Modicon TSX Compact (A120)
 Modular Programmable Controller
 Components for Railway Train Applications

User Manual

802 BHB 00900 Date 05/96 N

Notes

Application Note

Caution The relevant regulations must be observed for control applications involving safety requirements.
For reasons of safety and to ensure compliance with documented system data, repairs to components should be performed only by the manufacturer.

Training

AEG Schneider Automation offers suitable training that provides further information concerning the system (see addresses).

Data, Illustrations, Alterations

Data and illustrations are not binding. We reserve the right to alter our products in line with our policy of continuous product development. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us by using the form on the last page of this publication.

Addresses

The addresses are given at the end of this publication.

Copyright

All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including copying, processing or any information storage, without permission in writing by the AEG Schneider Automation. You are not authorized to translate this document into any other language.

Trademarks

All terms used in this user manual to denote AEG Schneider Automation products are trademarks of the AEG Schneider Automation GmbH.

Terminology

挐 Note This symbol emphasizes very important facts.

Caution This symbol refers to frequently appearing error sources.
stop
Warning This symbol points to sources of danger that may cause financial and health damages or may have other aggravating consequences.

Expert This symbol is used when a more detailed information is given, which is intended exclusively for experts (special training required). Skipping this information does not interfere with understanding the publication and does not restrict standard application of the product.

Path This symbol identifies the use of paths in software menus.

Figures are given in the spelling corresponding to international practice and approved by SI (Système International d‘ Unités).
l.e. a space between the thousands and the usage of a decimal point (e.g.: 12345.67).

Objectives

This manual is a supplement to the user manual for Compact TSX (A120). It describes the components developed specifically for the railway train applications of the A120 and which have the following alterations in comparison to the standard modules:
\(\left.$$
\begin{array}{lll}\square \text { Temperature range } & \begin{array}{l}\text { continuous operation: } \\
\text { operation }</=10 \mathrm{~min} .:\end{array}
$$ \& -25 ···+70^{\circ} \mathrm{C}

-30 ···+85^{\circ} \mathrm{C}\end{array}\right]\)| a Supply | $24 \mathrm{VDC},+/-5 \%$ |
| :--- | :--- |
| \square Schock, Vibration | according to LES-DB |
| \square LEDs | green replaced by yellow |

Related Documents

Catalogue	Programmable Controller A120 Product Family Modicon A91V.05-234 836	
General Manual	A120 DIN-Rail Mount Controller (Basic Document) User Manual A91M.12-271 629	
Software	Dolog AKF \rightarrow A120 (AKF12) and Software-Kit E-Nr. 424271521	A120, Dolog AKF Standard Function Blocks Block Library A91M.12-703 265
	or	
	Dolog AKF \rightarrow A120 / A250 and (AKF125) Software-Kit E-Nr. 424275182	A120, Dolog AKF Standard Function Blocks Block Library A91M.12-703 265

Table of Contents

Appendix A Module Descriptions 1
ADU 254, Analog Inputs 3
ADU 256, Analog Inputs 13
ALU 252, Central Processing Unit 25
DAP 250, DAP 258, Discrete Inputs and Outputs 39
DAP 252, DAP 253, Discrete Inputs and Outputs 49
DAU 252, Analog Output 59
DEP 254, Discrete Input 67
DEP 255, DEP 257, Function 73
DNP 255, Power supply 79
Index 85

Appendix A
 Module Descriptions

The module descriptions are arranged alphabetically according to their abbreviations.

ADU 214

Analog Inputs
 Module Description

The analog/digital converter of the ADU 214 module works according to the principle of integrated conversion procedure (dual slope) with fast back-integration. It is used for measuring analog data providing up to 8 non-isolated inputs. The main characteristics are:

- four analog inputs, 4-pole (temperature or resistance)

Alternatively these inputs can be used for 2-pole voltage measurement. Thus it is possible to choose between up to 8 unipolar voltage inputs or up to 4 bipolar voltage inputs. (or combinations of both)
a several measuring ranges with a resolution of 15 bit + arithm. sign:

- Voltage measurement
- current measurement with externalprecision resistance
- Temperature measurement
- Resistance measurement

$$
\begin{aligned}
& 0 \ldots 0.5,0 \ldots 1,0 \ldots 5,0 \ldots 10 \mathrm{~V} \text {, } \\
& 0.1 \ldots 0.5,0.2 \ldots 1,1 \ldots 5,2 \ldots 10 \mathrm{~V} \text {, } \\
& \pm 0.5, \pm 1, \pm 5, \pm 10 \mathrm{~V} \\
& 0 \ldots 5,0 \ldots 10,0 \ldots 20 \mathrm{~mA} \text {, } \\
& 1 \ldots 5,2 \ldots 10,4 \ldots 20 \mathrm{~mA} \text {, } \\
& \pm 5, \pm 10, \pm 20 \mathrm{~mA} \\
& -160 /-60 \ldots+160^{\circ} \mathrm{C} \text {, resolution } \leq 0.02^{\circ} \mathrm{C} \\
& -200 \ldots+320^{\circ} \mathrm{C} \text {, resolution } \leq 0.04^{\circ} \mathrm{C} \\
& -200 \ldots+640^{\circ} \mathrm{C}, \text { resolution } \leq 0.08^{\circ} \mathrm{C} \\
& 0 \ldots 100,0 \ldots 200,0 \ldots 500 \Omega \\
& 0 \ldots 1000,0 \ldots 2000 \Omega
\end{aligned}
$$

- Broken wire testing of all 4-pole lines. Self calibration using built-in reference resistances andreference voltages. Characteristic curve linearizing for platinum and nickel reference resistances according to IEC 751 / DIN 43760 (Pt 100 ...1000, Ni 100 ...1000).

Figure 1 Front view and fill-in-label of ADU 214 module

1 General Characteristics

Measuring ranges for voltage, current, temperature and resistancecan be set individually for each input via control bytes from the CPU of the controller.

Noise suppression can be switched from 50 Hz to 60 Hz .
Analog inputs are scanned cyclically. The PLC accesses the most recently filed values asynchronically.

The ADU can be inserted into any slot of subracks DTA 200, 201, 202.

SW-Modules

The ADU can be used without S/W-Modules.
If the additional scaling-modules SKAL and DSKAL are used word-based operations can directly process the measured values.
The module GRENZ provides boundary value control for the upper and lower boundaries (of words).

1.1 Physical Characteristics

The module resides in a standard housing. It provides a backplane bus system and peripheral connections on the front. Screw/plug-in terminal blocks support process signal connection.

One of the included fill-in-labels can be inserted into the cover of the housing next to the LED display area. The label has fields which have been prepared for filling in field data specifications like signalnames.

1.2 Mode of Functioning

Figure 2 Schematic circuit diagram of ADU 214

2 Elements for Operation and Display

The front side of the ADU contains the following status displays:
a 1 green LED "U" indicating 24 V power status
on: power supply available
off : power failure
ㅁ 1 green LED "ready" indicating processor status on: processor running
off : processor failure
At initial startup a DIP-switch has to be set. For details see page 11.

3 Configuration

For selecting your configuration consider the following points:
a Number of I/O drop (see user manual, chapter 3 "Equipment list...").
The module does not contain any hardware for setting the node number
\square Measuring range selection and error analysis (see 3.1)

- Noise suppression (see 3.2)
a Fritting procedure of the connections 3.3)
ㅁ Cable connections (cable rooting, shielding, see 3.4)
- Assignment of connections and signal addresses (see 3.5)
a Representation of peripheral signal connections (DIN A3 forms, see 3.6)

3.1 Measuring range selection and error analysis

3.1.1 Measuring range selection

Measuring either current or voltage input depends on the type of connector used (i.e. with or without measuring resistance). The appropriate measuring range is selected individuallyfor each input via AKF-software in operand QBx. 1 ... QBx. $8^{1)}$. The selected value can be changed at random during operation.

Default positions for QBx. 1 ...QBx. 8 are set to "0", i.e. allinputs are inactive.
In addition to the default values the following individual settings can be selected:

1) $x=$ node number

Table 1 QBx. 1 ... QBx. $8^{\text {2) Possible binary settings for voltage and current measuring ranges }}$

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	0	0	0	0	0	0	0	inactive channel
0	0	*	*	*	0	0	1	10 V
					0	1	0	5 V
					0	1	1	$1 \mathrm{~V} / 20 \mathrm{~mA}{ }^{3)} / 10 \mathrm{~mA}{ }^{4}$
					1	0	0	$\left.0.5 \mathrm{~V} / 10 \mathrm{~mA}{ }^{3} / 5 \mathrm{~mA} 4\right)$
0	0	*	*	0	*	*	*	0... 100% value representation
		0	*	1	*	*	*	$20 . . .100 \%$ value representation (with Offset = LIVE-ZERO)
0	0	0	0	*	*	*	*	negative values are limited to 0
			1	*	*	*	*	negative values are outputted up to error message -1.6\%
0	0	0	*	*	*	*	*	up to 8 unipolar inputs
		1	0	0	*	*	*	up to 4 bipolar inputs

Table 2 Possible binary settings for QBx. 1 ... QBx. $8^{2)}$ for temperature and resistance measuring ranges

$\begin{array}{llllllll}\text { Bit } 7 & \text { Bit } 6 & \text { Bit } 5 & \text { Bit } 4 & \text { Bit } 3 & \text { Bit } 2 & \text { Bit } 1 & \text { Bit } 0\end{array}$

0	1	0	*	*	*	0	0	temperature with Ni up to $+160{ }^{\circ} \mathrm{C}$
						0	1	temperature with Pt up to $+160{ }^{\circ} \mathrm{C}$
						1	0	temperature with Pt up to $+320^{\circ} \mathrm{C}$
						1	1	temperature with Pt up to $+640{ }^{\circ} \mathrm{C}$
0	1	0	*	0	0	*	*	detector 100 Ohm
				0	1			detector 200 Ohm
				1	0			detector 500 Ohm
				1	1			detector 1000 Ohm
								resistance measuring ranges
0	1	1	*	0	0	0	0	0 ... 100 Ohm
					0	0	1	0 ... 200 Ohm
					0	1	0	$0 \ldots 500$ Ohm
					0	1	1	0... 1000 Ohm
					1	0	0	0 ... 2000 Ohm
0	1	*	0	*	*	*	*	4-wire detector
			1	*	*	*	*	2-wire detector with 10 Ohm wire extension

2) $x=$ node number
3) with measuring resistance 50Ω
4) with measuring resistance 100Ω

Table 3 Possible decimal or hexadecimal settings for QBx. 1 ... QBx. $8^{5 \text { 5 }}$ for voltage and current measuring ranges.

Content of QBx.1...QBx. $8^{5)}$		measuring rangefor IWx. 1 ... IWx. 8	parame
DEZ	HEX		
0	0	input is inactive (no conversion)	
2-pole unipolar measuring ranges			
1	1	$0 . .10 \mathrm{~V}$	+ limit
2	2	$0 \ldots 5 \mathrm{~V}$	+ limit
3	3	$0 \ldots 1 \mathrm{~V} / 0 \ldots 20 \mathrm{~mA}{ }^{6)} / 0 \ldots 10 \mathrm{~mA}{ }^{7}$	+ limit
4	4	$\left.0 \ldots 0.5 \mathrm{~V} / 0 \ldots 10 \mathrm{~mA}{ }^{6} / 0 \ldots 5 \mathrm{~mA}{ }^{7}\right)+$	+ limit
5	5	- (invalid measuring range)	
:	:		
8	8	-	
9	9	$2 \ldots 10 \mathrm{~V}$	+ limit
10	A	$1 . .55$	+ limit
11	B	0.2 ... $1 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}$ 6) / 2 ... $10 \mathrm{~mA}{ }^{7}$)	+ limit
12	C	$\left.0.1 \ldots 0.5 \mathrm{~V} / 2 \ldots 10 \mathrm{~mA}{ }^{6} / 1 . . .5 \mathrm{~mA}^{7}\right)$	+ limit
13	D	- ${ }^{\text {a }}$	
:			
16	10	-	
17	11	0... 10 V	\pm limit
18	12	$0 \ldots 5 \mathrm{~V}$	\pm limit
19	13	0 ... $1 \mathrm{~V} / 0 \ldots 20 \mathrm{~mA}^{6} / 0 \ldots 10 \mathrm{~mA}{ }^{7)} \pm$	\pm limit
20	14	0 ... $0.5 \mathrm{~V} / 0 \ldots 10 \mathrm{~mA}{ }^{6} / 0 \ldots 5 \mathrm{~mA}{ }^{7)}$)	\pm limit
21	15	-	
:			
24	18	-	
25	19	$2 \ldots 10 \mathrm{~V}$	\pm limit
26	1A	$1 . . .5 \mathrm{~V}$	\pm limit
27	1B	$0.2 \ldots 1 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}{ }^{6} / 2 \ldots 10 \mathrm{~mA}^{7)}$ +	\pm limit
28	1C	$\left.0.1 \ldots 0.5 \mathrm{~V} / 2 \ldots 10 \mathrm{~mA}{ }^{6}\right) / 1 \ldots 5 \mathrm{~mA}{ }^{7}$)	\pm limit
29	1D	- 0.5 V (
:			
32	20	-	

2-pole bipolar measuring ranges (related inputs must be set to same measuring range)

33	21	$\pm 10 \mathrm{~V}$	(+ limit of single input) 34 2^{22}
35	23	$\pm 5 \mathrm{~V}$	(+ limit of single input)
36	24	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}^{6)} / \pm 10 \mathrm{~mA} 7$)	(+ limit of single input)
37	25	-	(+ limit of single input)
$:$			
63	$3 F$	-	

5) $x=$ node number
6) with measuring resistance 50Ω
7) with measuring resistance 100Ω

Table 4 Possible decimal or hexadecimal QBx. 1 ... QBx. $8^{8)}$ settings for temperature and resistance measuring ranges
content of measuring rangefor IWx.1 ... IWx. 8 parameters
QBx.1..QBx. $8^{8)}$

QBx.1...QBx. 8
DEZ HEX
4-pole measuring ranges, temperature detector with 4-pole wire connection ${ }^{9}$)

64	40	$-60 \ldots+160^{\circ} \mathrm{C}$ with Ni 100	$\mathrm{I}_{\mathrm{K}}=2.5 \mathrm{~mA}$
65	41	$-160 \ldots+160^{\circ} \mathrm{C}$ with Pt 100	$\mathrm{I}_{\mathrm{K}}=2.5 \mathrm{~mA}$
66	42	$-200 \ldots+320^{\circ} \mathrm{C}$ with Pt 100	$\mathrm{I}_{\mathrm{k}}=2.5 \mathrm{~mA}$
67	43	$-200 \ldots+640^{\circ} \mathrm{C}$ with Pt 100	
68	44	$-60 \ldots+160^{\circ} \mathrm{C}$ with Ni 200	$\mathrm{I}_{\mathrm{k}}=2.5 \mathrm{~mA}$
69	45	$-169 \ldots+160^{\circ} \mathrm{C}$ with Pt 200	$\mathrm{I}_{\mathrm{k}}=2.5 \mathrm{~mA}$
70	46	$-200 \ldots+320^{\circ} \mathrm{C}$ with Pt 200	$\mathrm{I}_{\mathrm{k}}=2.5 \mathrm{~mA}$
71	47	$-200 \ldots+640^{\circ} \mathrm{C}$ with Pt 200	$\mathrm{I}_{\mathrm{k}}=2.5 \mathrm{~mA}$
72	48	$-60 \ldots+160^{\circ} \mathrm{C}$ with Ni 500	$\mathrm{I}_{\mathrm{k}}=2.5 \mathrm{~mA}$
73	49	$-160 \ldots+160^{\circ} \mathrm{C}$ with Pt 500	$\mathrm{I}_{\mathrm{k}}=2.5 \mathrm{~mA}$
74	4 A	$-200 \ldots+320^{\circ} \mathrm{C}$ with Pt 500	$\mathrm{I}_{\mathrm{k}}=2.5 \mathrm{~mA}$
75	4 B	$-200 \ldots+640^{\circ} \mathrm{C}$ with Pt 500	$\mathrm{I}_{\mathrm{k}}=1.5 \mathrm{~mA}$
76	4 C	$-60 \ldots+160^{\circ} \mathrm{C}$ with Ni 1000	$\mathrm{I}_{\mathrm{k}}=1.5 \mathrm{~mA}$
77	4 D	$-160 \ldots+160^{\circ} \mathrm{C}$ with Pt 1000	$\mathrm{I}_{\mathrm{k}}=1.5 \mathrm{~mA}$
78	4 E	$-200 \ldots+320^{\circ} \mathrm{C}$ with Pt 1000	$\mathrm{I}_{\mathrm{k}}=1.5 \mathrm{~mA}$
79	4 F	$-200 \ldots+640^{\circ} \mathrm{C}$ with Pt 1000	$\mathrm{I}_{\mathrm{k}}=1.5 \mathrm{~mA}$

4-pole measuring ranges, temperature detector with 2-pole wire compensation(10 Ohm) ${ }^{9}$)

80	50	$-60 \ldots+160^{\circ} \mathrm{C}$ with Ni 100
81	51	$-160 \ldots+160^{\circ} \mathrm{C}$ with Pt 100
82	52	$-200 \ldots+320^{\circ} \mathrm{C}$ with Pt 100
83	53	$-200 \ldots+640^{\circ} \mathrm{C}$ with Pt 100
84	54	$-60 \ldots+160^{\circ} \mathrm{C}$ with Ni 200
85	55	$-160 \ldots+160^{\circ} \mathrm{C}$ with Pt 200
86	56	$-200 \ldots+320^{\circ} \mathrm{C}$ with Pt 200
87	57	$-200 \ldots+640^{\circ} \mathrm{C}$ with Pt 200
88	58	$-60 \ldots+160^{\circ} \mathrm{C}$ with Ni 500
89	59	$-160 \ldots+160^{\circ} \mathrm{C}$ with Pt 500
90	5 A	$-200 \ldots+320^{\circ} \mathrm{C}$ with Pt 500
91	5 B	$-200 \ldots+640^{\circ} \mathrm{C}$ with Pt 500
92	5 C	$-60 \ldots+160^{\circ} \mathrm{C}$ with Ni 1000
93	5 D	$-160 \ldots+160^{\circ} \mathrm{C}$ with Pt 1000
94	5 E	$-200 \ldots+320^{\circ} \mathrm{C}$ with Pt 1000
95	5 F	$-200 \ldots+640^{\circ} \mathrm{C}$ with Pt 1000

$\mathrm{I}_{\mathrm{K}}=2.5 \mathrm{~mA}$
$I_{K}=2.5 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{K}}=1.5 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{K}}=1.5 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{K}}=1.5 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{K}}=1.5 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{K}}=1.5 \mathrm{~mA}$

4-pole measuring ranges for resistance measuring with 4-pole wire ${ }^{9}$

96	60	$0 \ldots 100$ Ohm,	$I_{K}=2.5 \mathrm{~mA}$
97	61	$0 \ldots 200$ Ohm,	$I_{K}=2.5 \mathrm{~mA}$
98	62	$0 \ldots 500$ Ohm,	$I_{\mathrm{K}}=2.5 \mathrm{~mA}$
99	63	$0 \ldots 1000$ Ohm,	$I_{K}=2.5 \mathrm{~mA}$
100	64	$0 \ldots 2000$ Ohm,	$I_{K}=1.5 \mathrm{~mA}$
101	65	-	
$:$			
111	$6 F$	-	

4-pole measuring ranges for resistance measuring with 2-pole wire compensation (10 Ohm) ${ }^{9}$)

112	70	$0 \ldots 100$ Ohm	$\mathrm{I}_{\mathrm{K}}=2.5 \mathrm{~mA}$
113	71	$0 \ldots 200$ Ohm	$\mathrm{I}_{\mathrm{K}}=2.5 \mathrm{~mA}$
114	72	$0 \ldots 500$ Ohm	$\mathrm{I}_{\mathrm{K}}=2.5 \mathrm{~mA}$
115	73	$0 \ldots 1000$ Ohm	$\mathrm{I}_{\mathrm{K}}=2.5 \mathrm{~mA}$
116	74	$0 \ldots 2000$ Ohm	$\mathrm{I}_{\mathrm{K}}=1.5 \mathrm{~mA}$
117	75	-	
$:$			

8) $x=$ node number
9) The referenced input with an odd number has to be set to 0 (inactive) for all 4 -pole measuring ranges.

㢂 Note After system startup a measured value IWx. 1 ... IWx. $8{ }^{10}$) remains 0, until the module can be addressed. After that the module displays "invalid station identification" -32768 until the value is converted by selecting a valid measuring range (operand) QBx. 1 ... QBx.8. This leads to a display of the valid value.
Changing that measuring range results in the display "invalid station identification" -32 768 in the following cycle, until in the subsequent cycle the measured value becomes valid after max. 300 ms .

0 Note In case of 2-polemeasurement
Up to a response value of -1.6% of the rated value negative values in unipolar operation mode and + limit result in a digital value "0" without causing an error message. If measured values fall belowthis limit error message SMBx. $1^{10)}=y 5{ }^{11)}$ (see Table 5) and a measured value IWx.y = -32 767 will be displayed.
Negative measuring values in unipolar operation mode and \pm limit produce a digital value (up to -512) of the referred negative value without error message - up to a response value of -1.6% of the rated value. If measured values fall below this limit error message SMBx. $1=y 5$ (see Table 5) and a measured value IWx.y $=-32767$ will be displayed.
In case of measuring ranges with a 20% Offset (LIVE-ZERO) the maxixmum response limit for valued measure underflow is about. 10% of the rated value. The negativ digital value with \pm limit can fall to -3840 .

Note 4-pole measurement
Constant current only flowswhen measuring with this input. Thus the effective current for warming up the reference resistance is smaller. The current, however, depends upon the number of active inputs. In case of one active input with a 4-pole detector the keying ratio is $1: 2$. This is because one reference measurement occurs in between each measurement (effective value $=I_{K} \times 0.71$). In case of four active inputs the keying ratio is $1: 5$ (effective value $=I_{K} \times 0.45$).

3.1.2 Integration into application program

A transfer of operands QBx. 1 ... QBx. $8{ }^{10 \text {) to the ADU occurs within each program cy- }}$ cle.
In constant measuring ranges it is not necessary that the operands QBx.1...QBx. 8 be loaded in each program cycle (slowing down of processing time).
Therefore when loading you can use the switch-on marker in combination with a jumper operand, e.g.:

```
:A SM2
:JF =Y1
:LD V1 ... 116
:= QB2.1
    :
    :
:LD V1 ... 116
:= QB2.8
```

Y1 :***
10) $x=$ node number
11) $y=$ input number

3.1.3 Error Evaluation

In case of an ADU error the user-related system marker SMx. $1^{12)}$ stores a multiaddress message. Detailed error information can be obtained from operand SMBx. 1. The values in SMBx. 1 are constantly updated. If the cycle is error-freethe content of all inputs is deleted. As it is impossible to store errors until they are queried short-term errors can be lost if the A120-cycle is slower than the ADU cycle.

The coding of SMBx. $1^{12)}$ gives the incorrect input accompanied by an error number.

Binary data format:	Bit 7 Bit 6 Bit 5 input number $(1 \ldots 8)$	Bit 3 Bit 2 Bit 1 error number $(1 \ldots 7)$
hexadecimal data format:	$y^{13)}$ (left digit) input number $(1 \ldots 8)$	n (right digit) error number $(1 \ldots 7)$

input number

Should errors occur simultaneously in several inputs the error with the lowest input number will be displayed until it is debugged. After that the error with the next highest input numberwill be displayed and so on.

Table 5 Possible error messages

Content of SMBx. $1^{12 \text {) }}$		
BIN	HEX	meaning
00000000	00	no error
xxxx 0001	y1	parameter error / invalid measuring range
xxxx 0010	y2	inputs 1, 3, 5, 7 only allow 2-pole measuring.
xxxx 0011	y3	at inputs 2, 4, 6, 8 associated inputs 1, 3, 5, 7 must be inactive.
xxxx 0100	y4	broke wire detected at 4-pole measuring
xxxx 0101	y5	measuring range underflow, detector short-circuit when measuring temperature or broke wire at Live-Zero
xxxx 0110	y6	measuring range overflow
xxxx 0111	y7	in bipolar operating mode both connected inputs must be set to same measuring range.
11111111	FF	system error or voltage drop / low voltage $\mathrm{U}_{\mathrm{B} 24}$ results in module reset and Totmann trash. relations between SM 31 ... 48, SMx. 1 und SMBx. 1 see Table 6.

When an error has occured the transfered measured value of the inputs concerned is set (IWx.y ${ }^{12)}{ }^{13}$) to defined constants.

-32768	inactive input / invalid measuring range / broke wire at four-pole measuring
+32767	measuring range overflow
-32767	measuring range underflow
0	parameter error in bipolar operation mode of the corresponding input.

12) $x=$ node number
13) $y=$ input number

The following relations exist between common system markers SM 31 ... 48 and userrelated system markers SMx. $1^{14)}$ (multiaddress-marker) und SMBx. 1 (detail marker):

Table 6 relations between SM 31 ... 48, SMx. 1 und SMBx. $1^{\text {14) }}$

SM31 \ldots SM48	SMx.1	SMBx.1	IWx.1 \ldots IWx.8	meaning		
1	0	00	00	module not plugged in 1		
0	1	00	00	module plugged in, $U_{B}=24 \mathrm{~V}$ nonexistent module plugged in, AWP running with $U_{B}=24 \mathrm{~V}$		
0	1	00	00	alt		module plugged in, AWP running, $U_{B}=24 \mathrm{~V}$ switched off
:---						
again						

3.2 Noise Suppression (DIP-switch B1)

The ADU provides a suppression of mains frequencies on the peripheral lines. ADUs are shipped with 50 Hz suppression, which can be switched to 60 Hz with DIP-switch B1.

OFF ON
\square B2 see Figure 4
\square B1 50 Hz noise suppression (as shipped)
\square
B1 60 Hz noise suppression

Figure 3 Back view of ADU (Noise suppression)

3.3 Fritting procedure of input connections (DIP-switch B2)

Fritting prevents an increase of transfer resistance on peripheral plug-ins. Fritting is accomplished by adding voltages $>10 \mathrm{~V}$ und 0 to the contacts at defined time intervals. The resulting current (flowing for about 1 ms) is limited to $<8 \mathrm{~mA}$. The contacts of the current and voltage paths of 4-pole connections automatically receive this load with each measurement. The contacts of the active voltage inputs are frittedcyclically every 30 minutes.
The fritting process is switched on and off with DIP-switch B2.

Figure 4 Back view of ADU (fritting connections)

3.4 Wiring

L ${ }^{\lessgtr}$ Note For general wiring and set-up instructions please refer to youruser manual, chapter 5.2.1 "Measures Taken Regarding Installation and Wiring".
a Foil-shielded cables ($2 \times$ or $4 \times 0.5 \mathrm{~mm}^{2}$, twisted per channel) have to be used for connections. All channels can be run within one joint shielded cable.

- If detectors are connected with 4-pole wires, e.g Ni 100, Pt 100, conductors for current and voltage path must be twisted in pairs.
- The connections between the shield and ground must be as closely as possible ($<20 \mathrm{~cm}$) at one end. If higher noise levels exist, the cable shield has to be earthed at both ends (see also user manual, chapter 5.2 "EMC Measures".

व The cable must not be run together with energy supply lines or similar electrical disturbers. Distance $>0.5 \mathrm{~m}$

3.5 Connection and Signal Address Assignment

Figure 5 Example for wiring of ADU 214

Fill in the signal names or names of the actuators into the label of the module housing.

You can connect a
4-poleresistance detector oder
2-poleresistance detector with 10Ω wiring compensation or
2-polevoltage detector unipolar
$0 \ldots 0.5,0 \ldots 1,0 \ldots 5,0 \ldots 10 \mathrm{~V}$
$0.1 \ldots 0.5,0.2 \ldots 1,1 \ldots 5,2 \ldots 10 \mathrm{~V}$
or
2-polevoltage detector bipolar
oder
2-polecurrent detector unipolar $0 \ldots 5,0 \ldots 10,0 \ldots 20 \mathrm{~mA}$,
1 ... 5, 2 ... 10, $4 \ldots 20 \mathrm{~mA}$,
oder
2-polecurrent detector bipolar $\pm 5, \pm 10, \pm 20 \mathrm{~mA}$
The common reference point "AGND" is internally connected to 0 V (reference potential of PLC).

Additionally 8 bridges are supplied with the ADU 214 package. Use these, if you have to short-circuit 2 neighbouring terminal blocks, e.g. when using two-wire resistancetemperature detectors.

Inputs which are not used have to be set to measuring range "inactive" (0).By doing so, you avoid error messages and the cycle time of conversion decreases.

After conversion, analog input values are put into input words IWx. 1 ... IWx.8.

3.5.1 Voltage and Current Measurement

Each 4-pole input can be switched to a 2×2-pole unipolar voltage input. In this case the first input is single-ended and the second input is a differential input.
For positive voltages with the same reference point, AGND voltage inputs 1, 3, 5, 7 can be used as single ended. Inputs $2,4,6,8$, can be used as differential inputs for positive or negative voltages. With regard to differential inputs, however, you always have to take care that voltages on both the positive input and negative inputs must not exceed the common-mode voltage rangeagainst common reference point AGND (UE \leq $\pm 11 \mathrm{~V})$. Therefore, with potential-free detectors there always has to be a reference between a random point of the circuit and AGND, e.g. as shown in Figure 5 Picture 5,by connecting the negative input terminal block toAGND. For connecting, use the bridges supplied with the module.

For bipolar measuring both inputs are connected (this occupies 2 inputs). As in the case of four-pole measuring the measured value is filed in the even numbered input (IWx.2, 4, 6, 8). The corresponding second input (IWx.1, 3, 5, 7) produces value -32 768 " invalid station identification".

Measuring either voltage input (U) or current input (I) depends on the mode of connection(mixed operation mode possible).
If you want to connect a current detector, a reference resistance e.g. 50Ω or 100Ω, $\pm 0.1 \%, \geq 0.1 \mathrm{~W}, \mathrm{Tk} \leq 25 \mathrm{ppm}$ has to be wired to the voltage input in parallel.

3.5.2 Temperature and resistance measurement

For 2-pole temperature and resistance measurment with line compensation asupplementary resistance has to be wiredexternally and must be calibrated to 10Ω. For this purpose the detector can be short-circuited at the beginning of the line and calibrated to the reference value of $10 \Omega(=3200)$ with the ADU 214 in the resistance measuring range $0 \ldots 100 \Omega(\mathrm{QBx} .2=96)$.
\square Note In resistance measuring range $0 \ldots 100 \Omega+10 \Omega$ (QBx. $2=112$) negative values are limited to 0 .

Please note that only the constant part of the line resistance can be compensated in line compensation. Temperature dependent resistancevariation of the line (at $\mathrm{Cu}+4.3 \mathrm{x}$ $10^{-3} /{ }^{\circ} \mathrm{C}$) influences measuring accuracy.

3.5.3 Grounding of shields

\square Shielded cables have to be run on cable earting bar CER 001
a Remove shield isolation at the position of the correspondingterminal block

- Push cable with bared shield into clamping device (contacting hat rail)
- Use cable straps to provide cable grip as shown in Figure 6

Figure 6 Grounding shields

3.6 Documentation aids

For project specific documentation and representation of the connected processperipherals A3 forms are provided.

These forms are used for documenting

- conventional processing as part of the A120 form pad (compare orderingdetails)
a Ruplan processing (TVN version) as part of the A120 data base

4 Technical specifications according to IEC 1131

4.1 Assignment

Device
Location
A120, Geadat 120
I/O structure
4.2 Supply
external supply
$\mathrm{U}_{\mathrm{B}}=24 \mathrm{VDC}$, typ. 70 mA , max. 150 mA
Potential isolation
Isolation test voltage
supply internal
via system bus
$\mathrm{U}_{\mathrm{B}}=24 \mathrm{~V}$ against 0 V (AGND) 350 VAC

5 VDC; typ. 45 mA , max. 100 mA
4.3 Inputs

Number
no potential isolation
Potential isolation
4 Inputs, 4-pole/2-pole, temperature/resistance or 4 Inputs, 2-pole current / voltage bipolar or 8 Inputs, 2-pole current / voltage unipolar mode of connection mixable among inputs and against 0 V against $U_{B}=24 \mathrm{~V}$

4.4 Static Characteristics of Inputs

Voltage Measuring

Input impedance measuring ranges unipolar
measuring ranges bipolar Resolution

```
>1M\Omega
```

$0 \ldots 0.5 \mathrm{~V}, \quad 0 \ldots 1 \mathrm{~V}, \quad 0 \ldots 5 \mathrm{~V}, \quad 0 \ldots 10 \mathrm{~V}$, $0.1 \ldots 0.5 \mathrm{~V}, \quad 0.2 \ldots 1 \mathrm{~V}, 1 \ldots 5 \mathrm{~V}, \quad 2 \ldots 10 \mathrm{~V}$ $\pm 0.5 \mathrm{~V}, \pm 1 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}$
ca. 0.003 \% of final value, $15 \mathrm{Bit}+$ sign

Measuring fault at environmental temperature $25^{\circ} \mathrm{C}$
for measuring ranges $0.5 \mathrm{~V} / 1 \mathrm{~V} \quad \pm 0.02 \%$ of MFV ${ }^{15)}, \pm 0.15 \%$ of MV ${ }^{16)}$ for measuring ranges $5 \mathrm{~V} / 10 \mathrm{~V} \quad \pm 0.01 \%$ of MFV, $\pm 0.02 \%$ of MV

Measuring fault at environmental temperatures $0 \ldots 60^{\circ} \mathrm{C}$ for measuring ranges $0.5 \mathrm{~V} / 1 \mathrm{~V} \quad \pm 0.10 \%$ of MFV, $\pm 0.35 \%$ of MV for measuring ranges $5 \mathrm{~V} / 10 \mathrm{~V} \quad \pm 0.02 \%$ of MFV, $\pm 0.11 \%$ of MV

Typical measuring error $\leq 0,5$ of above maximal errors
Inphase voltage range (differential input for voltage measuring)
Voltage of each input against AGND $\leq \pm 11 \mathrm{~V}$
Inphase suppression $\geq 60 \mathrm{~dB}$
maximal overvoltage static (1 Input for each module) $\quad \pm 30 \mathrm{~V}$ (module with 24 V power supply) $\pm 20 \mathrm{~V}$ (module without 24 V power supply) dynamic

Table 7 Conversion values of unipolar voltage inputs
analog value, voltage inputs unipolar (V) decimal value notes

Table 8 Conversion values of bipolar voltage inputs

analog value, voltage inputs(V)				decimal value	notes
$\pm 0.5 \mathrm{~V}$	$\pm 1 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 10 \mathrm{~V}$		
≤-0.512	≤-1.024	≤-5.12	≤-10.24	-32 767	underflow error
$\begin{aligned} & -0.5119 \ldots \\ & -0.5000 \end{aligned}$	$\begin{aligned} & -1.023 \ldots \\ & -1.000 \end{aligned}$	$\begin{aligned} & -5.119 \ldots \\ & -5.000 \end{aligned}$	$\begin{aligned} & -10.239 \ldots \\ & -10.000 \end{aligned}$	$\begin{aligned} & -32766 \ldots \\ & -32001 \end{aligned}$	overload range
-0.50	-1.00	-5.00	-10.00	-32 000	rated value
-0.25	-0.50	-2.50	-5.00	-16000	
-0.05	-0.10	-0.50	-1.00	-3 200	
-0.025	-0.05	-0.25	-0.50	-1600	
-0.005	-0.01	-0.05	-0.10	-320	
-0.000 5	-0.001	-0.005	-0.01	-32	
-0.000 25	-0.000 5	-0.002 5	-0.005	-16	
0	0	0	0	0	linear range
+0.000 02	+0.000 03	+0.000 16	+0.000 31	+1	
+0.000 25	+0.000 5	+0.002 5	+0.005	+16	
+0.000 5	+0.001	+0.005	+0.01	+32	
+0.005	+0.01	+0.05	+0.10	+320	
+0.025	+0.05	+0.25	+0.50	+1600	
+0.05	+0.10	+0.50	+1.00	+3 200	
+0.25	+0.50	+2.50	+5.00	+16000	
+0.50	+1.00	+5.00	+10.00	+32000	rated value
$\begin{aligned} & +0.5000 \ldots \\ & +0.5119 \end{aligned}$	$\begin{aligned} & +1.0000 \ldots \\ & +1.0239 \end{aligned}$	$\begin{aligned} & +5.000 \ldots \\ & +5.119 \end{aligned}$	$\begin{aligned} & +10.000 \ldots \\ & +10.239 \end{aligned}$	$\begin{aligned} & \text { +32 } 001 \ldots \\ & \text { +32 } 766 \end{aligned}$	overload range
$\geq+0.512$	$\geq+1.024$	$\geq+5.12$	$\geq+10.24$	+32 767	overflow error

Current Measurement (using voltage measuring range with external referance resistance)
measuring ranges with external 50Ω referance resistance
$0.1 \%, 0.1 \mathrm{~W}$, Tk $25 \mathrm{ppm} \quad 0 \ldots 10 \mathrm{~mA}(0 \ldots 0.5 \mathrm{~V})$,
$2 \ldots 10 \mathrm{~mA}(0.1 \ldots 0.5 \mathrm{~V})$, $\pm 10 \mathrm{~mA}(\pm 0.5 \mathrm{~V})$,
measuring ranges with external 100Ω measuring resistance

$0.1 \%, 0.1 \mathrm{~W}$, Tk 25 ppm	$0 \ldots 5 \mathrm{~mA}(0 \ldots 0.5 \mathrm{~V})$,	$0 \ldots 10 \mathrm{~mA}(0 \ldots 1 \mathrm{~V})$,
	$1 \ldots 5 \mathrm{~mA}(0.1 \ldots 0.5 \mathrm{~V})$,	$2 \ldots 10 \mathrm{~mA}(0.2 \ldots 1 \mathrm{~V})$,
	$\pm 5 \mathrm{~mA}(\pm 0.5 \mathrm{~V})$,	$\pm 10 \mathrm{~mA}(\pm 1 \mathrm{~V})$

The tolerance of the referance resistance increases inaccuracy of measurment.
Resolution
Measuring inaccuracies

Critical values
ca. 0.003% of final value, 15 Bit + sign
see voltage measuring range above + error ofreferance resistance
see voltage ranges. Additionally load capacity ofreference resistance has to be taken into account.
(at $50 \Omega 0.1 \mathrm{~W}$ max., 40 mA continously)

Table 9 Conversion values of current inputs

analog value, current inputs (mA)					decimal value	notes
$0 . .10 \mathrm{~mA}$	0... 20 mA	2... 10 mA	4... 20 mA	$\pm 20 \mathrm{~mA}$		
<-0.16	<-0.32	< +1.04	< +2.08	≤-20.479	-32 767	underflow error
-	-	-	-	-20.478 ...	$-32766 \ldots$	
-	-	-	-	-20.000	$\text { -32 } 001$	overload range ${ }^{18)}$
-	-	+1.04 ...	+2.08 ...	-	0 (-3 840)	
-0.16...	-0.32...	+1.87 ...	+3.74 ...	-	$0(-512)^{18}$	
-0.00	-0.00	+1.99	+3.99	-	$0(-1)$	
				-20.00	-32 000	
				-10.00	-16000	
				-2.00	-3 200	
				-1.00	-1600	
				-0.20	-320	
				-0.02	-32	
				-0.01	-16	linear range
0	0	+2	+4	0	0	
+0.005	+0.01	+2.004	+4.008	+0.01	+16	
+0.01	+0.02	+2.008	+4.016	+0.02	+32	
+0.1	+0.20	+2.08	+4.16	+0.20	+320	
+0.5	+1.00	+2.40	+4.80	+1.00	+1600	
+1	+2.00	+2.80	+5.60	+2.00	+3 200	
+5	+10.00	+6.00	+12.00	+10.00	+16000	
+10.0	+20.00	+10.00	+20.00	+20.00	+32000	rated value
$\begin{aligned} & +10.000 \ldots \\ & +10.239 \end{aligned}$	$\begin{aligned} & +20.000 \ldots \\ & +20.478 \end{aligned}$	$\begin{aligned} & +10.00 \ldots \\ & +10.19 \end{aligned}$	$\begin{aligned} & +20.00 \ldots \\ & +20.38 \end{aligned}$	$\begin{aligned} & +20.000 \ldots \\ & +20.478 \end{aligned}$	$\begin{aligned} & +32001 \ldots \\ & +32766 \end{aligned}$	overload range
$\geq+10.24$	$\geq+20.479$	> +10.19	> +20.38	$\geq+20.479$	+32 767	overflow error

18) without brackets range with + limit, with brackets range with limit

Temperature Measurement (4-pole wire)

Input impedance
Resolution
$>1 \mathrm{M} \Omega$
<0.012 \% vom Skalenendwert, ≥ 13 Bit + sign

Measuring ranges with Pt 100,
Pt 200, Pt 500, Pt $1000 \quad-160 \ldots+160^{\circ} \mathrm{C}$, resolution $\leq 0.02^{\circ} \mathrm{C}$
$-200 \ldots+320^{\circ} \mathrm{C}$, resolution $\leq 0.04^{\circ} \mathrm{C}$
$-200 \ldots+640^{\circ} \mathrm{C}$, resolution $\leq 0.08^{\circ} \mathrm{C}$
Measuring ranges with Ni 100,
Ni 200, Ni 500, Ni $1000 \quad-60 \ldots+160^{\circ} \mathrm{C}$, resolution $\leq 0.02^{\circ} \mathrm{C}$
Measuring fault at environmental temperature $25^{\circ} \mathrm{C}$ (without inaccuracy of detector)
for measuring ranges $-60 /-160 \ldots+160{ }^{\circ} \mathrm{C}$
with Pt $100 \ldots$ Pt $1000 \quad \pm 0.35^{\circ} \mathrm{C} \quad\left(= \pm 0.22 \%\right.$ of MFV $\left.{ }^{19}\right)$)
with Ni $100 \ldots \mathrm{Ni} 1000 \quad \pm 0.3^{\circ} \mathrm{C}(= \pm 0.2 \%$ of MFV)
for measuring range $-200 \ldots+320^{\circ} \mathrm{C}$
with Pt $100 \ldots$ Pt $1000 \pm 0.5^{\circ} \mathrm{C} \quad(= \pm 0.16 \%$ of MFV)
for measuring range $-200 \ldots+640^{\circ} \mathrm{C}$
with Pt $100 \ldots$ Pt $1000 \pm 0.8^{\circ} \mathrm{C} \quad(= \pm 0.13 \%$ of MFV)
Measuring fault at environmental temperatures $0 \ldots 60^{\circ} \mathrm{C}$
for measuring ranges $-60 /-160 \ldots+160{ }^{\circ} \mathrm{C}$
with Pt 100, Ni $100 \quad \pm 0.8^{\circ} \mathrm{C} \quad(= \pm 0.5 \%$ of MFV)
with Pt 200, Pt 500, Pt $1000 \pm 0.65^{\circ} \mathrm{C}(= \pm 0.4 \%$ of MFV)
with Ni 200
$\pm 0.5^{\circ} \mathrm{C} \quad(= \pm 0.32 \%$ of MFV)
with Ni 500, Ni $1000 \quad \pm 0.45^{\circ} \mathrm{C} \quad(= \pm 0.3 \%$ of MFV)
for measuring range $-200 \ldots+320^{\circ} \mathrm{C}$
with Pt $100 \quad \pm 1.1^{\circ} \mathrm{C} \quad(= \pm 0.35 \%$ of MFV)
with Pt 200
with Pt 500, Pt 1000
$\pm 0.95^{\circ} \mathrm{C} \quad(= \pm 0.3 \%$ of MFV)
$\pm 0.9^{\circ} \mathrm{C} \quad(= \pm 0.28 \%$ of MFV)
for measuring range $-200 \ldots+640^{\circ} \mathrm{C}$
with Pt $100 \quad \pm 1.6^{\circ} \mathrm{C} \quad(= \pm 0.25 \%$ of MFV)
with Pt 200
$\pm 1.5^{\circ} \mathrm{C} \quad(= \pm 0.23 \%$ of MFV)
with Pt 500, Pt $1000 \quad \pm 1.4^{\circ} \mathrm{C} \quad(= \pm 0.22 \%$ of MFV)
Constant current ${ }^{20)}$ ca. 1.5 mA or ca. 2.5 mA depending on measuring range, compare table Table 4 on page 7

Liniarization according to IEC 751 and DIN 43760 on module

Table 10 Conversion values of temperature inputs

analog value, temperature inputs $\left({ }^{\circ} \mathrm{C}\right)$				decimal value notes	
$\begin{aligned} & -60 \ldots \\ & +160^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -160 \ldots \\ & +160^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -200 \ldots \\ & +320^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -200 \ldots \\ & +640^{\circ} \mathrm{C} \end{aligned}$		
<-60	<-160	<-200	<-200	-32767	measuring range underflow (error)
-	-160	-	-	-32000	
-	-100	-200	-	-20 000	
-60	-60	-120	-	-12000	
-50	-50	-100	-200	-10 000	
-16	-16	-32	-64	-3 200	
0	0	0	0	0	
+0.005	+0.005	+0.01	+0.02	+1	
+0.08	+0.08	+0.16	+0.32	+16	
+0.16	+0.16	+0.32	+0.64	+32	linear range
+1.6	+1.6	+3.2	+6.4	+320	
+8	+8	+16	+32	+1600	
+16	+16	+32	+64	+3200	
+80	+80	+160	+320	+16000	
+160	+160	+320	+640	+32000	rated value
$\begin{aligned} & +160.005 \ldots \\ & +163.83 \end{aligned}$	$\begin{aligned} & +160.005 \ldots \\ & +163.83 \end{aligned}$	$\begin{aligned} & +320.01 \ldots \\ & +327.66 \end{aligned}$	$\begin{aligned} & +640.02 \ldots \\ & +655.32 \end{aligned}$	$\begin{aligned} & +32001 \ldots \\ & +32766 \end{aligned}$	overload range
$\geq+163.84$	$\geq+163.84$	$\geq+327.67$	$\geq+655.34$	+32 767	measuring range overflow (error)

Resistance Measuring (4-pole)
Input impedance
$>1 \mathrm{MO}$
Measuring ranges

Resolution $\quad \leq 0.005 \%$ of final value, ≥ 14 Bit

Measuring fault at environmental temperature $25^{\circ} \mathrm{C}$
for measuring range $100 \ldots 2000 \Omega$
$\pm 0.1 \%$ of MFV 21)
Measuring falut at environmental temperatures $0 \ldots 60^{\circ} \mathrm{C}$
for measuring range $100 \Omega \quad \pm 0.30 \%$ of MFV
for measuring range $200 \Omega \quad \pm 0.25 \%$ of MFV
for measuring range $500 \ldots 2000 \Omega$
$\pm 0.20 \%$ of MFV
Constant current ${ }^{22)}$ ca. 1.5 mA for measuring range $0 \ldots 2000 \Omega$
ca. 2.5 mA for measuring ranges $0 \ldots 100 \Omega, 0 \ldots 200$
$\Omega, 0 \ldots 500 \Omega, 0 \ldots 1000 \Omega$

Table 11 Conversion values for resistance inputs

analog value, resistance inputs (Ω)					decimal value notes	
$0 . .100 \Omega$	0... 200Ω	0... 500Ω	0... 1000Ω	0... 2000Ω		
<-1.6	<-3.2	<-8	<-16	<-32	-32 $767 .$.	underflow error
0...-1.6	0...-3.2	0...-8	0...-16	0...-32	0	overload range
0	0	0	0	0		
0.003	0.006	0.015	0.03	0.06	+1	
0.05	0.1	0.25	0.5	1	+16	
0.1	0.2	0.5	1	2	+32	
1	2	5	10	20	+320	
5	10	25	50	100	+1600	linear range
10	20	50	100	200	+3 200	
50	100	250	500	1000	+16000	
100	200	500	1000	2000	+32000	rated value
$100.00 \text {... }$	$200.00 \text {... }$	$500.01 \text {... }$	$1000.03 \ldots$	$2000.06 \ldots$	$\text { +32 } 001 \ldots$	
102.39	204.78	511.97	1023.94	2047.88	$+32766 \quad J$	overload range
≥ 102.40	≥ 204.79	≥ 511.98	≥ 1023.97	≥ 2047.94	+32 767	overflow error

4.5 Dynamic Characteristics of Imputs

Conversion time for all inputs max. 300 ms
Input delay Time constant
for HF suppression typ. 0.12 ms

Measurement integration
time 20 or $16,66 \mathrm{~ms}$ (switchable)
Interference voltage suppression (mains suppression)
for $\mathrm{f}=\mathrm{n} \times 50$ or $60 \mathrm{~Hz} \quad \mathrm{n}=1,2 \ldots$
push-pull interferences $\quad>60 \mathrm{~dB}$ (peak value of interference voltage and measu-
ring voltage \leq final value $\times 1.1$)
21) $M F V=$ measuring range final value
22) for resulting effective current compare page 8

4.6 Processor, Memory

Processor type Memory
4.7 Data interface

Internal bus system
Totmann-monotime
4.8 Debugging

A120-System markers
SM 31 ... SM 48
SMx. 1
SMBx. 1
4.9 Physical Strucure
$\begin{array}{ll} & \begin{array}{l}\text { Module } \\ \text { Dimensions } \\ \text { Weight }\end{array} \\ 4.10 & \begin{array}{l}\text { Connections } \\ \text { Process }\end{array}\end{array}$
$\begin{array}{ll} & \begin{array}{l}\text { Module } \\ \text { Dimensions } \\ \text { Weight }\end{array} \\ 4.10 & \begin{array}{l}\text { Connections } \\ \text { Process }\end{array}\end{array}$
$\begin{array}{ll} & \begin{array}{l}\text { Module } \\ \text { Dimensions } \\ \text { Weight }\end{array} \\ 4.10 & \begin{array}{l}\text { Connections } \\ \text { Process }\end{array}\end{array}$
$\begin{array}{ll} & \begin{array}{l}\text { Module } \\ \text { Dimensions } \\ \text { Weight }\end{array} \\ 4.10 & \begin{array}{l}\text { Connections } \\ \text { Process }\end{array}\end{array}$
$\left.\begin{array}{ll} & \text { Module } \\ \text { Dimensions } \\ \text { Weight }\end{array}\right\} \begin{aligned} & \text { Connections } \\ & \text { Process }\end{aligned}$

Displays

Microprocessor Intel 80C31 (8 Bit)
8 kByte RAM for data exchange
32 kByte EPROM for firmware
parallel I/O bus, compare user manual, chapter 4 "Technical Specifications"
75 ... 145 ms
compare chapter 2, page 4
I/O drop on slot $1 \ldots 18$ failed
multiaddress message in care of error
error details, compare chapter 3.1.3, page 9

1-slot box type module, shielded
3 HE, 8 T
350 g

Cable for process connection min. cross section $0.14 \mathrm{~mm}^{2}$, twisted in pairs, reference
conductor included, shielded e.g. JE-LiYCY $2 \times 2 \times 0.5$
Line distance to potential disturbers
cable length 4-pole cable length 2-pole line resistance 4-pole line capacity 4-pole
system bus (internal)
4.11 Environmental Ratings

Standards
System data
Power dissipation
Radio interference
4.12 Ordering details

Module ADU 214
Cable JE-LiYCY for process connection DIN A3 form pad, Process peripherals

Fill-in label (replacement)
2 11-pole screw/plug-in terminal blocks, connections can be fritted
$>0.5 \mathrm{~m}$
max. 50 m for voltage detector
max. 100 m for voltage detector
max. 25 Ohm for each conductor
max. 10 nF for each conductor
backplane bus system with $1 / 3 \mathrm{C} 30 \mathrm{M}$

VDE 0160, UL 508
compare user manual, chapter 4 "Technical Specifications"
2 W typ., max. 3 W
EN 50 081-1, according to standard 243 of German Telecom (Post)

424277589
424234035
A91M.12-271 683
424277592

We reserve the right to modify our products in line with ourpolicy of continous product improvement

ADU 256
 Analog Inputs
 Module Description

ADU 256 is an A/D converter based on the principle of successive approximation for the programmable controller A120.
It serves for the analog signal measurement and has 4 analog isolated inputs.
\square The resolution is $11 \mathrm{Bit}+$ sign.
\square Different measuring ranges can be selected by using the software:
Input voltage $\pm 1 \mathrm{~V} ; 0 \ldots 1 \mathrm{~V}$; $0.2 \ldots 1 \mathrm{~V}$;
$\pm 10 \mathrm{~V} ; 0$... $10 \mathrm{~V} ; 2$... 10 V
Input current $\pm 20 \mathrm{~mA} ; 0$... $20 \mathrm{~mA} ; 4$... 20 mA
\square Each input can be set independently to the measuring ranges 1 V , 20 mA or 10 V
\square Overrange- and open circuit monitoring via software
\square When additionally scaling blocks SKAL and DSKAL are used, arithmetical operations can be executed directly with voltage or current values.
\square The operating temperature is $-23 \ldots+70^{\circ} \mathrm{C}$

Figure 7 Front view and fill-in label of ADU 256

4 General

ADU 256 can be installed in any slot of the subracks DTA 200, 201 and 202.

4.1 Physical Characteristics

The standard size module has bus contact at the rear and periphery connection at the front via screw/plug-in terminals.

One of the enclosed fill-in labels is inserted in the attachable cover of the subrack near to the viewing window for the LED indicators. System relevant data (e.g. signal names) are to be entered in the fields provided.

4.2 Mode of Functioning

Figure 8 Simplified Schematic for the ADU 256

5 Operating and Display Elements

The front side of the ADU contains the follwing indicators:
a $1 \times$ yellow LED "U" for the power supply 24 V
ON: Power supply is available
OFF: Power supply is not available
■ $1 \times$ yellow LED "ready" for the processor operation
ON: Processor operation of the ADU and the ALU is without fault
OFF: Fault in the processor operation

6 Configuration

The following should be configured:

- I/O slot adresses (compare 3.1)
- Type of input and error evaluation (compare 6.2)
a Cabling (running of cables, shielding, (compare 6.3)
a Connection and assignment of signal addresses (compare 6.4)
a Connection representation of the periphery signals (DIN A3 forms, compare 6.5)

6.1 I/O Slot Adresses

I/O slot addresses (to be determined according to the chapter 3, "Equipment and ..."). The module has no setting elements for addressing.
The moduls must be entered via Dolog AKF as "ADU 206" moduls instead of "ADU 256".

6.2 Type of Input and Error Evaluation

6.2.1 Type of Input (Selection of the Measuring Range)

The selection of the current input or voltage input is obtained through the type of connection. The setting of the corresponding measuring range is done with AKF software in the operand QBx. $1^{23)}$.

In the initial stage QBx. $1=0$, that means:

- All 4 inputs are set to measuring range $\pm 1 \mathrm{~V}$ or $\pm 20 \mathrm{~mA} \pm 1 \mathrm{~V}$
- No monitoring for overrange
\square No monitoring for open circuit
a Bipolar operation
Following presettings are available for the ADU 206. These settings are obtained by adding the following values:

QBx. $1^{23)}=$
1 (Bit 0) Measuring range $\pm 10 \mathrm{~V}$ on input 1
2 (Bit 1) Measuring range $\pm 10 \mathrm{~V}$ on input 2
4 (Bit 2) Measuring range $\pm 10 \mathrm{~V}$ on input 3
8 (Bit 3) Measuring range $\pm 10 \mathrm{~V}$ on input 4
16 (Bit 4) Unipolar mode, Resolution 12 Bit without sign, can also be used in combination with open circuit monitoring, for outputs conversion of digital values is required.
32 (Bit 5) All 4 inputs to measuring range $0.2 \ldots 1 \mathrm{~V}$ or measuring range $4 \ldots 20 \mathrm{~mA}$ when jumpers are used on the inputs with simultaneous open circuit monitoring for currents $<2.08 \mathrm{~mA}$ or
47 (Bit 5) all 4 inputs to measuring range $2 \ldots 10 \mathrm{~V}$. No jumpers on the inputs.
64 (Bit 6) Monitoring for measured values greater then nominal value + tolerance (overload capability) on all 4 inputs.
128 (Bit 7) Without significance, set value always 0.
23) $x=$ Node number

Table 12 Possible QBx. ${ }^{24)}$ Combinations

Contens of QBx. ${ }^{24}$	Input 1 4)	Input 2	Input 3	Input 4	Polarity	Open-circuitmonit.	Overrange-monitoring
1	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	no
2	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	no
3	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	no
4	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	no
5	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	no
6	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	no
7	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	no
8	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	Bipolar	no	no
9	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	Bipolar	no	no
10	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	Bipolar	no	no
11	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	Bipolar	no	no
$12 \pm$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	Bipolar	no	no
$13 \pm$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	Bipolar	no	no
$14 \pm$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	Bipolar	no	no
15	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	Bipolar	no	no
16	$0 \ldots 1 \mathrm{~V} /$	$0 \ldots 1 \mathrm{~V} /$	$0 \text {... } 1 \text { V / }$	$0 \ldots 1 \mathrm{~V} /$			
	$0 \ldots 20 \mathrm{~mA}$	Unipolar	no	no			
31	$0 \ldots 10 \mathrm{~V}$	Unipolar	no	no			
3225)	0.2 ... $1 \mathrm{~V} /$						
	$4 \ldots 20 \mathrm{~mA}$	Bipolar	yes	no			
4725)	$2 \ldots 10 \mathrm{~V}$	Bipolar	yes ${ }^{26)}$	no			
4887)	$0.2 \ldots 1 \mathrm{~V} /$	0.2 ... $1 \mathrm{~V} /$	$0.2 \ldots 1 \mathrm{~V} /$	$0.2 \ldots 1 \mathrm{~V} /$			
	$4 \ldots 20 \mathrm{~mA}$	Unipolar	yes	no			
$63^{27)}$	$2 \ldots 10 \mathrm{~V}$	Unipolar	yes ${ }^{26)}$	no			
$64 \pm$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	yes			
$65 \pm$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	yes
$66 \pm$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	yes
$67 \pm$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	yes
$68 \pm$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	yes
$69 \pm$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	yes
$70 \pm$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	yes
$71 \pm$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	Bipolar	no	yes
$72 \pm$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	Bipolar	no	yes
$73 \pm$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	Bipolar	no	yes
$74 \pm$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	Bipolar	no	yes
75	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	Bipolar	no	yes
$76 \pm$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	Bipolar	no	yes
$77 \pm$	$\pm 10 \mathrm{~V}$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	Bipolar	no	yes
$78 \pm$	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	Bipolar	no	yes
$79 \pm$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	Bipolar	no	yes
80	$0 \ldots 1 \mathrm{~V} /$	0 ... $1 \mathrm{~V} /$	0... $1 \mathrm{~V} /$	0 ... $1 \mathrm{~V} /$			
	0... 20 mA	0... 20 mA	0... 20 mA	$0 \ldots 20 \mathrm{~mA}$	Unipolar	no	yes
95 0	0 ... 10 V	0 ... 10 V	$0 \ldots 10 \mathrm{~V}$	0 ... 10 V	Unipolar	no	yes
96 ${ }^{25}$	$0.2 \ldots 1 \mathrm{~V} /$	0.2 ... $1 \mathrm{~V} /$	0.2 ... $1 \mathrm{~V} /$	$0.2 \ldots 1 \mathrm{~V} /$			
	$4 \ldots 20 \mathrm{~mA}$	4 ... 20 mA	4 ... 20 mA	4 ... 20 mA	Bipolar	yes	yes
111 ${ }^{25)}$	$2 \ldots 10 \mathrm{~V}$	Bipolar	yes ${ }^{26)}$	yes			
112 ${ }^{27)}$	$0.2 \ldots 1 \mathrm{~V} /$	0.2 ... $1 \mathrm{~V} /$	0.2 ... $1 \mathrm{~V} /$	$0.2 \ldots 1 \mathrm{~V} /$			
	$4 \ldots 20 \mathrm{~mA}$	Unipolar	yes	yes			
127 ${ }^{27)}$	$2 \ldots 10 \mathrm{~V}$	Unipolar	yes ${ }^{26)}$	yes			

24) $x=$ Node number

25) A valid measured value should be applied to the unused inputs. This can be achieved by using a reference measuring point or by voltage input (parallel circuit) or by current input (series circuit) to the inputs.
26) Monitoring for voltages <2 V.
27) Can be used for manufacturing index 274905.13 (firmware 277707.01) upwards.
\square Note After switching on the first measured value corresponds to the initial state of the type of input. A change in the type of input influences the measured value at the earliest after the second cycle. As for ADU 206 a conversion cycle takes 10 ms , it can happen even later in case of scan time less than 10 ms .

脬 Note In unipolar operation a conversion of the digital values is required for outputs (see also Table 15, page 35).
The program for the conversion can be e.g. as follows:
$:$ LD \quad IWx.
$:$ SHR V1
$:=\quad$ MW1
6.2.2 Linking into the User Program

The loading of the operand QBx. ${ }^{24)}$ should not be done for each program cycle (unnecessary extension of the processing time).
Therefore, while loading use the switch-on marker in combination with a jump operand e.g. :

```
:A SM2
:JF =Y1
:LD V32
:= QB2.1
```

Y1 :***

6.2.3 Error Evaluation

System marker SMx. $1^{28)}$ sends a group signal when there is an error on the ADU 256. Detailed error data can then be scanned in the operand IBx. $1^{28)}$.

Table 13 Possible IBx. ${ }^{28)}$ scanning combinations

IBx.1 ${ }^{\text {28) }}$		ADU doesn't work * Bit 7	U_{B} missing Bit 6	$2 . .10 \mathrm{~V} /$ 4... 20 mA on Input 1... 4 Bit 5	polar Bit 4	- Overrange or open circuit when current <2.08 mA on			
binary	decimal					Inp. 4 Bit 3	Inp. 3 Bit 2	Inp. 2 Bit1	Inp. 1 Bit 0
00010000	16	0	0	0	1	0	0	0	0
00100000	32	0	0	1	0	0	0	0	0
10000000	-128	1	0	0	0	0	0	0	0
10000001	-127	1	0	0	0	0	0	0	1
10000010	-126	1	0	0	0	0	0	1	0
10000011	-125	1	0	0	0	0	0	1	1
10000100	-124	1	0	0	0	0	1	0	0
10000101	-123	1	0	0	0	0	1	0	1
10000110	-122	1	0	0	0	0	1	1	0
10000111	-121	1	0	0	0	0	1	1	1
10001000	-120	1	0	0	0	1	0	0	0
10001001	-119	1	0	0	0	1	0	0	1
10001010	-118	1	0	0	0	1	0	1	0
10001011	-117	1	0	0	0	1	0	1	1
10001100	-116	1	0	0	0	1	1	0	0
10001101	-115	1	0	0	0	1	1	0	1
10001110	-114	1	0	0	0	1	1	1	0
10001111	-113	1	0	0	0	1	1	1	1
10101111	-81	1	0	1	0	1	1	1	1
11000000	-64	1	1	0	0	0	0	0	0
* Cause:	errange or cessor m $=24 \mathrm{~V}$ m U is initial	pen circuit itoring activ ing ng.	each of or	our inputs or					

Values 16 and 32 are reflects of the default input option. They are not errors.

6.3 Cabling

Note For general cabling and installation guidelines see user manual, chapter 5.2 "EMC Measures".

- For the connection shielded cables ($2 \times$ or $4 \times 0.5 \mathrm{~mm}^{2}$, twisted per channel) should be used. All channels can be placed in a common shielded cable.
\square The shield should be connected to ground at one side with short cable (<20 cm). For higher noise levels, the cable shield should be on both sides. See also user manual chapter 5.2 "EMC Measures".
\square The cable should not be laid together with power supply lines or other similar sources of electrical disturbances. Distance $>0.5 \mathrm{~m}$.

6.4 Connection and Assignment of Signal Addresses

* For current inputs please use the enclosed jumpers.

Figure 9 Connection Example of ADU 256

The following can be connected:
2 pole voltage sensors $\pm 1 \mathrm{~V} ; 0 \ldots 1 \mathrm{~V} ; 0.2 \ldots 1 \mathrm{~V}$; $\pm 10 \mathrm{~V} ; 0 \ldots 10 \mathrm{~V} ; 2 \ldots 10 \mathrm{~V}$ or
2 pole current sensors $\pm 20 \mathrm{~mA} ; 0$... $20 \mathrm{~mA} ; 4$... 20 mA
The selection of current (I) or voltage (U) input is obtained depending on the connection (mixed operation permissible)
For connection of current sensors following jumpers are required:
Jumper 3-4 for IWx. 1
7-8 for IWx. 2
14-15 for IWx. 3
18-19 for IWx.4.
The ADU is delivered with the jumpers installed.
Unused voltage inputs should be connected as follows:
Jumper 3-4 or 4-6 for IWx. 1
7-8 or 8-10 for IWx. 2
14-15 or 15-17 for IWx. 3
18-19 or 19-21 for IWx.4.

For the measurung ranges $\pm 1 \mathrm{~V} / \pm 10 \mathrm{~V} / \pm 20 \mathrm{~mA}$ each input can be used independently as required. The measuring ranges $2 \ldots 10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}$ are always for all 4 inputs. In this case a valid measured value should be applied to the unused inputs.

The analog input values are transferred after conversion to the input words IWx. 1 ... IWx. 4.

Corresponding signal names or signal addresses should be entered in the fill-in labels.

6.4.1 Grounding of the Shields

\square Lay the shielded cables over the cable earthing bar CER 001
\square At the level of the corresponding cable cleat remove the shield insulation
\square Press the cable with the opened shield in the cable cleat (contact to hat rail)
\square With cable clip relieve each cable from traction as shown in Figure 10

Figure 10 Grounding of the Shields

6.5 Documentation Aids

For project specific system documentation and representation of the connected process periphery A3 forms are provided.

These forms are for:

- conventional processing and are part of the A120 form block (see ordering details)
- Ruplan processing (TVN version) and are part of the A120 data base

4 Specifications

4.1 Allocation

Programmable Controllers
Structure
A120
In I/O structure
4.2 Power Supply

External Power Supply
Internal via I/O bus
$\mathrm{U}_{\mathrm{B}}=24 \mathrm{VDC}$, typ. 70 mA , max. 100 mA 5 VDC; typ. 60 mA , max. 100 mA

4.3 Inputs

No. of Inputs
Isolation

	Varistor (voltage dependent protective resistor) to PE (protective earth),	
	Inputs not isolated from each other.	
Linear Measuring Range	$\pm 1 \mathrm{~V} / \pm 20 \mathrm{~mA}$	(depending on the connection)
	$0.2 \ldots 1 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA}$	(depending on the connection)
	$0 \ldots 1 \mathrm{~V} / 0 \ldots 20 \mathrm{~mA}$	(depending on the connection)
	$\pm 10 \mathrm{~V} / 0 \ldots 10 \mathrm{~V} /$	
$2 \ldots 10 \mathrm{~V}$		

Table 14 Conversion Values of ADU 256 on bipolar mode

Analog value Voltage inputs (V)			Current inputs (mA)		Decimal value	Comments
$\pm 1 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$2 \ldots 10 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$	4 ... 20 mA		
-1.024 ...	-10.24		-20.48 ...		-32 768 ...	Overrange
-1.001	-10.01 ...		-20.02		-32 016	
-1.00	-10.00		-20.00		-32000	
-0.50	-5.00		-10.00		-16000	
-0.10	-1.00		-2.00		-3 200	
-0.05	-0.50		-1.00		-1600	
-0.01	-0.10		-0.20		-320	
-0.001	-0.01		-0.02		-32	
-0.0005	-0.005		-0.01		-16	linear
0.00	0.00	+2.00	0.00	+4.00	0	range
+0.0005	+0.005	+2.004	+0.01	+4.008	+16	
+0.001	+0.01	+2.008	+0.02	+4.016	+32	
+0.01	+0.10	+2.08	+0.20	+4.16	+320	
+0.05	+0.50	+2.40	+1.00	+4.80	+1600	
+0.10	+1.00	+2.80	+2.00	+5.60	+3 200	
+0.50	+5.00	+6.00	+10.00	+12.00	+16000	
+1.00	+10.00	+10.00	+20.00	+20.00	+32000	
+1.001 ...	+10.01 ...	+10.01 ...	+20.02 ...	+20.02 ...	+32016 ...	overrange
+1.024	+10.24	+10.19	+20.47	+20.38	+32 752	

Table 15 Conversion values of ADU $\mathbf{2 5 6}$ on unipolar mode

Analog-values Voltage inputs (V)		$0.2 \ldots 1 \mathrm{~V}$	$2 \ldots 10 \mathrm{~V}$	Current inputs (mA)		Hexa-De- Decimal-values cimal-values	
0 ... 1 V	$0 \ldots 10 \mathrm{~V}$			$0 . . .20 \mathrm{~mA}$	$4 \ldots 20 \mathrm{~mA}$	HEX	DEZ
0	0	0.2	2	0	4	0	0
0.1	1			2		1900	6400
0.5	5			10		7D00	32000
0.6	6			12		95F0	-27 136* (38 384)
1	10	1	10	20	20	FA00	-1 536* (64 000)

Common mode voltage on return conductors between each other

Max. Voltage on Voltage Inputs
Max. Current on
Current Inputs
Input Resistance

Insulation Voltage
for 10 V , upper range value max. $\pm 2 \mathrm{~V}$ for 1 V , upper range value max. $\pm 11 \mathrm{~V}$
$\pm 30 \mathrm{~V}$ for inputs between each other for 1 min .
40 mA continuous
50Ω for current inputs
$>1 \mathrm{M} \Omega$ for voltage inputs
Max. 500 V, Process connection against internal I/O bus max. 500 V , Process connection against external power supply 24 V

Common Mode Suppression against ground

Min. 60 dB for 1 kHz
Filter time constant of the inputs
1.5 ms

4.4 Converter

Conversion Time
Resolution of the converter
Operation Error Limit
Max. 10 ms for all 4 inputs
11 Bit + sign (bipolar) or 12 Bit (unipolar)
Max. $0.4 \%\left(0 \ldots 60^{\circ} \mathrm{C}\right)$ with respect to the used voltage range
max. $0.56 \%\left(0 \ldots 60^{\circ} \mathrm{C}\right.$) with respect to the used current range
4.5 Processor, Memory

Processor Type
Memory
Microprocessor Intel 80C31 (8 Bit)
128 Byte RAM for data exchange 32 kByte EPROM for firmware

4.6 Data Interface

Internal I/O Bus
Parallel I/O bus, see User Manual, chapter 4
"Specifications"

4.7 Error Evaluation

Indicators
SM 31 ... SM 48
SMx. 1
IBx. 1
see chapter 5, page 27
(for 1 signal)
I/O node number on slot $1 \ldots 18$ is absent
group signal when there is an error
For detailed error data see chapter 6.2.3, page 31
4.8 Physical Characteristics

Module	Standard size box
Format	$3 \mathrm{HE}, 8 \mathrm{~T}$

4.9 Type of Connection
Process
Cable to Process

Distance to potential
Cable length
2 pluggable 11 pole screw/plug-in terminals
Cable to Process

I/O bus (internal) rearside connector $1 / 3 \mathrm{C} 30 \mathrm{M}$
4.10 Environmental Characteristics

Standards
VDE 0160, UL 508
System Data
See User Manual chapter 4 "Specification"
Temperature in Operation
$-25 \ldots+70^{\circ} \mathrm{C}$ constant
$-30 \ldots+85{ }^{\circ} \mathrm{C}$ short-time (10 minutes)
Power Dissipation
2 W typical, max. 3 W
4.11 Ordering Details

Module ADU 256424701248
Cable to Process JE-LiYCY 424234035
DIN A3 Form Block,
Process-Peripherals
A91M.12-271 683

Replacement Fill-in Label 424701662

Subject to technical modifications!

ALU 252
 Central Processing Unit Module Description

The CPU ALU 252 together with the power supply DNP 255 and the DTA 200 form the basic unit of the A120 programmable controller.

This module provides the following features:

- a central processing unit (CPU)
a a memory for basic software, user program and processor signals
a an RS 232C port for the programming panel
口 RS 485 port for Modnet 1/SFB (only slave).
- The operating temperature is $-25 \ldots+70^{\circ} \mathrm{C}$

Figure 11 Front View and Fill-In Labels of ALU 252

1 General

The module ALU 252 contains the processor (CPU) of the A120 with an integrated communication port for the Modnet 1/SFB, via which it can be connected as a slave to a superior controller (master).
Together with the power supply DNP, the ALU generates an internal I/O bus (modified PAB1). The ALU 252 can only be inserted in slot 0 (left of the power supply) in the backplane DTA 200.

1.1 Physical Characteristics

The module consists of 3 PCBs which are assembled in a 2-slot size module with 16 T construction width and 3 HE construction height. They are connected using ribbon cable and bus planes. The essential components of the modules are:
a Micro-processor
a 32 KB EPROM for basic software

- 32 KB RAM for signal memory and system variables
a 64 KB RAM for user program and organization data (approx. 12 k instructions)
- Real time clock with date functions and calendar functions
a Front slot for EPROM card (PC 001)
a Battery compartments for 2 back-up batteries
a DIP switch for starting mode and start behavior
a Front port for programming panel (RS 232C)
a 3 rear ports for I/O bus (modified PAB1)
- DIP switch for slave address and transmission rate
- Front port for Modnet 1/SFB networking (RS 485)

尾 Note PC 001 card should be used omly for the start-up operation (no continuous operation).

1.2 Functions

The processor provides the following features:
a Generation of an internal processing clock pulse

- Organization of internal data traffic on the I/O bus between all modules
- Writing the process input signals into the signal memory
- Processing of the user program
- Storing intermediate results (markers) in the signal memory
\square Output of the process output signals from the signal memory
- Controlling of real time clock
\square Operation of the serial ports for program transmissions
- Monitoring of : processor run,
batteries,
power supply voltage,
program cycle
\square Sending and receiving data telegrammes via Modnet 1/SFB

2 Operating and Display Elements

The module provides the following operation and indicators elements:

```
\square yellow LED "ready"
    on: power supply voltage available and processor is running
    off: power supply voltage is not available or the processor is not
    running
\square yellow LED "run"
    on:
    blinks with 3 puls./s:
    blinks with 5 puls./s:
        ming
        fault during loading of the user program from the PC 001
        ALU in EPROM operation and PC 001 is not available or
        no program on the PC 001
    blinks with }7\mathrm{ puls./s: only for ALU 201, basic software on the PC 001 and
        simultaneosly in EPROM of the ALU
        user program is not running
\square red LED "battery 1"
    on
    off
    battery 1 has low voltage or is missing
    battery 1 voltage is in the setpoint range
a red LED "battery 2"
    on: battery 2 has low voltage or is missing
    off: battery 2 voltage is in the setpoint range
```


3 Configuration

Now you have to configure the following features:
a Type of ALU (compare 3.1)
口 Start-up characteristics (compare 3.2)
a Operating mode (compare 3.3)
a Operation of the ALU as Slave (compare 3.5)
a Second back-up battery (compare 3.6)

3.1 Type of ALU

You have to enter the type of ALU in the menu "Setup" via Dolog AKF software.

3.2 Set Start-up Characteristics (B0 and B1 DIP Switches)

The start-up characteristic is set at the operating mode switch using B0 and B1. Four types of starting modes are possible:

Cold Restart The programmable controller starts using a initialized signal memory at the beginning of the program.

Hot Restart The programmable controller continues the program in principle at the interrupted position using the saved signal memory data.

Manual Start The programmable controller remains in a halt position when power supply is switched on. The programmable controller has to be started manually via a programming panel.

Automatic Start The programmable controller starts automatically when the power supply voltage is switched on.

Figure 12 Set Start-Up Characteristics at the B0 and B1 DIP Switches

Caution during hot restart:

1. In case of EPROM operation with PC 001, the PC automatically starts with a cold restart. Hot restart after a manual stop of the PC is possible via the progamming panel.
2. On switching off, it is necessary that the power supply circuits for the sensors (inputs) has a longer backup time than 5 V bus power supply (see also chapter "Connection Diagram of the U_{B} Supply" of the user manual.

3.3 Setting the Operating Mode (B2 DIP Switch)

The user program is programmed off-line on the programming panel and can optionally be loaded
\square via the EPROM card PC 001 into the RAM of the ALU. If you take this choise, the EPROM card has to be recorded previously using the EPROM programming station EPS 2000 (EPROM operation).

- from the programming panel into the RAM of the ALU (RAM operation)

You have to set the operating mode at the operating mode switch using B2.

Figure 13 Setting the Mode Selector at the B2 DIP Switch

Caution Insert PC 001 only in ALU if disconnected from supply

3.4 Real Time Clock

The in-built real time clock controls the following parameters:

Time: \quad Seconds, minutes and hours
Calendar: Days of the week, the day's date, month and year. Leap-years are corrected automatically.

You can set the clock in the software using the programming panel (AKF funktion). No settings are necessary as far as the hardware is concerned.
The clock is backed up via the battery of the ALU 252, and therefore continues running if the power supply voltage is switched off.

3.5 Operation of the ALU as Slave

The ALU 252 can be linked to a master as slave via a RS 485 port (e.g. to the BIK 151 in a A350 and/or A500, compare Figure 14). In this case you have to take the following steps:

Set the transmission rate (compare 3.5.1)
Set the slave address (compare 3.5.2)
Prepare a bus cable (see user manual chapter 3.7 "Configuration the SystemFieldBus")

L₹ Note If the ALU is not used in networking mode, the DIP switches B3 and A0 ... A7 which are provided for the setting of transmission rates are unimportant.

Apart from the A120, other programmable controllers (e.g. A350, A500) or I/O nodes such as DEA-H1/DEA-K1, DEA 105/DEA 106 can also be linked to the master. The max. number of linkable slaves is 28 slaves per BIK module. 16 is the maximum number of I/O nodes.

Figure 14 Beispiel einer Kopplung zwischen A500 (Master) und mehreren A120 (Slaves)

3.5.1 Setting the Transmission Rates for RS 485 (Modnet 1/SFB)

Self-Clocked mode is used for data transmission. Two different transmission rates are available depending on the cable length:

Table 16 Dependence of the Transmission Rate on the Length of Cable

Transmission Rate	max. Cable Length
62.5 kBd	1200 m
375 kBd	300 m

In order to guarantee a correct data transfer, the cable lengths which are specified in Table 16 must not be exceeded.

The transmission rate is set using the DIP switch B3 on the front of the ALU (compare Figure 15).

Figure 15 Setting the Transmission Rate at the B3 DIP Switch

Note Ensure that the same transmission rate is set on all network nodes of a bus line (master with its slaves). Furthermore, the network nodes which permit a choice between self-clocked-mode and synchronous mode should be set to the self-clockedmode. For more information see the corresponding module descriptions.

3.5.2 Setting the Slave Address on the ALU

The slave address is set using the DIP switch A0 ... A7 (upper DIP switch field on the front of the module).
A number between 1 and 126 is allowed as an address. The address has to be dually coded first, before the switch position is determined. The position of the switches is determined by the coefficients of the two's power. A0 is the lowest value bit and A7 has the maximum value bit.
Figure 16 shows as an example the switch position for the address 52. Other addresses are listed in Table 17.

Figure 16 Addressing Example for Slave Address 52

Table 17 Setting of the Slave Address on the DIP Switch Field A (Switch A0 ... A7)

Switch	Address																
	0^{29}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A0	OFF	ON	OFF														
A1	OFF	OFF	ON	ON	OFF												
A2	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF
A3	OFF	ON	OFF														
A4	OFF	ON															
A5	OFF																
A6	OFF																
A7	OFF																
Switch	Address																
	17	18	19	20	21	22	23	24	25	26	27	28	...	123	124	125	126
A0	ON	OFF	...	ON	OFF	ON	OFF										
A1	OFF	ON	ON	OFF	OFF	ON	ON	OFF	OFF	ON	ON	OFF	...	ON	OFF	OFF	ON
A2	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF	OFF	OFF	ON	\ldots	OFF	ON	ON	ON
A3	OFF	ON	ON	ON	ON	ON	...	ON	ON	ON	ON						
A4	ON	\ldots	ON	ON	ON	ON											
A5	OFF	...	ON	ON	ON	ON											
A6	OFF	...	ON	ON	ON	ON											
A7	OFF	...	OFF	OFF	OFF	OFF											

3.6 Back-up Batteries

A battery is included in the ALU but shall not be used before the initial start-up so that it can be conserved. It supplies the clock, the RAM of the signal memory and the RAM for the user-programmed logic. One can achieve a larger back-up reserve by mounting a second battery (see accessories).

The battery back-up switching is designed in such a manner that battery 1 supplies the back-up current until it has been used up. After this, battery 2 takes over the rest of the back-up without interruption. A used battery can also be replaced in this manner if the power voltage is interrupted - as long as the other one still functions.

If there is no voltage or only under voltage in one of the batteries, the red LED "bat 1 " and/or "bat 2" is displayed. See "Specifications" for the life time of the batteries.

Note Changing the batteries simultaneously can only be carried out without data loss if the power supply voltage is connected.

Caution

1. Due to voltage peaks do not touch the battery contacts of the ALU
2. Used batteries are special refuse. Please only dispose of them in the waste disposal containers provided.

3.7 Connection

Figure 17 Connection

3.8 Connector Pin Assignment

3.8.1 RS 232C port

Figure 18 Pin Assignment of the RS 232C Port

For the connection of the ALU to the programming panel following 3 m cables can be used:

- YDL 048 for programming panel with 25 pole RS 232C port
- YDL 052 for programming panel with 9 pole RS 232C port

For terminal assignment with cable extensions please refer to the user manual "Kabel für die Produktfamilie Modicon A...". Document part number A91M.12-271 975.

3.8.2 RS 485 Port

Pin	Signal	Meaning
3	DATAN	Data Signal negated
5	RGND	Protective Ground, Shield (R-Ground)
8	DATA	Data Signal

- Connector Pin Assigned

O Connector Pin not Assigned

Figure 19 Pin Assignment of the RS 485 Port

3.9 Documentation Aids

For the project specific system documentation e.g. start-up characteristics, operating mode etc. DIN A3 forms are provided.
These forms are for:
a conventional processing and are part of the A120 form block (see ordering details)
a Ruplan processing (TVN version) and are part of the A120 data base

3.10 Creating and Transmitting Programs at Initial Start-up

\square Note The following items can also be found in the user manual Dolog AKF \rightarrow A120 / A250 in the chapter "Programming".
a Dolog AKF12: Create user programm in off-line mode (see Dolog AKF12-Software part "Programming")
a Dolog AKF12: Transfer program to programmable controller RAM and test it

- Connect programming panel
- Switch on programmable controller (power on). Insert battery 1 in upper compartment (+ in upward position), note date
- Use "Load", "Set Date/Time" to enter the current data
- Link programm under "Load", "Program Link" (see AKF chapter "Program Link")
- Transfer program to RAM with "Load", "Program to PC" (see AKF chapter "Program to PC")
- Start programmable controller with "Online", "Start PC" (see AKF chapter "Start PC")
- During cyclic processing of the user program the yellow function display "run" is on at the ALU
- Test the program with "Online", "Dyn. Status Display" resp. "Online", "Online-List" (see AKF chapter "Online")
- Eliminate the faults when present. The notes mentioned under "Error Evaluation" can be a help for this purpose. These are given in the "Specifications" of the corresponding module (I/O module)
- Possibly determine hardware status with "Online", "PC-Status" (see AKF chapter "PC-Status")
- If you want to change anything after the test, you can edit the program offline. Then the changed program part will be transferred to the running or not running programmable controller with "Load", "Exchange Online". Then the program has to be tested again (see AKF chapter "Exchange Online").

During this procedure the A120 with ALU 202 is running.

4 Specifications

4.1 Allocation

Device	A120
Structure	Slot 0 in the primary backplane DTA 200

4.2 Power Port

Internal (I/O bus) +5 V , typical 500 mA , max. 800 mA
Internal (RS 232 C) $\pm 12 \mathrm{~V}$ according to DIN 66020
4.3 Data Port

I/O Bus Internal, parallel I/O bus. For further details please refer to "Specifications" in user manual
RS 232C (V.24)
Pin Assignment Transmission Rate
serial port according to DIN 66 020, potentially linked see Figure 18, page 47

Data Format
9.6 kbaud
see "Specifications" in user manual
Modnet 1/SFB according to RS-485 (symmetrically-serial), floating
Pin Assignment
Transmission Rate
see Figure 19, page 47
62.5 kbaud at max. 1200 m

375 kbaud at max. 300 m
Data Format see "Specifications" in user manual

4.4 Type of Processor

Intel 8344
Micro-processor (8 Bit) at ALU 252

4.5 Memory Capacity

RAM

EPROM
EPROM Card PC 001
32 KB for signal memory and system variables
64 KB (approx 12 k logical instructions) for user program
32 KB for basic software at ALU 202L
32 kB for basic software at ALU 202
128 kB in order to archive the user program (32 kB of these are reserved for basic software)

4.6 Clock

Frequence Stability $\quad \pm 100 \mathrm{ppm}^{30}$)

4.7 Back-up Battery

Size $\quad 1 / 2$ AA
Placed on the I/O Bus in order to back up ALU RAM, clock
Voltage (No-Load Operation) 3.6 V
Capacity 0.85 Ah
Life Time
No-Load Operation (Not
Connected)
Conserved Operation

10 years
3 years typical, at least 4 months

4.8 LEDs

yellow LED (above)	ready
yellow LED (below)	run
red LED (above)	Battery error for battery 1
red LED (below)	Battery error for battery 2

4.9 Mechanical Structure

Module
Format
Weight
in the 2-slot size module
3 HE, 16 T
500 g
4.10 Type of Connection

I/O Bus
RS 232C
Modnet 1/SFB

2 multipoint connectors $1 / 3$ C30M, 1 female multipoint connector $1 / 3$ R30F
9 pole female multipoint connector 9 pole multipoint connector (for BBS1)

4.11 Environmental Conditions

Standards
System Data
Permissible Ambiant
Temperature in Operation
Power Dissipation

VDE 0160
See "Specifications" in user manual
$-25 \ldots+70^{\circ} \mathrm{C}$ constant
$-30 \ldots+85{ }^{\circ} \mathrm{C}$ short-time (10 minutes)
2.5 W typical, max. 4 W

4.12 Ordering Details

Module ALU 252424274957
EPROM Card PC 001424075263
RS 485 Connector BBS 1424233854
Cable JE-LiYCY 424234035
Connection Cable YDL 52424244878
Connection Cable YDL 48424270552
DIN A3 Form Block,
Central Device Modules A91M.12-279 382
Replacements
Batteries 424249065
Fill-In Label $1 \quad 424277905$
Fill-In Label 2 (ALU 252) 424274982
Basic Software on EPROM
for ALU 252 (BSW 126) 424277765
Plastic Pull Handle (TBP 000) 424235247

Data is subject to technical alterations!

DAP 250, DAP 258 Discrete Inputs and Outputs Module Description

- The DAP 250 is an output module with 8 discrete, isolated inputs 24 VDC and 8 discrete, isolated, semiconductor outputs $24 \mathrm{VDC}, 2 \mathrm{~A}$ with short circuit and overload protection.
The operating temperature is $-25 \ldots+70^{\circ} \mathrm{C}$
- The DAP 258 is a 8 point, discrete relay output module.

The operating temperature is $-25 \ldots+70{ }^{\circ} \mathrm{C}$

Figure 20 Front view and fill-in label of DAP 250 and DAP 258

1 General

The Module can be installed in any slot of the subracks DTA 200, DTA 201 und DTA 202.

The operating voltage $U_{B}=24$ VDC for sensor supply (inputs) and of the relay coils and the working voltage $U_{S}=24 \mathrm{VDC}$ for the outputs should be supplied externally. The 5 V voltage supply is obtained internally via the I/O bus.

1.1 Physical Characteristics

The standard box type module has bus contact at the rear and periphery connection via screw/plug-in terminals at the front.

One of the enclosed fill-in labels is inserted in the attachable cover of the subrack near to the viewing window for the LED displays. System relevant data (e.g. signal names) are to be entered in the fields provided.

1.2 Mode of Functioning

Figure 21 Simplified Schematic for the DAP 250

Figure 22 Simplified Schematic for the DAP 258

2 Operating and Display Elements

The front side of the module contains 19 indicators (from upper end):

DAP 250

a $1 \times$ yellow LED " U " for the working voltage of the 8 outputs
on: Working voltage is available
off: Working voltage is not available
a $1 \times$ yellow LED "l>" for overload or short circuit on the outputs
on: Short circuit or Overload
off: Operation without fault
a $8 \times$ red LED "1 ... 8 " for the output signals
on: Output has "1" signal
off: Output has "0" signal
a $1 \times$ yellow LED "U" for external sensor supply
on: Sensor supply is available
off: Sensor supply is not available
口 $8 \times$ red LED "1 ... 8 " for input signals
on: Input has "1" signal
off: Input has "0" signal or not connected
Cause

- Sensor supply is not available
- Reference potential M1 is cut

DAP 258

a $1 \times$ yellow LED "U" for the supply of the relay coils
on: Power supply voltage available
off: Power supply voltage not available
a $8 \times$ red "1 ... 8 " for the output signals
on: Outputs lead to "1" signal
off: Outputs lead to "0" signal
For simulation purpose the simulator SIM 011 can be installed on the 8 inputs (lower 11 pole screw/plug-in terminal).

3 Configuration

The following should be configured:

ㅁ I/O slot addresses (compare 3.1)
a Assignment of signal addresses to periphery signals and connection (compare 3.2)

- Checking of the rated load, short circuit behaviou (compare 3.3)
a Connection representation of the periphery signals (DIN A3 forms, compare 3.4)

3.1 I/O Slot Addresses

I/O slot addresses (to be determined according to the chapter 3, "Equipment and ..."). The module has no setting elements for addressing.
The moduls must be entered via Dolog AKF as "DAP 220" moduls instead of "DAP 250".
The moduls must be entered via Dolog AKF as "DAP 208" moduls instead of "DAP 258".

3.2 Connection and Assignment of Signal Addresses

DAP 250

Figure 23 Connection Example for DAP 250

For inductive loads on the outputs use free wheeling diode directly parallel to the inductivity. This protective circuit is absolutely necessary, when in output lines switching contacts are present or when the wires to the periphery are very long.

Enter the corresponding signal names or addresses in the fill-in labels.

DAP 258

Figure 24 Connection Example for DAP 258

Each signal name resp. signal address should be entered in the fill-in lable.
If you connect inductive loads, you have to provide a protective circuit directly and parallel to inductivity (operating coil):
a for working voltages $L=230$ VAC an additional, sufficiently provided (acc. to manufacturer) RC circuit, necessary for increased service life and EMC immunity
\square for working voltages $U_{S}=24$ VDC a clamping diode (suppressor diode) for increased service life

1 F Note For general cabling and installation guidelines see user manual, chapter 5.2 "EMC Measures".

3.3 Testing the Permissible Load, Short Circuit Behaviour

The load current for all outputs must correspond to the specifications.
Protection measures and power supply connections should be carried out as given in user manual chapter 3.3 "Layout of Power Supply".

Short Circuit Behaviour of DAP 250

The output stages do not store overload information. When in case of overload the working voltage is not switched-off the system tries to switch-on at the output stages repeatedly. This causes an increase in the component temperature.

Therefore the systemmarker SMx. 1 assigned to the slot of DAP 250 should be linked in the user program in such a way that in case of overload the outputs are switched over to 0 signal. This system marker switches to 1 signal when:
\square The working voltage U_{S} is not available
\square There is an occurence of short circuit or overload

- The 10 A safety fuse is blown

3.4 Documentation Aids

For project specific system documentation and representation of the connected process periphery A3 forms are available.

These forms are for:
a conventional processing and are part of the A120 form block (see ordering details)
a Ruplan processing (TVN version) and are part of the A120 data base

4 Specifications

4.1 Allocation

Programmable Controllers
Structure
4.2 Power Supply DAP 250

External Sensor Voltage Internal

Power Supply DAP 258
External Sensor Voltage Internal

A120
In I/O structure
$\mathrm{U}_{\mathrm{B}}=24 \mathrm{VDC}$
5 V ; typ. 35 mA , max. 60 mA via I / O bus
$\mathrm{U}_{\mathrm{B}}=24 \mathrm{VDC}$
5 V ; typ. 35 mA , max. 60 mA via I / O bus

4.3 Process Interface DAP 250

Inputs

Sensor Power Supply Reference Potential M No. of Inputs
Type of networking
Signal Rated Value
Signal Level
Input Current
Input Delay

Outputs

Working Voltage U
Reference Potential M Number

Construction

Type of Networking
Load Connection

Logic
Signal Output Level
$\mathrm{U}_{\mathrm{B}}=20 \ldots 30 \mathrm{~V}$ for all 8 inputs
M1 for all 8 inputs
8
Optical coupler, isolated against I/O bus and against out-
puts
+24 V
1 signal $+12 \ldots+30 \mathrm{~V}$
0 signal $-2 \ldots+5 \mathrm{~V}$
7 mA for 24 V
8.5 mA for 30 V

4 ms

Us = $20 \ldots 30 \mathrm{VDC}$, for all 8 outputs
M4 for all 8 outputs
8 semiconductor outputs
with short circuit and overload protection,
without restart inhibit,
group display for overload/short circuit,
group signal via system marker S11x. 1
Potential-free (Optical coupler)
Between output and reference potential M4
Positive logic
1 signal $\quad U=U_{S}-0.4 \mathrm{~V}$;
0 signal $\quad 0 \ldots+2 \mathrm{~V},<1 \mathrm{~mA}$
Limiting of the inductive switch-off voltage at -15 V (built in fast de-energization)
$10 \mathrm{~mA} . .2 \mathrm{~A}$, max. 10 W at bulbs
$I_{\mathrm{on}}=10 \times \mathrm{I}_{\mathrm{N}}$

Outputs
Required External Fuse
Operating Delay
Protective Circuit for

Switching Cycles
max. 8 A
10 A, fast
$<1 \mathrm{~ms}$
Free wheeling diode directly parallel to the inductivity Inductive Loads absolutely necessary, when in output lines switching contacts are present or when the wires to the periphery are very long or when the load current is $>1 \mathrm{~A}$
$1000 / \mathrm{h}(0.28 / \mathrm{s})$ for inductive load and max allowable current for each output
100 /s for ohmic load 10 /s at max. bulb load

4.4 Process Interface DAP 258

Relay Outputs

Number
Type of Networking
Operating Delay
Working Voltages of the
Contacts
Minimal Load Current

Load Currents at 230 VAC

Protective Circuit (Absolutely Necessary in Order to Increase Service Life and EMC Immunity)

Load Current at DC

8 Normally open contacts (with LEDs)
Contacts isolated
approx. 10 ms
$\mathrm{U}_{\mathrm{S}}=24 \ldots 110 \mathrm{VDC} / \mathrm{U}_{\mathrm{L}}=24 \ldots 230 \mathrm{VAC}$, max. 250 VAC
10 mA for new value contacts
max. 2 A lasting at $\cos \varphi=1$
max. 4 A short-term at $\cos =1$
max. 1 A lasting at $\cos \varphi=0.5$
max. 1.5 A/ 240 V acc. to AC 11, VDE 0660, part 200
all normally open contacts are wired with $68 \Omega+15 \mathrm{nF}$, remaining current approx. 1 mA ,
An additional sufficiently dimensioned RC wiring in place parallel to the inductivity (operating coil) is necessary for all inductive loads.

Working voltage 24 VDC

max. 2 A lasting (ohmic laod
max. 4 A short-term (ohmic load)
max. 1 A lasting ($\mathrm{L} / \mathrm{R}=30 \mathrm{~ms}$)
max. 0.5 A / 24 V according to DC 11, VDE 0660, part 200
Working voltage 60 VDC
max. 1 A lasting (ohmic load)
max. $0.6 \mathrm{~A}(\mathrm{~L} / \mathrm{R}=30 \mathrm{~ms})$
Working voltage 110 VDC
max. 0.45 A lasting (ohmic load)
max. $0.25 \mathrm{~A}(\mathrm{~L} / \mathrm{R}=30 \mathrm{~ms})$
Protective Circuit (Absolu-
tely Necessary in Order to
Increase Service Life)
Overload Protection

Free-wheeling diode on-site parallel to inductivity (operating coil)
should be provided externally

Service Life of Contacts, Reductions Factor

 see Modul Desciption DAP 252, DAP 253
4.5 Data Interface

Internal I/O Bus Parallel I/O bus, see User Manual, Chapter 4 "Specifications"

4.6 Error Evaluation

Indicators see chapter 2, page 54
A120 System Marker
SM 31 ... SM 48
(for 1 signal)
SMx. 1
I/O node number on slot $1 \ldots 18$ is absent
overload on one or more outputs, see also chapter 3.3, page 57

4.7 Physical Characteristics

Module
Format

In standard size box
Format
3 HE, 8 T
Weight
DAP 250
280 g
DAP 258
360 g

4.8 Type of Connection

Process
2 pluggable 11 pole screw/plug-in terminals
I/O Bus (Internal)
1/3 C30M
4.9 Environmental Characteristics

Standards
System data
VDE 0160, UL 508

Permissible Ambient

Temperature in Operation	$-25 \ldots+70^{\circ} \mathrm{C}$ constant
$-30 \ldots+85^{\circ} \mathrm{C}$ short-time (10 minutes)	

Power Dissipation
DAP 250
5 W typical
DAP $258 \quad 2 \mathrm{~W}$ typical

4.10 Ordering Details

Module DAP 250 Module DAP 258

424700586
DIN A3 Form Block Process-Periphals

A91 M.12-271 683
Replacement Fill-in Label $\begin{array}{ll}\text { for DAP } 250 & 424700647 \\ \text { for DAP } 258 & 424700843\end{array}$

Subject to technical modifications!

DAP 252, DAP 253
 Discrete Inputs and Outputs Module Description

- The DAP 252 is a 24 VDC (signal level $12 \ldots 37 \mathrm{~V}$), 8 point isolated input and 4 point output relay module.
The operating temperature is $-25 \ldots+70^{\circ} \mathrm{C}$.
- The DAP 253 is a 110 VDC (signal level $55 \ldots 170 \mathrm{~V}$), 8 point isolated input and 4 point output relay module.
The operating temperature is $-25 \ldots+70^{\circ} \mathrm{C}$.

Figure 25 Front View and Fill-In Labels of the DAP 252 and DAP 253

1 General

The module can be inserted in the backplanes DTA 200, DTA 201 and DTA 202 on every I/O slot.

The 24 VDC supply of the relay coils and the 24 VDC sensor power supply should be supplied externally.
The 5 V power supply is realized internally via the I / O bus.

1.1 Physical Characteristics

The standard size module has rear bus contact and front peripheral connection via screw/plug-in terminal blocks.

One of the enclosed fill-in labels has to be inserted into the detachable covering of the backplane next to the LEDs.
The system retated data should be entered into the fields provided (e.g. signal names).

1.2 Mode of Functioning

Figure 26 Simplified Schematic for the DAP 252

Figure 27 Simplified Schematic for the DAP 253

2 Operating and Display Elements

The front-plate of the module contains the following LEDs:
a $1 \times$ yellow LED "U" for the supply of the relay coils on: Supply voltage available off: Supply voltage not available
a $4 \times$ red LEDs "1 ... 4 " for the output signals on: Outputs lead to "1" signal off: Outputs lead to "0" signal
a $1 \times$ yellow LED "U" for the sensor power supply
on: \quad Sensor power supply available
off: Sensor power supply not available
口 $8 \times$ red LEDs "1 ... 8 " for the input signals
on: Inputs lead to "1" signal
off: Inputs lead to "0" signal
For simulation purpose the simulator SIM 011 can be installed on the 8 inputs (lower 11 pole screw/plug-in terminal).

Caution The Simulator SIM 011 must not be used together with the DAP 253 module.

3 Configuration

The following have to be configured:

- I/O slot addresses (compare 3.1)
\square Allocation of signal addresses to peripheral signals (compare 3.2)
\square Testing of the permissible load and plant-floor protective circuit in the event of inductive consumers (compare 3.3)
a Connection presentation of peripheral signals (DIN A3 forms, compare 3.4)

3.1 I/O Slot Addresses

I/O slot addresses (to be determined according to the chapter 3, "Equipment and ...").
The module has no setting elements for addressing.
The moduls must be entered via Dolog AKF as "DAP 212 " moduls instead of "DAP 252" resp. "DAP 253".

3.2 Connection and Assignment of Signal Addresses

Figure 28 Connection Example for DAP 252, DAP 253

Each signal name resp. signal address should be entered in the fill-in lable.

If you connect inductive loads, you have to provide a protective circuit directly and parallel to inductivity (operating coil):
a for working voltages $L=230$ VAC an additional, sufficiently provided (acc. to manufacturer) RC circuit, necessary for increased service life and EMC immunity
\square for working voltages $U_{S}=24$ VDC a clamping diode (suppressor diode) for increased service life
[\because Note For general cabling and installation guidelines see A120 user manual, chapter 5.2 "EMC Measures".

3.3 Testing the Permissible Load

Load data have to correspond to the specifications.
Please refer to A120 user manual, chap. 3.3 "Layout of Power supply" for connection and supply measures.

3.4 Documentation Aids

DIN A3 forms are available for project specific system documentation and process peripheral documentation.

These forms are:
a for conventional usage part of the A 120 form block (see ordering details)
a for Ruplan usage (Technical Sales Office version) part of the A 120 data base

4 Specifications

4.1 Allocation

Device
Structure

4.2 Power Supply

External Incoming Power
Supply for Relay Coils
Reference Potential
Internal via I/O bus
4.3 Process Interface

Inputs of DAP 252
Sensor Power Supply
Reference Potential
Number of Inputs
Type of Networking
Signal Rated Value
Signal Level 1 Signa
0 Signa
Input Current
Operation Time
Inputs of DAP 253
Sensor Power Supply
Reference Potential
Number of Inputs
Type of Networking
Signal Rated Value
Signal Level 1 Signal 0 Signal

Input Current
Operation Time

A120
in I/O structure
$\mathrm{U}_{\mathrm{B}}=24 \mathrm{VDC}, \pm 5 \%$, max. 0.07 A M (M2)

5 V , max. 15 mA
$\mathrm{U}_{\mathrm{B}}=24 \mathrm{VDC}, \pm 40 \%$, for 8 inputs,
residual ripple max. 20 \% SS
M (M1) for 8 inputs
8 (with LEDs)
Optical coupler, isolation to the I/O bus
+24 V
+12 ... +37 V
$-2 \ldots+5 \mathrm{~V}$
4 mA at $24 \mathrm{~V} ; 6 \mathrm{~mA}$ at 37 V

7 ms typical
$\mathrm{U}_{\mathrm{B}}=110 \mathrm{VDC}, \pm 40 \%$, for 8 inputs, residual ripple max. 20 \% SS
M (M1) for 8 inputs
8 (with LEDs)
Optical coupler, isolation to the I/O bus
+110 V
+55 ... +170 V
-2 ... +10 V
2.2 mA typical

6 ms typical

Relay Outputs

Number	4 Normally open contacts (with LEDs)
Type of Networking	Contacts, isolated
Operating Delay	approx. 10 ms
Working Voltages of the	
Contacts	$\mathrm{U}_{S}=24 \ldots 110 \mathrm{VDC} / \mathrm{L}=24 \ldots 230 \mathrm{VDC}$, max. 250 VAC
Minimal Load Current	10 mA for contacts as new
Load Currents at 230 VAC	max. 2 A lasting at $\cos \varphi=1$
	max. 4 A short-term at $\cos =1$
	max. 1 A lasting at $\cos \varphi=0.5$
	max. 1.5 A/ 240 V according to AC 11 , VDE 0660, part 200
Protective Circuit (Absolutely Necessary in Order to Increase Service Life and EMC Immunity)	all normally open contacts are wired with $68 \Omega+15 \mathrm{nF}$ remaining current approx. 1 mA .
	An additional, sufficiently dimensioned RC wiring in place parallel to the inductivity (operating coil) is necessary for all inductive loads
Load Currents at DC	Working Voltage 24 VDC max. 2 A lasting (ohmic load
	max. 4 A short-term (ohmic load)
	max. 1 A lasting ($\mathrm{L} / \mathrm{R}=30 \mathrm{~ms}$)
	max. 0.5 / 24 V according to DC 11, VDE 0660, Teil 200
	Working Voltage 60 VDC max. 1 A lasting (ohmic load)
	max. $0.6 \mathrm{~A}(\mathrm{~L} / \mathrm{R}=30 \mathrm{~ms}$)
	Working voltage 110 VDC
	max. 0,45 A lasting (ohmic load)
	max. $0,25 \mathrm{~A}(\mathrm{~L} / \mathrm{R}=30 \mathrm{~ms})$
Protective Circuit (Absolutely Necessary in Order to Increase Service Life)	Clamping diode in place parallel to the inductivity (operating coil)
Overloading protection	should be provided externally, see page 65
Service Life of Contacts	
Mechanical	20 mio. switching cycles
Electronic (Ohmic Load)	10 mio. switching cycles (230 VAC / 0.2 A)
	7 mio. switching cycles (230 VAC / 0.5 A)
	typ. 8 mio switching cycles (30 VDC / 2 A ,
	with clamping diode)
	typ. 1 mio. switching cycles ($60 \mathrm{VDC} / 1 \mathrm{~A}$,
	with clamping diode)
electric $\cos \varphi=0.5$	5 mio. switching cycles (230 VAC / 0.5 A)

Figure 29 Left: Contact Service Life for Ohmic Load
4.4 Data Port

Internal I/O Bus
4.5 Error Evaluation

Indicators
A120 System Marker
SM 31 ... SM 48
4.6 Physical Characteristics

Module
Format
Weight
4.7 Type of Connection

Process
I/O Bus (internal)

4.8 Environmental Conditions

Standards System Data Permissible Ambient Temperature in Operation
Power Dissipation

Effective number of switching cycles =
Number off switching cycles (resistive load) x Reduction Factor F

Right: Reduction Factor for Inductive Load
parallel I/O bus, see A120 User Manual, chapter 4 "Specifications"
see chapter 2, page 64
(for 1 signal)
I/O node number on slot 1 ... 18 is absent
in the standard size module
3 HE, 8 T
240 g

2 pluggable 11 pole screw/plug-in terminal blocks $1 / 3$ C30M

VDE 0160
see A120 User Manual, chapter 4 "Specifications"
$-25 \ldots+70^{\circ} \mathrm{C}$
2 W typical

4.9 Ordering Details

Module DAP 252	424274942
Module DAP 253	424274943
Simulator SIM 011	424244721
A3 Form Block	A91V.12-271 683

Replacement
Fill-In Label for DAP 252424274984
Fill-In Label for DAP 253424274986

Data is subject to technical alterations!

DAU 252
 Analog Output Module Description

DAU 252 is an analog output module with 2 isolated outputs.
You can connect to each output:
Actuator for $\pm 10 \mathrm{~V}$ or
Actuator for $\pm 20 \mathrm{~mA}$.
Each output can be used for current output (I) or voltage output (U).
The operating temperature is $-25 \ldots+70^{\circ} \mathrm{C}$

Figure 30 Front View and Fill-In Label of DAU 252

1 General

This module can be installed in the backplanes DTA 200, DTA 201 and DTA 202. It can be installed in any I/O slot.

The digital-analog converter has a resolution of 11 bit plus sign.
After conversion in the DAU, the decimal words QW ... are shown as analog values at the respective addresses.

1.1 Physical Characteristics

The standard size module has bus contact at the rear and peripheral connection at the front via 11 pole screw/plug-in terminal blocks.

One of the enclosed fill-in labels has to be inserted into the detachable covering next to the LEDs. The system related data should be entered into the fields provided (e.g. signal names).

1.2 Mode of Functioning

Figure 31 Simplified Schematic for the DAU 252

2 Operating and Display Elements

The front plate of the module contains 2 LEDs:
ㅁ $1 \times$ yellow LED "U" for 24 V power supply
on: Power supply available
off: Power supply is not available
■ $1 \times$ yellow LED "ready"
on: Isolated supply voltage available (DC/DC converter in operation)
off: Isolated supply voltage not available

3 Configuration

The following has to be configured:

- I/O slot addresses (compare LEERER MERKER)
a Cabling (running of cables, shield, compare 3.2)
- Assignment of signal addresses to peripheral signals (compare 3.3)

3.1 I/O Slot Adresses

I/O slot addresses (to be determined according to the chapter 3, "Equipment and ..."). The module has no setting elements for addressing.
The moduls must be entered via Dolog AKF as "ADU 202" moduls instead of "ADU 252".

3.2 Cabling

尾 Note For general cabling and installation guidelines see user manual, chapter 5.2 "EMC Measures".

ㅁ Shielded cables ($2 \times 2 \times 0.5 \mathrm{~mm}^{2}$, twisted per channel) should be used for the connections. All channels can be placed in a common shielded cable.
a The shield should be connected to earth ground / earth at one end with short cable (<20 cm).

- The cable should not be laid together with power supply lines or other similar sources of electrical disturbances. Distance $>0.5 \mathrm{~m}$.

3.3 Connection and Assignment of Signal Addresses

Figure 32 Connection Example DAU 252

Each output can be used for current output (I) or voltage output (U).
After conversion in the DAU, the decimal words QWx. 1 and QWx. 2 are shown as analog values at the respective addresses 1 and 2 .

Enter the respective signal name or signal address in the fill-in label.

3.3.1 Earthing the Shields

a Lay the shielded cable via the cable earthing bar CER 001
. Remove shield insulation from the cable at the height of the cable cleat
\square Press the cable with the shield removed into the cable cleat (contact to top hat rail)
■ Use cable clips to relief strain on cables (see Figure 33)

Figure 33 Earthing the Shields

3.4 Documentation Aids

DIN A3 forms are available for project specific system documentation and process peripheral documentation.

The connection of DAU 252 is identical to that of DAU 202. Therefore, please use use the forms of DAU 202.

4 Specifications

4.1 Allocation

Programmable Controller	A120
Structure	in I/O structure

4.2 Power Supply

External Power Supply
$\mathrm{U}_{\mathrm{B}}=24 \mathrm{~V}, \pm 5 \% / \max .150 \mathrm{~mA}$
Internal via I/O bus 5 VDC; typ. 40 mA , max. 60 mA

4.3 Outputs

Number of outputs
Potential Isolation
Current Output
Voltage Output $\pm 10 \mathrm{~V},>5 \mathrm{k} \Omega$, short-circuit-proof

Table 18 Conversion Value DAU 252

Analog Value Current Output mA	Voltage Output V	Decimal value	Comments
+20.02 ... +20.50	+10.01 .. +10.25	+32 $001 \ldots+32767$	Overrange
+20.00	+10.00	+32000)
+10.00	+5.00	+16000	
+2.00	+1.00	+3 200	
+1.00	+0.50	+1600	
+0.62	+0.31	+1000	
+0.20	+0.10	+320	
+0.02	+0.01	+32	linear
0.00	0.00	0	< Range
-0.02	-0.01	-32	
-0.20	-0.10	-320	
-0.62	-0.31	-1 000	
-1.00	-0.50	-1600	
-2.00	-1.00	-3 200	
-10.00	-5.00	-16000	
-20.00	-10.00	-32000	\bigcirc
-20.02 ... -20.50	-10.01 .. -10.25	-32 $001 \ldots-32768$	Overrange

Overrange
ca. 2.4 \%
Error at $0 . . .60^{\circ} \mathrm{C}$
ca. ± 0.6 \%
Conversion Time per Output
Resolution
ca. 5 ms
11 Bit plus Sign

4.4 Data Port

Internal I/O Bus
parallel I/O bus, see User Manual, chapter 4 "Specifications"

4.5 Error Evaluation

indicators
A120 System Marker
SM 31 ... SM 48
SMx. 1
see chapter 2 , page 73
(for 1 signal)
I/O node number on slot 1 ... 18 is absent Error during the generation of the internal $\pm 15 \mathrm{~V}$ supply
4.6 Physical Characteristics

Module	Standard size module
Format	$3 \mathrm{HE}, 8 \mathrm{~T}$
Weight	ca. 300 g

4.7 Type of Connection
Proces, Power Supply
Process Cable
Installation Distance
Cable Length
Installation Distance
Cable Length
2 pluggable 11 pole screw/plug-in terminal blocks Min. cross section $0.5 \mathrm{~mm}^{2}$, pairwise twisted, references conductor in cable, shielded e. g. JE-LiYCY $2 \times 2 \times 0.5$
I/O bus (internal) $>0.5 \mathrm{~m}$ (from potential interferences) max. 100 m
$1 / 3$ C30M
4.8 Environmental Characteristics

Standards
System Data
Temperature in Operation
Power Dissipation

VDE 0160
see User Manual, chapter 4 "Specifications"
$-25 \ldots+70^{\circ} \mathrm{C}$ constant $-30 \ldots+85{ }^{\circ} \mathrm{C}$ short-time (10 minutes) 4 W typical

4.9 Ordering Details

Module DAU 252
424703463
Cable to Process JE-LiYCY
424234035
DIN A3 Form Block
Process-Periphals
A91M.12-271 683
Replacements
Fill-in Label for DAU 252424703479

Data is subject to technical alternations!

DEP 254
 Discrete Input Module Description

The DEP 254 is a 16 point, isolated, 12 ... 60 VDC input module. Its application with AKF12 is possible from version 6.0 upwards (AKF125 from version 5.0).
The operating temperature is $-25 \ldots+70^{\circ} \mathrm{C}$

Figure 34 Front View and Fill-In Label of the DEP 254

1 General

The module can be inserted in the backplanes DTA 200, DTA 201 and DTA 202 on every I/O slot.

The discrete inputs are isolated via optical couplers.
The external sensor power supply 24 ... 48 VDC should be supplied externally for each 8 inputs.

1.1 Physical Characteristics

The standard size module has rear bus contact and front peripheral connection via screw/plug-in terminal blocks.

One of the enclosed fill-in labels has to be inserted into the detachable covering of the backplane next to the LEDs.
The system retated data should be entered into the fields provided (e.g. signal names)

1.2 Mode of Functioning

Figure 35 Simplified Schematic for the DEP 254

2 Operating and Display Elements

The front plate of the module contains the following LEDs:

- $2 \times$ yellow LED "U" for external sensor power supply
on: Sensor power supply available
off: Power supply not available

口 $16 \times$ red LEDs "I1...16" for input signals
on: Input has "1" signal
off: Input has "0" signal or not connected

Cause

Sensor power supply is not available or Reference potential M1 is interrupted

For simulation purpose the simulator SIM 011 can be installed on the 8 inputs (lower 11 pole screw/plug-in terminal).

3 Configuration

The following have to be configured:
a I/O slot addresses (compare 3.1)

ㅁ Allocation of signal addresses to peripheral signals (compare 3.2)

3.1 I/O Slot Adresses

I/O slot addresses (to be determined according to the chapter 3, "Equipment and ..."). The module has no setting elements for addressing.
The moduls must be entered via Dolog AKF as "DEP 214" moduls instead of "DEP 254".

3.2 Connection

Figure 36 Connection Example for DEP 254

Each signal name resp. signal address should be entered in the fill-in lable.

[^0]
3.3 Documentation Aids

The system documentation corresponds to that of DEP 216.

4 Specifications

4.1 Allocation

Device
Structure

4.2 Inputs

Sensor-Power Supply
Reference Potential
Number of Inputs
Type of Networking

A120
in I/O structure
$U_{B}=24 \ldots 48 \mathrm{~V}, \pm 40 \%$ for 8 inputs residual ripple max. 20\% SS
M (M1) for 8 inputs
2×8 in groups
Optical coupler, isolated 2 groups within each other and against I/O bus

Table 19 Switching level

Signal input Unenn $24 \mathrm{~V} \quad 48 \mathrm{~V}$
Signal Level at 0-Signal $-3 \ldots+5 \mathrm{~V} \quad-6 \ldots+10 \mathrm{~V}$
Signal Level at 1-Signal $\quad+11 \ldots+30 \mathrm{~V} \quad+33 \ldots+60 \mathrm{~V}$
Current at 0-Signal $-1,7 \ldots+2.9 \mathrm{~mA}-3,4 \ldots+2,5 \mathrm{~mA}$
Current at 1-Signal (I_{E})
Reference Current (I_{R})
$+6,0 \ldots+7,1 \mathrm{~mA}+2,0 \ldots+2,5 \mathrm{~mA}$ $\leq 10 \mathrm{~mA} \quad \leq 7 \mathrm{~mA}$

Switching Level
($0 \leftrightarrow 1$ Signal)
Operation Time
Operating Frequency
28 ... 33 \% von Usch
4 ms

Input Current per Group
$\mathrm{I}_{\mathrm{G}}=8 \times \mathrm{I}_{\mathrm{E}}+\mathrm{I}_{\mathrm{R}}$
max. 80 mA
4.3 Data Port

Internal I/O Bus parallel I/O bus, see User Manual, chapter 4 "Specifications"
Power Supply (Internal)
5 V , max. 22 mA typical 15 mA , via I/O bus
4.4 Error Evaluation

Indicators see chapter 2, page 81
A120 System Marker
(for 1 signal)
SM 31 ... SM 48
I/O node number on slot $1 \ldots 18$ is absent

4.5 Physical Characteristics
 Module in standard size module
 Format $3 \mathrm{HE}, 8 \mathrm{~T}$
 Weight 260 g

4.6 Type of ConnectionProcess2 pluggable 11 pole screw/plug-in terminal blocksI/O Bus (Internal)$1 / 3$ C30M
4.7 Environmental Conditions
Standards VDE 0160
System Data see User Manual, chapter 4 "Specifications" Permissible Ambient
Temperature in Operation $-25 \ldots+70^{\circ} \mathrm{C}$ constant
$-30 \ldots+85{ }^{\circ} \mathrm{C}$ short-time (10 minutes)
Power Dissipation max. 4 W
4.8 Ordering DetailsModule DEP 214424703288
Simulator SIM 011 424244721
Replacement Fill-In Label 424703289
Data is subject to technical alterations!

DEP 255, DEP 257
 Function
 Module Description

- The DEP 256 is a 16 point, isolated, 24 VDC (12 ... 37 V) input module.
The operating temperature is $-25 \ldots+70^{\circ} \mathrm{C}$.
- The DEP 257 is a 16 point, isolated, 110 VDC (55 ... 170 V) input module.
The operating temperature is $-25 \ldots+70^{\circ} \mathrm{C}$.

DEP 257	
U	
U	2
1	3
2	4
3	5
4	ㄷ. 6
5	-
6	8
7	9
8	10
M	11
U	12
U	13
9	14
10	15
11	16
12	- 17
13	- 18
14	19
15	20
16	21
M	22
card	

Figure 37 Front View and Fill-In Label of the DEP 256 and DEP 257

1 General

The module can be inserted in the backplanes DTA 200, DTA 201 and DTA 202 on every I/O slot.

The discrete inputs at DEP 256 and at DEP 257 are isolated via optical couplers. The external sensor power supply 24 or 110 VDC should be supplied externally for each 8 inputs.
The 5 V power supply is realized internally via the I / O bus.

1.1 Physical Characteristics

The standard size module has rear bus contact and front peripheral connection via screw/plug-in terminal blocks.

One of the enclosed fill-in labels has to be inserted into the detachable covering of the backplane next to the LEDs.
The system retated data should be entered into the fields provided (e.g. signal names)

1.2 Mode of Functioning

Figure 38 Simplified Schematic for the DEP 256 and DEP 257

2 Operating and Display Elements

The front plate of the module contains the following LEDs:

- $2 \times$ yellow LED "U" for external sensor power supply
on: Sensor power supply available
off: Power supply not available
- $16 \times$ red LEDs "E1...16" for input signals
on: Input has "1" signal
off: Input has "0" signal or not connected
Cause
Sensor power supply is not available
Reference potential M1 is interrupted
For simulation purpose the simulator SIM 011 can be installed on the 8 inputs (lower 11 pole screw/plug-in terminal).

Caution The simulator SIM 011 must not be used together with the DEP 257 module.

3 Configuration

The following have to be configured:

- I/O slot addresses (compare 3.1)
- Allocation of signal addresses to peripheral signals (compare 3.2)

3.1 I/O slot addresses

I/O slot addresses (to be determined according to the chapter 3, "Equipment and ...").
The module has no setting elements for addressing.
The moduls must be entered via Dolog AKF as "DEP 216" moduls instead of "DEP 256" resp. "DEP 257".

3.2 Connection

Figure 39 Connection Example for DEP 256 and DEP 257

Each signal name resp. signal address should be entered in the fill-in lable.
\square Note For general cabling and installation guidelines see user manual, chapter 5.2 "EMC Measures".

3.3 Documentation Aids

The system documentation corresponds to that of DEP 216.

4 Specifications

4.1 Allocation

Device
Structure
4.2 Inputs of DEP 256

Sensor-Power Supply
Reference Potential
Number of Inputs
Type of Networking

Rated Signal Value
Signal Level 1 Signal
0 Signal
Input Current
Operation Time
4.3 Inputs of DEP 257

Sensor-Power Supply
Reference Potential
Number of Inputs
Type of Networking

Rated Signal Value
Signal Level 1 Signal 0 Signal
Input Current
Operation Time

4.4 Data Port

Internal I/O Bus

Power Supply (Internal)

4.5 Error Evaluation

Indicators
A120 System Marker
SM 31 ... SM 48

A120
in $1 / \mathrm{O}$ structure
$U_{B}=24 \mathrm{VDC}, \pm 40 \%$ for 8 inputs
residual ripple max. 20 \% SS
M (M1) for 8 inputs
2×8 in groups
Optical coupler, isolated 2 groups within each other and against I/O bus
+24 V
+12 ... +37 V
$-2 \ldots+5 \mathrm{~V}$
4 mA at 24 V ; 6 mA at 37 V
4 ms
$U_{B}=110$ VDC, $\pm 40 \%$ for 8 inputs
residual ripple max. 20 \% SS
M (M1) for 8 inputs
2×8 in groups
Optical coupler, isolated 2 groups within each other and against I/O bus
+110 V
+55 ... +170 V
$-2 \ldots+10 \mathrm{~V}$
2.2 mA typical

4 ms
parallel I/O bus, see A120 User Manual, chapter 4 "Specifications"
5 V , max. 25 mA via I / O bus
see chapter 2, page 3
(for 1 signal)
I/O node number on slot $1 \ldots 18$ is absent
4.6 Physical Characteristics
Module in standard size module
Format $3 \mathrm{HE}, 8 \mathrm{~T}$
Weight 220 g
4.7 Type of Connection
Process
I/O Bus (Internal)
2 pluggable 11 pole screw/plug-in terminal blocks
1/3 C30M
4.8 Environmental Conditions
Standards VDE 0160
System Data
Permissible Ambient
Temperature in Operation $-25 \ldots+70^{\circ} \mathrm{C}$
Power Dissipation 3 W typical
4.9 Ordering Details
Module DEP 256424703464
Module DEP 257424703465
Simulator SIM $011 \quad 424244721$
DIN A3 Form Block,
Process-Peripherals A91M.12-271683
Replacement
Fill-In Label for DEP 256424703480
Fill-In Label for DEP 257424703481

Data is subject to technical alterations!

DNP 255
 Power supply Module Description

The DNP 255 is an isolated DC power supply for 24 VDC input voltage and $5 \mathrm{VDC} / 2$ A output voltage.
The DNP is the power supply for the parallel I/O bus of the A120.
The operating temperature is $-25 \ldots+70^{\circ} \mathrm{C}$

Figure 40 Front View and Fill-In Label of the DNP 255

1 General

The module can only be inserted in slot 1 (on the right next to the ALU).
The power supply voltage is 24 VDC.
The internal operating voltage of 5 V is generated from the power supply voltage.
The signal of under voltage monitor of primary and secondary voltage is used internally by the module.

1.1 Physical Characteristics

The module is a standard size module, has rear bus contact and front peripheral connection via screw/plug-in terminal blocks.
One of the enclosed fill-in labels has to be inserted into the detachable covering of the backplane next to the LEDs.
The system related data should be entered into the fields provided.

2 Operating and Display Elements

The front plate of the module contains the following LEDs:

- $1 \times$ yellow LED " U " for the 24 VDC power supply
on: Power supply voltage available
off: Power supply voltage not available
$\square 1 \times$ yellow LED "ready" for 5 V output voltage
on: $\quad 5 \mathrm{~V}$ output voltage available
off: Module not ready for operation, 5 V output voltage is not available

3 Configuration

The following have to be configured:

- Slot Addresses (compare 3.1)
- Connection (compare 3.2)

3.1 Slot Addresses

The module can only be inserted in slot 1 (on the right next to the ALU).
In addition it is necessary to enter the type designation via Dolog AKF-Software.
The module must be entered via Dolog AKF as "DNP 205" moduls instead of "DNP 255".

3.2 Connection

Figure 41 Connection Example

System-related data of supply should be entered in the fill-in lable.
The noise immunity can be increased, if discharge capacitors are connected to the U and M terminals of each module. For more information refer to user manual chapter "Earthing the A120".

3.3 Documentation Aids

DIN A3 forms are available for project specific system documentation and process peripheral documentation. These forms are:
a for conventional usage and they are part of the A 120 form block (see ordering details)
a for Ruplan usage (Technical Sales Office version) and they are part of the A 120 data base

4 Specifications

4.1 Allocation

Device	A120
Structure	in I/O stucture, slot 1

4.2 Power Supply

External Incoming	$\mathrm{U}_{\mathrm{B}}=24 \mathrm{VDC} \pm 5 \%, \max .0 .85 \mathrm{~A}$
Auxiliary Fuse	1.25 A medium-time lag
Making Current	20 A, time constant $=1 \mathrm{~ms}$
Tolerancen, Limiting Value	see User Manual chapter 4 "Specifications"
Reference Potential M	M2
Protective Earth	PE

Secondary Voltage	5.15 VDC, max. 2 A, isolated
Back-Up Time	typical 5 ms at 24 VDC
Overload Protection	by current limitation

4.3 Physical Characteristics

Module in standard size module
Format $3 \mathrm{HE}, 8 \mathrm{~T}$
Weight 350 g
4.4 Type of Connection

Power Supply
5 pole screw/plug-in terminal blocks
I/O Bus (Internal)
$1 / 3$ C30M
4.5 Environmental Conditions

Standards
System Data
Permissible Ambient
Temperature in Operation

Power Dissipation
4.6 Ordering Details

Module DNP 255
424274958
DIN A3 Form Block,
Central Device Modules A91M.12-271683
Replacement Fill-In Label
424274980

Index

A

ADU 254, 3
ADU 256, 13
ALU 252, 25
Analog Inputs, 3, 13
Analog Outputs, 59
Automatic Start, 28

B

Back-up Battery, 33

C

Central Processing Unit, 25
Cold Restart, 28
Current Inputs ADU 256, 22
Current Outputs DAU 252, 65

D

DNP 255, 79
Dual Slope, 3

E

EPROM Operation, 29

H

Hot Restart, 28

M

Manual Start, 28
Modnet 1/SFB, 31

0

Operating Mode, 29, 30

P

Power Supply, 79

R

RAM Operation, 29
Real Time Clock, 29
Relay Outputs, 47, 56
RS 232C, 35
RS 485, 35
RTD (platinum resistance temperature detector), 10
RTD Inputs ADU 254, 10

S

Service Life of Contacts, 47, 56
Slave, 30
Slave Address, 32
Start-Up Characteristics, 28

T

Temperature Measuring Range, 10
Transmission Rate, 31

V

Voltage Inputs ADU 254, 10
Voltage Measuring Range, 10, 22
Voltage Outputs DAU 252, 65

[^0]: l \square^{\lessgtr} Note For general cabling and installation guidelines see user manual, chapter 5.2 "EMC Measures".

