation completion signal (serial spindle)	F046\#6	\bigcirc	\bigcirc
MORA1B		F050\#6	\bigcirc	\bigcirc
MORA1C		F169\#6	\bigcirc	\bigcirc
MORA2A	Magnetic sensor based orientation vicinity signal (serial spindle)	F046\#7	\bigcirc	\bigcirc
MORA2B		F050\#7	\bigcirc	\bigcirc
MORA2C		F169\#7	\bigcirc	\bigcirc
MORCMA	Magnetic sensor based orientation command signal (serial spindle)	G073\#0	\bigcirc	\bigcirc
MORCMB		G077\#0	\bigcirc	\bigcirc
MORCMC		G207\#0	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
MP1, MP2	Manual handle feed travel distance select signal (incremental feed signal)	G019\#4, \#5	\bigcirc	\bigcirc
MP10	Software operator's panel signal (MP1)	F076\#0	\bigcirc	\bigcirc
MP2O	Software operator's panel signal (MP2)	F076\#1	\bigcirc	\bigcirc
MPOFA	Motor power removal command signal (serial spindle)	G073\#2	\bigcirc	\bigcirc
MPOFB		G077\#2	\bigcirc	\bigcirc
MPOFC		G207\#2	\bigcirc	\bigcirc
MRDYA	Machine ready signal (serial spindle)	G070\#7	\bigcirc	\bigcirc
MRDYB		G074\#7	\bigcirc	\bigcirc
MRDYC		G204\#7	\bigcirc	\bigcirc
MREF	Manual reference position return selection confirmation signal	F004\#5	\bigcirc	\bigcirc
MRMT	DNC operation selection confirmation signal	F003\#4	\bigcirc	\bigcirc
MSBK	Single block confirmation signal	F004\#3	\bigcirc	\bigcirc
MSDFON	Motor speed detection function enable signal	G016\#0	\bigcirc	\bigcirc
MTCHIN	Teach-in selection confirmation signal	F003\#7	\bigcirc	\bigcirc
MV1 to MV8	Axis movement in-progress signal	F102	\bigcirc	\bigcirc
MVD1 to MVD8	Axis movement direction signal	F106	\bigcirc	\bigcirc
NOWT	Wait ignore signal	G063\#1	-	-
NOZAGC	Orthogonal axis/slant axis control disable signal	G063\#5	\bigcirc	\bigcirc
NPOS1 to NPOS8	Position indication ignore signal	G198	\bigcirc	\bigcirc
NRROA	Shortcut command signal for orientation stop position change (serial spindle)	G072\#2	\bigcirc	\bigcirc
NRROB		G076\#2	\bigcirc	\bigcirc
NRROC		G206\#2	\bigcirc	\bigcirc
OFN0 to OFN5, OFN6	Tool compensation number select signal	$\begin{aligned} & \text { G039\#0 to \#5, } \\ & \text { G040\#0 } \end{aligned}$	\bigcirc	-
OP	Automatic operation in-progress signal	F000\#7	\bigcirc	\bigcirc
ORARA	Orientation completion signal (serial spindle)	F045\#7	\bigcirc	\bigcirc
ORARB		F049\#7	\bigcirc	\bigcirc
ORARC		F168\#7	\bigcirc	\bigcirc
ORCMA	Orientation command signal (serial spindle)	G070\#6	\bigcirc	\bigcirc
ORCMB		G074\#6	\bigcirc	\bigcirc
ORCMC		G204\#6	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
OUT0 to OUT7	Software operator's panel general-purpose switch signal	F072	\bigcirc	\bigcirc
OVC	Override cancel signal	G006\#4	\bigcirc	\bigcirc
OVCE	Override cancel signal (PMC axis control)	G150\#5	\bigcirc	\bigcirc
OVLS1 to OVLS7	Superposition control axis select signal	G190\#0 to \#6	\bigcirc	-
OVRIDA	Analog override signal (serial spindle)	G072\#4	\bigcirc	\bigcirc
OVRIDB		G076\#4	\bigcirc	\bigcirc
OVRIDC		G206\#4	\bigcirc	\bigcirc
PC1DEA	Position coder one-rotation signal detection state signal (serial spindle)	F047\#0	\bigcirc	\bigcirc
PC1DEB		F051\#0	\bigcirc	\bigcirc
PC1DEC		F170\#0	\bigcirc	\bigcirc
PC2SLC	Second position coder select signal	G028\#7	\bigcirc	-
PECK2	Small-diameter peck drilling cycle execution in-progress signal	F066\#5	-	\bigcirc
PDT1	Conversational mode select signal	G062\#4	\bigcirc	-
PDT2	Restart operation notification signal	G062\#5	\bigcirc	-
PK1 to PK8	Parking signal	G122	\bigcirc	-
PK1 to PK7		G122\#0 to \#6	-	-
PKESS1	First spindle parking signal	$\begin{aligned} & \hline \text { G122\#6 } \\ & \text { (G031\#6) } \end{aligned}$	\bigcirc	\bigcirc
PKESS2	Second spindle parking signal	$\begin{array}{\|l\|} \hline \text { G122\#7 } \\ \text { (G031\#7) } \end{array}$	\bigcirc	\bigcirc
PN1, PN2, PN4, PN8, PN16	Workpiece number search signal	G009\#0 to 4	\bigcirc	\bigcirc
PORA2A	Position coder based orientation vicinity signal (serial spindle)	F046\#5	\bigcirc	\bigcirc
PORA2B		F050\#5	\bigcirc	\bigcirc
PORA2C		F169\#5	\bigcirc	\bigcirc
PRC	Position record signal	G040\#6	\bigcirc	-
PRGDPL	Program screen display in-progress signal	F053\#1	\bigcirc	\bigcirc
PRTSF	Required part count reached signal	F062\#7	\bigcirc	\bigcirc
PSAR	Spindle polygon speed reached signal	F063\#2	\bigcirc	-
PSE1	Polygon master axis unreached signal	F063\#0	\bigcirc	-
PSE2	Polygon synchronization axis unreached signal	F063\#1	\bigcirc	-
PSW01 to PSW10	Position switch signal	$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { F070\#0 to } \\ \text { F071\#1 } \end{array}\right. \\ \hline \end{array}$	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
PSYN	Polygon synchronization in-progress signal	F063\#7	\bigcirc	-
R01I to R12\|	Spindle motor speed command signal	$\begin{aligned} & \text { G032\#0 to } \\ & \text { G033\#3 } \end{aligned}$	\bigcirc	\bigcirc
R0112 to R12l2		$\begin{aligned} & \text { G034\#0 to } \\ & \text { G035\#3 } \end{aligned}$	\bigcirc	\bigcirc
R0113 to R1213		$\begin{aligned} & \text { G036\#0 to } \\ & \text { G037\#3 } \end{aligned}$	\bigcirc	\bigcirc
R01O to R12O	S12 bit code signal	$\begin{aligned} & \text { F036\#0 to } \\ & \text { F037\#3 } \end{aligned}$	\bigcirc	\bigcirc
RCFNA	Output switching completion signal (serial spindle)	F046\#3	\bigcirc	\bigcirc
RCFNB		F050\#3	\bigcirc	\bigcirc
RCFNC		F169\#3	\bigcirc	\bigcirc
RCHA	Power line state confirmation signal (serial spindle)	G071\#7	\bigcirc	\bigcirc
RCHB		G075\#7	\bigcirc	\bigcirc
RCHC		G205\#7	\bigcirc	\bigcirc
RCHHGA	Spindle switching high side MCC contact state signal (serial spindle)	G072\#7	\bigcirc	\bigcirc
RCHHGB		G076\#7	\bigcirc	\bigcirc
RCHHGC		G206\#7	\bigcirc	\bigcirc
RCHPA	Output switch signal (serial spindle)	F046\#2	\bigcirc	\bigcirc
RCHPB		F050\#2	\bigcirc	\bigcirc
RCHPC		F169\#2	\bigcirc	\bigcirc
RCYO	Machining restart completion signal	F063\#5		\bigcirc
RGHTH	Tool axis right-angle direction handle feed mode signal	G023\#6	-	\bigcirc
RGSPM	Spindle rotation direction signal	F065\#1	-	\bigcirc
RGSPP		F065\#0	-	\bigcirc
RGTAP	Rigid tapping signal	G061\#0	\bigcirc	\bigcirc
RGTSP1, RGTSP2	Rigid tapping spindle select signal	G061\#4, \#5	\bigcirc	-
RLSOT	Stroke limit release signal	G007\#7	-	\bigcirc
RLSOT3	Stroke limit 3 release signal	G007\#4	\bigcirc	\bigcirc
RMTDI0 to RMTDI7	Input signal for remote buffer	G052	\bigcirc	\bigcirc
RMTDO0 to RMTDO7	Output signal for remote buffer	F069	\bigcirc	\bigcirc
ROTAA	Rotation direction command signal for orientation stop position change (serial spindle)	G072\#1	\bigcirc	\bigcirc
ROTAB		G076\#1	\bigcirc	\bigcirc
ROTAC		G206\#1	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
ROV1, ROV2	Rapid traverse override signal	G014\#0, \#1	\bigcirc	\bigcirc
ROV1E, ROV2E	Rapid traverse override signal (PMC axis control)	G150\#0, \#1	\bigcirc	\bigcirc
ROV10	Software operator's panel signal (ROV1)	F076\#4	\bigcirc	\bigcirc
ROV2O	Software operator's panel signal (ROV2)	F076\#5	\bigcirc	\bigcirc
RPALM	Read/punch alarm signal	F053\#3	\bigcirc	\bigcirc
RPBSY	Read/punch in-progress signal	F053\#2	\bigcirc	\bigcirc
RPDO	Rapid traverse in-progress signal	F002\#1	\bigcirc	\bigcirc
RRW	Reset and rewind signal	G008\#6	\bigcirc	\bigcirc
RSLA		G071\#6	\bigcirc	\bigcirc
RSLB	Output switching request signal (serial spindle)	G075\#6	\bigcirc	\bigcirc
RSLC		G205\#6	\bigcirc	\bigcirc
RST	Reset in-progress signal	F001\#1	\bigcirc	\bigcirc
RT	Manual rapid traverse select signal	G019\#7	\bigcirc	\bigcirc
RTAP	Rigid tapping mode signal	F076\#3	\bigcirc	\bigcirc
RTE	Manual rapid traverse select signal (PMC axis control)	G150\#6	\bigcirc	\bigcirc
RTO	Software operator's panel signal (RT)	F077\#6	\bigcirc	\bigcirc
RTNCY	Machining restart activation signal	G064\#0	-	\bigcirc
RTNMVS	Machining start point signal	F066\#3	-	\bigcirc
RTRCT	Retract signal	G066\#4	-	\bigcirc
RTRCTF	Retract completion signal	F065\#4	-	\bigcirc
RVS	Reverse movement signal	G007\#0	-	\bigcirc
RVSL	Reverse movement in-progress signal	F082\#2	-	\bigcirc
RWD	Rewind in-progress signal	F000\#0	\bigcirc	\bigcirc
S00 to S31	Spindle function code signal	F022 to F025	\bigcirc	\bigcirc
SA	Servo ready signal	F000\#6	\bigcirc	\bigcirc
SAR	Speed reached signal	G029\#4	\bigcirc	\bigcirc
SARA		F045\#3	\bigcirc	\bigcirc
SARB	Speed reached signal (serial spindle)	F049\#3	\bigcirc	\bigcirc
SARC		F168\#3	\bigcirc	\bigcirc
SBK	Single block signal	G046\#1	\bigcirc	\bigcirc
SBKO	Software operator's panel signal (SBK)	F075\#3	\bigcirc	\bigcirc
SCLP	Spindle clamp signal	F038\#0	\bigcirc	-

Symbol	Signal name	Address	T series	M series
SDTA	Speed detection signal (serial spindle)	F045\#2	\bigcirc	\bigcirc
SDTB		F049\#2	\bigcirc	\bigcirc
SDTC		F168\#2	\bigcirc	\bigcirc
SF	Spindle function strobe signal	F007\#2	\bigcirc	\bigcirc
SFIN	Spindle function completion signal	G005\#2	\bigcirc	\bigcirc
SFRA	Forward rotation command signal (serial spindle)	G070\#5	\bigcirc	\bigcirc
SFRB		G074\#5	\bigcirc	\bigcirc
SFRC		G204\#5	\bigcirc	\bigcirc
SGN	Spindle motor command polarity specification signal	G033\#5	\bigcirc	\bigcirc
SGN2		G035\#5	\bigcirc	\bigcirc
SGN3		G037\#5	\bigcirc	\bigcirc
SHA00 to SHA11	Spindle orientation external stop position command signal	$\begin{aligned} & \text { G078\#0 to } \\ & \text { G079\#3 } \end{aligned}$	\bigcirc	\bigcirc
SHB00 to SHB11		$\begin{aligned} & \text { G080\#0 to } \\ & \text { G081\#3 } \end{aligned}$	\bigcirc	\bigcirc
SHC00 to SHC11		$\begin{aligned} & \text { G208\#0 to } \\ & \text { G209\#3 } \end{aligned}$	\bigcirc	\bigcirc
SIND	Spindle motor speed command select signal	G033\#7	\bigcirc	\bigcirc
SIND2		G035\#7	\bigcirc	\bigcirc
SIND3		G037\#7	\bigcirc	\bigcirc
SKIP	Skip signal	X004\#7	\bigcirc	\bigcirc
	Overload torque signal	X004\#7	-	\bigcirc
SKIP2 to SKIP6, SKIP7, SKIP8	Skip signal	X004\#2 to \#6, \#0, \#1	\bigcirc	\bigcirc
SKIPP		G006\#6	\bigcirc	-
SLCSRQ	Machining restart point select signal	G064\#1	-	\bigcirc
SLPCA, SLPCB	Spindle feedback select signal Spindle command select signal	G064\#2, \#3	-	-
SLSPA, SLSPB		G063\#2, \#3	\bigcirc	-
SLVA	Slave operation mode command signal (serial spindle)	G073\#1	\bigcirc	\bigcirc
SLVB		G077\#1	\bigcirc	\bigcirc
SLVC		G207\#1	\bigcirc	\bigcirc
SLVSA	Slave operation state signal (serial spindle)	F046\#4	\bigcirc	\bigcirc
SLVSB		F050\#4	\bigcirc	\bigcirc
SLVSC		F169\#4	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
SMZ	Error detect signal	G053\#6	\bigcirc	-
SOCNA	Soft start/stop cancel signal (serial spindle)	G071\#4	\bigcirc	\bigcirc
SOCNB		G075\#4	\bigcirc	\bigcirc
SOCNC		G205\#4	\bigcirc	\bigcirc
SOR	Spindle orientation signal	G029\#5	\bigcirc	\bigcirc
SOV0 to SOV7	Spindle speed override signal	G030	\bigcirc	\bigcirc
SPAL	Spindle change detection alarm signal	F035\#0	\bigcirc	\bigcirc
SPL	Automatic operation hold signal	F000\#4	\bigcirc	\bigcirc
SPO	Software operator's panel signal (*SP)	F075\#7	\bigcirc	\bigcirc
SPPHS	Spindle phase synchronization control signal	G038\#3	\bigcirc	\bigcirc
SPSLA	Spindle select signal (serial spindle)	G071\#2	\bigcirc	\bigcirc
SPSLB		G075\#2	\bigcirc	\bigcirc
SPSLC		G205\#2	\bigcirc	\bigcirc
SPSTP	Spindle stop completion signal	G028\#6	\bigcirc	-
SPSYC	Spindle synchronization control signal	G038\#2	\bigcirc	\bigcirc
SRLNI0 to SRLNI3	Ground number specification signal	G091\#0 to \#3	\bigcirc	\bigcirc
SRLNO0 to SRLNO3	Ground number output signal	F178\#0 to \#3	\bigcirc	\bigcirc
SRN	Program restart signal	G006\#0	\bigcirc	\bigcirc
SRNMV	Program restart in-progress signal	F002\#4	\bigcirc	\bigcirc
SRVA	Reverse rotation command signal (serial spindle)	G070\#4	\bigcirc	\bigcirc
SRVB		G074\#4	\bigcirc	\bigcirc
SRVC		G204\#4	\bigcirc	\bigcirc
SSIN	Spindle motor command polarity select signal	G033\#6	\bigcirc	\bigcirc
SSIN2		G035\#6	\bigcirc	\bigcirc
SSIN3		G037\#6	\bigcirc	\bigcirc
SSTA	Speed zero signal (serial spindle)	F045\#1	\bigcirc	\bigcirc
SSTB		F049\#1	\bigcirc	\bigcirc
SSTC		F168\#1	\bigcirc	\bigcirc
ST	Automatic operation activation signal	G007\#2	\bigcirc	\bigcirc
STL	Automatic operation activation in-progress signal	F000\#5	\bigcirc	\bigcirc
STLK	Start lock signal	G007\#1	\bigcirc	-
STRD	Input simultaneous operation mode select signal	G058\#5	-	\bigcirc

Symbol	Signal name	Address	T series	M series
STWD	Output simultaneous operation mode select signal	G058\#6	-	\bigcirc
SUCLP	Spindle unclamp signal	F038\#1	\bigcirc	-
SVF1 to SVF8	Servo-off signal	G126	\bigcirc	\bigcirc
SWS1	Spindle select signal	G027\#0	\bigcirc	-
SWS2		G027\#1	\bigcirc	-
SWS3		G027\#2	\bigcirc	-
SYCAL	Spindle synchronization control alarm signal/phase error monitoring signal	F044\#4	\bigcirc	\bigcirc
SYN10 to SYN80	Synchronization control in-progress signal	F118	\bigcirc	-
SYN10 to SYN70	Synchronization/composite/superposition control inprogress signal	F118\#0 to \#6	\bigcirc	-
SYNC1 to SYNC8	Simple synchronization axis select signal	G138	\bigcirc	\bigcirc
SYNC1 to SYNC8	Synchronization control axis select signal	G138	\bigcirc	-
SYNC1 to SYNC7		G138\#0 to \#6	\bigcirc	-
SYNCJ1 to SYNCJ8	Simple synchronization manual feed axis select signal	G140	-	\bigcirc
SYNMOD	EGB mode signal	F065\#6	-	\bigcirc
T00 to T31	Tool function code signal	F026 to F029	\bigcirc	\bigcirc
TAP	Tapping in-progress signal	F001\#5	\bigcirc	\bigcirc
TF	Tool function strobe signal	F007\#3	\bigcirc	\bigcirc
TFIN	Tool function completion signal	G005\#3	\bigcirc	\bigcirc
THRD	Threading in-progress signal	F002\#3	\bigcirc	\bigcirc
TIALM	Tool post interference alarm signal	F064\#7	-	-
TICHK	Tool post interference check in-progress signal	F064\#6	\bigcirc	-
TL01 to TL64	Tool ground number select signal	G047\#0 to \#6	\bigcirc	-
TL01 to TL256		$\begin{aligned} & \text { G047\#0 to } \\ & \text { G048\#0 } \end{aligned}$	-	\bigcirc
TLCH	Tool change signal	F064\#0	\bigcirc	\bigcirc
TLCHI	Tool-by-tool change signal	F064\#2	-	\bigcirc
TLMA	Torque limit in-progress signal (serial spindle)	F045\#6	\bigcirc	\bigcirc
TLMB		F049\#6	\bigcirc	\bigcirc
TLMC		F168\#6	\bigcirc	\bigcirc
TLMHA	Torque limit command high signal (serial spindle)	G070\#1	\bigcirc	\bigcirc
TLMHB		G074\#1	\bigcirc	\bigcirc
TLMHC		G204\#1	\bigcirc	\bigcirc

Symbol	Signal name	Address	T series	M series
TLMLA	Torque limit command low signal (serial spindle)	G070\#0	\bigcirc	\bigcirc
TLMLB		G074\#0	\bigcirc	\bigcirc
TLMLC		G204\#0	\bigcirc	\bigcirc
TLNW	New tool select signal	F064\#1	\bigcirc	\bigcirc
TLRST	Tool change reset signal	G048\#7	\bigcirc	\bigcirc
TLRSTI	Tool-by-tool change reset signal	G048\#6	-	\bigcirc
TLSKP	Tool skip signal	G048\#5	\bigcirc	\bigcirc
TMRON	General-purpose integrating meter activation signal	G053\#0	\bigcirc	\bigcirc
TRACT	Tool retract mode signal	F092\#3	\bigcirc	\bigcirc
TRESC	Tool retract signal	G059\#0	\bigcirc	\bigcirc
TRQL1 to TRQL8	Torque limit reached signal	F114	\bigcirc	-
TRRTN	Tool return signal	G059\#1	\bigcirc	\bigcirc
TRSPS	Tool return completion signal	F092\#5	\bigcirc	\bigcirc
UI000 to UI015	Input signal for custom macros	G054, G055	\bigcirc	\bigcirc
UINT	Interrupt signal for custom macros	G053\#3	\bigcirc	\bigcirc
UO000 to UO015	Output signal for custom macros	F054, F055	\bigcirc	\bigcirc
UO100 to UO131		F056 to F059	\bigcirc	\bigcirc
WATO	Wait in-progress signal	F063\#6	-	-
WOQSM	Workpiece coordinate system shift amount write mode select signal	G039\#6	\bigcirc	-
WOSET	Workpiece coordinate system shift amount write signal	G040\#7	\bigcirc	-
XAE	Measurement position reached signal	X004\#0	\bigcirc	\bigcirc
YAE		X004\#1	-	\bigcirc
ZAE		X004\#1	\bigcirc	-
ZAE		X004\#2	-	\bigcirc
ZP1 to ZP8	Reference position return completion signal	F094	\bigcirc	\bigcirc
ZP21 to ZP28	Second reference position return completion signal	F096	\bigcirc	\bigcirc
ZP31 to ZP38	Third reference position return completion signal	F098	\bigcirc	\bigcirc
ZP41 to ZP48	Fourth reference position return completion signal	F100	\bigcirc	\bigcirc
ZRF1 to ZRF8	Reference position establishment signal	F120	\bigcirc	\bigcirc
ZRN	Manual reference position return select signal	G043\#7	\bigcirc	\bigcirc
ZRNO	Software operator's panel signal (ZRN)	F073\#4	\bigcirc	\bigcirc

6.6
 LIST OF ADDRESSES

- Address list (1-path control)

For a signal that is common to the M series and T series, and is usable for only one of the two series, hatching is provided on the upper part (the T series) or lower part (M series) for which the signal is not usable, as shown below.
[Example 1] EXLM and ST are signals common to the T series and M series. STLK is a signal usable only for the T series. RLSOT and RVS are signals usable only for the M series.

$$
\mathrm{MT} \rightarrow \mathrm{PMC}
$$

Address
Bit No.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0	T series M series
X004	SKIP	- ESKIP ${ }_{\text {SKIP }}$	- ${ }^{\text {- }}$ SKITP ${ }^{\text {SkiP5- }}$	${ }_{-}^{+}+{ }_{\text {SKITP }}$		-+MIT1-	$-\frac{\mathrm{ZAE}}{\mathrm{SKIP}}$	$\stackrel{\text { SAE- }}{\text { SKIP7 }}$	
	SKIP	$\begin{aligned} & \text { ESKIP- } \\ & \hline \text { SKIPG } \\ & \hline \end{aligned}$	SKIP5	SKIP4	SKIP3	$\begin{aligned} & \text { ZZAE } \\ & \text { SKIP2 } \\ & \text { SKIP2 } \end{aligned}$	$\frac{\mathrm{YYE}}{-\mathrm{SKIP} \mathrm{~B}^{-}}$	$\begin{aligned} & \text { XAE } \\ & \hline \text { SEIP7 } \end{aligned}$	
X008				*ESP					
X009	*DEC8	*DEC7	*DEC6	*DEC5	*DEC4	*DEC3	*DEC2	*DEC1	

\square
Address
Bit No.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G000	ED7	ED6	ED5	ED4	ED3	ED2	ED1	ED0
G001	ED15	ED14	ED13	ED12	ED11	ED10	ED9	ED8
G002	ESTB	EA6	EA5	EA4	EA3	EA2	EA1	EAO
G004			MFIN3	MFIN2	FIN			
G005	BFIN	AFL		BFIN	TFIN	SFIN	EFIN	MFIN
G006		SKIPP		OVC		*ABSM		SRN
G007	RLSOT	EXLM	*FLWU	RLSOT3		ST	STLK	RVS
G008	ERS	RRW	*SP	*ESP				*IT
G009				PN16	PN8	PN4	PN2	PN1
G010	*JV7	*JV6	*JV5	*JV4	*JV3	*JV2	*JV1	*JV0
G011	*JV15	*JV14	*JV13	*JV12	*JV11	*JV10	*JV9	*JV8
G012	*FV7	*FV6	*FV5	*FV4	*FV3	*FV2	*FV1	*FV0

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G013	*AFV7	*AFV6	*AFV5	*AFV4	*AFV3	*AFV2	*AFV1	*AFV0
G014							ROV2	ROV1
G016	F1D							MSDFON
G018	HS2D	HS2C	HS2B	HS2A	HS1D	HS1C	HS1B	HS1A
G019	RT		MP2	MP1	HS3D	HS3C	HS3B	HS3A
G023	ALNGH	RGHTH						
G027	CON		*SSTP3	*SSTP2	*SSTP1	SWS3	SWS2	SWS1
G028	PC2SLC	SPSTP	*SCPF	*SUCPF		GR2	GR1	
G029		*SSTP	SOR	SAR		GR31		GR21
G030	SOV7	SOV6	SOV5	SOV4	SOV3	SOV2	SOV1	SOV0
G031	PKESS2	PKESS1						
G032	R08I	R07I	R06I	R05I	R04I	R03I	R02l	R01I
G033	SIND	SSIN	SGN		R12l	R11I	R101	R091
G034	R0812	R07I2	R06I2	R0512	R04I2	R0312	R0212	R0112
G035	SIND2	SSIN2	SGN2		R12I2	R1112	R1012	R0912
G036	R0813	R07I3	R06I3	R05I3	R04I3	R0313	R0213	R0113
G037	SIND3	SSIN3	SGN3		R1213	R1113	R1013	R0913
G038	*BECLP	*BEUCP			SPPHS	SPSYC		*PLSST
G039	GOQSM	WOQSM	OFN5	OFN4	OFN3	OFN2	OFN1	OFN0
G040	WOSET	PRC						OFN6
G041	HS2ID	HS2IC	HS2IB	HS2IA	HS1ID	HS1IC	HS1IB	HS1IA
G042	DMMC				HS3ID	HS3IC	HS3IB	HS3IA
G043	ZRN		DNCI			MD4	MD2	MD1
G044							MLK	BDT1
G045	BDT9	BDT8	BDT7	BDT6	BDT5	BDT4	BDT3	BDT2
G046	DRN	KEY4	KEY3	KEY2	KEY1		SBK	
G047	TL128	TL64	TL32	TL16	TL08	TL04	TL02	TL01
G048	TLRST	TLRSTI	TLSKP					TL256
G049	*TLV7	*TLV6	*TLV5	*TLV4	*TLV3	*TLV2	*TLV1	*TLV0
G050							*TLV9	*TLV8
G051	*CHLD	CHPST			*CHP8	*CHP4	*CHP2	*CHP0

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G098	KEC7	KEC6	KEC5	KEC4	KEC3	KEC2	KEC1	KEC0
G100	+J8	+J7	+J6	+J5	+J4	+J3	+J2	+J1
G102	-J8	-J7	-J6	-J5	-J4	-J3	-J2	-J1
G106	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1
G108	MLK8	MLK7	MLK6	MLK5	MLK4	MLK3	MLK2	MLK1
G110	+LM8	+LM7	+LM6	+LM5	+LM4	+LM3	+LM2	+LM1
G112	-LM8	-LM7	-LM6	-LM5	-LM4	-LM3	-LM2	-LM1
G114	*+L8	*+L7	*+L6	*+L5	*+L4	*+L3	*+L2	*+L1
G116	*-L8	*-L7	*-L6	*-L5	*-L4	*-L3	*-L2	*-L1
G118	*+ED8	*+ED7	*+ED6	*+ED5	*+ED4	*+ED3	*+ED2	*+ED1
G120	*-ED8	*-ED7	*-ED6	*-ED5	*-ED4	*-ED3	*-ED2	*-ED1
G122	$\begin{gathered} \text { PK8 } \\ \hline \text { PKESS2 } \\ \hline \end{gathered}$	$\begin{gathered} \text { PK7 } \\ -\mathrm{PKESS} \\ \hline \end{gathered}$	PK6	PK5	PK4	PK3	PK2	PK1
	PKESS2	PKESS1						
G124	DTCH8	DTCH7	DTCH6	DTCH5	DTCH4	DTCH3	DTCH2	DTCH1
G126	SVF8	SVF7	SVF6	SVF5	SVF4	SVF3	SVF2	SVF1
G130	*IT8	*IT7	*IT6	*IT5	*IT4	*IT3	*IT2	*IT1
G132					+MIT4	+MIT3	+MIT2	+MIT1
G134					-MIT4	-MIT3	-MIT2	-MIT1
G136	EAX8	EAX7	EAX6	EAX5	EAX4	EAX3	EAX2	EAX1
G138	SYNC8	SYNC7	SYNC6	SYNC5	SYNC4	SYNC3	SYNC2	SYNC1
G140	SYNCJ8	SYNCJ7	SYNCJ6	SYNCJ5	SYNCJ4	SYNCJ3	SYNCJ2	SYNCJ1
G142	EBUFA	ECLRA	ESTPA	ESOFA	ESBKA	EMBUFA		EFINA
G143	EMSBKA	EC6A	EC5A	EC4A	EC3A	EC2A	EC1A	ECOA
G144	EIF7A	EIF6A	EIF5A	EIF4A	EIF3A	EIF2A	EIF1A	EIFOA
G145	EIF15A	EIF14A	EIF13A	EIF12A	EIF11A	EIF10A	EIF9A	EIF8A
G146	EID7A	EID6A	EID5A	EID4A	EID3A	EID2A	EID1A	EID0A
G147	EID15A	EID14A	EID13A	EID12A	EID11A	EID10A	EID9A	EID8A
G148	EID23A	EID22A	EID21A	EID20A	EID19A	EID18A	EID17A	EID16A
G149	EID31A	EID30A	EID29A	EID28A	EID27A	EID26A	EID25A	EID24A
G150	DRNE	RTE	OVCE				ROV2E	ROV1E
G151	*FV7E	*FV6E	*FV5E	*FV4E	*FV3E	*FV2E	*FV1E	*FV0E

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G154	EBUFB	ECLRB	ESTPB	ESOFB	ESBKB	EMBUFB		EFINB
G155	EMSBKB	EC6B	EC5B	EC4B	EC3B	EC2B	EC1B	ECOB
G156	EIF7B	EIF6B	EIF5B	EIF4B	EIF3B	EIF2B	EIF1B	EIFOB
G157	EIF15B	EIF14B	EIF13B	EIF12B	EIF11B	EIF10B	EIF9B	EIF8B
G158	EID7B	EID6B	EID5B	EID4B	EID3B	EID2B	EID1B	EID0B
G159	EID15B	EID14B	EID13B	EID12B	EID11B	EID10B	EID9B	EID8B
G160	EID23B	EID22B	EID21B	EID20B	EID19B	EID18B	EID17B	EID16B
G161	EID31B	EID30B	EID29B	EID28B	EID27B	EID26B	EID25B	EID24B
G166	EBUFC	ECLRC	ESTPC	ESOFC	ESBKC	EMBUFC		EFINC
G167	EMSBKC	EC6C	EC5C	EC4C	EC3C	EC2C	EC1C	ECOC
G168	EIF7C	EIF6C	EIF5C	EIF4C	EIF3C	EIF2C	EIF1C	EIFOC
G169	EIF15C	EIF14C	EIF13C	EIF12C	EIF11C	EIF10C	EIF9C	EIF8C
G170	EID7C	EID6C	EID5C	EID4C	EID3C	EID2C	EID1C	EID0C
G171	EID15C	EID14C	EID13C	EID12C	EID11C	EID10C	EID9C	EID8C
G172	EID23C	EID22C	EID21C	EID20C	EID19C	EID18C	EID17C	EID16C
G173	EID31C	EID30C	EID29C	EID28C	EID27C	EID26C	EID25C	EID24C
G178	EBUFD	ECLRD	ESTPD	ESOFD	ESBKD	EMBUFD		EFIND
G179	EMSBKD	EC6D	EC5D	EC4D	EC3D	EC2D	EC1D	ECOD
G180	EIF7D	EIF6D	EIF5D	EIF4D	EIF3D	EIF2D	EIF1D	EIF0D
G181	EIF15D	EIF14D	EIF13D	EIF12D	EIF11D	EIF10D	EIF9D	EIF8D
G182	EID7D	EID6D	EID5D	EID4D	EID3D	EID2D	EID1D	EID0D
G183	EID15D	EID14D	EID13D	EID12D	EID11D	EID10D	EID9D	EID8D
G184	EID23D	EID22D	EID21D	EID20D	EID19D	EID18D	EID17D	EID16D
G185	EID31D	EID30D	EID29D	EID28D	EID27D	EID26D	EID25D	EID24D
G192	GVRY8	IGVRY7	IGVRY6	IGVRY5	IGVRY4	IGVRY3	IGVRY2	IGVRY1
G198	NPOS8	NPOS7	NPOS6	NPOS5	NPOS4	NPOS3	NPOS2	NPOS1
G204	MRDYC	ORCML	SFRC	SRVC	CTH1C	CTH2C	TLMHC	TLMLC
G205	RCHC	RSLC	INTGC	SOCNC	MCFNC	SPSLC	*ESPC	ARSTC
G206	RCHHGC	MFNHGC	INCMDC	OVRIDC	DEFMDC	NRROC	ROTAC	INDXC
G207						MPOFC	SLVC	MORCMC
G208	SHC07	SHC06	SHC05	SHC04	SHC03	SHC02	SHC01	SHC00

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0	
	G209							
					SHC11	SHC10	SHC09	SHC08

$\mathrm{CNC} \rightarrow \mathrm{PMC}$
Address
Bit No.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F000	OP	SA	STL	SPL				PWD
F001	MA		TAP	ENB	DEN	BAL	RST	AL
F002	MDRN	CUT		SRNMV	THRD	CSS	RPDO	INCH
F003	MTCHIN	MEDT	MMEM	MRMT	MMDI	MJ	MH	MINC
F004			MREF	MAFL	MSBK	MABSM	MMLK	MBDT1
F005	MBDT9	MBDT8	MBDT7	MBDT6	MBDT5	MBDT4	MBDT3	MBDT2
F007	BF			BF	TF	SF	EFD	MF
F008			MF3	MF2				EF
F009	DM00	DM01	DM02	DM30				
F010	M07	M06	M05	M04	M03	M02	M01	M00
F011	M15	M14	M13	M12	M11	M10	M09	M08
F012	M23	M22	M21	M20	M19	M18	M17	M16
F013	M31	M30	M29	M28	M27	M26	M25	M24
F014	M207	M206	M205	M204	M203	M202	M201	M200
F015	M215	M214	M213	M212	M211	M210	M209	M208
F016	M307	M306	M305	M304	M303	M302	M301	M300
F017	M315	M314	M313	M312	M311	M310	M309	M308
F022	S07	S06	S05	S04	S03	S02	S01	S00
F023	S15	S14	S13	S12	S11	S10	S09	S08
F024	S23	S22	S21	S20	S19	S18	S17	S16
F025	S31	S30	S29	S28	S27	S26	S25	S24
F026	T07	T06	T05	T04	T03	T02	T01	T00
F027	T15	T14	T13	T12	T11	T10	T09	T08
F028	T23	T22	T21	T20	T19	T18	T17	T16
F029	T31	T30	T29	T28	T27	T26	T25	T24
F030	B07	B06	B05	B04	B03	B02	B01	B00

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F031	B15	B14	B13	B12	B11	B10	B09	B08
F032	B23	B22	B21	B20	B19	B18	B17	B16
F033	B31	B30	B29	B28	B27	B26	B25	B24
F034						GR3O	GR2O	GR1O
F035								SPAL
F036	R08O	R070	R06O	R050	R04O	R03O	R020	R01O
F037					R120	R11O	R100	R090
F038					ENB3	ENB2	SUCLP	SCLP
F039					CHPCYL	CHPMD		
F040	AR7	AR6	AR5	AR4	AR3	AR2	AR1	AR0
D041	AR15	AR14	AR13	AR12	AR11	AR10	AR09	AR08
F044				SYCAL	FSPPH	FSPSY	FSCSL	
F045	ORARA	TLMA	LDT2A	LDT1A	SARA	SDTA	SSTA	ALMA
F046	MORA2A	MORA1A	PORA2A	SLVSA	RCFNA	RCHPA	CFINA	CHPA
F047							INCSTA	PC1DEA
F049	ORARB	TLMB	LDT2B	LDT1B	SARB	SDTB	SSTB	ALMB
F050	MORA2B	MORA1B	PORA2B	SLVSB	RCFNB	RCHPB	CFINB	CHPB
F051							INCSTB	PC1DEB
F053	EKENB			BGEACT	RPALM	RPBSY	PRGDPL	INHKY
F054	UO007	UO006	UO005	UO004	UO003	UO002	UO001	UO000
F055	UO015	UO014	UO013	UO012	UO011	UO010	UO009	UO008
F056	UO107	UO106	UO105	UO104	UO103	UO102	UO101	UO100
F057	UO115	UO114	UO113	UO112	UO111	UO110	UO109	UO108
F058	UO123	UO122	UO121	UO120	UO119	UO118	UO117	UO116
F059	U0131	UO130	UO129	UO128	UO127	UO126	UO125	UO124
F060							ESEND	EREND
F061							BCLP	BUCLP
F062	PRTSF							
F063	PSYN		RCYO			PSAR	PSE2	PSE1
F064						TLCHI	TLNW	TLCH
F065		SYNMOD		RTRCTF			RGSPM	RGSPP

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F066	EXHPCC	MMPCC	PECK2		RTNMVS			G08MD
F069	RMTDO7	RMTDO6	RMTDO5	RMTDO4	RMTDO3	RMTDO2	RMTDO1	RMTDOO
F070	PSW08	PSW07	PSW06	PSW05	PSW04	PSW03	PSW02	PSW01
F071							PSW10	PSW09
F072	OUT7	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1	OUT0
F073				ZRNO		MD4O	MD2O	MD1O
F075	SPO	KEYO	DRNO	MLKO	SBKO	BDTO		
F076			ROV2O	ROV1O	RTAP		MP2O	MP10
F077		RTO			HS1DO	HS1CO	HS1BO	HS1AO
F078	*FV70	*FV6O	*FV5O	*FV4O	*FV3O	*FV2O	*FV1O	*FV00
F079	*JV70	*JV60	*JV5O	*JV4O	*JV3O	*JV2O	*JV1O	*JV0O
F080	*JV150	*JV14O	*JV130	*JV12O	*JV11O	*JV100	*JV90	*JV8O
F081	-J4O	+J4O	-J30	+J3O	-J2O	+J2O	-J10	+J1O
F082						RVSL		
F090					ABTSP3	ABTSP2	ABTSP1	ABTQSV
F092			TRSPS		TRACT			
F094	ZP8	ZP7	ZP6	ZP5	ZP4	ZP3	ZP2	ZP1
F096	ZP28	ZP27	ZP26	ZP25	ZP24	ZP23	ZP22	ZP21
F098	ZP38	ZP37	ZP36	ZP35	ZP34	ZP33	ZP32	ZP31
F100	ZP48	ZP47	ZP46	ZP45	ZP44	ZP43	ZP42	ZP41
F102	MV8	MV7	MV6	MV5	MV4	MV3	MV2	MV1
F104	INP8	INP7	INP6	INP5	INP4	INP3	INP2	INP1
F106	MVD8	MVD7	MVD6	MVD5	MVD4	MVD3	MVD2	MVD1
F108	MMI8	MMI7	MMI6	MMI5	MMI4	MMI3	MMI2	MMI1
F110	MDTCH8	MDTCH7	MDTCH6	MDTCH5	MDTCH4	MDTCH3	MDTCH2	MDTCH1
F112	EADEN8	EADEN7	EADEN6	EADEN5	EADEN4	EADEN3	EADEN2	EADEN1
F114	TRQL8	TRQL7	TRQL6	TRQL5	TRQL4	TRQL3	TRQL2	TRQL1
F116	FRP8	FRP7	FRP6	FRP5	FRP4	FRP3	FRP2	FRP1
F118	SYN8O	SYN7O	SYN6O	SYN5O	SYN4O	SYN3O	SYN2O	SYN1O
F120	ZRF8	ZRF7	ZRF6	ZRF5	ZRF4	ZRF3	ZRF2	ZRF1
F122	HDO7	HDO6	HDO5	HDO4	HDO3	HDO2	HDO1	HDO0

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F129	*EAXSL		EOV0					
F130	EBSYA	EOTNA	EOTPA	EGENA	EDENA	EIALA	ECKZA	EINPA
F131							EABUFA	EMFA
F132	EM28A	EM24A	EM22A	EM21A	EM18A	EM14A	EM12A	EM11A
F133	EBSYB	EOTNB	EOTPB	EGENB	EDENB	EIALB	ECKZB	EINPB
F134							EABUFB	EMFB
F135	EM28B	EM24B	EM22B	EM21B	EM18B	EM14B	EM12B	EM11B
F136	EBSYC	EOTNC	EOTPC	EGENC	EDENC	EIALC	ECKZC	EINPC
F137							EABUFC	EMFC
F138	EM28C	EM24C	EM22C	EM21C	EM18C	EM14C	EM12C	EM11C
F139	EBSYD	EOTND	EOTPD	EGEND	EDEND	EIALD	ECKZD	EINPD
F140							EABUFD	EMFD
F141	EM28D	EM24D	EM22D	EM21D	EM18D	EM14D	EM12D	EM11D
F142	EM48A	EM44A	EM42A	EM41A	EM38A	EM34A	EM32A	EM31A
F145	EM48B	EM44B	EM42B	EM41B	EM38B	EM34B	EM32B	EM31B
F148	EM48C	EM44C	EM42C	EM41C	EM38C	EM34C	EM32C	EM31C
F151	EM48D	EM44D	EM42D	EM41D	EM38D	EM34D	EM32D	EM31D
F168	ORARC	TLMC	LDT2C	LDT1C	SARC	SDTC	SSTC	ALMC
F169	MORA2C	MORA1C	PORA2C	SLVSC	RCFNC	RCHPC	CFINC	CHPC
F170							INCSTC	PC1DEC
F177	EDGN	EPARM	EVAR	EPRG	EWTIO	ESTPIO	ERDIO	IOLNK
F178					SRLNO3	SRLNO2	SRLNO1	SRLNO0
F180	CLRCH8	CLRCH7	CLRCH6	CLRCH5	CLRCH4	CLRCH3	CLRCH2	CLRCH1
F182	EACNT8	EACNT7	EACNT6	EACNT5	EACNT4	EACNT3	EACNT2	EACNT1

- Address list (2-path control)

In general, signal addresses are assigned to each path as indicated below. However, some signals common to both paths are allocated to path 1. The table below indicates the addresses of the interface signals between the CNC and PMC. A signal marked with \#1 is dedicated to path 1 , and a signal marked with \#2 is dedicated to path 2.

Signal address	Description
G000 to G255	Signals for path 1 (PMC CNC)
F000 to F255	Signals for path 1 (CNC PMC)
G1000 to G1255	Signals for path 2 (PMC CNC)
F1000 to F1255	Signals for path 2 (CNC PMC)

Address Bit No.

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
SKIP\#1	$\begin{gathered} \text { ESKIP } \\ \text { SKIP6 } \\ \hline \end{gathered}$	$\begin{aligned} & -\mathrm{MIT} 2^{\# 11}-\mathrm{SKIP}^{\# 11} \\ & \hline \end{aligned}$	$\begin{aligned} & +\mathrm{MIT}^{\# 11} \\ & \hline \mathrm{SKIP4} \mathrm{~S}^{\# 1} \end{aligned}$	$\begin{aligned} & -\frac{\mathrm{MIT1} 1^{\# 1}}{\mathrm{SKIP}^{\# 1}} \mathbf{1}^{-} \\ & \hline \end{aligned}$	$\begin{aligned} & +\mathrm{MIT1} 1^{\# 1} \\ & \hline \mathrm{~S}^{\prime K I P} \overline{2}^{\# 1} \\ & \hline \end{aligned}$	$\begin{gathered} \text { ZAE }_{\text {\#1 }} \\ \text { SKIP8 }{ }^{\# 1} 1^{-1} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{XAE}^{\# 1} \\ \mathrm{SKMIP}^{\# 1} \\ \hline \end{gathered}$
SKIP\#1	$\begin{array}{\|l\|l\|} \hline \text { ESKIP } \\ - \text { SKIP }^{\# 11} \end{array}$	SKIP5\#1	SKIP4\#1	SKIP3\#1	$\begin{aligned} & \mathrm{ZAE}^{\# 1} \\ & \mathrm{SAKIP} 2^{\# 1} \\ & \hline 1 \end{aligned}$	$\begin{gathered} \mathrm{YAE}^{\# 1} \\ -\mathrm{SKIPB}^{\# 11} \end{gathered}$	

X007	*DEC7*2	*DEC6*2	*DEC5*2	*DEC4*2	*DEC3*2	*DEC2 ${ }^{\# 2}$	*DEC1*2
X008			*ESP				
X009	*DEC7*1	*DEC6"1	*DEC5*1	*DEC4*2	*DEC3 ${ }^{\text {1 }}$	*DEC2*1	*DEC1 ${ }^{\text {\#1 }}$

X013

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
SKIP\#2	SKIP6\#2				$\begin{gathered} \hline+\mathrm{MIT} 1^{\# 2} \\ -\mathrm{SKIT} \overline{2}^{\# 2} \\ \hline \end{gathered}$	$\begin{gathered} \text { ZAE \#2 } \\ -\mathrm{SKIT} \overline{\mathrm{~B}} \# \overline{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { XAE\#2 } \\ -\mathrm{SKIP} \mathrm{\overline{7}} \mathrm{\#} \mathrm{\overline{2}} \\ \hline \end{gathered}$
SKIP\#2	SKIP6\#2	SKIP5*2	SKIP4 ${ }^{\text {2 }}$	SKIP3\#2	$\begin{gathered} \text { ZAE\#2 } \\ - \text { SKIP }^{\# \#}{ }^{\prime 2} \\ \hline \end{gathered}$		$\begin{aligned} & \text { XAE\#2 } \\ & \text { SKIP }^{\# \# 12} \end{aligned}$

M series
$\mathrm{PMC} \rightarrow \mathrm{CNC}$
Address
Bit No.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G000	ED7*1	ED6\#1	ED5\#1	ED4 ${ }^{\text {\#1 }}$	ED3 ${ }^{\text {\#1 }}$	ED2\#1	ED1 ${ }^{\# 1}$	ED0\#1
G001	ED15*1	ED14\#1	ED13 ${ }^{\text {1 }}$	ED12\#1	ED11\#1	ED10\#1	ED9\#1	ED8 ${ }^{\text {\#1 }}$
G002	ESTB\#1	EA6\#1	EA5*1	EA4\#1	EA3\#1	EA2\#1	EA1\#1	$E A 0^{\# 1}$
G004			MFIN3 ${ }^{\text {1 }}$	MFIN2\#1	FIN\#1			
G005	BFIN\#1	AFL\#1		BFIN\#1	TFIN\#1	SFIN\#1	EFIN\#1	MFIN\#1
G006		SKIPP\#1		OVC\#1		*ABSM ${ }^{\# 1}$		SRN\#1
G007	RLSOT\#1	EXLM ${ }^{\# 1}$	*FLWP\#1	RLSOT3\#1		ST\#1	STLK\#1	RVS\#1
G008	ERS\#1	RRW\#1	*SP\#1	*ESP\#1				*IT\#1
G009				PN16\#1	PN8\#1	PN4\#1	PN2\#1	PN1\#1
G010	*JV7\#1	*JV6\#1	*JV5 ${ }^{\text {\#1 }}$	*JV4\#1	*JV3 ${ }^{\text {\#1 }}$	*JV2\#1	*JV1 ${ }^{\text {\#1 }}$	*JV0\#1

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G011	*JV15 ${ }^{\text {1 }}$	*JV14*1	*JV13\#1	*JV12"1	*JV11*1	*JV10\#1	*JV9\#1	*JV8\#1
G012	*FV7\#1	*FV6\#1	*FV5*1	*FV4"1	*FV3 ${ }^{\text {\#1 }}$	*FV2 ${ }^{\text {1 }}$	*FV1\#1	*FV0\#1
G013	*AFV7\#1	*AFV6"1	*AFV5*1	*AFV4\#1	*AFV3 ${ }^{\text {1 }}$	*AFV2\#1	*AFV1\#1	*AFV0\#1
G014							ROV2\#1	ROV1\#1
G016	F1D*1							MSDFON\#1
G018	HS2D*1	HS2C\#1	HS2B\#1	HS2A ${ }^{\text {\#1 }}$	HS1D*1	HS1C\#1	HS1B\#1	HS1A ${ }^{\text {\#1 }}$
G019	RT\#1		MP2\#1	MP1\#1	HS3D*1	HS3C\#1	HS3B\#1	HS3A\#1
G023	ALNGH\#1	RGHTH\#1						
G027	CON\#1		*SSTP3\#1	*SSTP2\#1	*SSTP1\#1	SWS3*1	SWS2\#1	SWS1\#1
G028	PC2SLC ${ }^{\# 1}$	SPSTP\#1	*SCPF\#1	*SUCPF\#1		GR2\#1	GR1*1	
G029		*SSTP\#1	SOR"1	SAR ${ }^{\text {\#1 }}$		GR31\#1		GR21\#1
G030	SOV7\#1	SOV6\#1	SOV5\#1	SOV4 ${ }^{\text {11 }}$	SOV3\#1	SOV2\#1	SOV1\#1	SOV0\#1
G031	PKESS2\#1	PKESS1\#1						
G032	R081\#1	R071 ${ }^{\text {\#1 }}$	R06 ${ }^{\text {\#1 }}$	R051 ${ }^{\text {\#1 }}$	R04\|\#1	R031 ${ }^{\text {1 }}$	R02\| ${ }^{\text {1 }}$	R011 ${ }^{\text {1 }}$
G033	SIND\#1	SSND\#1	SGN\#1		R121\#1	R111\#1	R101 ${ }^{\text {1 }}$	R091\#1
G034	R08I2\#1	R0712\#1	R06I2\#1	R05I2\#1	R04I2\#1	R03I2\#1	R0212\#1	R0112\#1
G035	SIND2\#1	SSIN2\#1	SGN2 ${ }^{\# 1}$		R1212\#1	R1112\#1	R1012\#1	R0912\#1
G036	R08I3\#1	R0713\#1	R06I3\#1	R05I3 ${ }^{\# 1}$	R04I3\#1	R03I3 ${ }^{\text {1 }}$	R0213\#1	R0113\#1
G037	SIND3\#1	SSIN3 ${ }^{\# 1}$	SGN3 ${ }^{\text {1 }}$		R1213\#1	R1113 ${ }^{11}$	R1013\#1	R0913\#1
G038	*BECLP\#1	*BEUCP\#1			SPPHS	SPSYC		*PLSST\#1
G039	GOQSM\#1	WOQSM\#1	OFN5\#1	OFN4 ${ }^{\text {\# }}$	OFN3\#1	OFN2\#1	OFN1\#1	OFN0\#1
G040	WOSET\#1	PRC\#1						OFN6\#1
G041	HS2ID*1	HS2IC\#1	HS2IB\#1	HS2IA ${ }^{\text {\#1 }}$	HS1ID*1	HS1IC\#1	HS1IB\#1	HS1IA* ${ }^{\text {\# }}$
G042					HS3ID*1	HS3IC\#1	HS3IB\#1	HS3IA ${ }^{\# 1}$
G043	ZRN\#1		DNCI\#1			MD4*1	MD2\#1	MD1\#1
G044							MLK ${ }^{\# 1}$	BDT1\#1
G045	BDT9\#1	BDT8\#1	BDT7\#1	BDT6\#1	BDT5*1	BDT4*1	BDT3 ${ }^{\# 1}$	BDT2 ${ }^{\text {\#1 }}$
G046	DRN\#1	KEY4\#1	KEY3 ${ }^{\text {1 }}$	KEY2\#1	KEY1\#1		SBK\#1	
G047	TL128\#1	TL64 ${ }^{\text {1 }}$	TL32\#1	TL16\#1	TL08\#1	TL04\#1	TL02\#1	TL01\#1
G048	TLRST ${ }^{\text {\#1 }}$	TLRSTI\#1	TLSKP\#1					TL256\#1
G049	*TLV7\#1	*TLV6\#1	*TLV5"1	*TLV4*1	*TLV3\#1	*TLV2\#1	*TLV1\#1	*TLV0\#1

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G050							*TLV9\#1	*TLV8 ${ }^{\text {\#1 }}$
G051	*CHLD ${ }^{\# 1}$	CHPST\#1			*CHP8\#1	*CHP4 ${ }^{\text {\#1 }}$	*CHP2\#1	*CHP0*1
G053	CDZ ${ }^{\text {\#1 }}$	SMZ ${ }^{\text {\#1 }}$			UINT ${ }^{\text {\#1 }}$			TMRON\#1
G054	UI007\#1	UI006\#1	UI005\#1	UI004*1	UI003\#1	UIO02\#1	UIOO1\#1	UIO00\#1
G055	UI015*1	UI014*1	Ul013\#1	UI012\#1	UI011\#1	UI010\#1	UI009\#1	UI008\#1
G058					EXWT\#1	EXSTP\#1	EXRD*1	MINP\#1
G059							TRRTN\#1	TRESC\#1
G060	*TSB\#1							
G061			RGTSP2\#1	RGTSP1\#1				RGTAP\#1
G062			PDT2\#1	PDT1\#1			*CRTOF\#1	
G063		INFD\#1	NOZAGC\#1		SLSPB	SLSPA	NOWT	HEAD
G064		ESRSYC\#1			SLPCB	SLPCA	SLCSEQ ${ }^{\# 1}$	RTNCY\#1
G066	EKSET			RTRCT			ENBKY	IGNVRY\#1
G070	MRDYA ${ }^{\# 1}$	ORCMA ${ }^{\# 1}$	SFRA*1	SRVA*1	CTH1A ${ }^{\# 1}$	CTH2A ${ }^{\text {\#1 }}$	TLMHA ${ }^{\# 1}$	TLMLA ${ }^{\# 1}$
G071	RCHA ${ }^{\# 1}$	RSLA ${ }^{\text {\#1 }}$	NTGA*1	SOCNA ${ }^{\# 1}$	MCFNA ${ }^{\# 1}$	SPSLA ${ }^{\# 1}$	*ESPA ${ }^{\text {\#1 }}$	ARSTA*1
G072	RCHHGA\#1	MFNHGA\#1	INCMDA\#1	OVRIDA\#1	DEFMDA\#1	NRROA ${ }^{\# 1}$	ROTAA\#1	INDXA ${ }^{\text {\#1 }}$
G073						MPOFA\#1	SLVA ${ }^{\text {\#1 }}$	MORCMA\#1
G074	MRDYB\#1	ORCMB\#1	SFRB\#1	SRVB\#1	CTH1B\#1	CTH2B\#1	TLMHB\#1	TLMLB\#1
G075	RCHB ${ }^{\text {\#1 }}$	RSLB\#1	INTGB\#1	SOCNB\#1	MCFNB\#1	SPSLB\#1	*ESPB\#1	ARSTB\#1
G076	RCHHGB\#1	MFNHGB\#1	INCMDB\#1	OVRIDB\#1	DEFMDB\#1	NRROB\#1	ROTAB\#1	INDXB\#1
G077						MPOFB\#1	SLVB\#1	MORCMB\#1
G078	SHA07\#1	SHA06\#1	SHA05\#1	SHA04\#1	SHA03\#1	SHAO2\#1	SHA01\#1	SHAOO\#1
G079					SHA11\#1	SHA10\#1	SHA09\#1	SHA08\#1
G080	SHB07\#1	SHB06\#1	SHB05\#1	SHB04\#1	SHB03\#1	SHB02\#1	SHB01\#1	SHB00\#1
G081					SHB11\#1	SHB10\#1	SHB09\#1	SHB08\#1
G082			Rese	ved for ord	r-made m	acros		
G083			Rese	ved for ord	r-made m	acros		
G091					SRLNI3\#1	SRLNI2\#1	SRLNI1\#1	SRLNIO\#1
G092				BGEN\#1	BGIALM ${ }^{\# 1}$	BGION\#1	IOLS\#1	IOLACK\#1
G096	HROV\#1	*HROV6\#1	*HROV5\#1	*HROV4*1	*HROV3 ${ }^{\# 1}$	*HROV2\#1	*HROV1\#1	*HROV0\#1

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G098	KEC7	KEC6	KEC5	KEC4	KEC3	KEC2	KEC1	KEC0
G100		+J7\#1	+J6\#1	+J5\#1	+J4\#1	+J3\#1	+J2\#1	+J1\#1
G102		-J7\#1	-J6\#1	-J5\#1	$-J 4{ }^{\# 1}$	$-\mathrm{J} 3^{\# 1}$	-J2\#1	$-J 1^{\# 1}$
G106		MI7\#1	MI6\#1	MI5\#1	M14 ${ }^{\text {1 }}$	MI3 ${ }^{\text {1 }}$	MI2\#1	MI1\#1
G108		MLK7\#1	MLK6\#1	MLK5 ${ }^{\text {\#1 }}$	MLK4 ${ }^{\text {1 }}$	MLK3\#1	MLK2 ${ }^{\text {\#1 }}$	MLK1 ${ }^{\text {\#1 }}$
G110		+LM7\#1	+LM6\#1	+LM5\#1	+LM4 ${ }^{\text {\#1 }}$	+LM3\#1	+LM2\#1	+LM1\#1
G112		-LM7\#1	-LM6\#1	-LM5\#1	-LM4\#1	-LM3\#1	-LM2\#1	-LM1\#1
G114		*+L7\#1	*+L6\#1	*+L5 ${ }^{\text {\#1 }}$	*+L4\#1	*+L3 ${ }^{\# 1}$	*+L2\#1	*+L1\#1
G116		*-L7\#1	*-L6\#1	*-L5\#1	*-L4 ${ }^{\text {\#1 }}$	*-L3 ${ }^{\# 1}$	*-L2\#1	*-L1\#1
G118		*+ED7\#1	*+ED6*1	*+ED5 ${ }^{\text {\#1 }}$	*+ED4*1	*+ED3 ${ }^{\text {\# }}$	*+ED2\#1	*+ED1\#1
G120		*-ED7\#1	*-ED6*1	*-ED5*1	*-ED4*1	*-ED3 ${ }^{\text {\#1 }}$	*-ED2\#1	*-ED1*1
G122	PKESS2\#1	$\begin{gathered} \text { PKZ\#1 } \\ \text { PKESS̄1 }{ }^{\# 1} \end{gathered}$	PK6\#1	PK5 ${ }^{\text {1 }}$	PK4\#1	PK3\#1	PK2\#1	PK1\#1
	PKESS2\#1	PKESS1\#1						
G124		DTCH7\#1	DTCH6\#1	DTCH5\#1	DTCH4\#1	DTCH3\#1	DTCH2\#1	DTCH1\#1
G126		SVF7\#1	SVF6\#1	SVF5\#1	SVF4\#1	SVF3\#1	SVF2\#1	SVF1\#1
G128		MIX7	MIX6	MIX5	MIX4	MIX3	MIX2	MIX1
G130		*IT7 ${ }^{\text {1 }}$	*IT6"1	*IT5*1	*IT4*1	*IT3*1	*IT2\#1	*IT1*1
G132					+MIT4*1	+MIT3\#1	+MIT2\#1	+MIT1\#1
G134					-MIT4\#1	-MIT3\#1	-MIT2\#1	-MIT1\#1
G136		EAX7\#1	EAX6\#1	EAX5 ${ }^{\text {\#1 }}$	EAX4\#1	EAX3\#1	EAX2 ${ }^{\text {\#1 }}$	EAX1\#1
G138		SYNC7\#1	SYNC6\#1	SYNC5\#1	SYNC4\#1	SYNC3\#1	SYNC2\#1	SYNC1\#1
G140		SYNCJ7\#1	SYNCJ6\#1	SYNCJ5\#1	SYNCJ4\#1	SYNCJ3\#1	SYNCJ2\#1	SYNCJ1\#1
G142	EBUFA ${ }^{\# 1}$	ECLRA ${ }^{\# 1}$	ESTPA\#1	ESOFA ${ }^{\# 1}$	ESBKA ${ }^{\# 1}$	EMBUFA ${ }^{\text {\#1 }}$		EFINA ${ }^{\text {\#1 }}$
G143	EMSBKA\#1	EC6A*1	EC5A\#1	EC4A\#1	EC3A\#1	EC2A\#1	EC1A*1	EC0A ${ }^{\# 1}$
G144	EIF7A*1	EIF6A ${ }^{\text {\#1 }}$	EIF5A\#1	EIF4A*1	EIF3A\#1	EIF2A*1	EIF1A ${ }^{\# 1}$	EIFOA ${ }^{\text {\#1 }}$
G145	EIF15A\#1	EIF14A\#1	EIF13A\#1	EIF12A\#1	EIF11A\#1	EIF10A\#1	EIF9A*1	EIF8A ${ }^{\text {\#1 }}$
G146	EID7A* ${ }^{\text {1 }}$	EID6A ${ }^{\text {\#1 }}$	EID5A*1	EID4A ${ }^{\text {\#1 }}$	EID3A*1	EID2A* ${ }^{\text {1 }}$	EID1A ${ }^{\# 1}$	EID0A ${ }^{\text {\#1 }}$
G147	EID15A ${ }^{\# 1}$	EID14A\#1	EID13A\#1	EID12A\#1	EID11A*1	EID10A ${ }^{\# 1}$	EID9A ${ }^{\text {\#1 }}$	EID8A ${ }^{\text {\#1 }}$
G148	EID23A\#1	EID22A\#1	EID21A ${ }^{\text {\#1 }}$	EID20A\#1	EID19A\#1	EID18A\#1	EID17A\#1	EID16A\#1
G149	EID31A ${ }^{\# 1}$	EID30A ${ }^{\text {\#1 }}$	EID29A ${ }^{\text {\#1 }}$	EID28A\#1	EID27A ${ }^{\text {\#1 }}$	EID26A ${ }^{\# 1}$	EID25A ${ }^{\text {\#1 }}$	EID24A ${ }^{\text {\#1 }}$
G150	DRNE*1	RTE\#1	OVCE\#1				ROV2E\#1	ROV1E\#1

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G151	*FV7E*1	*FV6E"1	*FV5E*1	*FV4E\#1	*FV3E*1	*FV2E"1	*FV1E"1	*FV0E"1
G154	EBUFB ${ }^{\text {\#1 }}$	ECLRB\#1	ESTPB\#1	ESOFB\#1	ESBKB ${ }^{\text {11 }}$	EmbuFb\#1		EFINB ${ }^{\text {\#1 }}$
G155	EMSBKB\#1	EC6B\#1	EC5B\#1	EC4B\#1	EC3B\#1	EC2B\#1	EC1B\#1	EC0B\#1
G156	EIF7B\#1	EIF6B ${ }^{\text {11 }}$	EIF5B\#1	EIF4B\#1	EIF3B\#1	EIF2B\#1	EIF1B\#1	EIFOB ${ }^{\text {11 }}$
G157	EIF15B\#1	EIF14B\#1	EIF13B\#1	EIF12B\#1	EIF118\#1	EIF10B\#1	EIF9B\#1	EIF8B\#1
G158	EID7B\#1	EID6B\#1	EID5B\#1	EID4B\#1	EID3B ${ }^{\text {\#1 }}$	EID2B\#1	EID1B\#1	EID0B\#1
G159	EID15B\#1	EID14B\#1	EID13B\#1	EID12B\#1	EID11B\#1	EID10B\#1	EID9B\#1	EID8B\#1
G160	EID23B\#1	EID22B\#1	EID21B\#1	EID20B\#1	EID19B\#1	EID18B\#1	EID17B\#1	EID16B\#1
G161	EID31B\#1	EID30B\#1	EID29B\#1	EID28B\#1	EID27B\#1	EID26B\#1	EID25B\#1	EID24B\#1
G166	EBUFC\#1	ECLRC\#1	ESTPC\#1	ESOFC\#1	ESBKC\#1	EMBUFC\#1		EFINC\#1
G167	EMSBKC\# ${ }^{\text {\# }}$	EC6C\#1	EC5C\#1	EC4C ${ }^{\# 1}$	EC3C\#1	EC2C\#1	EC1C\#1	EC0C\#1
G168	EIF7C*1	EIF6C\#1	EIF5C\#1	EIF4C\#1	EIF3C*1	EIF2C\#1	EIF1C\#1	EIF0C\#1
G169	EIF15C\#1	EIF14C\#1	EIF13C\#1	EIF12C\#1	EIF11C\#1	EIF10C\#1	EIF9C\#1	EIF8C\#1
G170	EID7C ${ }^{\text {\#1 }}$	EID6C\#1	EID5C ${ }^{\text {\#1 }}$	EID4C\#1	EID3C ${ }^{\text {\#1 }}$	EID2C\#1	EID1C\#1	EID0C\#1
G171	EID15C\#1	EID14C\#1	EID13C\#1	EID12C\#1	EID11C\#1	EID10C\#1	EID9C\#1	EID8C\#1
G172	EID23C\#1	EID22C\#1	EID21C\#1	EID20C\#1	EID19C\#1	EID18C\#1		EID16C\#1
G173	EID31C\#1	EID30C\#1	EID29C\#1	EID28C\#1	EID27C\#1	EID26C\#1	EID25C\#1	EID24C\#1
G178	EBUFD\#1	ECLRD\#1	ESTPD\#1	ESOFD\#1	ESBKD\#1	EMBUFD\#1		EFIND\#1
G179	EMSBKD\#1	EC6D\#1	EC5D\#1	EC4D*1	EC3D*1	EC2D*1	EC1D\#1	EC0D*1
G180	EIF7D*1	EIF6D*1	EIF5D*1	EIF4D\#1	EIF3D*1	EIF2D\#1	EIF1D*1	EIF0D\#1
G181	EIF15D\#1	EIF14D\#1	EIF13D\#1	EIF12D\#1	EIF11D\#1	EIF10D\#1	EIF9D*1	EIF8D*1
G182	EID7D*1	EID6D\#1	EID5D*1	EID4D\#1	EID3D*1	EID2D\#1	EID1D\#1	EID0D\#1
G183	EID15D\#1	EID14D\#1	EID13D\#1	EID12D\#1	EID11D\#1	EID10D\#1	EID9D\#1	EID8D\#1
G184	EID23D\#1	EID22D\#1	EID21D\#1	EID20D\#1	EID19D\#1	EID18D\#1	EID17D\#1	EID16D\#1
G185	EID31D\#1	EID30D\#1	EID29D\#1	EID28D\#1	EID27D\#1	EID26D\#1	EID25D\#1	EID24D\#1
G190		OVLS7 ${ }^{\# 1}$	OVLS6\#1	OVLS5 ${ }^{\text {\#1 }}$	OVLS4 ${ }^{\# 1}$	OVLS3 ${ }^{\# 1}$	OVLS2 ${ }^{\# 1}$	OVLS1\#1
G192		IGVRY7\#1	IGVRY6\#1	IGVRY5\#1	IGVRY4\#1	IGVRY3 ${ }^{\# 1}$	IGVRY2\#1	IGVRY1\#1
G198		NPOS7\#1	NPOS6\#1	NPOS5\#1	NPOS4\#1	NPOS3\#1	NPOS2\#1	NPOS1\#1

PMC \rightarrow CNC

Address
Bit No.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G1000	ED7\#2	ED6\#2	ED5*2	ED4\#2	ED3 ${ }^{\text {\#2 }}$	ED2\#2	ED1\#2	ED0\#2
G1001	ED15\#2	ED14\#2	ED13\#2	ED12\#2	ED11\#2	ED10\#2	ED9\#2	ED8*2
G1002	ESTB\#2	EA6\#2	EA5*2	EA4\#2	EA3*2	EA2\#2	EA1\#2	$E A 0^{\# 2}$
G1004			MFIN3 ${ }^{\text {\#2 }}$	MFIN2\#2	FIN\#2			
G1005	BFIN\#2	AFL\#2		BFIN\#2	TFIN\#2	SFIN\#2	EFIN\#2	MFIN\#2
G1006		SKIPP\#2		OVC\#2		*ABSM ${ }^{\text {\#2 }}$		SRN\#2
G1007	RLSOT\#2	EXLM ${ }^{\text {\#2 }}$	*FLWU*2	RLSOT3\#2		ST\#2	STLK\#2	RVS\#2
G1008	ERS\#2	RRW\#2	*SP\#2	*ESP\#2				*IT\#2
G1009				PN16\#2	PN8\#2	PN4\#2	PN2\#2	PN1\#2
G1010	*JV7\#2	*JV6\#2	*JV5\#2	*JV4\#2	*JV3\#2	*JV2\#2	*JV1*2	*JV0\#2
G1011	*JV15*2	*JV14*2	*JV13\#2	*JV12 ${ }^{\text {\#2 }}$	*JV11*2	*JV10*2	*JV9\#2	*JV8\#2
G1012	*FV7\#2	*FV6\#2	*FV5*2	*FV4\#2	*FV3\#2	*FV2\#2	*FV1\#2	*FV0\#2
G1013	*AFV7"2	*AFV6\#2	*AFV5*2	*AFV4*2	*AFV3*2	*AFV2\#2	*AFV1\#2	*AFV0*2
G1014							ROV2 ${ }^{\text {2 }}$	ROV1\#2
G1016	F1D\#2							MSDFON\#2
G1018	HS2D*2	HS2C\#2	HS2B\#2	HS2A\#2	HS1D*2	HS1C\#2	HS1B\#2	HS1A\#2
G1019	RT\#2		MP2\#2	MP1 ${ }^{\text {\#2 }}$	HS3D*2	HS3C\#2	HS3B\#2	HS3A\#2
G1023	ALNGH\#2	RGHTH ${ }^{\text {\#2 }}$						
G1027	CON\#2		*SSTP3\#2	*SSTP2\#2	*SSTP1\#2	SWS3\#2	SWS2\#2	SWS1\#2
G1028	PC2SLC\#2	SPSTP\#2	*SCPF\#2	*SUCPF\#2		GR2\#2	GR1*2	
G1029		*SSTP\#2	SOR\#2	SAR ${ }^{\text {\#2 }}$		GR31*2		GR21\#2
G1030	SOV7\#2	SOV6\#2	SOV5\#2	SOV4\#2	SOV3\#2	SOV2\#2	SOV1\#2	SOV0\#2
G1031	PKESS2\#2	PKESS1\#2						
G1032	R081\#2	R071\#2	R061\#2	R051\#2	R04\|\#2	R031\#2	R02\| ${ }^{\text {2 }}$	R011\#2
G1033	SIND*2	SSIN\#2	SGN\#2		R12\|\#2	R11\|\#2	R10\|\#2	R091\#2
G1034	R0812\#2	R0712\#2	R0612\#2	R05I2\#2	R0412\#2	R03I2\#2	R0212\#2	R0112\#2
G1035	SIND2\#2	SSIN2	SGN2\#2		R1212\#2	R1112\#2	R1012\#2	R0912\#2
G1036	R0813\#2	R0713\#2	R06I3\#2	R0513\#2	R04I3\#2	R03I3\#2	R0213\#2	R0113\#2
G1037	SIND3\#2	SSIN3\#2	SGN3\#2		R1213\#2	R1113\#2	R1013\#2	R0913\#2

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G1038	*BECLP*2	*BEUCP\#2			SPPHS\#2	SPSYC\#2		*PLSST\#2
G1039	GOQSM*2	WOQSM\#2	OFN5*2	OFN4\#2	OFN3\#2	OFN2\#2	OFN1\#2	OFN0\#1
G1040	WOSET\#2	PRC\#2						OFN6\#2
G1041	HS2ID*2	HS2IC\#2	HS2IB\#2	HS2IA*2	HS1ID\#2	HS1IC\#2	HS1IB\#2	HS1IA ${ }^{\text {\#2 }}$
G1042					HS3ID\#2	HS3IC\#2	HS3IB\#2	HS3IA ${ }^{\text {\#2 }}$
G1043	ZRN\#2		DNCI\#2			MD4 ${ }^{\text {22 }}$	MD2\#2	MD1\#2
G1044							MLK ${ }^{\# 2}$	BDT1\#2
G1045	BDT9\#2	BDT8\#2	BDT7\#2	BDT6\#2	BDT5*2	BDT4\#2	BDT3\#2	BDT2\#2
G1046	DRN\#2	KEY4\#2	KEY3\#2	KEY2\#2	KEY1\#2		SBK ${ }^{\text {\#2 }}$	
G1047	TL128\#2	TL64\#2	TL32\#2	TL16\#2	TL08\#2	TL04\#2	TL02\#2	TL01\#2
G1048	TLRST\#2	TLRSTI\#2	TLSKP\#2					TL256\#2
G1049	*TLV7\#2	*TLV6\#2	*TLV5*2	*TLV4\#2	*TLV3\#2	*TLV2\#2	*TLV1\#2	*TLV0\#2
G1050							*TLV9\#2	*TLV8\#2
G1051	*CHLD*2	CHPST\#2			*CHP8\#2	*CHP4\#2	*CHP2\#2	* ${ }^{\text {CHPO }}{ }^{\# 2}$
G1052								
G1053	CDZ\#2	SMZ ${ }^{\text {\#2 }}$			UINT\#2			TMRON\#2
G1054	UI007\#2	UI006\#2	UI005*2	UI004\#2	UI003\#2	UIO02\#2	UI001*2	UIOOO\#2
G1055	UI015\#2	UI014\#2	UI013\#2	UI012\#2	UI011\#2	UI010\#2	Ul009\#2	UI008\#2
G1058					EXWT\#2	EXSTP\#2	EXRD*2	MINP\#2
G1059							TRRTN\#2	TRESC\#2
G1060	*TSB\#2							
G1061			RGTSP2\#2	RGTSP1\#2				RGTAP\#2
G1062			PDT2\#2	PDT1\#2			*CRTOF*2	
G1063		INFD\#2	NOZAGC\#2					
G1064		ESRSYC\#2					SLCSEQ*2	RTNCY\#2
G1066				RTRCT\#2				IGNVRY\#2
G1070	MRDYA ${ }^{\text {\#2 }}$	ORCMA\#2	SFRA ${ }^{\text {\#2 }}$	SRVA*2	CTH1A ${ }^{\text {\#2 }}$	CTH2A ${ }^{\text {2 }}$	TLMHA\#2	TLMLA ${ }^{\text {\#2 }}$
G1071	RCHA ${ }^{\text {\#2 }}$	RSLA*2	INTGA\#2	SOCNA*2	MCFNA\#2	SPSLA*2	*ESPA\#2	ARSTA\#2
G1072	RCHHGA\#2	MFNHGA\#2	INCMDA*2	OVRIDA*2	DEFMDA ${ }^{\text {\#2 }}$	NRROA*2	ROTAA\#2	INDXA \#2
G1073						MPOFA*2	SLVA*2	MORCMA ${ }^{\text {2 }}$
G1074	MRDYB\#2	ORCMB ${ }^{\text {\#2 }}$	SFRB\#2	SRVB\#2	CTH1B\#2	CTH2B\#2	TLMHB\#2	TLMLB\#2

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G1075	RCHB\#2	RSLB\#2	INTGB\#2	SOCNB\#2	MCFNB\#2	SPSLB\#2	*ESPB*2	ARSTB\#2
G1076	RCHHGB\#2	MFNHGB\#2	INCMDB\#2	OVRIDB\#2	DEFMDB\#2	NRROB\#2	INDXB\#2	ROTAB\#2
G1077						MPOFB\#2	SLVB\#2	MORCMB\#2
G1078	SHA07\#2	SHA06\#2	SHA05\#2	SHA04\#2	SHA03\#2	SHA02\#2	SHA01\#2	SHAOO\#2
G1079					SHA11 ${ }^{\text {\#2 }}$	SHA10\#2	SHA09\#2	SHA08\#2
G1080	SHB07\#2	SHB06\#2	SHB05\#2	SHB04\#2	SHB03\#2	SHB02\#2	SHB01\#2	SHB00\#2
G1081					SHB11\#2	SHB10\#2	SHB09\#2	SHB08\#2
G1082			Reser	ved for ord	r-made m	acros		
G1083			Reser	ved for ord	r-made m	acros		
G1091					SRLNI3\#2	SRLNI2\#2	SRLNI1\#2	SRLNIO\#2
G1092				BGEN\#2	BGIALM ${ }^{\text {\#2 }}$	BGION\#2	IOLS\#2	IOLACK\#2
G1096	HROV\#2	*HROV6\#2	*HROV5\#2	*HROV4*2	*HROV3\#2	*HROV2*2	*HROV1\#2	*HROV0\#2
G1100		$+\mathrm{J7}{ }^{\text {2 }}$	+J6\#2	+J5\#2	+J4*2	$+\mathrm{J} 3^{\# 2}$	+J2\#2	+J1\#2
G1102		$-\mathrm{J} 7^{\# 2}$	-J6\#2	-J5\#2	-J4*2	$-\mathrm{J} 3^{\# 2}$	$-\mathrm{J} 2^{\# 2}$	$-J 1{ }^{\# 2}$
G1106		MI7\#2	MI6\#2	MI5\#2	M14\#2	MI3\#2	MI2\#2	M11\#2
G1108		MLK7\#2	MLK6\#2	MLK5\#2	MLK4 ${ }^{\text {\#2 }}$	MLK3\#2	MLK2\#2	MLK1 ${ }^{\text {\#2 }}$
G1110		+LM7\#2	+LM6\#2	+LM5*2	+LM4 ${ }^{\text {\#2 }}$	+LM3 ${ }^{\# 2}$	+LM2\#2	+LM1\#2
G1112		-LM7\#2	-LM6\#2	-LM5\#2	-LM4*2	-LM3\#2	-LM2\#2	-LM1\#2
G1114		*+L7\#2	*+L6\#2	*+L5*2	*+L4*2	*+L3*2	*+L2\#2	*+L1\#2
G1116		*-L7\#2	*-L6\#2	*-L5*2	*-L4\#2	*-L3\#2	*-L2\#2	*-L1\#2
G1118		*+ED7\#2	*+ED6\#2	*+ED5\#2	*+ED4\#2	*+ED3 ${ }^{\text {2 }}$	*+ED2 ${ }^{\text {2 }}$	*+ED1*2
G1120		*-ED7\#2	*-ED6\#2	*-ED5\#2	*-ED4\#2	*-ED3\#2	*-ED2 ${ }^{\text {\#2 }}$	*-ED1\#2
G1122	PKESS2\#2	$\begin{gathered} \text { PKK7\#2 } \\ \text { PKESS1 }{ }^{\# 2-1} \\ \hline \end{gathered}$	PK6\#2	PK5*2	PK4 ${ }^{\# 2}$	PK3 ${ }^{\text {\#2 }}$	PK2\#2	PK1\#2
	PKESS2\#2	PKESS1\#2						
G1124		DTCH7\#2	DTCH6\#2	DTCH5\#2	DTCH4\#2	DTCH3\#2	DTCH2\#2	DTCH1\#2
G1126		SVF7\#2	SVF6\#2	SVF5\#2	SVF4\#2	SVF3*2	SVF2\#2	SVF1\#2
G1130		*IT7\#2	*IT6*2	*IT5*2	*IT4*2	*IT3*2	*IT2 ${ }^{\text {2 }}$	*IT1*2
G1132					+MIT4\#2	+MIT3 ${ }^{\text {\#2 }}$	+MIT2\#2	+MIT1\#2
G1134					-MIT4\#2	-MIT3\#2	-MIT2\#2	-MIT1\#2
G1136		EAX7\#2	EAX6\#2	EAX5\#2	EAX4*2	EAX3*2	EAX2\#2	EAX1\#2

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G1138		SYNC7\#2	SYNC6\#2	SYNC5\#2	SYNC4\#2	SYNC3\#2	SYNC2\#2	SYNC1\#2
G1140		SYNCJ7\#2	SYNCJ6\#2	SYNCJ5*2	SYNCJ4\#2	SYNCJ3\#2	SYNCJ2\#2	SYNCJ1\#2
G1142	EBUFA\#2	ECLRA\#2	ESTPA ${ }^{\text {\#2 }}$	ESOFA\#2	ESBKA\#2	EMBUFA\#2		EFINA ${ }^{\text {\#2 }}$
G1143	EMSBKA\#2 ${ }^{\text {2 }}$	EC6A*2	EC5A*2	EC4A*2	EC3A*2	EC2A*2	EC1A*2	EC0A ${ }^{\text {\#2 }}$
G1144	EIF7A\#2	EIF6A*2	EIF5A*2	EIF4A*2	EIF3A*2	EIF2A*2	EIF1A*2	EIF0A*2
G1145	EIF15A\#2	EIF14A\#2	EIF13A\#2	EIF12A\#2	EIF11A\#2	EIF10A\#2	EIF9A*2	EIF8A ${ }^{\text {\#2 }}$
G1146	EID7A*2	EID6A*2	EID5A*2	EID4A\#2	EID3A*2	EID2A\#2	EID1A\#2	EID0A ${ }^{\text {\#2 }}$
G1147	EID15A\#2	EID14A\#2	EID13A\#2	EID12A\#2	EID11A\#2	EID10A\#2	EID9A\#2	EID8A*2
G1148	EID23A\#2	EID22A\#2	EID21A ${ }^{\text {\#2 }}$	EID20A\#2	EID19A\#2	EID18A\#2	EID17A\#2	EID16A\#2
G1149	EID31A ${ }^{\text {\#2 }}$	EID30A\#2	EID29A\#2	EID28A\#2	EID27A\#2	EID26A\#2	EID25A\#2	EID24A\#2
G1150	DRNE*2	RTE\#2	OVCE\#2				ROV2E\#2	ROV1E\#2
G1151	*FV7E*2	*FV6E*2	*FV5E*2	*FV4E\#2	*FV3E*2	*FV2E*2	*FV1E\#2	*FV0E*2
G1154	EBUFB\#2	ECLRB\#2	ESTPB\#2	ESOFB\#2	ESBKB\#2	EMBUFB\#2		EFINB\#2
G1155	EMSBKB\#2 ${ }^{\text {2 }}$	EC6B\#2	EC5B\#2	EC4B\#2	EC3B\#2	EC2B\#2	EC1B\#2	EC0B\#2
G1156	EIF7B\#2	EIF6B\#2	EIF5B\#2	EIF4B\#2	EIF3B\#2	EIF2B\#2	EIF1B\#2	EIF0B\#2
G1157	EIF15B\#2	EIF14B\#2	EIF13B\#2	EIF12B\#2	EIF118\#2	EIF10B\#2	EIF9B\#2	EIF8B\#2
G1158	EID7B\#2	EID6B\#2	EID5B\#2	EID4B\#2	EID3B\#2	EID2B\#2	EID1B\#2	EID0B\#2
G1159	EID15B\#2	EID14B\#2	EID13B\#2	EID12B\#2	EID11B\#2	EID10B\#2	EID9B\#2	EID8B\#2
G1160	EID23B\#2	EID22B\#2	EID21B\#2	EID20B\#2	EID19B\#2	EID18B\#2	EID17B\#2	EID16B\#2
G1161	EID31B\#2	EID30B\#2	EID29B\#2	EID28B\#2	EID27B\#2	EID26B\#2	EID25B\#2	EID24B\#2
G1166	EBUFC\#2	ECLRC\#2	ESTPC\#2	ESOFC\#2	ESBKC\#2	EMBUFC\#2		EFINC\#2
G1167	EMSBKC ${ }^{\text {\#2 }}$	EC6C\#2	EC5C\#2	EC4C ${ }^{\text {\#2 }}$	EC3C\#2	EC2C\#2	EC1C\#2	EC0C\#2
G1168	EIF7C\#2	EIF6C*2	EIF5C\#2	EIF4C\#2	EIF3C\#2	EIF2C\#2	EIF1C\#2	EIF0C\#2
G1169	EIF15C\#2	EIF14C\#2	EIF13C\#2	EIF12C\#2	EIF11C\#2	EIF10C\#2	EIF9C\#2	EIF8C\#2
G1170	EID7C\#2	EID6C\#2	EID5C\#2	EID4C\#2	EID3C\#2	EID2C\#2	EID1C\#2	EID0C\#2
G1171	EID15C\#2	EID14C\#2	EID13C\#2	EID12C\#2	EID11C\#2	EID10C\#2	EID9C\#2	EID8C\#2
G1172	EID23C\#2	EID22C\#2	EID21C\#2	EID20C\#2	EID19C\#2	EID18C\#2	EID17C\#2	EID16C\#2
G1173	EID31C\#2	EID30C\#2	EID29C\#2	EID28C\#2	EID27C\#2	EID26C\#2	EID25C\#2	EID24C\#2
G1178	EBUFD\#2	ECLRD\#2	ESTPD\#2	ESOFD\#2	ESBKD\#2	EMBUFD\#2		EFIND\#2
G1179	EMSBKD\#2	EC6D\#2	EC5D\#2	EC4D*2	EC3D*2	EC2D\#2	EC1D\#2	EC0D*2
G1180	EIF7D\#2	EIF6D*2	EIF5D\#2	EIF4D\#2	EIF3D\#2	EIF2D*2	EIF1D\#2	EIFOD*2

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G1181	EIF15D\#2	EIF14D*2	EIF13D\#2	EIF12D\#2	EIF11D\#2	EIF10D\#2	EIF9D*2	EIF8D*2
G1182	EID7D*2	EID6D\#2	EID5D*2	EID4D\#2	EID3D\#2	EID2D*2	EID1D*2	EID0D*2
G1183	EID15D\#2	EID14D\#2	EID13D\#2	EID12D\#2	EID11D\#2	EID10D\#2	EID9D*2	EID8D*2
G1184	EID23D\#2	EID22D\#2	EID21D\#2	EID20D\#2	EID19D\#2	EID18D\#2	EID17D\#2	EID16D\#2
G1185	EID31D\#2	EID30D\#2	EID29D\#2	EID28D\#2	EID27D\#2	EID26D\#2	EID25D\#2	EID24D\#2
G1190		OVLS7\#2	OVLS6\#2	OVLS5\#2	OVLS4 ${ }^{\# 2}$	OVLS3 ${ }^{\text {\#2 }}$	OVLS2 ${ }^{\# 2}$	OVLS1 ${ }^{\# 2}$
G1192		IGVRY7\#2	IGVRY6\#2	IGVRY5\#2	IGVRY4\#2	IGVRY3\#2	IGVRY2\#2	IGVRY1\#2
G1198		NPOS7\#2	NPOS6\#2	NPOS5\#2	NPOS4\#2	NPOS3\#2	NPOS2\#2	NPOS1\#2

$\mathrm{CNC} \rightarrow \mathrm{PMC}$

Address

Bit No.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F000	OP\#1	SA ${ }^{\# 1}$	STL* ${ }^{\text {1 }}$	SPL\#1				PWD\#1
F001	MA ${ }^{\text {\#1 }}$		TAP\#1	$E N B{ }^{\# 1}$	DEN\#1	BAL ${ }^{\text {11 }}$	RST\#1	AL ${ }^{\text {1 }}$
F002	MDRN ${ }^{\text {\#1 }}$	CUT\#1		SRNMV\#1	THRD*1	CSS\#1	RPDO\#1	INCH\#1
F003	MTCHIN\#1	MEDT\#1	MMEM ${ }^{\text {\#1 }}$	MRMT\#1	MMDI*1	MJ\#1	MH\#1	MINC\#1
F004			MREF\#1	MAFL\#1	MSBK ${ }^{11}$	MABSM ${ }^{\# 1}$	MMLK ${ }^{\text {\#1 }}$	MBDT1\#1
F005	MBDT9\#1	MBDT8\#1	MBDT7\#1	MBDT6\#1	MBDT5\#1	MBDT4\#1	MBDT3\#1	MBDT2\#1
F007	BF\#1			BF\#1	TF\#1	SF\#1	EFD\#1	MF\#1
F008			MF3 ${ }^{\text {\#1 }}$	MF2\#1				EF\#1
F009	DM00\#1	DM01 ${ }^{\# 1}$	DM02\#1	DM30\#1				
F010	M07 ${ }^{\text {11 }}$	M06\#1	M05 ${ }^{\text {1 }}$	M04 ${ }^{\# 1}$	M03 ${ }^{\text {1 }}$	M02\#1	M01 ${ }^{\text {\#1 }}$	M $00{ }^{\# 1}$
F011	M15*1	M14 ${ }^{\text {\#1 }}$	M13 ${ }^{\text {1 }}$	M12\#1	M11\#1	M10\#1	M09\#1	M08 ${ }^{\# 1}$
F012	M23\#1	M22\#1	M21\#1	M20\#1	M19\#1	M18 ${ }^{\text {\#1 }}$	M17 ${ }^{\text {\#1 }}$	M16\#1
F013	M31 ${ }^{\text {\#1 }}$	M30\#1	M29\#1	M28\#1	M27\#1	M26\#1	M25 ${ }^{\text {1 }}$	M24\#1
F014	M207\#1	M206\#1	M205\#1	M204\#1	M203\#1	M202\#1	M201\#1	M200\#1
F015	M215 ${ }^{\text {\#1 }}$	M214 ${ }^{\text {\#1 }}$	M213 ${ }^{\text {1 }}$	M212\#1	M211\#1	M210\#1	M209\#1	M208\#1
F016	M307\#1	M306\#1	M305 ${ }^{\text {1 }}$	M304 ${ }^{\text {\#1 }}$	M303\#1	M302\#1	M301\#1	M300\#1
F017	M315 ${ }^{\text {\#1 }}$	M314 ${ }^{\text {\#1 }}$	M313 ${ }^{\text {1 }}$	M312\#1	M311\#1	M310\#1	M309\#1	M308*1
F022	S07\#1	S06\#1	S05*1	S04*1	S03*1	S02\#1	S01\#1	S00\#1
F023	S15*1	S14*1	S13*1	S12\#1	S11*1	S10\#1	S09\#1	S08\#1

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F024	S23\#1	S22 ${ }^{11}$	S21*1	S20\#1	S19\#1	S18*1	S17\#1	S16*1
F025	S31\#1	S30\#1	S29\#1	S28*1	S27\#1	S26\#1	S25*1	S24*1
F026	T07\#1	T06\#1	T05\#1	T04\#1	T03\#1	T02\#1	T01\#1	T00\#1
F027	T15*1	T14*1	T13\#1	T12\#1	T11\#1	T10\#1	T09\#1	T08\#1
F028	T23*1	T22\#1	T21\#1	T20\#1	T19\#1	T18\#1	T17\#1	T16\#1
F029	T31*1	T30\#1	T29\#1	T28\#1	T27\#1	T26\#1	T25*1	T24\#1
F030	B07\#1	B06\#1	B05*1	B04*1	B03 ${ }^{\text {1 }}$	B02\#1	B01*1	B00\#1
F031	B15 ${ }^{\text {1 }}$	B14 ${ }^{\# 1}$	B13 ${ }^{\text {1 }}$	B12 ${ }^{\# 1}$	B11*1	B10*1	B09\#1	B08*1
F032	B23 ${ }^{\text {1 }}$	B22\#1	B21*1	B20\#1	B19\#1	B18 ${ }^{\text {1 }}$	B17\#1	B16 ${ }^{\text {1 }}$
F033	B31\#1	B30\#1	B29\#1	B28 ${ }^{\text {1 }}$	B27\#1	B26\#1	B25*1	B24*1
F034						GR3O\#1	GR2O\#1	GR1O\#1
F035								SPAL\#1
F036	R08O\#1	R07O\#1	R06O\#1	R05O\#1	R04O\#1	R03O\#1	R02O\#1	R01O\#1
F037					R120\#1	R110\#1	R100\#1	R090\#1
F038					ENB3 ${ }^{\text {\#1 }}$	ENB2 ${ }^{11}$	SUCLP\#1	SCLP\#1
F039					CHPCYL\#1	CHPMD\#1		
F040	AR7\#1	AR6\#1	AR5\#1	AR4\#1	AR3\#1	AR2\#1	AR1*1	AR0\#1
F041	AR15\#1	AR14\#1	AR13\#1	AR12\#1	AR11\#1	AR10\#1	AR09\#1	AR08\#1
F044				SYCAL	$\xrightarrow{\text { FSSPPH }}$	$\stackrel{\text { FSPSY }}{\text { FSPSY\#1 }}$	FSCSL ${ }^{\text {\#1 }}$	
F045	ORARA ${ }^{\text {\#1 }}$	TLMA ${ }^{\text {\#1 }}$	LDT2A ${ }^{\text {\#1 }}$	LDT1A ${ }^{\text {\#1 }}$	SARA ${ }^{\text {\#1 }}$	SDTA ${ }^{\# 1}$	SSTA ${ }^{\# 1}$	ALMA ${ }^{\# 1}$
F046	MORA2A\#1	MORA1A ${ }^{\# 1}$	PORA2A\#1	SLVSA ${ }^{\# 1}$	RCFNA ${ }^{\text {\#1 }}$	RCHPA\#1	CFINA ${ }^{\text {\#1 }}$	CHPA*1
F047							INCSTA\#1	PC1DEA\#1
F049	ORARB\#1	TLMB ${ }^{\text {\#1 }}$	LDT2B\#1	LDT18\#1	SARB*1	SDTB*1	SSTB\#1	ALMB ${ }^{\text {\#1 }}$
F050	MORA23\#1	MORA13\#1	PORA2B\#1	SLVSB\#1	RCFNB\#1	RCHPB\#1	CFINB\#1	CHPB\#1
F051							INCSTB\#1	PC1DEB\#1
F053	EKENB			BGEACT\#1	RPALM ${ }^{\# 1}$	RPBSY\#1	PRGDPL	INHKY
F054	UO007\#1	UO006\#1	UO005\#1	UO004 ${ }^{\# 1}$	UO003\#1	UO002\#1	UO001 ${ }^{\text {\#1 }}$	UO000\#1
F055	U0015\#1	UO014 ${ }^{\# 1}$	UO013\#1	UO012\#1	U0011\#1	U0010\#1	UO009\#1	UO008\#1
F056	UO107\#1	UO106\#1	UO105\#1	UO104 ${ }^{\text {\#1 }}$	UO103\#1	UO102\#1	U0101\#1	UO100\#1
F057	UO115 ${ }^{\text {\#1 }}$	UO114 ${ }^{\# 1}$	UO113*1	UO112 ${ }^{\text {\#1 }}$	UO111 ${ }^{\text {1 }}$	UO110\#1	UO109\#1	UO108\#1
F058	UO123\#1	UO122\#1	UO121\#1	UO120\#1	UO119\#1	UO118\#1	UO117\#1	UO116\#1

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F059	UO131 ${ }^{\text {\#1 }}$	UO130\#1	UO129\#1	UO128\#1	UO127 ${ }^{\text {\#1 }}$	UO126\#1	UO125\#1	UO124 ${ }^{\# 1}$
F060							ESEND*1	EREND\#1
F061							BCLP\#1	BUCLP\#1
F062	PRTSF\#1							
F063	PSYN*1	WATO ${ }^{\text {\#1 }}$	RCYO\#1			PSAR ${ }^{\# 1}$	PSE2\#1	PSE1\#1
F064	TIALM	TICHK	COSP			TLCH\|\#1	TLNW ${ }^{\text {\#1 }}$	TLCH ${ }^{\text {\# }}$
F065		SYNMOD\#1		RTRCTP\#1			RGSPM ${ }^{\# 1}$	RGSPP\#1
F066			PECK2\#1		RTNMVS\#1			G08MD ${ }^{\text {\#1 }}$
F070	PSW08\#1	PSW07\#1	PSW06\#1	PSW05\#1	PSW04\#1	PSW03\#1	PSW02\#1	PSW01\#1
F071							PSW10\#1	PSW09\#1
F072	OUT7 ${ }^{\text {1 }}$	OUT6\#1	OUT5*1	OUT4*1	OUT3 ${ }^{\text {11 }}$	OUT2 ${ }^{\text {1 }}$	OUT1 ${ }^{\# 1}$	OUT0\#1
F073				ZRNO\#1		MD4O\#1	MD2O\#1	MD1O\#1
F075	SPO\#1	KEYO\#1	DRNO\#1	MLKO\#1	SBKO\#1	BDTO\#1		
F076			ROV2O\#1	ROV10\#1	RTAP\#1		MP2O ${ }^{\text {\#1 }}$	MP10 ${ }^{\text {\#1 }}$
F077		RTO\#1			HS1DO\#1	HS1CO\#1	HS1BO\#1	HS1AO\#1
F078	*FV7O\#1	*FV6O\#1	*FV5O\#1	*FV4O\#1	*FV3O\#1	*FV2O\#1	*FV1O\#1	*FV00\#1
F079	*JV7O"1	*JV6O*1	*JV5O*1	*JV4O\#1	*JV3O*1	*JV2O*1	*JV1O*	*JV00*1
F080	*FV15O\#1	*FV14O\#1	*FV130\#1	*FV12O\#1	*FV11O\#1	*FV100\#1	*FV9O*1	*FV8O*1
F081	-J4O\#1	+J4O\#1	$-\mathrm{J3O}{ }^{\text {\#1 }}$	+J3O\#1	- J2O\#1	+J2O\#1	-J1O\#1	+J1O\#1
F082						RVSL\#1		
F090						ABTSP2\#1	ABTSP1\#1	ABTQSV\#1
F092			TRSPS\#1		TRACT\#1			
F094		ZP7 ${ }^{\text {\#1 }}$	ZP6 ${ }^{\text {\#1 }}$	ZP5*1	ZP4 ${ }^{\# 1}$	ZP3 ${ }^{\text {\#1 }}$	ZP2 ${ }^{\text {\#1 }}$	ZP1 ${ }^{\text {\#1 }}$
F096		ZP27 ${ }^{\text {\#1 }}$	ZP26\#1	ZP25 ${ }^{\text {\#1 }}$	ZP24\#1	ZP23 ${ }^{\text {\#1 }}$	ZP22\#1	ZP21\#1
F098		ZP37\#1	ZP36\#1	ZP35\#1	ZP34\#1	ZP33 ${ }^{\text {\#1 }}$	ZP32\#1	ZP31\#1
F100		ZP47 ${ }^{\text {1 }}$	ZP46\#1	ZP45\#1	ZP44 ${ }^{\text {1 }}$	ZP43\#1	ZP42\#1	ZP41\#1
F102		MV7 ${ }^{\text {\#1 }}$	MV6\#1	MV5 ${ }^{\text {1 }}$	MV4 ${ }^{\text {\#1 }}$	MV3 ${ }^{\text {\#1 }}$	MV2 ${ }^{\text {\#1 }}$	MV1 ${ }^{\text {\#1 }}$
F104		INP7\#1	INP6\#1	INP5\#1	INP4 ${ }^{\text {\#1 }}$	INP3 ${ }^{\text {\#1 }}$	INP2\#1	INP1\#1
F106		MVD7\#1	MVD6\#1	MVD5\#1	MVD4*1	MVD3 ${ }^{\text {\#1 }}$	MVD2\#1	MVD1*1
F108		MMI7 ${ }^{\text {\#1 }}$	MMI6 ${ }^{\text {\#1 }}$	MMI5\#1	MMI4 ${ }^{\text {\#1 }}$	$\mathrm{MMI}^{\# 1}$	MMI2\#1	MMI1 ${ }^{\text {\#1 }}$
F110		MDTCH7\#1	MDTCH6\#1	MDTCH5\#1	MDTCH4 ${ }^{\# 1}$	MDTCH3\#1	MDTCH2\#1	MDTCH1\#1

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F112		EADEN7\#1	EADEN6\#1	EADEN5\#1	EADEN4\#1	EADEN3\#1	EADEN2\#1	EADEN1\#1
F114		TRQL7 ${ }^{\text {\# }}$	TRQL6\#1	TRQL5 ${ }^{\text {\#1 }}$	TRQL4\#1	TRQL3 ${ }^{\text {\#1 }}$	TRQL2\#1	TRQL1\#1
F116		FRP7\#1	FRP6\#1	FRP5\#1	FRP4\#1	FRP3 ${ }^{\text {\# }}$	FRP2\#1	FRP1\#1
F118		SYN7O\#1	SYN6O\#1	SYN5O\#1	SYN4O\#1	SYN3O\#1	SYN2O\#1	SYN1O\#1
F120		ZRF7\#1	ZRF6\#1	ZRF5\#1	ZRF4\#1	ZRF3 ${ }^{\text {\#1 }}$	ZRF2\#1	ZRF1\#1
F122	HDO7\#1	HDO6\#1	HDO5\#1	HDO4*1	HDO3 ${ }^{\text {\#1 }}$	HDO2\#1	HDO1*1	HDO0\#1
F129	*EAXSL ${ }^{\text {\#1 }}$		EOV0\#1					
F130	EBSYA\#1	EOTNA\#1	EOTPA\#1	EGENA\#1	EDENA\#1	EIALA ${ }^{\# 1}$	ECKZA\#1	EINPA\#1
F131							EABUFA ${ }^{\# 1}$	EMFA ${ }^{\# 1}$
F132	EM28A\#1	EM24A\#1	EM22A\#1	EM21A\#1	EM18A\#1	EM14A\#1	EM12A\#1	EM11A\#1
F133	EBSYB\#1	EOTNB\#1	EOTPB\#1	EGENB\#1	EDENB\#1	EIALB ${ }^{\text {\#1 }}$	ECKZB\#1	EINPB\#1
F134							EABUFB\#1	EMFB\#1
F135	EM28B\#1	EM24B\#1	EM22B\#1	EM21B\#1	EM18B\#1	EM14B\#1	EM12B\#1	EM11B\#1
F136	EBSYC\#1	EOTNC\#1	EOTPC\#1	EGENC\#1	EDENC ${ }^{\# 1}$	EIALC ${ }^{\text {\#1 }}$	ECKZC\#1	EINPC\#1
F137							EABUFC ${ }^{\text {\#1 }}$	EMFC\#1
F138	EM28C\#1	EM24C\#1	EM22C\#1	EM21C\#1	EM18C\#1	EM14C\#1	EM12C\#1	EM11C\#1
F139	EBSYD ${ }^{\# 1}$	EOTND\#1	EOTPD\#1	EGEND\#1	EDEND\#1	EIALD*1	ECKZD\#1	EINPD\#1
F140							EABUFD\#1	EMFD\#1
F141	EM28D ${ }^{\text {\#1 }}$	EM24D\#1	EM22D\#1	EM21D\#1	EM18D\#1	EM14D\#1	EM12D\#1	EM11D\#1
F142	EM48A ${ }^{\text {\#1 }}$	EM44A ${ }^{\text {\#1 }}$	EM42A\#1	EM41A ${ }^{\text {\#1 }}$	EM38A ${ }^{\text {\#1 }}$	EM34A ${ }^{\text {\#1 }}$	EM32A ${ }^{\text {\#1 }}$	EM31A ${ }^{\# 1}$
F145	EM48B\#1	EM44B\#1	EM42B\#1	EM418\#1	EM38B\#1	EM34B\#1	EM32B\#1	EM31B\#1
F148	EM48C\#1	EM44C\#1	EM42C\#1	EM41C\#1	EM38C\#1	EM34C\#1	EM32C\#1	EM31C\#1
F151	EM48D\#1	EM44D\#1	EM42D\#1	EM41D\#1	EM38D\#1	EM34D\#1	EM32D\#1	EM31D\#1
F177	EDGN*1	EPARM ${ }^{\text {\# }}$	EVAR ${ }^{\text {11 }}$	EPRG ${ }^{\# 1}$	EWTIO\#1	ESTPIO\#1	ERDIO\#1	IOLNK ${ }^{\text {\#1 }}$
F178					SRLNO3\#1	SRLNO2\#1	SRLNO1\#1	SRLNO0\#1
F180	CLRCH8\#1	CLRCH7\#1	CLRCH6\#1	CLRCH5\#1	CLRCH4\#1	CLRCH3\#1	CLRCH2\#1	CLRCH1\#1
F182		EACNT7\#1	EACNT6\#1	EACNT5*1	EACNT4*1	EACNT3\#1	EACNT2\#1	EACNT1 ${ }^{\text {\#1 }}$

$\mathrm{CNC} \rightarrow \mathrm{PMC}$
Address
Bit No.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F1000	OP\#2	SA ${ }^{\text {2 }}$	STL*2	SPL*2				PWD*2
F1001	MA ${ }^{\text {\#2 }}$		TAP\#2	ENB\#2	DEN ${ }^{\text {\#2 }}$	BAL ${ }^{\text {22 }}$	RST\#2	AL ${ }^{\text {22 }}$
F1002	MDRN\#2	CUT\#2		SRNMV\#2	THRD*2	CSS\#2	RPDO\#2	$\mathrm{INCH}{ }^{\text {\# }}$
F1003	MTCHIN\#2	MEDT\#2	MMEM ${ }^{\text {\#2 }}$	MRMT\#2	MMDI\#2	MJ\#2	MH\#2	MINC\#2
F1004			MREF\#2	MAFL\#2	MSBK ${ }^{\text {\#2 }}$	MABSM ${ }^{\text {2 }}$	MMLK ${ }^{\text {\#2 }}$	MBDT1\#2
F1005	MBDT9\#2	MBDT8\#2	MBDT7\#2	MBDT6\#2	MBDT5\#2	MBDT4\#2	MBDT3\#2	MBDT2 ${ }^{\text {\#2 }}$
F1007	BF\#2			BF\#2	TF\#2	SF\#2	EFD\#2	MF\#2
F1008			MF3\#2	MF2\#2				EF\#2
F1009	DM00*2	DM01*2	DM02\#2	DM30\#2				
F1010	M07\#2	M06\#2	M05*2	M04 \#2	M03\#2	M02\#2	M01\#2	M00\#2
F1011	M15*2	M14*2	M13*2	M12\#2	M11*2	M10\#2	M09\#2	M08*2
F1012	M23 \#2	M22\#2	M21*2	M20 ${ }^{\text {\#2 }}$	M19\#2	M18*2	M17\#2	M16*2
F1013	M31 ${ }^{\text {2 }}$	M30*2	M29\#2	M28\#2	M27\#2	M26\#2	M25\#2	$\mathrm{M} 24{ }^{\# 2}$
F1014	M207\#2	M206\#2	M205\#2	M204\#2	M203\#2	M202\#2	M201\#2	M200\#2
F1015	M215\#2	M214\#2	M213\#2	M212\#2	M211\#2	M210\#2	M209\#2	M208\#2
F1016	M307\#2	M306\#2	M305\#2	M304\#2	M303\#2	M302\#2	M301\#2	M300\#2
F1017	M315\#2	M314\#2	M313\#2	M312\#2	M311\#2	M310\#2	M309\#2	M308\#2
F1022	S07\#2	S06\#2	S05*2	S04*2	S03*2	S02 ${ }^{\text {\#2 }}$	S01\#2	S00*2
F1023	S15*2	S14*2	S13*2	S12 ${ }^{\text {2 }}$	S11\#2	S10\#2	S09\#2	S08\#2
F1024	S23\#2	S22\#2	S21\#2	S20\#2	S19\#2	S18*2	S17\#2	S16*2
F1025	S31*2	S30\#2	S29\#2	S28\#2	S27\#2	S26\#2	S25\#2	S24*2
F1026	T07\#2	T06\#2	T05*2	T04*2	T03\#2	T02\#2	T01\#2	T00\#2
F1027	T15\#2	T14*2	T13*2	T12\#2	T11\#2	T10\#2	T09\#2	T08\#2
F1028	T23\#2	T22\#2	T21*2	T20\#2	T19\#2	T18\#2	T17\#2	T16\#2
F1029	T31*2	T30*2	T29\#2	T28\#2	T27\#2	T26\#2	T25\#2	T24*2
F1030	B07\#2	B06*2	B05*2	B04\#2	B03*2	B02\#2	B01\#2	B00\#2
F1031	B15*2	B14*2	B13*2	B12\#2	B11\#2	B10\#2	B09\#2	B08*2
F1032	B23*2	B22\#2	B21*2	B20\#2	B19\#2	B18*2	B17\#2	B16*2
F1033	B31*2	B30\#2	B29\#2	B28\#2	B27\#2	B26\#2	B25\#2	B24*2

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F1072	OUT7\#2	OUT6*2	OUT5*2	OUT4 ${ }^{\text {2 }}$	OUT3 ${ }^{\text {\#2 }}$	OUT2 ${ }^{\text {\#2 }}$	OUT1*2	OUT0\#2
F1073				ZRNO\#2		MD4O*2	MD2O\#2	MD1O\#2
F1075	SPO\#2	KEYO\#2	DRNO\#2	MLKO\#2	SBKO\#2	BDTO\#2		
F1076			ROV2O\#2	ROV10\#2	RTAP\#2		MP2O\#2	MP10\#2
F1077		RTO\#2			HS1DO\#2	HS1CO\#2	HS1BO\#2	HS1AO\#2
F1078	*FV7O\#2	*FV6O\#2	*FV5O\#2	*FV4O\#2	*FV3O\#2	*FV2O*2	*FV1O*2	*FV0O\#2
F1079	*JV7O\#2	*JV6O\#2	*JV5O\#2	*JV4O\#2	*JV3O*2	*JV2O*2	*JV1O\#2	*JV00\#2
F1080	*FV150*2	*FV14O\#2	*FV13O\#2	*FV12O*2	*FV11O\#2	*FV100\#2	*FV090\#2	*FV08O\#2
F1081	-J4O\#2	+J4O\#2	-J3O\#2	+J3O\#2	-J2O\#2	+ $\mathrm{J} 2 \mathrm{O}^{\text {\#2 }}$	-J10\#2	+J1O\#2
F1082						RVSL\#2		
F1090						ABTSP2\#2	ABTSP1\#2	ABTQSV\#2
F1092			TRSPS\#2		TRACT\#2			
F1094		ZP7\#2	ZP6*2	ZP5*2	ZP4*2	ZP3*2	ZP2 ${ }^{\text {\#2 }}$	ZP1\#2
F1096		ZP27\#2	ZP26\#2	ZP25\#2	ZP24\#2	ZP23\#2	ZP22\#2	ZP21\#2
F1098		ZP37\#2	ZP36\#2	ZP35\#2	ZP34\#2	ZP33\#2	ZP32\#2	ZP31\#2
F1100		ZP47\#2	ZP46\#2	ZP45\#2	ZP44\#2	ZP43\#2	ZP42\#2	ZP41\#2
F1102		MV7\#2	MV6\#2	MV5\#2	MV4 ${ }^{\# 2}$	MV3 ${ }^{\text {\#2 }}$	MV2\#2	MV1\#2
F1104		INP7\#2	INP6\#2	INP5\#2	INP4\#2	INP3\#2	INP2\#2	INP1\#2
F1106		MVD7\#2	MVD6\#2	MVD5\#2	MVD4*2	MVD3\#2	MVD2\#2	MVD1\#2
F1108		MMI7\#2	MMI6\#2	MMI5\#2	MMI4\#2	MMI3\#2	MMI2\#2	MMI1\#2
F1110		MDTCH7\#2	MDTCH6 ${ }^{\# 2}$	MDTCH5\#2	MDTCH4\#2	MDTCH3\#2	MDTCH2\#2	MDTCH1\#2
F1112		EADEN7\#2	EADEN6\#2	EADEN5\#2	EADEN4\#2	EADEN3\#2	EADEN2\#2	EADEN1\#2
F1114		TRQL7\#2	TRQL6\#2	TRQL5\#2	TRQL4 ${ }^{\text {\#2 }}$	TRQL3 ${ }^{\text {\#2 }}$	TRQL2\#2	TRQL1\#2
F1116		FRP7\#2	FRP6\#2	FRP5\#2	FRP4\#2	FRP3\#2	FRP2\#2	FRP1\#2
F1118		SYN7O\#2	SYN6O\#2	SYN5O\#2	SYN4O\#2	SYN3O\#2	SYN2O\#2	SYN1O\#2
F1120		ZRF7\#2	ZRF6\#2	ZRF5*2	ZRF4\#2	ZRF3\#2	ZRF2\#2	ZRF1\#2
F1122	HDO7\#2	HDO6\#2	HDO5*2	HDO4\#2	HDO3*2	HDO2\#2	$\mathrm{HDO}^{\# 2}$	HDO0\#2
F1129	*EAXSL*2		EOV0\#2					
F1130	EBSYA\#2	EOTNA\#2	EOTP\#2	EGENA\#2	EDENA\#2	EIALA*2	ECKZA\#2	EINPA\#2
F1131							EABUFA ${ }^{\# 2}$	EMFA ${ }^{\# 2}$
F1132	EM28A ${ }^{\# 2}$	EM24A\#2	EM22A\#2	EM21A ${ }^{\text {\#2 }}$	EM18A\#2	EM14A\#2	EM12A*2	EM11A\#2

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F1133	EBSYB\#2	EOTNB\#2	EOTB*2	EGENB\#2	EDENB\#2	EIALB*2	ECKZB\#2	EINPB\#2
F1134							EABUFB\#2	EMFB\#2
F1135	EM28B\#2	EM24B\#2	EM22B\#2	EM21B\#2	EM18B\#2	EM14B\#2	EM12B\#2	EM11B\#2
F1136	EBSYC\#2	EOTNC\#2	EOTC\#2	EGENC\#2	EDENC\#2	EIALC\#2	ECKZC\#2	EINPC\#2
F1137							EABUFC\#2	EMFC\#2
F1138	EM28C\#2	EM24C\#2	EM22C\#2	EM21C\#2	EM18C\#2	EM14C\#2	EM12C\#2	EM11C\#2
F1139	EBSYD\#2	EOTND\#2	EOTD*2	EGEND*2	EDEND\#2	EIALD*2	ECKZD\#2	EINPD\#2
F1140							EABUFD\#2	EMFD*2
F1141	EM28D*2	EM24D\#2	EM22D\#2	EM21D\#2	EM18D\#2	EM14D\#2	EM12D*2	EM11D*2
F1142	EM48A\#2	EM44A\#2	EM42A\#2	EM41A\#2	EM38A\#2	EM34A\#2	EM32A*2	EM31A\#2
F1145	EM48B\#2	EM44B\#2	EM42B\#2	EM413\#2	EM38B\#2	EM34B\#2	EM32B\#2	EM318 ${ }^{\text {\#2 }}$
F1148	EM48C\#2	EM44C\#2	EM42C\#2	EM41C\#2	EM38C\#2	EM34C\#2	EM32C\#2	EM31C\#2
F1151	EM48D*2	EM44D\#2	EM42D\#2	EM41D\#2	EM38D\#2	EM34D\#2	EM32D\#2	EM31D\#2
F1177	EDGN*2	EPARM ${ }^{\text {\#2 }}$	EVAR*2	EPRG\#2	EWTIO\#2	ESTPIO\#2	ERDIO ${ }^{\text {\#2 }}$	IOLNK ${ }^{\text {\#2 }}$
F1178					SRLNO3 ${ }^{\# 2}$	SRLNO2\#2	SRLNO1\#2	SRLNO0\#2
F1180	CLRCH8\#2	CLRCH7\#2	CLRCH6\#2	CLRCH5\#2	CLRCH4\#2	CLRCH3 ${ }^{\# 2}$	CLRCH2\#2	CLRCH1\#2
F1182		EACNT7\#2	EACNT6*2	EACNT5*2	EACNT4 ${ }^{\text {\#2 }}$	EACNT3\#2	EACNT2\#2	EACNT1\#2

7
 DIGITAL SERVO

This chapter describes servo tuning screen required for maintenance of digital servo and adjustment of reference position.
7.1 INITIAL SETTING SERVO PARAMETERS 524
7.2 SERVO TUNING SCREEN 534
7.3 ADJUSTING REFERENCE POSITION (DOG METHOD) 537
7.4 DOGLESS REFERENCE POSITION SETTING 540

7.1
 INITIAL SETTING SERVO PARAMETERS

This section describes how to set initial servo parameters, which is used for field adjustment of machine tool.

1. Turn on power at the emergency stop condition.
2. Set the parameter to display the servo tuning screen.

\#0 (SVS) 0 : Servo tuning screen is not displayed.
1 : Servo tuning screen is displayed.
3. Turn off the power once then turn it on again.
4. Display the servo parameter setting screen by the following operation: ssstem key \triangle [SV.PARA].
5. Input data required for initial setting using the cursor and page key.

(1) Initial set bit

\#3 (PRMCAL) 1: Turns to 1 when the initial setting is done. The following parameters are set automatically in accordance with the no. of pulses of pulse coder: PRM 2043(PK1V), PRM 2044(PK2V), PRM 2047(POA1), PRM 2053(PPMAX),PRM 2054(PDDP), PRM 2056(EMFCMP), PRM 2057(PVPA), PRM 2059(EMFBAS), PRM 2074(AALPH),PRM 2076(WKAC)
\#1 (DGPRM) $\hat{k} 0$: Initial setting of digital servo parameter is done.
1: Initial setting of digital servo parameter is not done.
\#0 (PLC01) 0 : Values of parameter 2023 and 2024 are used as they are:
1 : Values of parameter 2023 and 2024 are multiplied by 10.

(2) Motor number

For α series servo motor

Model name	$\alpha 0.5$	$\alpha 1 / 3000$	$\alpha 2 / 2000$	$\alpha 2.5 / 3000$	$\alpha 3 / 3000$
Drawing number	0113	0371	0372	0374	0123
Format number	13	61	46	84	15

ModeI name	$\alpha 6 / 2000$	$\alpha 6 / 3000$	$\alpha 12 / 2000$	$\alpha 12 / 3000$	$\alpha 22 / 1500$
Drawing number	0127	0128	0142	0143	0146
Formatnumber	16	17	18	19	27

Model name	$\alpha 22 / 2000$	$\alpha 22 / 3000$	$\alpha 30 / 1200$	$\alpha 30 / 2000$	$\alpha 30 / 3000$
Drawing number	0147	0148	0151	0152	0153
Formatnumber	20	21	28	22	23

Model name	α 40/FAN	$\alpha 40 / 2000$	$\alpha 65$	$\alpha 100$	$\alpha 150$
Drawing number	0158	0157	0331	0332	0333
Formatnumber	29	30	39	40	41

For $\alpha \mathrm{L}$ series servo motor

Model name	α L3/3000	α L6/2000	α L9/3000	α L25/3000	α L50/2000
Drawing number	0561	0562	0564	0571	0572
Formatnumber	56 or 68	57 or 69	58 or 70	59	60

For $\alpha \mathrm{C}$ series servo motor

Model name	α C3/2000	α C6/2000	α C12/2000	α C22/1500
Drawing number	0121	0126	0141	0145
Formatnumber	7	8	9	10

For α HV series servo motor

Model name	$\alpha 12 \mathrm{HV}$	$\alpha 22 \mathrm{HV}$	$\alpha 30 \mathrm{HV}$
Drawing number	0176	0177	0178
Formatnumber	3	4	5

For $\alpha \mathrm{E}$ and β series servo motor

ModeI name	$\alpha 0.5$	$\beta 1 / 3000$ $\alpha E 1 / 3000$	$\beta 2 / 3000$ α E2/3000	$\beta 3 / 3000$ α E3/3000	$\beta 6 / 2000$ α E6/2000
Drawing number	0113	0101	0102	0105	0106
Formatnumber	13	35	36	33	34

For $\alpha \mathrm{M}$ series servo motor

Model name	$\alpha \mathrm{M} 2 / 3000$	$\alpha \mathrm{M} 2.5 / 3000$	$\alpha \mathrm{M} 3 / 3000$	$\alpha \mathrm{M} 6 / 3000$	$\alpha \mathrm{M} 9 / 3000$
Drawing number	0376	0377	0161	0162	0163
Formatnumber	97	98	24	25	26

Model name	$\alpha \mathrm{M} 22 / 3000$	$\alpha \mathrm{M} 30 / 3000$	$\alpha \mathrm{M} 50 / 3000$
Drawing number	0165	0166	0169
Format number	100	101	108

Model name	α M6HV	α M9HV	α M22HV	α M30HV
Drawing number	0182	0183	0185	0186
Formatnumber	104	105	106	107

For linear motor

Model name	1500 A	3000 B	6000 B	9000 B
Drawing number	0410	0411	0412	0413
Formatnumber	90	91	92	93

(3) Arbitrary AMR function (for 5-0S to 3-0S)

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0	Motor model
1	0	0	0	0	0	1	0	5-0S
0	0	0	0	0	0	1	1	4-0S, 3-0S
0	0	0	0	0	0	0	0	other than above

NOTE

Set "00000000" for serial pulse coder C.
(4) CMR
\square

1) When CMR is $1 / 2$ to $1 / 27$ Set value $=\frac{1}{\mathrm{CMR}}+100$
2) When CMR is 0.5 to $48 \quad$ Set value $=2 \times \mathrm{CMR}$
(5) Turn off the power then back on.
(6) Feed gear N/M

3) For serial pulse coder A or B, and serial α pulse coder.
$\frac{\mathrm{n}}{\mathrm{m}}=\frac{\text { Number of feedback pulses per revolution of motor }}{1000000}$

NOTE

For serial pulse coder B, use a value not exceeding 250,000 as the number of feedback pulses per revolution.
<<Examples of calculation>>

	1/1000 mm	1/10000 mm
One revolution 8mm	$\mathrm{n}=1 / \mathrm{m}=125$	$\mathrm{n}=2 / \mathrm{m}=25$
of motor 10 mm	$n=1 / m=100$	$\mathrm{n}=1 / \mathrm{m}=10$
12 mm	$n=3 / m=250$	$\mathrm{n}=3 / \mathrm{m}=25$

(7) Direction of travel

111 : Normal (clockwise) - 111 : Reverse (counterclockwise)
(8) Number of velocity pulses and position pulses

1) For serial pulse coder A or B, or serial α pulse coder

	Paramter No.	Increment system : 1/1000mm		Increment system : 1/10000mm	
		Closed loop	Semi-closed loop	Closed loop	Semi-closed loop
High resolution setting	2000	xxxx xxx 0		xxxx xxx 1	
Separatedetector	1815	00100010	00100000	00100010	00100000
No. of velocity feedback pulses	2023	8192		819	
No. of position feedback pulses	2024	NS	12500	NS/10	1250

NOTE

1 NS is the number of position feedback pulses per one revolution of the motor (multiplied by four)
2 The 5-0S to 3-0S motors have different numbers of poles. Set parameter 2001.
3 Even if the system employs a closed loop, bit 3 of parameter 2002 is 1 and bit 4 is 0.
(9) Reference counter

Reference counter capacity for each axis (0 - 99999999)
6. Turn off the power then back on.
(10) FSSB display and setting screen

Connecting the CNC control unit to servo amplifiers via a high-speed serial bus (FANUC Serial Servo Bus, or FSSB), which uses only one fiber optics cable, can significantly reduce the amount of cabling in machine tool electrical sections.
Axis settings are calculated automatically according to the interrelationships between axes and amplifiers entered on the FSSB setting screen. Parameter Nos. 1023, 1905, 1910 to 1919, 1936, and 1937 are specified automatically according to the results of the calculation.

- Display

The FSSB setting screen displays FSSB-based amplifier and axis information. This information can also be specified by the operator.

1. Press function key
system.
2. To display [FSSB], press continuous menu key \square several times.
3. Pressing soft key [FSSB] causes the AMP SET screen (or the previously selected FSSB setting screen) to appear, with the following soft keys displayed.

The FSSB setting screens include: AMP SET, AXIS SET, and AMP MAINTENANCE.

Pressing soft key [AMP] causes the AMP SET screen to appear. Pressing soft key [AXIS] causes the AXIS SET screen to appear. Pressing soft key [MAINTE] causes the AMP MAINTENANCE screen to appear.

1) Amplifier setting screen

The amplifier setting screen consists of two sections: the first section displays information about the slave, while the second section displays information about the pulse modules.

The amplifier setting screen consists of the following items:

- NO. (slave number)

The numbers of up to ten slaves (up to eight amplifiers and up to two pulse modules) connected via the FSSB are displayed sequentially, with the one nearest to the CNC being number 1.

- AMP (amplifier type)

The amplifier type display consists of the letter A, which stands for "amplifier," a number that indicates the placing of the amplifier, as counted from that nearest to the CNC , and a letter such as L (first axis) or M (second axis) indicating the placing of the axis in the amplifier.

- AXIS NO. (controlled axis number)

The axis number of each controlled axis specified in parameters (Nos. 1920 to 1929) is displayed. If a number specified in these parameters falls outside the range of between 1 and the maximum number of controlled axes, 0 is displayed.

- NAME (controlled axis name)

The axis name assigned to a parameter (No. 1020) corresponding to a particular controlled axis number is displayed. If the controlled axis number is $0,-$ is displayed.

- The following items are displayed as amplifier information:
- UNIT (servo amplifier unit type)
- SERIES (servo amplifier series)
- CURRENT (maximum rating)
- The following items are displayed as pulse module information:

- SEPARATE

This display consists of the letter M, which stands for "pulse module" and a number indicating the placing of the pulse module, as counted from that nearest to the CNC.

. TYPE

This display is a letter indicating the type of the pulse module.

- PCB ID

This display consists of four digits indicating the pulse module ID (hexadecimal). The pulse module ID is followed by DETECTOR (8-AXES) for the eight-axis separate detector module or DETECTOR (4-AXES) for the four-axis separate detector module.
2) Axis setting screen

The axis setting screen displays the information shown below:

This axis setting screen displays the following items:

- AXIS NO. (controlled axis number)

This item is the placing of the NC controlled axis.

- NAME (controlled axis name)
- AMP (type of the amplifier connected to each axis)
- M1 (connector number for pulse module 1)

This item is the number of the connector for pulse module 1 , specified in parameter No. 1931.

- M2 (connector number for pulse module 2)

This item is the number of the connector for pulse module 2, specified in parameter No. 1932.

- TWO-AXES

This item is the value specified in bit 0 (parameter 1 DSP) of parameter No. 1904. It is 1 for an axis (such as a learning control axis, high-speed current loop axis, or high-speed interface axis) that exclusively uses a DSP, which is usually shared by two-axes.

- Cs: Cs contour controlled axis

This item is the value specified in parameter No. 1933. It is 1 for the Cs contour controlled axis.

- TANDEM (M series only)

This item is the number specified in parameter No. 1934. Consecutive odd and even numbers are displayed for the master and slave axes for tandem control.
3) Amplifier maintenance screen

The amplifier maintenance screen displays maintenance information for servo amplifiers. This screen consists of the following two pages, either of which can be selected by pressing the
 or
 key.

The amplifier maintenance screen displays the following items:

- AXIS NO. (controlled axis number)
- NAME (controlled axis name)
- AMP (type of amplifier connected to each axis)
- SERIES (servo amplifier series of an amplifier connected to each axis)
- UNIT (unit type of a servo amplifier connected to each axis)
- NO. OF AXES (maximum number of axes controlled by an amplifier connected to each axis)
- CURRENT (maximum rating for amplifiers connected to each axis)
- VERSION (unit version number of an amplifier connected to each axis)
- TEST DATE (date of test performed on an amplifier connected to each axis)

Example) 970123 = January 23, 1997

- MAINTENANCE NO. (engineering change number for an amplifier connected to each axis)

On an FSSB setting screen (other than the amplifier maintenance screen), pressing soft key [(OPRT)] displays the following soft keys:

To enter data, place the machine in MDI mode or the emergency stop state, position the cursor to the point where a desired item is to be input, then enter the desired data and press soft key [INPUT] (or the INPUT key on the MDI panel).
When soft key [SET] is pressed after data has been entered, a warning message is displayed if the entered data contains an error. When the data is satisfactory, the corresponding parameter is set up.
To restore the previous value of a parameter if, for example, an entered value is incorrect, press soft key [READ].
When the power is turned on, values are read from the parameters and displayed on the screen.

CAUTION

1 For the parameters to be specified on the FSSB setting screen, do not attempt to enter values on the parameter screen using the MDI or a G10 command. Use only the FSSB screen to enter values for these parameters.
2 If pressing soft key [SET] results in a warning message being displayed, retry data entry, or press soft key [READ] to clear the warning message. Note that pressing the reset key does not clear the warning message.

1) Amplifier setting screen

The amplifier setting screen displays the following items:

- AXIS NO. (controlled axis number)

For this item, enter a value of between 1 and the maximum number of controlled axes. If a number that falls outside this range is entered, the warning message "INVALID FORMAT" appears. If the entered controlled axis number is duplicate or 0 , the warning message "SPECIFIED DATA IS OUT OF RANGE" appears when soft key [SET] is pressed to assert the entered value. In this case, no value can be entered for the parameter.
2) Axis setting screen

On the axis setting screen, the following items can be specified:

- M1 (connector number for pulse module 1)

For an axis that uses pulse module 1 , enter a connector number using a number in the range of between 1 and the maximum number of axes for pulse module 1 . When pulse module 1 need not be used, enter 0 . If a number that falls outside the valid range is entered, the warning message "INVALID FORMAT" is displayed.

- M2 (connector number for pulse module 2)

For an axis that uses pulse module 2, enter a connector number using a number in the range of between 1 and the maximum number of axes for pulse module 2. When pulse module 2 need not be used, enter 0 . If a number that falls outside the valid range is entered, the warning message "INVALID FORMAT" is displayed.

- TWO-AXES

Enter 1 for the following axes, each of which exclusively uses a DSP, which is usually shared by two-axes. If a number other than 0 or 1 is entered, the warning message "INVALID FORMAT" is displayed.

- Learning control axis
- High-speed current loop axis
- High-speed interface axis
- Cs (Cs contour controlled axis)

Enter 1 for the Cs contour controlled axis. If a number other than 0 or 1 is entered, the warning message "INVALID FORMAT" is displayed.

- TANDEM

Enter odd and even numbers for the master and slave axes for tandem control. These numbers must be consecutive and in the range of between 1 and 8 . If a number that falls outside the valid range is entered, the warning message "INVALID FORMAT" is displayed.

When soft key [SET] is pressed on the axis setting screen after data entry, the warning message "SPECIFIED DATA IS OUT OF RANGE" is displayed if any of the following conditions is satisfied.

- Both M1 and M2 are nonzero for an axis.
- Any two of TWO-AXES, Cs, and TANDEM are nonzero for an axis.
- A duplicate value is specified for M1.
- A duplicate value is specified for M2.
- A duplicate value is specified for Cs.
- A duplicate value is specified for TANDEM.
- An invalid master/slave axis pair is specified for TANDEM.

7.2
 SERVO TUNING SCREEN

7.2.1

Parameter Setting
Set a parameter to display the servo tuning screen.

\#0 (SVS) $0:$ Servo tuning screen is not displayed.
1: Servo tuning screen is displayed.

7.2.2
 Displaying Servo Tuning Screen

1. Press ssstem key \triangleright and soft key [SV. PARA] in this order.
2. Press soft key [SV.TUN] to select the servo tuning screen.

	SERVO TUNING (PAMAMETER)		01234 N12345 (MONITOR)		
(1)	FUN.BIT	00000000	ALARM 1	00000000	(9)
(2)	LOOP GAIN	3000	ALARM 2	00000000	(10)
(3)	TURNING SET.	0	ALARM 3	10000000	(11)
(4)	SET PERIOD	50	ALARM 4	00000000	(12)
(5)	INT. GAIN	113	ALARM 5	00000000	(13)
(6)	PROP.GAIN	-1015	LOOP GAIN	2999	(14)
(7)	FILER	0	POS ERROR	556	(15)
(8)	VELOC.GAIN	125	CURRENT\%	10	(16)
			SPEED RPM	100	(17)
	$(\mathrm{SV} \text { SET })(\mathrm{SV} \text { TUN })($		$)($	OPE	

(1) Function bit : PRM 2003
(2) Loop gain : PRM 1825
(3) Tuning start: (Used by automatic servo tuning function)
(4) Set period: (Used by automatic servo tuning function)
(5) Integral gain : PRM 2043
(6) Proportional gain : PRM 2044
(7) Filter : PRM 2067
(8) Velocity gain Set value $=\frac{(\text { PRM 2021 })+256}{256} \times 100$
(9) Alarm 1: DGN 200 (Details of alarm 400 and 414)
(10) Alarm 2 : DGN 201 (Details of disconnection alarm, overload)
(11) Alarm 3 : DGN 202 (Details of alarm 319)
(12) Alarm 4 : DGN 203 (Details of alarm 319)
(13) Alarm 5 : DGN 204 (Details of alarm 414)
(14) Loop gain : Actual loop gain
(15) Position error : Actual position error(DGN 300)
(16) Current(\%) : Indicate current with \% to the rated value.
(17) Speed RPM : Number of motor actual rotation

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
Alarm1	OVL	LV	OVC	HCA	HVA	DCA	FBA	OFA
DGN (200) :								
\#7 (OVL)		Overload alarm						
\#6 (LV)		Insufficient voltage alarm						
\#5 (OVC)		Overcurrent alarm						
\#4 (HCA)		Abnormal current alarm						
\#3 (HVA)		Excessive voltage alarm						
\#2 (DCA)		Discharge alarm						
\#1 (FBA)		Disconnection alarm						
\#0 (OFA) :		Overflow alarm						
	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
Alarm2	ALD			EXP				

DGN (201) \downarrow

Over- load larm	0	-	-	-	Amplifieroverheat
	1	-	-	-	Motor overheat
Discon- nection alarm	1	-	-	0	Built-in pulse coder disconnection (Hardware)
	1	-	-	1	Separate type pulse coder disconnec- tion (Hardware)
	0	-	-	0	Pulse coder disconnection (software)

	$\# 7$	\#6	\#5	\#4	\#3	\#2	\#1
Alarm3							
	CSA	BLA	PHA	RCA	BZA	CKA	SPH

DGN (202) :
\#6 (CSA) : Hardware of serial pulse coder is abnormal.
\#5 (BLA) : Battery voltage is in low (warning).
\#4 (PHA) : Serial pulse coder or feedback cable is abnormal.
Counting the feedback signal is in error.
\#3 (RCA) : Serial pulse coder is faulty.
Counting is in error.
If the RCA bit is set to 1 when both the FBA bit (bit 1 of alarm 1) and ALD bit of alarm 2 are set to 1 and the EXP bit of alarm 2 (internal hardware disconnection) is set to 1 , a count miss alarm (CMAL) occurs in the α pulse coder.
\#2 (BZA) : Battery voltage becomes 0 .
Replace batteries and set the reference position.
\#1 (CKA) : Serial pulse coder is faulty.
Internal block has stopped.
\#0 (SPH) : Serial pulse coder or feedback cable is faulty.
Counting the feedback signal is in error.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1
Alarm4							
DTE	CRC	STB	PRM				

DGN (203) :
\#7 (DTE) : Communication error of serial pulse coder. There is no response.
\#6 (CRC) : Communication error of serial pulse coder. Transmitted data is in error.
\#5 (STB) : Communication error of serial pulse coder. Transmitted data is in error.
\#4 (PRM) : The alarm is detected by the servo, the values specified in the parameter is not correct.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
Alarm5		OFS	MCC	LDM	PMS			

DGN (204) :
\#6 (OFS) : A/D conversion of current value of digital servo is abnormal.
\#5 (MCC) : Contacts of electro-magnetic contactor of servo amplifier is blown
\#4 (LDM) : LED of serial pulse coder is abnormal.
\#3 (PMS) : No. of feedback pulses are in error because serial pulse coder C or feedback cable is faulty.

7.3

ADJUSTING
REFERENCE
POSITION
(DOG METHOD)

7.3.1

General

- Parameter

\#1(DLZ) 会 0 : Reference position return method is normal (dog).
1: Dogless reference position setting is used.

\#1(DLZ) 0: The normal method (dog) is used for reference position return.
1: Reference position setting without dogs is used (axis by axis).

NOTE

A reference position can be set axis by axis by setting bit 1 of parameter No. 1002 to 0 and setting bit 1 of parameter No. 1005. Reference position setting without dogs cannot be used for a spindle positioning axis and Cs contour axis. When these axes are involved, use bit 1 of parameter No. 1005.

PRM $1821 \quad$ Reference counter capacity $\quad[\mathrm{P}]$
No. of feedback pulses or its division by an integer is set.
PRM $1850 \quad$ Grid shift amount per axis [P]

When the resolution is 0.0001 mm , set the value in the unit ten times the detection unit.

\#5(APC) 0: Position detector is other than absolute pulse coder.
1 : Position detector is absolute pulse coder.
\#4(APZ) Zero position of absolute pulse coder is:
0 : Not established
1: Established
(Turns to 1 after establishment)
To manually change the value of the APZ bit from 0 to 1 without first returning to the reference position
when using serial pulse coder α, follow this procedure: Back up the data with the battery and give the motor one or more turns.
Turn the power off then on again, then change the APZ bit setting from 0 to 1.
\#1(OPT) 0 : Position detection is performed by the pulse coder built in the motor.
1: Separate type pulse coder or linear scale is used.

- Separate Type Pulse

Coder or Linear Scale is Used
PRM 1821 Reference counter capacity per axis $\quad[\mathrm{P}]$

Normally, the number of feedback pulses per motor revolution is set to the reference counter capacity.
When plural reference marks are on a linear scale, a quotient of the distance between the reference marks divided by an interfer may be used as a reference counter capacity:

Example)

7.4

DOGLESS
REFERENCE POSITION SETTING

When there are no dog nor limit switch for reference position return, this function enables the tool to return the reference position that is set by MTB.
When the absolute position detector is used, the reference position once set remains also during power off. When the absolute detector is replaced or absolute position is lost, perform this setting.
7.4.1

General

7.4.2

Operation

1 Move the tool near the reference position using a manual operation.
2 Select the reference position return mode or switch.
3 Press a button for an axis-and-direction-select-signal + or - , and the machine moves to the next grid, then stops.
(This position is set as the reference position).
After the reference position has been set, select the reference position return mode(SRN signal is 1) and turn on an axis-and-directionselect signal, then the tool returns to the reference position.

7.4.3

Associated Parameters

\#1(DLZ) 0: The normal method (dog) is used for reference position return.
1: Reference position setting without dogs is used (axis by axis).

NOTE

A reference position can be set axis by axis by setting bit 1 of parameter No. 1002 to 0 and setting bit 1 of parameter No. 1005. Reference position setting without dogs cannot be used for a spindle positioning axis and Cs contour axis. When these axes are involved, use bit 1 of parameter No. 1005.

\#5(ZMI) 0 : Reference position return and backlash initial direction is + .
1: Reference position return and backlash initial direction is - .
After ZRN signal becomes 1, manual feed direction is always the direction set by this parameter irrespective of an axis selection signal.

(AC SPINDLE (SERIAL INTERFACE)

This chapter outlines the serial interface and analog interface spindle amplifiers and explains related parameters.
8.1 AC SPINDLE (SERIAL INTERFACE) 543
8.1.1 Outline of Spindle Control 543
8.1.2 Spindle Setting and Tuning Screen 546
8.1.3 Automatic Setting of Standard Parameters 554
8.2 AC SPINDLE (ANALOG INTERFACE) 555
8.2.1 Outline of Spindle Control 555

The following drawing number is indicated on the upper part of the spindle unit of the serial interface spindle amplifier:

8.1
 AC SPINDLE (SERIAL INTERFACE)

8.1 .1
 Outline of Spindle
 Control

8.1.1.1

Method A of gear change for machining center

8.1.1.2

Method B of gear change for machining center (PRM 3705\#2=1)

8.1.1.3

For lathe

8.1.2
 Spindle Setting and
 Tuning Screen

8.1.2.1

Display method
(1) Confirm the parameters

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 3111 | | | | | | |
| | | | | | | SPS | |

Bit1 (SPS) 0: The spindle tuning screen is not displayed.
is 1: The spindle tuning screen is displayed.
(2) Press the \square key to select the screen for setting parameters and other data.
(3)Press the continuous menu key Δ.
(4)Press the soft key [SP.PRM]. Then, the spindle setting and tuning screen appears.
(5) The following screens are provided. These screens can be selected using soft keys.

1) [SP.SET] : Spindle setting screen
2) [SP.TUN] : Spindle tuning screen
3) $[$ SP.MON] : Spindle monitor screen
(6) With the page keys \square a spindle to be displayed can be selected (only when multiple serial spindles are connected).

8.1.2.2
 Spindle setting screen

- Gear selection

```
SPINDLE SETTING
(1)GEAR SELECT : 1
(2) SPINDLE : S11
(PARAMETER)
(3) GEAR RATIO 50
(4)MAX SPINDLE SPEED 3000
(5)MAX MOTOR SPEED 6000
(6)MAX C AXIS SPEED 100
```

The gear select status on the machine side is displayed.

Indication	CTH1	CTH2
1	0	0
2	0	1
3	1	0
4	1	1

- Spindle

Select a spindle for which data is to be set.
S11: Main spindle amplifier for the 1st spindle
S12: Subspindle amplifier for the 1st spindle
S21: Main spindle amplifier for the 2nd spindle
S22: Subspindle amplifier for the 2nd spindle

- Parameters

	S11:1st Main	S12:1st Sub	S21:2nd Main	S22:2nd Sub
Gear ratio(HIGH)	4056	4216	4056	4216
Gear ratio(MIDIUM HIGH)	4057		4057	
Gear ratio(MIDIUM LOW)	4058	4217	4058	4217
Gear ratio(LOW)	4059		4059	
Max. spindle speed (gear1)	3741		3741	
Max. spindle speed (gear2)	3742		3742	
Max. spindle speed (gear3)	3743		3743	
Max. spindle speed (gear4)	3744		3744	
Max. motor speed	4020	4196	4020	4196
Max. C axis speed	4021	None	4021	None

8.1.2.3

Spindle tuning screen

```
SPINDLE TUNING
OPERATION : SPEED CONTROL
GEAR SELECT : 1
SPINDLE : S11
\begin{tabular}{lrrrr} 
(PARAMETER) & \multicolumn{4}{c}{ (MONITOR) } \\
\cline { 2 - 2 } PROP.GAIN & 20 & & \multicolumn{2}{l}{ MOTOR SPEED }
\end{tabular} 100
```

- Operation mode

1 : Normal operation
2 : Orientation
3 : Synchronization control
4 : Rigid tapping
5 : Cs contour control
6 : Spindle positioning control

- Displayed parameters The displayed parameters vary depending on the operation mode.

Spindle positioning control	Normal operation	Orientation	Synchronization control	Rigid tapping	Cs contour control
Proportional gain Integral gain Loop gain Motor voltage ZRN gain (\%) Shift reference position	Proportional gain Integral gain Motor voltage Regenerative power	Proportional gain Integral gain Loop gain Motor voltage ORAR gain (\%) Shift spindle stop position Shift reference position	Proportional gain Integral gain Loop gain Motor voltage Acceleration/deceleration constant (\%) Shift reference position	Proportional gain Integral gain Loop gain Motor voltage ZRN gain Shift reference position	Proportional gain Integral gain Loop gain Motor voltage ZRN gain (\%) Shift reference position

Note) For the parameter numbers corresponding to the displayed parameter items, see Section 8.1.2.5.

- Displayed monitoring items

Spindle position- ing control	Normal operation	Orientation	Synchronization control	Rigid tapping	Cs contour control
Motor speed Feedrated Position deviation S1	Motor speed Spindle speed	Motor speed Spindle speed Position deviation S1	Motor speed Spindo speed Position deviation S1 Position deviaion S2 Synnchronous deviation	Motor speed Spindle speed Position deviation S1 Position deviation Z Synchronous deviation	Motor speed Spindle speed Position deviation S1

Note 1)
Motor speed $[\mathrm{rpm}]=\frac{\mid \text { Spindle data } \mid}{16383} \times$ Max. Motor speed. $(* 1)$
(*1) Parameter 4020: Main spindleParameter 4196: Subspindle
Note 2) The spindle speed in Cs contour control mode is in degrees $/ \mathrm{min}$.

8.1.2.4
 Spindle monitor screen

```
SPINDLE MONITOR SCREEN
ALARM : AL-27 (POSITION CODER DIS.)
OPERATION : Cs AXIS OONTROL
SPINDLE SPEED : 100 DEG/MIN
MOTOR SPEED : 150 RPM
    LOAD METER (%)
    CONTROL INPUT : ORCM MRDY *ESP
    CONTROL OUTPUT : SST SDT ORAR
```


- Spindle alarm

1: Motor overheated
2: Speed deviation excessive
3: Fuse blow of DC link
4: Fuse blow of AC inputline
5: Fuse blow of DC voltage
Excessive speed
Heat sink overheat
: Low voltage of AC input
11: Excess voltage in DC link
12: Excess current in DC link
13: CPU internal data memory error
18: ROM SUM check error
19: U phase current offset excessive
20: V phase current offset excessive
24: Serial data transmission abnormal
25: Serial data transmission stop
26: Cs axis speed detecting signal failure
27: Position coder signal disconnection
28: Cs pos.detect signal disconnection
29: Short time overload
30: Input circuit excess current
31: Speed detecting signal disconnection
32: SLC LSI internal RAM abnormal
33: DC link charging insufficient
34: Parameter abnormal setting
35: Gear ratio data excessive
36: Error counter overflow
37: Speed detecting unit error setting
38: Magnetic sensor signal abnormal
39: Alarm of one revolution signal for Cs axis control is detected
40: Alarm of one revolution signal for Cs axis control is not detected
41: Erroneous detection of the position coder one revolution signal
42: Undetection of the position coder one revolution signal
46: Erroneous detection of the position coder one revolution signal on threading
47: Abnormal position coder signal
48: Erroneous detection of position coder one revolution signal

- Operation
- Load meter
- Control input signal
- Control output signals

Following 6 modes are available:
a. Normal operation
b. Orientation
c. Synchronous operation
d. Rigid tapping
e. Cs contour cotrol
f. Spindle positioning control

The load meter displays spindle load in a unit of 10%.

1) Load meter[\%]= $\begin{array}{r}\text { Load meter data } \\ 32767\end{array} \begin{array}{r}\text { Max.output value } \\ \text { of load meter }(*)\end{array}$
(*) PRM 4127: Main
PRM 4274: Sub.

Max. 10 signals those are ON are displayed from the following signals:

TLML	: Torque limit command (low)	SPSL	: Spindle selection signal
TLMH	: Torque limit command (high)	MCFN	: Power line switching
CTH1	: Gear signal 1	SOCN	: Soft start/stop cancel
CTH2	: Gear signal 2	RSL	: Output switching request
SRV	: Spindle reverse rotation	RCH	: Power line state confirm
SFR	: Spindle forward rotation	INDX	: Orientation stop pos.
ORCM	: Spindleorientation	ROTA	: Rotation direction of
MEDY	: Machine ready	ORCM	
ARST	: Alarm reset signal	NRROShor-cut of ORCM *ESP : Emergency stop	INTG: Speed integral control signal
		DEFMReferencial mode command	

Max. 10 signals those are ON are displayed from the following signals:

ALM	$:$ Alarm signal	TML5 $\quad:$ Torque limitation	
SST	$:$ Speed zero signal	ORAR $:$ Orientation end signal	
SDT	$:$ Speed detecting signal	CHP $\quad:$ Power line switched signal	
SAR	$:$ Speed arrival signal	CFIN $:$ Spindle switch complete	
LDT1	$:$ Load detecting signal 1	RCHP	$:$ Output switch signal
LDT2	$:$ Load detecting signal 2	RCFN	: Output switch complete
signal			

8.1.2.5

Correspondence between operation mode and parameters on spindle tuning screen

- Normal operation mode

	S11: 1st Main	S12: 1st Sub	S21: 2nd Main	S22: 2nd Sub
Proportionalgain(HIGH)	4040	4206	4040	4206
Proportional gain(LOW)	4041	4207	4041	4207
Integralgain(HIGH)	4048	4212	4048	4212
	Integralgain(LOW)			

- Orientation mode

	S11: 1st Main	$\begin{array}{\|l\|} \hline \text { S12: } \\ \text { 1st Sub } \end{array}$	S21: 2nd Main	S22: 2nd Sub
Proportionalgain(HIGH)	4042	4208	4042	4208
Proportional gain (LOW)	4043	4209	4043	4209
Integralgain(HIGH)	4050	4213	4050	4213
Integralgain(LOW)	4051		4051	
Loop gain (HIGH)	4060	4218	4060	4218
Loop gain (MID, HIGH)	4061		4061	
Loop gain (MID, LOW)	4062	4219	4062	4219
Loop gain (LOW)	4063		4063	
Motor voltage	4084	4237	4084	4237
Gain change upon completion oforientation	4064	4220	4064	4220
Stop position shift	4077	4228	4077	4228
PC-type orientation stop position	4031	4204	4031	4204

- Synchronization control Numerals are parameter numbers : mode

	S11: 1st Main	S12: 1st Sub	S21: 2nd Main	S22: 2nd Sub
Proportionalgain(HIGH)	4044	4210	4044	4210
Proportionalgain(LOW)	4045	4211	4045	4211
Integralgain(HIGH)	4052	4214	4052	4214
Integralgain(LOW)	4053		4053	
Position loop gain(HIGH)	4065	4221	4065	4221
Position loop gain(MID,HIGH)	4066		4066	
Position loop gain(MID,LOW)	4067	4222	4067	42222
Position loop gain(LOW)	4068		4068	
Motorvoltage	4085	4238	4085	4238
Acc./Dec. time constant	4032		4032	
Shiftamount	4034		4034	

- Rigid tapping mode

Numerals are parameter numbers :

	S11: 1st Main	$\begin{aligned} & \hline \text { S12: } \\ & \text { 1st Sub } \end{aligned}$	S21: 2nd Main	$\begin{array}{\|l\|} \hline \text { S22: } \\ \text { 2nd Sub } \end{array}$
Proportionalgain(HIGH)	4044	4210	4044	4210
Proportionalgain(LOW)	4045	4211	4045	4211
Integralgain(HIGH)	4052		4052	
Integralgain(LOW)	4053		4053	
Position loop gain(HIGH)	4065	4221	4065	4221
Position loop gain(MID,HIGH)	4066		4066	
Position loop gain(MID,LOW)	4067	4222	4067	4222
Position loop gain(LOW)	4068		4068	
Motor voltage	4085	4238	4085	4238
ZRN gain \%	4091	4239	4091	4239
Grid shift amount	4073	4223	4073	4223

- Spindle contouring control mode (Cs axis control)

Numerals are parameter numbers :

	S11: 1st Main	S12: 1st Sub	S21: 2nd Main	S22: 2nd Sub
Proportionalgain(HIGH)	4046		4046	
Proportional gain(LOW)	4047		4047	
Integralgain(HIGH)	4054		4054	
	Integralgain(LOW)	4055		4055
Position loop gain(HIGH)	4069		4069	
	Position loopgain(MID,HIGH)	4070		4070

- Spindle positioning control mode

	S11: 1st Main	$\begin{array}{\|l\|} \hline \text { S12: } \\ \text { 1st Sub } \end{array}$	S21: 2nd Main	$\begin{aligned} & \hline \text { S22: } \\ & \text { 2nd Sub } \end{aligned}$
Proportionalgain(HIGH)	4044	4210	4044	4210
Proportional gain (LOW)	4045	4211	4045	4211
Integralgain(HIGH)	4052	4214	4052	4214
Integralgain(LOW)	4053		4053	
Position loop gain(HIGH)	4065	4221	4065	4221
Position loop gain(MID,HIGH)	4066		4066	
Position loop gain(MID,LOW) Position loop gain(LOW)	4067	4222	4067	4222
	4068		4068	
Motor voltage	4085	4238	4085	4238
ZRN gain \%	4091	4239	4091	4239
Reference position shift	4073	4223	4073	4223

8.1.3
 Automatic Setting of Standard Parameters

The standard parameters related to each motor model can be set automatically.

- The specifications for controlling a motor depend on the specifications defined by the machine tool builder. The parameters defined by the machine tool builder are set as the standard values (initial values) by this automatic setting function.

Therefore, when performing automatic operation, always set parameters properly according to the parameter list (parameters 4000 and later).

1. Turn on the power in the emergency stop state.
2. Set bit 7 of parameter 4019 to 1 .

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
LDSP							

Bit 7 (LDSP) The parameters for the serial interface spindle are:
0 : Not set automatically.

* 1: Set automatically.

3. Set a motor model code.

Code	Motor mode	Amplifier
100	$\alpha 0.5$ (3000/8000min ${ }^{-1}$)	SPM-2.2
101	$\alpha 1\left(3000 / 8000 \mathrm{~min}^{-1}\right)$	SPM-2.2
102	$\alpha 1.5\left(1500 / 8000 \mathrm{~min}^{-1}\right)$	SPM-5.5
103	$\alpha 2\left(1500 / 8000 \mathrm{~min}^{-1}\right)$	SPM-5.5
104	$\alpha 2 / 1500$ (3000/1500min ${ }^{-1}$)	SPM-5.5
105	$\alpha 3$ (1500/8000min ${ }^{-1}$)	SPM-5.5
106	$\alpha 6\left(1500 / 8000 \mathrm{~min}^{-1}\right)$	SPM-11
107	$\alpha 8\left(1500 / 6000 \mathrm{~min}^{-1}\right)$	SPM-11
108	$\alpha 12$ (1500/6000min ${ }^{-1}$)	SPM-15
109	$\alpha 15$ (1500/6000min ${ }^{-1}$)	SPM-22
110	$\alpha 18$ (1500/6000min ${ }^{-1}$)	SPM-22
111	$\alpha 22$ (1500/6000min ${ }^{-1}$)	SPM-26
112	α P8 (750/6000min ${ }^{-1}$)	SPM-11
113	α P12 (750/6000min ${ }^{-1}$)	SPM-11
114	α P15 (750/6000min ${ }^{-1}$)	SPM-15
115	α P18 (750/6000min ${ }^{-1}$)	SPM-15
116	α P22 (750/6000min ${ }^{-1}$)	SPM-22
117	α P30 (575/4500min ${ }^{-1}$)	SPM-22

4. Turn off the power then back on. Then, the parameters are read.

8.2
 AC SPINDLE
 (ANALOG
 INTERFACE)

8.2.1
 Outline of Spindle
 Control

8.2.1.1

Block diagram

8.2.1.2

Calculation of S analog voltage and related parameters
[M series]
1 Gear change method A (bit 2 of parameter $3705=0$)

2 Gear change method B (bit 2 of parameter $3705=1$)

[T series]
Constant surface speed control

TCW	CWM	Sign of output voltage
0	0	Analog voltage (+) with both M03 and M04
0	1	Analog voltage (-) with both M03 and M04
1	0	$(+)$ with M03, (-) with M04
1	1	$(-)$ with M03, (+) with M04

[M series]

SGB Spindle speed set when gear change is performed is:
0 : Maximum speed for each gear.
1 : Set by respective parameters. (Parameters 3751, 3752)

3741	Max. spindle speed of gear 1 (1 to 9999) [rpm]
3742	Max. spindle speed of gear 2 (1 to 9999) [rpm]
3743	Max. spindle speed of gear 3 (1 to 9999) [rpm]
3751	Spindle motor speed at the switch point between gear 1 and gear 2
3752	Spindle motor speed at the switch point between gear 2 and gear 3

[Data type] Word
[Valid data range] 0 to 4095
Set a spindle motor speed at each gear switch point when gear switch method B is used (when bit 2 (SGB) of parameter No. 3705 is set to 1).

$$
\text { Setting }=\frac{\text { Spindle motor speed at gear switch point }}{\text { Maximum spindle motor speed }} \times 4095
$$

[T series]

3741	Max. spindle speed of gear 1 (1 to 9999) [rpm]
3742	Max. spindle speed of gear 2 (1 to 9999) [rpm]
3743	Max. spindle speed of gear 3 (1 to 9999) [rpm]
3744	Max. spindle speed of gear 4 (1 to 9999) [rpm]

8.2.1.3
 Tuning S analog voltage (D/A converter)

(1) For M series, change the upper and lower limits as follows:

- When gear change method A is used: Parameter $3736=4095$, parameter $3735=0$
- When gear change method B is used: Parameter $3751=4095$, parameter $3735=0$

For T series, these changes are not required.
(2) Tuning the D / A converter offset

Specify zero as the spindle speed. Then, by using a digital multimeter, adjust the following parameter so that the voltage at the test pin DA2 on the spindle amplifier printed circuit board is 0 mV .
1 For M series
S0; (Specify the command by MDI operation, then press the cycle start button.)

2 For T series (in case of G-code system A)

```
G97 S0; (Specify the command by MDI in the same manner as for M series.)
```


3731
 Spindle speed (D/A converter) offset compensation value

(3) Tuning the D / A converter gain

Specify the maximum spindle speed of gear 1 . Then, by using a digital multimeter, adjust the following parameter so that the voltage at the test pin DA2 on the spindle amplifier printed circuit board is 10.0 V .

1 For M series

```
Sxxxx ; (xxxx is the value set in parameter 3741.)
```

(Specify the command by MDI operation, then press the cycle start button.)

2 For T series (in case of G-code system A)

```
G97 Sxxxx ; (xxxx is the value set in parameter 3741.)
(Specify the command by MDI operation, then press the cycle start button.)
```

\square Usually a voltage is output from the D/A converter by only executing an S command. However, the clockwise rotation command (M03) may be required on some machines.
(4) If the output voltage is not correct, perform the following calculation, and change the value of parameter 3730 to adjust the gain of the D/A converter:

Setting $=\frac{10 \mathrm{~V}}{\text { Measured voltage }} \times($ Current value of PRM 3730)
(5) Execute an S command again and confirm that the output voltage is correct.

Restore the original parameter values.

TROUBLESHOOTING

This chapter describes troubleshooting procedure.
9.1 CORRECTIVE ACTION FOR FAILURES 563
9.2 NO MANUAL OPERATION NOR AUTOMATIC
OPERATION CAN BE EXECUTED 565
9.3 JOG OPERATION CANNOT BE DONE 569
9.4 HANDLE OPERATION CANNOT BE DONE 573
9.5 AUTOMATIC OPERATION CANNOT BE DONE . 578
9.6 CYCLE START LED SIGNAL HAS
TURNED OFF . 586
9.7 NOTHING IS DISPLAYED ON THE LCD

WHEN THE POWER IS TURNED ON
588
9.8 THE DISPLAY ON THE LCD UNIT FLASHES . . . 592
$\begin{array}{ll}9.9 & \text { INPUT FROM AND OUTPUT TO I/O DEVICES } \\ \text { CANNOT BE PERFORMED INPUT/OUTPUT } \\ & \text { CANNOT BE PERFORMED PROPERLY } 593\end{array}$
9.10 ALARM 85 TO 87
(READER/PUNCHER INTERFACE ALARM) 595
9.11 ALARM 90(REFERENCE POSITION
RETURN IS ABNORMAL) 602
9.12 ALARM 300 (REQUEST FOR REFERENCE
POSITION RETURN) . 604
9.13 ALARM 300 (V READY OFF) 605
9.14 ALARM 404 (V READY ON) 609
9.15 ALARM 462 (SEND CNC DATA FAILED) 612
9.16 ALARM 417
(DIGITAL SERVO SYSTEM IS ABNORMAL) . . . 615
9.17 ALARM 700 (OVERHEAT: CONTROL UNIT) ... 616
9.18 ALARM 701 (OVERHEAT: FAN MOTOR) 617
9.19 ALARM 704 (SPINDLE SPEED FLUCTUATION
DETECTION ALARM) . 619
9.20 ALARM 749 (SERIAL SPINDLE
COMMUNICATION ERROR) 620
9.21 ALARM 750
(SPINDLE SERIAL LINK STARTUP FAILURE) . . 621
9.22 ALARM 5134
(FSSB: OPEN READY TIME OUT) 624
9.23 ALARM 5136
(FSSB: NUMBER OF AMPS IS SMALL) 628
9.24 ALARM 900 (ROM PARITY) 631
9.25 ALARMS 910 AND 911 (SRAM PARITY) 634
9.26 ALARMS 912 TO 919 (DRAM PARITY) 637
9.27 ALARMS 920 AND 921 (SERVO ALARMS) 639
9.28 ALARM 926 (FSSB ALARM) 643
9.29 ALARM 930 (CPU INTERRUPT) 649
9.30 ALARM 935 (SRAM ECC ERROR) 651
9.31 ALARM 950 (PMC SYSTEM ALARM) 655
9.32 ALARM 951 (PMC WATCHDOG ALARM) 658
9.33 ALARM 972
(NMI ALARM ON AN OPTION BOARD) 659
9.34 ALARM 973
(NMI ALARM WITH AN UNKNOWN CAUSE) 660
9.35 ALARM 974 (F-BUS ERROR) 661
9.36 ALARM 975 (BUS ERROR) 664
9.37 ALARM 976 (LOCAL BUS ERROR) 665
9.38 SERVO ALARMS 666
9.39 SPC ALARMS 669
9.40 SPINDLE ALARMS 670

9.1
 CORRECTIVE ACTION FOR FAILURES

When a failure occurs, it is important to correctly grasp what kind of failure occured and take appropriate action, to promptly recover the machine.
Check for the failure according to the following procedure :

9.1.1
 Investigating the Conditions under which Failure Occurred

[^2]1 When did the failure occur?

- Date and time?
- Occurred during operation? (how long was the operation?)
- Occurred when the power was turned on?
- Was there any lightening surge, power failure, or other disturbances to the power supply?
How many times has it occurred
- Only once?
- Occurred many times? (How many times per hour, per day, or per month?)
2 With what operation did it occur?
What was the NC mode when the failure occurred?
Jog mode/memory operation mode /MDI mode /reference position return mode
If during program operation,

1) Where in the program?
2) Which program No. and sequence No. ?
3) What program?
4) Occurred during axial movement ?
5) Occurred during the execution of an $\mathrm{M} / \mathrm{S} / \mathrm{T}$ code ?
6) Failure specific to the program ?

Does the same operation cause the same failure?
(Check the repeatability of the failure.)
Occurred during data input/output?
<Feed axes and spindles>
For a failure related to feed axis servo

1) Occurred at both low feedrate and high feedrate?
2) Ocurred only for a certain axis ?

For a failure related to spindles
When did the failure occur? (during power-on, acceleration, deceleration, or constant rotation)

3 What failure occurred ?
Which alarm was displayed on the alarm display screen?
(Check the axis along which an alarm has occurred for alarms 300 to 599.)

Is the screen correct ?
If machining dimensions are incorrect

1) How large is the error?
2) Is the position display on the CRT correct?
3) Are the offsets correct ?

4 Other information

- Is there noise origin around machine?

If the failure has not occurred frequently, the cause may be external noise to the power supply or inductive noise on machinery cables. Operate other machines connected to the same power line and see if noise come from the relays or compressors.

- Is it taken any countermeasure for noise in machine side?
- Check the following for the input power supply voltage :

1) Is there variation in the voltage ?
2) Are the voltages different depending on the phase ?
3) Is the standard voltage supplied ?

How high is the ambient temperature of the control unit?
Refer to manual about noise.

- Has excessive vibration been applied to the control unit?

5 When you contact our service center, specify the following items :

1) Name of the NC unit
2) Name of the machine tool builder and type of machine
3) Software series/version of the NC
4) Specifications of the servo amplifier and motor
(for a failure related to the servo)
5) Specifications of the spindle amplifier and spindle motor (for a failure related to a spindle)
See the drawing issued by the machine tool builder for the locations of the NC unit and servo/spindle amplifiers.
We use the following specification codes :
Servo /spindle amplifier : A06B- $\square \square \square \square-\mathrm{H} \square \square \square$
Servo/spindle amplifier : A06B- $\square \square \square \square-B \square \square \square$

NOTE

The mark ' \square ' represents a number.

9.2
 NO MANUAL OPERATION NOR AUTOMATIC OPERATION CAN BE EXECUTED

Points

(1)Execute the following procedure when no manual nor automatic operation is done
(2) Check whether position display shows correct position
(3) Check CNC status display
(4) Check CNC internal status using diagnostic function

Causes and Countermeasures

1. Position display (relative, absolute, machine coordinate) does not change
(1) Check CNC status display (Refer to Section 1.9 CNC STATUS DISPLAY for detail.)
(a) Emergency stop status (Emergency stop signal is turned on)

If status display shows EMG the emergency stop signal is input.
Check the following signal using the PMC's diagnostic function (PMCDGN).

$\mathrm{ESP}=0$ indicates that emergency stop signal is input.
(b) It is a reset status

When RESET is displayed, any of a reset is functioned. Check the following signal using the PMC's diagnostic funciton (PMCDGN).

1) An input signal from the PMC functions

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
ERS	RRW						

When ERS is 1, external reset signal is input.
When RRW is 1 , reset \& rewing signal is input.
2) RESET key on the MDI keyboard functions

When the signals in 1) are 0 , RESET key may be functioning.
Check the contact of RESET key using a tester.
When it is abnormal, change the keyboard.
(c) Confirm the status of modes

Operation mode status is displayed on the lower part of CRT as follows:
If nothing is displayed, mode select signal is not input. Check mode select signal using PMC's diagnostic function (PMCDGN).
For details, refer to section 1.9 CNC STATUS DISPLAY.
(Example of display)
JOG : Manual operation (JOG) mode
HND : Manual handle (MPG) mode
MDI : Manual data input (MDI) mode
MEM : Automatic operation (Memory) mode
EDIT: EDIT (Memory edit) mode
<Mode select signal>

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
					MD4	MD2	MD1
					\downarrow	\downarrow	\downarrow
Manual operation (JOG) mode					1	0	1
Manual handle (MPG) mode					1	0	0
Manual data input (MDI) mode					0	0	0
Automatic operation (Memory) mode					0	0	1
EDIT (Memory edit) mode					0	1	1

(2) Check diagnostic data 000 to 025 of the CNC Check an item for which 1 is displayed

No.	Message	Display
000	WAITING FOR FIN SIGNAL	$: 0$
001	MOTION	$: 0$
002	DWELL	$: 0$
a. 003	IN-POSITION CHECK	$: 0$
004	FEEDRATE OVERRIDE 0%	$: 0$
b. 005	INTERLOCK / START LOCK	$: 1$ (Example)
006	SPINDLE SPEED ARRIVAL CHECK	$: 0$
010	PUNCHING	$: 0$
011	READING	$: 0$
012	WAITING FOR (UN) CLAMP	$: 0$
c. 013	JOG FEEDRATE OVERRIDE 0\%	$: 0$
d. 014	WAITING FOR RESET, ESP, RRW OFF	$: 0$
015	EXTERNAL PROGRAM NUMBER SEARCH	$: 0$

Items with a to d relate with manual and automatic operation and its detail is shown below.

a. In-position check is being done

It shows that positioning is not yet completed. Check the contents of the following diagnostic number. (It is 1 in the following condition)

DGN 0300 Position Error >PARAM 1826 In-position width

1) Check the parameters according to the parameter list.

Servo loop gain per axis	(Normal : 3000)

2) Servo system may be abnormal. Refer to servo alarm 400, 410, and 411.

b. Interlock or start lock signal is input

is used by the machine tool builder at the parameters shown below.	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	3003							
			DAU	DIT	ITX		ITL	

\#0 ITL=0 shows interlock signal *IT is effective. To 1)
\#2 ITX=0 shows interlock signal *ITn is effective. To 2)
\#3 DIT $=0$ shows interlock signal \pm MITn is effective. To 3)
\#4 DAU=When it is " 1 ," the interlock signal (\pm MITn) is effective even in automatic operation.
Go to 3). (Effective in the 20i-T only)
Check state of effective interlock signals using the diagnostic function (PMCDGN) of the PMC.

1) Interlock signal (*IT) is input.

2) Axis interlock signal (*ITn) is input.

\#7	\#6		\#5	\#4	\#3	\#2	\#1

*ITn=0 shows interlock signal is input.
3) Interlock signal per axis and direction (\pm MITn) is input.

- M series

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | - MIT2 | +MIT2 | -MIT1 | +MIT1 | | |

$\pm \mathrm{MITn}=1$ shows interlock signal per axis and direction is input.

* In T series, \pm MITn is effective only when the manual operation is used.

c. Jog feedrate override is 0\%

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G0010	*JV7	*JV6	*JV5	*JV4	*JV3	*JV2	*JV1	*JV0
G0011	*JV15	*JV14	*JV13	*JV12	*JV11	*JV10	*JV9	*JV8

When the override is 0% all bits of the above address becomes 1111 1111 or 0000 0000.

$*$ JV15 $\ldots \ldots \ldots \ldots$	JV0	Override
1111	1111	1111
11111	0.00%	
1111	1111	1111

d. NC is in a reset state

2. When machine coordinate value does not update on position display

In this case, RESET is also displayed on the status display. Check it using the procedure of b above.
(1) Machine lock signal (MLK) is input.

MLK : All axes machine lock
MLKn : Each axis machine lock
When the signal is 1 , the corresponding machine lock signal is input.

9.3 JOG OPERATION CANNOT BE DONE

Points

(1) Check whether position display is operating.
(2) Check CNC status display.
(3) Check internal status using Diagnostic funciton.

Causes and Remedies

1. Position display (relative, absolute, machine cooordinate) does not change

(1) Check mode selection status (JOG mode is not selected).

When status display shows JOG, it is normal.
When status display does not show JOG, mode select signal is not selected correctly. Confirm the mode select signal using PMC's diagnostic function (PMCDGN).
<Mode select signal>

(2) Feed axis and direction select signal is not input Check the signal using PMC's diagnostic function (PMCDGN).

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G0100	+J8	+J7	+J6	+J5	+J4	+J3	+J2	+J1
G0102	-J8	-J7	-J6	-J5	-J4	-J3	-J2	-J1
G0086					-Ja	+Ja	-Jg	+Jg

When a bit is " 1 ", the corresponding feed axis direction selection signal has been entered.

Example)

In the normal state, pressing the " +X " button on the operator's panel causes the signal + Jn to be displayed as " 1 ".

* This signal becomes effective when the rise of the signal is detected. If, therefore, the direction selection signal has been entered before jog mode selection, axis movement is not performed; set the bit " 0 " and then re-check the signal.
* By defining a straight line or arc in the CNC beforehand using the R area of the PMC, +Jg and $\pm \mathrm{Ja}$ allow the tool to move along both X - and Y -axes simultaneously. The exchange of information with the R area of the PMC is performed by the macro software or PMC sequence program created by the MTB.
(3) Check CNC's diagnostic function 000 to 015 . Check the items for which 1 is displayed at right side.

No. Message

Display
000 WAITING FOR FIN SIGNAL : 0
001 MOTION :0
002 DWELL : 0
a. 003 IN-POSITION CHECK : 0
004 FEEDRATE OVERRIDE 0\% : 0
b. 005 INTERLOCK / START LOCK $: 1_{\text {(Example) }}$
006 SPINDLE SPEED ARRIVAL CHECK : 0
010 PUNCHING :0
011 READING :0
012 WAITING FOR (UN) CLAMP : 0
c. 013 JOG FEEDRATE OVERRIDE 0% : 0
d. 014 WAITING FOR RESET, ESP, RRW OFF : 0
015 EXTERNAL PROGRAM NUMBER SEARCH : 0

Items with a to d relate with manual and automatic operation and its detail is shown below.

a. In-position check is being done

It shows that positioning is not yet completed. Check the contents of the following diagnostic number. (It is 1 in the following condition)

DGN 0300 Position Error >PARAM 1826 In-positio width

1) Check the parameters according to the parameter list.

Servo loop gain per axis	(Normal : 3000)

2) Servo system may be abnormal. Refer to servo alarm 400, 410, and 411.

There are a plural interlock signals. Check at first which interlock signal is used by the machine tool builder at the parameters shown below.

b. Interlock or start lock signal is input

		\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
PARAM	3003					DIT	ITX		ITL

\#0 ITL=0 shows interlock signal *IT is effective. To 1)
\#2 ITX=0 shows interlock signal *ITn is effective. To 2)
\#3 DIT $=0$ shows interlock signal \pm MITn is effective. To 3)
Check state of effective interlock signals using the diagnostic function (PMCDGN) of the PMC.

1) Interlock signal ($* \mathrm{IT}$) is input.

2) Axis interlock signal (*ITn) is input.

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
*IT8	*IT7	*IT6	*IT5	*IT4	*IT3	*IT2	+IT1

*ITn=0 shows interlock signal is input.
3) Interlock signal per axis and direction (+/- MITn) is input

- M series

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G0132					+MIT4	+MIT3	+MIT2	+MIT1
G0134					-MIT4	-MIT3	-MIT2	-MIT1

X0004

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
		- MIT2	+MIT2	-MIT1	+MIT1		

\pm MITn $=1$ shows interlock signal per axis and direction is input.

* For the T series, \pm MITn is valid only for manual operation.

c. Jog feedrate override is Check the signals using PMC's diagnostic function (PMCDGN) 0\%

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G0010	*JV7	*JV6	*JV5	*JV4	*JV3	*JV2	*JV1	*JV0
G0011	*JV15	*JV14	*JV13	*JV12	*JV11	*JV10	*JV9	*JV8

When the override is 0% all bits of the above address becomes 1111 1111 or 0000 0000.

*JV15 JV0				Override
1111 1111 11111 1111 1111 1111			1111	0.00\%
			1111111111111110	0.01\%
11011000		1110	1111	:
	0000	0000	0001	$\frac{\vdots}{655.34 \%}$
000	0000	0000	0000	0.00\%

d. NC is in a reset state

423
(5) Manual feed per revolution is selected (T series)

This funciton feeds an axis synchronized with spindle rotation and whether this function is used or not is selected by the following parameter:

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0		
						JRV			

\#3 (JRV) 0 : Jog feed is of feed per minute
1: Jog feed is of feed per revolution
(a) When parameter JRV is set to 1 , feed rate of the axis is calculated by synchronizing with rotation of the spindle. Therefore, rotate the spindle.
(b) If the axis does not move even when the spindle is rotated, check the detector of the spindle (position coder) and the cable between the position coder and the CNC if it is short-circuited or ungrounded.Refer to 2.4 for connection diagram.

9.4
 HANDLE OPERATION CANNOT BE DONE

Causes and actions

1 The servo is not activated

2 Checking the manual pulse generators

If manual handle operation cannot be performed, the probable causes include the following:

- The servo is not activated.
- Manual pulse generators are not connected properly to the I/O module.
- The I/O link of the I/O module is not allocated, or is not allocated properly.
- A related input signal is not input due to a parameter setting error.

Check that the LED on the servo amplifier indicates " 0 ". If a number other than " 0 " is indicated, the servo is not activated. In this state, even JOG operation and automatic operation cannot be operated.
Check the servo-related parameters and the wiring.
(1) Cable failures (such as breaks)

Examine the cables for faults such as breaks and short-circuits, referring to the figure below.

(2) Manual pulse generator failures

When rotated, a manual pulse generator generates the signals shown below. Using an oscilloscope, measure the signals from the screw terminal block located at the rear of a manual pulse generator. If no signals are output, measure the +5 V voltage.

Check the on/off ratio and the phase difference between HA and HB.

3 Allocation of the I/O link of the I/O module

If the I/O module is not allocated properly in I/O link allocation, the pulses of the manual pulse generators are not transmitted to the CNC , making it impossible to perform manual handle operation.
The I/O modules to which manual pulse generators can be connected are listed below.

Name	Specifications
I/O module for connector panel (extended module A)	A03B-0815-C002
I/O module for operator's panel (supporting matrix input)	A20B-2002-0470
I/O module for operator's panel	A20B-2002-0520
Interface unit for machine operator's panel	A20B-2201-0110

If a multiple number of these modules are used and are allocated so that they use a manual pulse generator, the module nearest the CNC becomes effective because of the I/O link connection.

In this example, the manual pulse generator connected to the I/O module for a connector panel in group 0 is effective.

If the I/O module for a connector panel in group 0 is allocated so as not to use a manual pulse generator, as in this example, the manual pulse generator interface of the operator's panel I/O module in group 1 is effective.
The checking of allocation requires a Ladder editing card. Selecting [EDIT] and then [MODULE] from the PMC screen causes the allocation edit screen to be displayed.
After editing allocation, write the changes to the FROM on the [I/O] screen. Otherwise, the changes will be lost when the power is turned off. If allocation is performed properly, when a manual pulse generator is rotated, the bits count up/down in the area of the corresponding input signal (X). Select [PMCDGN] and then [STATUS] from the PMC screen to display the corresponding address, and rotate the manual pulse generator to check that the bits count up/down.

4 Checking the parameters and input signals

(1) Check CNC status display at lower left corner of the CRT.

When the status display shows HND, mode selection is correct.
If it is not HND, mode select signal is not input correctly. Check the mode select signal using the PMC's diagnostic function(PMCDGN).

(2) Manual handle feed axis select signal is not input.

Check the signals using PMC's diagnostic function (PMCDGN).

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0	
G0018	HS2D	HS2C	HS2B	HS2A	HS1D	HS1C	HS1B	HS1A	
G0019					HS3D	HS3C	HS3B	HS3A	
	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0	
G0029					HS4D	HS4C	HS4B	HS4A	For the $20 i-$ F only

When axis select switch for manual handle feed is selected on the machine operator's panel, if the signals are input as follows, it is normal.

Selected axis	HSnD	HSnC	HSnB	HSnA
no selection	0	0	0	0
1st axis	0	0	0	1
2nd axis	0	0	1	0
3rd axis	0	0	1	1
4th axis	0	1	0	0
5th axis	0	1	0	1
6th axis	0	1	1	0
7th axis	0	1	1	1
8th axis	1	0	0	0
Both $X-$ and Y Y-axes simulta- neously (guidance handle) Both X- and Y-axes simulta- neously (approach handle)	1	1	1	0

NOTE

1 In the above table, n is the number of the manual pulse generator
(MPG) and up to 3 MPGs can be used.
A feed axis is selected by 4-bit code of A to D.
In the $20 i-\mathrm{F}$, up to four manual pulse generators can be effective.
2 By defining a straight line or arc in the CNC beforehand using the R area of the PMC, the guidance handle and the approach handle allow the tool to move along both X - and Y -axes simultaneously. The exchange of information with the R area of the PMC is performed by the macro software or PMC sequence program created by the MTB.
(3) Manual handle feed multiplication is not correct

Check the following signals using PMC's PCDGN. Also confirm the following parameters based on the parameter list.

In handle mode, the travel distance per step can be changed.

MPn2	MPn1	Step feed	Handle feed
0	0	$\times r 1$	$\times 1$
0	1	$\times 10$	$\times 10$
1	0	$\times 100$	$\times \mathrm{Mn}$
1	1	$\times 1000$	$\times \mathrm{Nn}$

\#5(MPX) The manual handle feed distance selection signals are:

0	Signals common to all manual handles	MP1, MP2	(G019\#4,5)					
1 Effective in the $20 i$ only	First manual handle	Second manual handle	MP1, MP2	(G019\#4,5)		Third manual handle	MP21, MP22	(G087\#0, 1)
:---	:---	:---	:---					
	Fourth manual handle	MP31, MP32	(G087\#0, 1)					

\#0(HNGx) The direction of rotation of the manual pulse generator and the direction of the travel of the machine are:
0 : Same
1 : Opposite

PARAM

9.5
 AUTOMATIC OPERATION
 CANNOT BE DONE

Points

Causes and Remedies

1. When cycle operation is not started (Cycle start LED does not light)

(1) Check manual operation is possible.
(2) Check the status of cycle start LED on machine operator's manual.
(3) Check status of CNC.

When manual operation is either impossible, perform countermeasure, based on the previous item "Jog operation cannot be done".
Confirm that a correct mode is selected according to the mode select status of CNC status display. Also, by confirming the automatic operation status it is possible to identify cycle operation, feed hold and cycle stop state.
"****" is displayed at status display on CRT.
(1) Mode select signal is not correct.

When the mode select signal is input correctly, following status display is done.
MDI :Manual data input mode (MDI)
MEM :Memory operation mode
RMT :Remote operation mode
If status display does not show a correct status, check the mode signal with following diagnosis function of PMC side (PMCDGN).

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G0043			DNCI			MD4	MD2	MD1
	DNCI	MD4	MD2	MD1	Mode select			
	-	0	0	0	Manual data input mode			
	0	0	0	1	Memory operation mode			
	1	0	0	1	Remote operation mode			

(2) Cycle start signal is not input

This signal turns 1 when cycle start button is pressed and turns 0 when it is released. The cycle start actuates when it changes from 1 to 0 .
Check the state of the signal using PMC's diagnostic function(PMCDGN).

\#2 (ST) : Cycle start signal
(3) Feed hold signal is input

Under normal state, the feed hold signal is 1 when the feed hold button is not pressed.
Check the state of this signal using the PMC's diagnostic function (PMCDGN) .

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
			*SP					

\#5 (*SP) : Feed hold signal
2. When an automatic operation is in progress (Cycle start LED is lit)
a. An auxiliary function is being executed (waiting for FIN signal)

CNC's status display shows "STRT" on the CRT.
(1) Check the contents of diagnostic nos. 000 to 015.

No. Message Display
a. 000 WAITING FOR FIN SIGNAL : $1_{\text {(Example) }}$
b. 001 MOTION : 0
c. 002 DWELL : 0
d. 003 IN-POSITION CHECK : 0
e. 004 FEEDRATE OVERRIDE 0% : 0
f. 005 INTERLOCK / START LOCK : 0
g. 006 SPINDLE SPEED ARRIVAL CHECK : 0

010 PUNCHING :0
011 READING :0
012 WAITING FOR (UN) CLAMP : 0
h. 013 JOG FEEDRATE OVERRIDE 0\% : 0
i. 014 WAITING FOR RESET, ESP, RRW OFF : 0

015 EXTERNAL PROGRAM NUMBER SEARCH : 0
Items with a to i relate with an automatic operation and their details are as follows :

An auxiliary function (M/S/T/B) specified in a program is not ended. Check according to the following procedure.
At first, confirm the kind of interface of an auxiliary function.

\#7(HSIF) $0: \mathrm{M} / \mathrm{S} / \mathrm{T} / \mathrm{B}$ is of normal interface.
$1: \mathrm{M} / \mathrm{S} / \mathrm{T} / \mathrm{B}$ is of high-speed interface.

1) Normal interface

When the auxiliary function finish signal turns from 1 to 0 , the auxiliary function is supposed to be ended and the next block is read for operation. Confirm the status of this signal using PMC's diagnostic function(PMCDGN).

\#3 (FIN) : Auxiliary function finish signal
2) High-speed interface

The auxiliary function is supposed to be ended when the signals are in the following state. Confirm it using PMC's diagnostic function (PMCDGN).
<M series>
G0005

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
BFIN				TFIN	SFIN		MFIN

\#0(MFIN) : M function finish signal
\#2(SFIN) : S function finish signal
\#3(TFIN) : T function finish signal
\#4(BFIN) : 2nd auxiliary function finish signal

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F0007	BF				TF	SF		MF

\#0(MF) : M function strobe signal
\#2(SF) : S function strobe signal
\#3(TF) : T function strobe signal
\#7(BF) : 2nd auxiliary function strobe signal
<T series>

G0005

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
			BFIN	TFIN	SFIN		MFIN

\#0(MFIN) : M function completion signal
\#2(SFIN) : S function completion signal
\#3(TFIN) : T function completion signal
\#4(BFIN) : Second auxiliary function completion signal

F0007

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
			BF	TF	SF		MF

\#0(MF) : M function strobe signal
\#2(SF) : S function strobe signal
\#3(TF) : T function strobe signal
\#4(BF) : Second auxiliary function strobe signal <M/T series>

\#4(MFIN2) : Second M function completion signal
\#5(MFIN3) : Third M function completion signal

F0008

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
		MF3	MF2				

\#4(MF2) : Second M function strobe signal
\#5(MF3) : Third M function strobe signal

* The second and third M functions are enabled only when bit 7 (M3B) of parameter No. 3404 is set to 1 .

Signal	End state	
Finish signal	0	1
store signal	0	1

b. Travel command is being executed

c. A dwell command is being executed

d. In-position check (confirming positioning) is being done

e. Feedrate override is at 0\%

CNC is reading an axis command ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \ldots$) in a program and giving the command to the axis.

CNC is reading a dwell command (G04) in a program and is executing the dwell command.

Positioning (G00) to a specified position of a specified axis is not completed.
Whether positioning is completed or not is checked as the servo position error amount. Check it CNC's diagnostic function as follows:
DGN no. 300 Position Error > PARAM 1826 In-position width
Position error amount almost becomes 0 , when positioning of an axis completes and when the amount becomes within the in-posiiton width, it is assumed that positioning completes and the next block is exected. If position error amount does not become within the in-position width, refer to servo alarm 400, 4 n 0 and 4 n 1 .

Actual feedrate is overridden by the override signals to a programmed feedrate. Check the override signals using the PMC's diagnostic function (PMCDGN).
<Normal override signal>

G0012

\#7	\#6	\#5	\#4	\#3	\#2	\#1	
*FV7	*FV6	*FV5	*FV4	*FV3	*FV2	*FV1	*FV0

*FVn :Feedrate override
<2nd override signal (option)>
Feed rate is overridden more finely using the signals below:
See MTB's manual whether this feature is equipped.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G0013	*AFV7	*AFV6	*AFV5	*AFV4	*AFV3	*AFV2	*AFV1	*AFV0

*AFVn :2nd feed rate override
<State of override signal>

*FV7. *FVV	
111111111	0\%
11111110	1\%
10011011	100\%
00000001	254\%
00000000	0\%

*AFV7. *AFV0	
11111111	0\%
11111110	1\%
10011011	100\%
00000001	254\%
00000000	0\%

f. Interlock signal or start lock signal is input

<T series only>
Start lock signal is input

\#1 (STLK) With this signal being 1, start lock signal is input.
<Common to T series and M series>
There are a plural number of interlock functions. Parameters are set by machine tool builders for which interlock function is used.
Therefore, confirm the following parameters at first:

$\#$	\#7	\#6	\#5	\#4	\#2	\#1	\#0	
				DAU	DIT	ITX		ITL

\#0 (ITL) 0 : Interlock signal(*IT) is valid.
\#2 (ITX) 0 : Interlock signal (*ITn) is valid.
\#3 (DIT) 0 : Interlock signal (\pm MITn) is valid.
\#4 (DAU) 1 : The interlock signal \pm MITn is effective even in automatic operation. (Effective in the $20 i-\mathrm{T}$ only)

Confirm which interlock signal is activated by the PMC's diagnostic function (PMCDGN) .

1) Interlock signal (*IT) is input

G0008

\#0 (*IT) : When this bit is 0 , interlock signal is input.
2) Interlock signal per each axis (*ITn) is input

G0130

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
*IT8	*IT7	*IT6	*IT5	*IT4	*IT3	*IT2	*IT1

*ITn When the bit is 0 , the corresponding axis's interlock signal is input.
3) Interlock signal per axis and direction(+/- MITn) is input
. M series

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
G0132					+MIT4	+MIT3	+MIT2	+MIT1
G0134					-MIT4	-MIT3	-MIT2	-MIT1

- T series

X0004

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
		- MIT2	+MIT2	-MIT1	+MIT1		

\pm MITn $=1$ shows interlock signal per axis and direction is input.

* For the T series, \pm MITn is valid only for manual operation. In the $20 i-\mathrm{T}, \pm$ MITn is effective even in automatic operation if DAU (bit 4 of parameter No. 3003) is set to 1 .

4) Controlled axis detach function is running. A detached axis is specified for travelling.
*This function is valid when CNC parameter No.1005\#7=1. For whether this function is running or not, confirm the following signal using PMC's diagnostic function (PMCDGN). Check the axis concerned.

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
F0110	MDTCH8	MDTCH7	MDTCH6	MDTCH5	MDTCH4	MDTCH3	MDTCH2	MDTCH1

When signal MDTHn is " 1 ", the axis detach function is in valid. The control axis detach function becomes valid by the following signal issued from the PMC or a CNC side parameter. Check as in the following procedure :

1) The control axis detach signal (DTCHn) is input.

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
DTCH8	DTCH7	DTCH6	DTCH5	DTCH4	DTCH3	DTCH2	DTCH1

If it is 1 , the corresponding axis is detached.
2) The following parameter enables the control axis detach function to the corresponding axis.

\#7(RMVx) 0 : Controlled axis is connected
1: Controlled axis is detached
g. CNC is waiting for
spindle speed arrival signal to be input

Actual spindle speed does not arrive at a speed specified in a program. Confirm the signal state using the PMC's diagnostic function (PMCDGN).

| | $\# 7$ | \#6 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | SAR | | | | |

\#4(SAR) : When this signal is 0 , spindle speed does not arrive at the specified speed.
This function is valid when PARAM 3708\#0=1.

h. Manual feedrate override is 0% (dry run)

Normally manual feedrate override function is used for jog feed.
But when DRN(dry run) signal turns on during an auomatic operation,override values set with these signals become valid to the following speed set by a parameter.

| $\neq 7$ | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G0046 | | | | | | | |
| DRN | | | | | | | |

\#7(DRN) : Dry run signal is input with this signal being 1.

$$
1410 \quad \text { Dry run rate }
$$

The rate when the following override value is 100%.

When override value is 0%, all bits of the above address is [1111 . . . 1111] or [0000 . . . 0000].

*JV15 JV0				Override
1111 1111 1111 1111 1111 1111 1111 1110				0.00\%
				0.01\%
110	1000	1110	1111	100.00\%
0000	0000		0001	655.34\%
000	0000	0000	0000	0.00\%

i. NC is in a reset state

(b) Rapid traverse override signals

ROV1	ROV2	Override
0	0	100%
1	1	50%
0	1	25%
1	1	Fo

*HROV6	*HROV0					Override	
1	1	1	1	1	1	1	
1	1	1	1	1	1	0	0%
0	0	1	1	0	1	1	
100%							

Rapid traverse override F0 rate

(3) Only feed (other than G00) does not function
(a) Maximum feedrate set by parameter is incorrect.

Maximumfeedrate

Feedrate is clamped at this upper feedrate.
(b) Feedrate is specified by feed per revolution ($\mathrm{mm} / \mathrm{rev}$)

1) Position coder does not rotate

Check the connection between spindle and position coder
The following failure is considered:

- T iming belt is broken
- Key is removed
- Coupling is loose
- Connector of signal cable is loosened

2) Position coder is faulty
(c) Thread cutting does not operate
3) Position coder does not rotate

Check the connection between spindle and position coder
The following failure is considered:

- Timing belt is broken
- Key is removed
- Coupling is loose
- Connector of signal cable is loosened

2) Position coder is faulty

Position coder is connected to the spindle amplifier when serial interface spindle is used or connected to the CNC when analog interface spindle is used.
For details of connection, refer to the following.
<T series>
Whether A / B phase signals from the position coder are read correctly, can be judged also by the spindle speed display on the CRT screen (position screen). (However, it is not displayed when PARAM 3105\#2=0).
< α series spindle amplifier>

<Analog interface spindle amplifier>

(d) A cutting feed block containing a feedrate command (F command) with a feedrate of 0 is specified.
(For the $20 i$ only)
If FCO (bit 7 of parameter No. 1404) is set to $1, \mathrm{P} / \mathrm{S}$ alarm 11 is not issued even if a feedrate command (F command) with a feedrate of 0 is issued.

9.6
 CYCLE START LED
 SIGNAL HAS
 TURNED OFF

Points

(1) After cycle operation is started, then stopped, check as follows:
(2) Confirm cycle start LED on machine operator's panel.
(3) Confirm CNC's diagnostic function.

The reason why cycle start LED signal (STL) has turned off are displayed on CNC's diagnostic numbers 020 to 025 as follows:

Details of signals a to g are as follows:
Confirm the signals concerned using diagnostic function (PMCDGN).

a. Emergency stop is input

*ESP=0 : Emergency stop signal is input :

b. External reset signal is
 input

\#7(ERS) : When the bit is 1, external reset signal is input.
This signal is usually used for a confirmation signal of M02 when an M02 is specified in a program as the end of a program.
Therefore, when M02 is executed, this signal is input.
c. Reset button on the MDI is pressed

An automatic operation is put into a reset status when RESET key on the MDI panel is pressed.

d. Reset \& rewind signal is

input	G0008							
	\#7	\#6	\#5	\#4	\#2	\#1	\#0	
	RRW							

\#6(RRW) : When this signal is 1 , the reset \& rewind signal is input.
This signal is usually used for a confirmation signal of M30 when an M30 is specified in a program as the end of a program.
Therefore, when M30 is executed, this signal is input.
e. Servo alarm has generated

When any servo alarm has generated, cycle operation is put into the reset state and operation stop.

f. Cycle operation is in a feed hold state

The cycle operation becomes feed hold state in the following cases:

1) Modes are switched from an automatic operation mode to a manual operation mode.
2) Feed hold signal is input.
<Mode select signal>

Automatic operation	memory edit(EDIT)	0	1	1
	Automatic operation (AUTO)	0	0	1
	Manual data input (MDI)	0	0	0
Manual operation	Jog feed (JOG)	1	0	0
	Handle/step	1	0	1
	TEACH IN HANDLE	1	1	1
	TEACH IN JOG	1	1	0

<Feed hold signal>

\#5(*SP) : When this signal is 0 , the feed hold signal is input.

g. It become single block
 stop during automatic operation

G0046

\#1(SBK) When this signal is 1 , the single block signal is input.

9.7
 NOTHING IS
 DISPLAYED ON THE
 LCD WHEN THE POWER IS TURNED ON

Causes and actions

- For the LCD-mounted type
- For the stand-alone type

If nothing is displayed on the LCD or the LCD is locked with "GRAPHIC IS READY.BOOT START". displayed when the power is turned on, the probable causes include the following:

- The LCD cable or backlight cable is not connected.
- For a motherboard with a PC, the ambient temperature of the control unit is outside the prescribed temperature range.
- The necessary software is not installed.
- The motherboard, display control card, personal computer card, or inverter board is defective.
- The LCD unit is not connected to the power supply.
- The LCD cable or backlight cable is not connected.
- The LCD unit is not connected to the CNC with the optical cable (HSSB), or the cable is broken.
- The necessary software is not installed.
- The main CPU board, display control card, or LCD unit is defective.

If "GRAPHIC IS READY.BOOT START". is displayed, this indicates that the display control circuit has started up normally but that the CNC has not started up.
[For the LCD-mounted type]

- LED display
- Connection of the LED and backlight cables
- For a motherboard with a PC
- The necessary software is not installed
- Defective printed circuit board

Referring to the hardware chapter, check the LED on/off status of the motherboard.
If the motherboard has started up normally and the LED display indicates normal operation, a probable cause is a fault of the display system, such as a cable not connected or a defective inverter board.
If the LED display is locked in the middle of the startup process, the probable causes include defective hardware (or installation failure) and the necessary software not installed.

Check that the LED and backlight cables are connected firmly to the corresponding connectors.
These cables are connected before shipment from FANUC. This check is, however, required because the cables may be disconnected during maintenance.

For a motherboard with a PC, if the ambient temperature of the control unit is outside the prescribed temperature range, the CNC does not start up until the ambient temperature falls within the prescribed temperature range. This is required to observe the operating temperature range of the hard disk. This situation can occur especially in the morning of cold days. If this occurs, the LED display indicates a temperature error.

If the necessary software is not installed in the FROM module, there may be cases in which nothing is displayed on the screen.

If the motherboard, display control card, or personal computer card is defective or if there is an installation failure, there may be cases in which nothing is displayed on the screen.
Check that the card PCBs are engaged firmly with the connectors on the motherboard.
If any of the above actions does not solve the problem, replace the display control card (personal computer card), CPU card, and motherboard.

- Installation positions of the display control card, personal computer card, and CPU card

[For the stand-alone type]
- Power supply of the LCD unit

Check that the power cable is connected to the connector CP1A of the LCD unit.

For 24 V branch
CP1B

- LED display
- Optical cable
- Connection on the LCD unit
- Display control card
- LCD unit
- Main CPU board
- Installation positions of the display control card and the CPU card

Referring to the hardware chapter, check the LED on/off status of the main CPU board.
If the main CPU board has started up normally and the LED display indicates normal operation, a probable cause is a fault of the display system, such as the cable of the LCD unit not connected or a defective inverter board.
If the LED display is locked in the middle of the startup process, the probable causes include defective hardware (or installation failure) and the necessary software not installed.

Check that the optical cable is free from excessive force and that it is not excessively bent. Check that the optical cable is connected firmly.
If no problems are found with the connection of the optical cable, replace the optical cable.

Check that the backlight and LCD cables are connected firmly to the corresponding connectors.
These cables are connected before shipment from FANUC. This check is, however, required because the cables may be disconnected during maintenance.

Check that the display control card installed on the main CPU board is engaged with the connector. If it is engaged properly, replace this card.

Replace the LCD unit or the control printed circuit board located at the rear of the LCD unit

If any of the above actions does not solve the problem, replace the main CPU board and the CPU card.

9.8
 THE DISPLAY ON THE LCD UNIT FLASHES

Causes and actions

- Power supply of the main CPU board
- Break of the optical cable
- Display control card
- LCD unit
- Installation position of the display control card

This situation can occur only with the stand-alone type.
If a break is detected in the optical cable (HSSB) that connects the LCD unit to the main CPU board, the display on the LCD unit flashes.
The same situation occurs if the main CPU board is turned off while the power is on.

The display on the LCD unit flashes if the main CPU board is turned off, with the LCD kept on, while the power is on.

Check that the optical cable is free from excessive force and that it is not excessively bent.
If no problems are found with the connection of the cable, replace the optical cable.

Replace the display control card installed on the main CPU board.
Replace the LCD unit or the control printed circuit board located at the rear of the LCD unit

9.9
 INPUT FROM AND OUTPUT TO I/O
 DEVICES CANNOT BE PERFORMED
 INPUT/
 OUTPUT CANNOT BE PERFORMED PROPERLY

Causes and actions

- PMC alarm NO I/O DEVICE
- IOCHK screen of the PMC

If the I/O Link is not established, if the signals from an I/O device cannot be input normally to the CNC , or if the signals from the CNC cannot be output to an I/O device, the probable causes include the following:

- The I/O device is not turned on, or the power supply is not at the appropriate voltage.
- The I/O Link cable is not connected correctly or appropriately.
- The input/output signals are not connected correctly.
- I/O Link allocation is not performed, or is not performed properly.

If "NO I/O DEVICE" is displayed on the alarm screen of the PMC, no I/O devices are recognized.

By selecting [PMCDGN], [IOCHK], and [IOLNK] in this order from the PMC screen, the I/O devices recognized by the CNC are displayed. From this screen, the devices that are connected normally can be determined.

Screen display example

GROUP	ID	KIND OF UNIT00
00	A9	I/OMODULE01
01	A8	OTHER UNIT

This example indicates that the I/O Link is as shown in the figure below.

- Checking the power supplies of the I/O devices
- Connection of cables
- Connection of I/O signals
- I/O Link allocation

Check that the connected I/O devices are connected properly to the power supplies and that the voltages are as prescribed.
Check that the power-on sequence is correct.
Time at which an I/O device is to be turned on
Before the CNC is turned on or within 500 ms after the CNC is turned on
When the CNC is turned off, the I/O devices must also be turned off. (Otherwise, the I/O Link may not be established the next time the CNC is turned on.)

As in the example shown on the previous page, I/O Link cables are used to connect JD1As and JD1Bs.
JD1A represents an upper unit while JD1B represents a lower unit.
Check that the cables are connected correctly.
Check that the input/output signals to be connected to each I/O device are connected correctly.
For operator's panel I/O modules and for connector panel I/O modules, also check that the 0 V or +24 V input signal is connected to the common pin and that the +24 V output signal is connected to the DO common pin.

Check that I/O Link allocation has been performed correctly. The checking of allocation requires a Ladder editing card.
Selecting [EDIT] and then [MODULE] from the PMC screen causes the allocation edit screen to be displayed.
After editing allocation, write the changes to the FROM on the [I/O] screen. Otherwise, the changes will be lost when the power is turned off. The checking of allocation requires a Ladder editing card.
Selecting [EDIT] and then [MODULE] from the PMC screen causes the allocation edit screen to be displayed.
After editing allocation, write the changes to the FROM on the [I/O] screen. Otherwise, the changes will be lost when the power is turned off.

9.10

ALARM 85 TO 87 (READER/PUNCHER INTERFACE ALARM)

Causes

Countermeasures

(a) Parameters on reader/puncher interface are not correct.

Check the following setting data and parameters.
(b) External I/O device or host computer is faulty.
(c) I/O board is faulty.
(d) Cable between NC and I/O device is faulty.
(a) Parameters on reader/puncher interface are not correct.

Check the following setting data and parameters:
<Setting>
PUNCH CODE=0 OR 1 (0: EIA, 1:ISO)
Select ISO or EIA according to the type of I/O device.
If punch code does not match, alarm 86 will generate.
<Parameter>

Value of parame Fer 0020		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
Feed	$0101 \# 7$	$0111 \# 7$	$0121 \# 7$	$0131 \# 7$		
Data input code	$0101 \# 3$	$0111 \# 3$	$0121 \# 3$	$0131 \# 3$		
Stop bit	$0101 \# 0$	$0111 \# 0$	$0121 \# 0$	$0131 \# 0$		
Type of I/O device	102	112	122	132		
Baud rate	103	113	123	133		
Commu- nication method	$0135 \# 3$					
Connector	-	-	-	0	1	

NOTE

1 Numbers in the table indicate parameters and bit numbers. Example) 101\#7: bit7 of parameter 101.
2 For data communications by RS-422, refer to parameters 134 and 135

\#7(NFD) 0: Feed is output before and after data in data output (FANUC PPR)
1: Feed is not output (standard).
\#3(ASI) 0 : Data input code is EIA or ISO (automatic recognition)
1: Data input code is ASCII.
\#0(SB2) 0 : No. of stop bits is 1 .
1 : No. of stop bits is 2 .

When bit\#3 of parameter no. $0135=1$ (RS-422 interface), the following setting is also available.

Value	: Baud rate
13	38400
14	76800
15	86400

Check the following parameters also, when parameter no. 0020 is 3 .

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
0134			CLK	NCD		SYN	PRY	

\#5(CLK) 0 : Internal clock is used for baud rate clock of RS-422 interface.
1: External clock is used for baud rate clock of RS-422 interface.
\#4(NCD) 0: CD (signal quality detection) of RS-232C interface is checked.
1: CD (signal quality detection) of RS-232C interface is not checked.
\#2(SYN) 0 : In protocol B, NC reset/alarm is not informed to the host.
1 : In protocol B, NC reset/alarm is informed to the host by SYN and NAK code.
\#1(PRY) 0: No parity bit
1 : With parity bit

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
0135								
RMS				R42	PRA	ETX	ASC	

\#7(RMS) In protocol A, status of remote / tape operation of SAT command is
0 : Always transmitted by 0.
1: Transmitted by the contents of remote / tape switching request issued by SET command from the CNC.
\#3(R42) 0 : Interface is of RS-232C.
1 : Interface is of RS-422.
\#2(PRA) 0: Communication protocol is protocol A
1: Communication protocol is protocol B
\#1(ETX) $0:$ End code of protocol A or extended protocol A is CR of ASCII/ISO.
1: End code of protocol A or extended protocol A is ETX of ASCII/ISO.
\#0(ASC) 0 : All the communication codes except for NC data is ISO code.
1: All the communication codes except for NC data is ASCII code.
(b) External I/O device or Host computer is in trouble
(i) Check whether the setting on communication of external I/O device or host computer is the same as that of the CNC. (baud rate, stop bits,etc.) If they are not the same, change the setting.
(ii) When spare I/O device presents, check whether it is possible to realize communication using the spare I/O device.
(c) Spindle module or communication control module is faulty
(i) When parameter no. 0020 is 0 or 1 or 2 (JD36A,JD36B of Main CPU board) Replace the module since spindle module may be faulty.
(ii) When parameter no. 0020 is 3 (JD28A,JD6A of option 1 board) Because communication control module (5) may be faulty, replace the module.
(d) Cable between NC and I/O device is faulty.

Check the cable for disconnection or wrong connection.
<Connection>

< Cable connection>

CAUTION

1 When CS is not used, connect it to RS.
2 For protocol A or extended protocol A: When DR is not used, connect it to ER. Always connect CD to ER.

CAUTION

Always use a twisted pair cable.
9.11

ALARM 90
(REFERENCE
POSITION RETURN
IS ABNORMAL)

Contents

Reference position return was executed when the following condition is not satisfied:
The CNC received one rotation signal at least one time when the axis is moving to the reference position at a speed higher than a speed equivalent to 128 pulses of position error amount(DGN300).

(1)

Check whether the motor ratated more than one rotation (one rotation signal is issued) at faster than 128 pulses of position error amount.

Check that voltage of pulse coder is higher than 4.75 V .
To measure pulse coder voltage, remove the motor cover and measure on pulse coder PCB at across + and - or +5 V and 0 V terminals.

CAUTION

After the pulse coder or motor is exchanged, reference position or machine's standard point may be different from former one. Please set it correctly.

A speed more than 128 pulses is required because if speed is lower that this, one-rotation signal does not function stably, causing improper position detection.
If bit 0 of parameter No. 2000 is set to 1 , a speed corresponding to a positional deviation of 1280 pulses or more is required.
Parameter No. 1836 can be set to 128 or less, as the minimum positional deviation with which reference position return is possible. (If the parameter is set to 0,128 is assumed as the minimum positional deviation. If bit 0 of parameter No. 2000 is set to 1, a value equal to ten times the set value is used for checking.)

9.12
 ALARM 300 (REQUEST FOR REFERENCE POSITION RETURN)

Remedies

- When reference position return function is present

Absolute position data in the serial pulse coder was lost.
(This alarm will be generated when serial pulse coder is exchanged or position feedback signal cable of the serial pulse coder is disconnected).

Machine position must be memorized using the following method:
(1) Execute manual reference position return only for an axis for which this alarm was generated. When manual reference position return cannot be executed because of an another alarm, set parameter 1815\#5 to 0 and release the alarm and perform manual operation.
(2) Press RESET key at the end of reference position return to release the alarm.

Execute dogless reference position setting to memorize the reference position.

Since the reference position is different from the former one, change the grid shift value (PRM 1850) to correct the position.

Related parameters

	\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
1815								
		APC x	APZx					

\#5(APCx) 0 : Position detector is incremental pulse coder.
1 : Position detector is absolute pulse coder.
\#4(APZx) Reference position of absolute pulse coder is :
0 : not established
1 : established

9.13
 ALARM 300
 (V READY OFF)

Causes and actions
This alarm is issued if the servo ready signal (VRDY) of a servo amplifier does not turn on or if the signal turns off during operation.
There are cases in which this alarm is issued because another servo alarm is issued. If this occurs, first take the action for the first alarm.
Check the power magnetic circuit around the amplifier. The servo amplifier or the axis control cards on the CNC may be defective.

- VRDY

The exchange of this information is performed via the FSSB (optical cable).

- Example of connection around the amplifier (Typical example)

Check items

- Is the PSM control power supply on?
- Has an emergency stop been canceled?
- Is a terminating connector connected to the JX1B connector of the terminating amplifier?
- Is MCC on? If there is an external MCC sequence in addition to the MCC contact of the PSM, check that sequence also.
- Is the power for driving MCC supplied?
- Is the breaker on?
- Has some alarm been issued in the PSM or SPM?
- Replacing the servo amplifier
- Replacing the axis control cards

If no problem is found in the power magnetic circuit around the amplifier, replace the servo amplifier.

If the above action does not solve the problem, replace the axis control cards.

- Installation positions of the axis control cards
[For the LCD-mounted type]

Sub-CPU board

[For the stand-alone type]

9.14
 ALARM 404
 (V READY ON)

Causes and actions
This alarm is issued if the servo ready signal (VRDY) of a servo amplifier remains on.
The servo amplifier or the axis control cards on the CNC may be defective.

- VRDY

The exchange of this information is performed via the FSSB (optical cable).
This alarm is issued if VRDY remains on when the CNC turns MCON off or if VRDY turns on before the CNC turns MCON on.

- Replacing the servo amplifier
- Replacing the axis control cards

The servo amplifier may be defective. Replace the servo amplifier.

If replacing the servo amplifier does not solve the problem, replace the axis control cards.

- Installation positions of the axis control cards
[For the LCD-mounted type]

Sub-CPU board

Loader control board
[For the LCD-mounted type]

9.15
 ALARM 462
 (SEND CNC DATA
 FAILED)

Alarm 463 (SEND SLAVE DATA FAILED)

Causes and actions

- Servo amplifier or optical cable
- Axis control cards

Alarm 462 is issued if a slave (servo amplifier) cannot receive correct data due to an FSSB communication error.
Alarm 463 is issued if the CNC cannot receive correct data due to an FSSB communication error.
If these alarms are issued, the alarm message indicates the number of the defective axis (axis name).

Any of the optical cables between the CNC control unit and the amplifier corresponding to the axis number indicated in the alarm message may be defective.
Or, any of the first amplifier to the amplifier corresponding to that axis number may be defective.

The axis control cards installed on the CNC may be defective.

- Installation positions of the axis control cards
[For the LCD-mounted type]

Sub-CPU board

Loader control board
[For the LCD-mounted type]

9.16
 ALARM 417 (DIGITAL SERVO SYSTEM IS ABNORMAL)

Digital servo parameters are abnormal. (Digital servo parameters are set incorrectly.) When alarm 315 is occured at the same time, check the cause of alarm 351 of section 9.16.

- Causes

1 Confirm the setting value of the following parameters:
PRM 2020 : Motor format number
PRM 2022 : Motor rotation direction
PRM 2023 : Number of pulses of velocity feedbacks
PRM 2024 : Number of pulses of position feedback
PRM 1023 : Servo axis number
PRM 2084 : Flexible feed gear ratio
PRM 2085 : Flexible feed gear ratio
Confirm the details with diagnosis function of CNC side.
2 Change the setting of this parameter to 0 .
PRM 2047 : Observer parameter
3 Perform initial setting of digital servo parameters.
Refer to setcion 5.1 "Initial Setting of Servo Parameters".
This data indicates the cause of servo alarm No. 417, detected by the NC. If the alarm is detected by the servo, the PRM bit (bit 4 of DGN No. 0203) is set to 1 .

\#7	\#6	\#5	\#4	\#3	\#2	\#1	\#0
	AXS		DIR	PLS	PLC		MOT

\#0(MOT) : The motor type specified in parameter No. 2020 falls outside the predetermined range.
\#2(PLC) : The number of velocity feedback pulses per motor revolution, specified in parameter No. 2023, is zero or less. The value is invalid.
\#3(PLS) : The number of position feedback pulses per motor revolution, specified in parameter No. 2024, is zero or less. The value is invalid.
\#4(DIR) : The wrong direction of rotation for the motor is specified in parameter No. 2022 (the value is other than 111 or -111).
\#6(AXS) : In parameter No. 1023 (servo axis number), a value that falls outside the range of 1 to the number of controlled axes is specified. (For example, 4 is specified instead of 3.) Alternatively, the values specified in the parameter are not consecutive.

9.17
 ALARM 700
 (OVERHEAT:
 CONTROL UNIT)

Causes and actions

- Ambient temperature

This alarm is issued if the ambient temperature of the CNC control unit is abnormally high. As an installation condition, the ambient temperature of the CNC must not exceed $55^{\circ} \mathrm{C}$.

A temperature monitoring circuit is installed on the motherboard (main CPU board), and causes this alarm to be issued if the ambienttemperature is abnormally high.
Take appropriate action to the cabinet that houses the CNC control unit so that the temperature falls within the proper temperature range (0 to $55^{\circ} \mathrm{C}$).
If it is obvious that the ambient temperature is not abnormal, the motherboard (main CPU board) may be defective.

9.18
 ALARM 701
 (OVERHEAT: FAN MOTOR)

Causes and actions

- Fan motors
[For the LCD-mounted type]

This alarm is issued if a fault occurs in any of the fan motors, such as the stoppage of a fan motor during the operation of the CNC.

Fan motors are installed in the uppermost portion of the CNC control unit. Each fan motor is attached with an alarm detector circuit, which notifies the CNC of a fault such as the stoppage of the fan motor, thereby issuing this alarm.
If this alarm is issued, replace the fan motor.
For units without option slots

Specifications of fan motors

	Ordering information	Quantity required
Unit without option slots	A02B-0236-K120	Two
Unit with two option slots	A02B-0236-K121	Two
Unit with three option slots	A02B-0236-K121	Two
	A02B-0236-K122	Two
Unit with four option slots	A02B-0236-K121	Four

[For the stand-alone For the stand-alone type, a fan can be replaced together with its case. type]

Specifications of fan motors

	Ordering information
For 1-slot track	A02B-0265-C101
For 2-slot track	A02B-0260-C021

9.19

ALARM 704
(SPINDLE SPEED
FLUCTUATION DETECTION ALARM)

Remedies

Spindle speed changes abnormally due to load.

PRM 4911 : A ratio of spindle speed at which actual spindle speed is regarded as arrived at a command spindle speed.

PRM 4912 : Spindle speed fluctuation ratio up to which the spindle speed fluctuation detection alarm is not issued.

PRM 4913 : Spindle speed fluctuation that is not regarded as the spindle speed fluctuation alarm.

PRM 4914 : Time when a spindle speed changed to when spindle speed fluctuation detection is started.

9.20
 ALARM 749
 (SERIAL SPINDLE COMMUNICATION ERROR)

Causes and actions

- Connection cable
- Printed circuit boards on the CNC
- Noise environment

An error occurred in the communication between the serial spindle amplifier (SPM) and the CNC. The probable causes include:

- Contact failure of the connection cable
- Defective printed circuit board on the CNC
- Defective spindle amplifier
- Noise

Check that the cable connecting the serial spindle amplifier (SPM) to the CNC is in contact.
Check that the cable is inserted firmly into the connectors and that it does not have any conductors likely to be cut off.
Check that the cable used is a twisted-pair cable and that it is connected as described in the connection manual.

A spindle control circuit for the CNC is installed on the motherboard (main CPU board) and the sub-CPU board. If this alarm is issued from the main CPU, replace the motherboard (main CPU board). If it is issued from the sub-CPU, replace the sub-CPU board.

If any of the above actions does not solve the problem, examine the noise environment of the connection cable.
See the section on the measures against noise, take appropriate actions such as the reinforcement of the cable shield and the separation of the cable from the power line.

9.21
 ALARM 750
 (SPINDLE SERIAL LINK STARTUP FAILURE)

 Causes and actionsThis alarm is issued if a serial spindle amplifier (SPM) does not enter the normal startup state when the CNC is turned on.
This alarm is not issued once the CNC system including the spindle amplifiers has started up normally. It is issued if a fault occurs in the power-on process.
The probable causes include the following:

- Contact failure, wiring error, or connection error of the connection cable
- The CNC is turned on when a spindle amplifier is in the alarm state.
- Parameter setting error
- Defective printed circuit board on the CNC
- Detective spindle amplifier

Up to four serial spindle amplifiers (SPMs) can be connected per path. Note, however, the number of amplifiers that can be connected differs depending on the model, number of paths, and configuration. Refer to the Connection Manual (Hardware).

[Diagram of connection
of three or four amplifiers per path]

Check that the cables are connected as shown in the figure above. Check that JA7Bs and JA7As are connected correctly.
Check that the cables are latched firmly and are not loose.
Refer to the Connection Manual (Hardware) to check that the cables are connected correctly.

- States of the spindle amplifiers

This alarm is issued if the CNC is turned on when the LED of a spindle amplifier indicates a number other than " 24 ".
On the spindle amplifier, remove the cause of the alarm. Turn off the spindle amplifier and the CNC, then turn on the system again.

- Details of the alarm

If this alarm is issued, its details can be checked with diagnosis number 409.

$\# 7$	\#6	\#5	\#4	\#3	\#2	\#1	\#0
				SPE	S2E	S1E	SHE

SPE: 0: In spindle serial control, the serial spindle parameters satisfy the spindle amplifier startup conditions.
1: In spindle serial control, the serial spindle parameters do not satisfy the spindle amplifier startup conditions.

S2E: 0: In the startup of spindle serial control, spindle 2 is normal.
1: In the startup of spindle serial control, a fault was detected on spindle 2.

S1E: 0: In the startup of spindle serial control, spindle 1 is normal.
1: In the startup of spindle serial control, a fault was detected on spindle 1.

SHE: 0: The serial communication control circuit on the CNC is normal.
1: A fault was detected in the serial communication control circuit on the CNC.

1) If SPE is set to " 1 "

Re-check the serial spindle parameters with numbers 4000 to 4999.
2) If S2E is set to " 1 "

Because a fault was detected on spindle 2, check its connection and parameter settings. This alarm is issued if the parameter settings are such that spindle 2 is used although only spindle 1 is used.
3) If S1E is set to " 1 "

Because a fault was detected on spindle 1, check its connection and parameter settings.
If any of the above actions does not solve the problem, the motherboard (main CPU board), servo CPU board, or spindle amplifier may be defective.
4) If SHE is set to " 1 "

Replace the motherboard (main CPU board) or sub-CPU board.
9.22

ALARM 5134
(FSSB: OPEN
READY TIME OUT)
ALARM 5135 (FSSB:
ERROR MODE)

ALARM 5137 (FSSB: CONFIGURATION ERROR)

ALARM 5197 (FSSB: OPEN TIME OUT)

ALARM 5198 (FSSB: ID DATA NOT READ)

Causes and actions

- Processing of the FSSB at power on

These alarms are issued if any of the axis control cards and the slaves (such as servo amplifiers) and optical cables connected to the FSSB is defective.

No.	Message	Description
5134	FSSB: OPEN READY TIME OUT	The FSSB did not become ready to openduring initialization.
5135	FSSB: ERROR MODE	The FSSB entered an error mode.
5137	FSSB: CONFIGURATION ERROR	The FSSB detected a configuration er- ror.
5197	FSSB: OPEN TIME OUT	The FSSB did not open when the CNC had allowed the FSSB to open.
5198	FSSB: ID DATA NOT READ	The initial ID information for the amplifi- er cannot be read because of a failure in the temporary assignment.

The processing of the FSSB at power on is as described below:
1 The CNC initializes the FSSB and the servo.
2 The servo returns the first ready signal.
3 The first ITP interrupt is generated.
4 The CNC waits for the FSSB to become ready to open.
5 The CNC checks that the FSSB did not detect a configuration error.
6 The CNC allows the FSSB to open.
7 The CNC checks that the FSSB has opened.
8 The servo returns the second ready signal.
9 Normal operation

If the FSSB does not become ready to open in 4, alarm 5134 is issued. If an error is detected in 5, alarm 5137 is issued.
If the FSSB does not open within a fixed period of time, alarm 5197 is issued.
If the ready signal is not returned within a fixed period of time, alarm 5198 is issued.

- Checking the parameter settings
- Power supplies of the servo amplifiers
- Replacing the axis control cards, optical cables, and servo amplifiers

Check that the FSSB-related parameters are set correctly.

Check the power supplies of the servo amplifiers connected to the FSSB.

Replace the axis control cards on the CNC.
Replace the optical cables and servo amplifiers connected to the FSSB, one at a time, to identify the defective item.

- Installation positions of the axis control cards
[For the LCD-mounted type]

Sub-CPU board

Loader control board
[For the stand-alone type]

9.23

ALARM 5136
(FSSB: NUMBER OF
AMPS IS SMALL)

Causes and actions

- FSSB setting screen
- Optical cable or servo amplifier
- Power fault of a servo amplifier

The number of servo amplifiers recognized by the FSSB is insufficient, compared with the number of controlled axes.

If this alarm is issued, display the amplifier setting screen from the FSSB setting screen. Only the servo amplifiers recognized on the FSSB are displayed.

The optical cable that connects together the last recognized amplifier and the next one may be defective.
Or, either of the amplifiers connected together with that optical cable may be defective. Check the power supplies of the amplifiers.

This alarm may be issued if a power fault occurs in a servo amplifier. A power fault occurs if the amplifier control power supply voltage drops, if the +5 V conductor of the pulse coder cable is ground, or for other reasons.

The axis control cards installed on the CNC may be defective.

- Installation positions of the axis control cards
[For the LCD-mounted type]

Sub-CPU board

Loader control board
[For the LCD-mounted type]

9.24
ALARM 900
(ROM PARITY)

Causes and actions

- Rewriting the software component
- Replacing the FROM module
- Replacing the main CPU board
- Installation position of the FROM module
[For the LCD-mounted type]

A ROM parity error occurred.
The software including the CNC system software, servo software, PMC management software, and PMC Ladder is stored in the flash memory on the FROM module. It starts execution after being loaded into the RAM of the DRAM module or servo card at power on.
A ROM parity error occurs if the software stored in the FROM module is destroyed.

On the screen, the series of the software in which a fault was detected is displayed. Rewrite the software using the boot system.
The software stored in the FROM module includes a variety of FANUC software components, as well as those created by the MTB, such as the PMC Ladder.

Replace the FROM module
After replacement, all the software that was once stored must be written. To write the software, use the boot system.

If any of the above actions does not solve the problem, replace the main CPU board.

16i/18i/21i/160i/180i/210i motherboard

NOTE

This drawing shows a motherboard without a PC (A20B-8100-014x). For motherboards with a PC (A20B-8100-014x and A20B-8100-046x), the positions and the orientations of the connectors and the DIMM module socket differ slightly, but their relative positions are the same.

16i/18i/21i/160i/180i/210i motherboard
[For the stand-alone type]

9.25
 ALARMS 910 AND 911 (SRAM PARITY)

Causes and actions

- Checking the battery
- Performing memory all clear
- Replacing the SRAM module
- Motherboard (main CPU board)
- Installation position of the SRAM module
[For the LCD-mounted type]

A parity error occurred in the SRAM used to store data such as parameters and machining programs.

This alarm is issued if the battery has run down or if the data in the SRAM is destroyed due to some external cause. Or, the SRAM module or motherboard (main CPU board) may be defective.

The battery is rated 3 V . A battery alarm is issued and "BAT" flashes on the screen if the voltage of the battery drops to 2.6 V .
If a battery alarm is issued, replace the battery with a new one promptly.
Perform a memory all clear operation, then start up the CNC. Alternatively, if a backup of the data in the SRAM has been made, use the backup to restore the data. To back up and restore the data in the SRAM, use the boot system.

If memory all clear or the restoration of the data with a backup does not solve the problem, replace the SRAM module.
After replacing the SRAM module, perform a memory all clear operation and start up the CNC. All the data must be re-loaded.
If a backup is available, restore the data using the backup, then start up the CNC.

If any of the above actions does not solve the problem, replace the motherboard (main CPU board).

NOTE

This drawing shows a motherboard without a PC (A20B-8100-014x). For motherboards with a PC (A20B-8100-014x and A20B-8100-046x), the positions and the orientations of the connectors and the DIMM module socket differ slightly, but their relative positions are the same.

16i/18i/21i/160i/180i/210i motherboard
[For the stand-alone type]

- SRAM parity on the loader control board or CAP-II board

If alarm 972 is issued, indicating on the screen that an SRAM parity error occurred on the loader or CAP-II, take appropriate action on the loader control board or CAP-II board.
The SRAM for the loader control board and the CAP-II board is installed on the boards themselves.

Screen display example

```
SYSTEM ALARM
972 NMI OCCURRED IN OTHER MODULE
    SLOT 01
    910 SRAM PARITY : (BYTE 0) <LC
```


9.26
 ALARMS 912 TO 919
 (DRAM PARITY)

Causes and actions

- Replacing the DRAM module

The management software for the CNC is loaded from the FROM to the DRAM at power on, so that it is executed on the DRAM.
A parity error occurred on this DRAM.
These alarms occur if the data on the DRAM is destroyed due to some external cause or if the DRAM module or CPU card is defective.

Replace the DRAM module installed on the CPU card.

- Replacing the CPU card. If the above action does not solve the problem, replace the CPU card.
- Installation position of the CPU card (DRAM module)
[For the LCD-mounted type]

The DRAM module is installed on the CPU card.

NOTE

This drawing shows a motherboard without a PC (A20B-8100-014x). For motherboards with a PC (A20B-8100-014x, A20B-8100-046x, and A20B-8100-054x), the positions and the orientations of the connectors and the DIMM module socket differ slightly, but their relative positions are the same.
[For the stand-alone type]

- DRAM parity on an option board

If alarm 972 is issued, indicating on the screen that a DRAM parity error occurred on an option board, take appropriate action on the option board on which the DRAM parity error occurred.
Some option boards have a circuit equivalent to the CPU card installed on the boards themselves. See the hardware chapter for details.

Screen display example

```
SYSTEM ALARM
```

972 NMI OCCURRED IN OTHER MODULE
SLOT 01
DRAM PARITY : (BYTE 0) <SUB

9.27

ALARMS 920 AND
921 (SERVO
ALARMS)

Causes and actions

- Watchdog error
- Replacing the axis control cards
- Replacing the CPU card
- Replacing the motherboard (main CPU board)

A watchdog error or RAM parity error occurred in the circuit on an axis control card.

Alarm 920 indicates that either of the above errors occurred in the control circuit for axes 1 to 4 . Alarm 921 indicates that either of the above errors occurred in the control circuit for axes 5 to 8 .
The axis control cards, CPU card, or motherboard (main CPU board) may be defective.

The servo control circuit monitors the operation of the main CPU. If a fault occurs in the CPU or its peripheral circuit, so that the watchdog timer is not reset, a watchdog error occurs.

Replace the axis control cards.

Replace the CPU card and the DRAM module.

If any of the above actions does not solve the problem, replace the motherboard (main CPU board).

- Installation position of each card and module
[For the LCD-mounted type]

[For the stand-alone type]
- Servo alarm on the sub-CPU board or loader control board

If alarm 972 is issued, indicating on the screen that a servo alarm occurred on the sub-CPU or loader, take appropriate action on the sub-CPU board or loader control board.

Screen display example

```
SYSTEM ALARM
```

972 NMI OCCURRED IN OTHER MODULE
SLOT 01
920 SERVO ALARM <SUB
[For the LCD-mounted type]

[For the stand-alone type]

The DRAM module is installed on the CPU card.

9.28

ALARM 926 (FSSB ALARM)

Causes and actions

- Identifying the defective location

A fault occurred on the FSSB (serial servo bus) that connects servo amplifiers to the CNC.

This alarm is issued if a fault occurs in any of the axis control cards making up the FSSB, optical cables, and servo amplifiers.

Use the LEDs on the servo amplifiers.
Using the 7 -segment LEDs installed on the servo amplifiers, the defective location can be identified.

FSSB connection example

If portion A , indicated by dotted line, contains the defective location, the LEDs on the servo amplifiers will be as shown in the table below.

Amplifier No.	Amplifier 0	Amplifier 1	Amplifier 2	Amplifier 3	Amplifier 4	Amplifier 5
LED display	"-"	"-"	"L" or "-"	"U"	"U"	"U"

In this case, any of the following locations may be defective:
(1) Optical cable connecting together the servo amplifier whose LED is "L" or "-" and that whose LED is "U". In the above figure, the optical cable in portion A may be defective.
(2) Either of the servo amplifier whose LED is "L" or "-" and that whose LED is "U". In the above figure, either amplifier 2 or 3 may be defective.

If portion B , indicated by dotted line, contains the defective location, the LEDs on the servo amplifiers will be as follows:

Amplifier No.	Amplifier 0	Amplifier 1	Amplifier 2	Amplifier 3	Amplifier 4	Amplifier 5
LED display	"-" or " " "					

In this case, any of the following locations may be defective:
(1) Optical cable connected to the CNC. In the above figure, the optical cable in portion B may be defective.
(2) Any of the axis control cards in the CNC
(3) First servo amplifier connected. In the above figure, amplifier 0 may be defective.

- Identifying the defective location

Use the display on the CNC screen
If alarm 926 is issued, information such as the following is displayed at the bottom of the CNC screen. It can be used to identify the defective location.

NMIC 11100000001000001111011111111111

Bits 12 to 15 of the MODE information indicate the number of the slave in which the alarm occurred. The unit nearest the CNC (such as a servo amplifier) is assigned a slave number of " 0 ". For a 2 -axis amplifier, for example, one number is assigned for the first axis, and the next number is assigned for the second.

Details of the MODE information

Bit	15	14	13	12	$11<$	0
De-scription	Number of the slave in which the alarm occurred				No meaning	
			In : In ates	ate ate at	hat the alarm occurred in slave 0. at the alarm occurred in slave 1. alarm occurred in slave 9 .	

Using the bits of the STATUS information, the fault can be estimated.
Details of the STATUS information

Bit	$15 \longleftrightarrow 12$	11	10	9	87	6	5	4	$3 \leftrightarrow 0$
							$\begin{aligned} & \hline \text { z } \\ & 0 \\ & \overline{3} \\ & 0 \\ & 0.1 \\ & 0 . \end{aligned}$		$\begin{aligned} & \text { z } \\ & \text { B } \\ & \stackrel{0}{0} \\ & 0 . \\ & \vdots . \end{aligned}$
A	xxxx	0	0	0	$\mathrm{x} \times$	1	x	0	xxxx
A	xxxx	0	1	0	$\mathrm{x} \times$	0	x	1	xxxx
B	xxxx	0	0	1	$\mathrm{x} \times$	0	x	1	xxxx
C	xxxx	1	0	0	$\mathrm{x} \times$	0	x	1	xxxx
	The STATUS information matches any of the patterns A, B, and C. (x indicates a bit that may be either 0 or 1.)								

If the pattern of the STATUS information is A
(1) The optical cable that connects together the slave corresponding to bits 12 to 15 of the MODE information and the preceding slave may be defective. Or, either of the slaves connected together with that optical cable may be defective.
(2) The voltage of the power supplied to the slave amplifier dropped, or a power fault occurred in the amplifier.
(3) Any of the axis control cards in the CNC may be defective.

If the pattern of the STATUS information is B
(1) The optical cable that connects together the slave corresponding to bits 12 to 15 of the MODE information and the preceding slave may be defective. Or, either of the slaves connected together with that optical cable may be defective.
(2) The voltage of the power supplied to the slave amplifier dropped, or a power fault occurred in the amplifier.
If the pattern of the STATUS information is C
(1) The slave corresponding to bits 12 to 15 of the MODE information may be defective.
(2) The voltage of the power supplied to the slave amplifier dropped, or a power fault occurred in the amplifier.

If a power fault occurs in a servo amplifier, the FSSB alarm is issued. A power fault occurs, causing the FSSB alarm to be issued, if the amplifier control power supply voltage drops, if the +5 V conductor of the pulse coder cable is ground, or for other reasons.

If any of the axis control cards are found defective because of the above diagnosis, replace the axis control card on the motherboard (main CPU board).

- Installation position of the axis control card
[For the LCD-mounted type]

NOTE

This drawing shows a motherboard without a PC (A20B-8100-014x). For motherboards with a PC (A20B-8100-014x, A20B-8100-046x, and A20B-8100$054 x$), the positions and the orientations of the connectors and the DIMM module socket differ slightly, but their relative positions are the same.
[For the stand-alone type]

- FSSB alarm on the sub-CPU board or loader control board

If alarm 972 is issued, indicating on the screen that an FSSB alarm occurred on the sub-CPU or loader, take appropriate action on the sub-CPU board or loader control board.

Screen display example

```
SYSTEM ALARM
972 NMI OCCURRED IN OTHER MODULE
    SLOT 01
    926 FSSB ALARM <SUB
```

[For the LCD-mounted type]

[For the stand-alone type]

9.29
 ALARM 930 (CPU INTERRUPT)

Causes and actions

An interrupt that can never be generated during normal operation was generated.
The cause of the fault cannot be identified, but the fault may have occurred in the peripheral circuit of the CPU.

If the problem is solved by turning the power off and then on again, the problem may be attributable to noise.

- Replacing the CPU card, DRAM module, and main CPU board
[For the LCD-mounted type]

[For the stand-alone type]

- Examining the noise environment
- CPU interrupt on an option board

See the section on the measures against noise, examine the noise environment of the CNC.

If alarm 972 is issued, indicating on the screen that a CPU interrupt was generated on an option board, take appropriate action on the option board on which the CPU interrupt was generated.
Some option boards have a circuit equivalent to the CPU card installed on the boards themselves. See the hardware chapter for details.

Screen display example

```
SYSTEM ALARM
972 NMI OCCURRED IN OTHER MODULE
    SLOT01
    930 CPU INTERRUPT <SUB
```

9.30

ALARM 935
(SRAM ECC ERROR)

Causes and actions

- ECC check
- Checking the battery
- Performing memory all clear
- Replacing the SRAM module

An ECC error occurred in the SRAM used to store data such as parameters and machining programs.

This alarm is issued if the battery installed in the face plate of the main CPU board has run down or if the data in the SRAM is destroyed due to some external cause. Or, the SRAM module or motherboard may be defective.

This is the method of checking the data stored in the SRAM. It has been employed instead of the conventional parity check.
With the ECC check method, 8-bit correction data is provided for 16-bit data, so that if a data error occurs in one of these 16 bits, the error is automatically corrected with the correction data, allowing the CNC to continue operation. This alarm is issued if a data error occurs in two or more bits.
With the conventional parity check method, a system alarm is issued if a data error occurs even in one bit.

The battery is rated 3 V . A battery alarm is issued and "BAT" flashes on the screen if the voltage of the battery drops to 2.6 V .
If a battery alarm is issued, replace the battery with a new one promptly.
Perform a memory all clear operation, then start up the CNC. Alternatively, if a backup of the data in the SRAM has been made, use the backup to restore the data. To back up and restore the data in the SRAM, use the boot system.

If memory all clear or the restoration of the data with a backup does not solve the problem, replace the SRAM module.
After replacing the SRAM module, perform a memory all clear operation and start up the CNC. All the data must be re-loaded.
If a backup is available, restore the data using the backup, then start up the CNC.

If any of the above actions does not solve the problem, replace the motherboard (main CPU board).

- Installation position of the SRAM module
[For the LCD-mounted type]

[For the stand-alone type]

9.31
 ALARM 950
 (PMC SYSTEM
 ALARM)

Causes and actions

- Connecting the I/O Link

This alarm is issued if a fault is detected in the PMC.
The probable causes include an I/O link communication error and a defective PMC control circuit

The I/O Link is a serial interface that connects the CNC to various I/O devices and allows transfers of I/O signals between devices at high speed. When multiple devices are connected using the I/O Link, there forms a relationship that a certain device is a master and the other devices are slaves. The states of the input signals from the slaves are transferred to the master at fixed intervals. The output signals from the master are transferred to the slaves at fixed intervals. In a CNC system, the master is the CNC (motherboard or main CPU board).
The I/O signals transferred via the I/O link can be used with the PMC Ladder.

- I/O Link communication

 error PC050If alarm 950 is issued, displaying "PC050" on the screen, an I/O link communication error may have occurred.

Screen display example

```
SYSTEM ALARM
950 PMC SYSTEM ALARM
    PC050 NMI SLCxx:yy
```

In this screen display example, the cause of the alarm can be estimated using xx:yy. xx and yy are hexadecimal representations.

1) If bit 0 of the binary representation of $x x$ is " 1 ", this indicates that the master station (CNC) received invalid communication data. For example, assume that the following is displayed on the screen:
```
SYSTEM ALARM
950 PMC SYSTEM ALARM
    PC050 NMI SLC 41:42
```

$x x$ is equal to 41 , or " 01000001 " in binary notation. Bit 0 , which is the lowest (rightmost) bit, is " 1 ".
In this case, check the following:
(1) Noise environment of the I/O Link cable

The data on the I/O Link may be disturbed by noise, possibly causing malfunctions.
(2) Contact of the I/O Link cable

Check that the I/O link cable is in contact. Check that the cable is not loose and is latched firmly.
(3) Cable failure

Check that the I/O Link cable is connected properly.
(4) Device failure

The motherboard (main CPU board) or any of the I/O devices connected to the I/O Link may be defective. Replace the devices, one at a time, to identify the defective device.

Refer to 2) if bit 1 (second bit from the right) is also " 1 ".
2) If bit 1 of the binary representation of $x x$ is " 1 ", this indicates that an error was detected on a slave station (I/O device). For example, assume that the following is displayed on the screen:

```
SYSTEM ALARM
950 PMC SYSTEM ALARM
    PC050 NMI SLC 43:82
```

xx is equal to 43 , or " 01000011 " in binary notation. Bit 1 (second bit from the right) is " 1 ".
In this case, yy indicates the following:
Number equal to the number indicated by bits 0 to 4 of yy minus 1 : Group number of the slave station on which an error was detected

Bit 5 of yy:
Invalid communication data was detected on the slave.
Bit 6 of yy:
Another error was detected on the slave.

Bit 7 of yy:

A watchdog or parity error was detected on the slave.
In the example shown in the figure above, yy is equal to 82 , or " 10000010 " in binary notation. Bits 0 to 4 are " 00010 " (2 in decimal notation). The number " 1 ", which is equal to that number minus 1 , is the group number of the slave station on which an error was detected. Bit 7 is " 1 ". Thus, a watchdog or parity error was detected on the slave station in group 1.

In this case, check the following:
(1) If bit 5 of yy is " 1 "

Perform examination with the same procedure as that in 1).
(2) If bit 6 of yy is " 1 " or if bit 7 of yy is " 1 "

First, replace the device of the slave station of the indicated group number.
If the problem is not solved, perform examination with the same procedure as that in 1) to identify the defective location.
3) If bit 2 of the binary representation of $x x$ is " 1 ", this indicates that the link between the master station (CNC) and the slave station was canceled. For example, assume that the following is displayed on the screen:

```
SYSTEM ALARM
950 PMC SYSTEM ALARM
    PC050 NMI SLC 84:00
```

$x x$ is equal to 84 , or " 1000100 " in binary notation. Bit 2 , which is the third bit from the right, is " 1 ".
In this case, check the following:
(1) Disconnection of the slave station from the power supply

Check that the slave station is not turned off, that there are no instantaneous power failures, and that the capacity of the power supply is enough.
(2) Disconnection of the I/O link cable

Check that the I/O link cable has not fallen off or has not been disconnected.
(3) If the problem is not solved, perform a check with the same procedure as that in 1).
4) If bit 3 or 4 of the binary representation of $x x$ is " 1 ", this indicates that a parity error occurred in the PMC control circuit on the motherboard (main CPU board).
In this case, replace the motherboard (main CPU board).

- Other cases
- PMC system alarm on the loader control board

For sequence control on the loader control board, a PMC control circuit is installed on the loader control board.
If alarm 972 is issued, indicating on the screen that a PMC system alarm occurred on the loader, take appropriate action on the loader control board.

Screen display example

```
SYSTEM ALARM
972 NMI OCCURRED IN OTHER MODULE
    SLOT 01
    950 PMC SYSTEM ALARM >LC
```


9.32
 ALARM 951
 (PMC WATCHDOG
 ALARM)

Causes and actions

- Replacing the main CPU board
- PMC watchdog alarm on the loader control board

This alarm is issued if a fault (watchdog alarm) is detected in the PMC. A probable cause is that the MC control circuit is defective.

The PMC control circuit is installed on the main CPU board. Replace the main CPU board.

For sequence control on the loader control board, a PMC control circuit is installed on the loader control board.

If alarm 972 is issued, indicating on the screen that a PMC watchdog alarm occurred on the loader, take appropriate action on the loader control board.

Screen display example

```
SYSTEM ALARM
972 NMI OCCURRED IN OTHER MODULE
    SLOT 01
    951 PMC WATCH DOG ALARM >LC
```


9.33
 ALARM 972
 (NMI ALARM ON AN
 OPTION BOARD)

Causes and actions

- Screen display
- Slot number
- Replacing the option board

This alarm indicates that an error was detected on an option board, not on the main CPU board.

If alarm 972 is issued, the following is displayed on the screen:
Screen display example

```
SYSTEM ALARM
972 NMI OCCURRED IN OTHER MODULE
    SLOT 02
    930 CPU INTERRUPT <SUB
```

"SLOT" indicates the number of the slot into which the option board is inserted. Alternatively, it may indicate the number of the alarm that occurred on the option board. Take the action related to that alarm to the option board. In the above example, alarm 930 occurred on the sub-CPU board.

The slot number of each option slot is as shown in the figure below.

Replace the option board inserted into the slot with the indicated slot number.

9.34
 ALARM 973
 (NMI ALARM WITH
 AN UNKNOWN
 CAUSE)
 Causes and actions

- Replacing printed circuit boards

An error that can never occur during normal operation occurred. The cause of the error cannot be identified.

Replace all the printed circuit boards installed (including cards, modules, and the back panel), one at a time, to identify the defective printed circuit board.
Replace the CPU card, motherboard (main CPU board), and other printed circuit boards, one at a time.

9.35
 ALARM 974
 (F-BUS ERROR)

Causes and actions

- Replacing the CPU card
- Replacing the motherboard (main CPU board)
- Replacing the option boards
- Replacing the back panel

A bus error occurred on the FANUC-BUS connecting each option board.
This alarm indicates that a fault occurred during the exchange of data between the main CPU and an option board.
This alarm is also issued if an error occurs during the exchange of data between the main CPU and the PMC control circuit.

Replace the CPU card on the motherboard (main CPU board).

Replace the motherboard (main CPU board).

Replace the installed option boards, one at a time.

Replace the back panel.

- Installation position of the CPU card
[For the LCD-mounted type]

NOTE

This drawing shows a motherboard without a PC (A20B-8100-014x). For motherboards with a PC (A20B-8100-014x, A20B-8100-046x, and A20B-8100$054 \mathrm{x})$, the positions and the orientations of the connectors and the DIMM module socket differ slightly, but their relative positions are the same.
[For the stand-alone type]

- F-BUS error on an option board

If alarm 972 is issued, indicating on the screen that an F-BUS error occurred on an option board, replace the CPU card on the option board on which the F-BUS error occurred or the option board itself.
Some option boards have a circuit equivalent to the CPU card installed on the boards themselves. See the hardware chapter for details.
In this case, the back panel or main CPU board may be defective. Take the actions described on the previous page.

Screen display example

SYSTEM ALARM

972 NMI OCCURRED IN OTHER MODULE
SLOT 01
974 F-BUS ERROR <SUB

9.36
 ALARM 975
 (BUS ERROR)

Causes and actions

- Replacing the CPU card
- Replacing other cards and modules
- Replacing the motherboard (main CPU board)
- BUS error on an option board

A bus error occurred on the motherboard (main CPU board). This alarm indicates that an error occurred during the exchange of data within the motherboard (main CPU board).

Replace the CPU card on the motherboard (main CPU board).

Replace the display control card, axis control cards, DRAM module, FROM module, and SRAM module, one at time

Replace the motherboard (main CPU board).

If alarm 972 is issued, indicating on the screen that a BUS error occurred on an option board, replace the CPU card on the option card, DRAM module, axis control cards, and option card, one at a time.
Some option boards have a circuit equivalent to the CPU card installed on the boards themselves. See the hardware chapter for details.

Screen display example

```
```

SYSTEM ALARM

```
```

SYSTEM ALARM
972 NMI OCCURRED IN OTHER MODULE
972 NMI OCCURRED IN OTHER MODULE
SLOT 01
SLOT 01
975 F-BUS ERROR <SUB

```
```

 975 F-BUS ERROR <SUB
    ```
```

9.37

ALARM 976
(LOCAL BUS ERROR)

Causes and actions

- Replacing the CPU card
- Replacing other cards and modules
- Replacing the motherboard (main CPU board)
- Local BUS error on an option board

A bus error occurred on the local bus on the motherboard (main CPU board).

This alarm indicates that an error occurred during the exchange of data within the motherboard (main CPU board).

Replace the CPU card on the motherboard (main CPU board).
Replace the display control card, axis control cards, DRAM module, FROM module, and SRAM module, one at a time.

Replace the motherboard (main CPU board).

If alarm 972 is issued, indicating on the screen that a local BUS error occurred on an option board, replace the CPU card on the option card, DRAM module, axis control cards, and option card, one at a time.
Some option boards have a circuit equivalent to the CPU card installed on the boards themselves. See the hardware chapter for details.

Screen display example

```
SYSTEM ALARM
972 NMI OCCURRED IN OTHER MODULE
    SLOT 01
    976 L-BUS ERROR <SUB
```

9.38

SERVO ALARMS

For an explanation of the following servo alarms, refer to the FANUC CONTROL MOTOR α Series Maintenance Manual (B-65165).

| Number | Message | Contents | * |
| :---: | :---: | :---: | :---: |
| 417 | n-TH AXIS-PARAMETER INCORRECT | The setting of a servo-related parameter is incorrect. | 417 |
| 430 | n AXIS: SV. MOTOR OVERHEAT | A servo motor overheat occurred. | 400 |
| 431 | n AXIS: CNV. OVERLAOD | PSM: Overheat occurred. | |
| 432 | n AXIS: CNV. LOWVOLT CON./ POWERFAULT | PSM: Phase missing occurred in the input voltage.
 PSMR: The control power supply voltage has dropped. | 414 |
| 433 | n AXIS: CNV. LOW VOLT DC LINK | PSM: The DC link voltage has dropped. PSMR: The DC link voltage has dropped. | |
| 434 | n AXIS: INV. LOW VOLT CONTROL | SVM: The control power supply voltage has dropped. | |
| 435 | n AXIS: INV. LOW VOLT DC LINK | SVM: The DC link voltage has dropped. | |
| 436 | n AXIS: SOFTTHERMAL (OVC) | The digital servo software detected the soft thermal state (OVC). | |
| 437 | n AXIS: CNV. OVERCURRENT POWER | PSM: Overcurrent flowed into the input circuit. | |
| 438 | n AXIS: INV. ABNORMAL CURRENT | SVM: The motor current is too high. | |
| 439 | n AXIS: CNV. OVERVOLT POWER | PSM: The DC link voltage is too high. | |
| 440 | n AXIS: CNV. EX DECELERATION POW. | PSMR: The regenerative discharge amount is too large. | |
| 441 | n AXIS: ABNORMAL CURRENT OFFSET | The digital servo software detected an abnormality in the motor current detection circuit. | |
| 442 | n AXIS: CNV. CHARGE FAULT/INV. DB | PSM: The spare discharge circuit of the DC link is abnormal.
 PSMR: The spare discharge circuit of the DC link is abnormal. | |
| 443 | n AXIS: CONV. COOLING FAN FAILURE | PSM: The internal stirring fan failed. PSMR: The internal stirring fan failed. | |
| 444 | n AXIS: INV. COOLING FAN FAILURE | SVM: The internal stirring fan failed. | |
| 445 | n AXIS: SOFT DISCONNECT ALARM | The digital servo software detected a broken wire in the pulse coder. | 416 |
| 446 | n AXIS: HARD DISCONNECT ALARM | A broken wire in the built-in pulse coder was detected by hardware. | |

NOTE

The alarm numbers mentioned in the above manual are those shown in the * column.

If the hardware on the CNC is suspected to be defective as a result of examination, replace the axis control cards.

- Installation positions of the axis control cards
[For the LCD-mounted type]

Loader control card
[For the stand-alone
type]

9.39
SPC ALARMS

| Number | Message | Contents | $*$ |
| :---: | :--- | :--- | :---: |
| 360 | n AXIS: ABNORMAL CHECKSUM (INT) | A checksum error occurred in the built-in
 pulse coder. | 350 |
| 361 | n AXIS: ABNORMAL PHASE DATA (INT) | A phase data error occurred in the built-in
 pulse coder. | |
| 362 | n AXIS: ABNORMAL REV. DATA (INT) | A rotation speed count error occurred in the
 built-in pulse coder. | |
| 363 | n AXIS: ABNOMAL CLOCK (INT) | A clock error occurred in the built-in pulse
 coder. | |
| 364 | n AXIS: SOFT PHASE ALARM (INT) | The digital servo software detected invalid
 data in the built-in pulse coder. | |
| 366 | n AXIS: PULSE MISS (INT) | An LED error occurred in the built-in pulse
 coder. | |
| 367 | n AXIS: COUNT MISS (INT) | An LED error occurred in the built-in pulse
 coder. | |
| 368 | n AXIS: SERIAL DATA ERROR (INT) | A count error occurred in the built-in pulse
 coder. | Communication data from the built-in pulse
 coder cannot be received. |

NOTE

The alarm numbers mentioned in the above manual are those shown in the * column.
9.40

SPINDLE ALARMS

For an explanation of the following spindle alarms, refer to the FANUC CONTROL MOTOR α Series Maintenance Manual (B-65165).

| Number | Contents | $*$ |
| :---: | :--- | :---: |
| 7101 to 7199 | Spindle 1 alarm (AL-01 to 99) | 751 |
| 7201 to 7299 | Spindle 2 alarm (AL-01 to 99) | 761 |
| 7301 to 7399 | Spindle 3 alarm (AL-01 to 99) | - |
| 7401 to 7499 | Spindle 4 alarm (AL-01 to 99) | - |

NOTE

1 The alarm numbers mentioned in the above manual are those shown in the * column.
2 Although the above manual does not contain a description of the spindle $3 / 4$ alarms, the lower two digits (spindle amplifier alarm number) are the same as those of the spindle $1 / 2$ alarms.

APPENDIX

A ALARM LIST

A. 1 LIST OF ALARM CODES (CNC) 674
A. 2 LIST OF ALARMS (PMC) 706
A. 3 ALARMS (SERIAL SPINDLE) 719
A. 4 ERROR CODES (SERIAL SPINDLE) 724

A. 1

LIST OF ALARM CODES (CNC)
(1) Program errors /Alarms on program and operation (P/S alarm)

| Number | Message | |
| :---: | :--- | :--- |
| 000 | PLEASE TURN OFF POWER | A parameter which requires the power off was input, turn off power. |
| 001 | TH PARITY ALARM | TH alarm (A character with incorrect parity was input).
 Correct the tape. |
| 002 | TV PARITY ALARM | TV alarm (The number of characters in a block is odd). This alarm will
 be generated only when the TV check is effective. |
| 003 | TOO MANY DIGITS | Data exceeding the maximum allowable number of digits was input.
 (Refer to the item of max. programmable dimensions.) |
| 004 | ADDRESS NOT FOUND | A numeral or the sign "-" was input without an address at the beginning
 of a block. Modify the program . |
| 005 | NO DATA AFTER ADDRESS | The address was not followed by the appropriate data but was followed
 by another address or EOB code. Modify the program. |
| 007 | ILLEGAL USE OF DECIMAL POINT | Decimal point "." input error (A decimal point was input after an address
 with which it can not be used. Or two decimal points were input.)
 Modify the program. |
| 009 | ILLEGAL ADDRESS INPUT | Unusable character was input in significant area.
 Modify the program. |
| 021 | Monnot be used. Or two or more " - " signs were input.) | |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 023 | ILLEGAL RADIUS COMMAND (T series) | In circular interpolation by radius designation, negative value was commanded for address R. Modify the program. |
| 025 | CANNOT COMMAND F0 IN G02/G03 (M series) | F0 (fast feed) was instructed by F1 -digit column feed in circular interpolation. Modify the program. |
| 027 | NO AXES COMMANDED IN G43/G44 (M series) | No axis is specified in G43 and G44 blocks for the tool length offset type C. Offset is not canceled but another axis is offset for the tool length offset type C. Modify the program. |
| 028 | ILLEGAL PLANE SELECT | In the plane selection command, two or more axes in the same direction are commanded. Modify the program. |
| 029 | ILLEGAL OFFSET VALUE (M series) | The offset values specified by H code is too large. Modify the program. |
| | ILLEGAL OFFSET VALUE (T series) | The offset values specified by T code is too large. Modify the program. |
| 030 | ILLEGAL OFFSET NUMBER (M series) | The offset number specified by D/H code for tool length offset or cutter compensation is too large. Alternatively, the number of an additional workpiece coordinate system specified with the P code is too large. Modify the program. |
| | ILLEGAL OFFSET NUMBER (T series) | The offset number in T function specified for tool offset is tool large. Modify the program. |
| 031 | ILLEGAL P COMMAND IN G10 | In setting an offset amount by G10, the offset number following address P was excessive or it was not specified.
 Modify the program. |
| 032 | ILLEGAL OFFSET VALUE IN G10 | In setting an offset amount by G10 or in writing an offset amount by system variables, the offset amount was excessive. |
| 033 | NO SOLUTION AT CRC (M series) | A point of intersection cannot be determined for cutter compensation. Modify the program. |
| | NO SOLUTION AT CRC (T series) | A point of intersection cannot be determined for tool nose radius compensation. Modify the program. |
| 034 | NO CIRC ALLOWED IN ST-UP /EXT BLK (M series) | The start up or cancel was going to be performed in the G02 or G03 mode in cutter compensation C. Modify the program. |
| | NO CIRC ALLOWED IN ST-UP /EXT BLK (T series) | The start up or cancel was going to be performed in the G02 or G03 mode in tool nose radius compensation. Modify the program. |
| 035 | CAN NOT COMMANDED G39 (M series) | G39 is commanded in cutter compensation B cancel mode or on the plane other than offset plane. Modify the program. |
| | CAN NOT COMMANDED G31 (T series) | Skip cutting (G31) was specified in tool nose radius compensation mode. Modify the program. |
| 036 | CAN NOT COMMANDED G31 (M series) | Skip cutting (G31) was specified in cutter compensation mode. Modify the program. |
| 037 | CAN NOT CHANGE PLANE IN CRC (M seires) | G40 is commanded on the plane other than offset plane in cutter compensation B. The plane selected by using G17, G18 or G19 is changed in cutter compensation C mode. Modify the program. |
| | CAN NOT CHANGE PLANE IN NRC (T seires) | The offset plane is switched in tool nose radius compensation. Modify the program. |
| 038 | INTERFERENCE IN CIRCULAR BLOCK (M seires) | Overcutting will occur in cutter compensation C because the arc start point or end point coincides with the arc center. Modify the program. |
| | INTERFERENCE IN CIRCULAR BLOCK (T series) | Overcutting will occur in tool nose radius compensation because the arc start point or end point coincides with the arc center. Modify the program. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 039 | CHF/CNR NOT ALLOWED IN NRC (T series) | Chamfering or corner R was specified with a start-up, a cancel, or switching between G41 and G42 in tool nose radius compensation. The program may cause overcutting to occur in chamfering or corner R. Modify the program. |
| 040 | INTERFERENCE IN G90/G94 BLOCK (T series) | Overcutting will occur in tool nose radius compensation in canned cycle G90 or G94. Modify the program. |
| 041 | INTERFERENCE IN CRC (M seires) | Overcutting will occur in cutter compensation C. Two or more blocks are consecutively specified in which functions such as the auxiliary function and dwell functions are performed without movement in the cutter compensation mode. Modify the program. |
| | INTERFERENCE IN NRC (T seires) | Overcutting will occur in tool nose radius compensation. Modify the program. |
| 042 | G45/G48 NOT ALLOWED IN CRC (M series) | Tool offset (G45 to G48) is commanded in cutter compensation. Modify the program. |
| 044 | G27-G30 NOT ALLOWED IN FIXED CYC (M series) | One of G27 to G30 is commanded in canned cycle mode. Modify the program. |
| 045 | ADDRESS Q NOT FOUND (G73/G83) (M series) | In canned cycle G73/G83, the depth of each cut (Q) is not specified. AIternatively, Q0 is specified. Correct the program. |
| 046 | ILLEGAL REFERENCE RETURN COMMAND | Other than P2, P3 and P4 are commanded for 2nd, 3rd and 4th reference position return command. |
| 047 | ILLEGAL AXIS SELECT (M series) | Two or more parallel axes (in parallel with a basic axis) have been specified upon start-up of three-dimensional tool compensation or three-dimensional coordinate conversion. |
| 048 | BASIC 3 AXIS NOT FOUND (M series) | Start-up of three-dimensional tool compensation or three-dimensional coordinate conversion has been attempted, but the three basic axes used when Xp, Yp, or Zp is omitted are not set in parameter No. 1022. |
| 050 | CHF/CNR NOT ALLOWED IN THRD BLK (M series) | Optional chamfering or corner R is commanded in the thread cutting block.
 Modify the program. |
| | CHF/CNR NOT ALLOWED IN THRD BLK(T series) | Chamfering or corner R is commanded in the thread cutting block. Modify the program. |
| 051 | MISSING MOVE AFTER CHF/CNR (M series) | Improper movement or the move distance was specified in the block next to the optional chamfering or corner R block. Modify the program. |
| | MISSING MOVE AFTER CHF/CNR (T series) | Improper movement or the move distance was specified in the block next to the chamfering or corner R block. Modify the program. |
| 052 | CODE IS NOT G01 AFTER CHF/CNR (M series) | The block next to the chamfering or corner R block is not G01,G02 or G03.
 Modify the program. |
| | CODE IS NOT G01 AFTER CHF/CNR (T series) | The block next to the chamfering or corner R block is not G01. Modify the program. |
| 053 | TOO MANY ADDRESS COMMANDS (M series) | For systems without the arbitary angle chamfering or corner R cutting, a comma was specified. For systems with this feature, a comma was followed by something other than R or C Correct the program. |
| | TOO MANY ADDRESS COMMANDS (T seires) | In the chamfering and corner R commands, two or more of I, K and R are specified. Otherwise, the character after a comma(",") is not C or R in direct drawing dimensions programming. Modify the program. |
| 054 | NO TAPER ALLOWED AFTER CHF/ CNR (T series) | A block in which chamfering in the specified angle or the corner R was specified includes a taper command. Modify the program. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 055 | MISSINGMOVE VALUE IN CHF/CNR (M series) | In the arbitrary angle chamfering or corner R block, the move distance is less than chamfer or corner R amount. |
| | MISSING MOVE VALUE IN CHF/CNR (T series) | In chamfering or corner R block, the move distance is less than chamfer or corner R amount. |
| 056 | NO END POINT \& ANGLE IN CHF/ CNR (T series) | Neither the end point nor angle is specified in the command for the block next to that for which only the angle is specified (A). In the chamfering comman, $\mathrm{I}(\mathrm{K})$ is commanded for the $\mathrm{X}(\mathrm{Z})$ axis. |
| 057 | NO SOLUTION OF BLOCK END (T series) | Block end point is not calculated correctly in direct dimension drawing programming. |
| 058 | END POINT NOT FOUND (M series) | In a arbitrary angle chamfering or corner R cutting block, a specified axis is not in the selected plane. Correct the program. |
| | END POINT NOT FOUND (T series) | Block end point is not found in direct dimension drawing programming. |
| 059 | PROGRAM NUMBER NOT FOUND | In an external program number search, a specified program number was not found. Otherwise, a program specified for searching is being edited in background processing. Check the program number and external signal. Or discontinue the background eiting. |
| 060 | SEQUENCE NUMBER NOT FOUND | Commanded sequence number was not found in the sequence number search. Check the sequence number. |
| 061 | ADDRESS P/Q NOT FOUND IN G70-G73 (T series) | Address P or Q is not specified in G70, G71, G72, or G73 command. Modify the program. |
| 062 | ILLEGAL COMMAND IN G71-G76 (T series) | 1. The depth of cut in G71 or G72 is zero or negative value.
 2. The repetitive count in G 73 is zero or negative value.
 3. the negative value is specified to Δi or Δk is zero in $G 74$ or $G 75$.
 4. A value other than zero is specified to address U or W though Δi or $\Delta \mathrm{k}$ is zero in G74 or G75.
 5. A negative value is specified to $\Delta \mathrm{d}$, thoughthe relief direction in G 74 or G75 is determined.
 6. Zero or a negative value is specified to the height of thread or depth of cut of first time in G76.
 7. The specified minimum depth of cut in G 76 is greater than the height of thread.
 8. An unusable angle of tool tip is specified in G76.
 Modify the program. |
| 063 | SEQUENCE NUMBER NOT FOUND (T series) | The sequence number specified by address P in G70, G71, G72, or G73 command cannot be searched. Modify the program. |
| 064 | SHAPE PROGRAM NOT MONOTONOUSLY (T series) | A target shape which cannot be made by monotonic machining was specified in a repetitive canned cycle (G71 or G72). |
| 065 | ILLEGAL COMMAND IN G71-G73 (T series) | 1. G00 or G01 is not commanded at the block with the sequence number which is specified by address P in G71, G72, or G73 command.
 2. Address $Z(W)$ or $X(U)$ was commanded in the block with a sequence number which is specified by address P in $G 71$ or $G 72$, respectively.
 Modify the program. |
| 066 | IMPROPER G-CODE IN G71-G73 (T series) | An unallowable G code was commanded beween two blocks specified by address P in $\mathrm{G} 71, \mathrm{G} 72$, or G 73 . Modify the program. |
| 067 | CAN NOT ERROR IN MDI MODE (T series) | G70, G71, G72, or G73 command with address P and Q. Modify the program. |
| 069 | FORMAT ERROR IN G70-G73 (T series) | The final move command in the blocks specified by P and Q of G70, G71, G72, and G73 ended with chamfering or corner R. Modify the program. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 070 | NO PROGRAM SPACE IN MEMORY | The memory area is insufficient. Delete any unnecessary programs, then retry. |
| 071 | DATA NOT FOUND | The address to be searched was not found. Or the program with specified program number was not found in program number search. Check the data. |
| 072 | TOO MANY PROGRAMS | The number of programs to be stored exceeded 63 (basic), 125 (option), 200 (option), 400 (option) or 1000 (option). Delete unnecessary programs and execute program registeration again. |
| 073 | PROGRAM NUMBER ALREADY IN USE | The commanded program number has already been used. Change the program number or delete unnecessary programs and execute program registeration again. |
| 074 | ILLEGAL PROGRAM NUMBER | The program number is other than 1 to 9999. Modify the program number. |
| 075 | PROTECT | An attempt was made to register a program whose number was protected. |
| 076 | ADDRESS P NOT DEFINED | Address P (program number) was not commanded in the block which includes an M98, G65, or G66 command. Modify the program. |
| 077 | SUB PROGRAM NESTING ERROR | The subprogram was called in five folds. Modify the program. |
| 078 | NUMBER NOT FOUND | A program number or a sequence number which was specified by address P in the block which includes an M98, M99, M65 or G66 was not found. The sequence number specified by a GOTO statement was not found. Otherwise, a called program is being edited in background processing. Correct the program, or discontinue the background editing. |
| 079 | PROGRAM VERIFY ERROR | In memory or program collation, a program in memory does not agree with that read from an external I/O device. Check both the programs in memory and those from the external device. |
| 080 | G37 ARRIVAL SIGNAL NOT ASSERTED
 (M series) | In the automatic tool length measurement function (G37), the measurement position reach signal (XAE, YAE, or ZAE) is not turned on within an area specified in parameter 62546255 (value ε). This is due to a setting or operator error. |
| | G37 ARRIVAL SIGNAL NOT ASSERTED
 (T series) | In the automatic tool compensation function (G36, G37), the measurement position reach signal (XAE or ZAE) is not turned on within an area specified in parameter 6254 (value ε).
 This is due to a setting or operator error. |
| 081 | OFFSET NUMBER NOT FOUND IN G37
 (M series) | Tool length automatic measurement (G37) was specified without a H code. (Automatic tool length measurement function) Modify the program. |
| | OFFSET NUMBER NOT FOUND IN G37 (T series) | Automatic tool compensation (G36, G37) was specified without a T code. (Automatic tool compensation function) Modify the program. |
| 082 | H-CODE NOT ALLOWED IN G37 (M series) | H code and automatic tool compensation (G37) were specified in the same block. (Automatic tool length measurement function) Modify the program. |
| | T-CODE NOT ALLOWED IN G37 (T series) | T code and automatic tool compensation (G36, G37) were specified in the same block. (Automatic tool compensation function) Modify the program. |
| 083 | ILLEGAL AXIS COMMAND IN G37 (M series) | In automatic tool length measurement, an invalid axis was specified or the command is incremental. Modify the program. |
| | ILLEGAL AXIS COMMAND IN G37 (T series) | In automatic tool compensation (G36, G37), an invalid axis was specified or the command is incremental. Modify the program. |
| 085 | COMMUNICATION ERROR | When entering data in the memory by using Reader/Puncher interface, an overrun, parity or framing error was generated. The number of bits of input data or setting of baud rate or specification No. of I/O unit is incorrect. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 086 | DR SIGNAL OFF | When entering data in the memory by using Reader/Puncher interface, the ready signal (DR) of reader / puncher was turned off. Power supply of I/O unit is off or cable is not connected or a P.C.B. is defective. |
| 087 | BUFFER OVERFLOW | When entering data in the memory by using Reader / Puncher interface, though the read terminate command is specified, input is not interrupted after 10 characters read. I/O unit or P.C.B. is defective. |
| 088 | LAN FILE TRANS ERROR (CHANNEL-1) | File data transfer via OSI-ETHERNET has been stopped due to a transfer error. |
| 089 | LAN FILE TRANS ERROR (CHANNEL-2) | File data transfer via OSI-ETHERNET has been stopped due to a transfer error. |
| 090 | REFERENCE RETURN INCOMPLETE | The reference position return cannot be performed normally because the reference position return start point is too close to the reference position or the speed is too slow. Separate the start point far enough from the reference position, or specify a sufficiently fast speed for reference position return. Check the program contents. |
| 091 | REFERENCE RETURN INCOMPLETE | Manual reference position return cannot be performed when automatic operation is halted. |
| 092 | AXES NOT ON THE REFERENCE POINT | The commanded axis by G27 (Reference position return check) did not return to the reference position. |
| 094 | P TYPE NOT ALLOWED (COORD CHG) | P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the coordinate system setting operation was performed.)
 Perform the correct operation according to th operator's manual. |
| 095 | P TYPE NOT ALLOWED (EXT OFS CHG) | P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the external workpiece offset amount changed.)
 Perform the correct operation according to th operator's manual. |
| 096 | P TYPE NOT ALLOWED (WRK OFS CHG) | P type cannot be specified when the program is restarted. (After the automatic operation was interrupted, the workpiece offset amount changed.)
 Perform the correct operation according to the operator's manual. |
| 097 | P TYPE NOT ALLOWED (AUTO EXEC) | P type cannot be directed when the program is restarted. (After power ON, after emergency stop or P / S 94 to 97 reset, no automatic operation is performed.) Perform automatic operation. |
| 098 | G28 FOUND IN SEQUENCE RETURN | A command of the program restart was specified without the reference position return operation after power ON or emergency stop, and G28 was found during search.
 Perform the reference position return. |
| 099 | MDI EXEC NOT ALLOWED AFT. SEARCH | After completion of search in program restart, a move command is given with MDI. Move axis before a move command or don't interrupt MDI operation. |
| 100 | PARAMETER WRITE ENABLE | On the PARAMETER(SETTING) screen, PWE(parameter writing enabled) is set to 1 . Set it to 0 , then reset the system. |
| 101 | PLEASE CLEAR MEMORY | The power turned off while rewriting the memory by program edit operation. If this alarm has occurred, press <RESET> while pressing <PROG>, and only the program being edited will be deleted. Register the deleted program. |
| 109 | P/S ALARM | A value other than 0 or 1 was specified after P in the $G 08$ code, or no value was specified. |
| 110 | DATA OVERFLOW | The absolute value of fixed decimal point display data exceeds the allowable range. Modify the program. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 111 | CALCULATED DATA OVERFLOW | The result of calculation turns out to be invalid, an alarm No. 111 is issued. $-10^{47} \text { to }-10^{-29}, 0,10^{-29} \text { to } 10^{47}$
 Modify the program. |
| 112 | DIVIDED BY ZERO | Division by zero was specified. (including tan 90°) Modify the program. |
| 113 | IMPROPER COMMAND | A function which cannot be used in custom macro is commanded. Modify the program. |
| 114 | FORMAT ERROR IN MACRO | There is an error in other formats than <Formula>. Modify the program. |
| 115 | ILLEGAL VARIABLE NUMBER | A value not defined as a variable number is designated in the custom macro or in high-speed cycle machining.
 The header contents are improper. This alarm is given in the following cases:
 High speed cycle machining
 1. The header corresponding to the specified machining cycle number called is not found.
 2. The cycle connection data value is out of the allowable range (0-999).
 3. The number of data in the header is out of the allowable range (0-32767).
 4. The start data variable number of executable format data is out of the allowable range (\#20000 - \#85535).
 5. The last storing data variable number of executable format data is out of the allowable range (\#85535).
 6. The storing start data variable number of executable format data is overlapped with the variable number used in the header.
 Modify the program. |
| 116 | WRITE PROTECTED VARIABLE | The left side of substitution statement is a variable whose substitution is inhibited. Modify the program. |
| 118 | PARENTHESIS NESTING ERROR | The nesting of bracket exceeds the upper limit (quintuple). Modify the program. |
| 119 | ILLEGAL ARGUMENT | The SQRT argument is negative. Or BCD argument is negative, and other values than 0 to 9 are present on each line of BIN argument. Modify the program. |
| 122 | FOUR FOLD MACRO MODAL-CALL | The macro modal call is specified four fold. Modify the program. |
| 123 | CAN NOT USE MACRO COMMAND IN DNC | Macro control command is used during DNC operation. Modify the program. |
| 124 | MISSING END STATEMENT | DO - END does not correspond to 1:1. Modify the program. |
| 125 | FORMAT ERROR IN MACRO | <Formula> format is erroneous. Modify the program. |
| 126 | ILLEGAL LOOP NUMBER | In DOn, $1 \leqq n \leqq 3$ is not established. Modify the program. |
| 127 | NC, MACRO STATEMENT IN SAME BLOCK | NC and custom macro commands coexist. Modify the program. |
| 128 | ILLEGAL MACRO SEQUENCE NUMBER | The sequence number specified in the branch command was not 0 to 9999. Or, it cannot be searched. Modify the program. |
| 129 | ILLEGAL ARGUMENT ADDRESS | An address which is not allowed in <Argument Designation > is used. Modify the program. |
| 130 | ILLEGAL AXIS OPERATION | An axis control command was given by PMC to an axis controlled by CNC. Or an axis control command was given by CNC to an axis controlled by PMC. Modify the program. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 131 | TOO MANY EXTERNAL ALARM MESSAGES | Five or more alarms have generated in external alarm message. Consult the PMC ladder diagram to find the cause. |
| 132 | ALARM NUMBER NOT FOUND | No alarm No. concerned exists in external alarm message clear. Check the PMC ladder diagram. |
| 133 | ILLEGAL DATA IN EXT. ALARM MSG | Small section data is erroneous in external alarm message or external operator message. Check the PMC ladder diagram. |
| 135 | ILLEGAL ANGLE COMMAND (M series) | The index table indexing positioning angle was instructed in other than an integral multiple of the value of the minimum angle. Modify the program. |
| | SPINDLE ORIENTATION PLEASE
 (T series) | Without any spindle orientation, an attept was made for spindle indexing. Perform spindle orientation. |
| 136 | ILLEGAL AXIS COMMAND (M series) | In index table indexing.Another control axis was instructed together with the B axis.
 Modify the program. |
| | C/H-CODE \& MOVE CMD IN SAME BLK. (T series) | A move command of other axes was specified to the same block as spindle indexing addresses C, H. Modify the program. |
| 137 | M-CODE \& MOVE CMD IN SAME BLK. | A move command of other axes was specified to the same block as Mcode related to spindle indexing. Modify the program. |
| 138 | SUPERIMPOSED DATA OVER- FLOW | The total distribution amount of the CNC and PMC is too large during superimposed control of the extended functions for PMC axis control. |
| 139 | CAN NOT CHANGE PMC CONTROL AXIS | An axis is selected in commanding by PMC axis control. Modify the program. |
| 141 | CAN NOT COMMAND G51 IN CRC (M series) | G51 (Scaling ON) is commanded in the tool offset mode. Modify the program. |
| 142 | ILLEGAL SCALE RATE (M series) | Scaling magnification is commanded in other than 1-999999. Correct the scaling magnification setting (G51 P_{p} or parameter 5411 or 5421). |
| 143 | SCALED MOTION DATA OVERFLOW (M series) | The scaling results, move distance, coordinate value and circular radius exceed the maximum command value. Correct the program or scaling mangification. |
| 144 | ILLEGAL PLANE SELECTED (M series) | The coordinate rotation plane and arc or cutter compensation C plane must be the same. Modify the program. |
| 145 | ILLEGAL CONDITIONS IN POLAR COORDINATE INTERPOLATION | The conditions are incorrect when the polar coordinate interpolation starts or it is canceled.
 1) In modes other than G40, G12.1/G13.1 was specified.
 2) An error is found in the plane selection. Parameters No. 5460 and No. 5461 are incorrectly specified.
 Modify the value of program or parameter. |
| 146 | IMPROPER G CODE | G codes which cannot be specified in the polar coordinate interpolation mode was specified. See section II-4.4 and modify the program. |
| 148 | ILLEGAL SETTING DATA (M series) | Automatic corner override deceleration rate is out of the settable range of judgement angle. Modify the parameters (No. 1710 to No.1714) |
| 149 | FORMAT ERROR IN G10L3 (M series) | A code other than Q1, Q2,P1 or P2 was specified as the life count type in the extended tool life management. |
| 150 | ILLEGAL TOOL GROUP NUMBER | Tool Group No. exceeds the maximum allowable value. Modify the program. |
| 151 | TOOL GROUP NUMBER NOT FOUND | The tool group commanded in the machining program is not set. Modify the value of program or parameter. |
| 152 | NO SPACE FOR TOOL ENTRY | The number of tools within one group exceeds the maximum value registerable. Modify the number of tools. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 153 | T-CODE NOT FOUND | In tool life data registration, a T code was not specified where one should be. Correct the program. |
| 154 | NOT USING TOOL IN LIFE GROUP (M series) | When the group is not commanded, H99 or D99 was commanded. Correct the program. |
| 155 | ILLEGAL T-CODE IN M06 (M series) | In the machining program, M06 and T code in the same block do not correspond to the group in use. Correct the program. |
| | ILLEGAL T-CODE IN M06 (T series) | Group No. $\Delta \Delta$ which is specified with T $\Delta \Delta 88$ of the machining program do not included in the tool group in use. Correct the program. |
| 156 | P/L COMMAND NOT FOUND | P and L commands are missing at the head of program in which the tool group is set. Correct the program. |
| 157 | TOO MANY TOOL GROUPS | The number of tool groups to be set exceeds the maximum allowable value. (See parameter No. 6800 bit 0 and 1) Modify the program. |
| 158 | ILLEGAL TOOL LIFE DATA | The tool life to be set is too excessive. Modify the setting value. |
| 159 | TOOL DATA SETTING INCOMPLETE | During executing a life data setting program, power was turned off. Set again. |
| 160 | MISMATCH WAITING M-CODE (T series (At two-path)) | Diffrent M code is commanded in heads 1 and 2 as waiting M code. Modify the program. |
| | G72.1 NESTING ERROR (M series) | A subprogram which performs rotational copy with G72.1 contains another G72.1 command. |
| 161 | G72.1 NESTING ERROR (M series) | A subprogram which performs parallel copy with G72.2 contains another G72.2 command. |
| 163 | COMMAND G68/G69 INDEPEN DENTLY T series (At two-path) | G68 and G69 are not independently commanded in balance cut. Modify the program. |
| 169 | ILLEGAL TOOL GEOMETRY DATA (At two-path) | Incorrect tool figure data in interference check. Set correct data, or select correct tool figure data. |
| 175 | ILLEGAL G107 COMMAND | Conditions when performing circular interpolation start or cancel not correct. To change the mode to the cylindrical interpolation mode, specify the command in a format of "G07.1 rotation-axis name radius of cylinder." |
| 176 | IMPROPER G-CODE IN G107 (M series) | Any of the following G codes which cannot be specified in the cylindrical interpolation mode was specified.
 1) G codes for positioning: G28,, G73, G74, G76, G81 - G89, including the codes specifying the rapid traverse cycle
 2) G codes for setting a coordinate system: G52,G92,
 3) G code for selecting coordinate system: G53 G54-G59 Modify the program. |
| | IMPROPER G-CODE IN G107 (T series) | Any of the following G codes which cannot be specified in the cylindrical interpolation mode was specified.
 1) G codes for positioning: G28, G76, G81 - G89, including the codes specifying the rapid traverse cycle
 2) G codes for setting a coordinate system: G50, G52
 3) G code for selecting coordinate system: G53 G54-G59 Modify the program. |
| 177 | CHECK SUM ERROR (G05 MODE) | Check sum error Modify the program. |
| 178 | G05 COMMANDED IN G41/G42 MODE | G05 was commanded in the G41/G42 mode. Correct the program. |
| 179 | PARAM. (NO. 7510) SETTING ERROR | The number of controlled axes set by the parameter 7510 exceeds the maximum number. Modify the parameter setting value. |
| 180 | COMMUNICATION ERROR (REMOTE BUF) | Remote buffer connection alarm has generated. Confirm the number of cables, parameters and I/O device. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 181 | FORMAT ERROR IN G81 BLOCK (Hobbing machine, EGB) (M series) | G81 block format error (hobbing machine)
 1) T (number of teeth) has not been instructed.
 2) Data outside the command range was instructed by either T, L, Q or P.
 3) An overflow occurred in synchronization coefficient calculation. Modify the program. |
| 182 | G81 NOT COMMANDED (Hobbing machine) (M series) | G83 (C axis servo lag quantity offset) was instructed though synchronization by G81 has not been instructed. Correct the program. (hobbing machine) |
| 183 | DUPLICATE G83 (COMMANDS) (Hobbing machine) (M series) | G83 was instructed before canceled by G82 after compensating for the C axis servo lag quantity by G83. (hobbing machine) |
| 184 | ILLEGAL COMMAND IN G81 (Hobbing machine, EGB) (M series) | A command not to be instructed during synchronization by G81 was instructed. (hobbing machine)
 1) A C axis command by G00, G27, G28, G29, G30, etc. was instructed.
 2) Inch/Metric switching by G20, G21 was instructed. |
| 185 | RETURN TO REFERENCE POINT (Hobbing machine) (M series) | G81 was instructed without performing reference position return after power on or emergency stop. (hobbing machine) Perform reference position return. |
| 186 | PARAMETER SETTING ERROR (Hobbing machine, EGB) (M series) | Parameter error regarding G81 (hobbing machine)
 1) The C axis has not been set to be a rotary axis.
 2) A hob axis and position coder gear ratio setting error Modify the parameter. |
| 190 | ILLEGAL AXIS SELECT | In the constant surface speed control, the axis specification is wrong. (See parameter No. 3770.) The specified axis command (P) contains an illegal value.
 Correct the program. |
| 194 | SPINDLE COMMAND IN SYNCHRO-MODE | A contour control mode, spindle positioning (Cs-axis control) mode, or rigid tapping mode was specified during the serial spindle synchronous control mode. Correct the program so that the serial spindle synchronous control mode is released in advance. |
| 197 | C-AXIS COMMANDED IN SPINDLE MODE | The program specified a movement along the Cs-axis when the signal CON(DGN=G027\#7) was off. Correct the program, or consult the PMC ladder diagram to find the reason the signal is not turned on. |
| 199 | MACRO WORD UNDEFINED | Undefined macro word was used. Modify the custom macro. |
| 200 | ILLEGAL S CODE COMMAND | In the rigid tap, an S value is out of the range or is not specified. Modify the program. |
| 201 | FEEDRATE NOT FOUND IN RIGID TAP | In the rigid tap, no F value is specified. Correct the program. |
| 202 | POSITION LSI OVERFLOW | In the rigid tap, spindle distribution value is too large. (System error) |
| 203 | PROGRAM MISS AT RIGID TAPPING | In the rigid tap, position for a rigid M code (M29) or an S command is incorrect. Modify the program. |
| 204 | ILLEGAL AXIS OPERATION | In the rigid tap, an axis movement is specified between the rigid M code (M29) block and G84 or G74 for M series (G84 or G88 for T series) block. Modify the program. |
| 205 | RIGID MODE DI SIGNAL OFF | Rigid mode DI signal is not ON when G84 or G74 for M series (G84 or G88 for T series) is executed though the rigid M code (M29) is specified.Consult the PMC ladder diagram to find the reason the DI signal (DGNG061.1) is not turned on. |
| 206 | CAN NOT CHANGE PLANE (M series) | Plane changeover was instructed in the rigid mode. Correct the program. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 210 | CAN NOT COMAND M198/M199 | M98 and M99 are executed in the schedule operation. M198 is executed in the DNC operation. Modify the program.
 1) The execution of an M198 or M99 command was attempted during scheduled operation. Alternatively, the execution of an M198 command was attempted during DNC operation. Correct the program. The execution of an M99 command was attempted by an interrupt macro during pocket machining in a multiple repetitive canned cycle. |
| 211 | G31 (HIGH) NOT ALLOWED IN G99 | G31 is commanded in the per revolution command when the highspeed skip option is provided. Modify the program. |
| 212 | ILLEGAL PLANE SELECT (M series) | The arbitrary angle chamfering or a corner R is commanded or the plane including an additional axis. Correct the program. |
| | ILLEGAL PLANE SELECT (T series) | The direct drawing dimensions programming is commanded for the plane other than the $\mathrm{Z}-\mathrm{X}$ plane. Correct the program. |
| 213 | ILLEGAL COMMAND IN SYNCHRO-MODE | Movement is commanded for the axis to be synchronously controlled. Any of the following alarms occurred in the operation with the simple synchronization control.
 1) The program issued the move command to the slave axis.
 2) The program issued the manual continuous feed/manual handle feed/incremental feed command to the slave axis.
 3) The program issued the automatic reference position return command without specifying the manual reference position return after the power was turned on.
 4) The difference between the position error amount of the master and slave axes exceeded the value specified in parameter NO.8313. |
| | ILLEGAL COMMAND IN SYNCHRO-MODE (T series) | A move command has been specified for an axis subject to synchronous control. |
| 214 | ILLEGAL COMMAND IN SYNCHRO-MODE | Coordinate system is set or tool compensation of the shift type is executed in the synchronous control. Correct the program. |
| 217 | DUPLICATE G51.2 (COMMANDS) (T series) | G51.2/G251 is further commanded in the G51.2/G251 mode. Modify the program. |
| 218 | NOT FOUND P/Q COMMAND IN G251 (T series) | P or Q is not commanded in the G251 block, or the command value is out of the range. Modify the program. |
| 219 | COMMAND G250/G251 INDEPENDENTLY (T series) | G251 and G250 are not independent blocks. |
| 220 | ILLEGAL COMMAND IN SYNCHR-MODE (T series) | In the synchronous operation, movement is commanded by the NC program or PMC axis control interface for the synchronous axis. |
| 221 | ILLEGAL COMMAND IN SYNCHR-MODE (T series) | Polygon machining synchronous operation and axis control or balance cutting are executed at a time. Modify the program. |
| 222 | DNC OP. NOT ALLOWED IN BG.-EDIT (M series) | Input and output are executed at a time in the background edition. Execute a correct operation. |
| 224 | RETURN TO REFERENCE POINT (M series) | Reference position return has not been performed before the automatic operation starts. Perform reference position return only when bit 0 of parameter 1005 is 0 . |
| | TURN TO REFERENCE POINT (T series) | Reference position return is necessary before cycle start. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 225 | SYNCHRONOUS/MIXED CONTROL ERROR
 T series (At two-path) | This alarm is generated in the following circumstances. (Searched for during synchronous and mixed control command.
 1 When there is a mistake in axis number parameter (No. 1023) setting.
 2 When there is a mistake in control commanded. Modify the program or the parameter. |
| 226 | ILLEGAL COMMAND IN SYNCHRO MODE T series (At two-path) | A travel command has been sent to the axis being synchronized in synchronous mode. Modify the program or the parameter. |
| 229 | CAN NOT KEEP SYNCHRO-STATE (T series) | This alarm is generated in the following circumstances.
 1 When the synchro/mixed state could not be kept due to system overload.
 2 The above condition occurred in CMC devices (hardware) and syn-chro-state could not be kept.
 (This alarm is not generated in normal use conditions.) |
| 230 | R CODE NOT FOUND (Hobbing machine) (M series) | The infeed quantity R has not been instructed for the G161 block. Or the R command value is negative. Correct the program. |
| 231 | ILLEGAL FORMAT IN G10 OR L50 | Any of the following errors occurred in the specified format at the pro-grammable-parameter input.
 1 Address N or R was not entered.
 2 A number not specified for a parameter was entered.
 3 The axis number was too large.
 4 An axis number was not specified in the axis-type parameter.
 5 An axis number was specified in the parameter which is not an axis type. Correct the program.
 6 In the locked state set by the password function, an attempt was made to set bit 4 (NE9) of parameter No. 3204 to 0 or change the contents of parameter No. 3210.
 7 An attempt was made to change a program encryption parameter (parameter No. 3220 to 3223). |
| 232 | TOO MANY HELICAL AXIS COMMANDS (M series) | Three or more axes (in the normal direction control mode two or more axes) were specified as helical axes in the helical interpolation mode. |
| 233 | DEVICE BUSY | When an attempt was made to use a unit such as that connected via the RS-232-C interface, other users were using it. |
| 239 | BP/S ALARM | While punching was being performed with the function for controlling external I/O units ,background editing was performed. |
| 240 | BP/S ALARM | Background editing was performed during MDI operation. |
| 241 | ILLEGAL FORMAT IN G02.2/G03.2 (M series) | The end point, I, J, K, or R is missing from a command for involute interpolation. |
| 242 | ILLEGAL COMMAND IN G02.2/G03.2 (M series) | An invalid value has been specified for involute interpolation.
 - The start or end point is within the basic circle.
 - I, J, K, or R is set to 0 .
 - The number of rotations between the start of the involute curve and the start or end point exceeds 100. |
| 243 | OVER TOLERANCE OF END POINT (M series) | The end point is not on the involute curve which includes the start point and thus falls outside the range specified with parameter No. 5610. |
| 244 | P/S ALARM
 (T series) | In the skip function activated by the torque limit signal, the number of accumulated erroneous pulses exceed 32767 before the signal was input. Therefore, the pulses cannot be corrected with one distribution. Change the conditions, such as feed rates along axes and torque limit, and try again. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 245 | T-CODE NOT ALOWEE IN THIS BLOCK (T series) | One of the G codes, G50, G10, and G04, which cannot be specified in the same block as a T code, was specified with a T code. |
| 246 | | During read of an encrypted program, an attempt was made to store the program with a number exceeding the protection range. (See parameter Nos. 3222 and 223.) |
| 247 | | When an encrypted program is output, EIA is set for the punch code. Specify ISO. |
| 250 | Z AXIS WRONG COMMAND (ATC) (M series) | A value for the Z-axis has been specified in a block for the tool exchange command (M06T_) on a system with DRILL-MATE ARC installed. |
| 251 | ATC ERROR (M series) | This alarm is issued in the following cases (DRILL-MATE):
 - An M06T_ command contains an unusable T code.
 - An M06 command has been specified when the Z machine coordi nate is positive.
 - The parameter for the current tool number (No. 7810) is set to 0 .
 - An M06 command has been specified in canned cycle mode.
 - A reference position return command (G27 to G44) and M06 command have been specified in the same block.
 - An M06 command has been specified in tool compensation mode (G41 to G44).
 - An M06 command has been specified without performing reference position return after power-on or the release of emergency stop.
 - The machine lock signal or Z-axis ignore signal has been turned on during tool exchange.
 - A pry alarm has been detected during tool exchange.
 Refer to diagnosis No. 530 to determine the cause. |
| 252 | ATC SPINDLE ALARM (M series) | An excessive error arose during spindle positioning for ATC. For details, refer to diagnosis No. 531. (Only for DRILL-MATE) |
| 253 | G05 IS NOT AVAILABLE (M series) | Alarm details
 Binary input operation using high-speed remote buffer (G05) or highspeed cycle machining (G05) has been specified in advance control mode (G08P1). Execute G08P0; to cancel advance control mode, before executing these G05 commands. |
| 4500 | REPOSITIONING INHIBITED | A repositioning command was specified in the circular interpolation (G02, G03) mode. |
| 4502 | ILLEGAL COMMAND IN BOLT HOLE | In a bolt hole circle (G26) command, the radius (I) was set to zero or a negative value, or the number of holes (K) was set to zero. Alternatively, I, J, or K was not specified. |
| 4503 | ILLEGAL COMMAND IN LINE AT ANGLE | In a line-at-angle (G76) command, the number of holes (K) was set to zero or a negative value. Alternatively, I, J, or K was not specified. |
| 4504 | ILLEGAL COMMAND IN ARC | In an arc (G77) command, the radius (I) or the number of holes (K) was set to zero or a negative value. Alternatively, I, J, K, or P was not specified. |
| 4505 | ILLEGAL COMMAND IN GRID | In a grid (G78, G79) command, the number of holes (P, K) was set to zero or a negative value. Alternatively, I, J, K, or P was not specified. |
| 4506 | ILLEGAL COMMAND IN SHARE PROOFS | In a shear proof (G86) command, the tool size (P) was set to zero, or the blanking length (I) was 1.5 times larger than the tool size (P) or less. Alternatively, I, J, or P was not specified. |
| 4507 | ILLEGAL COMMAND IN SQUARE | In a square (G87) command, the tool size (P, Q) was set to zero or a negative value, or the blanking length (I, J) was three times larger than the tool size (P, Q) or less. Alternatively, I, J, P, or Q was not specified. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 4508 | ILLEGAL COMMAND IN RADIUS | In a radius (G88) command, the traveling pitch (Q) or radius (I) was set to zero or a negative value, or the traveling pitch (Q) was greater than or equal to the arc length. Alternatively, I, J, K, P, or Q was not specified. |
| 4509 | ILLEGAL COMMAND IN CUT AT ANGLE | In a cut-at-angle (G89) command, the traveling pitch (Q) was set to zero, negative value, or another value larger than or equal to the length (I). Alternatively, I, J, P, or Q was not specified. |
| 4510 | ILLEGAL COMMAND IN LINE-PUNCH | In a linear punching (G45) command, the traveling distance was set to zero or a value 1.5 times larger than the tool size (P) or less. Alternatively, P was not specified. |
| 4511 | ILLEGAL COMMAND IN CIRCLE-PUNCH | In a circular punching (G46, G47) command, the same position was specified for both start and end points of the arc, radius (R) of the arc was set to zero, or the pitch (Q) was set to a value exceeding the arc length. Alternatively, R or Q was not specified. |
| 4520 | T, M INHIBITED IN NIBBLING-MODE | T code, M code, G04, G70 or G75 was specified in the nibbling mode. |
| 4521 | EXCESS NIBBLING MOVEMENT (X, Y) | In the nibbling mode, the X-axis or Y-axis traveling distance was larger than or equal to the limit (No. 16188 to 16193). |
| 4522 | EXCESS NIBBLING MOVEMENT (C) | In the circular nibbling (G68) or usual nibbling mode, the C-axis traveling distance was larger than or equal to the limit (No. 16194). |
| 4523 | ILLEGAL COMMAND IN CIRCLE-NIBBL | In a circular nibbling (G68) command, the traveling pitch (Q) was set to zero, a negative value, or a value larger than or equal to the limit (No. 16186,16187), or the radius (I) was set to zero or a negative value. AIternatively, I, J, K, P, or Q was not specified. |
| 4524 | ILLEGAL COMMAND IN LINE-NIBBL | In a linear nibbling (G69) command, the traveling pitch (Q) was set to zero, negative value, or a value larger than or equal to the limit (No. 16186, 16187). Alternatively, I, J, P, or Q was not specified. |
| 4530 | A/B MACRO NUMBER ERROR | The number for storing and calling by an A or B macro was set to a value beyond the range from 1 to 5 . |
| 4531 | U/V MACRO FORMAT ERROR | An attempt was made to store a macro while storing another macro using a U or V macro.
 A V macro was specified although the processing to store a macro was not in progress.
 A U macro number and V macro number do not correspond with each other. |
| 4532 | IMPROPER U/V MACRO NUMBER | The number of an inhibited macro (number beyond the range from 01 to 99) was specified in a U or V macro command. |
| 4533 | U/V MACRO MEMORY OVERFLOW | An attempt was made to store too many macros with a U or V macro command. |
| 4534 | W MACRO NUMBER NOT FOUND | Macro number W specified in a U or V macro command is not stored. |
| 4535 | U/V MACRO NESTING ERROR | An attempt was made to call a macro which is defined three times or more using a U or V macro command.
 An attempt was made to store 15 or more macros in the storage area for macros of number 90 to 99 . |
| 4536 | NO W, Q COMMAND IN MULTI-PIECE | W or Q was not specified in the command for taking multiple workpieces (G73, G74). |
| 4537 | ILLEGAL Q VALUE IN MULTI-PIECE | In the command for taking multiple workpieces (G73, G74), Q is set to a value beyond the range from 1 to 4 . |
| 4538 | W NO. NOT FOUND IN MULTI-PIECE | Macro number W specified in the command for taking multiple workpieces (G73, G74) is not stored. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 4539 | MULTI-PIECE SETTING IS ZERO | The command for taking multiple workpieces (G73, G74) was specified although zero is specified for the function to take multiple workpieces (No. 16206 or signals MLP1 and MLP2 (PMC address G231, \#0 and \#1)). |
| 4540 | MULTI-PIECE COMMAND WITHIN MACRO | The command for taking multiple workpieces (G73, G74) was specified when a U or V macro was being stored. |
| 4542 | MULTI-PIECE COMMAND ERROR | Although G98P0 was specified, the G73 command was issued. Although G98K0 was specified, the G74 command was issued. |
| 4543 | MULTI-PIECE Q COMMAND ERROR | Although G98P0 was specified, the Q value for the G74 command was not 1 or 3 .
 Although G98K0 was specified, the Q value for the G73 command was not 1 or 2 . |
| 4544 | MULTI-PIECE RESTART ERROR | In the command for resuming taking multiple workpieces, the resume position (P) is set to a value beyond the range from 1 to total number of workpieces to be machined. |
| 4549 | ILLEGAL TOOL DATA FORMAT | The quantity of tool data patterns to be saved is too large to fit the usable area (16 KB). |
| 4600 | T, C COMMAND IN INTERPOLATION | In the linear interpolation (G01) mode or circular interpolation (G02, G03) mode, a T command or C -axis command was specified. |
| 4601 | INHIBITED T, M COMMAND | In the block of G52, G72, G73, or G74, a T or M command was specified. |
| 4602 | ILLEGAL T-CODE | The specified T command is not cataloged on the tool register screen. |
| 4603 | C AXIS SYNCHRONOUS ERROR | The difference between the position deviation value of C1 axis and C2 axis exceeds the parameter value (No. 16364, 16365) with the C-axis synchronous control function. |
| 4604 | ILLEGAL AXIS OPERATION | A C-axis command was specified in the block containing a T command for multiple tools. |
| 4630 | ILLEGAL COMMAND IN LASER MODE | In the laser mode, a nibbling command or pattern command was specified.
 In the tracing mode, an attempt was made to make a switch to the punching mode. |
| 4631 | ILLEGAL COMMAND IN PUNCH MODE | In the punching mode, a G code of laser control (G13, G24, G31, etc.) was specified. |
| 4650 | IMPROPER G-CODE IN OFFSET MODE | In the cutter compensation mode, an inhibited G code (pattern command, G73, G74, G75, etc.) was specified. |
| 4700 | PROGRAM ERROR (OT +) | The value specified in the X-axis move command exceeded the positive value of stored stroke limit 1. (Advance check) |
| 4701 | PROGRAM ERROR (OT -) | The value specified in the X-axis move command exceeded the negative value of stored stroke limit 1. (Advance check) |
| 4702 | PROGRAM ERROR (OT +) | The value specified in the Y -axis move command exceeded the positive value of stored stroke limit 1. (Advance check) |
| 4703 | PROGRAM ERROR (OT -) | The value specified in the Y -axis move command exceeded the negative value of stored stroke limit 1. (Advance check) |
| 4704 | PROGRAM ERROR (OT +) | The value specified in the Z-axis move command exceeded the positive value of stored stroke limit 1. (Advance check) |
| 4705 | PROGRAM ERROR (OT -) | The value specified in the Z-axis move command exceeded the negative value of stored stroke limit 1. (Advance check) |
| 5000 | ILLEGAL COMMAND CODE (M series) | The specified code was incorrect in the high-precision contour control (HPCC) mode. |
| 5003 | ILLEGAL PARAMETER (HPCC) (M series) | There is an invalid parameter. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 5004 | HPCC NOT READY (M series) | High-precision contour control is not ready. |
| 5006 | TOO MANY WORD IN ONE BLOCK (M series) | The number of words specified in a block exceeded 26 in the HPCC mode. |
| 5007 | TOO LARGE DISTANCE (M series) | In the HPCC mode, the machine moved beyond the limit. |
| 5009 | PARAMETER ZERO (DRY RUN) (M series) | The maximum feedrate (parameter No. 1422) or the feedrate in dry run (parameter No. 1410) is 0 in the HPCC model. |
| 5010 | END OF RECORD | The end of record (\%) was specified. I/O is incorrect. modify the program. |
| 5011 | PARAMETER ZERO(CUT MAX) (M series) | The maximum cutting feedrate (parameter No. 1422, No. 1430, No. 1431, No. 1432) is 0 in the HPCC mode. |
| 5012 | G05 P10000 ILLEGAL START UP (HPCC)
 (M series) | Function category:
 High-precision contour control
 Alarm details:
 G05 P10000 has been specified in a mode from which the system cannot enter HPCC mode. |
| 5013 | HPCC: CRC OFS REMAIN AT CANCEL (M series) | G05P0 has been specified in G41/G42 mode or with offset remaining. |
| 5014 | TRACE DATA NOT FOUND (M series) | Transfer cannot be performed because no trace data exists. |
| 5015 | (M series) | The specified rotation axis does not exist for tool axis direction handle feed. |
| 5016 | ILLEGAL COMBINATION OF M CODE | M codes which belonged to the same group were specified in a block. Alternatively, an M code which must be specified without other M codes in the block was specified in a block with other M codes. |
| 5018 | POLYGON SPINDLE SPEED ERROR
 (T series) | Function category:
 Polygon turning
 Alarm details:
 In G51.2 mode, the speed of the spindle or polygon synchronous axis either exceeds the clamp value or is too small. The specified rotation speed ratio thus cannot be maintained. |
| 5020 | PARAMETER OF RESTART ERROR | An erroneous parameter was specified for restarting a program. A parameter for program restart is invalid. |
| 5030 | ILLEGAL COMMAND (G100) (T series) | The end command (G110) was specified before the registratioin start command (G101, G102, or G103) was specified for the B-axis. |
| 5031 | ILLEGAL COMMAND (G100, G102, G103) (T series) | While a registration start command (G101, G102, or G103) was being executed, another registration start command was specified for the Baxis. |
| 5032 | NEW PRG REGISTERED IN B-AXS MOVE (T series) | While the machine was moving about the B-axis, at attempt was made to register another move command. |
| 5033 | NO PROG SPACE IN MEMORY BAXS (T series) | Commands for movement about the B-axis were not registered because of insufficient program memory. |
| 5034 | PLURAL COMMAND IN G110 (T series) | Multiple movements were specified with the G110 code for the B-axis. |
| 5035 | NO FEEDRATE COMMANDED BAXS (T series) | A feedrate was not specified for cutting feed about the B-axis. |
| 5036 | ADDRESS R NOT DEFINED IN G81-G86 (T series) | Point R was not specified for the canned cycle for the B-axis. |
| 5037 | ADDRESS Q NOT DEFINED IN G83 (T series) | Depth of cut Q was not specified for the G83 code (peck drilling cycle). Alternatively, 0 was specified in Q for the B -axis. |
| 5038 | TOO MANY START M-CODE COMMAND (T series) | More than six M codes for starting movement about the B -axis were specified. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 5039 | START UNREGISTERED B-AXS PROG (T series) | An attempt was made to execute a program for the B-axis which had not been registered. |
| 5040 | CAN NOT COMMANDED B-AXS MOVE (T series) | The machine could not move about the B-axis because parameter No. 8250 was incorrectly specified, or because the PMC axis system could not be used. |
| 5041 | CAN NOT COMMANDED G110 BLOCK (T series) | Blocks containing the G110 codes were successively specified in tooltip radius compensation for the B -axis. |
| 5043 | TOO MANY G68 NESTING (M series) | Three-dimensional coordinate conversion G68 has been specified three or more times. |
| 5044 | G68 FORMAT ERROR (M series) | A G68 command block contains a format error. This alarm is issued in the following cases:
 1. I, J, or K is missing from a G68 command block (missing coordinate rotation option).
 2. I, J, and K are 0 in a G68 command block.
 3. R is missing from a G68 command block. |
| 5046 | ILLEGAL PARAMETER (ST.COMP) | The parameter settings for straightness compensation contain an error. Possible causes are as follows:
 1. A parameter for a movement axis or compensation axis contains an axis number which is not used.
 2. More than 128 pitch error compensation points exist between the negative and positive end points.
 3. Compensation point numbers for straightness compensation are not assigned in the correct order.
 4. No straightness compensation point exists between the pitch error compensation points at the negative and positive ends.
 5. The compensation value for each compensation point is too large or too small. |
| 5050 | ILL-COMMAND IN CHOPPING MODE
 (M series) | A command for switching the major axis has been specified for circular threading. Alternatively, a command for setting the length of the major axis to 0 has been specified for circular threading. |
| 5051 | M-NET CODE ERROR | Abnormal character received (other than code used for transmission) |
| 5052 | M-NET ETX ERROR | Abnormal ETX code |
| 5053 | M-NET CONNECT ERROR | Connection time monitoring error (parameter No. 175) |
| 5054 | M-NET RECEIVE ERROR | Polling time monitoring error (parameter No. 176) |
| 5055 | M-NET PRT/FRT ERROR | Vertical parity or framing error |
| 5057 | M-NET BOARD SYSTEM DOWN | Transmission timeout error (parameter No. 177) ROM parity error CPU interrupt other than the above |
| 5058 | G35/G36 FORMAT ERROR (T series) | A command for switching the major axis has been specified for circular threading. Alternatively, a command for setting the length of the major axis to 0 has been specified for circular threading. |
| 5059 | RADIUS IS OUT OF RANGE (T series) | A radius exceeding nine digits has been specified for circular interpolation with the center of the arc specified with I, J, and K. |
| 5060 | ILLEGAL G02.3/G03.3 | There is a parameter setting error.
 Parameter No. 5641 (setting of the linear axis) is not set.
 The axis set in parameter No. 5641 is not a linear axis.
 Parameter No. 5642 (setting of a rotation axis) is not set.
 The axis set in parameter No. 5642 is not a rotation axis.
 The linear and rotation axes cannot be controlled by the CNC. (The value set in parameter No. 1010 is exceeded.) |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 5061 | ILLEGAL FORMAT IN G02.3/G03.3 | The exponential interpolation command (G02.3/G03.3) has a format error.
 Address I , J , or K is not specified.
 The value of address I, J, or K is 0 . |
| 5062 | ILLEGAL COMMAND
 G02.3/G03.3 | The value specified in an exponential interpolation command (G02.3/03.3) is illegal. A value that does not allow exponential interpolation is specified. (For example, a negative value is specified in In.) |
| 5063 | IS NOT PRESET AFTER REF. (M series) | Function category:
 Workpiece thickness measurement
 Alarm details
 The position counter was not preset before the start of workpiece thickness measurement. This alarm is issued in the following cases:
 (1) An attempt has been made to start measurement without first establishing the origin.
 (2) An attempt has been made to start measurement without first presetting the position counter after manual return to the origin. |
| 5064 | ```DIFFERRENT AXIS UNIT (IS-B, IS-C) (M series)``` | Circular interpolation has been specified on a plane consisting of axes having different increment systems. |
| 5065 | DIFFERENT AXIS UNIT (PMC AXIS) (M series) | Axes having different increment systems have been specified in the same DI/DO group for PMC axis control. Modify the setting of parameter No. 8010. |
| 5066 | RESTART ILLEGAL SEQUENCE NUMBER (M series) | Sequence number 7xxx has been read during search for the next sequence number at program restart for the return/restart function. |
| 5067 | (HPCC) (M series) | HPCC mode cannot be canceled during G51 (scaling) or G68 (coordinate system rotation).
 Correct the program. |
| 5068 | G31 P90 FORMAT ERROR (M series) | The continuous high-speed skip command has one of the following errors:
 1. The axis along which the tool is moved is not specified.
 2. More than one axis is specified as the axis along which the tool is moved.
 Alternatively, the EGB skip command has one of the following errors:
 1. A move command is specified for the EGB axis (workpiece axis).
 2. More than one axis is specified.
 3. P is not specified.
 4. The specified Q value exceeds the allowable range.
 Correct the program. |
| 5069 | $\begin{aligned} & \text { WHL-C:ILLEGA } \\ & \text { P-DATA } \\ & \text { (M series) } \end{aligned}$ | The P data in selection of the grinding-wheel wear compensation center is illegal. |
| 5073 | NO DECIMAL POINT | No decimal point has been specified for an address requiring a decimal point. |
| 5074 | ADDRESS DUPLICATION ERROR | The same address has been specified two or more times in a single block. Alternatively, two or more G codes in the same group have been specified in a single block. |
| 5082 | DATA SERVER ERROR | This alarm is detailed on the data server message screen. |
| 5085 | | The command format of a smooth interpolation command block has an error. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 5110 | IMPROPER G-CODE (G05.1 G1 MODE) (M series) | An illegal G code was specified in simple high-precision contour control mode.
 A command was specified for the index table indexing axis in simple high-precision contour control mode. |
| 5111 | IMPROPER MODAL G-CODE
 (G05.1 G1)
 (M series) | An illegal G code is left modal when simple high-precision contour control mode was specified. |
| 5112 | G08 CAN NOT BE COMMANDED
 (G05.1 G1)
 (M series) | Look-ahead control (G08) was specified in simple high-precision contour control mode. |
| 5113 | CAN NOT ERROR IN MDI MODE (G05.1)
 (M series) | Simple high-precision contour control (G05.1) was specified in MDI mode. |
| 5114 | NOT STOP POSITION (G05.1 Q1)
 (M series) | At the time of restart after manual intervention, the coordinates at which the manual intervention occurred have not been restored. |
| 5115 | SPL : ERROR (M series) | There is an error in the specification of the rank. |
| | | No knot is specified. |
| | | The knot specification has an error. |
| | | The number of axes exceeds the limits. |
| | | Other program errors |
| 5116 | SPL : ERROR (M series) | There is a program error in a block under look-ahead control. |
| | | Monotone increasing of knots is not observed. |
| | | In NURBS interpolation mode, a mode that cannot be used together is specified. |
| 5117 | SPL: ERROR (M series) | The first control point of NURBS is incorrect. |
| 5118 | SPL : ERROR (M series) | After manual intervention with manual absolute mode set to on, NURBS interpolation was restarted. |
| 5122 | ILLEGAL COMMAND IN SPIRAL (M series) | A spiral interpolation or conical interpolation command has an error. Specifically, this error is caused by one of the following:
 1) $L=0$ is specified.
 2) $Q=0$ is specified.
 3) $R /, R /, C$ is specified.
 4) Zero is specified as height increment.
 5) Three or more axes are specified as the height axes.
 6) A height increment is specified when there are two height axes.
 7) Conical interpolation is specified when the helical interpolation function is not selected.
 8) $\mathrm{Q}<0$ is specified when radius difference >0.
 9) $Q>0$ is specified when radius difference <0.
 10) A height increment is specified when no height axis is specified. |
| 5123 | OVER TOLERANCE OF END POINT (M series) | The difference between a specified end point and the calculated end point exceeds the allowable range (parameter 3471). |

| Number | Message | Contents |
| :---: | :--- | :--- |
| 5124 | CAN NOT COMMAND SPIRAL
 (M series) | A spiral interpolation or conical interpolation was specified in any of the
 following modes:
 1) \quad Scaling
 2) Programmable mirror image
 3) Polar coordinate interpolation
 In cutter compensation C mode, the center is set as the start point or
 end point. |
| 5134 | FSSB : OPEN READY TIME OUT | Initialization did not place FSSB in the open ready state. |
| 5135 | FSSB : ERROR MODE | FSSB has entered error mode. |
| 5136 | FSSB : NUMBER OF AMPS IS SMALL | In comparison with the number of controlled axes, the number of amplifi-
 ers recognized by FSSB is not enough. |
| 5137 | FSSB : CONFIGURATION ERROR | FSSB detected a configuration error. |

NOTE

HPCC : High precision contour control

(2) Program errors/Alarms on program and operation (P/S alarm)

| Number | Message | Contents |
| :---: | :--- | :--- |
| 5138 | FSSB : AXIS SETTING NOT COM-
 PLETE | In automatic setting mode, axis setting has not been made yet.
 Perform axis setting on the FSSB setting screen. |
| 5139 | FSSB : ERROR | Servo initialization did not terminate normally.
 The optical cable may be defective, or there may be an error in connec-
 tion to the amplifier or another module.
 Check the optical cable and the connection status. |
| 5155 | NOT RESTART PROGRAM BY G05 | During servo leaning control by G05, an attempt was made to perform
 restart operation after feed hold or interlock. This restart operation can-
 not be performed. (G05 leaning control terminates at the same time.) |
| 5156 | ILLEGAL AXIS OPERATION
 (SHPCC)
 (M series) | In simple high-precision contour control mode, the controlled axis
 selection signal (PMC axis control) changes.
 In simple high-precision contour control mode, the simple synchronous
 axis selection signal changes. |
| 5157 | PARAMETER ZERO (AICC)
 (M series) | Zero is set in the parameter for the maximum cutting feedrate (parame-
 ter No. 1422 or 1432).
 Zero is set in the parameter for the acceleration/deceleration before in-
 terpolation (parameter No. 1770 or 1771).
 Set the parameter correctly. |
| 5195 | DIRECTION CAN NOT BE JUDGED
 (T series) | When the touch sensor with a single contact signal input is used in the
 direct input B function for tool offset measurement values, the stored
 pulse direction is not constant. One of the following conditions exists:
 - The stop state exists in offset write mode.
 - Servo off state |
| 5197 | FSSB : OPEN TIME OUT | The direction varies. |
| 5198 | FSSB : ID DATA NOT READ | |
| 5196 | ILLEGAL OPERATION (HPCC)
 (M series) | Detach operation was performed in HPCC mode. (If detach operation
 is performed in HPCC mode, this alarm is issued after the currently
 executed block terminates.) |
| The CNC permitted FSSB to open, but FSSB was not opened. | | |
| Temporary assignment failed, so amplifier initial ID information couldnot | | |
| be read. | | |$|$

| Number | Message | Contents |
| :---: | :---: | :---: |
| 5199 | FINE TORQUE SENSING PARAMETER | A parameter related to the fine torque sensing function is illegal.
 - The storage interval is invalid.
 - An invalid axis number is set as the target axis.
 Correct the parameter. |
| 5212 | SCREEN COPY : PARAMETER ERROR | There is a parameter setting error. Check that 4 is set as the I/O channel. |
| 5213 | SCREEN COPY : COMMUNICATION ERROR | The memory card cannot be used. Check the memory card. (Check whether the memory card is write-protected or defective.) |
| 5214 | SCREEN COPY : DATA TRANSFER ERROR | Data transfer to the memory card failed. Check whether the memory card space is insufficient and whether the memory card was removed during data transfer. |
| 5218 | ILLEGAL PARAMETER (INCL. COMP) | There is an inclination compensation parameter setting error. Cause:
 1. The number of pitch error compensation points between the negative (-) end and positive (+) end exceeds 128.
 2. The relationship in magnitude among the inclination compensation point numbers is incorrect.
 3. An inclination compensation point is not located between the negative (-) end and positive (+) end of the pitch error compensation points.
 4. The amount of compensation per compensation point is too large or too small.
 Correct the parameter. |
| 5220 | REFERENCE POINT ADJUSTMENT MODE | A parameter for automatically set a reference position is set. (Bit 2 of parameter No. $1819=1$)
 Perform automatic setting.
 (Position the machine at the reference position manually, then perform manual reference position return.)
 Supplementary: Automatic setting sets bit 2 of parameter No. 1819 to 0. |
| 5222 | SRAM CORRECTABLE ERROR | The SRAM correctable error cannot be corrected. Cause:
 A memory problem occurred during memory initialization. Action:
 Replace the master printed circuit board (SRAM module). |
| 5227 | FILE NOT FOUND | A specified file is not found during communication with the built-in Handy File. |
| 5228 | SAME NAME USED | There are duplicate file names in the built-in Handy File. |
| 5229 | WRITE PROTECTED | A floppy disk in the built-in Handy File is write protected. |
| 5231 | TOO MANY FILES | The number of files exceeds the limit during communication with the built-in Handy File. |
| 5232 | DATA OVER-FLOW | There is not enough floppy disk space in the built-in Handy File. |
| 5235 | COMMUNICATION ERROR | A communication error occurred during communication with the built-in Handy File. |
| 5237 | READ ERROR | A floppy disk in the built-in Handy File cannot be read from. The floppy disk may be defective, or the head may be dirty. Alternatively, the Handy File is defective. |
| 5238 | WRITE ERROR | A floppy disk in the built-in Handy File cannot be written to. The floppy disk may be defective, or the head may be dirty. Alternatively, the Handy File is defective. |

| Number | Message | Contents |
| :---: | :--- | :--- |
| 5242 | ILLEGAL AXIS NUMBER
 (M series) | The axis number of the synchronous master axis or slave axis is incor-
 rect. (This alarm is issued when flexible synchronization is turned on.)
 Alternatively, the axis number of the slave axis is smaller than that of the
 master axis. |
| 5243 | DATA OUT OF RANGE
 (M series) | The gear ratio is not set correctly. (This alarm is issued when flexible
 synchronization is turned on.) |
| 5244 | TOO MANY DI ON
 (M series) | Even when an M code was encountered in automatic operation mode,
 the flexible synchronization mode signal was not driven on or off.
 Check the ladder and M codes. |
| 5245 | OTHER AXIS ARE COMMANDED
 (M series) | One of the following command conditions was present during flexible
 synchronization or when flexible synchronization was turned on:
 1. The synchronous master axis or slave axis is the EGB axis.
 2. The synchronous master axis or slave axis is the chopping axis.
 $3 . \quad$ In reference position return mode |
| 5251 | ILLEGAL PARAMETER IN G54.2 | A fixture offset parameter (No. 7580 to 7588) is illegal. Correct the pa-
 rameter. |
| 5252 | ILLEGAL P COMMAND IN G54.2 | The P value specifying the offset number of a fixture offset is too large.
 Correct the program. |
| 5257 | G41/G42 NOT ALLOWED IN MDI
 MODE | G41/G42 (cutter compensation C: M series, tool-nose radius com-
 pensation: Tseries) was specified in MDI mode. (Depending on the set-
 ting of bit 4 of parameter No. 5008) |
| 5303 | TOUCH PANEL ERROR | A touch panel error occurred.
 Cause:
 $1 . ~ T h e ~ t o u c h ~ p a n e l ~ i s ~ k e p t ~ p r e s s e d . ~$
 $2 . ~ T h e ~ t o u c h ~ p a n e l ~ w a s ~ p r e s s e d ~ w h e n ~ p o w e r ~ w a s ~ t u r n e d ~ o n . ~$ |
| Remove the above causes, and turn on the power again. | | |

NOTE

SHPCC stands for simple high-precision contour control. AICC designates simplified high-precision contour control.

(3) Background edit alarm

| Number | Message | Contents |
| :---: | :--- | :--- |
| $? ? ?$ | BP/S alarm | BP/S alarm occurs in the same number as the P/S alarm that occurs in
 ordinary program edit. (070, 071, 072, 073, 074 085,086,087 etc.) |
| 140 | BP/S alarm | It was attempted to select or delete in the background a program being
 selected in the foreground. (Note)
 Use background editing correctly. |

NOTE

Alarm in background edit is displayed in the key input line of the background edit screen instead of the ordinary alarm screen and is resettable by any of the MDI key operation.

(4) Absolute pulse coder (APC) alarm

| Number | Message | Contents |
| :---: | :---: | :---: |
| 300 | nth-axis origin return | Manual reference position return is required for the nth-axis ($\mathrm{n}=1-8$). |
| 301 | APC alarm: nth-axis communication | nth-axis ($\mathrm{n}=1-8$) APC communication error. Failure in data transmission
 Possible causes include a faulty APC, cable, or servo interface module. |
| 302 | APC alarm: nth-axis over time | nth-axis ($\mathrm{n}=1-8$) APC overtime error.
 Failure in data transmission.
 Possible causes include a faulty APC, cable, or servo interface module. |
| 303 | APC alarm: nth-axis framing | nth-axis ($n=1-8$) APC framing error. Failure in data transmission. Possible causes include a faulty APC, cable, or servo interface module. |
| 304 | APC alarm: nth-axis parity | nth-axis ($\mathrm{n}=1-8$) APC parity error.
 Failure in data transmission.
 Possible causes include a faulty APC, cable, or servo interface module. |
| 305 | APC alarm: nth-axis pulse error | nth-axis ($n=1-8$) APC pulse error alarm. APC alarm.APC or cable may be faulty. |
| 306 | APC alarm: nth-axis battery voltage 0 | nth-axis ($\mathrm{n}=1-8$) APC battery voltage has decreased to a low level so that the data cannot be held. APC alarm. Battery or cable may be faulty. |
| 307 | APC alarm: nth-axis battery low 1 | nth-axis ($\mathrm{n}=1-8$) axis APC battery voltage reaches a level where the battery must be renewed. APC alarm. Replace the battery. |
| 308 | APC alarm: nth-axis battery low 2 | nth-axis ($\mathrm{n}=1-8$) APC battery voltage has reached a level where the battery must be renewed (including when power is OFF). APC alarm .Replace battery. |
| 309 | APC ALARM:
 n AXIS ZRN IMPOSSIBL | Return to the origin has been attempted without first rotating the motor one or more times. Before returning to the origin, rotate the motor one or more times then turn off the power. |

(5) Serial pulse coder (SPC) alarms

| No. | Message | Description |
| :---: | :--- | :--- |
| 360 | n AXIS : ABNORMAL CHECKSUM
 (INT) | A checksum error occurred in the built-in pulse coder. |
| 361 | n AXIS : ABNORMAL PHASE DATA
 (INT) | A phase data error occurred in the built-in pulse coder. |
| 362 | n AXIS : ABNORMAL REV.DATA
 (INT) | A rotation speed count error occurred in the built-in pulse coder. |
| 363 | n AXIS : ABNORMAL CLOCK (INT) | A clock error occurred in the built-in pulse coder. |
| 364 | n AXIS : SOFT PHASE ALARM (INT) | The digital servo software detected invalid data in the built-in pulse
 coder. |
| 365 | n AXIS : BROKEN LED (INT) | An LED error occurred in the built-in pulse coder. |
| 366 | n AXIS : PULSE MISS (INT) | A pulse error occurred in the built-in pulse coder. |
| 367 | n AXIS : COUNT MISS (INT) | A count error occurred in the built-in pulse coder. |
| 368 | n AXIS : SERIAL DATA ERROR
 (INT) | Communication data from the built-in pulse coder cannot be re-
 ceived. |
| 369 | n AXIS : DATA TRANS. ERROR
 (INT) | A CRC or stop bit error occurred in the communication data being
 received from the built-in pulse coder. |
| 380 | n AXIS : BROKEN LED (EXT) | The separate detector is erroneous. |
| 381 | n AXIS : ABNORMAL PHASE
 (EXT LIN) | A phase data error occurred in the separate linear scale. |

| No. | Message | Description |
| :---: | :--- | :--- |
| 382 | n AXIS : COUNT MISS (EXT) | A pulse error occurred in the separate detector. |
| 383 | n AXIS : PULSE MISS (EXT) | A count error occurred in the separate detector. |
| 384 | n AXIS : SOFT PHASE ALARM
 (EXT) | The digital servo software detected invalid data in the separate de-
 tector. |
| 385 | n AXIS : SERIAL DATA ERROR
 (EXT) | Communication data from the separate detector cannot be received. |
| 386 | n AXIS : DATA TRANS. ERROR
 (EXT) | A CRC or stop bit error occurred in the communication data being
 received from the separate detector. |

- The details of serial

 pulse coder alarm| $\#$ | $\# 7$ | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 202 | | | | | | | | |
| | | CSA | BLA | PHA | PCA | BZA | CKA | SPH |

\#6 (CSA) : Check sum alarm has occurred.
\#5 (BLA) : Battery low alarm has occurred.
\#4 (PHA) : Phase data trouble alarm has occurred.
\#3 (PCA) : Speed count trouble alarm has occurred.
\#2 (BZA) : Battery zero alarm has occurred.
\#1 (CKA) : Clock alarm has occurred.
\#0 (SPH) : Soft phase data trouble alarm has occurred.

203

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DTE | CRC | STB | PRM | | | | |

\#7 (DTE) : Data error has occurred.
\#6 (CRC) : CRC error has occurred.
\#5 (STB) : Stop bit error has occurred.
\#4 (PRM) : Parameter error alarm has occurred. In this case, a servo parameter error alarm (No. 417) is also output.
(6) Servo alarms

| Number | Message | Contents |
| :---: | :--- | :--- |
| 401 | SERVO ALARM: n-TH AXIS VRDY
 OFF | The n-th axis (axis 1-8) servo amplifier READY signal (DRDY) went off.
 Refer to procedure of trouble shooting. |
| 402 | SERVO ALARM: SV CARD NOT EX-
 IST | The axis control card is not provided.
 MATCH |
| 403 | SERVO ALARM: CARD/SOFT MIS- | |
| 404 | SERVO ALARM: n-TH AXIS VRDY
 ON | The combination of the axis control card and servo software is illegal.
 - A correct axis control card is not provided.
 - Correct servo software is not installed on flash memory. |
| 405 | Even though the n-th axis (axis 1-8) READY signal (MCON) went off,
 the servo amplifier READY signal (DRDY) is still on. Or, when the power
 was turned on, DRDY went on even though MCON was off.
 Check that the servo interface module and servo amp are connected. | |
| TURN FAULT) | | |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 407 | SERVO ALARM: EXCESS ERROR | The difference in synchronous axis position deviation exceeded the set value. |
| 409 | SERVO ALARM: n AXIS TORQUE ALM | Abnormal servo motor load has been detected. Alternatively, abnormal spindle motor load has been detected in Cs mode. |
| 410 | SERVO ALARM: n-TH AXIS - EXCESS ERROR | The position deviation value when the n-th axis (axis 1-8) stops is larger than the set value.
 Refer to procedure of trouble shooting. |
| 411 | SERVO ALARM: n-TH AXIS - EXCESS ERROR | The position deviation value when the n-th axis (axis $1-8$) moves is larger than the set value.
 Refer to procedure of trouble shooting. |
| 413 | SERVO ALARM: n-th AXIS - LSI OVERFLOW | The contents of the error register for the n-th axis (axis $1-8$) exceeded $\pm 2^{31}$ power. This error usually occurs as the result of an improperly set parameters. |
| 415 | SERVO ALARM: n-TH AXIS - EXCESS SHIFT | A speed higher than 524288000 units/s was attempted to be set in the n-th axis (axis 1-8). This error occurs as the result of improperly set CMR. |
| 417 | SERVO ALARM: n-TH AXIS - PARAMETER INCORRECT | This alarm occurs when the n-th axis (axis $1-8$) is in one of the conditions listed below. (Digital servo system alarm)
 1) The value set in Parameter No. 2020 (motor form) is out of the specified limit.
 2) A proper value (111 or -111) is not set in parameter No. 2022 (motor revolution direction).
 3) Illegal data (a value below 0, etc.) was set in parameter No. 2023 (number of speed feedback pulses per motor revolution).
 4) Illegal data (a value below 0, etc.) was set in parameter No. 2024 (number of position feedback pulses per motor revolution).
 5) Parameters No. 2084 and No. 2085 (flexible field gear rate) have not been set.
 6) A value outside the limit of $\{1$ to the number of control axes $\}$ or a noncontinuous value (Parameter 1023 (servo axis number) contains a value out of the range from 1 to the number of axes, or an isolated value (for example, 4 not prceded by 3).was set in parameter No. 1023 (servo axisnumber). |
| 420 | SERVO ALARM: n AXIS SYNC TORQUE (M series) | During simple synchronous control, the difference between the torque commands for the master and slave axes exceeded the value set in parameter No. 2031. |
| 421 | SERVO ALARM: n AXIS EXCESS ER (D) | The difference between the errors in the semi-closed loop and closed loop has become excessive during dual position feedback. Check the values of the dual position conversion coefficients in parameters No. 2078 and 2079. |
| 422 | SERVO ALARM: n AXIS | In torque control of PMC axis control, a specified allowable speed has been exceeded. |
| 423 | SERVO ALARM: n AXIS | In torque control of PMC axis control, the parameter-set allowable cumulative travel distance has been exceeded. |
| 430 | n AXIS : SV. MOTOR OVERHEAT | A servo motor overheat occurred. |
| 431 | n AXIS : CNV. OVERLOAD | 1) PSM: Overheat occurred.
 2) β series SVU: Overheat occurred. |
| 432 | n AXIS : CNV. LOWVOLT CON./ POWFAULT | 1) PSM: Phase missing occurred in the input voltage.
 2) PSMR: The control power supply voltage has dropped.
 3) α series SVU: The control power supply voltage has dropped. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 433 | n AXIS : CNV. LOW VOLT DC LINK | 1) PSM: The DC link voltage has dropped.
 2) PSMR: The DC link voltage has dropped.
 3) α series SVU: The DC link voltage has dropped.
 4) β series SVU: The DC link voltage has dropped. |
| 434 | n AXIS : INV. LOW VOLT CONTROL | SVM: The control power supply voltage has dropped. |
| 435 | n AXIS : INV. LOW VOLT DC LINK | SVM: The DC link voltage has dropped. |
| 436 | n AXIS : SOFTTHERMAL (OVC) | The digital servo software detected the soft thermal state (OVC). |
| 437 | n AXIS : CNV. OVERCURRENT POWER | PSM: Overcurrent flowed into the input circuit. |
| 438 | n AXIS : INV. ABNORMAL CURRENT | 1) SVM: The motor current is too high.
 2) α series SVU: The motor current is too high.
 3) β series SVU: The motor current is too high. |
| 439 | n AXIS : CNV. OVERVOLT POWER | 1) PSM: The DC link voltage is too high.
 2) PSMR: The DC link voltage is too high.
 3) α series SVU: The C link voltage is too high.
 4) β series SVU: The link voltage is too high. |
| 440 | n AXIS : CNV. EX DECELERATION POW. | 1) PSMR: The regenerative discharge amount is too large.
 2) α series SVU: The regenerative discharge amount is too large. AIternatively, the regenerative discharge circuit is abnormal. |
| 441 | n AXIS : ABNORMAL CURRENT OFFSET | The digital servo software detected an abnormality in the motor current detection circuit. |
| 442 | n AXIS : CNV. CHARGE FAULT/INV. DB | 1) PSM: The spare discharge circuit of the DC link is abnormal.
 2) PSMR: The spare discharge circuit of the DC link is abnormal.
 3) α series SVU: The dynamic brake circuit is abnormal. |
| 443 | n AXIS : CNV. COOLING FAN FAILURE | 1) PSM: The internal stirring fan failed.
 2) PSMR: The internal stirring fan failed.
 3) β series SVU: The internal stirring fan failed. |
| 444 | n AXIS : INV. COOLING FAN FAILURE | SVM: The internal stirring fan failed. |
| 445 | n AXIS : SOFT DISCONNECT ALARM | The digital servo software detected a broken wire in the pulse coder. |
| 446 | n AXIS : HARD DISCONNECT ALARM | A broken wire in the built-in pulse coder was detected by hardware. |
| 447 | n AXIS : HARD DISCONNECT (EXT) | A broken wire in the separate detector was detected by hardware. |
| 448 | n AXIS : UNMATCHED FEEDBACK ALARM | The sign of feedback data from the built-in pulse coder differs from that of feedback data from the separate detector. |
| 449 | n AXIS : INV. IPM ALARM | 1) SVM: IPM (intelligent power module) detected an alarm.
 2) α series SVU: IPM (intelligent power module) detected an alarm. |
| 460 | n AXIS : FSSB DISCONNECT | FSSB communication was disconnected suddenly. The possible causes are as follows:
 1) The FSSB communication cable was disconnected or broken.
 2) The power to the amplifier was turned off suddenly.
 3) A low-voltage alarm was issued by the amplifier. |
| 461 | n AXIS : ILLEGAL AMP INTERFACE | The axes of the 2-axis amplifier were assigned to the fast type interface. |

| Number | Message | Contents |
| :---: | :--- | :--- |
| 462 | n AXIS : SEND CNC DATA FAILED | Because of an FSSB communication error, a slave could not receive
 correct data. |
| 463 | n AXIS : SEND SLAVE DATA
 FAILED | Because of an FSSB communication error, the servo system could
 not receive correct data. |
| 464 | n AXIS : WRITE ID DATA FAILED | An attempt was made to write maintenance information on the ampli-
 fier maintenance screen, but it failed. |
| 465 | n AXIS : READ ID DATA FAILED | At power-up, amplifier initial ID information could not be read. |
| 466 | n AXIS : MOTOR/AMP COMBINA-
 TION | The maximum current rating for the amplifier does not match that for
 the motor. |
| 467 | n AXIS : ILLEGAL SETTING OF
 AXIS | The servo function for the following has not been enabled when an
 axis occupying a single DSP (corresponding to two ordinary axes) is
 specified on the axis setting screen.
 1. Learning control (bit 5 of parameter No. 2008 = 1)
 2. High-speed current loop (bit 0 of parameter No. 2004 = 1)
 3. High-speed interface axis (bit 4 of parameter No. 2005 = 1) |

- Details of servo alarm

The details of servo alarm are displayed in the diagnosis display (No. 200 and No.204) as shown below.

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OVL | LV | OVC | HCA | HVA | DCA | FBA | OFA |

\#7 (OVL) : An overload alarm is being generated.
\#6 (LV) : A low voltage alarm is being generated in servo amp.
\#5 (OVC) : A overcurrent alarm is being generated inside of digital servo.
\#4 (HCA) : An abnormal current alarm is being generated in servo amp.
\#3 (HVA) : An overvoltage alarm is being generated in servo amp.
\#2 (DCA) : A regenerative discharge circuit alarm is being generated in servo amp.
\#1 (FBA) : A disconnection alarm is being generated.
\#0 (OFA) : An overflow alarm is being generated inside of digital servo.

When OVL equal 1 in diagnostic data No. 200 (servo alarm No. 400 is being generated):
\#7 (ALD) 0: Motor overheating
1: Amplifier overheating
When FBAL equal 1 in diagnostic data No. 200 (servo alarm No. 416 is being generated):

| ALD | EXP | Alarm details |
| :---: | :---: | :--- |
| 1 | 0 | Built-in pulse coder disconnection (hardware) |
| 1 | 1 | Separately installed pulse coder disconnection
 (hardware) |
| 0 | 0 | Pulse coder is not connected due to software. |

\#6 (OFS) : A current conversion error has occured in the digital servo.
\#5 (MCC) : A magnetic contactor contact in the servo amplifier has welded.
\#4 (LDA) : The LED indicates that serial pulse coder C is defective
\#3 (PMS) : A feedback pulse error has occured because the feedback cable is defective.

(7) Over travel alarms

| Number | Message | Contents |
| :---: | :--- | :--- |
| 500 | OVER TRAVEL : +n | Exceeded the n-th axis (axis 1-8) + side stored stroke check I.
 (Parameter No.1320 or 1326 NOTE) |
| 501 | OVER TRAVEL : -n | Exceeded the n-th axis (axis 1-8) - side stored stroke check I.
 (Parameter No.1321 or 1327 NOTE) |
| 502 | OVER TRAVEL : +n | Exceeded the n-th axis (axis 1-8) + side stored stroke check II.
 (Parameter No.1322) |
| 503 | OVER TRAVEL : -n | Exceeded the n-th axis (axis 1-8) - side stored stroke check II.
 (Parameter No.1323) |
| 504 | OVER TRAVEL : +n | Exceeded the n-th axis (axis 1-8) + side stored stroke check III.
 (Parameter No.1324) |
| 505 | OVER TRAVEL : -n | Exceeded the n-th axis (axis 1-8) - side stored stroke check III.
 (Parameter No.1325) |
| 507 | OVER TRAVEL : +n | OVER TRAVEL : -n |
| 508 | INTERFERENCE: +n
 (T series (two-path control)) | Exceeded the n-th axis (axis 1-8) - side hardware OT.
 A tool moving in the positive direction along the n axis has fouled anoth-
 er tool post. |
| 509 | INTERFERENCE: -n
 (T series (two-path control)) | A tool moving in the negative direction along the n axis has fouled anoth-
 er tool post. |
| 510 | OVER TRAVEL: +n | Alarm for stroke check prior to movement. The end point specified in a
 block falls within the forbidden area defined with the stroke check in the
 positive direction along the N axis. Correct the program. |
| 511 | OVER TRAVEL: -n | Alarm for stroke check prior to movement. The end point specified in a
 block falls within the forbidden area defined with the stroke check in the
 negative direction along the N axis. Correct the program. |

NOTE

Parameters 1326 and 1327 are effective when EXLM(stroke check switch signal) is on.

(8) Overheat alarms

| Number | Message | |
| :---: | :--- | :--- |
| 700 | OVERHEAT: CONTROL UNIT | Control unit overheat
 Check that the fan motor operates normally, and clean the air filter. |
| 701 | OVERHEAT: FAN MOTOR | The fan motor on the top of the cabinet for the contorl unit is overheated.
 Check the operation of the fan motor and replace the motor if necessary. |
| 704 | OVERHEAT: SPINDLE | Spindle overheat in the spindle fluctuation detection
 (1) If the cutting load is heavy, relieve the cutting condition.
 (2) Check whether the cutting tool is share. |
| (3) Another possible cause is a faulty spindle amp. | | |

(9) Rigid tapping alarms

| Number | Message | Contents |
| :---: | :--- | :--- |
| 740 | RIGID TAP ALARM: EXCESS ER-
 ROR | The positional deviation of the stopped spindle has exceeded the set
 value during rigid tapping. |
| 741 | RIGID TAP ALARM: EXCESS ER-
 ROR | The positional deviation of the moving spindle has exceeded the set val-
 ue during rigid tapping. |
| 742 | RIGID TAP ALARM: LSI OVER-
 FLOW | An LSI overflow has occurred for the spindle during rigid tapping. |

(10)Serial spindle alarms

| Number | Message | Contents |
| :---: | :--- | :--- |$|$| 749 |
| :--- |
| 750 |

| Number | Message | Contents |
| :---: | :--- | :--- |
| 754 | SPINDLE-1 ABNORMAL TORQUE
 ALM | Abnormal first spindle motor load has been detected. |
| 762 | SECOND SPINDLE MODE
 CHANGE FAULT | Refer to alarm No. 752.(For 2nd axis) |
| 764 | SPINDLE-2 ABNORMAL TORQUE
 ALM | Same as alarm No. 754 (for the second spindle) |
| 772 | SPINDLE-3 MODE CHANGE ER-
 ROR | Same as alarm No. 752 (for the third spindle) |
| 774 | SPINDLE-3 ABNORMAL TORQUE
 ALM | Same as alarm No. 754 (for the third spindle) |
| 782 | SPINDLE-4 MODE CHANGE ER-
 ROR | Same as alarm number 752 (for the fourth spindle) |
| 784 | SPINDLE-4 ABNORMAL TORQUE
 ALM | Same as alarm number 754 (for the fourth spindle) |

- The details of spindle alarm No. 750

The details of spindle alarm No. 750 are displayed in the diagnosis display (No. 409) as shown below.

| | \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 409 | | | | | SPE | S2E | S1E | SHE |

\#3 (SPE) 0 : In the spindle serial control, the serial spindle parameters fulfill the spindle unit startup conditions.
1: In the spindle serial control, the serial spindle parameters do not fulfill the spindle unit startup conditions.
\#2 (S2E) 0: The second spindle is normal during the spindle serial control startup.
1: The second spindle was detected to have a fault during the spindle serial control startup.
\#1 (S1E) 0: The first spindle is normal during the spindle serial control startup.
1: The first spindle was detected to have a fault during the spindle axis serial control startup.
\#0 (SHE) 0: The serial communications module in the CNC is normal.
1: The serial communications module in the CNC was detected to have a fault.

(11)Safety zone alarms

| Number | Message | Contents |
| :---: | :--- | :--- |
| 4800 | ZONE : PUNCHING INHIBITED 1 | When a safety zone check was executed, a punch command was
 specified in area 1 where punching is inhibited. |
| 4801 | ZONE : PUNCHING INHIBITED 2 | When a safety zone check was executed, a punch command was
 specified in area 2 where punching is inhibited. |
| 4802 | ZONE : PUNCHING INHIBITED 3 | When a safety zone check was executed, a punch command was
 specified in area 3 where punching is inhibited. |
| 4803 | ZONE : PUNCHING INHIBITED 4 | When a safety zone check was executed, a punch command was
 specified in area 4 where punching is inhibited. |
| 4810 | ZONE : ENTERING INHIBITED 1 +X | When a safety zone check was executed, the machine moving in the
 positive X direction entered area 1 into which entry is inhibited. |
| 4811 | ZONE : ENTERING INHIBITED 1
 $-X$ | When a safety zone check was executed, the machine moving in the
 negative X direction entered area 1 into which entry is inhibited. |

| Number | Message | Contents |
| :---: | :---: | :---: |
| 4812 | ZONE : ENTERING INHIBITED $2+\mathrm{X}$ | When a safety zone check was executed, the machine moving in the positive X direction entered area 2 into which entry is inhibited. |
| 4813 | ZONE : ENTERING INHIBITED 2 -X | When a safety zone check was executed, the machine moving in the negative X direction entered area 2 into which entry is inhibited. |
| 4814 | ZONE : ENTERING INHIBITED $3+\mathrm{X}$ | When a safety zone check was executed, the machine moving in the positive X direction entered area 3 into which entry is inhibited. |
| 4815 | ZONE : ENTERING INHIBITED 3 -X | When a safety zone check was executed, the machine moving in the negative X direction entered area 3 into which entry is inhibited. |
| 4816 | ZONE : ENTERING INHIBITED 4 +X | When a safety zone check was executed, the machine moving in the positive X direction entered area 4 into which entry is inhibited. |
| 4817 | ZONE : ENTERING INHIBITED 4 -X | When a safety zone check was executed, the machine moving in the negative X direction entered area 4 into which entry is inhibited. |
| 4830 | ZONE : ENTERING INHIBITED $1+\mathrm{Y}$ | When a safety zone check was executed, the machine moving in the positive X direction entered area 1 into which entry is inhibited. |
| 4831 | ZONE : ENTERING INHIBITED 1 $-Y$ | When a safety zone check was executed, the machine moving in the negative Y direction entered area 1 into which entry is inhibited. |
| 4832 | ZONE : ENTERING INHIBITED $2+Y$ | When a safety zone check was executed, the machine moving in the positive Y direction entered area 2 into which entry is inhibited. |
| 4833 | ZONE : ENTERING INHIBITED 2 -Y | When a safety zone check was executed, the machine moving in the negative Y direction entered area 2 into which entry is inhibited. |
| 4834 | ZONE : ENTERING INHIBITED $3+Y$ | When a safety zone check was executed, the machine moving in the positive Y direction entered area 3 into which entry is inhibited. |
| 4835 | ZONE : ENTERING INHIBITED 3 -Y | When a safety zone check was executed, the machine moving in the negative Y direction entered area 3 into which entry is inhibited. |
| 4836 | ZONE : ENTERING INHIBITED $4+\mathrm{Y}$ | When a safety zone check was executed, the machine moving in the positive Y direction entered area 4 into which entry is inhibited. |
| 4837 | ZONE : ENTERING INHIBITED 4 -Y | When a safety zone check was executed, the machine moving in the negative Y direction entered area 4 into which entry is inhibited. |
| 4870 | AUTO SETTING FEED ERROR | The feed rate of safety zone auto setting is other than the parameter value (No. 16538, No. 16539). |
| 4871 | AUTO SETTING PIECES ERROR | In safety zone auto setting, the safety zone pieces are not correct. Or the position detector has gone wrong, please tell your machine tool builder. |
| 4872 | AUTO SETTING COMMAND ERROR | M code, S code or T code is specified with safety zone auto setting command (G32).
 G32 is specified in the nibbling mode, in the cutter compensation, in the rotation mode or the scaling mode. |

(12) System alarms
(These alarms cannot be reset with reset key.)

| Number | Message | Description |
| :---: | :--- | :--- |
| 900 | ROM PARITY | A parity error occurred in the CNC, macro, or servo ROM. Correct
 the contents of the flash ROM having the displayed number. |
| 910 | SRAM PARITY : (BYTE 0) | A RAM parity error occurred in the part program storage RAM. Clear
 the RAM, or replace the SRAM module or motherboard. Subse-
 quently, re-set the parameters and all other data. |
| 911 | SRAM PARITY : (BYTE 1) | |

| Number | Message | Description |
| :---: | :---: | :---: |
| 912 | DRAM PARITY : (BYTE 0) | A RAM parity error occurred in the DRAM module. Replace the DRAM module. |
| 913 | DRAM PARITY : (BYTE 1) | |
| 914 | DRAM PARITY : (BYTE 2) | |
| 915 | DRAM PARITY : (BYTE 3) | |
| 916 | DRAM PARITY : (BYTE 4) | |
| 917 | DRAM PARITY : (BYTE 5) | |
| 918 | DRAM PARITY : (BYTE 6) | |
| 919 | DRAM PARITY : (BYTE 7) | |
| 920 | SERVO ALARM (1-4 AXIS) | Servo alarm (first to fourth axis). A watchdog alarm condition occurred, or a RAM parity error occurred in the axis control card. Replace the axis control card. |
| 921 | SERVO ALARM (5-8 AXIS) | Servo alarm (fifth to eighth axis). A watchdog alarm condition occurred, or a RAM parity error occurred in the axis control card.
 Replace the axis control card. |
| 926 | FSSB ALARM | FSSB alarm. Replace the axis control card. |
| 930 | CPU INTERRUPT | CPU error (abnormal interrupt).
 The motherboard or CPU card may be faulty. |
| 935 | SRAM ECC ERROR | An error occurred in RAM for part program storage. Action:
 Replace the master printed circuit board (SRAM module), perform all-clear operation, and set all parameter and other data again. |
| 950 | PMC SYSTEM ALARM | An error occurred in the PMC. The PMC control circuit on the motherboard may be faulty. |
| 951 | PMC WATCH DOG ALARM | An error occurred in the PMC. (Watchdog alarm)
 The motherboard may be faulty. |
| 972 | NMI OCCURRED IN OTHER MODULE | An NMI occurred on a board other than the motherboard. The option board may be faulty. |
| 973 | NON MASK INTERRUPT | An NMI occurred as a result of an unknown cause. |
| 974 | F-BUS ERROR | A bus error occurred on the FANUC bus. The motherboard or option board may be faulty. |
| 975 | BUS ERROR | A bus error occurred on the motherboard. The motherboard may be faulty. |
| 976 | L-BUS ERROR | A bus error occurred on the local bus. The motherboard may be faulty. |

A. 2
 LIST OF ALARMS (PMC)

(1) Alarm messages (PMC)

| Message | Contents and solution |
| :---: | :---: |
| ALARM NOTHING | Normal status |
| EROO PROGRAM DATA ERROR(ROM) | The sequence program in the ROM is not written correctly. (solution) Please exchange ROM for the sequence program. |
| ER01 PROGRAM DATA ERROR(RAM) | The sequence program in the debugging RAM is defective.
 (solution) Please clear the debugging RAM and input LADDER again.
 The debugging RAM is not installed though the RAM is selected.
 (solution) Please install the debugging RAM or install ROM for sequence program and select ROM with K 17 \#3=0. |
| ER02 PROGRAM SIZE OVER | The size of sequence program exceeds the maximum size of LADDER(PMC-SC only).
 (solution) Please change MAX LADDER AREA SIZE at the SYSPRM screen and restart the system. |
| ER03 PROGRAM SIZE ERROR(OPTION) | The size of sequence program exceeds the option specification size. (solution) Please increase the option specification size. Or, reduce the size of sequence program. |
| ER04 PMC TYPE UNMATCH | The PMC model setting of the sequence program is not corresponding to an actual model.
 (solution) Please change the PMC model setting by the offline programmer. |
| ER05 PMC MODULE TYPE ERROR | The module type of the PMC engine is not correct. (solution) Please exchange the module of PMC engine for a correct one. |
| ER07 NO OPTION (LADDER STEP) | There is no step number option of LADDER. |
| ER10 OPTION AREA NOTHING (series name) | The management software for the PMC-SB has not been transferred. (solution) The software installation is not consistent with the order. Contact FANUC. |
| ER11 OPTION AREA NOTHING (series name) | The management software for the PMC C board has not been transferred. (solution) The software installation is not consistent with the order. Contact FANUC. |
| ER12 OPTION AREA ERROR (series name) | The series of the management software for the PMC-RB differs between BASIC and OPTION.
 (solution) Contact FANUC. |
| ER13 OPTION AREA ERROR (series name) | The series of the management software for the PMC C board differs between BASIC and OPTION.
 (solution) Contact FANUC. |
| ER14 OPTION AREA VERSIION ERROR (series name) | The edition of the management software for the PMC-RB differs between BASIC and OPTION.
 (solution) Contact FANUC. |
| ER15 OPTION AREA VERSIION ERROR (series name) | The edition of the management software for the PMC C board differs between BASIC and OPTION.
 (solution) Contact FANUC. |
| ER 16 RAM CHECK ERROR (PROGRAM RAM) | The debugging RAM cannot be read/written normally. (solution) Please exchange the debugging RAM. |

| Message | Contents and solution |
| :---: | :---: |
| ER17 PROGRAM PARITY | The parity error occurred on ROM for sequence program or the debugging RAM. (solution) ROM: The deterioration of ROM may be deteriorated Please exchange ROM for the sequence program
 RAM: Please edit the sequence program once on PMC Still the error occurs, exchange the debugging RAM. |
| ER18 PROGRAM DATA ERROR BY I/O | Transferring the sequence program from offline programmer was interrupted by the power off etc.
 (solution) Please clear the sequence program and transfer the sequence program again. |
| ER19 LADDER DATA ERROR | Editing the LADDER was interrupted by the power off or by the switch to the CNC screen by the function key etc.
 (solution) Please edit LADDER once on PMC.
 Or, please input LADDER again. |
| ER20 SYMBOL/COMMENT DATA ERROR | Editing the symbol and comment was interrupted by the power off or by the switch to the CNC screen by the function key etc.
 (solution) Please edit symbol and comment once on PMC.
 Or, please input symbol and comment again. |
| ER21 MESSAGE DATA ERROR | Editing the message data was interrupted by the power off or the switch to the CNC screen by the function key etc.
 (solution) Please edit message data once on PMC.
 Or, please input message data again. |
| ER22 PROGRAM NOTHING | There is no sequence program |
| ER23 PLEASE TURN OFF POWER | There is a change in setting LADDER MAX AREA SIZE etc. (solution) Please restart the system to make the change effective. |
| ER24 LADDER, LANGUAGE AREA OVERLAP | The C program area overlaps the ladder program area. (solution) Adjust the address range assigned to C programs. |
| ER25 SOFTWARE VERSION ERROR (PMCAOPT) | The PMC-SB management software editions are inconsistent. (solution) Contact FANUC. |
| ER26 SOFTWARE VERSION ERROR (PMCAOPT) | The PMC-SB management software cannot be initialized. (solution) Contact FANUC. |
| ER27 LADDER FUNC. PRM IS OUT OF RANGE | The parameter number for function instruction TMR, TMRB, CTR, DIFU, or DIFD is not in the range.
 (solution) Correct the number so that it is within the range. |

*When ER00 to ER27 occur, sequence program is not available.

| Message | Contents and solution |
| :---: | :---: |
| ER32 NO I/O DEVICE | Any $\mathrm{DI} / \mathrm{DO}$ unit of I/O Unit or the connection unit etc. is not connected. When built-in I/O card is connected, this message is not displayed.
 (solution) When built-in I/O card is used:
 Please confirm whether the built-in I/O card is certainly connected with. When I/O Link is used:
 Please confirm whether the DI/DO units turning on. Or please confirm the connection of the cable. |
| ER33 SLC ERROR | The LSI for I/O Link is defective. (solution) Please exchange the module of PMC engine. |

| Message | Contents and solution |
| :---: | :---: |
| ER34 SLC ERROR(xx) | The communication with the DI/DO units of the $x x$ group failed.
 (solution) Please confirm the connection of the cable connected to the DI/DO units of the xx group.
 Please confirm whether the DI/DO units turned on earlier than CNC and PMC. Or, please exchange the module of PMC engine on the DI/DO units of the xx group |
| ER35 TOO MUCH OUTPUT DATA IN GROUP(xx) | The number of the output data in the xx group exceeded the max. The data, which exceed 32 bytes, become ineffective.
 (solution) Please refer to the following for the number of the data for each group. "FANUC I/O Unit-MODEL A connecting and maintenance manual" (B-61813E)
 "FANUC I/O Unit-MODEL B connecting manual"(B-62163E) |
| ER36 TOO MUCH INPUT DATA IN GROUP(xx) | The number of the input data in the xx group exceeded the max. The data, which exceed 32 bytes, become ineffective.
 (solution) Please refer to the following for the number of the data for each group.
 "FANUC I/O Unit-MODEL A connecting and maintenance manual" (B-61813E)
 "FANUC I/O Unit-MODEL B connecting manual"(B-62163E) |
| ER38 MAX SETTING OUTPUT DATA OVER(xx) | The assignment data for a group exceeds 128 bytes. (The assignment data of output side of xx group or later become ineffective.) (solution) Please reduce the assignment data to 128 bytes or less for the number of
 the output data of each group. |
| ER39 MAX SETTING INPUT DATA OVER(xx) | The assignment data for a group exceeds 128 bytes.
 (The assignment data of input side of $x x$ group or later become infective.) (Solution) Please reduce the assignment data to 128 bytes or less for the number of
 the input data of each goup. |
| ER98 ILLEGAL LASER CONNECTION | An I/O unit for the laser and assigned data do not match. (solution) Check that the ladder assignment data and actual I/O units match. |
| ER99 X, Y96-127 ARE ALLOCATED | When the laser I/O link is provided, ladder I/O is assigned to X96-X127 and Y96-Y127.
 (solution) Delete the data assigned to $\mathrm{X} 96-\mathrm{X} 127$ and $\mathrm{Y} 96-\mathrm{Y} 127$. |
| WN02 OPERATE PANEL ADDRESS ERROR | The address setting data of the operator's panel for FS-0 is illegal. (solution) Please correct the address setting data. |
| WN03 ABORT NC-WINDOW/ EXIN | LADDER was stopped while CNC and PMC were communicating.
 The functional instruction WINDR, WINDW, EXIN, DISPB, and etc. may not work normally.
 (solution) When restarting the system, this alarm will be released. Execute the sequence program(Press RUN key) after confirming whether there is a problem in LADDER or not. |
| WN04 UNAVAIL EDIT MODULE | The LADDER editing module cannot be recognized.(PMC $-S A x / S B x x=1$ to 3) (solution) Please confirm the slot position installed. Please confirm the installed module. |
| WN05 PMC TYPE NO CONVERSION | A ladder program for the PMC-SA3/SA5 was transferred to the PMC-SB5. (solution) Correct the ladder type. |
| WN06 TASK STOPPED BY DEBUG FUNC | Some user tasks are stopped by break point of the debugging function. |
| WN07 LADDER SP ERROR (STACK) | When functional instruction CALL(SUB65) or CALLU(SUB66) was executed, the stack of the LADDER overflowed.
 (solution) Please reduce the nesting of the subprogram to 8 or less. |

| Message | Contents and solution |
| :---: | :---: |
| WN17 NO OPTION (LANGUAGE) | There is no C language option. |
| WN18 ORIGIN ADDRESS ERROR | The LANGUAGE ORIGIN address of the system parameter is wrong (solution) Please set the address of symbol RC_CTLB_INIT in the map file to the LANGUAGE ORIGIN of the system parameter. |
| WN19 GDT ERROR (BASE,LIMIT) | The value of BASE, LIMIT or ENTRY of user defined GDT is illegal. (solution) Please correct the address in link control statement and build file. |
| WN20 COMMON MEM. COUNT OVER | The number of common memories exceeds 8. (solution) Please reduce the number of common memories to 8 or less. It is necessary to correct a link control statement, build file and the source file for the common memory. |
| WN21 COMMON MEM. ENTRY ERROR | GDT ENTRY of the common memory is out of range.
 (solution) Please correct the address of GDT ENTRY of the common memory in the link control statement. |
| WN22 LADDER 3 PRIORITY ERROR | The priority of LADDER LEVEL 3 is out of range. (solution) Please correct the value of LADDER LEVEL 3 in the link control statement within the range of 0 or 10-99 or -1 . |
| WN23 TASK COUNT OVER | The number of user tasks exceeds 16.
 (solution) Please confirm TASK COUNT in the link control statement. When the number of tasks is changed, it is necessary to correct the link control statement, build file and the composition of the files to be linked. |
| WN24 TASK ENTRY ADDR ERROR | The selector of the entry address to the user task is out of range. (solution) Please correct the table of GDT in build file to the value within $32(20 \mathrm{H})-95(5 \mathrm{FH})$. |
| WN25 DATA SEG ENTRY ERROR | The entry address of the data segment is out of range. (solution) Please correct DATA SEGMENT GDT ENTRY in the link control statement and the table of GDT in build file within $32(20 \mathrm{H})-95(5 \mathrm{FH})$. |
| WN26 USER TASK PRIORITY ERROR | The priority of the user task is out of range.
 (solution) Please correct the TASK LEVEL in link control statement within the range of 10-99 or -1 .
 Note: Only one task can have TASK LEVEL -1 (including LADDER LEVEL 3). |
| WN27 CODE SEG TYPE ERROR | The code segment type is illegal. The code segment of RENAMESEG in the binding control file is wrong.
 (solution) Please correct the entry of the code segment in the link control statement to correspond to the entry in the build file. |
| WN28 DATA SEG TYPE ERROR | The data segment type is illegal. The data segment of RENAMESEG in the binding control file is wrong.
 (solution) Please correct the entry of the code segment in the link control statement to correspond to the entry in the build file. |
| WN29 COMMON MEM SEG TYPE ERROR | The segment type of common memory is illegal. The segment of RENAMESEG in the building control file of the common memory is wrong.
 (solution) Please correct the entry of common memory in the link control statement to correspond to the entry in the build file. |
| WN30 IMPOSSIBLE ALLOCATE MEM. | The memories for the data and stack etc. cannot be allocated.
 (solution) Please confirm whether the value of code segment in build file and USER GDT ADDRESS in link control statement is correct or not.
 Or please reduce the value of MAX LADDER AREA SIZE of the system parameter and the size of the stack in link control statement at the least |

| Message | Contents and solution |
| :---: | :---: |
| WN31 IMPOSSIBLE EXECUTE LIBRARY | The library function cannot be executed.
 (solution) Please confirm the object model of the library. Or, system ROM of PMC must be replaced with one of later version. |
| WN32 LNK CONTROL DATA ERROR | Link control statement data is illegal.
 (solution) Please confirm whether the address of symbol RC_CTLB_INIT in map file is set to LANGUAGE ORIGIN of the system parameter. Or, please make the link control statement again. |
| WN33 LNK CONTROL VER. ERROR | A link control statement data version error occurred. (Solution) Correct the link control statement in the C program. |
| WN34 LOAD MODULE COUNT OVER | The number of independent load modules exceeds eight.
 (solution) Decrease the number of independent load modules to eight or small er. |
| WN35 CODE AREA OUT OF RANGE | The specified code area is beyond the address range. (solution) Correct the C program. |
| WN36 LANGUAGE SIZE ERROR (OPTION) | The size of a C program exceeds the option size. (solution) Decrease the size of the C program. |
| WN37 PROGRAM DATA ERROR (LANG.) | A C program is destroyed. (solution) Transfer the C program again. |
| WN38 RAM CHECK ERROR (LANG.) | A C program is destroyed. (solution) Transfer the C program again. |
| WN39 PROGRAM PARITY (LANG.) | A parity mismatch occurred in a C program. (solution) Transfer the C program again. |
| WN40 PROGRAM DATA ERROR BY I/O (LANG.) | Transfer of a C program was interrupted by, for example, a power failure. (solution) Clear the C program, then transfer the C program again. |
| WN41 LANGUAGE TYPE UNMATCH | A C program type mismatch occurred. (solution) Correct the C program. |
| WN42 UNDEFINE LANGUAGE ORIGIN ADDRESS | No language origin address is set. (solution) Set the language origin address. |

NOTE

Alarms WN17 to WN42 indicate errors related to PMC user C programs.

(2) System alarm messages (PMC-SA5/SB5/SB6)

| | Message | Contents and solution |
| :---: | :---: | :---: |
| 1 | PC004 CPU ERR xxxxxxxx:yyyyyyyy PC006 CPU ERR xxxxxxxx:yyyyyyyy PC009 CPU ERR xxxxxxxx:yyyyyyyy PC010 CPU ERR xxxxxxxx:yyyyyyyy | A CPU error occurred in the PMC. xxxxxxxx and yyyyyyyy indicate internal error code.
 If this error occurs, the motherboard may be faulty.
 Replace the motherboard, then check whether the error recurs. If the error still occurs even after the replacement of the motherboard, report the conditions under which the error occurred (system configuration, operation, time and frequency of error occurrences, etc.) to FANUC. |
| 2 | PC030 RAM PARITY aa:bb | A RAM parity error occurred in the PMC. aa and bb indicate internal error code.
 If this error occurs, the motherboard may be faulty.
 Solution)
 Replace the motherboard, then check whether the error recurs. If the error still occurs even after the replacement of the motherboard, report the conditions under which the error occurred (system configuration, operation, time and frequency of error occurrences, etc.) and the indicated internal error code to FANUC. |
| 3 | PC050 NMI SLC aa:bb | A communication error occurred in the I/O Link. aa and bb indicate internal error code.
 If this error occurs, the possible causes are as follows:
 (1) Although the base expansion is assigned when the I/O Unit A is used, the base is not connected.
 (2) A cable is not connected securely.
 (3) Cabling is faulty.
 (4) I/O equipment (I/O unit, Power Mate, etc.) is faulty.
 (5) The motherboard is faulty.
 Solution)
 (1) Check whether the I/O assignment data and the actual I/O equipment connection match.
 (2) Check whether the cables are connected correctly.
 (3) According to "FANUC I/O Unit-MODEL A Connection and Maintenance Manual" (B-61813E) or "FANUC I/O Unit-MODEL B Connection manual" (B-62163E), check for an error in the cable specifications.
 (4) Replace the I/O unit interface module, cable, or motherboard. Then, check whether the error still occurs. |
| 4 | PC060 FBUS
 xxxxxxxx:yyyyyyyy
 PC061 FL-R
 xxxxxxxx:yyyyyyyy
 PC062 FL-W
 aa: xxxxxxxx:yyyyyyyy | A bus error occurred in the PMC.
 aa, xxxxxxxx, and yyyyyyyy indicate internal error code.
 If this error occurs, the hardware may be faulty.
 Solution)
 Report the conditions under which the error occurred (system configuration, operation, time and frequency of error occurrences, tc.), the indicated internal error code, and the LED status on each board to FANUC. |

| | Message | Contents and solution |
| :---: | :---: | :---: |
| 5 | PC070 SUB65 CALL (STACK) | A stack error occurred during execution of ladder function instruction CALL/CALLU.
 Solution)
 Check the correspondence between the CALL/CALLU instruction and SPE instruction. If the error cannot be located, report the conditions under which the error occurred and the ladder program to FANUC. |
| 6 | $\begin{aligned} & \text { PC080 SYS EMG } \\ & \text { xxxxxxx:yyyyyyyy } \\ & \text { PC081 FL EMG } \\ & \quad \text { xxxxxxxx:yyyyyyyy } \end{aligned}$ | A system alarm was caused by another software.
 Solution)
 Report the conditions under which the error occurred (system configuration, operation, time and frequency of error occurrences, etc.), the indicated internal error code, and the LED status on each board to FANUC. |
| 7 | PC097 PARITY ERR (LADDER) PC098 PARITY ERR (DRAM) | A parity error occurred in the PMC system.
 If this error occurred, the motherboard may be faulty.
 Solution)
 Replace the motherboard, then check whether the error recurs. If the error still occurs even after the replacement of the motherboard, report the conditions under which the error occurred (system configuration, operation, time and frequency of error occurrences, etc.) to FANUC. |

(3) System alarm messages (for the \mathbf{C} language board)

| | Message | Contents and solution |
| :---: | :---: | :---: |
| 1 | PC1nn CPU INTERRT xxxxyyyyyy
 STATUS LED そ | |
| 2 | PC130 RAM PRTY aa xxxxyyyyyy
 STATUS LED | A parity error occurred in user RAM or DRAM on the C language board.
 aa : RAM parity error occurrence information
 xxxx : Segment selector where the system error occurred
 yyyyyy : Offset address at which the system error occurred |
| 5 | PC160 F-BUS ERROR xxxxyyyyyy PC161 F-BUS ERROR xxxxyyyyyy PC162 F-BUS ERROR xxxxyyyyy STATUS LED $\star \square$ | A bus error occurred on the C language board.
 xxxx : Segment selector where the system error occurred
 yyyyyy : Offset address at which the system error occurred |

| | Message | Contents and solution |
| :---: | :--- | :--- |
| 6 | PC170 F-BUS ERROR
 xxxxyyyyy
 PC171 F-BUS ERROR
 xxxxyyyyy
 PC172 F-BUS ERROR
 xxxxyyyyy
 STATUS LED $\star \square$ | A bus error occurred on the C language board.
 xxxx : Segment selector where the system error occurred
 yyyyyy : Offset address at which the system error occurred |
| 7 | PC199 ROM PARITY eeeeeeee
 STATUS LED \star 设 | A parity error occurred in system ROM on the C language board.
 eeeeeeee : ROM parity error information |

STATUS LED (green)

(4) Alarm messages (For EDIT 1)

| Message | Contents and solution |
| :--- | :--- |
| ADDRESS BIT NOTHING | The address of the relay/coil is not set. |
| FUNCTION NOT FOUND | There is no functional instruction of the input number. |
| COM FUNCTION MISSING | The funcitonal instruction COM (SUB29) is not correctly dealt with.
 Correspondence of COM and COME (SUB29) is incorrect.
 Or, the number of coil controlled by COM is specified by the model which the number
 cannot be specified. |
| EDIT BUFFER OVER | There in no empty area of the buffer for the editing.
 (solution) Please reduce NET under editing. |
| END FUNCTION MISSING | Functional instruction END1,END2,END3 and END do not exist. Or, there are error net
 in END1,END2,END3,END.
 Or, order of END1,END2,END3, and END is not correct. |
| ERROR NET FOUND | There is an error net. |
| ILLEGAL FUNCTION NO. | The wrong number of the functional instruction is searched. |
| FUNCTION LINE ILLEGAL | The functional instruction is not correctly connected. |
| HORIZONTAL LINE ILLEGAL | The horizontal line of the net is not connected. |
| ILLEGAL NET CLEARED | Because the power had been turn off while editing LADDER, some net under editing
 was cleared. |
| ILLEGAL OPERATION | Operation is not correct.
 The value is not specified and only INPUT key was pushed.
 The address data is not correctly inputted.
 Beause the space to display the instruction on screen is not enough, the functional
 instruction cannot be made. |
| INPUT INVALID | The symbol which was inputted is not defined. |
| SYMBOL UNDEFINED | There is an incorrect input data.
 Non-numerical value was inputted with COPY, INSLIN,C-UP,C-DOWN etc.
 The input address was specified for write coil.
 An illegal character was specified for the data table. |
| The input net is larger than the editing buffer.
 (solution) Please reduce the net under editing. | |
| TARGE | The |

| Message | Contents and solution |
| :---: | :---: |
| JUMP FUNCTION MISSING | The functional instruction JMP(SUB10) is not correctly dealt with. Correspondence of JMP and JMPE(SUB30) is incorrect. The number of coil to jump is specified by the model which the number of coil cannot specified. (It is possible to specify the coil number only on PMC-RB/RC.) |
| LADDER BROKEN | LADDER is broken. |
| LADDER ILLEGAL | There is an incorrect LADDER. |
| IMPOSSIBLE WRITE | You try to edit sequence program on the ROM. |
| OBJECT BUFFER OVER | The sequence program area was filled. (solution) Please reduce the LADDER. |
| PARAMETER NOTHING | There is no parameter of the functional instruction. |
| PLEASE COMPLETE NET | The error net was found in LADDER. (solution) After correcting the error net, please continue operating. |
| PLEASE KEY IN SUB NO. | Please input the number of the functional instruction.
 (solution) If you do not input the functional instruction, please push soft key "FUNC" again. |
| PROGRAM MODULE NOTHING | You tried to edit though there was neither RAM for debugging nor ROM for sequence program. |
| RELAY COIL FORBIT | There is an unnecessary relay or coil. |
| RELAY OR COIL NOTHING | The relay or the coil does not suffice. |
| PLEASE CLEAR ALL | It is impossible to recover the sequence program. (solution) Please clear the all data. |
| SYMBOL DATA DUPLICATE | The same symbol name is defined in other place. |
| COMMENT DATA OVERFLOW | The comment data area was filled. (solution) Please reduce the number of the commnet. |
| SYMBOL DATA OVERFLOW | The symbol data area was filled. (solution) Please reduce the number of the symbol. |
| VERTICAL LINE ILLEGAL | There is an incorrect vertical line of the net. |
| MESSAGE DATA OVERFLOW | The message data area was filled. (solution) Please reduce the number of the message. |
| 1ST LEVEL EXECUTE TIME OVER | The 1st level of LADDER is too large to complete execution in time. (solution) Please reduce the 1 st level of LADDER. |
| PARA NO. RANGE ERR: | The parameter number for a function instruction is not in the range. (solution) Correct the number so that it is within the range. |
| PARA NO. DUPLICATE: | The parameter number for a function instruction is used more than once. (solution) If the duplicate numbers pose the problem of simultaneous operation, change the parameter number to an unused number. |

(5) Error Messages (at Automatic Write to Flash ROM after Ladder Editing)

| Error message | Contents and solution |
| :---: | :---: |
| PROGRAM ALREADY EXISTS | A program already exists on flash ROM. (At BLANK) |
| PROGRAM ALREADY EXISTS (EXEC?) | A program already exists on flash ROM.
 (Remedy) When the message is displayed, pressing the EXEC key again causes write or erasure operation. (At write or erasure) |
| PROGRAM NOTHING | There is no program on flash ROM. |
| ERASE ERROR
 F-ROM WRITE ERROR 13
 F-ROM WRITE ERROR 28 | Flash ROM is abnormal. Replacement is required. Ask FANUC Service Representative for replacement. |
| WRITE ERROR
 F-ROM WRITE ERROR 12
 F-ROM WRITE ERROR 29 | |
| READ ERROR | |
| ANOTHER USED
 F-ROM WRITE ERROR 9
 F-ROM WRITE ERROR 36 | Flash ROM is used by other than PMC. |
| MUST BE IN EMG STOP NOT EMG STOP F-ROM WRITE ERROR 10 F-ROM WRITE ERROR 37 | The CNC is not in the emergency stop state. |
| NO OPTION | There is no ROM cassette option. |
| SIZE ERROR
 IMPOSSIBLE WRITE (SIZE OVER)
 NO SPACE
 F-ROM WRITE ERROR 1
 F-ROM WRITE ERROR 15
 F-ROM WRITE ERROR 35 | The sequence program is larger than the flash ROM size. (At write)
 (Remedy) Try the condense function. (EDIT/CLEAR screen) If the same phenomenon is still observed, the flash ROM size must be enlarged.
 The sequence program to be read is larger than the RAM size. (At read) (Remedy) RAM must be enlarged. |

(6) Error Messages (at Assignment Data Editing)

| Message | Contents and solution |
| :--- | :--- |
| ERR: GROUP NO. (0—15) | The group number must be 0 to 15. |
| ERR: BASE NO. (0—1) | The base number must be 0 or 1. |
| WARN: BASE NO. MUST BE 0 | For I/O Unit-B, the base number must be 0. The base number was set to 0 forcibly. |
| ERR: SLOT NO. (1-10) | For I/O Unit-A, the slot number must be 1 to 10. |
| ERR: SLOT NO. (0, 1-30) | For I/O Unit-B, the slot number must be 0 or a number 1 to 30. |
| ERR: SLOT NO. MUST BE 0 | When power on/off information for I/O Unit-B is set, the slot number must be 0. |
| ERR: ILLEGAL NAME | The input assignment name is illegal or not supported. Enter a correct name. |
| INPUT INVALID | The input character string is illegal. Enter a character string in a correct input format
 again. |
| IMPOSSIBLE WRITE | An attempt was made to edit ROM data. ROM data cannot be edited. |
| ERR: ADDRESS ALREADY
 ASSIGNED | The specified address is already assigned. Assign another address. Alternatively, de-
 lete the existing data, then set the address again. |
| ERR: ADDRESS OVER | A set address exceeds the maximum value (X127, Y127). Check the addresses dedi-
 cated to the unit to be set. |
| ERR: SLOT ALREADY DEFINED | The specified slot is already assigned. Check the existing data. |
| WARN: SLOT ALREADY
 DEFINED | The specified slot is already assigned. Check the existing data. |
| ERR: UNIT TYPE MISMATCH
 (IN OR OUT) | An output module cannot be allocated to an X address, or an input module cannot be
 allocated to a Y address. |
| ERR: UNIT TYPE MISMATCH
 (MODEL) | I/O Unit-A and I/O Unit-B are assigned to the same group. These units cannot exist
 together within the same group. |

(7) Alarm messages (For I/O)

| | Error message | Contents and solution |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { F } \\ & \text { L } \\ & \text { A } \\ & \text { S } \\ & \text { H } \\ & \\ & \text { R } \\ & \text { O } \end{aligned}$ | PROGRAM ALREADY EXISTS | A program already exists on flash ROM. (At BLANK) |
| | PROGRAM ALREADY EXISTS (EXEC ?) | A program already exists on flash ROM.
 Remedy) When the message is displayed, pressing the EXEC key again causes write or erasure operation. (At write or erasure) |
| | PROGRAM NOTHING | There is no program on flash ROM. |
| | ERASE ERROR | Flash ROM is abnormal. Replacement is required. Ask FANUC Service |
| | WRITE ERROR | |
| | READ ERROR | |
| | ANOTHER USED | Flash ROM is used by other than PMC. |
| | MUST BE IN EMG STOP NOT EMG STOP | The CNC is not in the emergency stop state. |
| | NO OPTION | There is no ROM cassette option. |
| | SIZE ERROR | The sequence program is larger than the flash ROM size. (At write)
 Remedy) Try the condense function. (EDIT/CLEAR screen) If the same phenomenon is still observed, the flash ROM size must be enlarged.
 The sequence program to be read is larger than the RAM size. (At read) Remedy) RAM must be enlarged. |
| | I/O OPEN ERROR nn | $n n=-1: R S-232 C$ is used by other than PMC.
 Remedy) Check whether RS-232C is used by other than PMC.
 On the online setting screen (see Section 8.5 .1 in III), check that "NOT USE" is indicated for RS-232C.
 $\mathrm{nn}=6$: The RS-232C option is not found.
 $\mathrm{nn}=20: \mathrm{RS}-232 \mathrm{C}$ connection is incorrect.
 Remedy) Check whether channel setting, connection, baud rate, and other settings are correct. |
| | I/O WRITE ERROR nn | $n n=20: R S-232 C$ connection is incorrect.
 Remedy) Check whether channel setting, connection, baud rate, and other settings are correct.
 $\mathrm{nn}=22$: Communication cannot be performed correctly.
 Remedy) Check whether the cable is broken. |
| | I/O READ ERROR nn | $\mathrm{nn}=20: \mathrm{RS}-232 \mathrm{C}$ connection is incorrect.
 Remedy) Check whether channel setting, connection, baud rate, and other settings are correct.
 $\mathrm{nn}=22$: Communication cannot be performed correctly.
 Remedy) Check whether the cable is broken. |
| | ADDRESS IS OUT OF RANGE (xxxxxx) | Data for other than the PMC debugging RAM area was transferred. xxxxxx: Indicates the transfer address. |
| | DATA ERROR | Illegal data was read.
 Remedy) Check the cable and setting (speed).
 When a program in C was being read into the $16 i / 18 i / 21 i$:
 Remedy) Press soft keys [EDIT], [CLEAR], [CLRLNG], then [EXEC] to clear the C area. |
| | PROGRAM DATA ERROR | An attempt was made to output data, but the data was illegal. Remedy) Check the alarm on the alarm screen. |

| | Error message | Contents and solution |
| :--- | :--- | :--- |
| | CREATE ERROR | The specified file name is illegal.
 Remedy) Specify a file name in the MS-DOS form. (See 7.2 (5)) |
| | NO MORE SPACE or WRITE ERROR | There is not enough free space on the memory card.
 Remedy) Delete files to create free space. |
| | NOT READY | No memory card is installed.
 Remedy) Check whether a memory card is installed. |
| | MOUNT ERROR | Unformatted.
 Remedy) Perform formatting. (See 7.3.4 (a)) |

A. 3
 ALARMS
 (SERIAL SPINDLE)

NOTE*1

Note that the meanings of the SPM indications differ depending on which LED, the red or yellow LED, is on. When the red LED is on, the SPM indicates a 2-digit alarm number. When the yellow LED is on, the SPM indicates an error number that designates a sequence problem (for example, when a rotation command is entered with the emergency stop state not released).
\rightarrow See Appendix A.4, "Error Codes (Serial Spindle)."

Alarm Numbers and Alarms Displayed on the α Series Spindle Amplifier

| No. | Message | SPM indication(*1) | Faulty location and remedy | Description |
| :---: | :---: | :---: | :---: | :---: |
| (750) | SPINDLE SERIAL LINK ERROR | $\begin{gathered} \text { A0 } \\ \text { A } \end{gathered}$ | 1 Replace the ROM on the SPM control printed circuit board.
 2 Replace the SPM control printed circuit board. | The program does not start normally. ROM series error or hardware abnormality on the SPM control printed circuit board |
| (749) | S-SPINDLE LSI ERROR | A1 | Replace the SPM control printed circuit board. | An abnormality was detected in the CPU peripheral circuit of the SPM control circuit. |
| 7n01 | SPN_n_: MOTOR
 OVERHEAT | 01 | 1 Check and correct the peripheral temperature and load status.
 2 If the cooling fan stops, replace it. | The thermostat embedded in the motor winding operated.
 The internal temperature of the motor exceeds the specified level.
 The motor is used in excess of the continuous rating, or the cooling component is abnormal. |
| 7n02 | SPN_n_: EX SPEED ERROR | 02 | 1 Check and correct the cutting conditions to decrease the load.
 2 Correct parameter No. 4082. | The motor speed cannot follow a specified speed.
 An excessive motor load torque is detected.
 The acceleration/deceleration time in parameter No. 4082 is insufficient. |
| 7n03 | SPN_n_: FUSE ON DC
 LINK BLOWN | 03 | 1 Replace the SPM unit.
 2 Check the motor insulation status.
 3 Replace the interface cable. | The PSM becomes ready (00 is indicated), but the DC link voltage is too low in the SPM.
 The fuse in the DC link section in the SPM is blown. (The power device is damaged or the motor is groundfault.)
 The $\mathrm{JX} 1 \mathrm{~A} / \mathrm{JX} 1 \mathrm{~B}$ connection cable is abnormal. |
| 7n04 | SPN_n_ : INPUT FUSE/ POWER FAULT | 04 | Check the PSM input power supply status. | The PSM detects open phase of power. (PSM alarm indication: 5) |

| No. | Message | SPM indication(*1) | Faulty location and remedy | Description |
| :---: | :---: | :---: | :---: | :---: |
| 7n07 | SPN_n_ : OVERSPEED | 07 | Check for a sequence error. (For example, check whether spindle synchronization was specified when the spindle could not be turned.) | The motor speed has exceeded 115% of its rated speed. When the spindle axis was in position control mode, positional deviations were accumulated excessively (SFR and SRV were turned off during spindle synchronization.) |
| 7n09 | SPN_n_: OVERHEAT MAIN CIRCUIT | 09 | 1 Improve the heat sink cooling status.
 2 If the heat sink cooling fan stops, replace the SPM unit. | Abnormal temperature rise of the power transistor radiator |
| 7n11 | SPN_n_: OVERVOLT POW CIRCUIT | 11 | 1 Check the selected PSM.
 2 Check the input power voltage and change in power during motor deceleration. If the voltage exceeds 253 VAC (for the 200-V system) or 530 VAC (for the 400-V system), improve the power supply impedance. | Overvoltage of the DC link section of the PSM was detected. (PSM alarm indication: 7) PSM selection error. (The maximum output specification of the PSM is exceeded.) |
| 7n12 | SPN_n_: OVERCURRENT POW CIRCUIT | 12 | 1 Check the motor insulation status.
 2 Check the spindle parameters.
 3 Replace the SPM unit. | The motor output current is abnormally high.
 A motor-specific parameter does not match the motor model.
 Poor motor insulation |
| 7n15 | SPN_n_: SP SWITCH CONTROL ALARM | 15 | 1 Check and correct the ladder sequence.
 2 Replace the switching MC. | The switch sequence in spindle switch/output switch operation is abnormal.
 The switching MC contact status check signal and command do not match. |
| 7n16 | SPN_n_ : RAM FAULT | 16 | Replace the SPM control printed circuit board. | Abnormality in an SPM control circuit component is detected. (RAM for external data is abnormal.) |
| 7n18 | $\begin{aligned} \text { SPN_n_ : } & \text { SUMCHECK } \\ & \text { ERROR PGM } \\ & \text { DATA } \end{aligned}$ | 18 | Replace the SPM control printed circuit board. | Abnormality in an SPM control circuit component is detected. (Program ROM data is abnormal.) |
| 7n19 | SPN_n_: EX OFFSET
 CURRENT U | 19 | Replace the SPM unit. | Abnormality in an SPM component is detected. (The initial value for the U phase current detection circuit is abnormal.) |
| 7n20 | SPN_n_: EX OFFSET | 20 | Replace the SPM unit. | Abnormality in an SPM component is detected. (The initial value of the V phase current detection circuit is abnormal.) |
| 7n24 | $\begin{aligned} & \text { SPN_n_: } \text { SERIAL } \\ & \text { TRANSFER } \\ & \text { ERROR } \end{aligned}$ | 24 | 1 Place the CNC-to-spindle cable away from the power cable.
 2 Replace the cable. | The CNC power is turned off (normal power-off or broken cable). An error is detected in communication data transferred to the CNC. |

| No. | Message | SPM indication(*1) | Faulty location and remedy | Description |
| :---: | :---: | :---: | :---: | :---: |
| 7n26 | | 26 | 1 Replace the cable.
 2 Re-adjust the pre-amplifier. | The signal amplitude of the detection signal (connector JY2) on the Cs contour control motor side is abnormal. (Unconnected cable, adjustment error, etc.) |
| 7n27 | | 27 | 1 Replace the cable.
 2 Re-adjust the BZ sensor signal. | 1 The spindle position coder (connector JY4) signal is abnormal.
 2 The signal amplitude (connector JY2) of the MZ or BZ sensor is abnormal.
 (Unconnected cable, adjustment error, etc.) |
| 7n28 | | 28 | 1 Replace the cable
 2 Re-adjust the pre-amplifier. | The position detection signal (connector JY5) for Cs contour control is abnormal.
 (Unconnected cable, adjustment error, etc.) |
| 7n29 | SPN_n_: SHORTTIME
 OVERLOAD | 29 | Check and correct the load status. | Excessive load has been applied continuously for a certain period of time. (This alarm is issued also when the motor shaft has been locked in the excitation state.) |
| 7n30 | SPN_n_: OVERCURRENT POW CIRCUIT | 30 | Check and correct the power supply voltage. | Overcurrent is detected in PSM main circuit input. (PSM alarm indication: 1)
 Unbalanced power supply.
 PSM selection error (The maximum PSM output specification is exceeded.) |
| 7n31 | SPN_n_: MOTOR LOCK
 OR V-SIG LOS | 31 | 1 Check and correct the load status.
 2 Replace the motor sensor cable (JY2 or JY5). | The motor cannot rotate at a specified speed. (A level not exceeding the SST level for the rotation command has existed continuously.) Abnormality in the speed detection signal. |
| 7n32 | SPN_n_: RAM FAULT | 32 | Replace the SPM control printed circuit board. | Abnormality in an SPM control circuit component is detected. (The LSI device for serial transfer is abnormal.) |
| 7n33 | SPN_n_: SHORTAGE POWER CHARGE | 33 | 1 Check and correct the power supply voltage.
 2 Replace the PSM unit. | Charging of direct current power supply voltage in the power circuit section is insufficient when the magnetic contractor in the amplifier is turned on (such as open phase and defective charging resistor). |
| 7n34 | SPN_n_: PARAMETER SETTING ERROR | 34 | Correct a parameter value according to the manual. If the parameter number is unknown, connect the spindle check board, and check the indicated parameter. | Parameter data exceeding the allowable limit is set. |
| 7n35 | SPN_n_: EX SETTING GEAR RATIO | 35 | Correct the value according to the parameter manual. | Gear ratio data exceeding the allowable limit is set. |

| No. | Message | SPM indication(*1) | Faulty location and remedy | Description |
| :---: | :---: | :---: | :---: | :---: |
| 7n36 | $\begin{aligned} \text { SPN_n_: } & \text { OVERFLOW } \\ & \text { ERROR } \\ & \text { COUNTER }\end{aligned}$ | 36 | Check whether the position gain value is too large, and correct the value. | An error counter overflow occurred. |
| 7n37 | | 37 | Correct the value according to the parameter manual. | The setting of the parameter for the number of pulses in the speed detector is incorrect. |
| 7n39 | $\begin{aligned} & \hline \text { SPN_n_: }: 1-\mathrm{ROT} \text { Cs } \\ & \text { SIGNAL ER- } \\ & \text { ROR } \end{aligned}$ | 39 | 1 Adjust the 1-rotation signal in the pre-amplifier.
 2 Check the cable shield status.
 3 Replace the cable. | An incorrect relationship between the 1-rotation signal and the number of AB phase pulses was detected during Cs contour control. |
| 7n40 | SPN_n_: NO 1-ROT Cs SIGNAL DETECT | 40 | 1 Adjust the 1-rotation signal in the pre-amplifier.
 2 Check the cable shield status.
 3 Replace the cable. | The 1-rotation signal is not generated during Cs contour control. |
| 7n41 | | 41 | $\begin{array}{ll} \hline 1 & \text { Check and correct the parameter. } \\ 2 & \text { Replace the cable. } \\ 3 & \text { Re-adjust the BZ sensor signal. } \end{array}$ | 1 The 1-rotation signal of the spindle position coder (connector JY4) is abnormal.
 2 The 1-rotation signal (connector JY2) of the MZ or BZ sensor is abnormal.
 3 Parameter setting error |
| 7n42 | $\begin{aligned} \text { SPN_n_ }: & \text { NO 1-ROT. } \\ & \text { POS-CODER } \\ & \text { DETECT } \end{aligned}$ | 42 | 1 Replace the cable.
 2 Re-adjust the BZ sensor signal. | 1 The 1-rotation signal of the spindle position coder (connector JY4) is disconnected.
 2 The 1-rotation signal (connector JY2) of the MZ or BZ sensor is disconnected. |
| 7n43 | $\begin{aligned} \hline \text { SPN_n_ } & \text { DISCON. PC } \\ & \text { FOR DIF. SP. } \\ & \text { MODE } \end{aligned}$ | 43 | Replace the cable. | The differential speed position coder signal (connector JY8) in SPM type 3 is abnormal. |
| 7n44 | SPN_n_: CONTROL CIRCUIT(AD) ERROR | 44 | Replace the SPM control printed circuit board. | Abnormality in an SPM control circuit component was detected (A/D converter abnormality). |
| 7n46 | $\begin{aligned} \text { SPN_n_: } & \text { SCREW } \\ & \text { 1-ROT POS- } \\ & \text { COD. ALARM } \end{aligned}$ | 46 | $\begin{array}{ll} \hline 1 & \text { Check and correct the parameter. } \\ 2 & \text { Replace the cable. } \\ 3 & \text { Re-adjust the BZ sensor signal. } \end{array}$ | An abnormality equivalent to alarm 41 was detected during thread cutting operation. |
| 7n47 | $\begin{aligned} \text { SPN_n_: } & \text { POS-CODER } \\ & \text { SIGNAL AB- } \\ & \text { NORMAL } \end{aligned}$ | 47 | 1 Replace the cable.
 2 Re-adjust the BZ sensor signal.
 3 Correct the cable layout (vicinity of the power line). | 1 The A/B phase signal of the spindle position coder (connector JY4) is abnormal.
 2 The A/B phase signal (connector JY2) of the MZ or BZ sensor is abnormal.
 The relationship between the A / B phase and 1-rotation signal is incorrect (Pulse interval mismatch). |

| No. | Message | SPM indication(*1) | Faulty location and remedy | Description |
| :---: | :---: | :---: | :---: | :---: |
| 7n49 | | 49 | Check whether the calculated differential speed value exceeds the maximum motor speed. | In differential speed mode, the speed of the other spindle converted to the speed of the local spindle has exceeded the allowable limit (the differential speed is calculated by multiplying the speed of the other spindle by the gear ratio). |
| 7n50 | $\begin{aligned} & \text { SPN_n_: } \text { SPNDL CON- } \\ & \text { TROL OVER- } \\ & \text { SPEED }\end{aligned}$ | 50 | Check whether the calculated value exceeds the maximum motor speed. | In spindle synchronization, the speed command calculation value exceeded the allowable limit (the motor speed is calculated by multiplying the specified spindle speed by the gear ratio). |
| 7n51 | SPN_n_: LOW VOLT DC LINK | 51 | 1 Check and correct the power supply voltage.
 2 Replace the MC. | Input voltage drop was detected. (PSM alarm indication: 4) (Momentary power failure or poor MC contact) |
| 7n52 | SPN_n_: ITP SIGNAL ABNORMAL I | 52 | 1 Replace the SPM control printed circuit board.
 2 Replace the spindle interface printed circuit board in the CNC. | NC interface abnormality was detected (the ITP signal stopped). |
| 7n53 | SPN_n_: ITP SIGNAL ABNORMAL II | 53 | 1 Replace the SPM control printed circuit board.
 2 Replace the spindle interface printed circuit board in the CNC. | NC interface abnormality was detected (the ITP signal stopped). |
| 7n56 | SPN_n_: INNER COOLING FAN STOP | 56 | Replace the SPM unit. | The cooling fan in the SPM control circuit stopped. |
| 7n57 | SPN_n_: EX DECELERATION POWER | 57 | 1 Decrease the acceleration/deceleration duty.
 2 Check the cooling condition (peripheral temperature).
 3 If the cooling fan stops, replace the resistor.
 4 If the resistance is abnormal, replace the resistor. | An overload was detected in the regenerative resistance. (PSMR alarm indication: 8)
 Thermostat operation or short-time overload was detected.
 The regenerative resistor was disconnected, or an abnormal resistance was detected. |
| 7n58 | SPN_n_: OVERLOAD IN PSM | 58 | 1 Check the PSM cooling status.
 2 Replace the PSM unit. | The temperature of the radiator of the PSM has increased abnormally. (PSM alarm indication: 3) |
| 7n59 | SPN_n_: COOLING FAN | 59 | Replace the SPM unit. | The cooling fan in the PSM stopped. (PSM alarm indication: 2) |

A. 4

ERROR CODES (SERIAL SPINDLE)

NOTE*1

Note that the meanings of the SPM indications differ depending on which LED, the red or yellow LED, is on. When the yellow LED is on, an error code is indicated with a 2 -digit number. The error code is not displayed on the CNC screen.
When the red LED is on, the SPM indicates the number of an alarm generated in the serial spindle.
\rightarrow See Appendix A.3, "Alarms (Serial Spindle)."

Errors Displayed on the α Series Spindle Amplifier

| SPM indication(*1) | Faulty location and remedy | Description |
| :---: | :---: | :---: |
| 01 | Check the *ESP and MRDY sequence. (For MRDY, pay attention to the parameter setting regarding the use of the MRDY signal (bit 0 of parameter No. 4001).) | Although neither *ESP (emergency stop signal; there are two types of signals including the PMC signal and PSM contact signal(*2)) nor MRDY (machine ready signal) is input, SFR (forward rotation signal)/SRF (reverse rotation signal)/ORCM (orientation command) is input. |
| 02 | Check the spindle motor speed detector parameter (bits 2, 1, and 0 of parameter No. 4011). | When the spindle motor has a high-resolution magnetic pulse coder (Cs sensor) (bits 6 and 5 of parameter No. 4001 are set to 0 and 1 , respectively), $128 / \mathrm{rev}$ is to be set for the speed detector (bits 2, 1, and 0 of parameter No. 4011 are set to 0,0 , and 1 , respectively). However, a value other than $128 / \mathrm{rev}$ is set. In this case, the motor is not excited. |
| 03 | Check the parameters for the detector for Cs contour control (bit 5 of parameter No. 4001 and bit 4 of parameter No. 4018). | Although use of a high-resolution magnetic pulse coder (bit 5 of parameter No. $4001=1$) or use of the Cs contour control function by the sensor (bit 4 of parameter No. $4018=1$) is not set, a Cs control command is input. In this case, the motor is not excited. |
| 04 | Check the position coder signal parameter (bit 2 of parameter No. 4001). | Although use of the position coder signal (bit 2 of parameter No. $4001=1$) is not set, a servo mode (rigid tapping, spindle positioning) or spindle synchronization command is input. In this case, the motor is not excited. |
| 05 | Check the orientation software option. | Although the orientation option is not set, an orientation command (ORCM) is input. |
| 06 | Check the spindle output switching software option and power line status signal (RCH). | Although the output switching option is not set, the lowspeed winding is selected $(\mathrm{RCH}=1)$. |
| 07 | Check the sequence (CON, SFR, SRV). | Although the Cs contour control mode is specified, SFR/SRV is not input. |
| 08 | Check the sequence (SFR, SRV). | Although the servo mode (rigid tapping, spindle positioning) is specified, SFR/SRV is not input. |
| 09 | Check the sequence (SPSYC, SFR, SRV) | Although spindle synchronization mode is specified, SFR/SRV is not input. |
| 10 | During execution of the C-axis control command, do not specify another operation mode. Before entering another mode, cancel the Cs contour control command. | Although Cs contour control mode is set, another operation mode (servo mode, spindle synchronization, or orientation) is specified. |
| 11 | During execution of the servo mode command, do not specify another operation mode. Before entering another mode, cancel the servo mode. | Although servo mode (rigid tapping, or spindle positioning) is set, another operation mode (Cs contour control, spindle synchronization, or orientation) is specified. |

| SPM
 indica-
 tion(*1) | Faulty location and remedy | Description |
| :---: | :---: | :---: |
| 12 | During execution of the spindle synchronization command, do not specify another operation mode. Before entering another mode, cancel the spindle synchronization command. | Although spindle synchronization is being performed, another operation mode (Cs contour control, servo mode, or orientation) is specified. |
| 13 | During execution of the orientation command, do not specify another operation mode. Before entering another mode, cancel the orientation command. | Although the orientation command is being executed, another operation mode (Cs contour control, servo mode, or synchronization) is specified. |
| 14 | Input the SFT or SRV signal. | The SFT and SRV signals are both input at the same time. |
| 15 | Check bit 5 of parameter No. 4000 and PMC signal (CON). | When bit 5 of parameter No. 4000 is set to 1 to indicate the presence of the differential speed mode function, Cs contour control is specified. |
| 16 | Check bit 5 of parameter No. 4000 and PMC signal (DEFMD). | When bit 5 of parameter No. 4000 is set to 0 to indicate the absence of the differential speed mode function, the differential speed mode command (DEFMD) is input. |
| 17 | Check bits 2, 1, and 0 of parameter No. 4011. | Setting of the speed detector parameter (bits 2, 1, and 0 of parameter No. 4011) is invalid. (The corresponding speed detector is not present.) |
| 18 | Check bit 2 of parameter No. 4001 and PMC signal (ORCM). | Although bits 2 of parameter No. 4001 is set to 0 not to use the position coder signal, a command for orientation by a position coder (ORCMA) is input. |
| 19 | During execution of the orientation command, do not specify another operation mode. Before entering another mode, cancel the orientation command. | Although orientation by a magnetic sensor is being performed, another operation mode is specified. |
| 20 | Check bit 5 of parameter No. 4001, bit 5 of parameter No. 4014, and bit 4 of parameter No. 4018. | When the use of the slave operation mode function is set (bit 5 of parameter No. $4014=1$), the use of a highresolution magnetic pulse coder (bit 5 of parameter No. $4001=1$) or the use of the Cs contour control function by the sensor (bit 4 of parameter No. $4018=1$) is specified. These items cannot be set at the same time. |
| 21 | Input the slave operation mode command (SLV) in normal operation mode. | Although position control (such as servo mode or orientation) is being performed, a slave operation mode command (SLV) is input. |
| 22 | Input the position control command in normal operation mode | Although slave operation mode is set (SLVS = 1), a position control command (such as servo mode or orientation) is input. |
| 23 | Check bit 5 of parameter No. 4014 and PMC signal (SLV). | Although bit 5 of parameter No. 4014 is set to 0 not to use the slave operation mode function, a slave operation mode command (SLV) is input. |
| 24 | Check the PMC signal (INCMD). Perform orientation by specifying an absolute position first. | Orientation is performed in incremental operation mode (INCMD = 1) first, then the absolute position command (INCMD $=0$) is input. |
| 25 | Check the spindle amplifier specifications and parameter setting (bit 4 of parameter No. 4018). | Although the spindle amplifier SPM type 4 is not used, the use of the Cs contour control function by the sensor is set (bit 4 of parameter No. $4018=1$). |

NOTE*2

PSM contact signal
Between ESP1 and ESP2 on the PSM Contact open: Emergency stop Contact closed: Normal operation
B. 1 MAINTENANCE PARTS
727

B. 1

MAINTENANCE PARTS

| Item | | Ordering information | Remarks |
| :---: | :---: | :---: | :---: |
| Fuse | Control unit of LCDmounted type (without PC) | A02B-0236-K100 | |
| | Control unit of LCDmounted type (with PC) | A02B-0236-K101 | |
| | Control unit of stand-alone type | A02B-0265-K100 | |
| | LCD unit of LCD-mounted type | A02B-0265-K101 | |
| | Separate detector interface unit | A60L-0001-0290\#LM20 | Rated at 2 A |
| | I/O module for operator's panel | A03B-0815-K001 | |
| | Connector panel I/O module | A03B-0815-K002 | |
| | Distributed I/O machine operator's panel | A03B-0815-K001 | |
| | Interface unit of machine operator's panel | A02B-0120-K107 | |
| | Connection unit of operator's panel | A02B-0163-K111 | |
| Battery | For control unit memory backup | A02B-0200-K102 | |
| Fan motor for LCDmounted type | For control unit with no expansion slot | A02B-0236-K120 | |
| | For control unit with expansion slot | A02B-0236-K121 | |
| | For control unit with three expansion slots | A02B-0236-K122 | |
| Fan unit for stand-alone type | For 1-slot case | A02B-0265-C101 | |
| | For 2-slot case | A02B-0260-C021 | |
| Backlight | For 7.2" LCD | A02B-0236-K112 | |
| | For 8.4" LCD | A02B-0236-K113 | |
| | For 9.5" LCD | A02B-0236-K114 | |
| | For 10.4" LCD (old type) | A02B-0236-K115 | |
| | For 10.4" high-intensity LCD | A02B-0236-K116 | |
| Touch panel protection sheet | | A02B-0236-K110 | |
| Pen for touch panel | | A02B-0236-K111 | |

BOOT SYSTEM

C. 1 OVERVIEW729C. 2 SCREEN CONFIGURATION AND OPERATING PROCEDURE 731
C. 3 ERROR MESSAGES AND REQUIRED ACTIONS 746

C. 1 OVERVIEW

The boot system load the CNC system software (flash RAM \rightarrow DRAM), then starts it so that software can be executed.
The boot system provides the following maintenance functions for the CNC:
(1) Registering a file in flash ROM

Reads a file from a memory card, in FAT format, into flash ROM.
(2) Checking a file (series and edition) in flash ROM
(3) Deleting a file from flash ROM
(4) Batch saving and restoration of files of parameters and programs backed up by battery (SRAM area), to and from a memory card
(5) Saving a file in flash ROM to a memory card
(6) Formatting of a memory card
(7) Deleting a file from a memory card

This manual describes the activation of the boot system, as well as the screen displays and operation for the functions listed above.

CAUTION

This control unit supports the use of a memory card as an input/output device. When a flash card is used, however, data can be written to a FANUC-recommended card only. Data can be read in the same way as with an ordinary SRAM card, provided the data has been saved in FAT format. Note that, when a flash card is used, the card capacity is reduced by 128 KB .
See the order list for details of the supported memory card types.

In ordinary system activation, the boot system automatically transfers files from flash ROM to DRAM in the background.
The user is not aware of this operation. However, the boot system must be operated manually, from menu screen, when maintenance is to be carried out or when the flash ROM does not contain a required file.
1 In system maintenance, for example, to replace a file in ROM Operation : Turn the power on by simultaneously pressing the two soft keys at the right end.

Hold down the two keys until the boot system screen appears.
If soft keys are not provided (for example, when a touch pad is being used), use the MDI numeric keys. Hold down the 6 and 7 keys until the boot system screen appears.

| \square |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \downarrow |
| 1. | 2. | 3. | 4. | 5. | 6. | 7. |

2 When the flash memory does not contain a file required to start the CNC

Immediately after the CNC is turned on, the boot system starts transferring files from flash ROM to DRAM. If, for some reason, a file required to start the CNC (NC basic) is not in flash ROM or has been destroyed, the boot system is automatically started.

C.1.2
 System Files and User Files

- System files
- User files

C.1.3
 Boot Slot
 Configuration Screen

- Screen configuration

The boot system organizes files in flash ROM into two main groups : system files and user files. These two file types have the following characteristics :

CNC and servo control software provided by FANUC
PMC sequence program (ladder), $\mathrm{P}-\mathrm{CODE}$ macro program, and other user-created files
(1)

*** MESSAGE ***
(3)

SELECT SLOT AND HIT SELECT KEY.
[SELECT][YES][NO][UP][DOWN]
(1): Screen title.
(2): Flash memory size and SRAM size of each board.
(3): Message

Press the [UP] or [DOWN] soft key to move the cursor, and select board to press the [SELECT] soft key.

C. 2

SCREEN CONFIGURATION AND OPERATING PROCEDURE

- MAIN MENU screen

When the boot system is first started, the MAIN MENU screen is displayed. This screen is described below :
(1)

```
SYSTEM MONITOR MAIN MENU 60M1-01
(2) 1. SYSTEM DATA LOADING
(3) 2 . SYSTEM DATA CHECK
(4) 3. SYSTEM DATA DELETE
(5) 4. SYSTEM DATA SAVE
(6) 5. SRAM DATA BACKUP
(7) 6. MEMORY CARD FILE DELETE
(8) 7 . MEMORY CARD FORMAT
(9) 10.END
*** MESSAGE ***
SELECT MENU AND HIT SELECT KEY.
[ SELECT ] [ YES ] [ NO ] [ UP ] [ DOWN ]
```

(10)
(1) : Screen title. The series and edition of the boot system appear at the right end.
(2) : Function for writing data to flash ROM.
(3) : Function for checing the edition of a file in ROM.
(4) : Function for deleting a file from flash ROM.
(5) : Function for making a backup copy of the data stored on the memory card.
(6) : Function for making a backup copy of the data in SRAM.
(7) : Function for deleting a file from a memory card.
(8) : Function for formatting a memory card.
(9) : Function for terminating the boot system and starting the CNC.
(10) : Condensed guidance or error message

Press the [UP] or [DOWN] soft key to select the desired function. After positioning the cursor to the desired function, press the [SELECT] soft key. Before executing a function, the system my request confirmation from the operator by having him/her press the [YES] or [NO] soft key.

- Basic operation

C.2.1
 System Data Loading
 Screen

- Description
- Screen configuration
- Operating procedure

This screen is used to read a system or user file from a memory card into flash ROM.
(1)

```
SYSTEM DATA LOADING 1/1
FILE DIRECTORY
B1F1A_B.MEM
B1F1A AI.MEM
END
*** MESSAGE ***
SELECT FILE AND HIT SELECT KEY.
[ SELECT ][ YES ][ NO ][ UP ][ DOWN ]
```

(4)
(1): Screen title. The page number (n) and total number of pages (m) are displayed, in n / m format, at the right end.
(2): Files on the memory card
(3): Option for returning to previous menu Message
(4): Message

1 Position the cursor to the file to be read from the memory card and written to flash ROM. Then, press the [SELECT] soft key.
A single page can list up to eight file names. If the memory card contains nine or more files, the remaining files are displayed on another page.

To display the next page, press the \triangle soft key.
To display the previous page, press the \square soft key. The END option is displayed on the last page.
The END option is displayed on the last page.
2 After a file has been slected, the system asks whether that file is to be loaded.

```
*** MESSAGE ***
LOADING OK ? HIT YES OR NO.
```

3 To start loading, press the [YES] soft key. To cancel, press the [NO] key.

```
*** MESSAGE ***
LOADING FROM MEMORY CARD.
```

4 When loading terminates normally, the system displays the following message. Press the [SELECT] soft key. If an error occurs, see D. 3

```
*** MESSAGE ***
LOADING COMPELETE. HIT SELECT KEY.
```

- Others

1 Counter display while a file is being loaded
While a file is being loaded, the address of the data currently being accessed is displayed.

(1): Number of 128-KB management unit in flash ROM

2 File name in flash ROM
The boot system identifies a file in flash ROM by the first four characters of the ID in the header. If flash ROM has a file of the same type as a file to be read from the memory card, the file in flash ROM is deleted before the file on the memory card is read. The following table lists the IDs in the header and the contents. Note that these IDs are subject to change without prior notice.

| File name | Contents | File type |
| :--- | :--- | :--- |
| NC BASIC | Basic | System file |
| DG SERVO | Servo | System file |
| GRAPHIC | Graphic | System file |
| NC OPTN | Optional | System file |
| PMC $\square^{* * * * *}$ | PMC control software, etc. | System file |
| PCD | U*** | P-CODE macro file/ OMM |
| CEX $* * * * *$ | C-languageexecutor | User file |
| PMC - $* * * *$ | Ladder software | |
| PMC@ ${ }^{* * * *}$ | Ladder software for the loader | User file |

$\square:$ A numeric character, *: An alphabetic character

C.2.2

System Data Check

 Screen- Description
- Screen configuration

This screen is used to list files in flash ROM, together with the corresponding numbers of 128-KB management units in each file and the series and edition of the software.

```
(1)
```


(2)
[BOARD:MAIN]
FILE DIRECTORY (FLASH ROM : 4MB)
(3)

1 NC BASIC (10)
2 DG SERVO (1)
3 PMCOBSC (2)
4 PMC-RB (1)
5 PCD 0.5M (4)
(4)

END
*** MESSAGE ***
(5)

SELECT FILE AND HIT SELECT KEY.
[SELECT] [YES] [NO] [UP] [DOWN]
(1): Screen title
(2): Names of accessing board
(3): Names of files in flash ROM The number of management units constituting each file appears in parentheses to the right of the file name.
(4): Returning to the previous menu
(5): Message

- Operating procedure
- Others

1 Select the file whose details are required. For example, select " 1 NC BASIC (10)."
2 The numbers of management units in the selected file are listed, together with the series and edition of the software in each management unit. After checking the listed data, select the [SELECT] soft key to return to the file selection screen.

```
ROM FILE CHECK
NC BASIC
    O B1F1 801A 000
    1 B1F1 802A 001
    2 B1F1 841A 002
    3 B1F1 842A 003
    4 B1F1 881A 004
    5 B1F1 882A 005
    6 B1F1 8C1A 006
    7 B1F1 8C2A 007
    O B1F1 801A 000
```



```
                Internal management-unit number ROM number and edition Series
```

*** MESSAGE ***
HIT SELECT KEY.

Parity information for the system file and user file The NC BASIC, DG SERVO, and other system files in flash ROM contain parity information in each management unit. If the file name field or parity field on the check screen contains a non-ASC II character or an "@", the flash ROM may have been destroyed or a damaged file may have been read. Re-read the data from the memory card.
The PMC-RB, PCD 0.5 M , and other user files do not contain parity information in each management unit. A non-ASCII character or an "@" may appear in the series/edition information. In this case, it does not indicate that the file has been damaged.

C.2.3

System Data Delete

 Screen- Description
- Screen configuration
- Operating procedure

This screen is used to delete a user file from flash ROM
(1)

```
SYSTEM DATA CHECK
1/1
[BOARD: MAIN]
```

(2)

FILE DIRECTORY (FLASH ROM : 4MB)
(3)

1 NC BASIC (10)
2 DG SERVO (1)
3 PMCOBSC (2)
4 PMC-RB (1)
5 PCD 0.5M (4)
END
(4)
*** MESSAGE ***
SELECT FILE AND HIT SELECT KEY.
[SELECT] [YES] [NO] [UP] [DOWN]
(1): Screen title
(2): Names of accessing board
(3): Names of files in flash ROM The number of management units constituting each file appears in parentheses to the right of the file name.
(4): Returning to the previous menu
(5): Message

1 Position the cursor to the name of the file to be deleted. Press the [SELECT] soft key.
2 The system displays the following confirmation message :
*** MESSAGE ***
DELETE OK ? HIT YES OR NO.

3 To start the deletion, press the [YES] key. To cancel, press [NO].
*** MESSAGE ***
DELETING ROM FILE IN FLASH MEMORY.

4 When deletion terminates normally, the system displays the following message. Press the [SELECT] key.

```
*** MESSAGE ***
DELETING COMPLETE. HIT SELECT KEY.
```

- Others

1 System files and user files on SYSTEM DATA DELETE screen The system files are protected from accidental deletion. User files, however, are not protected. Protected system files can be overwritten from the SYSTEM DATA LOADING screen.

C.2.4
 SYSTEM DATA SAVE Screen

- Description
- Screen configuration

This screen is used to write a user file in flash ROM to a memory card. Only user files can be saved from flash ROM to a memory card. System files cannot be saved.
(1)

SYSTEM DATA SAVE
(2) [BOARD:MAIN]
FILE DIRECTORY (FLASH ROM : 4MB)
(3)

1 NC BASIC (10)
2 DG SERVO (1)
3 PMCOBSC (2)
4 PMC-RB (1)
5 PCD 0.5M (4)
(4)

END
*** MESSAGE ***
(5)

SELeCt file and hit select key.
[SELECT] [YES][NO][UP][DOWN]
(1): Screen title
(2): Names of accessing board
(3): Names of files in flash memory The number of management units constituting each file appears in parentheses to the right of the file name.
(4): Returning to the previous menu
(5): Message

- Operating procedure
- Others

1 Position the cursor to the name of the file to be deleted. Press the [SELECT] soft key.

2 The system displays the following confirmation message :

```
*** MESSAGE ***
SAVE OK ? HIT YES OR NO.
```

3 To start saving, press the [YES] key. To cancel, press [NO].
*** MESSAGE ***
WRITING FLASH ROM FILE TO MEMORY CARD.
SAVE FILE NAME : PMC_RB. 000
4 When saving terminates normally, the system displays the following message. Press the [SELECT] key. The names of files written to the memory card are listed. Check the file names by, for example, making a note of the list.

```
*** MESSAGE ***
FILE SAVE COMPELETE. HIT SELECT KEY.
SAVE FILE NAME : PMC_RB.000
```

1 System files and user files on SYSTEM DATA SAVE screen
The SYSTEM DATA SAVE function provides a safeguard against free copying of the system files.
User files, however, are not protected.
2 Names of saved files
Files saved from flash ROM to a memory card have the following names:

| Flash ROM | File name in
 Memory card | |
| :--- | :--- | :--- |
| PMC-RB | \rightarrow | PMC_RB. XXX |
| PMC 0.5M | \rightarrow | PCD_0.5M.XXX |
| PMC 1.0M | \rightarrow | PCD_10M. XXX |
| PMC 1.5M | $\rightarrow E X 1.0 \mathrm{M}$ | \rightarrow |
| CEX 2.0 M | | CEX_15M.XXX |

XXX corresponds to the file extension of MS-DOS format files. A number from 000 to 031 is specified for XXX. For example, if the PMC-RB file in flash ROM is saved to a memory card that does not yet contain a file whose name begins with "PMC-RB", the saved file is named PMC-RB.000. If, however, that file is saved to a memory card that already contains a file named PMC-RB.000, the saved file is named PMC-RB.001. As files are added, the extension is incremented up to a maximum of PMC-RB.031. Any no-longer used numbers in the sequence of the extension numbers are used in as cending order. If two or more files having identical names but different extension numbers are normally saved to the memory card, check the file names displayed subsequently.

C.2.5
 SRAM DATA BACKUP
 Screen

- Description
- Screen configuration

This screen is used to collectively save and restore parameters, programs, and other data, retained after the CNC power in SRAM is turned off, to and from a memory card.

Select "4 SRAM DATA BACKUP" on the SYSTEM MONITOR MAIN MENU screen. The following screen is displayed.
(1)
SRAM DATA BACKUP
(2)
[BOARD:MAIN]
(3) 1. SRAM BACKUP (CNC \rightarrow MEMORY CARD)
(4)
(5) SRAM SIZE : 256 K (BASIC)
(6) FILE NAME : SRAM256A. FDB
*** MESSAGE ***
(7)

SELECT MENU AND HIT SELECT KEY.
[SELECT] [YES] [NO] [UP] [DOWN]
(1): Screen title
(2): Names of accessing board
(3): Menu
(4): Returning to the previous menu
(5): Size of SRAM mounted on the CNC
(6): File name
(7): Message

- Operating procedure [Backing up data]
[Restoring the data]
1 Select " 1 . SRAM BACKUP." The following confirmation message is displayed. The backup file name may be displayed according to the SRAM capacity.
2 Press [YES] to start backup.
*** MESSAGE ***
BACKUP SRAM DATA OK ? HIT YES OR NO.

3 If a backup file is already on the memory card, you will be prompted to confirm whether to permit overwriting.
4 The name of the file being written to the memory card is displayed in the FILE NAME: field.

5 Upon terminating normally, the system displays the following message. Press the [SELECT] soft key.

```
*** MESSAGE ***
SRAM BACKUP COMPLETE. HIT SELECT KEY.
```

1 Select "2. RESTORE SRAM." The system displays the following message. Press the [YES] key.

```
*** MESSAGE ***
RESTORE SRAM DATA OK ? HIT YES OR NO.
```

2 The system displays the following message during restoration.

```
*** MESSAGE ***
RESTORE SRAM DATA FROM MEMORY CARD.
```

3 Upon terminating normally, the system displays the following message. Press the [SELECT] soft key.

```
*** MESSAGE
RESTORE COMPLETE. HIT SELECT KEY.
```

1 Name of backup file
The name of the backup file written to the memory card by the SRAM backup function depends on the size of the SRAM installed in the CNC.
When the size of SRAM is 1MB or larger, backup files are created in units of 512 KB .

| Number
 of
 SRAM
 size | | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 256 KB | SRAM256A.FDB | | | | 6 | |
| 0.5 MB | SRAM0_5A.FDB | | | | | |
| 1.0 MB | SRAM1_0A.FDB | SRAM1_0B.FDB | | | | |
| 2.0 MB | SRAM2_0A.FDB | SRAM2_0B.FDB | SRAM2_0C.FDB | SRAM2_0D.FDB | | |
| 3.0MB | SRAM3_0A.FDB | SRAM3_0B.FDB | SRAM3_0C.FDB | SRAM3_0D.FDB | SRAM3_0E.FDB | SRAM3_0F.FDB |

The backup file for SRAM on the PMC-RE, CAPII, or LCB board will have the following extension:

| Board | MAIN | PMC-RE | CAPII | LCB |
| :--- | :--- | :--- | :--- | :--- |
| Extension | FDB | PMC | CAP | LCB |

CAUTION

If data such as parameters was restored from a memory card to SRAM in a system using an absolute pulse coder, set bit 4 (APZ) of parameter No. 1815 to 0, and set the reference point again.

C.2.6
 MEMORY CARD FILE
 DELETE Screen

- Description
- Screen configuration

This screen is used to delete a file from a memory card.
(1)

(3) END
*** MESSAGE ***
(4)

SELECT FILE AND HIT SELECT KEY.
[SELECT] [YES] [NO][UP] [DOWN]
(1): Screen title. Tlhe current page number (n) and the total number of pages (m) are displayed, in n / m format, at the right end.
(2): Files on the memory card
(3): Option for returning to the previous menu
(4): Message

1 Press the [SELECT] key to select the name of the file to be deleted from the memory card.

2 The system displays the following confirmation message. Press the [YES] key.

```
*** MESSAGE ***
DELETE OK ? HIT YES OR NO.
```

3 When a file has been deleted normally, display the following message. Press the [SELECT] key.

```
*** MESSAGE
```

DELETE COMPLETE. HIT SELECT KEY.

C.2.7
 MEMORY CARD FORMAT Function

- Description
- Operating procedure

This function is used to format a memory card. Memory cards must be formatted before they can be used for the first time or before they can be re-used after their data has been destroyed or lost because of, for example, battery failure.

1 From the SYSTEM MONITOR MAIN MENU screen, select "7. MEMORY CARD FORMAT."
2 The system displays the following confirmation message. Press the [YES] key.
*** MESSAGE ***
MEMORY CARD FORMAT OK ? HIT YES OR NO.

3 The system displays the following message during formatting :

```
*** MESSAGE ***
FORMATTING MEMORY CARD.
```

4 When a card has been formatted normally, the system display the following message.
Press the [SELECT] key.

```
*** MESSAGE ***
```

FORMAT COMPLETE. HIT SELECT KEY.

C.2.8

LOAD BASIC SYSTEM Function

- Description
- Operating procedure

The function is used to terminate the boot system and activate the CNC.
From the MAIN MENU screen, select "9. END." The system displays the "ARE YOU SURE? HIT YES OR NO" message. To terminate the boot system and activate the CNC, press the [YES] soft key. Press the [NO] soft key, and you will be brought back to the main menu.

```
*** MESSAGE ***
ARE YOU SURE ? HIT YES OR NO.
[ SELECT ] [ YES ][ NO ][ UP ] [ DOWN ]
```

1 After pressing the [YES] soft key
The system checks the NC BASIC system file in the flash ROM. The system displays the following message :

```
*** MESSAGE ***
CHECK CNC BASIC SYSTEM.
[ SELECT ][ YES ][ NO ][ UP ][ DOWN ]
```

When the NC BASIC system file is found to be normal, the system sends the system file to DRAM and starts the NC basic system. During loading, the system blinks the following message.

If the contents of the NC BASIC SYSTEM file are found to have been damaged or destroyed, the system returns to the processing selection state, in exactly the same way as when the [NO] soft key is pressed.

2 If the [NO] soft key is pressed, the system returns to the processing selection state as shown below :

```
SYSTEM MONITOR MAIN MENU 60M1-01
1. SYSTEM DATA LOADING
2. SYSTEM DATA CHECK
3. SYSTEM DATA DELETE
4. SYSTEM DATA SAVE
5. SRAM DATA BACKUP
6. MEMORY CARD FILE DELETE
7. MEMORY CARD FORMAT
10. END
*** MESSAGE ***
SELECT MENU AND HIT SELECT KEY.
[ SELECT ] [ YES ][ NO ][ UP ][ DOWN ]
```

C. 3

ERROR MESSAGES
AND REQUIRED
ACTIONS

The following table lists and explains error messages in alphabetical order.

| | Message | Description and required action |
| :---: | :--- | :--- |
| B | BOOT ROM PARITY.
 PLEASE POWER OFF. | The contents of flash memory containing boot software was de-
 stroyed. Replace the CPU card. |
| C | CHANGE MEMORY CARD.
 AND HIT YES OR NO. | The memory card becomes full in the middle of SRAM backup op-
 eration. Replace the card with a memory card containing enough
 free space. |
| D | DELETE ERROR.
 HIT SELECT KEY. | An attempt to delete a file from flash ROM was unsuccessful. Retry the
 deletion. If the second attempt also fails, the flash ROM may have
 been damaged or destroyed. Replace the flash ROM module. |
| | DEVICE ERROR (CNC x) | An attempt to write data to flash ROM was unsuccessful. Retry the
 write operation. If the second attempt also fails, the flash ROM may
 have been damaged or destroyed. Repalce the flash ROM module. |
| | FILE SAVE ERROR.
 HIT SELECT KEY. | An attempt to write a file to a memory card was unsuccessful. Check
 that the memory card is not damaged.
 Note) Check that the memory card's battery is not exhusted, that its
 circuitry has not been damaged, and that it is securely inserted
 into its slot. |
| | FLASH MEMORY NO SPACE | There is insufficient free flash ROM to store the selected file. Delete
 any unnecessary files from flash ROM. |
| | FLASH ROM MODULE NOT EXIST.
 HIT SELECT. | The flash ROM module is not mounted on that CNC system. Put the
 flash ROM module on the board. |
| I | ILLEGAL FORMAT FILE | The selected file cannot be read into flash memory. The selected file
 or the header information for flash ROM may have been damaged or
 destroyed. |
| | LOADING ERROR.
 HIT SELECT KEY. | The flash ROM module ID is illegal. Check the drawing No. of the flash
 ROM module. |
| | ILLEGAL FROM MODULE.
 HIT SELECT KEY. | The SRAM module ID is illegal. Check the drawing No. of the SRAM
 module. |
| HIT SELECT KEY. | | |

| | Message | Description and required action |
| :---: | :---: | :---: |
| M | MAX EXTENSION OVER. HIT SELECT KEY. | The extension number added to a file name exceeds 031. Delete any unnecessary backup files from the memory card. |
| | MEMORY CARD BATTERY ALARM. HIT SELECT. | The memory card's battery is exhausted. Replace the battery. |
| | MEMORY CARD FULL. HIT SELECT KEY. | The memory card is full. Delete any unnecessary files from the memory card. Alternatively, replace the memory card with another card having sufficient free space. |
| | MEMORY CARD IS NOT AVAILABLE. HIT SEL. | The use of this memory card is not supported. Use only FANUCrecommended memory cards, as described in the order list. |
| | MEMORY CARD MOUNT ERROR. HIT SELECT KEY | The memory card could not be accessed. Check that the memory card is normal. |
| | MEMORY CARD NOT EXIST. HIT SELECT KEY. | The memory card is not inserted into its slot. Check that the memory card is pushed fully home. |
| | MEMORY CARD PROTECTED.HIT SELECT KEY. | Although writing to the memory card was selected, the write inhibit switch is set. Disable the write inhibit switch.
 Note) Check that the memory card's battery is not exhusted, that its circuitry has not been damaged, and that it is securely inserted into its slot. |
| | MEMORY CARD TYPE IS NOT AVAILABLE. | Write has been attempted to an incompatible flash memory card. Use only the flash ROM cards recommended by FANUC. Recommended flash ROM cards are listed in the ordering list. |
| | MEMORY CARD RESET ERROR HIT SELECT KEY. | Access to a memory card failed. The memory card's battery may have gone dead, the memory card may have been damaged electrically, or the memory card may not be inserted in the slot securely. |
| | MEMORY CARD WRITE ERROR. HIT SELECT KEY. | Access to the memory card has failed. Check whether the memory card is defective.
 Note) Check that the memory card's battery is not exhusted, that its circuitry has not been damaged, and that it is securely inserted into its slot. |
| N | NMI OCCURRED. PLEASE POWER OFF. | A hardware or software error occurred. Determine the procedure which causes the error, and report it to FANUC together with the series and edition of the boot software. |
| P | PLEASE FORMAT FLASH TYPE CARD.HIT SEL. | It is not possible to delete only specific files from a flash ROM card, due to the characteristics of the memory used. To delete a file it is necessary to delete all files on the card, by using the FORMAT function. |
| R | ROM PARITY ERROR: NC BASIC. HIT SELECT. | The NC BASIC is parity error. Check whether NC BASIC is in flash ROM, using SYSTEM DATA CHECK. |
| S | SRAM DATA BACKUP ERROR. HIT SELECT KEY. | An attempt to write a backup file to a memory card failed. Check that the memory card is normal.
 Note) Check that the memory card's battery is not exhusted, that its circuitry has not been damaged, and that it is securely inserted into its slot. |
| | SRAM PARITY OCCURRED. PLEASE POWER OFF. | A parity error was detected during backup operation of SRAM (Caution). |

CAUTION

1 Action to be taken when an SRAM parity error is detected during backup of SRAM in the boot system
The SRAM area of each CNC shipped from the factory is cleared and is free of parity errors. However, shock applied to the CNC during transportation may cause a parity error in the SRAM area. A parity error may also occur in the SRAM area when the CNC was kept switched off for one year or longer, and the battery has been exhausted. If a parity error occurs in the SRAM area, the data held in the SRAM area is not guaranteed. However, the CNC does not always use the entire SRAM area. A parity error is not detected by hardware unless the part containing the error is read. Therefore, if a parity error occurs in an area not accessed by the CNC, the CNC may operate normally. The SRAM backup function of the boot system reads the entire SRAM area. So, a parity error may occur in the middle of backup operation even when the CNC has operated normally. In this case, the SRAM data of the CNC is not guaranteed, and the data cannot be backed up using the SRAM backup function of the boot system. Nevertheless, the CNC may operate normally. So, it is recommended that necessary data be backed up using the Floppy Cassette or Handy File, data all clear operation be performed, then the backed up data be restored in the CNC. Once all clear operation is performed, the parity error can be removed. Then, the SRAM backup function of the boot system can be used.

MEMRY CARD SLOTD. 1 OVERVIEW750
D. 2 MEMORY CARD TYPES (FUNCTIONS) 751
D. 3 HARDWARE CONFIGURATION 752
D. 1

OVERVIEW

Whether a memory card slot is provided or not and the types (functions) of memory cards usable in the slot vary depending on the hardware configuration as shown below:

| Hardware | Card slot on LCD unit | Card slot on control unit |
| :--- | :--- | :--- |
| Type 1 | Type A, type B | No card slot |
| Type 2
 Type 6 | Type A | Type B |
| Type 3 | No card slot | Type A, type B |
| Type 4
 Type 5 | No card slot
 (See NOTE given below.) | Type B |

(Supplementary)
Types A and B indicate the types (functions) of memory cards. See Section D.2. Types 1 to 6 indicate hardware configuration. See Section D.3.

NOTE

The functions of type A (such as a software write function) are implemented by open CNC functions.

D. 2
 MEMORY CARD TYPES (FUNCTIONS)

Type A: SRAM memory card
FROM memory card
Flash ATA card
Modem card (for remote diagnosis)

Type B: Ladder edit card (PMC ladder edit function)

NOTE

For details of the types of usable memory cards, see the ordering list.

D. 3
 HARDWARE CONFIGURATION

- Type 1 LCD-mounted type

- Type 2

Stand-alone type (with an LCD unit)

- Type 3

Stand-alone type (with a CRT/MDI unit)

- Type 4

Stand-alone type (with an intelligent terminal and FA keyboard)

- Type 5

Stand-alone type (with an intelligent terminal and FA keyboard)

- Type 6

Stand-alone type (with an LCD unit and MDI, and an intelligent terminal and FA keyboard)
 OF STAND-ALONE TYPE UNIT

LED DISPLAY AND MAINTENANCE OF STAND-ALONE

TYPE UNIT

E. 1 OVERVIEW 755
E. 2 LAYOUT OF THE 7-SEGMENT LED AND SWITCHES 756
E. 3 OPERATION 757
E. 4 SUPPORTED EDITIONS 763

E. 1 OVERVIEW

FANUC Series $16 i / 18 i / 21 i$ (referred to as FS16i hereinafter) of stand-alone type is equipped with a 7 -segment LED, rotary switch, and push switch.

When no CRT/MDI is included in the system configuration or when the CRT/MDI becomes defective and cannot be used, battery backed-up data can be saved and restored by using the rotary switch and push switch.

When the CRT/MDI can be used, use these switches for maintenance of the boot function.

E. 2

LAYOUT OF THE 7-SEGMENT LED AND SWITCHES

The 7-segment LED, rotary switch, and push switch are located as shown below.

E. 3
 OPERATION

E.3.1
 Operation Before Power-On

Before turning on the power, select a function number by using the rotary switch. When the power is turned on after the selection with the rotary switch, the number corresponding to the selected function number is indicated on the LED. The indication blinks at intervals of about one second.

E.3.2 Function Number

Each function is assigned a number. This number is called a function number hereinafter in this manual. The function numbers that can be selected with the rotary switch are listed below. Do not set the reserved function numbers. (If a reserved function number is set, the system operates as if function number 0 were selected.)

| Function number | Explanation | Remarks |
| :---: | :---: | :---: |
| 0 | Normal state. After terminating maintenance operation, always set this number. | |
| 1 | Reserved | |
| 2 | Sets a device number for the display link function. | (NOTE) |
| 3 | Reserved | |
| 4 | Maintenanceswitch | (NOTE) |
| 5 | Memory all clear | (NOTE) |
| 6 | Reserved | |
| 7 | Reserved | |
| 8 | Saves battery backed-up main board data in a memory card at a time. | |
| 9 | Reserved | |
| A | Restores battery backed-up main board data from a memory card at a time. | |
| B | Reserved | |
| C | Reserved | |
| D | Reserved | |
| E | Reserved | |
| F | Reserved | |

NOTE

If the software edition is old, it cannot sometimes be used. (See Section E.4, "Supported Editions.") OF STAND-ALONE TYPE UNIT

APPENDIX
B-63005EN/02

E.3.3

Seven-Segment LED
Display
E.3.3.1

NC status display

| Number displayed on LED | Blink/not blink | Description |
| :--- | :---: | :--- |
| \square | Not blink | Automatic operation is
 paused, stopped, or reset. |
| (Rotation of character \square) | Not blink | Automatic operation start
 signal
 When STL (F000\#5) $=1$ |
| Number ($\square \sim \square$ | Blink | System alarm status |
| Number ($\square \sim$ | Not blink | Status change at power-on |

E.3.3.2

LED display during automatic operation

E.3.3.3

LED display when the push switch is pressed

| Number displayed on LED | Blink/not blink | Description |
| :---: | :---: | :---: |
| \square | Not blink | The push switch has been
 pressed normally. |

NOTE

If the software edition is old, the above indication may not appear. (See Section E.4, "Supported Editions.")
E.3.3.4

LED display when a system alarm is issued

When a system alarm is issued, a number blinks on the 7 -segment LED.

| Number on LED
 (blinking) | System alarm
 number | Type of system alarm |
| :---: | :--- | :--- |
| \square | In the 900's | ROM PARITY |
| \square | In the 910's | SRAM PARITY,
 DRAM PARITY |
| \square | In the 920's | SERVO ALARM |
| \square | In the 930's | CPU INTERRUPT,
 SRAM ECC ERROR |
| \square | In the 950's | PMC SYSTEM ALARM |
| \square | In the 970's | NON MASK INTERRUPT,
 BUS ERROR |
| \square | Others | Other system alarms |
| \square | \square | \square |

E.3.3.5

Display on the 7-segment LED at power-on

| Number displayed
 on LED | On/off status of
 4 LEDs | Meaning |
| :---: | :---: | :--- |

E.3.4
 Operation of Each Function

- Function number 2
- Function number 4
- Function number 5

This function sets a device number for the display link function.
(1) Check that number 2 blinks on the LED, and press the push switch.
(2) Number 2 is displayed on the LED. Press the push switch.
(3) Sixteen numbers from 0 to F are displayed on the LED one by one at intervals of about one second. When the device number you want to set appears on the LED, press the push switch.
(4) The selected device number blinks on the LED. Press the push switch.
(5) The device number used for the display link function is displayed on the LED.

This function allows the maintenance switches to be used to display data without using any display unit.
(1) Check that number 4 blinks on the LED. Press the push switch.
(2) Number 4 is displayed on the LED. Press the push switch.
(3) Number 0 is displayed on the LED. Press the push switch.
(4) Numbers 0 and 2 are displayed alternately on the LED at intervals of about one second. When 2 is displayed, press the push switch.
(5) The device number used for the display link function is displayed on the LED.

This function clears all the battery backed-up SRAM data. The device number for the display link function is also cleared. Once the device number has been cleared, the device number is set to 0 .
(1) Check that number 5 blinks on the LED. Press the push switch.
(2) Number 5 is displayed on the LED. Press the push switch.
(3) The display on the LED changes from - to F to 9 to 8 to 7 to 6 to 5 to 4 to 3 to 2 to 1 to 0 in this order.
(4) After all-clear operation terminates normally, the LED display stops changing at number 0 .
(5) Turn off the power, set the rotary switch to 0 (normal state), then turn on the power again.

APPENDIX
B-63005EN/02

- Function number 6

- Function number \mathbf{A}

This function saves battery backed-up main board data in a memory card at a time. The data saved using this function can be restored at a time by performing the operation for function number A or by using the SRAMDATABACKUP function of the boot function.
(1) In the memory card slot (MEMORY CARD CNM1B) of the control unit, insert a formatted memory card having at least 512 KB of available space.
(2) Check that number 8 blinks on the LED, and press the push switch.
(3) While data is being saved in the memory card, the LED indication turns clockwise.
(4) If the data cannot fit in one memory card, number 3 blinks. Replace the memory card with another one, and press the push switch.
(5) If the protect switch of the memory card is not released or if the battery capacity of the memory card is insufficient, number 2 blinks on the LED. Replace the memory card with another one, and press the push switch.
(6) When the data has been saved normally, number 0 is displayed on the LED. If the data cannot be saved normally, number 1 is displayed on the LED.
(7) If SRAM PARITY occurs during data save operation, number 1 blinks on the LED. In this case, it is impossible to save the data at a time. Back up individual data items one by one, then perform all-clear operation.

This function restores battery backed-up main board data from a memory card at a time.
(1) Insert the memory card in the memory card slot (MEMORY CARD CNM1B) of the control unit.
(2) Check that A blinks on the LED, and press the push switch.
(3) While data is being restored from the memory card, the LED indication turns counterclockwise.
(4) If the entire data cannot be restored from the single memory card, number 3 blinks. Replace the memory card with the next memory card, and press the push switch.
(5) If the memory card cannot be recognized correctly, number 2 blinks on the LED. Check the memory card status, and press the push switch.
(6) When the data has been restored normally, number 0 is displayed on the LED. If the data cannot be restored normally, number 1 is displayed on the LED.
E. 4
SUPPORTED
EDITIONS EDITIONS

If an old software edition is used, part of the functions cannot be used.

- NC software (common to each series)/edition 02
- Boot software (60M3 series)/edition 11

When editions earlier than those mentioned above are used, the following functions cannot be used:

Function number 2 (display link function: Setting a device number) Function number 4 (display link function: Displaying a device number)
Function number 5 (memory all clear)
LED display immediately after the push switch is pressed (See Section E.3.3.3.) (BOOT-UP AND IPL)

F
 MAINTENANCE OF OPEN CNC (BOOT-UP AND IPL)

F. 1 OVERVIEW 765
F. 2 CHANGING START SEQUENCES 766
F. 3 EXPLANATION OF SCREENS 770
F.3.1 BOOT SCREEN 770
F.3.2 IPL SCREEN 774
F. 4 OTHER SCREENS 777
F.4.1 CNC ALARM SCREEN 777
F.4.2 STATUS SCREEN 778
F.4.3 OPTION SETTING SCREEN 779

F. 1 OVERVIEW

Ncboot32.exe provides the following functions:

- BOOT screen (for CNC system data maintenance, SRAM backup, and so forth)
- IPL screen (for clearing SRAM, and so forth)
- Display of the CNC power-on screen
- Display of CNC alarm screen
- Re-connection in case of the occurrence of a communication error
- Start of a registered application program

In the open CNC, CNC maintenance can be performed with Ncboot32.exe. Ncboot32.exe is copied in the System folder of Windows (System32 folder in Windows NT) at driver installation. At the start of Windows, Ncboot32.exe starts automatically, and resides in the system tray.
(Icon at the center)

Supplementary 1: Multi-connection

Ncboot32.exe supports HSSB multi-connection. The CNCs connected by HSSB are managed as nodes. The boot, IPL, and system alarm screens are displayed in windows that are opened independently for each node.

Supplementary 2: Termination method

Normally, Ncboot32.exe need not be terminated. However, to terminate Ncboot32.exe, right-click the icon in the system tray, and click End in the popup menu. When the Ncboot32.exe window is open, End cannot be selected.

F. 2

CHANGING START SEQUENCES

With the rotary switch on the HSSB board on the CNC side (when the CNC does not have the PC function) or on the motherboard of the CNC (when the CNC has the PC function), the start sequence can be changed.
Position 0 can be selected as required to perform maintenance using the boot and IPL screens.

Position 0 (maintenance)

1. Wait until communication with the CNC is established.
2. Display the boot screen.
3. Display the IPL screen.
4. Display the CNC power-on screen.
5. Initialize the work area for the data window library.
6. Start a registered application program.
7. Perform monitoring for communication errors and CNC system alarms.

Position 1 (normal operation)

1. Wait until communication with the CNC is established.
2. Initialize the work area for the data window library.
3. Start a registered application program.
4. Perform monitoring for communication errors and CNC system alarms.

Position 2 (asynchronous start)

1. The CNC starts without waiting for communication to be established.
2. After communication is established, the PC performs initialization described below.
3. Initialize the work area for the data window library.
4. Start a registered application program.
5. Perform monitoring for communication errors and CNC system alarms.

- Rotary switch position
- $160 i / 180 i / 210 i$ motherboard with the PC function A20B-8100-014x

A20B-8100-046x

Rotary switch

- $160 i \mathrm{~s} / 180 i \mathrm{i} / 210$ is motherboard with the PC function A20B-8100-054x

- HSSB interface board of $160 i / 180 i / 210 i$ of LCD-mounted type

- HSSB interface board of $160 i / 180 i / 210 i$ of stand-alone type

F. 3
 EXPLANATION OF SCREENS

NOTE

A mouse is required to display Ncboot32.exe screens.

F.3.1
 Boot Screen

When the sub-board is provided, select a board in the [Board] list.
The area where the file is to be placed can be changed by using the [Setting...] button.

Select the memory card on the CNC or a PC folder. The file location may be changed at any time.
F.3.1.1

System data manipulation

The following screen is used for manipulating system data (including control software and ladder programs) on the NC.

[Load...] opens the file selection screen. Specify a file to be loaded.
[Save] saves the selected NC system data in a file.
[Check] checks the selected NC system data.
[Delete] deletes the selected NC system data.

F.3.1.2

SRAM operation

This screen is used to store and restore NC SRAM data.

[Backup] stores SRAM data, and [Restore] restores SRAM data. In the center of the screen, the progress status is displayed. As with the NC, the backup file name is determined automatically from the SRAM size, and cannot be renamed.
F.3.1.3

File operation

The following screen is used for operating files on a memory card in the CNC or in a folder of the PC.

[Delete] deletes a selected file.
[Format] formats the memory card. This button is valid when the memory card is selected by [Setting...]
[Refresh] updates the file list to the latest state. After changing memory cards or floppy disks, click this button. (BOOT-UP AND IPL)

F.3. 2

IPL Screen

| | Ix x |
| :---: | :---: |
| IPL MENU
 (MENU)
 0. EXIT
 1. MEMORY CLEAR
 2. SETTING | |
| 9. OTHERS SELECT NO.: | |

NOTE

The contents of the IPL screen vary depending on the CNC model. Follow the instructions displayed in the menu.

The CNC allows functions to be performed according to the key status set at power-on.

The open CNC does not allow this operation. On the IPL screen, however, equivalent functions can be executed.
For details of the menu on the IPL screen and supported functions, see the table given in Section F.3.2.1.

F.3.2.1

Functions on the IPL screen

| Title on IPL screen | | | | Corresponding MDI key operation at power-on (Operation with a standard CNC) |
| :---: | :---: | :---: | :---: | :---: |
| 0. EXIT | | | | |
| 1.
 MEMORY
 CLEAR | 0. CANCEL | | | |
| | 1. ALL MEMORY | | 0. CANCEL
 1. ALL
 2. SUB
 3. LOADER | $\begin{aligned} & \text { <DELETE>+ <RESET> } \\ & \text { <CAM > + <2> } \\ & \text { <CAN }>+<5> \end{aligned}$ |
| | 2. PARAMETER AND OFFSET | | 0. CANCEL
 1. MAIN
 2. SUB
 3. LOADER | <RESET>
 <RESET>+<2>
 <RESET>+<5> |
| | 3. ALL PROGRAM | | 0. CANCEL
 1. ALL
 2. MAIN
 3. SUB
 4. LOADER | <DELETE>
 <DELETE>+<1>
 <DELETE> + <2>
 <DELETE> + < $5>$ |
| | 4. ADDITIONAL SRAM | | 0. CANCEL
 1. ALL
 2. MAIN
 3. SUB | $\begin{aligned} & \text { <O> + <DELETE> } \\ & \text { <O> + <1> } \\ & \text { <O> + <2> } \end{aligned}$ |
| | 5. PMC | 0. CANCEL | | |
| | | 1. PARAMETER | 0. CANCEL
 1. CNC
 2. LOADER | $\begin{aligned} & <Z>+<O> \\ & <Z>+<5> \end{aligned}$ |
| | | 2. PROGRAM | 0. CANCEL
 1. CNC
 2. LOADER | $\left\lvert\, \begin{aligned} & <Z>+<0> \\ & <Z>+<5> \end{aligned}\right.$ |
| | 6. CAP-II | | 0. CANCEL
 1. SUB MEMORY
 2. CONVERSATIONNAL DATA | $\left\lvert\, \begin{aligned} & \text { <SP> } \\ & \text { <l> } \end{aligned}\right.$ |

| Title on IPL screen | | | Corresponding MDI key operation at power-on (Operation with a standard CNC) |
| :---: | :---: | :---: | :---: |
| $2 .$SETTING | 0. CANCEL | | |
| | 1. IGNORE OVER TRAVEL ALARM | 0. CANCEL
 1. CNC
 2. LOADER | $\begin{aligned} & <C A N>+<P> \\ & <C A N>+<L> \end{aligned}$ |
| | 2. START WITHOUT LADDER | 0. CANCEL
 1. CNC SIDE
 2.
 LOADER SIDE | $\begin{aligned} & <C A N>+<Z> \\ & <.>+<5> \end{aligned}$ |
| | 3. CLANGUAGE EXECUTOR | 0. CANCEL
 1. MAKE VOID C-EXEC
 2. BOOTS UP C-EXEC APL | $\begin{aligned} & <M>+<0> \\ & <M>+<3> \end{aligned}$ |
| 9. OTHERS | 0. CANCEL | | |
| | 1. P-CODE LOADER | | <CAN> + <PROG> |

F. 4
 OTHER SCREENS

F.4.1
 CNC Alarm Screen

This screen appears when a system alarm is issued in the CNC. (The above screen is an example. The displayed information varies depending on the system alarm issued in the CNC.)

F.4.2

Status Screen

To open the status screen, double-click the icon in the system tray. Alternatively, in the menu popped up by right-clicking, click OPEN.

Node: Node number
Name: Node name. (Define the node name in advance by using the device manager in Windows 95/98 or the HSSB applet on the control panel in Windows NT.)
Bus: Hardware communication status (0: Communication error, 1: Communication established)
Status: Status (in hexadecimal)
Bit 1: Rotary switch position 1
Bit 2: End of boot processing
Bit 3: End of IPL processing
Bit 4: Rotary switch position 2
Bit 8: CNC system alarm
Pop up this window on communication error: By checking this item, this screen is opened automatically when a communication error occurs.

Clicking the [Close] button closes the screen.
Clicking the [Setting...] button opens the option setting screen.
Clicking the [About...] button opens the version information screen.

F.4.3
 Option Setting Screen

On the option setting screen, application programs can be registered. When a program uses the data window library, the program does not run unless it is started after the work area for the data window library is initialized. By registering such a program in Ncboot32.exe, it can be executed after the initialization of the work area for the data window library.

Application programs are registered for each node.

[Node] selects a node. In the list box in the center of the screen, the programs registered for the selected node are displayed.
[New...] registers a new program. When a blank character is included in the path, it is enclosed with double quotation marks.
[Remove] deletes a selected line.
[Edit] allows editing of a selected line. This button is used to edit arguments. The character string \%d in the command line is replaced by a node number. To represent \% itself, describe \%\%.

Example: To start basic operation package 1 after initialization of the work area for the data window library of the node, describe the following:
"C:\Program Files\Basic Operation Package 1\WinBOP32.exe" /Node=\%d

FSSB START-UP PROCEDURE/MATERIALS

G. 1 OVERVIEW 781
G. 2 SLAVE 782
G. 3 AUTOMATIC SETTING 783
G.3.1 [SAMPLE SETTING 1] GENERAL CONFIGURATION (SEMI-CLOSED LOOP) 785
G.3.2 [SAMPLE SETTING 2] GENERAL CONFIGURATION (CLOSED LOOP) 786
G.3.3 [SAMPLE SETTING 3] WHEN THE C-AXIS IS A Cs AXIS 788
G.3.4 [SAMPLE SETTING 4] TANDEM CONTROL CONFIGURATION 790
G.3.5 [SAMPLE SETTING 5] WHEN THE SIMPLE ELECTRONIC GEAR BOX (EGB) FUNCTION IS USED 792
G. 4 MANUAL SETTING 2 794
G. 5 MANUAL SETTING 1 801
G. 6 ALARMS 802
G. 7 ACTIONS FOR TROUBLE ENCOUNTERED AT START-UP TIME 806
G. 8 EXAMPLES OF SETTINGS USING OTHER CONNECTIONS 808
G.8.1 EXAMPLE 1: LEARNING CONTROL 808
G.8.2 EXAMPLE 2: WHEN A 2-AXIS AMPLIFIER IS SHARED BY TWO PATHS 809
G. 9 FSSB DATA DISPLAY 812
G.9.1 AMPLIFIER SETTING SCREEN 812
G.9.2 AXIS SETTING SCREEN 813
G.9.3 AMPLIFIER MAINTENANCE SCREEN 814

G. 1

 OVERVIEWWith a system that uses the FSSB, the parameters below need to be set for axis setting. (Set other parameters as usually done.)

- No. 1023
- No. 1905
- No. 1910 to 1919
- No. 1936, 1937

For setting of these parameters, three methods are available.

1. Automatic setting

By entering data including the relationship between axes and amplifiers on the FSSB setting screen, a calculation for axis setting is made automatically, and parameter Nos. 1023, 1905, 1910 through 1919, 1936, and 1937 are automatically set.
2. Manual setting 2

Enter desired values directly in all of parameter Nos. 1023, 1905, 1910 through 1919, 1936, and 1937.
Before setting the parameters, fully understand the functions of the parameters.
3. Manual setting 1 (NOTE)

Based on the setting of No. 1023, default axis setting is performed. Parameter Nos. 1905, 1910 through 1919, 1936, and 1937 need not be set. Automatic setting is not performed.

NOTE

With manual setting 1, usable functions are limited. So, when starting up the FSSB, use automatic setting or manual setting 2 whenever possible.

G. 2

SLAVE

In a system using the FSSB, the CNC, servo amplifiers, and pulse modules are connected with each other via optical cables. These amplifiers and pulse modules are referred to as slaves. Assume that a 2-axis amplifier consists of two slaves, and a 3-axis amplifier consists of three slaves. Slave numbers $(1,2,3, \ldots, 10)$ are assigned to the slaves in ascending order; a younger number is assigned to a slave that is closer to the CNC.

Note) M1/M2: Pluse Module 1st/2nd

G. 3

AUTOMATIC SETTING

When the following parameters are set, automatic setting can be performed using the FSSB setting screen:
Bit 0 of No. $1902=0$
Bit 1 of No. $1902=0$
For automatic setting on the FSSB setting screen, use the procedure below.

1 Set a servo axis number in No. 1023.
Be sure to match an axis number set in No. 1023 with the total number of axes of the servo amplifiers connected via optical cables.
2 On the servo initialization screen, initialize the servo parameters.
3 Turn off then on the power to the CNC.
4 Press function key srstem.
5 Pressing the continuous menu key \triangle several times displays [FSSB].
6 Pressing soft key [FSSB] switches the screen display to the amplifier setting screen (or the FSSB setting screen selected previously), and displays the following soft keys:

7 Press soft key [AMP].
8 On the amplifier setting screen, set a controlled axis number connected to each amplifier.
The amplifier setting screen lists the slaves in ascending order of slave numbers from top to bottom. So, when setting controlled axis numbers, consider which amplifier axis is to be connected to which CNC axis, sequentially, starting with the amplifier axis closest to the NC. On this setting screen, 0 and duplicate numbers cannot be entered.

9 Press soft key [SETING]. (This soft key appears when a value is entered.)
10 Press function key \square

11 Pressing the continuous menu key \square several times displays [FSSB].
12 Pressing soft key [FSSB] switches the screen display to the amplifier setting screen, and displays the following soft keys:

13 Press soft key [AXIS].
14 On the axis setting screen, set information on each axis.
15 The axis setting screen lists the CNC axes in ascending order of axis numbers from top to bottom.
When any of the following is to be performed for each axis, the setting of this screen is required:

- Use of a separate detector
- Exclusive use of a DSP (CPU for servo control) by one axis (for use of a current loop period of 125μ s or learning control, for example)
- Use of a CS axis controlled axis
- Use of tandem control

16 Press soft key [SETING]. (This soft key appears when a value is entered.)
This operation starts an automatic calculation, and parameter Nos. 1023, 1905, 1910 through 1919,1936 , and 1937 are automatically set.
Bit 1 of parameter No. 1902 is set to 1 to indicate that each of these parameters has been set. When the power is turned off then back on, axis settings are made according to each parameter.
m Notes on using the simple electronic gear box (EGB) function
When using the simple electronic gear box (EGB) function, perform EGB axis setting (parameter No. 7771) before automatic setting using the FSSB setting screen. Without EGB axis setting, correct values cannot be set by automatic setting using the FSSB setting screen.

G.3.1

[Sample Setting 1]
General Configuration
(Semi-Closed Loop)

Step 1 Set the following with parameter No. 1023:
X : 1
Y: 2
Z:3
A: 4
Step 2 Initialize the servo parameters for each axis.
Step 3 Turn on then off the power to the CNC.
Step 4 Enter the axis numbers on the amplifier setting screen.

Step 5 Press soft key [SETING]. (This soft key appears when a value is entered.)

Step 6 Press function key \qquad

Step 7 Pressing the continuous menu key \square several times displays [FSSB].
Step 8 Pressing soft key [FSSB] switches the screen display to the amplifier setting screen, and displays the following soft keys:

Step 9 Press soft key [AXIS].
Step 10 Press soft key [(OPRT)] without entering any data, then press soft key [SETING].
Step 11 Turn off then on the power to the CNC. This completes the setting.

G.3.2

[Sample Setting 2]
General Configuration
(Closed Loop)

Step 1 Set the following with parameter No. 1023:
X : 1
Y: 2
Z: 3
A: 4
Step 2 Initialize the servo parameters for each axis.
Step 3 Turn on then off the power to the CNC.
Step 4 Enter the axis numbers on the amplifier setting screen.

```
(Amplifier setting)
    No. AMP SERIES UNIT CUR. [AXIS] NAME
        A1-L \alpha SVM 40A [ 2 ] Y
        A2-L \alpha SVM 40A [ 1 ] X
        A3-L 
        NO. EXTRA TYPE PCB ID
        5 M1 A 0008 DETECTOR (4AXES)
    >
MDI **** *** *** 13:11:56
[ AMP ][ AXIS ][ MAINT ] [ ] [ (OPRT) ]
```

Step 5 Press soft key [SETING]. (This soft key appears when a value is entered.)

Step 6 Press function key \square
Step 7 Pressing the continuous menu key \triangleright several times displays [FSSB].
Step 8 Pressing soft key [FSSB] switches the screen display to the amplifier setting screen, and displays the following soft keys:

Step 9 Press soft key [AXIS].
Step 10 Set the separate detector on the axis setting screen. (Pulse module: M1/M2)

Step 11 Press soft key [SETING]. (This soft key is displayed when a value is entered.)
Step 12 Set bit 1 of parameter No. 1815 to 1 for the Y-axis and A-axis.
Step 13 Turn off then on the power to the CNC. This completes the setting.

G.3.3

[Sample Setting 3]

When the C-Axis is a
 Cs Axis

Step 1 Set the following with parameter No. 1023:
X : 1
Z: 2
C : -1
Y: 3
A : 4
Step 2 Initialize the servo parameters for each axis.
Step 3 Initialize the spindle parameters for the spindle.
Step 4 Turn on then off the power to the CNC.

Step 5 Enter the axis numbers on the amplifier setting screen.

Step 6 Press soft key [SETING]. (This soft key appears when a value is entered.)

Step 7 Press function key \square
Step 8 Pressing the continuous menu key \square several times displays [FSSB].
Step 9 Pressing soft key [FSSB] switches the screen display to the amplifier setting screen, and displays the following soft keys:
$\left(\begin{array}{lllll}{\left[\begin{array}{lll}\text { AMP } &][& \text { AXIS } \\][\text { MAINT }][&][\text { (OPRT) }]\end{array}\right) .}\end{array}\right.$
Step 10 Press soft key [AXIS].
Step 11 Set the Cs contour axis on the axis setting screen. (Cs)

Step 12 Press soft key [SETING]. (This soft key appears when a value is entered.)
Step 13 Turn off then on the power to the CNC. This completes the setting.

G.3.4

[Sample Setting 4]
Tandem Control
Configuration

The following two pairs of axes are tandem axes:
[The X -axis is a master axis, and the A -axis is a slave axis.]
[The Y -axis is a master axis, and the B -axis is a slave axis.]

Step 1 Set the following with parameter No. 1023:
X: 1
Y:3
Z: 5
A: 2
B : 4
No.1010=3
No.1817\#6=1 (X axis, A axis, Y axis, B axis)
Tandem control option
Step 2 Initialize the servo parameters for each axis.
Step 3 Turn on then off the power to the CNC.

Step 4 Enter the axis numbers on the amplifier setting screen.

Step 5 Press soft key [SETING]. (This soft key appears when a value is entered.)

Step 6 Press function key \square
Step 7 Pressing the continuous menu key \triangle several times displays [FSSB].
Step 8 Pressing soft key [FSSB] switches the screen display to the amplifier setting screen, and displays the following soft keys:
$\left(\begin{array}{llllll}\left.\left[\begin{array}{lll}\text { AMP } &][& \text { AXIS } \\][\text { MAINT }][&][(O P R T)\end{array}\right]\right)\end{array}\right.$
Step 9 Press soft key [AXIS].
Step 10 Set the tandem axes on the axis setting screen. (TNDM)

Step 11 Press soft key [SETING]. (This soft key appears when a value is entered.)
Step 12 Turn off then on the power to the CNC. This completes the setting.

G.3.5

[Sample Setting 5]

When the Simple

Electronic Gear Box
(EGB) Function is Used
[EGB workpiece axis: A-axis, EGB dummy axis: B-axis (No. $7771=$ 5)]

Step 1 Set the following with parameter No. 1023:
X : 1
Y:2
Z: 5
A:3
B : 4
No. $7771=5$
No.7772, No. 7773
No.2011\#0=1 (A axis, B axis)
Option parameter
Step 2 Initialize the servo parameters for each axis.
Step 3 Turn on then off the power to the CNC.

Step 4 Enter the axis numbers on the amplifier setting screen.

Step 5 Press soft key [SETING]. (This soft key appears when a value is entered.)

Step 6 Press function key \square
Step 7 Pressing the continuous menu key \triangle several times displays [FSSB].
Step 8 Pressing soft key [FSSB] switches the screen display to the amplifier setting screen, and displays the following soft keys:

Step 9 Press soft key [AXIS].
Step 10 Set the EGB dummy axis on the axis setting screen. (M1)

Step 11 Press soft key [SETING]. (This soft key appears when a value is entered.)
Step 12 Turn off then on the power to the CNC. This completes the setting.

G. 4

MANUAL SETTING 2

When the following parameters are set, each axis can be set manually:
No.1902\#0=1
No.1902\#1=0
When performing manual setting, set parameter Nos. 1023, 1905, 1910 through 1919, 1936, and 1937, fully understanding their functions.

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | \#0 | |
| | | | | | | ASE | FMD |

[Data type] Bit
\#0 (FMD) The FSSB setting mode is:
0 : Automatic setting mode. (When data including the relationship between axes and amplifiers is set on the FSSB setting screen, parameter Nos. 1023, 1905, 1910 through 1919, 1936, and 1937 are automatically set.)
1 : Manual setting 2 mode. (Parameter Nos. 1023, 1905, 1910 through 1919, 1936, and 1937 are set manually.)
\#1 (ASE) When the FSSB setting mode is the automatic setting mode (when bit 0 of parameter No. $1902=0$), automatic setting is:
0 : Not completed.
1: Completed.
(This bit is automatically set to 1 when automatic setting is completed.)

| \#7 | \#6 | \#5 | \#4 | \#3 | \#2 | \#1 | \#0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PM2 | PM1 | | | | | | FSL |

[Data type] Bit axis
\#0 (FSL) The type of interface between servo amplifiers and servo software is:
0 : Fast type.
1: Slow type.
Two servo data transfer interface types are available: the fast type and slow type.
Set this bit so that the following conditions are satisfied:

- When a 1-axis amplifier is used, both of the fast and slow types can be used.
- When a 2-axis amplifier is used, the fast type must not be used for both axes. The slow type can be used for both axes.
- When a 3-axis amplifier is used, the first and second axes must satisfy the condition for a $2-$ axis amplifier, and the third axis must satisfy the condition for a one-axis amplifier.
- With an axis for which an odd number is set in parameter No. 1023, the fast type must be used. The slow type can also be used, however, for an EGB workpiece axis, learning-control axis, high-speed current loop axis, and high-speed interface axis.
- Only the slow type can be used with an axis for which an even number is set in parameter No. 1023. (Be sure to set this bit to 1).

\#6 (PM1) The first pulse module is:
0 : Not used.
1: Used.
\#7 (PM2) The second pulse module is:
0 : Not used.
1: Used.
This parameter is automatically set by data input on the FSSB setting screen when the FSSB setting mode is the automatic setting mode (when bit 0 of parameter No. $1902=0$). When the manual setting 2 mode is used (when bit 0 of parameter No. 1902 = 1), be sure to enter necessary data directly.
When a pulse module is used, connector numbers (parameter Nos. 1936 and 1937) need to be set.

[Data type] Byte
[Valid data range] 0 to $7,16,40,48$
Set an address conversion table value for each of slave 1 through 10 .

The slave is the generic name of a servo amplifier or pulse module connected to the CNC via an FSSB optical cable. The numbers from 1 to 10 are assigned to the slaves in ascending order; a younger number is assigned to a slave that is closer to the CNC. A 2-axis amplifier consists of two slaves, and a 3-axis amplifier consists of three slaves. Set each of the parameters as described below according to which of the three cases is applicable: the slave is an amplifier, the slave is a pulse module, or there is no slave.
When the slave is an amplifier:
Set a value obtained by subtracting 1 from the setting of parameter No. 1023 for the axis to which the amplifier is assigned.
When the slave is a pulse module:

- For the first pulse module (closest to the CNC), set 16.
- For the second pulse module (farthest from the CNC), set 48.
\bigcirc When there is no slave:
Set 40.
When using the simple electronic gear box (EGB) function, observe the note below.

NOTE

When using the simple electronic gear (EGB) function An EGB axis (axis set in parameter No. 7771) actually requires no amplifier. However, make a setting, assuming that the EGB axis is connected to a dummy amplifier. That is, as the address conversion table value for a nonexistent slave, set a value obtained by subtracting 1 from the setting of parameter No. 1023 for the EGB axis instead of 40.

These parameters are automatically set by data input on the FSSB setting screen when the FSSB setting mode is the automatic setting mode (when bit 0 of parameter No. $1902=0$). When the manual setting 2 mode is used (when bit 0 of parameter No. 1902 = 1), be sure to enter necessary data directly.

Axis configuration and example of parameter setting

Axis configuration and example of parameter setting when the simple electronic gear box (EGB) function is used
(EGB workpiece axis: A-axis, EGB axis: B-axis (parameter No. 7771 = 5))

[Data type] Byte axis

[Valid data range] 0 to 7

When using a pulse module, set a value obtained by subtracting 1 from the pulse module connector number for each axis. That is, for connector numbers 1 to 8 , set the values 0 to 7 . Moreover, set bits 6 and 7 of parameter No. 1905. Set 0 for an axis for which no pulse module is used. The user can freely determine which connector to use for which axis. Use connector numbers, starting with younger numbers. For example, connector number 4 cannot be used without using connector number 3 .

Example:

| Con-
 trolled
 axis | First con-
 nector
 number | Second
 connector
 number | No.1936 | No.1937 | No.1905
 $(\# 7, \# 6)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| X | 1 | Not used | 0 | 0 | 0,1 |
| Y | Not used | 2 | 0 | 1 | 1,0 |
| Z | Not used | 1 | 0 | 0 | 1,0 |
| A | Not used | Notused | 0 | 0 | 0,0 |
| B | 2 | Notused | 1 | 0 | 0,1 |
| C | Not used | 3 | 0 | 2 | 1,0 |

These parameters are automatically set by data input on the FSSB setting screen when the FSSB setting mode is the automatic setting mode (when bit 0 of parameter No. $1902=0$). When the manual setting 2 mode is used (when bit 0 of parameter No. $1902=1$), be sure to enter necessary data directly.
Axis configuration and example of parameter setting in the manual setting 2 mode

| No. | 1902\#0
 FSBMD |
| :---: | :---: |
| | 1 |

| No. | $\mathbf{1 9 1 0}$ | $\mathbf{1 9 1 1}$ | $\mathbf{1 9 1 2}$ | $\mathbf{1 9 1 3}$ | $\mathbf{1 9 1 4}$ | $\mathbf{1 9 1 5}$ | $\mathbf{1 9 1 6}$ | $\mathbf{1 9 1 7}$ | $\mathbf{1 9 1 8}$ | $\mathbf{1 9 1 9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 0 | 1 | 2 | 3 | 4 | 16 | 5 | 48 | 40 | 40 |

| No. | 1023 | 1905\#0
 FSBSL | 1905\#6
 FSBM1 | 1905\#7
 FSBM2 | 1936 | 1937 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | 1 | 0 | 1 | 0 | 0 | 0 |
| Y | 3 | 0 | 0 | 1 | 0 | 1 |
| Z | 4 | 1 | 0 | 1 | 0 | 0 |
| A | 2 | 1 | 0 | 0 | 0 | 0 |
| B | 5 | 0 | 1 | 0 | 1 | 0 |
| C | 6 | 1 | 0 | 1 | 0 | 2 |

G. 5
 MANUAL SETTING 1

When the following parameters are set, manual setting 1 is enabled:
Bit 0 of No. $1092=0$
Bit 1 of No. $1902=0$
Nos. 1910 through $1919=0$ (all set to 0)
In manual setting 1 , a setting is made at power-on so that the value set in parameter No. 1023 is assumed to be a slave number. That is, an axis for which the value of parameter No. 1023 is 1 is connected to the amplifier closest to the CNC. An axis for which the value of parameter No. 1023 is 2 is connected to the amplifier next closest to the CNC.

Bit 0 of No. $1092=0$
Bit 1 of No. $1902=0$
Nos. 1910 through $1919=0($ all set to 0$)$

Note that some functions and settings cannot be used in manual setting 1 as described below.

- No pulse module can be used.

This means that no separate position detector can be used.

- Set sequential numbers in parameter No. 1023.

For example, 3 cannot be set for an axis without setting 2 for any axis.

- The following servo functions cannot be used:Learning control
\square High-speed current loop
\square Simple electronic gear box (EGB)

G. 6

ALARMS

Alarms related to pulse coders

| NC alarm No. | Message | Description |
| :---: | :---: | :---: |
| 360 | n AXIS : ABNORMAL CHECKSUM (INT) | A checksum error occurred in the built-in pulse coder. |
| 361 | n AXIS : ABNORMAL PHASE DATA (INT) | A phase data error occurred in the built-in pulse coder. |
| 362 | n AXIS : ABNORMAL REV.DATA (INT) | A rotation speed count error occurred in the built-in pulse coder. |
| 363 | n AXIS : ABNORMAL CLOCK (INT) | A clock error occurred in the built-in pulse coder. |
| 364 | n AXIS : SOFT PHASE ALARM (INT) | A soft phase data error occurred in the builtin pulse coder. |
| 365 | n AXIS : BROKEN LED (INT) | An LED error occurred in the built-in pulse coder. |
| 366 | n AXIS : PULSE MISS (INT) | A feedback error occurred in the built-in pulse coder. |
| 367 | n AXIS : COUNT MISS (INT) | A count error occurred in the built-in pulse coder. |
| 368 | n AXIS : SERIAL DATA ERROR (INT) | A data error occurred in the built-in pulse coder. |
| 369 | n AXIS : DATA TRANS. ERROR (INT) | A CRC error or stop bit error occurred in the built-in pulse coder. |
| 380 | n AXIS : BROKEN LED (EXT) | An LED error occurred in the separate pulse coder. |
| 381 | n AXIS : ABNORMAL PHASE (EXT LIN) | A phase data error occurred in the separate linear scale. |
| 382 | n AXIS : COUNT MISS (EXT) | A count error occurred in the separate pulse coder. |
| 383 | n AXIS : PULSE MISS (EXT) | A feedback error occurred in the separate pulse coder. |
| 384 | n AXIS : SOFT PHASE ALARM (EXT) | A soft phase data error occurred in the separate pulse coder. |
| 385 | n AXIS : SERIAL DATA ERROR (EXT) | A data error occurred in the separate pulse coder. |
| 386 | n AXIS : DATA TRANS. ERROR (EXT) | A CRC error or stop bit error occurred in the separate pulse coder. |

Alarms related to servo amplifiers

| NC alarm No. | Message | Description |
| :---: | :---: | :---: |
| 430 | n AXIS : SV. MOTOR OVERHEAT | A servo module overheat occurred. |
| 431 | n AXIS : CNV. OVERLOAD | A converter (PSM) overheat occurred. |
| 432 | n AXIS : CNV. LOWVOLT CON./POWFAULT | The control power supply voltage (24 V) has dropped. |
| 433 | n AXIS : CNV. LOW VOLT DC LINK | The DC link voltage has dropped. |
| 436 | n AXIS : SOFTTHERMAL (OVC) | The digital servo software detected the soft thermal state (OVC). |
| 438 | n AXIS : INV. ABNORMAL CURRENT | The current of the main circuit is too high. |
| 439 | n AXIS : CNV. OVERVOLT POWER | The DC link voltage is too high. |
| 440 | n AXIS : CNV. EX DECELERATION POW. | The regenerative discharge amount is too high. |
| 441 | n AXIS : ABNORMAL CURRENT OFFSET | The digital servo software detected an abnormality in the motor current detection circuit. |
| 443 | n AXIS : CNV. COOLING FAN FAILURE | The internal stirring fan failed. |
| 445 | n AXIS : SOFT DISCONNECT ALARM | The digital servo software detected a broken wire in the detector. |
| 446 | n AXIS : HARD DISCONNECT ALARM | A broken wire in the built-in pulse coder was detected by hardware(NOTE). |
| 447 | n AXIS : HARD DISCONNECT (EXT) | A broken wire in the separate detector was detected by hardware. |
| 448 | n AXIS : UNMATCHED FEEDBACK ALARM | The sign of feedback data from the built-in pulse coder differs from the sign of the feedback data from the separate detector. |

NOTE

This alarm is not issued with the FS16C and FS16i.
FBAL (bit 1 of alarm 1) may be set to 1 in the following cases:

- Hard broken wire in the separate pulse coder (bit 1 of alarm $1=1$, bit 7 of alarm $2=1$, bit 4 of alarm $2=1$
- Soft broken wire (bit 1 of alarm $1=1$)
- Count error alarm (bit 1 of alarm $1=1$, bit 7 of alarm $2=$ 1 , bit 3 of alarm $3=1$)

Alarms related to servo amplifiers

| NC alarm No. | Message | Description |
| :---: | :---: | :---: |
| 460 | n AXIS : FSSB DISCONNECT | FSSB communication was disconnected suddenly. The possible causes are as follows:
 1) The FSSB communication cable is disconnected or broken.
 2) The power to the amplifier dropped suddenly.
 3) The amplifier issued a low-voltage alarm. |
| 461 | n AXIS: ILLEGAL AMP INTERFACE | Both axes of a 2-axis amplifier were assigned to the fast type interface. |
| 462 | n AXIS: SEND CNC DATA FAILED | Because of an FSSB communication error, a slave could not receive correct data. |
| 463 | n AXIS : SEND SLAVE DATA FAILED | Because of an FSSB communication error, the servo system could not receive correct data. |
| 464 | n AXIS : WRITE ID DATA FAILED | An attempt to write maintenance information on the amplifier maintenance screen failed. |
| 465 | n AXIS : READ ID DATA FAILED | At power-up, initial amplifier ID information could not be read. |
| 466 | n AXIS : MOTOR/AMP COMBINATION | The maximum current value of the amplifier does not match the maximum current value of the motor. |
| 467 | n AXIS: ILLEGAL SETTING OF AXIS | The following servo functions are not enabled even when an axis using a DSP exclusively is set on the axis setting screen:
 1) Learning control (bit 5 of parameter No. 2008 = 1)
 2) High-speed current loop (bit 0 of parameter No. 2004 = 1)
 3) High-speed interface axis (bit 4 of parameter No. 2005 = 1) |

P/S alarms

| NC alarm No. | Message | Description |
| :---: | :---: | :---: |
| 5134 | FSSB: OPEN READY TIME OUT | The FSSB did not become ready to open duringinitialization. |
| 5135 | FSSB : ERROR MODE | The FSSB entered an error mode. |
| 5136 | FSSB: NUMBER OF AMPS IS SMALL | The number of amplifiers recognized by the FSSB is insufficient, compared with the number of controlled axes. |
| 5137 | FSSB: CONFIGURATION ERROR | The FSSB detected a configuration error. |
| 5138 | FSSB: AXIS SETTING NOT COMPLETE | Axis setting has not been performed in automatic setting mode. Perform axis setting using the FSSB setting screen. |
| 5139 | FSSB : ERROR | The servo system could not be initialized normally. The cause may be an optical cable failure or incorrect connection with an amplifier and other modules. |
| 5197 | FSSB: OPEN TIME OUT | The FSSB did not open when the CNC had allowed the FSSB to open. |
| 5198 | FSSB : ID DATA NOT READ | The initial ID information for the amplifier cannot be read because of a failure in the temporaryassignment. |

G. 7
 ACTIONS FOR TROUBLE ENCOUNTERED AT START-UP TIME

- MDI input is abnormal (each time data is entered, the power needs to be turned off).

First, disconnect the optical cable of the NC, then turn off then on the power. Next, check the items below.
(A) Check parameter No. 1902.

Action: hen parameter
No. $1902=00000000$, set the following:
No. $1905=00000000$
Nos. 1910 through $1919=0$
Action: hen parameter
No. $1902=00000001$ or 00000010 , set the following:
No. $1905=$ Appropriate value
Nos. 1910 through $1919=$ Appropriate value
(B) When bit 1 of parameter No. $1815=1$, check parameter Nos. 1910 through 1919 to see if 16 or 48 is set.
Action: If neither 16 nor 48 is set, set bit 1 of No. 1815 to 1.
(C) Check if communication is open (the green LED is on).

Action: If communication is not open, check the power supply for the amplifier and optical cable connection.

- The separate detector can be recognized, but feedback pulses from the separate detector are abnormal.
(A) Check parameter No. 1902.

Action: The setting of parameter
No. $1902=00000000$ is incorrect. When parameter
No. $1902=00000001$, set the following:
No. $1905=01000000$ or 10000000
Nos. 1910 through 1919 = Appropriate value
Nos. 1936 and 1937 = Appropriate value
Action: When parameter No. $1902=00000010$, set connector numbers for M0 and M1 in axis setting on the FSSB screen.

- In axis setting on the FSSB screen, connector numbers for M1 and M2 cannot be set.

Action: Check the FSSB screen to see if pulse module IDs are read correctly. If pulse module IDs are not read correctly, check the pulse module connections.

- The settings on the FSSB screen are canceled when the power is turned off then back on.

Action: After setting desired values, press soft key [SETING] on the amplifier setting screen and axis setting screen.

- P/S alarm 5138 "AXIS SETTING NOT COMPLETE" is issued.

Action: Automatic setting on the FSSB screen is not terminated normally. Make settings correctly on the FSSB amplifier setting screen and axis setting screen, and press soft key [SETING] on both screens. At this time, be sure to make settings on the amplifier setting screen and the axis setting screen in this order.

Action: When automatic setting on the FSSB screen is not performed, set all of parameter Nos. 1902, 1905, 1910 through 1919,1936 , and 1937 to 0 before starting manual setting.

- The invalid amplifier/motor combination alarm (466) is issued.

Action: Check if the maximum current value of the amplifier read on the ID screen matches the setting of parameter No. 2165. Recheck the amplifier/motor combination.
Action: Initialize the servo parameters of each axis.

- When the power is turned off then back on after modifying parameter No. 1902, the system alarm (920) is issued.
Action: Disconnect the optical cable of the CNC, then turn off then on the power.
Set all of parameter Nos. 1902, 1905, 1910 through 1919, 1936, and 1937 to 0 , then turn off then on the power, then make an FSSB setting all over again.
- When 2-path control is used, automatic setting on the FSSB screen is not executed normally.

Action: Use Version 04 and later of the CNC software (B0F1/B1F1/BDF1/BEF1).

- When 2-path control is used, a setting for using axes of the other path (for example, a setting for assigning a motor connected via an optical cable with the board of path 2 to an controlled axis of path 1) cannot be made normally.
Action: Use Version 04 and later of the CNC software (B0F1/B1F1/BDF1/BEF1).

G. 8

EXAMPLES OF
SETTINGS USING
OTHER
CONNECTIONS

G.8. 1

Example 1: Learning

 Control- Conceptual diagram of FSSB parameter setting for using learning control

When learning control is used, one NC controlled axis uses one DSP (two axes of the servo axis card) exclusively.
(1) Set bit 0 of parameter No. 1902 to 1 to disable automatic setting.
(2) Assign two axes of the axis card to each of learning control axes X and C. (Parameter No. $1023 \mathrm{X}=1, \mathrm{C}=3$)
(3) Assign the remaining controlled axes to the axis card (Parameter No. $1023 \mathrm{Z}=5, \mathrm{~A}=6, \mathrm{~B}=7$)
(4) Set bit 0 of parameter No. 1905 to 1 for the A-axis, for which an even number is set in parameter No. 1023.
(5) When using a 2 -axis amplifier, one of the two axes must always be set for the slow type. So, set bit 0 of parameter No. 1905 to 1.
(6) Set the attributes of parameter Nos. 1910 through 1914 to $0,2,4,5$, and 6 , and set the attributes of the remaining parameters to 40 (for absence of a slave).

G.8.2

Example 2: When a 2-Axis Amplifier is Shared by Two Paths

- FSSB setting procedure for controlling servo axes of another path in a multi-path system

Example: FSSB setting for the following:
Hardware connection
Mother board - 2-axis amplifier (LX/LZ) - 2-axis amplifier (LA/RA) - 2-axis amplifier (LC/RC)
Sub-board - 2-axis amplifier (RX/RZ) - 2-axis amplifier (LY/RY)
Controlled axis configuration
Mother board: LX, LZ, LC, LA, LY
Sub-board: RX, RZ, RC, RA, RY
Method of setting
When the servo system of another path is controlled as in this example, automatic FSSB setting is not possible. Manual setting needs to be used.

When a motor connected to a path other than the local path is to be used in using a 2 -axis amplifier, set the axis card number (DSP) of the remote path in parameter No. 1023.
Procedure for setting
(1) Set bit 0 of parameter No. 1902 to 1 to use the manual setting mode.
(2) By hardware connection, the slave number of each motor is determined. So, in parameter Nos. 1910 through 1919, set (slave number - 1) and 40 (for absence of a slave).

| Path 2 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Axia | Name | 1905 | 1936 | 1023 | | |
| | | $\# 7$ | $\# 6$ | $\# 0$ | 1937 | |
| $\mathbf{1}$ | X | | | | | |
| 2 | Z | | | | | |
| 3 | C | | | | | |
| 4 | A | | | | | |
| 5 | Y | | | | | |

(3) Set an axis card number (DSP number) in parameter No. 1023 to connect an NC controlled axis with a motor.
(4)For an axis for which an even number is set in parameter No. 1023, set bit 0 of parameter No. 1905 to 1.
With the settings above, a servo motor connected to another path can be controlled.

When a pulse module is connected to use a separate scale, bits 7 and 6 of parameter No. 1905, and parameter Nos. 1936 and 1937 need also be set.

G. 9
 FSSB DATA DISPLAY

The FSSB setting screen displays FSSB-based amplifier and axis information, and allows amplifier and axis information to be set.

1 Press function key sstem.
2 Pressing the continuous menu key \triangle several times displays [FSSB].
3 Pressing soft key [FSSB] switches the screen display to the amplifier setting screen (or the FSSB setting screen selected previously), and displays the following soft keys:

There are three types of FSSB setting screens: the amplifier setting screen, axis setting screen, and amplifier maintenance screen.

Pressing soft key [AMP] switches the screen display to the amplifier setting screen.
Pressing soft key [AXIS] switches the screen display to the axis setting screen.Pressing soft key [MAINT] switches the screen display to the amplifier maintenance screen.

G.9.1
 Amplifier Setting Screen

The amplifier setting screen displays slave information divided into amplifier information and pulse module information.

The amplifier setting screen displays the items below.

- NO.: Slave number

The serial numbers for to up to ten slaves (up to eight amplifiers and up to two pulse modules) connected via the FSSB are displayed sequentially. A younger number is assigned to a slave closer to the CNC.

- AMP: Amplifier type

Amplifier type information starts with the character A, which stands for "amplifier." The character A is followed by the ordinal number of an amplifier counted from the amplifier closest to the CNC, then is followed by a letter indicating which axis of the amplifier is used (L for the first axis, and M for the second axis).

- AXIS NO: Controlled axis number

The controlled axis numbers set in parameter Nos. 1920 through 1929 are displayed.
When a value outside the range 1 to the maximum number of controlled axes is set, 0 is displayed.

- NAME: Controlled axis name

The axis name set in the parameter No. 1020 corresponding to a controlled axis number is displayed. When the controlled axis number is $0,-$ is displayed.

- As amplifier information, the following information items are displayed:
- UNIT: Type of servo amplifier unit
- SERIES: Servo amplifier series
- CURRENT: Maximum current value
- As pulse module information, the information items below are displayed.
- EXTRA

The character M, which stands for "pulse module," is followed by the ordinal number of a pulse module counted from the pulse module closest to the CNC.

- TYPE

The type of a pulse module is displayed by a letter.

- PCB ID

The ID of a pulse module is displayed using four digits in hexadecimal. For a separate detector module (8 axes), DETECTOR (8AXES) is displayed after the pulse module ID. For a separate detector module (4 axes), DETECTOR (4AXES) is displayed after the pulse module ID.

G.9.2

Axis Setting Screen

The axis setting screen displays axis information.

The axis setting screen displays the items below.

- AXIS NO: Controlled axis number

The NC controlled axis numbers are displayed sequentially.

- NAME: Controlled axis name
- AMP: Type of amplifier connected to each axis
- M1: Connector number for pulse module 1

The connector number for pulse module 1 set in parameter No. 1931 is displayed.

- M2: Connector number for pulse module 2

The connector number for pulse module 2 set in parameter No. 1932 is displayed.

- 1DSP

The value set in bit 0 (1DSP) of parameter No. 1904 is displayed. The value 1 is displayed for an axis (leaning control axis, high-speed current loop axis, high-speed interface axis) that exclusively uses a DSP.

- CS: Cs contour control axis

The value set in parameter No. 1933 is displayed. The value 1 is displayed for a Cs contour control axis.

- TANDEM (M series only)

The value set in parameter No. 1934 is displayed. For a master axis and slave axis used for tandem control, an odd number and a subsequent even number are displayed.

G.9.3
 Amplifier Maintenance Screen

The amplifier maintenance screen displays servo amplifier maintenance information. There are two types of amplifier maintenance screens as shown below. The user can switch between the two screens with the page keys \uparrow and \downarrow.

The amplifier maintenance screens display the following items:

- AXIS NO: Controlled axis number
- NAME: Controlled axis name
- AMP: Type of an amplifier connected to each axis
- SERIES: Series of a servo amplifier connected to each axis
- UNIT: Unit type of a servo amplifier connected to each axis
- NO. OF AXES: Maximum number of axes of an amplifier connected to each axis
- CURRENT: Maximum current value of an amplifier connected to each axis
- VERSION: Version of an amplifier unit connected to each axis
- TEST: Test date of an amplifier connected to each axis

Example) 970123: January 23, 1997

- MAINTENANCE:Engineering change drawing number of an amplifier connected to each axis

NOTATION OF MDI KEYS

H

Series $16 i / 18 i / 160 i / 180 i-M O D E L A$ have two types of MDI keypads : English type and Symbolic type.
The table below shows correspondence between English keys and Symbolic keys.
This manual uses English type in the text.
Therefore when a user uses Symbolic type MDI keypads and encounters an English key in the text, please refer to the correspondence table shown below.

| Name | English key | Symbolic key |
| :---: | :---: | :---: |
| CANCEL key | CAN | W |
| POSITION key | POS | $\square+$ |
| PROGRAM key | PROG | , \square |
| OFFSET/ SETTING key | Offeset | $\xrightarrow{\square}$ |
| CUSTOM key | Custom | \triangle, ${ }^{\square}$ |
| SYSTEM key | SYStem | \bigcirc |
| MESSAGE key | MESSAGE | $?$ |
| GRAPH key | GRAPH | Mm |
| SHIFT key | SHIFT | T |
| INPUT key | INPUT | $\stackrel{\rightharpoonup}{*}$ |

| Name | English key | Symbolic key |
| :---: | :---: | :---: |
| ALTER key | ALTER | 人 |
| INSERT key | INSERT | \Rightarrow |
| DELETE key | DELETE | W |
| PAGE UP key | ¢
 PAGE | |
| PAGE DOWN key | PAGE \downarrow | 4) |
| HELP key | HELP | \square |
| RESET key | RESET | |
| CUSTOM/GRAPH key | CUSTOM
 GRAPH | - ${ }^{\text {Q }}$ |

«Symbols»

[Sample setting 1] general configuration (semi-closed loop), 785
[Sample setting 2] general configuration (closed loop), 786
[Sample setting 3] when the C -axis is a Cs axis, 788
[Sample setting 4] tandem control configuration, 790
[Sample setting 5] when the simple electronic gear box (FGB) function is used, 792

$\ll A \gg$

AC spindle (analog interface), 555
AC spindle (serial interface), 542, 543
Actions for trouble encountered at start-up time, 806
Address, 451
Adjusting reference position (dog method), 537
Alarm 300 (request for reference position return), 604
Alarm 300 (V ready off), 605
Alarm 404 (V ready on), 609
Alarm 417 (digital servo system is abnormal), 615
Alarm 462 (send CNC data failed), 612
Alarm 5134 (FSSB: open ready time out), 624
Alarm 5136 (FSSB: number of amps is small), 628
Alarm 700 (overheat: control unit), 616
Alarm 701 (overheat: fan motor), 617
Alarm 704 (spindle speed fluctuation detection alarm), 619
Alarm 749 (serial Spindle communication error), 620
Alarm 750 (spindle serial link startup failure), 621
Alarm 85 to 87 (reader/puncher interface alarm), 595
Alarm 90 (reference position return is abnormal), 602
Alarm 900 (ROM parity), 631
Alarm 926 (FSSB alarm), 643
Alarm 930 (CPU interrupt), 649
Alarm 935 (SRAM ECC error), 651
Alarm 950 (PMC system alarm), 655
Alarm 951 (PMC watchdog alarm), 658
Alarm 972 (NMI alarm on an option board), 659
Alarm 973 (NMI alarm with an unknown cause), 660
Alarm 974 (F-BUS error), 661
Alarm 975 (BUS error), 664
Alarm 976 (local BUS error), 665
Alarm display, 30
Alarm history screen, 30
Alarm list, 673
Alarms, 802
Alarms (serial spindle), 719
Alarms 910 and 911 (sram parity), 634
Alarms 912 to 919 (dram parity), 637
Alarms 920 and 921 (servo alarms), 639
Amplifier maintenance screen, 814

Amplifier setting screen, 812
Associated parameters, 541
Automatic operation cannot be done, 578
Automatic setting, 783
Automatic setting of standard parameters, 554
Axis setting screen, 813

$\ll B \gg$

Basic unit, 245
Basic units, 335
Block diagram, 556
Boot screen, 770
Boot slot configuration screen, 730
Boot system, 728
Built-in debug function, 453

$\lessdot C »$

C board, serial communication board, 322
C board, serial communication board, CAP-II board, and symbol CAP i T board, 208
Cable clamping and shielding, 389
Calculation of S analog voltage and related parameters, 557
CAP-II board, 325
Changing start sequences, 766
Clearing alarm history, 30
Clearing CAP-II data ($16 i-\mathrm{T}$), 420
Clearing CAP-II memory, 421
CNC alarm screen, 777
CNC state display, 82
Color setting, 116
Color setting screen, 116
Configuration display of software, 26
Configuration of PCBs, 27
Configuration of printed circuit board connectors and cards, 162

Confirming the parameters required for data output, 396
Connector and card configurations of printed circuit boards, 304
Contents displayed, 57
Contrast adjustment, 120
Corrective action for failures, 563
Correspondence between operation mode and parameters on spindle tuning screen, 551

Countermeasures Against Noise, 382
Cycle start LED signal has turned off, 586

$\ll D$

Data input/output on the all IO screen, 422
Data input/output using a memory card, 437

Data sampling for storage type waveform diagnosis, 90
Data server board, 221
Deleting file name and files, 420
Deletion of external operator messages record, 31
Demounting a card PCB, 362
Demounting a DIMM module, 365
DeviceNet board, 330
DeviceNet interface board, 244
Digital servo, 523
Display and operation, 1
Display method, 27, 54, 96, 456, 546
Display on the 7 -segment LED at power-on, 760
Displaying diagnostic page, 57
Displaying servo tuning screen, 534
Distributed I/O setting, 373
Dogless reference position setting, 540
Dump/restore of CAP-II data (16i-T), 419

$<E »$

Enthernet board, 327

Environmental conditions outside cabinet, 381
Error codes (serial spindle), 724
Error messages and required actions, 746
Ethernet board, 240
Example 1: learning control, 808
Example 2: when a 2 -axis amplifier is shared by two paths, 809
Examples of settings using other connections, 808
Execution period of PMC, 455
Explanation of screens, 770
External operator messages record, 31

$\ll F \gg$

FANUC two-byte character code table, 141
File operation, 773
FL-net board, 334
For lathe, 545
FS16i/18i/21i/20i motherboard, 162
FSSB data display, 812
FSSB start-up procedure/materials, 780
Function keys and soft keys, 2
Function keys and soft keys (for 20i), 23
Function number, 757
Functions on the IPL screen, 775

«G»

General of interface, 448
Graphic of wave diagnosis data, 88
Graphic screen (M series), 22
Graphic screen (T series), 21
Grounding, 384

$\ll H \geqslant$

Handle operation cannot be done, 573
Hardware, 294
Hardware configuration, 295, 752
Hardware overview, 296
Heat generated in each unit, 291
Heat generation of the units, 358
Help function, 54
Help screen, 20
HSSB interface board, 233, 323

< \gg

I/O link-II board, 236326
Initial setting servo parameters, 524
Input and output of CAP data (super CAP T), 407
Input and output of data, 393
Input and output of each file (super CAP M), 407
Input and output of each file (super CAP T), 414
Input from and output to I/O devices cannot be performed input/output cannot be performed properly, 593
Input/output of conversational data in a lump(super CAP M), 405

Input/output super cap data, 405
Inputting and outputting floppy files, 432
Inputting and outputting offset data, 430
Inputting and outputting parameters, 429
Inputting and outputting programs, 425
Inputting and outputting the operation history data, 47
Inputting CNC parameters, 400
Inputting custom macro variable values, 402
Inputting part programs, 403
Inputting pitch error compensation amount, 402
Inputting PMC parameters, 401
Inputting tool compensation amount, 403
Inputting/ outputting CAP-II data ($16 i-\mathrm{T}$), 417
Inputting/ outputting data, 396
Interface between CNC and PMC, 447
Inverter PCBs and connector units, 202
Investigating the conditions under which failure occurred, 563
IPL screen, 774

«J》

Jog operation cannot be done, 569

$\lll>$

Kind of data in sub memory, 419

$\ll \gg$

Layout of the 7-segment LED and switches, 756
LCD-mounted type i series hardware, 147
LCD/MDI unit, 339
LED display and maintenance of stand-alone type unit, 754
LED display during automatic operation, 758
LED display when a system alarm is issued, 759
LED display when the push switch is pressed, 758
Liquid crystal display (LCD), 370
List input/output signals, 477
List of addresses, 497
List of alarm codes (CNC), 674
List of alarms (PMC), 706
List of maintenance parts, 726
List of operations, 98
List of signals by each mode, 475
List of units and printed circuit boards, 245
LOAD BASIC SYSTEM function, 744
Loader control board, 229

$\ll M$

Maintenance information input/output, 115
Maintenance information screen, 112
Maintenance of heat exchanger of heat pipe type, 366
Maintenance of open CNC (boot-up and IPL), 764
Maintenance parts, 727
Manual setting 1, 801
Manual setting 2, 794
Matters common to both LCD-mounted type and stand-alone type i series (hardware), 360
MDI unit, 255
MEMORY CARD FILE DELETE screen, 742
MEMORY CARD FORMAT function, 743
Memory card types (functions), 751
Memory display (M.SRCH), 465
Memry card slot, 749
Message screen, 20
Method A of gear change for machining center, 545
Method B of gear change for machining center (PRM $3705 \# 2=1$), 545

Module configuration screen, 29
Mounting a card PCB, 363
Mounting a DIMM module, 365
Mounting and Demounting Card Pcbs, 361
Mounting and Demounting Dimm Modules, 364
Mounting and removing a mini-slot option board (except DeviceNet board), 343

Mounting and removing an option board, 341
Mounting and removing the back panel, 346
Mounting and removing the DeviceNet board, 344
Mounting and removing the main CPU board and a full-size option board, 341
Mounting and replacing the CE card, 271
Mounting and replacing the PC card (MMX pentium), 267
Mounting the back panel, 346
Mounting the board, 342, 343, 344

<N>

NC status display, 758
No manual operation nor automatic operation can be executed, 565

Noise suppressor, 388
Notation of MDI keys, 816
Notes on using the MDI unit, 392
Nothing is displayed on the LCD when the power is turned on, 588

$$
\ll \gg
$$

Offset/setting screen (M series), 15
Offset/setting screen (T series), 13
Operating monitor, 96
Operation, 419, 540, 757
Operation Before Power-On, 757
Operation history, 33
Operation of each function, 761
Option setting screen, 779
Other screens, 777
Other units, 340
Others, 263
Outline of spindle control, 543, 555
Outputting CNC parameters, 397
Outputting custom macro common variables, 431
Outputting custom macro variable values, 399
Outputting part program, 399
Outputting pitch error compensation amount, 398
Outputting PMC parameters, 398
Outputting tool compensation amount, 399
Outputting waveform diagnosis data (storage type), 92
Overview of hardware, 149

$\ll P \gg$

Parameter, 32, 121
Parameter input/output, 128
Parameter setting, 33, 534
Parameters, 97, 118
PC function-equipped FS160i/180i/210i motherboard, 173
PC function-equipped FS160is/180is/210is motherboard, 189
Periodic maintenance screens, 131
PMC PRM Screen, 469
PMC screen, 456
PMCDGN screen, 461
PMCLAD screen, 457
Position screen, 3
Power motion manager, 121
Printed circuit boards of control unit, 335
Printed circuit boards of the control unit, 257
PROFIBUS board, 238
PROFIBUS master board, 332
PROFIBUS slave board, 333
Program screen, 4, 6, 8, 9, 10, 11

$\ll R \gg$

Registered data input/output, 139
Removing the board, 341, 343, 344
Removing the panel, 346
Replacing a fan unit, 353
Replacing battery, 277
Replacing fan motors, 281
Replacing fuse on control unit, 275
Replacing fuses on various units, 376
Replacing LCD backlight, 284
Replacing the battery, 350
Replacing the fuse of the control unit, 348
Replacing the fuse of the LCD unit, 354
Replacing the LCD backlight, 355
Replacing the motherboard, 264
RISC Board, 218
RISC board, data server board, RISC + data server board, 316

$\ll S »$

Screen configuration and operating procedure, 731
Screen display, 30, 31, 34, 116, 121
Screen display and operation, 112
Screen display and setting, 131
Screen displayed immediately after power Is turned on, 25
Separation of Signal Lines, 382
Series 16i/160i, 296, 298

Series 16i/160i/160is, 149
Series 18i/180i/180is, 151, 152
Series 20i, 153
Series 21i/210i, 299
Servo alarms, 666
Servo tuning screen, 534
Setting input/output-related parameters, 423
Setting module screen, 26
Setting parameters, 84
Setting parameters for input/output, 394
Setting screen display and setting, 137
Setting the input signal or output signal to be recorded in the operation history, 38
Seven-segment LED display, 758
Signal ground (SG) connection of control unit, 386
Slave, 782
Slot status display, 25

Soft key transition triggered by the function key

Soft key transition triggered by the function key HELP , 20
Soft key transition triggered by the function key messace, 20
Soft key transition triggered by the function key $\left.\begin{array}{c}\text { OFFSET } \\ \text { SETTNG }\end{array}\right\}, 13$, 15

Soft key transition triggered by the function key POS , 3

Soft key transition triggered by the function key PROG (When the soft key [BG-EDT] is pressed in all modes), 11

Soft key transition triggered by the function key PROG in the EDIT mode, 6

Soft key transition triggered by the function key PROG in the HNDL, JOG, or REF mode, 9

Soft key transition triggered by the function key PROG in the MDI mode, 8

Soft key transition triggered by the function key PROG in the MEM mode, 4

Soft key transition triggered by the function key PROG in the TJOG or THDL mode, 10

Soft key transition triggered by the function key

Soft keys, 2
Software configuration screen, 29
SPC alarms, 669
Specification, 449
Specification of PMC, 449

Spindle alarms, 670
Spindle monitor screen, 549
Spindle setting and tuning screen, 546
Spindle setting screen, 546
Spindle tuning screen, 547
SRAM DATA BACKUP screen, 739
SRAM operation, 772
Starting the boot system, 729
Status screen, 778
Status screen display and setting, 132
Structure, 148
Sub-CPU board, 214, 312
Supported editions, 763
System configuration screen, 27
System data check screen, 734
System data delete screen, 736
System data loading screen, 732
System data manipulation, 771
SYSTEM DATA SAVE screen, 737
System files and user files, 730
System reserve area of internal relay, 453

System screen, 17

$$
\ll T \gtrdot
$$

The display on the LCD unit flashes, 592
Total connection diagram, 154
Total connection diagrams, 300
Troubleshooting, 561
Tuning S analog voltage (D/A converter), 559

$\ll U \gg$

Units and printed circuit boards, 335

$\ll W>$

Warning screen displayed when an option is changed, 109
Warning screen displayed when system software is replaced (system label check error), 111
Waveform diagnostic function, 84
Waveform diagnostic parameter screen, 85
Revision Record
FANUC Series $\mathbf{1 6 i} / \mathbf{1 8} / \mathbf{2 1} i / 20 i / 160 i / 180 i / \mathbf{2 1 0} / \mathbf{1 6 0} \mathbf{i s} / \mathbf{1 8 0} \mathrm{is} / \mathbf{2 1 0} \mathrm{is}-M O D E L$ A MAINTENANCE MANUAL (B-63005EN)

| | | | | | |
| :---: | :---: | :--- | :--- | :--- | :--- |

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.

[^0]: * PMC ladder program is not cleard in FROM.

[^1]: On a unit with option slots, as many option boards as the number of option slots can be mounted. However, some option boards cannot fit into the center slot of a unit with 3 option slots or the slot farthest from the LCD in a unit with 4 option slots (because of their height).

[^2]: (1) When and how many times (frequency of occurrences)
 (2) With what operation
 (3) What failure occurred

