This guide describes the PC-0984-380 [and PC-0984-381] Programmable Logic Controller systems together with system planning information and installation procedures.

For brevity and your convenience, the PC-0984-380 controller is referred to in context as the 984-380 or simply Model 380. Since the Model 381 is an enhanced Model 380, the Model 380 documentation applies to the 381 except when dealing with the enhancements; i.e., discrete I/O support, real time clock, and second MODBUS port. When these exceptions occur, the Model 381 information appears in [brackets].

In the context of this manual, the terms "Programmable Controller" and "Programmable Logic Controller" have been abbreviated to "PC" for brevity. References to IBM's personal computer are written out or in context with IBM's initials.

It is necessary to say that the information in this document is subject to change without notice and should not be construed as a commitment by Modicon, Inc., Industrial Automation Systems. Modicon, Inc. assumes no responsibility for any errors that may appear in this document. Further, no part of this document may be reproduced in any form or by any means, electronic or mechanical, without the express written permission of Modicon, Inc., Industrial Automation Systems. All rights reserved.

The following are Modicon, Inc. trademarks:

984, 884, 984-380, 380, 381, P190, MODBUS, MODICON

IBM® is a registered trademark of International Business Machines, Inc.; IBM PC is a trademark of International Business Machines, Inc.

©Copyright 1988, Modicon, Inc.

Modicon Doc FN's: 0240Q thru 0245Q
Objectives

This manual has been written to help you plan, configure, mount, wire, connect, check out and, if necessary, troubleshoot your 984-380 PC system including 984/800 Series Remote I/O. After reading this publication:

- A Control Engineer will be able to identify and physically plan the location and mounting of system components.
- A Plant Electrician/Installer will be able to install, power-up and check out the system.
- A Maintenance Technician will be able to recognize, locate, identify and resolve or report system failures.

How To Use This Manual

Chapter 1 describes the 984-380 PC system’s functions.

Chapter 2 offers information for planning your installation with Local I/O.

Chapter 3 is an installation procedure for your controller with local I/O along with installation verification procedures.

Appendix A gives system specifications including a summary table of I/O module specifications.

Appendix B gives Stopped Error Codes, MODBUS cable connector pinouts, a table of Modicon 984-380 system end-user part numbers, Customer Service/Technical Support telephone numbers, and Installation Verification troubleshooting charts.
Incoming Inspection Guidelines

Procedure

Guidelines for Inspection

Step 1
Before you do anything, verify your shipment is complete and undamaged. If the shipment is incomplete or damaged, notify the carrier and your distributor.

Step 2
Remove everything from its packing and check for physical defects or damage. If the equipment is physically defective or damaged, notify your Modicon representative.

► NOTE Save shipping materials until installation is complete.

Sending Something Back?

• To the extent possible, use the original packing materials supplied by Modicon.

• All equipment should be firmly packed so that it cannot move around in its shipping container.

• All equipment should be protected against impact during shipment.
Table of Contents

CHAPTER 1 INTRODUCING YOUR CONTROLLER

984-380 Programmable Controller System 1-2
 Overview 1-2
 System Features 1-3
 System Capacity 1-3
 User-Changeable Firmware 1-3
 Module Housings 1-3
 Construction 1-4
 Power Supply Function (AC and DC) 1-4
 Communications Processing Function 1-5
 Central Processing Unit Function 1-6
Mainframe Controls 1-7
Mainframe Status Indicators 1-8

CHAPTER 2 PLANNING YOUR CONTROLLER AND LOCAL I/O INSTALLATION

Planning 2-2
 Overview 2-2
 Space Requirements 2-2
 Primary Power Lines 2-2
 Environmental Requirements 2-3
 Mounting Hardware Requirements 2-3
Housing Installation Options 2-3
 Panel or Bulkhead Mounting 2-3
 Rack Mounting 2-4
Grounding Your Installation 2-6
Primary Power Cable (AC/DC) 2-7
DIP Switch Configuration for MODBUS Port 1 2-8

CHAPTER 3 INSTALLING YOUR CONTROLLER AND LOCAL I/O

Model 380 Installation Procedure w/ Local I/O 3-2
Installation Checkout Procedure – Unconfigured PC 3-4
Installation Checkout Procedure – Configured PC w/Local I/O 3-5
APPENDIX A SPECIFICATIONS

Mainframe A-2
 Physical Characteristics A-2
 Electrical Characteristics A-2
 Circuit Characteristics A-3
 Environmental Characteristics A-4
Built-in Power Supply A-5
External Power Supply Issues A-5
800 Series I/O Module Specifications Summary A-6

APPENDIX B WHAT TO DO IF THINGS GO WRONG

System Stopped Error Codes B-2
Modicon 984-380/[381] End-User Part Numbers B-3
Customer Service & Technical Assistance B-4
MODBUS Cable Pinouts B-5
Installation Verification Troubleshooting B-6
P190/MODBUS Setup Information B-8

List of Tables

2-1 DIP Switch Baud Rate Settings 2-10
A-1 800 Series I/O Mod Summary Specifications A-6
B-1 Stopped Error Codes B-2
B-2 Modicon 984-380/[381] – End-User Part Numbers B-3

List of Figures

1-1 984-380/[381] Controller Module 1-2
1-2 984-380 Controller in Primary Housing 1-4
1-3 984-380 System Power Supply Connections 1-5
1-4 984-380 Controller – Side View 1-6
1-5 984-380/[381] Controller – Front View 1-7
2-1 H819 Housing Panel/Bulkhead Mount Dimensions 2-4
2-2 H819 Housing Rack Mount Dimensions 2-5
2-3 Wiring AC/DC Input Power Connectors 2-8
2-4 DIP Switch Settings for MODBUS Port 1 2-9
3-1 Typical Configuration for Local Drop 3-2
B-1 Modbus Cable Pinouts B-5
B-2 Installation Verification Troubleshooting B-6
B-3 P190 Programmer External Features B-8
B-4 P190 Programmer Port Settings B-9
B-5 P190 Programmer Port 1 to MODBUS Port 1 Hookup B-10
Chapter 1
Introducing Your Controller

This chapter describes your 984, Model 380 Programmable Controller (PC) system.
984-380 Programmable Controller System

Description

Overview

The Modicon 984 Model 380 (984-380) PC is a mid-range Programmable Logic Controller (PC) in a modular, expandable, architecture. It employs Modicon 800 series housings, interfaces and I/O modules. The Model 380 is supported by the same instruction set as the other 984 PC models and is programmed by the same tapes and P190/IBM accessories.

Figure 1-1 is a perspective view of the 984-380 system's controller module with built-in power supply. Certain physical features are noted.
System Features

The Model 380 system's features are described below followed by somewhat more detailed functional descriptions.

System Capacity The Model 380 controller features up to 6K words of User Logic and 1920 Registers of state RAM for a total user memory of 8K words.

The 380's user logic and state RAM support one local drop in the form of two Modicon 800 series module housings. This local drop has a maximum I/O module capacity of 21 I/O Modules (19 modules if an auxiliary power supply is required) and up to 256 discrete points [512 for Model 381] of local I/O (any mix). The Model 380 will not support remote I/O.

Changeable Executive PROMs and Memory The 380 system features user-changeable executive operating firmware and two levels of user memory (user logic) which are referred to in this manual as executive and memory cartridges, or simply Exec and RAM packs, respectively.

Module Housings The 984-380 system uses Modicon 800 series housings for its controller and I/O modules; specifically, a 19" primary housing with a seven module capacity or a 27" primary housing with an eleven module capacity.

Primary Enclosure — With the single-width Model 380 controller in your primary enclosure, the 19" and 27" primary enclosures will accomodate up to 6 or 10 I/O modules, respectively.

Secondary Enclosure — The secondary housing will accommodate a one and one-half wide P810, P800 or P884 auxiliary power supply if a power supply extender is required and as many I/O modules as there is room remaining.

Specifically, the standard 19" or 27" secondary housings will accommodate five or nine I/O modules along with a one and one-half wide (two slot) auxiliary power supply and a full seven or eleven I/O modules without the power supply.

The 19-inch primary housing with controller is shown in Figure 1-2. For simplicity's sake, the 27" housing is not shown in this manual except as required in the illustration on panel mounting dimensions.
Construction The Model 380 controller is housed in a rugged metal chassis designed to withstand specified temperature and humidity extremes as well as vibration, shock, and ambient atmospheric conditions consistent with the "factory floor."

The 380's primary housing employs a shielded backplane which provides for internal communications within the housing. The backplane protects the internal system communications from both electromagnetic (EMI) and radio frequency interference (RFI).

Captive screws secure all modules in the housings and they should be used to insure good electrical contact between the connector at the rear of the module and backplane in the housing. Key pin protection is also available.

User memory is backed up by a lithium battery which has a one year service life. It will hold-up for 14 days after the BAT LOW indicator comes on. The battery's installed but unused service life is rated at one year, with a five year shelf life.

A manually operated memory-protect key switch prevents accidental access to the user's program. The operating key may be removed to limit access to designated personnel.

Power Supply Function (AC and DC)

The Model 380 system's controller module comes with a built-in power supply which provides 16.25 Watts to the I/O (worst case).

The 984-380 will run on 115 or 230Vac (47 to 63 Hertz) and 24Vdc. As shown on Figure 1-3, the power supply's step down transformer is matched to the appropriate AC input voltage by means of a slide switch located above the AC primary power input connector (seen from the module's left side). Once connected, AC power is then switched ON/OFF with a front panel rocker switch.
The PC will also operate continuously on 24Vdc as an alternate or its exclusive power source. Figure 1-3 shows a primary power input connector for a customer supplied 24Vdc source. Once connected, DC power is then switched ON/OFF with a front panel rocker switch.

![Figure 1-3](image)

NOTE The primary power DC input feature was not designed, nor is it suitable as an automatic battery backup provision in the event of an AC outage. This is because the controller’s externally sourced DC input joins with the AC sourced, internally produced DC. At any given time, the PC is taking from the higher of the two DC voltage sources if there is as little as a 1V differential. The consequence of this would be to draw down the DC battery if there were an extended period(s) of reduced AC voltage supply.

If you want a backup alternative, one could be configured from a user-supplied DC power supply with its own backup battery and charger combination along with appropriate monitoring provisions.

Communications Processing Function

The Model 380 has one built-in MODBUS port for data transfer and remote programming. Through this port, communication processing on the CPU board can be linked from the controller to supervisory and programming devices such as a host computer or Modicon’s P190 CRT programmer. The MODBUS port allows you to schedule one MODBUS service per scan. [The Model 381 offers a second MODBUS port which allows you to incorporate your controller into the MODBUS network and still have a free port for connecting you local programming panel.]

Figure 1-4 shows the 984-380 controller from the left side. The MEM/DIP toggle switch enables your preset DIP switch configuration for MODBUS port 1. (For software configuration, refer to software configurator in software documentation.)
The DIP switch for configuring MODBUS port 1 parameters is shown at the bottom of the illustration but access to the DIP switch is actually through the bottom of the module's case.

Although the executive and memory cartridge plug-ins are shown installed in the chassis, they are shipped separately and user-installed as part of system installation.

Central Processing Unit (CPU) Function

The 984-380's 16-bit CPU, which is fully compatible with the Modicon 984 PC instruction set, solves user logic at a nominal rate of 5 ms per thousand nodes of user logic. [A time-of-day clock is provided on the Model 381 for special applications.]
Mainframe Controls

Figure 1-5 shows front panel user controls.
Mainframe Status Indicators

Status indicators on the CPU module are:

- **POWER OK**
 Green LED: When ON, indicates input power OK and voltage outputs OK. Your I/O power OK is indicated by the READY LED.

- **READY**
 Amber LED: When ON, indicates Controller passed power-up diagnostics. Remains ON in Stopped and Run modes as long as health status is OK. Indicator is OFF when an error condition is detected by diagnostics.

- **RUN**
 Green LED: When ON, indicates Controller is in the RUN mode and solving logic.

- **BATTERY LOW**
 Red LED: When ON, indicates battery needs to be replaced (14 day holdup from initial indication).

- **COMM 1**
 Green LED: When ON, indicates communication processor has unit address and communications are in progress.

[Model 381 only]:

- **COMM 2**
 Green LED: When ON, indicates communication processor has unit address and communications are in progress.
Chapter 2
Planning For Your Controller and I/O Installation

This chapter describes planning considerations for installing your 984-380 PC with local I/O.
Planning

Overview

The 984-380 PC is designed to work with your Modicon P190 Programmer or IBM Personal Computer; Modicon 800 series housings, interfaces and I/O modules.

The site planner must also consider the peripheral equipment (such as a P190 Programmer, CRT monitor, or printer) when preparing an installation plan for the site. Refer to the appropriate Modicon publications for site preparation procedures for related equipment.

Space Requirements

For the primary module housing, allow 12 inch clearance to the left so installer can see power supply connectors. Allow 6 inches on the top and side of the housing for convection cooling in vertical mounting situations. Allow 12 inch clearance at the bottom of the PC for cable access.

For all other housings, allow 6 inches on the top and sides of each housing for unobstructed cooling airflow in vertical mounting situations.

Also consider installation and physical access for removal of the modules as well as subsequent service including the connection and detachment of signal and power cables when required.

The Model 380 primary housing may be separated up to 12 feet from the secondary housing depending only on the cable length employed.

Primary Power Lines

In addition to service access, distance to power sources has to be considered in planning your controller installation. In addition to cable routing considerations, good practices dictate that the power lines be dedicated to the PC installation to minimize problems that sometimes arise when sharing AC power with electrically noisy equipment.

Finally, plan to install a service loop and a cable restraint as the primary power cable connector is not locked in place.
Environmental Requirements

In planning for the 984-380 PC installation, consideration should be given to the environment around the controller. Although designed for a harsh industrial environment and able to withstand factors that would harm other types of electronic equipment, problems can be avoided by not placing the controller and its related equipment in an operating area where there is high ambient temperature, acidic atmosphere, vibration, dust, and dirt if it can be avoided.

Mounting Hardware Requirements

After deciding on the final location of the 984-380 PC, its associated equipment and cables, you should plan for related mounting hardware. This would include such items as: nut and bolt combinations, flat and star washers, housings, mounting surface, ground straps and system ground connections.

Mounting bolts are NOT provided. The recommended mounting bolts are 0.312-24 UNF-2B (insert or tapped) stainless steel (#8-13-SS).

Housing Installation Options

The 984-380 system housing can be panel/bulkhead mounted or rack mounted as described in the following text.

Panel or Bulkhead Mounting

As shown in Figure 2-1 below, the housing has keyholes at the top and bottom of the housing for bulkhead mounting purposes. The keyholes are sized for 5/16-inch bolts. The recommended ground point is also shown:
Rack Mounting

The H819 Module Housings can be mounted in a 19-inch standard (EIA) rack. Hardware is supplied for installing the "rack adaptor – mounting flange kit" on the housing but not for installing the adapted housing in the rack.

2-4 PLANNING FOR INSTALLATION
Figure 2-2 shows dimensions for rack mounting an RI/O housing. The following hardware is required for rack mounting each housing:

- (1) 19-inch Standard (EIA) rack
- (1) pair of rack mounting flanges
- (8) #10-32 Pan Head Machine Screws to mount the housing to the NEMA rack
- (8) #10-32 Flat Lock Nuts if mounting holes in rack’s side rails are not threaded.
- (8) #8-32 Pan Head Machine Screws (supplied) to attach rack mount flanges to ends of housing
- (8) 1/4 bolts (supplied) to attach back of rack mount flanges to back of housing

Figure 2-2
H819 Housing Rack Mount Dimensions
Some planning considerations common to rack mounting for 800 series I/O housings are:

1. Between housings, allow 12 inches below the primary housing for cable breakout, physical inspection and ventilation.

2. The cable length connecting the primary housing and secondary housing must not exceed 12 feet.

The modular chassis will fit in a 12-inch deep standard NEMA enclosure should this be required (e.g., an acidic atmosphere in the factory).

Since the only cooling available to the 984-380 PC is derived from natural convection, some provision for added cooling may be required if the PC is placed within a NEMA enclosure.

Grounding Your Installation

For grounding purposes, Modicon recommends that your 984-380 PC housing(s) be mounted on a suitably finished metal mounting plate capable of supporting its weight along with the other modules in the installation. An aluminum mounting plate with a chromate finish such as IRIDITE, ALODINE or OAKITE No. 36 would meet the requirement. This type of installation provides both a low frequency (AC) safety ground path and a low impedance shield path for EMI/RFI.

If a metal mounting plate (preferred) is not feasible, Modicon recommends that all PC housings within a drop be interconnected by a flat braid copper ground strap with a minimum width of 1 inch. The ground strap should be kept short and installed without loops and bends. Use stainless steel hardware including a flat washer to secure the braid strap to the housing.

Regardless of the housing-to-housing method of ground interconnection, Modicon recommends the entire installation be grounded by a one inch wide (min) flat, braided copper strap installed between the primary housing ground connection point and a suitable factory ground. The bulkhead and rack mounting illustrations show the housing’s recommended ground connection point.
Primary Power Cable (AC/DC)

Ideally, the power lines should be dedicated to the PC installation to minimize problems that arise when sharing AC power with electrically "noisy" equipment.

Provide for strain relief by installing a service loop and cable restraint on the primary power cable as its connector is not locked in place.

AC Power Cable The recommended AC power cable should consist of three insulated leads of Number 14 AWG stranded copper. The cable leads insert in the plug-in power cable connector shipped "installed" in the AC input connector jack from the factory.

The color code (standard) for the AC cable is white for AC neutral, black for AC hot, and green for factory or earth ground. The European color code is light blue instead of white for neutral, brown instead of black for the hot wire, and green/yellow instead of green for ground.

Your AC source cable must be suitable for supplying 115/230 Vac at 5A peak for the turn-on surge and 0.4A continuous at worst-case, low voltage conditions.

► NOTE Factory and earth grounds often have different potentials; e.g., building steel versus grounding rods.

DC Power Cable For DC power input, use at least AWG 18.

If you are planning DC backup, note the discussion under "Power Supply Function," Section 1. Note also, that your external DC input should go directly to the controller from the power source and not involve your I/O.

Your DC source cable must be suitable for supplying 24Vdc at 24A peak (turn-on surge) and 1.7A continuous at worst-case, low voltage.
Figure 2-3 below shows your primary power (AC/DC) cable connectors.

DIP Switch Configuration for MODBUS, Port 1

MODBUS Port 1 is both manually and software configurable. For manual configuration, there is a through-the-chassis, user accessible DIP switch on the underside of the 984-380 controller. For software configuration, use the P190/IBM configurator software.

The DIP switch presets are enabled (even while operational) through the use of a DIP/MEM toggle switch located on the controller module behind the module handle.
DIP switch settings for MODBUS Port 1 are shown in Figure 2-4 below.

Baud rate settings for DIP switches 1 and 2 are given in Table 2-1 below.

Figure 2-4
Model 380 DIP Switch
Settings for MODBUS
Port 1

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>REAR →</th>
<th>CONTROLLER MODULE BOTTOM VIEW</th>
<th>← FRONT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIP SWITCH</td>
<td></td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND

<table>
<thead>
<tr>
<th>DIP SWITCH CONDITIONS</th>
<th>UP (OFF)</th>
<th>DOWN (ON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SWITCH FUNCTION

<table>
<thead>
<tr>
<th>Sw #</th>
<th>Down</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>baud select</td>
<td>baud select</td>
</tr>
<tr>
<td>2</td>
<td>" "</td>
<td>" "</td>
</tr>
<tr>
<td>3</td>
<td>no parity</td>
<td>parity</td>
</tr>
<tr>
<td>4</td>
<td>odd parity</td>
<td>even parity</td>
</tr>
<tr>
<td>5</td>
<td>ASCII (7 data bits)</td>
<td>RTU (8 data bits)</td>
</tr>
</tbody>
</table>

DEFAULT SETTINGS:
9600 baud, even/parity, RTU

NOTES:
1. Two stop bits are transmitted in all frames except RTU with parity.
2. When the MEM/DIP enable toggle is returned to MEM position, port 1 comm parameters and link address return to original memory configured values.
3. Although certain production units may contain an 8 position DIP switch, only the first five are used.
Table 2-1

DIP Switch Baud Rate Settings (Left to Right)

<table>
<thead>
<tr>
<th>Baud</th>
<th>Sw#1</th>
<th>Sw#2</th>
</tr>
</thead>
<tbody>
<tr>
<td>19200</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>9600</td>
<td>down</td>
<td>up</td>
</tr>
<tr>
<td>2400</td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td>1200</td>
<td>down</td>
<td>down</td>
</tr>
</tbody>
</table>
Chapter 3
Installing Your Controller and Local I/O

This chapter is an installation procedure for your 984-380 PC with local I/O.
Model 380 Installation Procedure with Local I/O

WARNING ENSURE THAT YOUR ELECTRICAL SERVICE IS PROPERLY GROUNDED AND IN ACCORDANCE WITH THE ELECTRICAL CODE FOR YOUR AREA. INSTALLATION AND MAINTENANCE SHOULD BE PERFORMED BY A QUALIFIED PERSON IN CONFORMANCE WITH LOCAL CODE AND THE NATIONAL ELECTRICAL CODE, ANSI/NFPA PUBLICATION NO. 70.

Procedure

Step 1 Install cable troughs in your primary and secondary housings in accordance with the I/O module assignments planned.

Step 2 Mount housings for local drop on desired surface taking care to observe system ground requirements.

Step 3 Connect power and signal cable between primary and secondary housings as required by your configuration. See example shown in Figure 3-1.

![Typical Local Drop Configuration](image)

Figure 3-1

Typical Local Drop Configuration

3-2 LOCAL INSTALLATION
Step 4 Ground power cable's ground strap to system ground on housing
(shown in Figures 2-1 or 2-2).

CAUTION In Step 5 below, the mounting holes for the Exec and RAM pack plug-ins are so aligned that you cannot secure them if the plug-ins have been interchanged. Powering up with interchanged cartridges will have unpredictable results.

Step 5 Install your Exec and RAM packs in controller. Observe plug-in orientation shown in Figure 1-4.

- NOTE Record Exec and PROM pack revision levels as well as release dates for future reference.

Step 6 Set DIP Switch for MODBUS 1, Port 1 as desired (see DIP Switch settings in Figure 2-4 previous).

Step 7 Set toggle switch to MEM or DIP position (as desired).

Step 8 Verify presence of memory backup battery.

If lithium battery has been supplied separately, install in battery compartment observing polarity marked inside battery compartment cover.

- NOTE When removing battery, push to compress loading spring which will partially eject battery as you let go.

Step 9 Install 984-380 controller module in Slot 1 of primary housing, securing with captive screws.

Step 10 Set memory protect key-switch to OFF.

Step 11 If using an auxiliary power supply, partially insert it in Slot 1 of expansion housing.

WARNING IN STEPS 12 THRU 22 BELOW, THE AC AND DC PRIMARY SOURCES SHOULD NOT BE CONNECTED (ENERGIZED) ON THE SOURCE SIDE.

Step 12 Wire auxiliary power supply input power, install 115Vac jumper (if appropriate) and then secure module in housing.
Step 13 Wire AC primary power cable to controller's AC input power connector shown in Figure 2-3.

Step 14 Select appropriate 115/230Vac slide switch position.

Step 15 Form service loop in AC input power cable and install mechanical restraint on housing.

Step 16 Plug AC input power cable connector into controller's AC input power jack at left side of module. DO NOT CONNECT TO PRIMARY POWER SOURCE AT THIS TIME!

Step 17 If using DC input, wire to controller's DC input connector shown in Figure 2-3.

Step 18 Form service loop in DC input power cord and install mechanical restraint on housing.

Step 19 Plug DC input power cable connector into controller's DC input power jack on left side of controller. DO NOT CONNECT TO PRIMARY POWER SOURCE AT THIS TIME!

Step 20 Do field wiring for local drop and attach to I/O connectors.

Step 21 Install key pins in I/O housing slots (as required in your installation plan).

Step 22 Verify ground and cable connections are secure and according to plan.

➤ **NOTE** Other than local I/O, the physical installation of your 984-380 PC is now complete. You are ready for initial power-up and installation check-out.

Procedure Installation Checkout – Unconfigured PC

Step 1 If using DC input power, energize DC power source and switch controller's DC power switch to ON.

If not using DC input, go to Step 4 below.
Step 2 Visually inspect installation and verify operation. After a few seconds of delay for internal diagnostics, your Model 380, POWER OK indicator should come up Green and the READY indicator, Amber. The BATTERY LOW indicator should be OFF.

- **NOTE** If you have an obvious mechanical or electrical problem, take the appropriate corrective action.

If your LED status seems incorrect, try to eliminate the possibility of a false indication resulting from parallax error (one LED lighting more than one indicator window). If your LED status is incorrect, refer to the Installation Troubleshooting Chart, Figure B-2, Sheet 1.

If all else fails, call us at the number listed under technical assistance, Appendix B.

Step 3 Switch controller's DC input power switch to OFF.

Step 4 Connect primary power input to AC source and set controller's AC power switch to ON.

Step 5 Visually inspect installation and verify operation. After a few seconds of delay for internal diagnostics, your Model 380, POWER OK indicator should come up Green and the READY indicator, Amber. The BATTERY LOW indicator should be OFF.

- **NOTE** If you have an obvious mechanical or electrical problem of any nature, take the appropriate corrective action.

If your LED status seems incorrect, try to eliminate the possibility of a false indication resulting from parallax error (one LED lighting more than one indicator window). If your LED status is incorrect, refer to Installation Troubleshooting Chart, Figure B-2, Sheet 1.

If all else fails, call us at the number listed under technical assistance, Appendix B.

Procedure
Installation Checkout - Configured PC w/Local I/O

Finish your installation verification by configuring and Traffic Copping your PC and then communicating with local I/O.

Step 1 Set your controller's input power to OFF. Shutoff auxiliary power.

Step 2 Install a simple I/O module in Slot 2 of primary housing (a B805 for example) and secure with captive screws.

Step 3 Repower
PC to P190 Setup

Step 4 Connect PC MODBUS, Port 1 to P190 Port 1 using W953 cable and power-up P190.

Step 5 Load CONFIG tape in P190 (label up).

Step 6 At P190 keyboard, simultaneously press and then release the red keys:

[INIT] & [INIT LOCK]

Following tape load (about 2 min), a row of soft-keys will appear at the bottom of the P190 screen. The soft-keys are actuated by a row of non-labeled function keys at the top of the P190 keyboard. At any given time, their assigned functions are those indicated at the bottom of the P190 display screen. The key names displayed with inverse lettering correspond to the white function keys and vice versa.

Lastly, in the following procedures, keys on the P190 keyboard are referenced by their labeled name in brackets [NAME]. The soft-keys are referenced by the labeled name that appears on the P190 screen, both in brackets and underscored [NAME].

Getting PC into RUN Mode

Step 7 While monitoring COMM 1 indicator at PC, perform following at P190:

Press:

[1], [984-CONFIG]

Step 8 After COMM 1 indicator flashes (at PC), press following soft key on P190 screen:

[WRITE CONFIG]

Step 9 On next screen, press:

[PROCEED]
Step 10 On keyboard, enter:

[1]

On screen, press:

[ATTACH UNIT #]

Step 11 On keyboard, press:

[EXIT]

On new screen, press:

[CONTROL OPERATIONS]

Step 12 On new screen, press:

[START 984]

Step 13 Observe following indications at PC as a result of pressing [PROCEED] on the P190:

- COMM 1 indicator flashes briefly
- RUN indicator goes Green (takes about 4 seconds)

Configure PC

Step 14 At P190, press:

[STOP 984]

On new screen, press:

[PROCEED]

Step 15 Cycle P190 memory protect key to LOCKED position, then back to UNLOCKED again.

Step 16 On P190 keyboard, enter:

[1]

Step 17 On new screen, press

[984-CONFIG]
Step 18 On next screen, press:

[SET SIZE]

Step 19 On keyboard, enter

[2]

On screen, press:

[TOTAL # OF I/O MODS]

Step 20 On new screen, press:

[PREV MENU]

Step 21 On new screen, press:

[WRITE CONFIG]

Step 22 On new screen, press:

[PROCEED]

Traffic Cop PC

Step 23 Load TRAFFIC COP tape in P190 (label up).

Step 24 At P190, simultaneously press and then release:

[INIT] & [INIT LOCK]

Following tape load (about 2 min), soft-keys will come up on P190 screen.

Step 25 At P190, enter:

[1]

On screen, press:

[ATTACH UNIT #]
Step 26 On keyboard, press:
[EXIT]
On screen, press:
[I/O CONFIG OPERATIONS]

Step 27 On next screen, press:
[800-TRAFCOP]

Step 28 On keyboard, enter last 2 digits from model number of your I/O module:
[n] [n]
and press:
[ENTER]

Step 29 On keyboard, enter:
[1] [0] [0] [0] [1]
and press:
[ENTER]

Step 30 On screen, press:
[WRITE DROP]

Step 31 On next screen, press:
[PROCEED]

Step 32 On keyboard, press:
[SHIFT] & [RESET]
followed by:
[EXIT]

Step 33 On new screen, press:
(CONTROL OPERATIONS)
Step 34 On new screen, press:

[START 984]

Step 35 Observe following indications at PC as a result of pressing [PROCEED] on the P190:

- COMM 1 indicator flashes briefly
- RUN indicator goes Green (takes about 4 sec)

Step 36 On I/O module, observe ACTIVE indicator is green

Step 37 Visually inspect installation and verify operation. In sum, your Green POWER OK indicator and Amber READY indicator status should remain ON. The RUN indicator should be Green. Your I/O module ACTIVE indicator should be Green.

► NOTE Your PC installation is now complete and verified. If you have an obvious problem, take the appropriate corrective action. If your LED status is incorrect, refer to the Installation Troubleshooting Chart, Figure B-2, Sheet 2.

If all else fails, call us at the number listed under technical assistance, Appendix B.
Appendix A
984-380 System Specifications

This appendix covers the following specifications:

- PHYSICAL CHARACTERISTICS
 Dimensions
 Weight

- ELECTRICAL CHARACTERISTICS
 Static Discharge
 Magnetic
 Agency Approval
 Indicators

- CIRCUIT CHARACTERISTICS
 Scan Rate
 Throughput
 I/O
 Memory
 Holdup
 Power Consumption
 Surge Withstand
 Time-of-Day Clock [381]

- ENVIRONMENTAL CHARACTERISTICS
 Temperature
 Humidity
 Max Wet Bulb
 Altitude
 Shock
 Vibration

(continued)
Mainframe Specifications

Physical Characteristics

Dimensions
- W × H × D inch: 2.54 × 10.5 × 8
- W × H × D (mm): 64 × 266 × 203

Weight
- 5 lbs, 6 oz

Electrical Characteristics

Static Discharge
- 15kV to all surfaces

Magnetic
- 20 Gauss field inside Helmholtz Coil,
 0.25 to 8 pps

Agency Approval
- Designed to meet applicable agency safety requirements

Indicators

- POWER OK: Green LED: When ON, indicates input power OK and voltage outputs OK. (Your I/O power OK is indicated by READY LED.)

- READY: Amber LED: When ON, indicates Controller passed power-up diagnostics. Remains ON in Stopped and Run mode as long as health status is OK. Indicator is OFF when an error condition is detected by diagnostics.

(continued)
Indicators (continued)

- **RUN**
 Green LED: When ON, indicates Controller is in the RUN mode and solving logic.

- **BATTERY LOW**
 Red LED: When ON, indicates battery needs to be replaced (14 day holdup from initial indication).

- **COMM 1**
 Green LED: When ON, indicates communication processor has unit address and communications are in progress.

 [Model 381 only]:

- **COMM 2**
 Green LED: When ON, indicates communication processor has unit address and communications are in progress.

Circuit Characteristics

Scan Rate
5 ms per thousand nodes of user logic

Throughput
<15ms for 64 I/O points

I/O
512 bits in/ 512 bits out
1 Analog point = 16 bits
Max I/O Mods in drop = 21
Max discrete I/O = 256 (any mix)
[512 max discrete, any mix, 381]

Memory Capacity

<table>
<thead>
<tr>
<th>User Logic Registers</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 K Wds 1920</td>
<td>(resident)</td>
</tr>
<tr>
<td>4.0 K Wds 1920</td>
<td>(AS-M380-004)</td>
</tr>
<tr>
<td>6.0 K Wds 1920</td>
<td>(AS-M380-006)</td>
</tr>
</tbody>
</table>

Holdup
60ms for CPU from "POWER OK" going inactive

Power Consumption
5 W

Surge Withstand
Per IEEE 472-1974, ANSI C37.90a

(continued)
Mainframe Specifications (continued)

Circuit Characteristics (continued)

[Model 381 only]:

Time-of-Day Clock
± 1 sec/day @ 25°C
± 3 sec/day, 0-40°C
± 8 sec/day, 0-60°C

Environmental Characteristics

Temperature
Operating: 0° → 60°C
Storage: −40° → +80°C

Humidity
0-95% Non-condensing

Max Wet Bulb
Non-operating: Non-condensing
Operating: 85°F

Altitude
10,000 feet max

Shock
± 10g's, 11ms, 3 pulses per axis

Vibration (Operating)
5Hz to 50Hz @ .005 in D.A.,
30 min/axis
50Hz to 500Hz @ 0.625 g’s,
30 min/axis

Vibration (Non-operating)
10Hz to 50Hz @ .029 g’s/Hz
50Hz to 300Hz @ .029 g’s/Hz,
−8dB/octave

Built-in Power Supply

Input Power*
115 Vac ± 15%
230 Vac ± 15%
24 Vdc ± 15%

*See current requirements under "External Power Issue Specifications" (below).

(continued)
Mainframe Specifications (continued)

Built-in Power Supply (continued)

Fuses
0.750A, 3A SB Buss, (Not customer replaceable)

Holdup
64ms for CPU from Power OK going inactive

Indicators
Green LED: POWER OK

Output to I/O
16.25 Watts to I/O service

Output
* V1 5Vdc I/O 3.0A max
* V2 4.3Vdc I/O 3.0A max
* V3 – 5Vdc I/O 0.250A max

*When added, any combination of V1, and V2, must not exceed 3.0Adc continuous

External Power Issue Specifications

Isolation Transformer
100W (recommended) based on 40.8W (meas) and assuming 0.4A continuous w/97Vac (115V – 15%), 5A peak

Ext 24Vdc P.S.
31W nom, 1.3Adc continuous @ 24Vdc (24A peak); or 1.7Adc cont @ 20.4Vdc (24V – 15%)

I/O Mod Loads
See Table A-1
800 SERIES I/O FACT SHEET

DISCRETE INPUT MODULES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>VOLTAGE RANGE</th>
<th>NUMBER OF INPUTS</th>
<th>NUMBER PER COMMON</th>
<th>I/O POWER REQUIRED (mA)</th>
<th>REQUIRED ADDRESSING</th>
<th>REQUIRED CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B805-016</td>
<td>115 VAC</td>
<td>15</td>
<td>8</td>
<td>40</td>
<td>14</td>
<td>16 / 0</td>
</tr>
<tr>
<td>B817-116</td>
<td>115 VAC</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>8</td>
<td>16 / 0</td>
</tr>
<tr>
<td>B803-008</td>
<td>115 VAC</td>
<td>8</td>
<td>1</td>
<td>27</td>
<td>2</td>
<td>8 / 0</td>
</tr>
<tr>
<td>B809-016</td>
<td>230 VAC</td>
<td>16</td>
<td>8</td>
<td>42</td>
<td>15</td>
<td>16 / 0</td>
</tr>
<tr>
<td>B811-216</td>
<td>230 VAC</td>
<td>16</td>
<td>1</td>
<td>25</td>
<td>8</td>
<td>16 / 0</td>
</tr>
<tr>
<td>B827-032</td>
<td>24 VDC (TH)</td>
<td>32</td>
<td>32</td>
<td>30</td>
<td>1</td>
<td>32 / 0</td>
</tr>
<tr>
<td>B825-016</td>
<td>24 VDC (TH)</td>
<td>16</td>
<td>8</td>
<td>27</td>
<td>0</td>
<td>16 / 0</td>
</tr>
<tr>
<td>B833-016</td>
<td>24 VDC (TL)</td>
<td>16</td>
<td>8</td>
<td>27</td>
<td>2</td>
<td>16 / 0</td>
</tr>
<tr>
<td>B881-001</td>
<td>24 VDC (TACT)</td>
<td>16</td>
<td>16</td>
<td>30</td>
<td>1</td>
<td>0 / 0</td>
</tr>
<tr>
<td>B821-008</td>
<td>10-60 VDC (TH)</td>
<td>2</td>
<td>8</td>
<td>27</td>
<td>1</td>
<td>8 / 0</td>
</tr>
<tr>
<td>B837-016</td>
<td>24 VAC/DC</td>
<td>16</td>
<td>8</td>
<td>40</td>
<td>15</td>
<td>16 / 0</td>
</tr>
<tr>
<td>B849-016</td>
<td>48 VAC/DC</td>
<td>16</td>
<td>8</td>
<td>40</td>
<td>15</td>
<td>16 / 0</td>
</tr>
<tr>
<td>B853-016</td>
<td>125 VDC</td>
<td>16</td>
<td>8</td>
<td>40</td>
<td>1</td>
<td>16 / 0</td>
</tr>
<tr>
<td>B829-116</td>
<td>5 V TTL</td>
<td>16</td>
<td>16</td>
<td>27</td>
<td>1</td>
<td>16 / 0</td>
</tr>
<tr>
<td>B885-001</td>
<td>TTL REGISTER</td>
<td>8 CH</td>
<td>8</td>
<td>400</td>
<td>600</td>
<td>0 / 8</td>
</tr>
</tbody>
</table>

DISCRETE OUTPUT MODULES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>VOLTAGE RANGE</th>
<th>NUMBER OF OUTPUTS</th>
<th>NUMBER PER COMMON</th>
<th>I/O POWER REQUIRED (mA)</th>
<th>REQUIRED ADDRESSING</th>
<th>REQUIRED CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B804-016</td>
<td>115 VAC</td>
<td>15</td>
<td>8</td>
<td>76</td>
<td>480</td>
<td>0 / 16</td>
</tr>
<tr>
<td>B810-008</td>
<td>115 VAC</td>
<td>8</td>
<td>1</td>
<td>50</td>
<td>240</td>
<td>0 / 8</td>
</tr>
<tr>
<td>B802-007</td>
<td>115 VAC</td>
<td>8</td>
<td>2</td>
<td>76</td>
<td>240</td>
<td>0 / 8</td>
</tr>
<tr>
<td>B808-016</td>
<td>230 VAC</td>
<td>16</td>
<td>8</td>
<td>76</td>
<td>480</td>
<td>0 / 16</td>
</tr>
<tr>
<td>B838-032</td>
<td>24 VDC (TH)</td>
<td>32</td>
<td>8</td>
<td>160</td>
<td>1</td>
<td>0 / 32</td>
</tr>
<tr>
<td>B826-032</td>
<td>24 VDC (TH)</td>
<td>32</td>
<td>32</td>
<td>90</td>
<td>1</td>
<td>0 / 32</td>
</tr>
<tr>
<td>B824-016</td>
<td>24 VDC (TH)</td>
<td>16</td>
<td>8</td>
<td>32</td>
<td>260</td>
<td>0 / 16</td>
</tr>
<tr>
<td>B832-016</td>
<td>24 VDC (TL)</td>
<td>16</td>
<td>8</td>
<td>32</td>
<td>235</td>
<td>0 / 16</td>
</tr>
<tr>
<td>B820-008</td>
<td>10-60 VDC (TH)</td>
<td>2</td>
<td>2</td>
<td>90</td>
<td>80</td>
<td>0 / 8</td>
</tr>
<tr>
<td>B838-016</td>
<td>25 VDC</td>
<td>16</td>
<td>1</td>
<td>50</td>
<td>603</td>
<td>0 / 16</td>
</tr>
<tr>
<td>B814-106</td>
<td>RELAY (NO/NC)</td>
<td>8</td>
<td>1</td>
<td>107</td>
<td>800</td>
<td>0 / 8</td>
</tr>
<tr>
<td>B840-108</td>
<td>REED RELAY (NO/NC)</td>
<td>8</td>
<td>1</td>
<td>57</td>
<td>400</td>
<td>0 / 8</td>
</tr>
<tr>
<td>B828-016</td>
<td>5 V TTL</td>
<td>16</td>
<td>16</td>
<td>32</td>
<td>220</td>
<td>0 / 16</td>
</tr>
<tr>
<td>B885-001</td>
<td>TTL REGISTER</td>
<td>8 CH</td>
<td>8</td>
<td>220</td>
<td>180</td>
<td>0 / 0</td>
</tr>
</tbody>
</table>

ANALOG INPUT MODULES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION AND APPLICATION RANGE</th>
<th>NUMBER OF VOLTAGE INPUTS, OUTPUTS</th>
<th>I/O POWER REQUIRED (mA)</th>
<th>REQUIRED ADDRESSING</th>
<th>REQUIRED CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B875-101</td>
<td>FAST A/D 4-20mA ± 10V, ±5V, ±10V.0-5V, 0-5V, 1-5V</td>
<td>8</td>
<td>650</td>
<td>975</td>
<td>0 / 0</td>
</tr>
<tr>
<td>B875-001</td>
<td>A/D 4-20mA, 1-5V</td>
<td>8</td>
<td>300</td>
<td>300</td>
<td>0 / 0</td>
</tr>
<tr>
<td>B873-001</td>
<td>A/D 4-20mA, 1-5V</td>
<td>4</td>
<td>300</td>
<td>300</td>
<td>0 / 0</td>
</tr>
<tr>
<td>B875-011</td>
<td>A/D 4-20mA, 1-5V</td>
<td>4</td>
<td>300</td>
<td>300</td>
<td>0 / 0</td>
</tr>
<tr>
<td>B883-200</td>
<td>THERMOCOUPLE, TYPE B,E,J,K,R,S,T,N</td>
<td>10</td>
<td>300</td>
<td>0</td>
<td>0 / 0</td>
</tr>
<tr>
<td>B883-201</td>
<td>RTD, AMERICAN OR EUROPEAN 100 OHM PLATINUM</td>
<td>5</td>
<td>400</td>
<td>0</td>
<td>0 / 0</td>
</tr>
<tr>
<td>B846-001</td>
<td>ANALOG MULTIPLEXER, 16 VOLTAGE INPUTS, 1 OUTPUT</td>
<td>16</td>
<td>65</td>
<td>1</td>
<td>0 / 0</td>
</tr>
<tr>
<td>B846-002</td>
<td>ANALOG MULTIPLEXER, 16 CURRENT INPUTS, 1 OUTPUT</td>
<td>16</td>
<td>65</td>
<td>1</td>
<td>0 / 0</td>
</tr>
</tbody>
</table>
Table A-1
800 Series I/O Modules
Summary Specifications (cont.)

ANALOG OUTPUT MODULES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>NUMBER</th>
<th>I/O POWER REQUIRED (mA)</th>
<th>I/O POWER AVAILABLE (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CHANNELS</td>
<td>+5.9V</td>
<td>+4.3V</td>
</tr>
<tr>
<td>B872-002</td>
<td>D/A: 4-20mA, 1-5V</td>
<td>4</td>
<td>475</td>
<td>11</td>
</tr>
<tr>
<td>B872-011</td>
<td>D/A: ±10V, ±5V, 0-10V, 0-5V</td>
<td>4</td>
<td>240</td>
<td>750</td>
</tr>
</tbody>
</table>

INTELLIGENT MODULES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>I/O POWER REQUIRED (mA)</th>
<th>I/O POWER AVAILABLE (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DISC. I/O</td>
<td>REG. I/O</td>
</tr>
<tr>
<td>B682-239</td>
<td>HIGH SPEED COUNTER, 2 UP-COUNTERS, 0-30kHz</td>
<td>188</td>
<td>0</td>
</tr>
<tr>
<td>B883-001</td>
<td>HIGH SPEED COUNTER, 2 UP/DOWN, 0-50kHz, INTERNAL CLOCK</td>
<td>680</td>
<td>0</td>
</tr>
<tr>
<td>B883-101</td>
<td>CAM EMULATOR, ABSOLUTE ENCODER INPUT, 8 DISCRETE OUT</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>B885-111</td>
<td>CAM EMULATOR WITH VELOCITY COMPENSATION</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>B884-002</td>
<td>PID: 2 LOOPS, CASCADABLE, STANDALONE, 11 TOTAL I/O</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>B885-001</td>
<td>ASCII/BASIC, 64K RAM, 2 RS232/422 PORTS</td>
<td>500</td>
<td>1760</td>
</tr>
</tbody>
</table>

800 I/O POWER SUPPLIES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>VOLTAGE</th>
<th>HOUSING</th>
<th>SLOTS</th>
<th>I/O POWER AVAILABLE (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P884-001</td>
<td>REMOTE PRIMARY AND SECONDARY</td>
<td>120/220 VAC</td>
<td>HBXX-100/103/107</td>
<td>1.5</td>
<td>5000</td>
</tr>
<tr>
<td>P802-001</td>
<td>REMOTE PRIMARY AND SECONDARY</td>
<td>24 VDC</td>
<td>HBXX-100/103/107</td>
<td>1.5</td>
<td>2500</td>
</tr>
<tr>
<td>P810-001</td>
<td>REMOTE PRIMARY AND SECONDARY</td>
<td>120/220 VAC</td>
<td>HBXX-100/103/107</td>
<td>1.5</td>
<td>12500</td>
</tr>
<tr>
<td>984-680</td>
<td>INTERNAL SUPPLY FOR LOCAL I/O</td>
<td>120/220 VAC, 24 VDC</td>
<td>HBXX-209</td>
<td>1.5</td>
<td>8000</td>
</tr>
<tr>
<td>984-480/380</td>
<td>INTERNAL SUPPLY FOR LOCAL I/O</td>
<td>120/220 VAC, 24 VDC</td>
<td>HBXX-209</td>
<td>1.5</td>
<td>3000</td>
</tr>
</tbody>
</table>

(2) MAXIMUM +5V AND +4.3V = 15000 mA
(3) TOTAL MAXIMUM = 8000 mA
(4) TOTAL MAXIMUM = 3000 mA

800 I/O REMOTE INTERFACES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>HOUSING</th>
<th>SLOTS</th>
<th>I/O POWER REQUIRED (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S908-110</td>
<td>REMOTE I/O DRIVER FOR 984-680 CONTROLLER, SINGLE CABLE</td>
<td>HBXX-209</td>
<td>1</td>
<td>(1)</td>
</tr>
<tr>
<td>J890-001</td>
<td>REMOTE I/O RECEIVER FOR S908, SINGLE CABLE</td>
<td>HBXX-103/107</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>J890-002</td>
<td>REMOTE I/O RECEIVER FOR S908, DUAL CABLE</td>
<td>HBXX-103/107</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>J892-001</td>
<td>REMOTE I/O RECEIVER FOR S908, SINGLE CABLE, 2 ASCII PORTS</td>
<td>HBXX-103/107</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>J892-002</td>
<td>REMOTE I/O RECEIVER FOR S908, DUAL CABLE, 2 ASCII PORTS</td>
<td>HBXX-103/107</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>J910-000</td>
<td>REMOTE I/O RECEIVER FOR S901</td>
<td>HBXX-103/107</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>J912-000</td>
<td>REMOTE I/O RECEIVER FOR S901, 2 ASCII PORTS</td>
<td>HBXX-103/107</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

(1) REQUIRES 1500 mA FROM +5.0V OF 984-680

800 I/O HOUSINGS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>LENGTH</th>
<th>AVAILABLE I/O SLOTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H819-209</td>
<td>PRIMARY FOR 984-380, 480, 680, 5908-110 & I/O</td>
<td>19 INCHES</td>
<td>6 (380, 480), 5 (680), 4 (680 W/ 5908)</td>
</tr>
<tr>
<td>H827-209</td>
<td>PRIMARY FOR 984-380, 480, 680, 5908-110 & I/O</td>
<td>27 INCHES</td>
<td>10 (380, 480), 9 (680), 8 (680 W/ 5908)</td>
</tr>
<tr>
<td>H819-102</td>
<td>PRIMARY FOR REMOTE RECEIVER, POWER SUPPLY AND I/O</td>
<td>19 INCHES</td>
<td>4 (W/ RECEIVER & P.S.)</td>
</tr>
<tr>
<td>H827-103</td>
<td>PRIMARY FOR REMOTE RECEIVER, POWER SUPPLY AND I/O</td>
<td>27 INCHES</td>
<td>8 (W/ RECEIVER P.S.)</td>
</tr>
<tr>
<td>H819-100</td>
<td>SECONDARY RACK, POWER SUPPLY AND I/O ONLY</td>
<td>19 INCHES</td>
<td>5 (W/ P.S.), 7 (NO P.S.)</td>
</tr>
<tr>
<td>H827-100</td>
<td>SECONDARY RACK, POWER SUPPLY AND I/O ONLY</td>
<td>27 INCHES</td>
<td>9 (W/ P.S.), 11 (NO P.S.)</td>
</tr>
</tbody>
</table>

800 I/O CABLES

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DESCRIPTION</th>
<th>AVAILABLE LENGTHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>W801-XXX</td>
<td>I/O SIGNAL CABLE BETWEEN RACKS AT A LOCAL OR REMOTE DROP</td>
<td>1.5 FT</td>
</tr>
<tr>
<td>W806-XXX</td>
<td>I/O POWER EXTENDER CABLE TO ADDITIONAL RACK WITHOUT POWER SUPPLY</td>
<td>-002</td>
</tr>
<tr>
<td>W802-XXX</td>
<td>I/O POWER EXTENDER CABLE TO ADDITIONAL RACK WITHOUT POWER SUPPLY</td>
<td>N/A</td>
</tr>
<tr>
<td>W804-XXX</td>
<td>I/O POWER EXTENDER CABLE TO ADDITIONAL RACK WITH POWER SUPPLY</td>
<td>-002</td>
</tr>
<tr>
<td>W929-XXX</td>
<td>LOCAL I/O CABLE FOR THE 984X</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Appendix B
What to Do If Things Go Wrong

This appendix contains troubleshooting help and Modicon telephone numbers for Customer Service and Technical Support. Figure B-1 shows MODBUS cable pinouts for troubleshooting purposes. Figure B-2 offers an installation verification troubleshooting chart on two sheets. Figure B-3 offers P190 to MODBUS hookup information.
Stopped Error Codes

Table B-1 following lists all stopped error codes applicable to 984 family controllers.

<table>
<thead>
<tr>
<th>Machine Stop Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCSICK 0x7FFF</td>
<td>Controller unhealthy</td>
</tr>
<tr>
<td>PCSTOPPED 0x8000</td>
<td>Controller stopped</td>
</tr>
<tr>
<td>BADTCOP 0x4000</td>
<td>Bad I/O traffic cop</td>
</tr>
<tr>
<td>DIMAWAR 0x2000</td>
<td>PC in dim awareness</td>
</tr>
<tr>
<td>PORTIENT 0x1000</td>
<td>Bad port intervention</td>
</tr>
<tr>
<td>BADSEGSCH 0x0800</td>
<td>Bad segment scheduler</td>
</tr>
<tr>
<td>SONNOTIST 0x0400</td>
<td>Son did not start segment</td>
</tr>
<tr>
<td>PDCHESKSUM 0x0200</td>
<td>Bad power-down checksum</td>
</tr>
<tr>
<td>NOEOLDOIO 0x0080</td>
<td>Watchdog expired</td>
</tr>
<tr>
<td>RTCFAILED 0x0040</td>
<td>Real time clock failed</td>
</tr>
<tr>
<td>BADCOXUSED 0x0020</td>
<td>Bad coil used table</td>
</tr>
<tr>
<td>RIOFAILED 0x0010</td>
<td>Remote IO option failed</td>
</tr>
<tr>
<td>NODETYPE 0x0008</td>
<td>Illegal node type user</td>
</tr>
<tr>
<td>ULCSUMERR 0x0004</td>
<td>User logic checksum error</td>
</tr>
<tr>
<td>DSCRDISAB 0x0002</td>
<td>Discretes disable error</td>
</tr>
<tr>
<td>BADCONFIG 0x0001</td>
<td>Bad configuration</td>
</tr>
</tbody>
</table>
Table B-2 shows Modicon 984-380/[381] system end-user part numbers.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>PC-0984-380</td>
<td>Model 380 Controller w/o cartridges</td>
</tr>
<tr>
<td>PC-0984-381</td>
<td>[Model 381 Controller w/o cartridges]</td>
</tr>
<tr>
<td>AS-E380-902</td>
<td>Standard 380 Exec Cartridge</td>
</tr>
<tr>
<td>AS-E381-902</td>
<td>[Standard 381 Exec Cartridge]</td>
</tr>
<tr>
<td>AS-E380-904</td>
<td>Enhanced 380 Exec Cartridge</td>
</tr>
<tr>
<td>AS-E381-904</td>
<td>[Enhanced 381 Exec Cartridge]</td>
</tr>
<tr>
<td>AS-M380-004</td>
<td>4K Memory Cartridge</td>
</tr>
<tr>
<td>AS-M380-006</td>
<td>6K Memory Cartridge</td>
</tr>
<tr>
<td>Housings</td>
<td></td>
</tr>
<tr>
<td>AS-H819-209</td>
<td>Primary 19” Housing</td>
</tr>
<tr>
<td>AS-H827-209</td>
<td>Primary 27” Housing</td>
</tr>
<tr>
<td>AS-H819-100</td>
<td>Secondary 19” Housing</td>
</tr>
<tr>
<td>AS-H827-100</td>
<td>Secondary 27” Housing</td>
</tr>
<tr>
<td>Cables</td>
<td></td>
</tr>
<tr>
<td>AS-W954-006</td>
<td>Modem to 984-x80</td>
</tr>
<tr>
<td>AS-W955-012</td>
<td>IBM PC/XT to 984-x80</td>
</tr>
<tr>
<td>AS-W955-025</td>
<td>IBM PC/XT to 984-x80</td>
</tr>
<tr>
<td>AS-W956-012</td>
<td>IBM PC/AT to 984-x80</td>
</tr>
<tr>
<td>AS-W956-025</td>
<td>IBM PC/AT to 984-x80</td>
</tr>
<tr>
<td>AS-W953-006</td>
<td>P190 to 984-x80</td>
</tr>
<tr>
<td>AS-W953-012</td>
<td>P190 to 984-x80</td>
</tr>
<tr>
<td>AS-W953-025</td>
<td>P190 to 984-x80</td>
</tr>
<tr>
<td>AS-W801-0xx</td>
<td>Housing interconnect signal cable</td>
</tr>
<tr>
<td>AS-W802-0xx</td>
<td>Housing interconnect power cable</td>
</tr>
<tr>
<td>AS-W804-0xx</td>
<td>Housing interconnect aux power cable</td>
</tr>
<tr>
<td>AS-W808-0xx</td>
<td>Housing interconnect power cable</td>
</tr>
<tr>
<td>Software Tapes and Disc Support for P190</td>
<td></td>
</tr>
<tr>
<td>SW-PR9T-0TB</td>
<td>Programming Support Module – P190</td>
</tr>
<tr>
<td>SW-DO9T-0TB</td>
<td>Documentor Support Module – P190</td>
</tr>
<tr>
<td>SW-CS9T-0TB</td>
<td>Controller Support Module – P190</td>
</tr>
<tr>
<td>SW-PR9D-1DB</td>
<td>Programming Support Module – IBM</td>
</tr>
<tr>
<td>SW-DO9D-1DB</td>
<td>Documentor Support Module – IBM</td>
</tr>
<tr>
<td>SW-CS9D-1DB</td>
<td>Controller Support module – IBM</td>
</tr>
</tbody>
</table>
Modicon telephone numbers are as follows:

- To call us from anywhere in North America except from within the state of Massachusetts:

 1-(800)-468-5342

- To call us from within Massachusetts or from outside North America:

 1-(508)-975-5001

Customer Service – When calling the Modicon 5001 telephone number, ask for service from the list below.

When calling the 800 number, you will get a recording asking you to enter a one digit code for the type of service you want (listed below). However, this only works with a "touch tone" phone. If using a dial phone, hang on and the operator will intercept after a short pause.

The service categories – and extra digit code responses for push-button phones – are:

- "1" – Hardware or software technical support
- "2" – Order entry, buying hardware or software
- "3" – Return/exchange status inquiries
- "4" – Training/course registration inquiries
- "5" – General information other than above.
MODBUS Cable Pinouts

Figure B-1

MODBUS Cable Pinouts

A. MODBUS to P190 (W953)

B. MODBUS to Modem (W954)

C. MODBUS to Null Modem [IBM PC/XT] (W955)

D. MODBUS to IBM AT (W956)

TROUBLESHOOTING B-5
Installation Verification Troubleshooting

Figure B-2 (Sheets 1 & 2) offer you a modular approach to troubleshooting your PC System installation.

Figure B-2

PC installation
Troubleshooting Chart -
(Sheet 1 of 2)
START

CAN LOAD CONFIG?

CAN WRITE CONFIG?

I/O ACTIVE IND OFF, CHK AS FOLLOWS

RUN LED ON?

"PC RUNNING" FOLLOW P190 STOP PROCEDURE BELOW:

CHECK PC'S POWER IS ON

CHECK COMM CABLE IS OK

CHECK P190 PORT CONN CORRECT

CHECK P190 DIP SWITCH SET OK

CHANGE P190 TAPE

REPLACE PC & CALL US

I/O ACTIVE IND OFF, CHK AS FOLLOWS

RECHECK TRAFFIC COP

CHANGE I/O MODULE

CHANGE THE HOUSING

- CYCLE P190 KEY SW
- ENT: [1], [ATTACH #]
- [EXIT]
- [CONTROLLER OPS]
- [STOP 984]
- [PROCEED]
- [PREV MENU]
- [I/O CONFIG OPS]
Figures B-3 through B-5 below show setup and certain other physical information regarding the use of your P190 programmer.

Figure B-3

P190 Programmer External Features
P190 PORT SETTINGS

NOTE THAT THE P190 ONLY READS THESE DIP SWITCHES AT TURN-ON

FACTORY SET AT 9600 BAUD, EVEN PARITY, 1 STOP BIT, 8 DATA BITS.

YOU SET FOR YOUR PRINTER

<table>
<thead>
<tr>
<th>Baud Rate</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,200</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9,600</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7,200</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4,800</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3,600</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2,400</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2,000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1,800</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1,200</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>600</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>134.5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

S5 1 Parity Enable
 0 Parity Disable
S6 1 Even Parity
 0 Odd Parity
S7 1 1 Stop Bit
 0 2 Stop Bit
S8 1 8 Data Bit
 0 7 Data Bit

TROUBLESHOOTING B-9
Figure B-5
P190 Programmer Port 1 to MODBUS Port 1 Hookup

25 PIN MALE CONNECTOR TO PORT 1

984-380 PORT 1
We are constantly striving to improve the content and usability of our technical documents. You can help us by answering the questions below and mailing this form to us. Also, if you find any errors or have any suggestions for improvement, please let us know.

How do you use this document?
- Introduction to the product
- Classroom resource
- Self-study
- Programming Procedures
- Advanced programming techniques

How did you get this document?
- Received with equipment
- Received from Sales or Customer Service Representative
- Ordered from MODICON
- Do not know

Please rate this document.

<table>
<thead>
<tr>
<th>Category</th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Readability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Attractiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Are there any terms or concepts that are not defined clearly?
- Y N

If so, what are they?

After reading this document, are you able to use the equipment?
- Y N

What errors did you find in the manual? (Please include page numbers. Attach an extra sheet if necessary.)

Do you have any comments or suggestions?

Name ____________________________ Street ____________________________
Title ____________________________ City ____________________________
Dept./Mail Stop ____________________ State/Country ____________________
Company __________________________ Zip Code __________________________
Telephone __________________________

Thank you for your help.
Publications Order Form

Bill To:

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Ship To: (If different):

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Customer Contact

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Purchase Order No.

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Telephone:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Document Catalog

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Authorized Signature

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Ordering Instructions

1. Provide appropriate billing address and shipping address (if different from billing address).
2. Please provide a contact name and phone number in case we have a question about your order.
3. Indicate your purchase order number and date. (You may prepay by enclosing a check for the full amount.)
4. Give the part number, description, and quantity for each document ordered.

Delivery

Unless otherwise specified, all orders are shipped best way surface, F.O.B. Andover, MA (prepay and add if UPS surface, collect for truck and air). If you specify insurance, you will be billed for these changes. MODICON will not assume any liability in connection with the shipment nor shall the carrier be construed to be an agent of MODICON.

Payment

Terms are net 30 days from date of invoice. Unless otherwise stated, partial shipments will generate partial invoices.

Prices

Prices are subject to change without notice. Individual prices can be found in the Publications Catalog or obtained by calling an Order Entry Coordinator at 1-800-468-5342.
Mcdicon, Square D and Telemecanique are PLC brand names from Schneider. These products are sold in the US by Square D; in Canada, Latin America, Europe, Africa, Asia Pacific and Middle East by Schneider; in Germany by AEG Schneider Automation; in China and Persian Gulf by Schneider Automation; in South Africa by ASA Systems Automation; in Austria by Cenelec.

Schneider Automation Inc.
One High Street
North Andover, MA 01845
Tel: (1) 508 794-0000
Fax: (1) 508-795-0400

Schneider Automation GmbH
Steinbäumer Straße 117
D-63500 Seligenstadt
Tel: (49) 6182 81-2564
Fax: (49) 6182 81-2600

Schneider Automation S.A.
240, Route des Lucioles BP147
F-06903 Sophia-Antipolis Cedex
Tel: (33) 93 95 20 00
Fax: (33) 93 95 37 15