Altivar 12

Variable speed drives for asynchronous motors

User manual

$05 / 2010$

Contents

Contents 3
Important information 4
Before you begin 5
Documentation structure 7
Software enhancements 8
Steps for setting up (also refer to Quick Start) 9
Setup - Preliminary recommendations 10
Drive ratings 11
Dimensions and weights 12
Mounting 13
Wiring 16
Power terminals 20
Control terminals 23
Check list 29
Factory configuration 30
Basic functions 31
Programming 32
Structure of parameter tables 35
Function compatibility table 36
Reference Mode rEF 37
Monitoring mode MOn 38
Configuration Mode ConF 44
Configuration Mode - MyMenu 45
Configuration Mode - Complete menu (FULL) 47
Maintenance 99
Migration ATV11 - ATV12 100
Diagnostics and Troubleshooting 107
Application notes 113
Applicative notes 116
Wiring 120
Organization tree 121
Parameter index 122

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death or serious injury.
WARNING indicates a potentially hazardous situation, which, if not avoided, can result in death, serious injury or
equipment damage. equipment damage.

CAUTION

CAUTION indicates a potentially hazardous situation, which, if not avoided, can result in injury or equipment damage.

CAUTION

CAUTION, used without the safety alert symbol, indicates a potentially hazardous situation which, if not avoided, can result in equipment damage.

PLEASE NOTE

The word "drive" as used in this manual refers to the controller portion of the adjustable speed drive as defined by NEC.
Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this product.
© 2009 Schneider Electric. All Rights Reserved.

Read and understand these instructions before performing any procedure with this drive.

A. DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- Read and understand this manual before installing or operating the Altivar 12 drive. Installation, adjustment, repair, and maintenance must be performed by qualified personnel.
- The user is responsible for compliance with all international and national electrical code requirements with respect to grounding of all equipment.
- Many parts of this drive, including the printed circuit boards, operate at the line voltage. DO NOT TOUCH. Use only electrically insulated tools.
- DO NOT touch unshielded components or terminal strip screw connections with voltage present.
- DO NOT short across terminals PA/+ and PC/- or across the DC bus capacitors.
- Before servicing the drive:
- Disconnect all power, including external control power that may be present.
- Place a "DO NOT TURN ON" label on all power disconnects.
- Lock all power disconnects in the open position.
- WAIT 15 MINUTES to allow the DC bus capacitors to discharge.
- Measure the voltage of the DC bus between the PA/+ and PC/- terminals to ensure that the voltage is less than 42 Vdc .
- If the DC bus capacitors do not discharge completely, contact your local Schneider Electric representative. Do not repair or operate the drive.
- Install and close all covers before applying power or starting and stopping the drive.

Failure to follow these instructions will result in death or serious injury.

A DANGER

UNINTENDED EQUIPMENT OPERATION

- Read and understand this manual before installing or operating the Altivar 12 drive.
- Any changes made to the parameter settings must be performed by qualified personnel.

Failure to follow these instructions will result in death or serious injury.

A WARNING

DAMAGED DRIVE EQUIPMENT

Do not operate or install any drive or drive accessory that appears damaged.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

A WARNING

LOSS OF CONTROL

- The designer of any control scheme must
- consider the potential failure modes of control paths and, for certain critical control functions,
- provide a means to achieve a safe state during and after a path failure.

Examples of critical control functions are emergency stop and overtravel stop.

- Separate or redundant control paths must be provided for critical control functions.
- System control paths may include communication links. Consideration must be given to the implications of unanticipated transmission delays or failures of the link. ${ }^{\text {a }}$

Failure to follow these instructions can result in death, serious injury, or equipment damage.
a. For additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems."

A CAUTION

INCOMPATIBLE LINE VOLTAGE

Before turning on and configuring the drive, ensure that the line voltage is compatible with the supply voltage range shown on the drive nameplate. The drive may be damaged if the line voltage is not compatible.

Failure to follow these instructions can result in injury or equipment damage.

Using motors in parallel

Set Motor control type [ヒヒ page 57 to 5 td.

CAUTION

RISK OF DAMAGE TO THE MOTOR

Motor thermal protection is no longer provided by the drive. Provide an alternative means of thermal protection on every motor
Failure to follow these instructions can result in equipment damage

Documentation structure

The following Altivar 12 technical documents are available on the Schneider Electric website (www.schneider-electric.com) as well as on DVD-ROM (reference VW3A8200).

User manual

This manual describes how to install, commission, operate and program the drive.

Quick Start

The Quick Start describes how to wire and configure the drive to start motor quickly and simply for simple applications. This document is delivered with the drive.

Modbus Communication manual

This manual describes the assembly, connection to the bus or network, signaling, diagnostics, and configuration of the communicationspecific parameters via the 7-segment LED display.
It also describes the communication services of the Modbus protocol.
This manual includes all Modbus addresses. It explains the operating mode specific to communication (state chart).

ATV12P manual

This manual describes the specific features of ATV12P drives.

Software enhancements

Since it was first marketed, the Altivar ATV 12 has been equipped with additional functions. Software version V1.1 has now been updated to V1.2. This documentation relates to version V1.2.
The software version appears on the rating plate attached to the side of the drive.

Enhancements made to version V1.2 in comparison to V1.1

- New parameters:
- Sleep threshold Offset 5 L E. See page 75 .
- Pl feedback supervision threshold $L P$ I. See page $\underline{\underline{6} \text {. }}$
- Pl feedback supervision function time delay $t P I$. See page 76.
- Maximum frequency detection hysteresis $A P \square$. See page 76.
- Pl feedback supervision ПР I. See page 76.
- Fallback speed L F F. See page 76.
- Time delay before automatic start for the overload fault $F \in \square$. See page 77 .
- Time delay before automatic start for the underload fault $F \in U$. See page 78 .
- Selecting the operating mode $\Pi d E$. See page 78 .
- Starting frequency of the auxiliary pump $F \square n$. See page 78 .
- Time delay before starting the auxiliary pump $t \square \cap$. See page 78 .
- Ramp for reaching the auxiliary pump nominal speed $r \square n$. See page 78 .
- Auxiliary pump stopping frequency $F \square F$. See page 78.
- Time delay before the auxiliary pump stop command $t \square F$. See page $7 \underline{9}$.
- Ramp for auxiliary pump stopping $r \square F$. See page 79 .
- Zero flow detection period n F d. See page 79 .
- Zero flow detection activation threshold FF d. See page 79.
- Zero flow detection offset LF $\begin{aligned} & \text { I. See page } 79 \text {. }\end{aligned}$
- New menu Pump sub-menu P П P - . See page $\underline{77}$. For pumping applications.
- New quick REMOTE/LOCAL configuration switching using the embedded buttons. See page 34 .

Steps for setting up (also refer to Quick Start)

1. Receive and inspect the drive

- Check that the part number printed on the label is the same as that on the purchase order.
\square Remove the Altivar from its packaging and check that it has not been damaged in transit.

2. Check the line voltage

- Check that the line voltage is compatible with the voltage range of the drive (page 11).

Steps 2 to 4 must

3. Mount the drive

 be performed with the power off.
4. Wire the drive (page 20)

- Connect the motor, ensuring that its connections correspond to the voltage.
\square Connect the line supply, after making sure that the power is off.
- Connect the control part.

5. Configure the drive (page $\underline{\underline{2} \text {) }}$

- Apply input power to the drive but do not give a run command.
- Set the motor parameters (in Conf mode) only if the factory configuration of the drive is not suitable.
- Perform auto-tuning.

6. Start

Setup - Preliminary recommendations

Prior to switching on the drive

Abstract

A DANGER UNINTENDED EQUIPMENT OPERATION Ensure that all logic inputs are inactive to help prevent an accidental startup.

Failure to follow these instructions will result in death or serious injury.

Prior to configuring the drive

UNINTENDED EQUIPMENT OPERATION
- Read and understand this manual before installing or operating the Altivar 12 drive.
- Any changes made to the parameter settings must be performed by qualified personnel.
- Ensure that all logic inputs are inactive to help prevent an accidental startup when modifying parameters.
Failure to follow these instructions will result in death or serious injury.

Using the drive with motor having a different size

The motor could have different rating than drive. In case of smaller motor, there is no specific calculation. The motor current has to be set on Motor thermal current It H parameter page 94 . In case of higher size of motor, possible up to 2 sizes (example is using a 4 kW (5.5 HP) on a $2.2 \mathrm{~kW}(3 \mathrm{HP})$ drive) it is necessary to ensure motor current and actual motor power will not pass over nominal power of drive.

Line contactor

CAUTION

RISK OF DAMAGE TO THE DRIVE

- Avoid operating the contactor frequently to avoid premature aging of the filter capacitors.
- Power cycling must be MORE than 60 seconds.

Failure to follow these instructions can result in equipment damage.

Use with a smaller rated motor or without a motor

- In factory settings mode, Output Phase loss $\square P L$ page $\underline{94}$ is active ($\triangle P L$ set to $y E 5$). To check the drive in a test or maintenance environment without having to switch to a motor with the same rating as the drive (particularly useful in the case of high power drives), deactivate Output Phase loss $\square P L$ ($\square P L$ set to $\cap \square)$.
- Set Motor control type $[$ ヒ $ヒ$ page 57 to $5 t d$ in Motor control menu $d r[$ - .

CAUTION

RISK OF DAMAGE TO THE MOTOR

Motor thermal protection will not be provided by the drive if the motor rating current is less than 20\% of the rated drive current. Provide an alternative means of thermal protection.

Failure to follow these instructions can result in equipment damage.

Single-phase supply voltage: $100 . . .120 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

For three Phase Output 200/240 V motors

Motor Power indicated on plate (1)		Line supply (input)				Drive (output)			Reference (2)	Size (3)
		Maximum line current		Apparent power	Power dissipated at nominal current (1)	Nominal current In	Max. transient current for			
		at 100 V	at 120 V				60 s	2 s		
kW	HP	A	A	kVA	W	A	A	A		
0.18	0.25	6	5	1	18	1.4	2.1	2.3	ATV12H018F1	1C1
0.37	0.5	11.4	9.3	1.9	29	2.4	3.6	4	ATV12H037F1	1C1
0.75	1	18.9	15.7	3.3	48	4.2	6.3	6.9	ATV12H075F1	2C1

Single-phase supply voltage: $200 . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
For three Phase Output 200/240 V motors

Motor Power indicated on plate (1)		Line supply (input)				Drive (output)			Reference (2)	$\begin{aligned} & \hline \text { Size } \\ & (3) \end{aligned}$
		Maximum line current		Apparent power	Power dissipated at nominal current (1)	Nominal current In	Max. transient current for			
		at 200 V	at 240 V				60 s	2 s		
kW	HP	A	A	kVA	W	A	A	A		
0.18	0.25	3.4	2.8	1.2	18	1.4	2.1	2.3	ATV12H018M2	1C2
0.37	0.5	5.9	4.9	2	27	2.4	3.6	4	ATV12H037M2	1C2
0.55	0.75	8	6.7	2.8	34	3.5	5.3	5.8	ATV12H055M2	1C2
0.75	1	10.2	8.5	3.5	44	4.2	6.3	6.9	ATV12H075M2	1C2
1.5	2	17.8	14.9	6.2	72	7.5	11.2	12.4	ATV12HU15M2	2C2
2.2	3	24	20.2	8.4	93	10	15	16.5	ATV12HU22M2	2C2

Three-phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
For three Phase Output 200/240 V motors

Motor Power indicated on plate (1)		Line supply (input)				Drive (output)			Reference (2)	Size (3)
		Maximum line current		Apparent power	Power dissipated at nominal current (1)	Nominal current In	Max. transient current for			
		at 200 V	at 240 V				60 s	2 s		
kW	HP	A	A	kVA	W	A	A	A		
0.18	0.25	2	1.7	0.7	16	1.4	2.1	2.3	ATV12H018M3	1C3
0.37	0.5	3.6	3	1.2	24	2.4	3.6	4	ATV12H037M3	1C3
0.75	1	6.3	5.3	2.2	41	4.2	6.3	6.9	ATV12H075M3	1C3
1.5	2	11.1	9.3	3.9	73	7.5	11.2	12.4	ATV12HU15M3	2F3
2.2	3	14.9	12.5	5.2	85	10	15	16.5	ATV12HU22M3	2F3
3	4	19	15.9	6.6	94	12.2	18.3	20.1	ATV12HU30M3	3F3
4	5.5	23.8	19.9	8.3	128	16.7	25	27.6	ATV12HU40M3	3F3

(1)These power ratings are for a switching frequency of 4 kHz , in continuous operation. The switching frequency is adjustable from 2 to 16 kHz .
Above 4 kHz , the drive will reduce the switching frequency if an excessive temperature rise occurs. The temperature rise is detected by a probe in the power module. Nonetheless, derating should be applied to the nominal drive current if continuous operation above 4 kHz is required:

- 10\% derating for 8 kHz
- 20\% derating for 12 kHz
- 30\% derating for 16 kHz
(2) Reference description, example: ATV12HU15M3
ATV12: Altivar 12;
\mathbf{H} : product on heatsink;
U15: drive power rating, see $n[U$ parameter page 41;
M3: drive voltage rating, see $U[A L$ parameter page 41.
(3)Size description

possible values | | $\mathbf{2 \|}$ | |
| :---: | :---: | :---: |
| | physical size 1 | |
| 2 | physical size 2 | |
| | 3 | physical size 3 |

possible values F Flat C Compact
[3]
possible values 1100 V 1 phase
2200 V 1 phase
3200 V 3 phase

Dimensions and weights

ATV12H018F1, 018M2, 037F1, 037M2, 037M3, 018M2, 018M3, 055M2, 075M2

	2×05	ATV12H	$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \end{gathered}$ (in.)	$\begin{gathered} \mathrm{b} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} c \\ \mathrm{c} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	G (in.)	H mm (in.)	H1 mm (in.)	\varnothing mm (in)	For screws	Weight kg (lb)
		018F1 018M2 018M3	$\begin{gathered} 72 \\ (2.83) \end{gathered}$	$\begin{gathered} 142 \\ (5.59) \end{gathered}$	$\begin{aligned} & 102.2 \\ & (4.02) \end{aligned}$	$\begin{gathered} 60 \\ (2.36) \end{gathered}$	$\begin{gathered} 131 \\ (5.16) \end{gathered}$	$\begin{gathered} 143 \\ (5.63) \end{gathered}$	$\begin{gathered} 2 \times 5 \\ (2 \times 0.20) \end{gathered}$	M4	$\begin{gathered} 0.7 \\ (1.5) \end{gathered}$
		$\begin{aligned} & \hline 037 \mathrm{~F} 1 \\ & \text { 037M2 } \\ & \text { 037M3 } \end{aligned}$	$\begin{gathered} 72 \\ (2.83) \end{gathered}$	$\begin{gathered} 130 \\ (5.12) \end{gathered}$	$\begin{aligned} & 121.2 \\ & (4.77) \end{aligned}$	$\begin{gathered} 60 \\ (2.36) \end{gathered}$	$\begin{gathered} 120 \\ (4.72) \end{gathered}$	$\begin{gathered} 143 \\ (5.63) \end{gathered}$	$\begin{gathered} 2 \times 5 \\ (2 \times 0.20) \end{gathered}$	M4	$\begin{gathered} 0.8 \\ (1.8) \end{gathered}$
		$\begin{aligned} & 055 \mathrm{M} 2 \\ & \text { 075M2 } \\ & 075 \mathrm{M} 3 \end{aligned}$	$\begin{gathered} 72 \\ (2.83) \end{gathered}$	$\begin{gathered} 130 \\ (5.12) \end{gathered}$	$\begin{aligned} & 131.2 \\ & (5.17) \end{aligned}$	$\begin{gathered} 60 \\ (2.36) \end{gathered}$	$\begin{gathered} 120 \\ (4.72) \end{gathered}$	$\begin{gathered} 143 \\ (5.63) \end{gathered}$	$\begin{gathered} 2 \times 5 \\ (2 \times 0.20) \end{gathered}$	M4	$\begin{gathered} 0.8 \\ (1.8) \end{gathered}$

ATV12H075F1, U15M2, U22M2, U15M3, U22M3

		ATV12H	$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{~mm} \end{gathered}$ (in.)	$\begin{gathered} \mathrm{c} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\underset{\text { (in.) }}{\underset{\mathrm{mm}}{\mathrm{G}}}$	H mm (in.)	$\begin{gathered} \mathrm{H} 1 \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \varnothing \\ \mathrm{mm} \\ \text { (in.) } \end{gathered}$	$\begin{aligned} & \text { For } \\ & \text { screws } \end{aligned}$	Weight kg (lb)
		075F1	$\begin{gathered} 105 \\ (4.13) \end{gathered}$	$\begin{gathered} 130 \\ (5.12) \end{gathered}$	$\begin{aligned} & 156.2 \\ & (6.15) \end{aligned}$	$\begin{gathered} 93 \\ (3.66) \end{gathered}$	$\begin{gathered} 120 \\ (4.72) \end{gathered}$	$\begin{gathered} 142 \\ (5.59) \end{gathered}$	$\begin{gathered} 2 \times 5 \\ (2 \times 0.20) \end{gathered}$	M4	$\begin{gathered} 1.3 \\ (2.9) \end{gathered}$
		$\begin{aligned} & \text { U15M2 } \\ & \text { U22M2 } \end{aligned}$	$\begin{gathered} 105 \\ (4.13) \end{gathered}$	$\begin{gathered} 130 \\ (5.12) \end{gathered}$	$\begin{aligned} & 156.2 \\ & (6.15) \end{aligned}$	$\begin{gathered} 93 \\ (3.66) \end{gathered}$	$\begin{gathered} 120 \\ (4.72) \end{gathered}$	$\begin{gathered} 142 \\ (5.59) \end{gathered}$	$\begin{gathered} 2 \times 5 \\ (2 \times 0.20) \end{gathered}$	M4	$\begin{gathered} 1.4 \\ (3.1) \end{gathered}$
		U15M3 U22M3	$\begin{gathered} 105 \\ (4.13) \end{gathered}$	$\begin{gathered} 130 \\ (5.12) \end{gathered}$	$\begin{aligned} & 131.2 \\ & (5.17) \end{aligned}$	$\begin{gathered} 93 \\ (3.66) \end{gathered}$	$\begin{gathered} 120 \\ (4.72) \end{gathered}$	$\begin{gathered} 143 \\ (5.63) \end{gathered}$	$\begin{gathered} 2 \times 5 \\ (2 \times 0.20) \end{gathered}$	M4	$\begin{gathered} 1.2 \\ (2.6) \end{gathered}$

ATV12HU30M3, U40M3

ATV12H	$\begin{gathered} \mathrm{a} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{c} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{G} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \mathrm{H} 1 \\ \mathrm{~mm} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \varnothing \\ \mathrm{mm} \\ \text { (in.) } \end{gathered}$	For screws	Weight kg (lb)
U30M3 U40M3	$\begin{gathered} 140 \\ (5.51) \end{gathered}$	$\begin{gathered} 170 \\ (6.69) \end{gathered}$	$\begin{aligned} & 141.2 \\ & (5.56) \end{aligned}$	$\begin{gathered} 126 \\ (4.96) \end{gathered}$	$\begin{gathered} 159 \\ (6.26) \end{gathered}$	$\begin{gathered} 184 \\ (7.24) \end{gathered}$	$\begin{gathered} 4 \times 5 \\ (2 \times 0.20) \end{gathered}$	M4	$\begin{gathered} 2.0 \\ (4.4) \end{gathered}$

Mounting and temperature conditions

Install the unit vertically, at $\pm 10^{\circ}$.
Do not place it close to heating elements.
Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

Free space in front of unit: 10 mm (0.4 in .) minimum.
We recommend that the drive is installed on a dissipative surface.

Removing the vent cover(s)

Mounting types

Type A mounting

Free space $\geq 50 \mathrm{~mm}$ (2 in .) on each side, with vent cover fitted. Mounting type A is suitable for drive operation at surrounding air temperature less than or equal to $50^{\circ} \mathrm{C}$ (122 ${ }^{\circ} \mathrm{F}$).

Type B mounting

Drives mounted side-by-side, vent cover should be removed.

Type C mounting

Free space $\geq 50 \mathrm{~mm}$ (2 in .) on each side. Vent cover should be removed for operation at surrounding air temperature above $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$.

With these types of mounting, the drive can be used up to an ambient temperature of $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$, with a switching frequency of 4 kHz . Fanless drives need derating.

Mounting

Derating curves

Derating curves for the nominal drive current (In) as a function of temperature, switching frequency and mounting type.

ATV12HUeeM2, ATV12H075F1, ATV12HU15M3 to ATV12HU40M3

For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$), interpolate between two curves.

Bus voltage measurement procedure

A A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

Read and understand the precautions in "Before you begin" on page $\underline{5}$ before performing this procedure.
Failure to follow these instructions will result in death or serious injury.

Installing the EMC plates

EMC mounting plate: size 1 VW3A9523, size 2 VW3A9524 or size 3 VW3A9525 to be ordered separately
Mount the EMC mounting plate to the holes in the ATV12 using the 2 screws supplied, as shown in the drawings below.
Size 1, plate reference VW3A9523:
ATV12H018F1, ATV12H037F1, ATV12P037F1,
ATV12H018M2, ATV1200•M2, ATV12e0•M3

Size 2, plate reference VW3A9524:
ATV12H075F1, ATV12HUe॰M2, ATV12U15M3, ATV12•U22M3

1. 2 mounting screws
2. $4 \times \mathrm{M} 4$ screws for attaching EMC clamps

Size 3, plate reference VW3A9525: ATV12•U30M3 and ATV12U40M3

Recommendations

Keep the power cables separate from control circuits with low-level signals (detectors, PLCs, measuring apparatus, video, telephone). Always cross control and power cables at 90° if possible.

Power and circuit protection

Follow wire size recommendations according to local codes and standards.
Before wiring power terminals, connect the ground terminal to the grounding screws located below the output terminals (see Access to the motor terminals if you use ring terminals, page 21.

The drive must be grounded in accordance with the applicable safety standards. ATV12eeゃeM2 drives have an internal EMC filter, and as such the leakage current is over 3.5 mA .
When upstream protection by means of a "residual current device" is required by the installation standards, a type A circuit breaker should be used for single-phase drives and type B for 3-phase drives. Choose a suitable model incorporating:

- HF current filtering
- A time delay which prevents tripping caused by the load from stray capacitance on power-up. The time delay is not possible for 30 mA devices. In this case, choose devices with immunity against accidental tripping, for example RCDs with SI type leakage current protection.
If the installation includes several drives, provide one "residual current device" per drive.

Control

For control and speed reference circuits, we recommend using shielded twisted cables with a pitch of between 25 and 50 mm (1 and 2 in .), connecting the shield to ground as outlined on page 26 .

Length of motor cables

For motor cable lengths longer than $50 \mathrm{~m}(164 \mathrm{ft})$ for shielded cables and longer than $100 \mathrm{~m}(328 \mathrm{ft})$ for unshielded cables, please use motor chokes.
For accessory part numbers, please refer to the catalog.

Equipment grounding

Ground the drive according to local and national code requirements. A minimum wire size of $10 \mathrm{~mm}^{2}$ (6 AWG) may be required to meet standards limiting leakage current.

A A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- The drive panel must be properly grounded before power is applied.
- Use the provided ground connecting point as shown in the figure below.

Failure to follow these instructions will result in death or serious injury.

A A DANGER

ATV12H075F1, ATV12H075M2 AND ATV12H075M3 - GROUND CONTINUITY HAZARD

An anodized heatsink can create an insulation barrier to the mounting surface. Ensure that you follow the recommended grounding connections.

Failure to follow these instructions will result in death or serious injury.

- Ensure that the resistance of the ground is one ohm or less.
- When grounding several drives, you must connect each one directly, as shown in the figure to the left.
- Do not loop the ground cables or connect them in series.

Wiring

A WARNING

RISK OF DRIVE DESTRUCTION

- The drive will be damaged if input line voltage is applied to the output terminals (U/T1,V/T2,W/T3).
- Check the power connections before energizing the drive.
- If replacing another drive, verify that all wiring connections to the drive comply with wiring instructions in this manual.

Failure to follow these instructions can result in death, serious injury or equipment damage.

A WARNING

INADEQUATE OVERCURRENT PROTECTION

- Overcurrent protective devices must be properly coordinated.
- The Canadian Electrical Code and the National Electrical Code require branch circuit protection. Use the fuses recommended in this manual, page 121.
- Do not connect the drive to a power feeder whose short-circuit capacity exceeds the drive short-circuit current rating listed in this manual, page 121

Failure to follow these instructions can result in death, serious injury or equipment damage.

General wiring diagram

ATV12•e00F1

ATV12••••M2

Single-phase supply $100 . . .120 \mathrm{~V}$

Single-phase supply 200... 240 V

ATV12••••M3
Three-phase supply 200 ... 240 V
(4)

(1) R1 relay contacts, for remote indication of the drive status.
(2) Internal $+24 \mathrm{~V}=-$. If an external source is used (+ $30 \mathrm{~V}=-$ maximum), connect the 0 V of the source to the COM terminal, and do not use the $+24 \mathrm{~V}=$-. terminal on the drive.
(3) Reference potentiometer SZ1RV1202 ($2.2 \mathrm{k} \Omega$) or similar (10 $\mathrm{k} \Omega$ maximum).
(4) Optional braking module VW3A7005
(5) Optional braking resistor VW3A7eee or other acceptable resistor. See the possible resistor values in the catalog.

Note:

- Use transient voltage surge suppressors for all inductive circuits near the drive or coupled to the same circuit (relays, contactors, solenoid valves, etc).
- The ground terminal (green screw) is located on the opposite side in comparison with its position on the ATV11 (see wiring trap label).

Wiring

Wiring labels

ATV12H.o.F1

ATV12H.o๐M2

ATV12Hoo.M3

Power terminals

Line supply is at the top of the drive, the motor power supply is at the bottom of the drive. The power terminals can be accessed without opening the wiring trap if you use stripped wire cables.

Access to the power terminals

Access to the terminals if you use stripped wire cables

A ! DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

Replace the wiring trap before applying power.
Failure to follow these instructions will result in death or serious injury.

A CAUTION

RISK OF BODY INJURY

Use pliers to remove snap-off of the wiring trap.
Failure to follow these instructions can result in injury or equipment damage.

Access to the line supply terminals to connect ring terminals

A) IT jumper on ATV12eeeeM2
B) Grounding screws located below the output terminals.

Power terminals

Access to the motor terminals if you use ring terminals

Characteristics and functions of power terminals

Terminal	Function	For ATV12
$\stackrel{1}{ \pm}$	Ground terminal	All ratings
R/L1 - S/L2/N	Power supply	1-phase 100... 120 V
R/L1 - S/L2/N		1-phase 200... 240 V
R/L1 - S/L2 - T/L3		3-phase 200... 240 V
PA/+	+ output (dc) to the braking module DC Bus (visible part on wiring trap)	All ratings
PC/-	- output (dc) to the braking module DC Bus (visible part on wiring trap)	All ratings
PO	Not used	
U/T1 - V/T2 - W/T3	Outputs to the motor	All ratings

Arrangement of the power terminals

ATV12H 018F1, 037F1, 0eeM2, 0eeM3

R/L1	S/L2/N	$\stackrel{\perp}{=}$

ATV12H	Applicable wire size (1) mm^{2} (AWG)	Recommended wire size (2) mm^{2} (AWG)	Tightening torque (3) $\mathrm{N} \cdot \mathrm{m}$ (lb.in)
018F1	$\mathbf{2}$ to 3.5	2	0.8 to 1
037F1	(14)	$(7.1$ to 8.9$)$	
$0 \bullet M 2$	(14 12)	$(\bullet M 3$	

ATV12H 075F1, UeoM2, U15M3, U22M3

ATV12H U30M3, U40M3

ATV12H	Applicable wire size (1) mm^{2} (AWG)	Recommended wire size (2) mm^{2} (AWG)	Tightening torque (3) $\mathrm{N} \cdot \mathrm{m}$ (Ib.in)
U30M3 U40M3	$5.5(10)$	$5.5(10)$	1.2 to 1.4 $(10.6$ to 12.4$)$

ATV12H	Applicable wire size (1) mm^{2} (AWG)	Recommended wire size (2) mm^{2} (AWG)	Tightening torque (3) $\mathrm{N} \cdot \mathrm{m}$ (lb.in)
075F1	$\mathbf{3 . 5}$ to 5.5	5.5 Uャ0M2 (12 to 10$)$	(10)
U15M3 to 1.4			
U22M3	$\mathbf{2}$ to 5.5 (14 to 10$)$	$2(14)$ for U15M3 $3.5(12)$ for U22M3	

Control terminals

Keep the control circuits away from the power cables. For control and speed reference circuits, we recommend using shielded twisted cables with a pitch of between 25 and 50 mm (1 and 2 in .), connecting the shielding as outlined on page 26.

Access to the control terminals

To access the control terminals, open the cover.
Note: For information regarding HMI button functions, see "HMI description" on page 32.

Arrangement of the control terminals

	R1A	Normally open (NO) contact of the relay
(1) (1)(1)	R1B	Normally closed (NC) contact of the relay
	R1C	Common pin of the relay
¢ ¢ ¢	COM	COMmon of analog and logic I/Os
	Al1	Analog Input
	5 V	+5 VDC supply provided by the drive
	AO1	Analog Output
(1010®®(1)	LO+	Logic Output (collector)
	LO-	Common of the Logic Output (emitter)
$\checkmark-\mathrm{O}$	COM	COMmon of analog and logic I/Os
	LI1	Logic Input
	LI2	Logic Input
	LI3	Logic Input
Note: To connect cables, use a	LI4	Logic Input
slotted screwdriver 0.6×3.5.	+24V	+24 VDC supply provided by the drive
	RJ45	Connection for SoMove software, Modbus network or remote display.

ATV12 Control terminals	Applicable wire size (1) mm^{2} (AWG)	Tightening torque (2) $\mathrm{N} \cdot \mathrm{m}(\mathrm{lb} . \mathrm{in})$
R1A, R1B, R1C	$\mathbf{0 . 7 5}$ to $1.5(\mathbf{1 8}$ to 16$)$	0.5 to $0.6(4.4$ to 5.3$)$
Other terminals	$\mathbf{0 . 1 4}$ to $1.5(\mathbf{2 6}$ to 16$)$	

(1)The value in bold corresponds to the minimum wire gauge to permit secureness.
(2) Recommended to maximum value.

Characteristics and functions of the control terminals

Terminal	Function	Electrical characteristics
R1A	NO contact of the relay	Min. switching capacity: - 5 mA for $24 \mathrm{~V}=-$ Maximum switching capacity: - 2 A for $250 \mathrm{~V} \sim$ and for $30 \mathrm{~V}=$ =- on inductive load $(\cos \varphi=0.4$ and $L / R=7 \mathrm{~ms})$ - 3 A for $250 \mathrm{~V} \sim$ and 4 A for 30 V .-. on resistive load $(\cos \varphi=1$ and $\mathrm{L} / \mathrm{R}=0)$ - response time: 30 ms maximum.
R1B	NC contact of the relay	
R1C	Common pin of the relay	
COM	Common of analog and logic I/Os	
Al1	Voltage or current analog input	- resolution: 10 bits - precision: $\pm 1 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ - linearity: $\pm 0.3 \%$ (of full scale) - sampling time: $20 \mathrm{~ms} \pm 1 \mathrm{~ms}$ Analog voltage input 0 to +5 V or 0 to +10 V (maximum voltage 30 V) impedance: $30 \mathrm{k} \Omega$ Analog current input x to y mA, impedance: 250Ω
5 V	+5 VDC power supply for reference potentiometer	- precision: $\pm 5 \%$ - maximum current: 10 mA
AO1	Voltage or current analog output (collector)	- resolution: 8 bits - precision: $\pm 1 \%$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ - linearity: $\pm 0.3 \%$ (of full scale) - refresh time: 4 ms (maximum 7 ms) Analog voltage output: 0 to +10 V (maximum voltage $+1 \%$) - minimum output impedance: 470Ω Analog current output: x to 20 mA - maximum output impedance: 800Ω
LO+	Logic output	- voltage: 24 V (maximum 30 V) - impedance: $1 \mathrm{k} \Omega$, maximum 10 mA (100 mA in open collector) - linearity: $\pm 1 \%$ - refresh time: $20 \mathrm{~ms} \pm 1 \mathrm{~ms}$.
LO-	Common of the logic output (emitter)	
$\begin{aligned} & \mathrm{LI} 1 \\ & \mathrm{~L} 12 \\ & \mathrm{LI} 3 \\ & \mathrm{LI} 4 \end{aligned}$	Logic inputs	Programmable logic inputs - +24 VDC power supply (maximum 30 V) - impedance: $3.5 \mathrm{k} \Omega$ - state: 0 if $<5 \mathrm{~V}$, state 1 if $>11 \mathrm{~V}$ in positive logic - state: 1 if $<10 \mathrm{~V}$, state 0 if $>16 \mathrm{~V}$ or switched off (not connected) in negative logic - sampling time: $<20 \mathrm{~ms} \pm 1 \mathrm{~ms}$.
+24V	+ 24 VDC supply provided by the drive	+24 VDC $-15 \%+20 \%$ protected against short-circuits and overloads. Maximum customer current available 100 mA

Control terminals

Control connection diagrams

The Logic inputs type $n P L$ parameter page $\underline{51}$ is used to adapt the operation of the logic inputs to the technology of the programmable controller outputs.

- Set the parameter to $P \square 5$ for Source operation.
- Set the parameter to $n E L$ for internal Sink operation.
- Set the parameter to $E \cap E L$ for external Sink operation.

Note: The modification will be taken into account only at the next control power on.

Source - using external supply

Source - using internal supply

Sink - using external supply

Sink - using internal supply

A DANGER

UNINTENDED EQUIPMENT OPERATION

- The accidental grounding of logic inputs configured for Sink Logic can result in unintended activation of drive functions.
- Protect the signal conductors against damage that could result in unintentional conductor grounding.
- Follow NFPA 79 and EN 60204 guidelines for proper control circuit grounding practices.

Failure to follow these instructions will result in death or serious injury.

Electromagnetic compatibility (EMC)

Note: The high frequency equipotential ground connection between the drive, motor, and cable shielding does not eliminate the need to connect the ground (PE) conductors (green-yellow) to the appropriate terminals on each unit. See Wiring recommendations on page 16.

Principle and precautions

- Grounds between the drive, motor, and cable shielding must have high frequency equipotentiality.
- When using shielded cable for the motor, use a 4 -conductor cable so that one wire will be the ground connection between the motor and the drive. The size of the ground conductor must be selected in compliance with local and national codes. The shield can then be grounded at both ends. Metal ducting or conduit can be used for part or all of the shielding length, provided there is no break in continuity.
- When using shielded cable for Dynamic Brake (DB) resistors, use a 3-conductor cable so that one wire will be the ground connection between the DB resistor assembly and the drive. The size of the ground conductor must be selected in compliance with local and national codes. The shield can then be grounded at both ends. Metal ducting or conduit can be used for part or all of the shielding length, provided there is no break in continuity.
- When using shielded cable for control signals, if the cable is connecting equipment that is close together and the grounds are bonded together, then both ends of the shield can be grounded. If the cable is connected to equipment that may have a different ground potential, then ground the shield at one end only to prevent large currents from flowing in the shield. The shield on the ungrounded end may be tied to ground with a capacitor (for example: $10 \mathrm{nF}, 100 \mathrm{~V}$ or higher) in order to provide a path for the higher frequency noise. Keep the control circuits away from the power circuits. For control and speed reference circuits, we recommend using shielded twisted cables with a pitch of between 25 and 50 mm (0.98 and 1.97 in .) Keep the control circuits away from the power circuits. For control and speed reference circuits, we recommend using shielded twisted cables with a pitch of between 25 and 50 mm (0.98 and 1.97 in .)
- Ensure maximum separation between the power supply cable (line supply) and the motor cable.
- The motor cables must be at least 0.5 m (20 in .) long.
- Do not use surge arresters or power factor correction capacitors on the variable speed drive output.
- If using an additional input filter, it should be mounted as closed as possible to the drive and connected directly to the line supply via an unshielded cable. Link 1 on the drive is via the filter output cable.
- For installation of the optional EMC plate and instructions for meeting IEC 61800-3 standard, refer to the section entitled "Installing the EMC plates" and the instructions provided with the EMC plates.

A A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION OR ARC FLASH

- Do not expose cable shielding except where connected to ground at the metal cable glands and underneath the grounding clamps.
- Ensure that there is no risk of the shielding coming into contact with live components.

Failure to follow these instructions will result in death or serious injury.

Installation diagram (example)

1. Non-shielded wires for the output of the status relay contacts.
2. Sheet steel grounded casing not supplied with the drive, to be mounted as indicated on the diagram.
3. $P A$ and $P C$ terminals, to the braking module $D C$ bus
4. Shielded cable for connecting the control/signalling wiring.

For applications requiring several conductors, use small cross-sections ($0.5 \mathrm{~mm}^{2}, 20$ AWG).
The shielding must be connected to ground at both ends. The shielding must be continuous and intermediate terminals must be in EMC shielded metal boxes.
5. Shielded cable for motor connection with shielding connected to ground at both ends.

This shielding must be continuous, and if there are any intermediate terminals, these must be in an EMC shielded metal box. The motor cable PE grounding conductor (green-yellow) must be connected to the grounded casing.
6. Grounding conductor, cross-section $10 \mathrm{~mm}^{2}$
(6 AWG) according to IEC 61800-5-1 standard.
7. Power input (non shielded cable)

Attach and ground the shielding of cables 4 and 5 as close as possible to the drive:

- Expose the shielding.
- Use cable clamps of an appropriate size on the parts from which the shielding has been exposed, to attach them to the casing. The shielding must be clamped tightly enough to the metal plate to ensure correct contact.
- Types of clamp: stainless steel (delivered with the optional EMC plate).

Wiring

EMC conditions for ATV120000M2

C1 EMC category is reached if length of shielded cable is 5 m (16.4 ft) maximum and Switching frequency 5 Fr page 59 is 4,8 or 12 kHz . C2 EMC category is reached if length of shielded cable is $10 \mathrm{~m}(32.8 \mathrm{ft})$ maximum and Switching frequency 5 Fr is 4,8 or 12 kHz and if length of shielded cable is $5 \mathrm{~m}(16.4 \mathrm{ft})$ maximum for all other values of Switching frequency 5 Fr .

Internal EMC filter on ATV12eoeoM2

All ATV120eeM2 drives have a built-in EMC filter. As a result they exhibit leakage current to ground. If the leakage current creates compatibility problems with your installation (residual current device or other), then you can reduce the leakage current by opening the IT jumper as shown below. In this configuration EMC compliance is not guaranteed.

CAUTION

DRIVE LIFETIME REDUCTION

On ATV12eeeeM2 ratings, if the filters are disconnected, the drive's switching frequency must not exceed 4 kHz . Refer to Switching frequency 5 Fr page $\underline{59}$ for adjustment,

Failure to follow these instructions can result in equipment damage.

Check list

Read carefully the safety information in the user manual and the catalogue. Before starting up the drive, please check the following points regarding mechanical and electrical installations, then use and run the drive.
For complete documentation, refer to www.schneider-electric.com.

1. Mechanical installation

- For drive mounting types and recommendations on the ambient temperature, please refer to the Mounting and temperature conditions instructions on page 13.
- Mount the drive vertically as specified, see Mounting and temperature conditions instructions on page 13.
- The use of the drive must be in agreement with the environments defined by the standard 60721-3-3 and according to the levels defined in the catalogue.
- Mount the options required for your application, refer to the catalogue.

2. Electrical installation

- Connect the drive to the ground, see Equipment grounding on page 16.
- Ensure that the input power voltage corresponds to the drive nominal voltage and connect the line supply as shown in General wiring diagram on page 18.
- Ensure you use appropriate input power fuses and circuit breaker on page 121
- Wire the control terminals as required, see Control terminals on page $\underline{23}$. Separate the power cable and the control cable according to the EMC compatibility rules on page $\underline{26}$.
- The ATV12000M2 range integrates an EMC filter. The leakage current can be reduced using the IT jumper as explained in the paragraph Internal EMC filter on ATV12eee0M2 on page 28.
- Ensure that motor connections correspond to the voltage (star, delta)

3. Use and run the drive

- Start the drive and you will see Standard motor frequency bFr page 45 at the first power on. Check that the frequency defined by the frequency b F_{r} (the factory setting is 50 Hz) is in accordance with the frequency of the motor, see First power-up on page 34. For the following power on, you will see $r d y$ on the HMI.
- MyMenu (upper part of CONF mode) allows you to configure the drive for most applications (see page 45).
- Factory / recall customer parameter set F[5 function page 46 allows you to reset the drive with factory settings.

Factory configuration

Drive factory settings

The Altivar 12 is factory－set for the most common operating conditions（motor rating according to drive rating）：
－Display：drive ready $\left(\begin{array}{lll}r & d & 4\end{array}\right)$ motor stopped or motor frequency reference while running
－Automatic adaptation of the deceleration ramp in the event of overvoltage on braking．
－No automatic restarting after a detected fault is cleared
－Logic inputs：
－LI1：forward（2－wire transitional control）
－LI2，LI3，LI4：no assignment
－Logic output：LO1：no assignment
－Analog input：Al1（0 to +5 V ）speed reference
－Relay R1：the contact opens in the event of a detected fault（or drive off）
－Analog output AO1：no assignment

Code	Description	Value	page
bFr	Standard motor frequency	50 Hz	45
Un5	Rated motor voltage	230 V	57
月［［	Acceleration	3 seconds	64
d E［	Deceleration	3 seconds	64
L 5 P	Low speed	0 Hz	$\begin{aligned} & \underline{45} \\ & \underline{89} \\ & \hline \end{aligned}$
H5P	High speed	50 Hz	90
くヒヒ	Motor control type	Standard U／F law	57
UFr	IR compensation（law U／F）	100\％	58
1ヒん	Motor thermal current	equal to nominal motor current（value determined by drive rating）	$\underline{94}$
5d［1	Automatic DC injection current	$0.7 \times$ nominal drive current，for 0.5 seconds．	67
5 Fr	Switching frequency	4 kHz	59

If the above values are compatible with the application，the drive can be used without changing the settings．

Drive factory wiring diagram

ATV12••0•M3

（1）R1 relay contacts，for remote indication of the drive status．
（2）Internal $+24 \mathrm{~V}=$ ．．．If an external source is used $(+30 \mathrm{~V}=$ ．－maximum），connect the 0 V of the source to the COM terminal，and do not use the $+24 \mathrm{~V}=$－terminal on the drive．
（3）Reference potentiometer SZ1RV1202（2．2 k Ω ）or similar（10 k Ω maximum）．
（4）Forward

Basic functions

Status relay, unlocking

The R1 status relay is energized when the drive power is applied with no fault detected. It de-energizes in the event of a detected fault or when the drive power is removed

The drive is reset after a detected fault:

- by switching off the drive until the display disappears completely, then switching on again
- automatically in the cases described in the "automatic restart" function, FLE-menu, Automatic restart $A E$ r page $\underline{91}$ set to $Ч E 5$
- via a logic input when this input is assigned to the "drive reset" function, $F L E$ - menu, Detected fault reset assignment $r 5 F$ page 91 set to LeH.

Drive thermal detection

Thermal detection is provided by a built-in PTC probe in the power module.

Drive ventilation

Ratings up to $0.75 \mathrm{~kW}(1 \mathrm{HP})$ do not include a fan. The fan runs only when the drive thermal state requires ventilation.

Motor thermal detection

Function:

Thermal detection by calculating the $\mathrm{I}^{2} \mathrm{t}$.

Note: The motor thermal state memory returns to zero when the drive power is cycled if Motor thermal state memo ПヒП page 94 is not set to $y E 5$.

CAUTION
RISK OF DAMAGE TO THE MOTOR
The use of external overload protection is required under the following conditions:

- Repowering up the product since there is no motor thermal state memory.
- Running multiple motors
- Running motors rated at less than 20% of the nominal drive current
- Using motor switching

Failure to follow these instructions can result in equipment damage.

[^0]
HMI description

Functions of the display and keys

1. Value LED (a) (b).
2. Charge LED
3. Unit LED (c)
4. ESC button: Exits a menu or parameter, or aborts the displayed value to return to the previous value in the memory. In LOCAL configuration, 2 s press on ESC button switches between the control/programming modes.
5. STOP button: stops the motor (could be hidden by door if function disabled). Note: See instructions for "RUN/STOP" cover removal.
6. RUN button: Starts running in LOCAL configuration and in REMOTE configuration if the function is configured (could be hidden by door if function disabled).
7. Jog dial

- Acts as a potentiometer in LOCAL configuration and in REMOTE configuration if the function is configured.
- For navigation when turned clockwise or counterclockwise
- and selection / validation when pushed.

This action is represented by this symbol
8. MODE button

Switches between the control/programming modes. 3s press on MODE button switches between the REMOTE/LOCAL configurations.
The MODE button is only accessible with the HMI door open.
9. CONFIGURATION mode LED (b)
10. MONITORING mode LED
11. REFERENCE mode LED
12. Four " 7 -segment" displays

Note: In LOCAL configuration, the three Leds 9, 10, 11 are blinking simultaneously in programming mode and are working as a Led chaser in control mode.
(a) If illuminated, indicates that a value is displayed, for example, $\square .5$ is displayed for " 0.5 "
(b) When changing a value the Configuration mode LED and the value LED are on steady.
(c) If illuminated, indicates that a unit is displayed, for example, AMP is displayed for "Amps"

Programming

Remote control

Remote operation and programming by HMI is possible using the optional remote HMI part VW3A1006. The dimensions are 70 mm (2.76 in) x 50 mm (2.76 in).

Note: when connected, the remote control shows an exact copy of the drive display, it is totally interactive with the embedded keypad.
Note: Set the remote keypad with

- Modbus rate $=19.2 \mathrm{Kbps}$, (see ヒ br)
- Modbus format $=8 \mathrm{E} 1,8$ bit, even parity, 1 stop bit (see $\in F \square)$

Programming

First power-up

At first power-up you are prompted to set Standard motor frequency b Fr page 45. Next time power is applied $r d y$ appears. Operating mode selection is then possible using the MODE key as detailed below.

Menus structure

Access to menus and parameters is possible through 3 modes: Reference rEF page 37, Monitoring $\Pi \square \cap$ page $\underline{38}$ and Configuration C חnF page 44. Switching between these modes is possible at any time using the MODE key or Jog Dial on keyboard. The first press on the MODE key moves from the current position to the top of the branch. A second press switches to the next mode.

Menu customization using SoMove

ATV12 factory settings enable drive operation with most applications. You can use SoMove software to customize the "MyMenu" and FULL menus of $[\square \cap F$ mode (see page 44), by selecting which menus and parameters will be hidden or accessible for the user. Once the configuration has been adjusted, it can be downloaded to the ATV12 by connecting the drive to the computer or by downloading the configuration through the multiloader or simpleloader.
SoMove can be used to operate the drive for testing and commissioning.

Description	References
SoMove	-
USB/RJ45 cable	TCSMCNAM3M002P
Simple-loader tool	VW3A8120
Multi-loader tool	VW3A8121
Bluetooth adapter	VW3A8114

For further information, please consult the SoMove help.

Structure of parameter tables

The modes, sections, menus, sub-menus and parameter tables description is organized as below.
Note: Parameters containing the sign () in the code column can be modified with the drive running or stopped
Example:

Configuration Mode - Complete menu (FULL)

(1)
$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Code } & \text { Name / Description } & \begin{array}{l}\text { Adjustment } \\ \text { range }\end{array} \\ \hline \text { Factory } \\ \text { setting }\end{array}\right]$

1. Name of mode
2. Name of section, if any
3. Menu code on 4-digit display, followed by a "-"
4. Sub-menu code on 4-digit display, if any
5. Parameter code
6. Value code
7. Name of menu
8. Name of sub-menu
9. Parameter description
10. Possible value(s) / state of parameter, if any.

Function compatibility table

Preset speed (page $\underline{\text { 70) }}$)			\uparrow				
PI regulator (page $\underline{\text { 72) }}$)			\bullet				
Jog operation (page 68)	\leftarrow	\bullet		\leftarrow			
Auto DC injection (page 67)			\uparrow				\uparrow
Catch on the fly (page $\underline{92}$)							\leftarrow
Fast stop (page 66)							\uparrow
Freewheel (page 66)				\leftarrow	\uparrow	\leftarrow	

\bullet Incompatible functions \square Compatible functions Not applicable
Priority function (function which can be active at the same time)
\leftarrow ↔ \uparrow The function indicated by the arrow has priority over the other.

Stop functions have priority over run commands.
Speed references via logic command have priority over analog references.

Reference Mode rEF

Use the reference mode to monitor and if local control is enabled（Reference channel $1 F_{r} I$ page $\underline{45}$ set to $\mathrm{F} / \mathrm{I} I$ ）adjust the actual reference value by rotating the jog dial．
When local control is enabled，the jog dial on the HMI acts as a potentiometer to change the reference value up and down within the limits preset by other parameters（LSP or HSP）．There is no need to press the ENT key to confirm the change of the reference．
If local command mode is disabled，using Command channel $1[d /$ page $\underline{63}$ ，only reference values and units are displayed．The value will be＂read only＂and cannot be modified by the jog dial（the reference is no longer given by the jog dial but from an Al or other source）． The actual reference displayed depends on the choice made in Reference channel 1 Fr I page $\underline{62}$.

Organization tree

（1）Depending on the active reference channel
Possible values：
LFr
トリリノ
FrH
$r P l$
$r P[$
（2） 2 s or ESC

Displayed parameter value and unit of the diagram is given as examples

Code	Name／Description	Adjustment range	Factory settings
$L F_{r}$	External reference value Frequency reference visible if reference channel active is Reference channel $1 F_{r}$ I page $\underline{62}$ set to $L[$［ or Forced local reference $F L \square[$ page $\underline{63}$ set to $L[C$ ． This parameter allows to modify the frequency reference Visibility depends on the drive settings．	$-400 \text { to }+400 \mathrm{~Hz}$ play． dial．	－
－IU I （2） （1）	\square Analog input virtual This parameter allows to modify the frequency reference Reference channel $1 \mathrm{Fr}_{\mathrm{r}}$ I page $\underline{62}$ set to AlU I or Forced local reference FLD［ page 63 set to A IU or PID manual reference P I Π page $\underline{74}$ set to $A I \sqcup I$ ． Visibility depends on the drive settings．	0 to 100 \％of HSP alog input．	－
FrH A 1 I L［［ Пыь A IU I	\square Speed reference Actual frequency reference．This parameter is in read－on Terminal Remote display Modbus Integrated display with Jog dial	0 Hz to HSP sibility depends on the	drive
$r P I$ () （1）	\square Internal PID reference This parameter allows to modify the PID internal reference Visibility depends on the drive settings．	0 to 100\％ og dial．	－
$r P L$	\square PID reference value This parameter is the PID reference expressed as a \％．	$0 \text { to 100\% }$	

（1）It is not necessary to press the ENT key to confirm the modification of the reference．

When the drive is running, the value displayed is that of one of the monitoring parameters. The default value displayed is the motor Output frequency $r F_{r}$ page 39 .
While the value of the desired new monitoring parameter is being displayed, press a second time on the jog dial button to display the units.

Organization tree

(1) Depending on reference channel active. Possible values:
LFr
ト IU I
(2) 2 sec or ESC

Monitoring mode MOn

Code	Name/Description ${ }^{\text {a }}$
$\begin{gathered} \angle F r \\ \boldsymbol{C} \end{gathered}$	External reference value External keypad or local force mode configured. Forced local reference $F L \square[$ page $\underline{63}$ set to $L[C$ and and Forced local assignment $F L \square$ page $\underline{63}$ different to $n \square$. Displays the speed reference coming from the remote keypad. This value is not visible in factory setting.
A 14 । ()	Analog input virtual Embedded keypad active or local force mode configured, Forced local reference $F L \square[$ page $\underline{63}$ set to A IU I and Forced local assignment $F L \square$ page $\underline{63}$ different to $\cap \square$. Displays the speed reference coming from the jog dial. This value is not visible in factory setting.
FrH	\square Speed reference Actual frequency reference.
$r \mathrm{Fr}$	\square Output frequency This function provides the estimated motor speed. It corresponds to the estimated motor frequency (on the motor shaft). In Standard law $5 t d$ page 57 , the Output frequency $r F r$ is equal to stator frequency. In Performance law $P E r F$ page 57, the Output frequency $r F r$ motor speed is equal to the estimated motor speed. Range: - 400 to 400 Hz
L [r	Motor current Estimation of the effective motor current from phase current measurements with an accuracy of 5\%. During DC injection, the current displayed is the maximum value of current injected in the motor.
rPE	PID error Visible only if the PID function is configured (PID feedback assignment P IF page $\underline{72}$ set to $n \square$). See PID diagram on page 71
rPF	PID Feedback Visible only if PID function configured (PID feedback assignment P IF page $\underline{72}$ set to $n \square$). See PID diagram on page 71
rP[PID reference Visible only if PID function configured (PID feedback assignment P IF page $\underline{72}$ set to $n \square$). See PID diagram on page 71
$U L \Pi$	Main voltage Line voltage from the point of view of the DC bus, motor running or stopped.
thr	Motor thermal state Display of the motor thermal state. Above 118%, the drive trips in Motor overload $\square L F$ page 109.
EHd	Drive thermal state Display of the drive thermal state. Above 118\%, the drive trips in Drive overheat $\square H F$ page 109.
ロPr	\square Output power This parameter displays the motor power (on the shaft) that is estimated by the drive.

Code \quad Name／Description

5ヒ月ヒ
\square Product status
This parameter shows the state of the drive and motor．
$r d y$
Drive ready
rリnDrive running，the last six segments to the right of the code also indicate direction and speed．
A［Acceleration，the last six segments to the right of the code also indicate direction and speed．
$d E$ ᄃDeceleration，the last six segments to the right of the code also indicate direction and speed．
d［b
DC injection braking in progress
［LICurrent limit，the four segments located on right down of display are blinking．
n5tFreewheel stop control
ロレrAuto－adapted deceleration
［ L L
\square Controlled stop on mains phase loss
ヒリnAuto－tuning in progress
F5tFast stop
\square No line power．When the control part is energized via the RJ45 connector and there is no power on the main input and no run order is present．
FrFDrive is running and using the withdrawal reference LFF
$r \in \Pi$Remote configuration
L प［
\square Local configuration

Code	Name/Description Unit
ПН 1-	Maintenance menu Parameters of MAI menu can't be selected for monitoring
L 151	\square State of logic inputs LI1 to LI4 Can be used to visualize the state of the 4 logic inputs LI. Example above: LI1 and LI3 are at $1 ; \mathrm{LI} 2$ and LI 4 are at 0 .
L S I	State of the logic output LO1 and relay R1 Can be used to visualize the state of the LO.
H 5 U	\square Display of high speed value Display of high speed value. Range Low speed $L 5 P$ page $\underline{45}$ to Maximum frequency $t F_{r}$ page $\underline{57}$. Visible only if 2 HSP assignment 5 Hz or 4 HSP assignment 5 H 4 page $\underline{90}$ is configured.
$n[U$	Drive Power rating Indicates the drive rating. This is part the of the drive reference, see page 11. Possible values: $\begin{aligned} & 018=0.18 \mathrm{~kW}(0.25 \mathrm{HP}) \\ & 037=0.37 \mathrm{~kW}(0.50 \mathrm{HP}) \\ & 055=0.55 \mathrm{~kW}(0.75 \mathrm{HP}) \\ & 075=0.75 \mathrm{~kW}(1 \mathrm{HP}) \\ & \mathrm{U} 15=1.5 \mathrm{~kW}(2 \mathrm{HP}) \\ & \mathrm{U} 22=2.2 \mathrm{~kW}(3 \mathrm{HP}) \\ & \mathrm{U} 30=3 \mathrm{~kW}(3 \mathrm{HP}) \\ & \mathrm{U} 40=4 \mathrm{~kW}(5 \mathrm{HP}) \end{aligned}$
$U[$ AL	\square Drive voltage rating Drive rate supply voltage. This is part the of the drive reference, see page 11. Possible values: F1 $=100-120 \mathrm{~V} 1$ phase in, 200-240 V 3 phase out M2 $=200-240 \mathrm{~V} 1$ phase in, 200-240 V 3 phase out M3 $=200-240 \mathrm{~V} 3$ phase in, 200-240 V 3 phase out
$5 P n$	\square Specific Product Number This parameter is used in order to identify the possible specification of the product. Visible only if $5 P_{n}$ is different to zero.
[154	Card 1 Software Version Application software version. Example: 1105 for 1.1 ie 05. 1 (version, major). 1 (version, minor). 05 (ie, evolution number)
[25	Card 2 Software Version Motor software version. Example: 1105 for 1.1 ie 05. 1 (version, major). 1 (version, minor). 05 (ie, evolution number)

Code	Name/Description					Unit
ПА 1-	Maintenance menu (continued)					
rEH I	\square Run elapsed time display Total time the motor has been powered table below. Parameter resettable by		up. Range: 0 to services	5535 hours. Va	displayed is as	0.01 scribed in the
P EH	- Power On time display Total time the drive has been powered on. Range: 0 to 65535 hours. Value displayed is as described in the table above. Parameter resettable by services.					
$F \in H$	Fan time display Range: 0 to 65535 hours. Value displayed is as described in the table above. Parameter resettable by customer.					
$\begin{gathered} P E E \\ \mathbf{~} \end{gathered}$	Process elapsed time Range: 0 to 65535 hours. Value displayed is as described in the table above. Parameter resettable by customer.					
$\begin{gathered} \text { ᄃ ロ I } \\ r \square E \square \\ r \square E I \\ r \operatorname{IE} \square \\ r \\ r \end{gathered}$	\square Modbus communication statusModbus no reception, no transmission = communication idleModbus no reception, transmissionModbus reception, no transmissionModbus reception and transmission					
dP I	Last detected fault 1 This parameter describes the last detected fault.					-
EP I	\square State of drive at detected fault 1 This parameter describes the state at the moment of the 1st detected fault.					
	bit 0 ETA.1: Switched on	bit 1 ETA.5: Quick stop	bit 2 ETA.6: Switch on disabled	bit 3 Forced local enabled	ETA. 15 : Motor rotation in forward direction (or stopped)	
	bit 5 ETI.4: Run order present	bit 6 ETI.5: DC injection running	bit 7 ETI.7: Motor thermal threshold reached	bit 8 ETI.8: Reserved	bit 9 ETI.9: Product in acceleration	
	bit 10	bit 11	bit 12			bit 15
	ETI.10: Product in deceleration	ETI. 11 : Current limitation or torque limitation is running	Fast stop in progress	ETI.14=0 + ETI.13=0 : Drive controlled by terminal or local keypad ETI.14=0 + ETI.13=1: Drive controlled by remote keypad $\text { ETI.14= } 1 \text { + ETI.13=0 : }$ Drive controlled by Modbus ETI.14=1 + ETI.13=0 : Reserved		ETI. 15 : Reverse direction applied to the ramp

Code	Name/Description \quad Adjustment range ${ }^{\text {Factory setting }}$		
ПА 1-	Maintenance menu (continued)		
$d P 2$	\square Last detected fault 2 This parameter describes the 2 nd detected fault.		
$E P$ P	- State of drive at detected fault 2 This parameter describes the state at the moment of the 2nd detected fault. See EP I.		
dPヨ	\square Last detected fault 3 This parameter describes the 3rd detected fault.		
$E P \exists$	- State of drive at detected fault 3 This parameter describes the state at the moment of the 3rd detected fault. See EP I		
dP4	Last detected fault 4 This parameter describes the 4th detected fault.		
$E P 4$	\square State of drive at detected fault 4 This parameter describes the state at the moment of the 4th detected fault. See EP I		
[पd	\square HMI Password $\quad 2$ to 9999 OFF		
ロF F $\square!$	Possible state value: Code disabled Code activated Range 2 to 9999 If you have lost your code, please contact Schneider Electric. This parameter is used to restrict access to the drive. To lock the drive, go to the HMI Password $[\square \\|$ parameter, enter a code within the above range. Once activated, the code state changes to $\square n$: The protection enables only access to $r E F$ (see page 37) and $\Pi \square \cap$ (see page 38) modes, except when using SoMove. Return to factory settings or access to $F U L L$ section are disabled, Download configuration from SoMove is possible, Upload configuration to SoMove is disabled. To unlock the drive, go to the $[\square \\|$ parameter, enter the valid code, then press ENT. Code protection removal is then possible and carried out by entering $\square F F$ using the jog dial, then press ENT.		

Configuration Mode ConF

Configuration mode includes 3 parts:

1. MyMenu includes 11 factory set parameters (among them 9 visible by default). Up to 25 parameters are available for user customization using SoMove software.
2. store/recall parameter set: these 2 functions are used to store and recall customer settings.
3. FULL: This menu provides access to all other parameters. It includes 6 sub-menus:

- Macro-configuration [F L - page 47
- Input Output menu I-ロ-page 48
- Motor control menu dr [- page 58
- Control menu $[t L$ - page $\underline{62}$
- Function menu $F U n$ - page $\underline{64}$
- Fault detection management menu $F L t$ - page 91
- Communication menu $\bar{\square} \square$ - page 97.

Organization tree

Displayed parameter values are given as examples only
(1) Depending on reference channel active.
Possible values: LFror Al| I
(2) 2 seconds or ESC. (3) plus 14 other customizable parameters selectable (in "FULL" list) using SoMove.

(2) Parameter that can be modified during operation or when stopped.

Code	Name/Description	Adjustment range	Factory setting
nPr	\square Rated Motor Power	$\begin{aligned} & \text { NCV -5 to } \\ & \text { NCV +2 } \end{aligned}$	According to drive rating
	Visible only if Motor parameter choice $\Pi P\left[\right.$ page $6 \underline{0}$ is set to $n P r$. If $n P r$ is available $\square_{\square} 5$ disappears. Rated motor power given on the nameplate. Motors can range from five ratings lower up to two ratings higher than the drive rating.. Performance is optimized when there is a maximum of one rating difference. If Standard motor frequency bFr page 45 is set to 50 Hz , the Rated motor power $n P r$ unit will be kW, otherwise it will be HP.		
5[5	\square Store customer parameter set		nO
	This function creates a backup of the present configuration Function inactive Saves the current configuration in the drive memory. 5 [save has been performed. When a drive leaves the factory the current configuration with the factory configuration.	matically switches to backup configuration	\square as soon as the are both initialized
$F[5$	\square Factory / recall customer parameter set ${ }^{\text {a }}$		
	This function permits to restore a configuration. \square Function inactive. $F[5$ automatically changes to $n \square$ as soon as one of the \square The current configuration becomes identical to the backup $F[5$ automatically changes to $n \square$ as soon as this action if the backup has been carried out. If this value appears The current configuration becomes identical to the factor visible. \square The current configuration becomes identical to the backup software. If this value appears, Ini and $r E[\quad I$ are not	wing actions has been iguration previously been performed. I is not visible. g. If this value appea guration previously	performed. ved by 5[5. I is only visible s, $I n \mid l$ is not fined by SoMove
2 s	! DANGEE		
	UNINTENDED EQUIPMENT OPERATION Check that the modification of the current configuration is compatible with the wiring diagram used. Failure to follow these instructions will result in death or serious injury.		

How to control the drive locally

In factory settings "RUN" and the jog dial are inactive. To control the drive locally, adjust the following parameter: set Reference channel 1 F \quad I page 45 to $A I \| I$ (Integrated display with jog dial).

LI assignment information

It is possible with ATV12 to use multi assignment function (ie: A $\left[\mathcal{Z}\right.$ and $r r_{5}$ on the same LI).
It is also possible on some functions to assign LIH (high) or LII (low), which means that the assigned function will be activated to high (LIH) or low level (LII) of LI.

Code	Name/Description		Adjustment range	Factory setting	
[F [\square Macro-configuration			StS	
	! DANGEB				
	UNINTENDED EQUIPMENT OPERATION Check that the selected macro configuration is compatible with the wiring diagram used. Failure to follow these instructions will result in death or serious injury.				
$\begin{aligned} & 5 \in 5 \\ & P \text { Id } \\ & 5 P d \end{aligned}$	Macro configuration provides a shortcut to configure a set of parameters suited to a specific field of application. 3 macro configurations are available: Start/stop. Only forward is assigned PID regulation. Activate PID function, dedicated AI1 for feedback and AIV1 for reference. Speed. Allocate LI to preset speed (same allocation as ATV11) which provides a means of speeding up the configuration of functions for a specific field of application. Selecting a macro configuration assigns the parameters in this macro configuration. Each macro configuration can still be modified in the other menus.				
2 s	Input / output or parameter	Start / Stop	PID regulation	Speed	
	Al1	Ref. channel 1	PID feedback	No	
	AIV1	No	Reference ch	channel 1	
	AO1		No		
	LO1		No		
	R1		drive detected fault		
	L1h (2-wire)		Forward		
	L2h (2-wire)			Reverse	
	L3h (2-wire)	No	Auto/Manu	2 preset speeds	
	L4h (2-wire)			4 preset speeds	
	L1h (3-wire)		Stop		
	L2h (3-wire)		Forward		
	L3h (3-wire)			Reverse	
	L4h (3-wire)	No	Auto / Manu	2 preset speeds	
	Fr l (Reference channel 1)		A \\| I 1	н IU I	
	LEE (Motor control type)		PUПP		
	$r \ln$ (Reverse inhibition)		YE 5		
	H I I \bullet (Al1t type)		- ${ }^{\text {¢ }}$		
	L F L I (4-20 mA loss)		YE 5		
	5 P こ (Preset speed 2)			10. 0	
	$5 Р \exists$ (Preset speed 3)			25. \square	
	5 P 4 (Preset speed 4)			50. \square	
	ПР [(Motor parameter choice)			[05	
	$A d[$ (Automatic DC injection)	YE 5	YES	YE5	

Configuration Mode - Complete menu (FULL)

A DANGER

UNINTENDED EQUIPMENT OPERATION

When this parameter is changed, 2 wire type control $t[t$ page $\underline{51}$ and all the assignments involving the logic inputs will revert to their default values.
Check that this change is compatible with the wiring diagram used.

Failure to follow these instructions will result in death or serious injury.

Configuration Mode - Complete menu (FULL)

2 wire control diagrams (see page $\underline{51}$)
Drive powered and ready
2-Wire with transient detection

(1) Reverse is not factory assigned. See Reverse direction r r 5 page 66.

Forward and Reverse realised in same time provides motor starting in Forward direction.

Configuration Mode - Complete menu (FULL)

$d\ulcorner[-3$-wire control diagram (see page $\underline{51}$)

Code	Name/Description	Adjustment range	Factory setting
I- - -	Input Output menu (continued)		
A 1 I-	Al1 configuration menu		
A IIt	\square Al1 type		5 U
$\begin{array}{r} 5 U \\ 10 U \\ 0 H \end{array}$	This function makes interface from the analog input signal to a Voltage: 0-5 Vdc Voltage: 0-10 Vdc Current: $\mathrm{x}-\mathrm{y} \mathrm{mA}$. Range determined by the Al1 current scaling scaling parameter of 100\% [r H / settings below, see page	drive internal value. parameter of 0\% [r 2.	I and Al1 current
[rLI	\square Al1 current scaling parameter of 0\%	0 to 20 mA	4 mA
[rH I	\square Al1 current scaling parameter of 100\%	0 to 20 mA	20 mA
I- \quad -	Input Output menu (continued)		
r 1	\square R1 assignment		FLt
$\begin{aligned} & n \square \\ & F L t \end{aligned}$	Not assigned No error detected		
$r \mathrm{Un}^{\text {a }}$	\square Drive run		
$F \in \mathcal{A}$	\square Frequency threshold reached		
$F L A$ L E A	\square HSP reached - I threshold reached		
5 ra	\square Frequency reference reached		
¢ 5 A	\square Motor thermal reached		
ULA	\square Underload alarm		
$\begin{aligned} & \square L A \\ & \text { BP } \quad 1 \end{aligned}$	- Overload alarm ㅁ Al1 AI. 4-20-Visible only if A I I is set to \square A (see above)		

[^1]| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| I_ロ- | Input Output menu (continued) | | |
| $t \square L$ | \square Application Overload time delay
 This function can be used to stop the motor in the event of drive thermal overload. If the motor current exceeds the Appis Application Overload time delay $t \square L$ is activated. Once th is still greater than the overload threshold $L \square[-10 \%$, the Process overload.
 Overload detection is only active when the system is in ste A value of 0 will disable application overload detection. | 0 to 100 s
 plication overload. T tion Overload thresh ne delay $t \square L$ has e will stop running and
 tate (speed referenc
 Drive stop
 पL [detected faul | 0 s
 s is not a motor or d $\square[$, an psed, if the current display $\square L[$
 reached). |
| $\begin{aligned} & F \in \square \\ & () \end{aligned}$ | Time delay before automatic start for the overload fault
 If Atr = YES the drive restarts automatically after an overload Minimum time permitted between an overload being detect In order for an automatic restart to be possible, the value o exceed that of this parameter by at least one minute.
 Visible only if Application Overload time delay $t \square L$ above | 0 to 6 min
 It $\square L[$ once this tim and any automatic res ximum restart time t
 ot set to $\cap \square$. | 0 min
 delay has elapsed
 t.
 r page 91 must |
| $\begin{gathered} L \square[\\ (!) \end{gathered}$ | \square Application Overload threshold
 Visible only if Application Overload time delay $\in \square L$ above This parameter is used to detect an "application overload". of the nominal drive current. This is not a motor or drive the | 70 to 150% of nCr
 ot set to \square.
 can be adjusted b overload. | 90% of of nCr
 veen 70 and 150\% |

Configuration Mode－Complete menu（FULL）

Code	Name／Description	Adjustment range	Factory setting
I＿－－	Input Output menu（continued）		
$U L E$	Application underload time delay $U L E$ can be adjusted between 0 and 100 s. If the motor current undershoots the underload threshold $L U$ $U L E$ ，the drive will stop running and display $U L F$（Process Motor current Drive stop on ULF detected fault Underload detection is only active when the system is in stead A value of 0 will disable application underload detection．	0 to 100 s for longer than the a nderload fault）page state（speed referen	0 s ustable time delay 0. reached）．
	Application Underload threshold Visible only if Application underload time delay $U L E$ is not se application underload condition on the motor．Application Und between 20 and 100% of the nominal drive current．	20 to 100% of nCr to \square ．This parameter load threshold $L U L$	60\％ used to detect an an be adjusted
$\begin{gathered} F \in U \\ (2 \end{gathered}$	Time delay before automatic start for the underload fault If Atr＝YES the drive restarts automatically after an underload Minimum time permitted between an overload being detected In order for an automatic restart to be possible，the value of M exceed that of this parameter by at least one minute． Visible only if Application underload time delay $U L E$ above is	0 to 6 min ult $U L F$ once this tim and any automatic res ximum restart time t not set to $\cap \square$ ．	0 min delay has elapsed rt． r page 91 must
$\begin{aligned} & F E d \\ & (\mathbb{Q} \end{aligned}$	Motor frequency threshold Visible only if R1 assignment $r \quad /$ page $\underline{52}$ or a LO1 assignm	0 to 400 Hz $L \square$ । page $\underline{53}$ is	50 or 60 Hz According to drive rating to $F \in$ 月．
ctd （）	Motor current threshold Visible only if R1 assignment r I page $\underline{52}$ or a LO1 assignm	0 to $1.5 \ln (1)$ $L \square \quad$ page 53 is	$\frac{\ln \mathrm{V}}{\text { to }[\in A .}$
tヒd （2）	－Motor thermal state threshold Visible only if R1 assignment r I page $\underline{52}$ is set to $t 5$ 月． Trip threshold for motor thermal alarm（logic output or relay）	0 to 118% of tHr	100\%

（1）In＝nominal drive current

[^2]

Configuration Mode - Complete menu (FULL)

dre

[^3]

Configuration Mode - Complete menu (FULL)

Control menu

Control channel diagram

Configuration Mode - Complete menu (FULL)

Code	Name/Description ${ }^{\text {a }}$ (Adjustment range	Factory setting
CtL -	Control menu	
	Reference channel 1 Terminal Remote display Modbus Integrated display with Jog dial This parameter is already included in "my menu" section, page 45	Al1
$\begin{gathered} \angle F r \\ () \end{gathered}$	\square External reference value -400 Hz to 400 Hz This parameter is already included in "my menu" section, page $4 \underline{5}$.	
ト IU I (2)	\square Analog input virtual 0% to 100% This parameter is already included in "my menu" section, page $\underline{45}$.	
rIn	\square Reverse inhibition Inhibition of movement in reverse direction, does not apply to direction requests sen - Reverse direction requests sent by logic inputs are taken into account. - Reverse direction requests sent by the display are not taken into account. - Reverse direction requests sent by the line are not taken into account. - Any reverse speed reference originating from the PID, etc., is interpreted as a zero No Yes	nO by logic inputs. reference (0 Hz).
P5t	\square Stop key priority	YES
	This parameter can enable or disable the stop button located on the drive and remote display. Disabling the stop button is effective if the active command channel is different from the drive keypad or remote display	
	LOSS OF CONTROL You are going to disable the stop button located on the drive and remote display Do not select $n \square$ unless exterior stopping methods exist. Failure to follow these instructions can result in death, serious injury, or equipment damage.	
	No: Stop inactive Yes: Stop active It is advised in case this function is set to $y E 5$ to use the front door cover or the option display cover on "run" and "stop" keys.	
CHLF	\square Channel configuration	SIM
517 $5 E P$	Channel configuration L H L F allows the selection of: - Not separate mode, (command and reference come from the same channel) - Separate mode (command and reference come from different channel) Not separate mode Separate mode	

To change the assignment of this parameter press the "ENT" key for 2 s . Parameter that can be modified during operation or when stopped.

Configuration Mode－Complete menu（FULL）

Code	Name／Description	Adjustment range	Factory setting
［ E L－	Control menu（continued）		
[d I tEr L प［ L［ $[$ Пыь	Command channel 1 This parameter allows selection of the command channel． Terminals Local Remote display Modbus This parameter is available if Channel configuration L H［ F pag	62 is set to Sepa	tEr
	\square Forced local assignment Function inactive L1h to L4h：Forced local mode is active when the input is at state 1.		nO
	－Forced local reference Visible only if Forced local assignment $F L \square$ is not set to $n \square$ ． Not assigned Terminal Remote display Integrated display with jog dial		nO

Configuration Mode - Complete menu (FULL)

FLE

Code	Name/Description	Adjustment range	Factory setting
FUn-	Function menu		
rPt -	Ramp menu		
$\begin{aligned} & A[L \\ & \boldsymbol{C} \end{aligned}$	Acceleration time between 0 Hz and the Rated motor frequency $\mathrm{Fr}_{\mathrm{r}} 5$ page $\underline{57}$. Make sure that this value is compatible with the inertia being driven.		
$\begin{gathered} d E[\\ ()^{2} \end{gathered}$	Time to decelerate from the Rated motor frequency $F_{r} 5$ page 57 to 0 Hz Make sure that this value is compatible with the inertia being driven.		
$\begin{array}{rr} \text { rPE } & \\ & L \\ & I n \\ & 5 \\ & \\ \text { () } & \end{array}$	\square Ramp shape assignment Linear S shape U shape S shape U shape	The rounding coeffic $\mathrm{t} 1=0.6$ set ramp tim $\mathrm{t} 2=0.4$ set ramp tim $\mathrm{t} 3=1.4$ set ramp tim The rounding coeffic $\mathrm{t} 1=0.5$ set ramp tim t2 $=$ set ramp time (r $\mathrm{t} 3=1.5$ set ramp tim	Lin nt is fixed, (linear) (round) nt is fixed, (linear) und)
	Ramp switching commutation Not assigned L1H: LI1 active High L2H: LI2 active High L3H: LI3 active High L4H: LI4 active High L1L: LI1 active low L2L: LI2 active low L3L: LI3 active low L4L: LI4 active low See LI assignment information on page 46.		nO

(Parameter that can be modified during operation or when stopped.

Code	Name／Description \quad Adjustment rangeFactory setting
$F U_{\text {n－}}$	Function menu（continued）
5 5t－	Stop configuration menu
$\begin{aligned} & 5 \operatorname{st} \\ & \\ & \text { rпP } \\ & \text { F5t } \\ & \text { n5t } \end{aligned}$	\square Type of stop Stop mode on disappearance of the run command and appearance of a stop command Ramp stop Fast stop Freewheel
$n 5 t$ $\begin{array}{ll} & \cap \square \\ L & I L \\ L & I L \\ L & \exists L \\ L & 4 L \end{array}$	Freewheel stop assignment The stop is activated when the input or the bit changes to 0 ．If the input returns to state 1 and the run command is still active，the motor will only restart if Type of control $t[C$ page $48=己[$ and 2 wire type control $t[E$ page $\underline{51}=L E L$ or $P F B$ ．If not，a new run command must be sent． Not assigned L1L：LI1 Active Low to stop L2L：LI2 Active Low to stop L3L：LI3 Active Low to stop L4L：LI4 Active Low to stop
$\begin{aligned} \text { F5t } \\ \text { n } \\ \text { L IL } \\ L 己 L \\ L \exists L \\ L Y L \end{aligned}$	Fast stop assignment Not assigned L1L：LI1 Active Low to stop L2L：LI2 Active Low to stop L3L：LI3 Active Low to stop L4L：LI4 Active Low to stop
$\begin{gathered} d[F \\ () \end{gathered}$	\square Ramp divider Visible only if Fast stop assignment $F 5 t$ page $\underline{63}$ is not set to $n \square$ or if $F 5 t$ is set to Type of stop $5 t \in$ page 66 ． The ramp that is enabled（Deceleration $d E[$ page $\underline{45}$ or Deceleration $2 d E 己$ page 65 ）is then divided by this coefficient when stop requests are sent． Value 10 corresponds to a minimum ramp time．

Code	Name／Description	Adjustment range	Factory setting	
$F \\|_{\text {－}}$	Function menu（continued）			
$\begin{array}{r} r r 5 \\ \\ n \quad \because \square \\ L I H \\ L 己 H \\ L \exists H \\ L 4 H \end{array}$	\square Reverse direction LI1 to LI4：choice of the input assigned to the reverse command Function inactive L1h：L1 active high L2h：L2 active high L3h：L3 active high L4h：L4 active high		nO	

Configuration Mode - Complete menu (FULL)

Preset speeds

2,4 , or 8 speeds can be preset, requiring 1,2 or 3 logic inputs respectively
Combination table for preset speed inputs

8 speeds LI (PS8)	4 speeds LI (PS4)	2 speeds LI (PS2)	Speed reference
0	0	0	Reference
0	0	1	SP2
0	1	0	SP3
0	1	1	SP4
1	0	0	SP5
1	0	1	SP6
1	1	0	SP7
1	1	1	SP8

Configuration Mode - Complete menu (FULL)

PID diagram

Configuration Mode - Complete menu (FULL)

Code	Name/Description	Adjustment range	Factory setting
FUn-	Function menu (continued)		
Pla-	PID menu		
$\begin{aligned} & P I F \\ & n \square \\ & \text { R } 1 \text { I } \end{aligned}$	PID feedback assignmentNot assignedTerminal. Choice not possible if Fr1 is set to Al1		
$r^{\prime P}$	\square PID proportional gain Visible only if PID feedback assignment P IF is not set to $n \square$.	$0.01 \text { to } 100$	1
$i^{1 L}$	\square PID integral gain Visible only if PID feedback assignment P IF is not set to $n \square$.	$0.01 \text { to } 100$	1
$r d i$	\square PID derivative gain Visible only if PID feedback assignment P IF is not set to $n \square$.	$0.00 \text { to } 100.00$	0.00
$\begin{gathered} F \vdash 5 \\ \text { () } \end{gathered}$	This parameter gives the relation between process range and feedback range. Visible only if PID feedback assignment P IF is not set to $n \square$.		
	\square Activation internal PID reference Visible only if PID feedback assignment P IF is not set to $n \square$. No Yes		no
$\operatorname{Pr} 己$ $\begin{aligned} & \because \square \\ & L \quad 1 H \\ & L 2 H \\ & L \quad \exists H \\ & L Y H \end{aligned}$	2 preset PID assignment Visible only if PID feedback assignment P IF is not set to $n \square$. No L1h L2h L3h L4h		no

Configuration Mode - Complete menu (FULL)

Code	Name/Description \quad Adjustment range	Factory setting	
$F \\|$ -	Function menu (continued)		
Pld-	P\|D menu (continued)		
$\text { Pr } 4$ $\begin{array}{ll} & \because \square \\ L & I H \\ L & 2 H \\ L & \exists H \\ L & H H \end{array}$	Visible only if PID feedback assignment P IF page $\underline{72}$ is not set to $n \square$. No L1h L2h L3h L4h 2 preset PID assignment $P_{r} \mathcal{Z}$ page $\underline{72}$ must be assigned before assigning 4 preset PID assignment Pr 4.		
$r^{r P z}$	Visible only if PID feedback assignment P IF page $\underline{72}$ and 2 preset PID assignment $P r 己$ page $\underline{72}$ are not set to $n \square$.		
$\begin{gathered} r P \exists \\ () \end{gathered}$	3 preset PID reference 0 to 100\% Visible only if PID feedback assignment P IF ?page $\underline{72}$ and 4 preset PID assignmen not set to $n \square$.	50\% Pr 4 page $\underline{72}$ are	
$\begin{gathered} r P 4 \\ \mathbf{C} \end{gathered}$	4 preset PID reference 0 to 100\% Visible only if PID feedback assignment P IF page $7 \underline{2}$ and 2 preset PID assignment PID assignment $P_{r} 4$ page $\underline{72}$ are not set to $n \square$.	75% Pr ᄅ and 4 prese	
$\begin{gathered} r \prime \\ () \end{gathered}$	- Internal PID reference $0 \text { to 100\% }$ Visible only if PID feedback assignment P IF page $\underline{72}$ is not set to $n \square$ and if Activa reference P I I page $\underline{72}$ is set to $y E 5$ or Reference channel $1 F r$ I page $\underline{55}$ is se	0\% on internal PID to $L[$ [
$\begin{aligned} & P r P \\ & () \end{aligned}$	\square PID reference ramp 0 to 100\% Visible only if PID feedback assignment P IF page $\underline{72}$ is not set to $\cap \square$.	0\%	
	- PID min value reference 0 to 100\% Visible only if PID feedback assignment P IF page $\underline{72}$ is not set to $n \square$.	0\%	
$\begin{gathered} r P H \\ (!) \end{gathered}$	\square PID max value reference 0 to 100\% Visible only if PID feedback assignment P IF page $\underline{72}$ is not set to $n \square$	100%	
$5 F 5$	\square PID predictive speed 0.1 to 400 Hz This parameter allows to go directly to a set speed reference. Visible only if PID feedback assignment P IF page $\underline{72}$ is not set to $n \square$.	nO	

[^4]
Configuration Mode - Complete menu (FULL)

Code	Name/Description \quad Adjustment range ${ }^{\text {a }}$ Factory setting
FUn-	Function menu (continued)
Pld-	PID menu (continued)
$\begin{gathered} A[己 \\ \mathbf{~} \end{gathered}$	This parameter is active only when the system is starting. Second acceleration ramp time, adjustable from 0.1 to 999.9 s Time to accelerate from 0 to the Rated motor frequency $\mathrm{Fr}_{5} 5$ page $\underline{\text { 57 }}$. Make sure that this value is compatible with the inertia being driven. Visible only if PID feedback assignment P IF page $\underline{72}$ and PID predictive speed $5 F 5$ page $\underline{73}$ are not set to $\cap \square$.
	This parameter will reverse the internal error value of PID system. No Yes Visible only if PID feedback assignment P IF page 72 is not set to $n \square$.
$\begin{array}{lll} \text { PAU } \\ & \\ & \\ & n & \square \\ L & 1 H \\ L & 2 H \\ L & \exists H \\ L & 4 & H \end{array}$	PID auto/manual assignment At state 0 of input, PID is active. At state 1 of input, manual run is active No L1h: LI1 active high L2h: LI2 active high L3h: LI3 active high L4h: LI4 active high Visible only if PID feedback assignment P IF page $\underline{72}$ is not set to $n \square$.
	PID manual reference This parameter allows to disable the PID and to run on a standard manual system. No Terminal AIV1 Visible only if PID feedback assignment $P I F$ page $\underline{72}$ and PID auto/manual assignment $P A \cup$ page $\underline{74}$ are not set to $\cap \square$.
$\begin{gathered} E L 5 \\ () \end{gathered}$	Low speed operating time Following operation at Low speed $L 5 P$ page 89 for a defined period, a motor stop is requested automatically. The motor restarts if the frequency reference is greater than Low speed $L 5 P$ and if a run command is still present. Note: $n \square$ value corresponds to an unlimited period. Visible only if PID feedback assignment P IF page $\underline{72}$ is not set to $n \square$.

[^5]

0
Parameter that can be modified during operation or when stopped.

[^6]| Code | Name/Description | Adjustment range | Factory setting |
| :---: | :---: | :---: | :---: |
| FUn- | Function menu (continued) | | |
| Pld- | PID menu (continued) | | |
| PПP - | Pump sub-menu | | |
| $t \square L$ | \square Application Overload time delay
 See page $\underline{54}$
 Visible only if PID feedback assignment P IF page $\underline{72}$ is | 0 to 100 s
 et to $\cap \square$. | 0 s |
| $\begin{gathered} \angle 口 L \\ () \end{gathered}$ | - Application Overload threshold
 See page $\underline{54}$
 Visible only if Application Overload time delay $t \square L$ above | 70 to 150% of nCr
 ot set to $n \square$. | 90% |
| $\begin{aligned} & F \in \square \\ & \text { () } \end{aligned}$ | Time delay before automatic start for the overload fault
 If $A t r=y E 5$ the drive restarts automatically after an o elapsed.
 Minimum time permitted between an overload being detec In order for an automatic restart to be possible, the value exceed that of this parameter by at least one minute.
 Visible only if Application Overload time delay $t \square L$ abov | 0 to 6 min
 ad fault $\square L[$ once
 nd any automatic res ximum restart time t
 ot set to $n \square$. | 0 min
 stime delay has
 rt.
 r page 91 must |
| ULE | Application underload time delay
 See page $\underline{55}$
 Visible only if PID feedback assignment P IF page $\underline{72}$ is | 0 to 100 s
 et to $\cap \square$. | 0 s |
| $\begin{gathered} L U L \\ () \end{gathered}$ | Application Underload threshold
 See page $5 \underline{5}$
 Visible only if Application underload time delay $U L E$ abov | 20 to 100% of nCr
 not set to $\cap \square$. | 60% |

[^7]
Configuration Mode - Complete menu (FULL)

$\begin{aligned} & \operatorname{drc}- \\ & \text { CEL } \end{aligned}$	Code	Name/Description	Adjustment range	Factory setting
	$F U_{n}-$	Function menu (continued)		
FLE-	Pld -	PID menu (continued)		
ᄃロா -		Pump sub-menu (continued)		
	$\begin{aligned} & F \in U \\ & \mathbf{Q} \end{aligned}$	Time delay before automatic start for the underload fault	0 to 6 min	0 min
		If $A t_{r}=y E 5$ the drive restarts automatically after an und elapsed. Minimum time permitted between an underload being dete In order for an automatic restart to be possible, the value of exceed that of this parameter by at least one minute. Visible only if Application underload time delay $U L E$ abov	oad fault $U L$ F once and any automatic re ximum restart time t not set to $\cap \square$.	is time delay has art. r page 91 must
	пdE	\square Selecting the operating mode		no
		$\square \cap \square$: single variable mode - YE 5: single variable mode with auxiliary pump When $\Pi d E=Ч E 5$, output LO1 is forced to $P \sqcap P$ (see page $\underline{53}$).		
	$\begin{gathered} \text { Fin } \\ \text { () } \end{gathered}$	\square Starting frequency of the auxiliary pump	0 to tFr	HSP
		Above this frequency and after the pump starting time delay $t \square_{n}$, the auxiliary pump starts.		
	(Time delay before starting the auxiliary pump	0 to 999.9 s	2 s
		This time is necessary to avoid the effects of transient pressure fluctuation and thus prevent oscillation (pump starting/stopping).		
	r_{0}^{0}	\square Ramp for reaching the auxiliary pump nominal speed	0 to 999.9 s	2 s
		Visible only if Selecting the operating mode $\Pi \downarrow E$ above is not set to $n \square$.		
	$\begin{aligned} & F O F \\ & () \end{aligned}$	Auxiliary pump stopping frequency Below this frequency and after the time delay for stopping the auxiliary pump $\in \square F$, the pump stops. Visible only if Selecting the operating mode $\Pi d E$ above is not set to $\cap \square$.		

Code	Name/Description	Adjustment range	Factory setting
$F U_{\square}^{-}$	Function menu (continued)		
Pld-	PID menu (continued)		
$P \Pi P-$	Pump sub-menu (continued)		
$\begin{gathered} E \square F \\ \boldsymbol{Z} \end{gathered}$	\square Time delay before the auxiliary pump stop command	0 to 999.9 s	2 s
	This time is necessary to avoid the effects of transient pressure fluctuation and thus prevent oscillation (pump starting/stopping) Visible only if Selecting the operating mode $\Pi d E$ above is not set to $\cap \square$.		
r GF	\square Ramp for auxiliary pump stopping	0 to 999.9 s	2 s
	Visible only if Selecting the operating mode $\Pi \downarrow E$ above is not set to $\cap \square$.		
nFd	\square Zero flow detection period	nO to 20 min	nO
	Visible only if PID feedback assignment PIF page 70 is not set to nO .		
$\begin{gathered} F F d \\ () \end{gathered}$	\square Zero flow detection activation threshold	0 to 400 Hz	0 Hz
	Below this threshold, if $\cap F d>0$ and the auxiliary pump is stopped, zero flow detection is activated. Visible only if Zero flow detection period $\cap F d$ above is not set to $\cap \square$.		
LFd	\square Zero flow detection offset	0 to 400 Hz	0 Hz
	Visible only if Zero flow detection period $n F d$ above is not set to $n \square$.		

[^8]
Configuration Mode - Complete menu (FULL)

Architecture of the pumping installation

Single variable mode -1 single variable speed pump

Enter the values given on the motor rating plate in the Motor control menu drC
1st level adjustment parameters
A [[Acceleration: 0.7 s
$d E[$ Deceleration: 0.7 s
L 5 P Low speed: 30 Hz
H 5 P High speed: 60 Hz
Analog input menu Alt
A I IE Scale of analog input Al1: 0-20 mA
Motor control menu drC
5 L P Nominal motor slip: 0 Hz
F L [Frequency loop gain: 70\%
UFr IR compensation: 0\%
Application functions menu FUn
$t[E$ 2-wire type control: LEL
Pl sub-menu
P IF Assignment of the PI function feedback: Al1
r PG PI regulator proportional gain: 5.00
r IL PI regulator integral gain: 8.00
$r P$ / Internal PI regulator reference: 39\%
r 5 L Restart error threshold: 40\%
ПP / Supervision of the PI regulator function: LFF
LP I PI feedback supervision threshold: 17\%
$t P \mid$ Pl feedback supervision function time delay: 1 s
L F F Fallback speed: 50 Hz
Pump sub-menu PMP
$n F \&$ Zero flow detection: 1 min
F F \& Zero flow detection activation threshold: 50 Hz
$L F d$ Zero flow detection offset: 5 Hz
$t L 5$ Sleep threshold operating time: 3 s
5 F 5 Quick start threshold: 25 Hz
5 LE Sleep threshold offset: 10 Hz
Automatic DC injection sub-menu AdC
Ad[Automatic DC injection assignment: nO
Automatic restart function Atr
AE r Automatic restart: YES

Fault menu FLt

L प[Overload threshold: 11\%
$F \in \square$ Time delay before automatic start for the overload fault: 1
$A P \square$ Frequency hysteresis reached: 2 kHz

Configuration Mode - Complete menu (FULL)

Single variable with auxiliary pump mode - 1 variable speed pump (variable pump) and one fixed speed pump (auxiliary pump)

The auxiliary pump is controlled by the Altivar 12 via logic output LO.
Enter the values given on the motor rating plate in the Motor control menu drC
1st level adjustment parameters
A [[Acceleration: 0.1 s
dE [Deceleration: 0.1 s
L 5 P Low speed: 35 Hz
Analog input menu Alt
A I It Scale of analog input Al1: 0-20 mA
Motor control menu drC
$5 L P$ Nominal motor slip: 0 Hz
FL - Frequency loop gain: 70\%
U Fr IR compensation: 0\%
Application functions menu FUn
$t[E$ 2-wire type control: LEL
Pl sub-menu
P IF Assignment of the PI function feedback: Al1
$r P G$ PI regulator proportional gain: 5.00
r I \sqsubset PI regulator integral gain: 8.00
r P / Internal PI regulator reference: 51\%
r 5 L Restart error threshold: 42\%
Pump sub-menu PMP
חdE Selecting the operating mode: YES
$F \square_{n}$ Starting frequency of the auxiliary pump: 49 Hz
$t \square \cap$ Time delay before starting the auxiliary pump: 1 s
$r \square n$ Ramp for reaching the nominal speed of the auxiliary pump: 1 s
$F \square F$ Stopping frequency of the auxiliary pump: 39.6 Hz
t $\square F$ Time delay before the auxiliary pump stop command: 1 s
$r \square F$ Ramp for stopping the auxiliary pump: 1 s
$n F \&$ Zero flow detection: 1 min
F F d Zero flow detection activation threshold: 42 Hz
$L F \&$ Zero flow detection offset: 2 Hz
$t L 5$ Sleep threshold operating time: 5 s
5 LE Sleep threshold offset: 3 Hz
L I I Assignment as logic/analog output PMP
Automatic DC injection sub-menu AdC
Ad[Automatic DC injection assignment: nO
Automatic restart function Atr
Aヒr Automatic restart: YES
Fault menu FLt
$t U L$ Underload function time delay 5 s
L UL Underload threshold: 59\%
$F \in U$ Time delay before automatic restart for the underload fault: 1

Configuration Mode - Complete menu (FULL)

Connection diagram

Single-phase supply
200... 230 V

(1) Fault relay contacts, for remote indication of the drive status.

Note: Fit interference suppressors to all inductive circuits near the drive or connected to the same circuit (relays, contactors, solenoid valves, etc).

Note: This wiring example is in source using internal supply.

Configuration Mode - Complete menu (FULL)

PI feedback supervision (MPI)

Used to define the operating mode in the event of detection of a PI feedback lower than the limit set.

Once the variable pump is running at maximum speed (higher than HSP - APO) and at the same time the PI feedback is lower than the supervision threshold LPI -2%, a time delay tPI is launched. If at the end of this time delay the value of the PI feedback is still lower than the supervision threshold LPI $+3 \%$, the drive switches to fallback mode as defined by parameter MPI.

- MPI = YES:

The drive will perform a freewheel stop and will display fault code SPI.

- MPI = LFF:

The drive will run at a fixed frequency LFF and will display fault code FrF.
In both cases the drive reverts to PI regulation mode as soon as the PI feedback is higher than the supervision threshold LPI $+3 \%$. In single variable with auxiliary pump mode (MdE = YES), the PI feedback supervision function is only active when both pumps are operating.

Configuration Mode - Complete menu (FULL)

Pump sub-menu PMP

The principal objective is to control a complete pumping installation using a single ATV12 drive by providing constant pressure whatever the flow rate.
The system is operated using an auxiliary fixed speed pump, and one variable speed pump, which is unable to provide the full flow range required on its own. A PI regulator is used for drive control. The pressure sensor provides system feedback.
The variable speed pump is called a variable pump.
The fixed speed pump is called an auxiliary pump.

Selecting the operating mode

The ATV12 offers 2 operating modes:

- Single variable mode: 1 single variable speed pump (variable pump).
- Single variable with auxiliary pump mode: 1 variable speed pump (variable pump) and one fixed speed pump (auxiliary pump).

Control of the auxiliary pump

The PI regulator output (frequency reference of the variable pump) is used to control starting or stopping of the auxiliary pump with hysteresis, as shown in the figure below:

When the frequency exceeds the starting threshold (FOn), a time delay (tOn) is launched to avoid the effects of transient flow fluctuations. If after this time delay, the frequency remains higher than the starting threshold, the auxiliary pump is started. When the start command is sent, the variable pump will go from its current speed reference to the auxiliary pump stopping frequency (FOF) following a ramp (rOn) that equals the time taken for the auxiliary pump to reach its nominal speed. Parameter rOn is used to minimize the booster effect on starting the auxiliary pump.

Configuration Mode - Complete menu (FULL)

When the frequency is lower than the stopping threshold (FOF), a time delay is launched (tOF) to avoid the effects of transient flow fluctuations. If after this time delay, the frequency remains lower than the stopping threshold, the auxiliary pump is stopped. When the stop command is sent, the variable pump will go from its current speed reference to the auxiliary pump starting frequency (FOn) following a ramp (rOF) that equals the auxiliary pump stopping time. Parameter rOF is used to minimize the booster effect on stopping the auxiliary pump.

Frequency of the
variable pump
LSSP
FOn

Configuration Mode - Complete menu (FULL)

"Sleep" function/"Wake-up" function

This function is used to stop the variable pump when there is zero flow (auxiliary pump stopped). In this case, if the frequency of the variable pump is lower than the "sleep" threshold (LSP + SLE), a time delay (tLS) is launched. If, after this time delay, the frequency remains lower than threshold LSP + SLE, the variable pump then stops. The installation is in "sleep" mode.
To switch to "wake-up" mode, the pressure feedback must drop to below the "wake-up" threshold UPP. The variable pump is then started.

Quick start function

The quick start function can be used to overcome problems linked to high rPG and rIG gains (instability on starting). The drive accelerates until it reaches the quick start threshold SFS following a ramp ACC. Once the threshold has been reached, the PI regulator is activated.

Configuration Mode - Complete menu (FULL)

Zero flow detection

This function is only active when the auxiliary pump is stopped and the motor frequency is below threshold FFd.
This function is used in applications where zero flow cannot be detected by the sleep function alone. It forces the drive frequency reference to LSP + LFd periodically (at each time interval $n F d$) in order to test for zero flow.

- If the request is still present, the PI error increases, causing the drive to restart.

- If the request is no longer present (zero flow), the PI error will not increase.

- Set the sleep function so that the drive switches to sleep mode when zero flow is detected (LFd \leq SLE).

(1) $\mathrm{In}=$ nominal drive current

Configuration Mode - Complete menu (FULL)

Code	Name/Description	Adjustment range	Factory setting
$F U_{\text {n - }}$	Function menu (continued)		
5PL -	Speed limit menu		
L5P	\square Low speed	0 Hz to HSP	0 Hz
	Motor frequency at minimum reference. This parameter is already included in "my menu" section, page 45.		
$E L 5$$(2)$	\square Low speed operating time	0.1 to 999.9 s	nO
	Following operation at Low speed $L 5 P$ for a defined period, a motor stop is requested automatically. The motor restarts if the frequency reference is greater than Low speed $L 5 P$ and if a run command is still present. Note: $n \square$ corresponds to an unlimited period.		

() Parameter that can be modified during operation or when stopped.

Configuration Mode－Complete menu（FULL）

High speed configuration

The logic inputs enable selection of the desired high speed．

Desired High speed	Setting	
	Parameter	State
H 5 P	5 H 己	п \square
	5 H 4	$\square \square$
H5P2	5 H 己	assigned
	5 H 4	$\square \square$
H5Pヨ	5 H 己	$\cdots \square$
	5 H 4	assigned
H5P4	5 H 己	assigned
	5 H 4	assigned

Code	Name／Description	Adjustment range	Factory setting	
$F \\|^{-}$	Function menu（continued）			
$5 P L$－	Speed limit menu			
$\begin{gathered} H 5 P \\ \mathbf{~} \boldsymbol{?} \end{gathered}$	\square High speed \quad LSP to tFr		50 or 60 Hz according to BFr ， max TFr	
	Motor frequency at maximum reference，can be set betwe t Fr page $\underline{57}$ ． If $t F_{r}$ is decreased below the value defined for $H 5 P$ ，the value of $t F_{r}$ ． This parameter is already included in＂my menu＂section，	w speed $L 5 P$ and $5 P$ automatically 45.	aximum frequency reases to the new	
5 H 己	$\square 2$ HSP assignment		nO	
nロ	\square No			
L IH	\square L1h：LI1 active high			
L 己 H	\square L2h：LI2 active high			
L $\exists \mathrm{H}$	\square L3h：LI3 active high			
L 4H	\square L4h：LI4 active high			
5 H 4	$\square 4$ HSP assignment		nO	
пロ	\square No			
L IH	\square L1h：LI1 active high			
L ᄅ H	\square L2h：LI2 active high			
L $\exists \mathrm{H}$	\square L3h：LI3 active high			
L 4 H	\square L4h：LI4 active high			
H5P己	\square High speed 2	LSP to tFr	as HSP	
	Visible only if 2 HSP assignment 5 H 己 is not set to $n \square$ ．			
H5Pヨ	\square High speed 3	LSP to tFr	as HSP	
	Visible only if 4 HSP assignment 5 H 4 is not set to $n \square$ ．			
H5P4 （2）	\square High speed 4	LSP to tFr	as HSP	
	Visible only if 2 HSP assignment 5 H 己 and 4 HSP assignment 5 H 4 are not set to $n \square$ ．			

（）
Parameter that can be modified during operation or when stopped．
\qquad

UNINTENDED EQUIPMENT OPERATION
－The automatic restart can only be used on machines or installations which do not pose any danger to either personnel or equipment． the restart sequence has expired．
－The equipment must be used in compliance with national and regional safety regulations．
Failure to follow these instructions will result in death or serious injury．
This function defines drive behavior upon detection of a fault．
disappeared and the other operating conditions permit the restart．
function inactive conditions permit the restart．The restart is performed by a series of automatic attempts separated by increasingly longer waiting periods： $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$ ，then 1 minute for the following attempts．
The drive status relay remains activated if this function is active．The speed reference and the operating
Use 2－wire control（Type of control $t[C$ page $48=己[$ and 2 wire type control $t[t$ page $\underline{51=L E L}$ ）． If the restart has not taken place once the Max．automatic restart time t 月 r has elapsed，the procedure is aborted and the drive remains locked until it is turned off and then on again．
The detected faults，which permit this function，are listed on page 109：

Max．automatic restart time
$\square 10 \mathrm{~min}$
－ 30 min
$\square 2$ hours3 hours

Visible only if Automatic restart $A \in r$ is not set to $n \square$ ．It can be used to limit the number of consecutive restarts on a recurrent fault．

Configuration Mode - Complete menu (FULL)

Code	Name/Description ${ }^{\text {a }}$ Adjustment range ${ }^{\text {a }}$ Factory setting
FLE-	Fault detection management menu (continued)
flr	\square Catch on the fly \quad no
$\begin{gathered} \\ n 0 \\ 4 E 5 \end{gathered}$	Used to enable a smooth restart if the run command is maintained after the following events: - Loss of line supply or disconnection - Reset of current fault or automatic restart - Freewheel stop. The speed given by the drive resumes from the estimated speed of the motor at the time of the restart, then follows the ramp to the reference speed. This function requires 2 -wire level control. Function inactive Function active

Configuration Mode - Complete menu (FULL)

Motor thermal protection

Function:

Thermal protection by calculating the $I^{2} \mathrm{t}$.

- Naturally-cooled motors:

The tripping curves depend on the motor frequency.

- Force-cooled motors:

Only the 50 Hz tripping curve needs to be considered, regardless of the motor frequency.

Trip time in seconds

CAUTION

RISK OF DAMAGE TO THE MOTOR

The use of external overload protection is required under the following conditions:

- Repowering up the product since there is no motor thermal state memory.
- Running multiple motors
- Running motors rated at less than 0.2 times the nominal drive current
- Using motor switching

Failure to follow these instructions can result in equipment damage

(1) $\mathrm{In}=$ nominal drive current
 Parameter that can be modified during operation or when stopped.

Code	Name／Description \quad Adjustment rangeFactory setting
$F L E-$	Fault detection management menu（continued）
U5ロ－	Undervoltage menu
$\text { U } 5$	\square Undervoltage fault management Behavior of the drive in the event of an undervoltage Detected fault and R1 relay open． Detected fault and R1 relay closed．
$5 t P$ $\begin{array}{r} n \square \\ r \Pi P \end{array}$	Undervoltage prevention Behavior in the event of the undervoltage fault prevention level being reached No action（freewheel） Stop following an adjustable ramp Undervoltage ramp deceleration time 5 ヒ Π ．
5ヒП （1）	Undervoltage ramp deceleration time Ramp time if Undervoltage prevention 5 上 $P=r \Pi P$ ．
$F L E-$	Fault detection management menu（continued）
$\begin{aligned} & \text { Strt } \\ & \text { пロ } \\ & \text { YES } \end{aligned}$	\square IGBT test No test The IGBTs are tested on power up and every time a run command is sent．These tests cause a slight delay（a few ms）．In the event of a fault，the drive will lock．The following faults can be detected： －Drive output short－circuit（terminals U－V－W）：SCF display －IGBT：xtF，where x indicates the number of the IGBT concerned IGBT short－circuited：x2F，where x indicates the number of the IGBT concerned
$\begin{array}{r} \text { LFL I } \\ \cap \square \\ \text { YE } 5 \end{array}$	4－20 mA loss behavior Fault ignored．This configuration is the only one possible if Al1 current scaling parameter of $0 \%[r L$ । page $\underline{52}$ is not greater than 3 mA or if Al1 type $A \quad I t=I ロ U$ ． Freewheel stop．
	Detected fault inhibition assignment To assign fault inhibit，press and hold down the＂ENT＂key for 2 s ． Function inactive L1h：LI1 active high L2h：LI2 active high L3h：LI3 active high L4h：LI4 active high Following detected faults can be inhibited： InFb，5ロF， $\operatorname{E} \cap F, \square H F, \square L F, \square P F I, \square P F 己, \square 5 F, 5 L F I, 5 L F 己, 5 L F \exists, t J F$ ，and $U 5 F$ ． A A DANGER LOSS OF PERSONNEL AND EQUIPMENT PROTECTION Enabling the fault inhibition parameter 1 nH will disable the drive controller protection features． －InH should not be enabled for typical applications of this equipment． －In H should be enabled only in extraordinary situations where a thorough risk analysis demonstrates that the presence of adjustable speed drive protection poses a greater risk than personnel injury or equipment damage． Failure to follow these instructions will result in death or serious injury．

2 s To change the assignment of this parameter press the "ENT" key for 2 s .

Parameter that can be modified during operation or when stopped.

Configuration Mode - Complete menu (FULL)

Configuration Mode－Complete menu（FULL）

Code	Name／Description ${ }^{\text {a }}$ Adjustment range	Factory setting
Гロா－	Communication menu（continued）	
15 月－	Input scanner access menu（values are expressed in hexadecimal）	
пП 1	\square Com scanner read address value 1 Value of the 1st input word	ETA VALUE
пПอ	\square Com scanner read address value 2 Value of the 2nd input word	RFRD value
пПヨ	\square Com scanner read address value 3 Value of the 3rd input word	8000
пПЧ	\square Com scanner read address value 4 Value of the 4rd input word	8000
－5月－	Output scanner access menu（values are expressed in hexadecimal）	
$\begin{gathered} n[1 \\ \text { () } \end{gathered}$	\square Com scanner write address value 1 Value of the 1st output word	CMD value
n [\square Com scanner write address value 2 Value of the 2nd output word	LFRD value
i°	\square Com scanner write address value 3 Value of the 3rd output word	8000
$\begin{gathered} n[4 \\ \mathbf{(}) \end{gathered}$	\square Com scanner write address value 4 Value of the 4th output word	8000

0 Parameter that can be modified during operation or when stopped．

Servicing

The Altivar 12 does not require any preventive maintenance. However, it is advisable to perform the following checks regularly:

- The condition and tightness of connections.
- Ensure that the temperature around the unit remains at an acceptable level and that ventilation is effective. Average service life of fans: 10 years.
- Remove any dust from the drive.
- Ensure proper fan operation.
- Physical damage to covers.

Assistance with maintenance, detected fault display

If a problem arises during setup or operation, ensure that the recommendations relating to the environment, mounting and connections have been observed.

The first fault detected is stored and displayed, flashing, on the screen: the drive locks and the status relay R1 contact opens.

Clearing the detected fault

In the event of a non resettable detected fault:

- Remove/cut the power to the drive.
- WAIT 15 MINUTES to allow the DC bus capacitors to discharge. Then follow the "Bus Voltage Measurement Procedure", page 14 to verify that the $D C$ voltage is less than 42 V . The drive LEDs are not indicators of the absence of DC bus voltage.
- Find and correct the detected fault.
- Restore power to the drive to confirm the detected fault has been rectified.

Certain detected faults can be programmed for automatic restart after the cause has disappeared.
These detected faults can also be reset by cycling power to the drive or by means of a logic input or control bit.

Display menu

Use the display menu to show the status of the drive and it's current values as an aid for finding the causes of detected faults.

Spares and repairs

Serviceable product: Refer to the catalog for replacement of spare parts.

Procedure after a long time storage

A WARNING

RISK OF EXPLOSION AT THE POWER UP

The capacitors after a long time storage can have issues. Following a storage time between 2 and 3 years:

- Use one AC supply variable connected between L1, L2 and L3.
- Increase AC supply voltage to have:
- 25% of rated voltage during 30 min
- 50% of rated voltage during 30 min
- 75% of rated voltage during 30 min
- 100% of rated voltage during 30 min

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Migration ATV11 - ATV12

The ATV12 is compatible with the ATV11 (latest version), nevertheless some differences can exist between both drives. Both models (ATV11 and ATV12) are available in heatsink or base plate versions.

Attention: ATV11 "E" Dimensions are given without potentiometer, add 7 mm depth for new dimension.

Dimensions

Attention: these dimensions concern fixing holes.

Power rating		ATV product		G (width)		H (height)		c (depth)	
kW	HP			mm	in.	mm	in.	mm	in.
0.18	0.25	12	018F1	60	2.36	131	5.16	102	4.01
0.18	0.25	11	U05F1U/A	60	2.36	131	5.16	101 (+7)	3.98 (+0.27)
0.18	0.25	12	018M2	60	2.36	131	5.16	102	4.01
0.18	0.25	11	U05M2 E/U/A	60	2.36	131	5.16	101 (+7)	3.98 (+0.27)
0.18	0.25	12	018M3	60	2.36	131	5.16	102	4.01
0.18	0.25	11	U05M3 U/A	60	2.36	131	5.16	101 (+7)	3.98 (+0.27)
0.37	0.5	12	037F1	60	2.36	120	4.72	121	4.76
0.37	0.5	11	U09F1 U/A	60	2.36	131	5.16	125 (+7)	4.92 (+0.27)
0.37	0.5	12	037M2	60	2.36	120	4.72	121	4.76
0.37	0.5	11	U09M2 E	60	2.36	120	4.72	125	4.92
0.37	0.5	11	U09M2 U/A	60	2.36	131	5.16	125 (+7)	4.92 (+0.27)
0.37	0.5	12	037M3	60	2.36	120	4.72	121	4.76
0.37	0.5	11	U09M3 U/A	60	2.36	131	5.16	125 (+7)	4.92 (+0.27)
0.55	0.75	12	055M2	60	2.36	120	4.72	131	5.16
0.55	0.75	11	U12M2 E	60	2.36	120	4.72	138	5.43
0.75	1	12	075M2	60	2.36	120	4.72	131	5.16
0.75	1	11	U18M2E	60	2.36	120	4.72	138	5.43
0.75	1	11	U18M2 U/A	60	2.36	131	5.16	138 (+7)	5.43 (+0.27)
0.75	1	12	075M3	60	2.36	120	4.72	131	5.16
0.75	1	11	U18M3 U/A	60	2.36	131	5.16	138 (+7)	5.43 (+0.27)
0.75	1	12	075F1	93	3.66	120	4.72	156	6.14
0.75	1	11	U18F1 U/A	106	4.17	131	5.16	156 (+7)	6.14 (+0.27)
1.5	2	12	U15M2	93	3.66	120	4.72	156	6.14
1.5	2	11	U29M2	106	4.17	131	5.16	156 (+7)	6.14 (+0.27)
2.2	3	12	U22M2	93	3.66	120	4.72	156	6.14
2.2	3	11	U41M2 E/U/A	106	4.17	131	5.16	156 (+7)	6.14 (+0.27)
1.5	2	12	U15M3	93	3.66	120	4.72	131	5.16
1.5	2	11	U29M3 U/A	106	4.17	131	5.16	156 (+7)	6.14 (+0.27)
2.2	3	12	U22M3	93	3.66	120	4.72	131	5.16
2.2	3	11	U41M3 U/A	106	4.17	131	5.16	156 (+7)	6.14 (+0.27)
3	4	12	U30M3	126	4.96	159	6.26	141	5.55
3	4	11	-	-	-	-	-	-	-
4	5.5	12	U40M3	126	4.96	159	6.26	141	5.55
4	5.5	11	-	-	-	-	-	-	-

Terminals

Power

- Before wiring power terminals, connect the ground terminal of the grounding screws located below the output terminals to the protective ground (see indicator B page 20).
- The power connections are available without removing the power terminal cover. Nevertheless, if necessary, it is possible to remove them using an adapted tool (IP20 protection requirement). Cover to be removed in case of using ring terminals (pressure stress is 14 N for size 1 and 20 N for sizes 2 and 3).
- Pay attention to the input ground terminal located on the right of the connector (was on left on ATV11). The ground connection is clearly indicated on the input power terminal cover and the screw colour is green.

Control

A WARNING

IMPROPER CONTROL WIRING PRACTICES

- The ATV12 drive internal supply is 24 V rather than 15 V on ATV11. When replacing ATV11 drive with an ATV12, a voltage adaptor, reference VW3A9317 must be connected to the 24 V supply if it is used to supply external automation systems. Using the 24 V to supply the LI does not required any adaptor.
- When replacing ATV11 drive with an ATV12 drive, verify that all wiring connections to the ATV12 drive comply with all wiring instructions in this manual.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

A A DANGER

HAZARD OF ELECTRIC SHOCK, EXPLOSION, OR ARC FLASH

- The drive panel must be properly grounded before power is applied.
- Use the provided ground connecting point. The ground terminal (green screw) is at the opposite location it was on the ATV11.

Failure to follow these instructions will result in death or serious injury.

Note: The control terminals are arranged and marked differently:

(1) if "DO" has been used on ATV11
(1) On ATV11 DO is an analog output that can be configured as a logic output. On ATV12, depending on your configuration, DO can be linked to LO1 or AO1.

The ATV11 integrates an internal supply voltage of 15 V , ATV12 now integrates an internal supply of 24 V .

Settings

The information below explains the differences between the ATV11 and ATV12 to assist with replacement. This information is helpful for the management of drive embedded HMI (RUN, STOP keypad and potentiometer to dial).

Replacing an ATV11.

...
The ATV11E does not have RUN / STOP buttons neither potentiometer. The ATV12 in factory settings is equivalent to ATV11E.
LI2 to LI4 and AO1 are not assigned on ATV12.

Replacing an ATV11...U

The main change is on the bFr and HSP settings. It is now 50 Hz as factory setting on ATV12.
EMC filters are now integrated in ATV12•eゃ०M2.
LI2 to LI4 and AO1 are not assigned on ATV12.

Replacing an ATV11...A

EMC filters are now integrated in ATV12•0ッ0M2.
LI2 to LI4 and AO1 are not assigned on ATV12.
The active command channel is on terminals for ATV12 (was front keypad on ATV11...A).
To make embeded HMI active, it is necessary to set Reference channel $1 \mathrm{Fr}_{\mathrm{r}}$ I page $\underline{45}$ to Fl / U ।

Replacing an ATV11...E327

LI2 to LI4 and AO1 are not assigned on ATV12.
The active command channel is on terminal for ATV12 (was front keypad on ATV11...A).
ATV12 factory setting characteristics: see page $\underline{30}$.

Functions－Comparison with ATV11eeoE versions

Function	ATV11		ATV12		Comments，Action
	Code	Value	Code	Value	
Frequency	b Fr	50	bFr	50	No change．
High Speed	H5P	50	HSP	50	No change．
LI operation Logic	－	（Positive）	$\square P \mathrm{~L}$	POS	＂Depend on LI assignment on each function（LI1 to LI4 L or H）． See function assignment page $\underline{51 "}^{\prime \prime}$
Integrated EMC filter	－	Yes	－	Yes	No change．
LI assignment	L 11	Forward	L 11	Forward	No change．
	L 1 2	Reverse	L12	－	Change rrS（COnF，FULL，Fun，rrS），LI2．
	L1ヨ	2 Preset speed	L1ヨ	－	Change PS2（COnF，FULL，Fun，PSS，Pr2），LI3．
	L 14	4 Preset speed	114	－	Change PS4（COnF，FULL，Fun，PSS，Pr4），LI4．
Speed reference	5 5ᄅ	10	$5 P 己$	10	No change．
	5Pヨ	25	5Pヨ	15	Change SP3（COnF，FULL，Fun，PSS，SP3）， 25.
	5 P4	50	$5 P 4$	20	Change SP4（COnF，FULL，Fun，PSS，SP4）， 50.
AO assignment	（ \quad ロ， म［ヒ）， rFr	Motor frequency	Aロ1	－	Change AO1（COnF，FULL，I－O，AO1－，AO1），OFr．
Al assignment	$\begin{aligned} & \left(\begin{array}{l} \text { A } I t, \\ \text { A }[t), 5 u \end{array}\right. \end{aligned}$	Speed ref． 5V	A 1 1t	Speed ref． 5V	No change．
Command channel	$L 5 r$	－	Fr I	－	No change．
	$55 r$	－	FLD	－	No change．（possible setting on FLO \＆FLOC）
			FL ${ }^{\text {c }}$	－	
Motor parameter choice	［ 05	According to rating	ᄃロ5	－	COS is visible only if Motor parameter choice＂MPC＂ is set to COS． Change MPC（COnF，FULL，drC－，MPC），COS． Change COS（COnF，FULL，drC－，COS），According to rating．
Motor control type	unchangeabl e	SVC	［tt	STD（U／F）	Change CTT（COnF，FULL，drC－，CTT），PERF （SVCU）．
Application Underload time delay	EUL	5	ULE	0	The function is deactivated in factory setting．
Application Overload time delay	E \square	5	ロLE	0	The function is deactivated in factory setting．

Functions－Comparison with ATV11eeoU versions

Function	ATV11		ATV12		Comments，Action
	Code	Value	Code	Value	
Frequency	bFr	60	b Fr	50	Change bFr（COnF，bFr）， 50.
High Speed	H5P	60	H5P	50	Change HSP（COnF，HSP）， 50.
LI operation Logic	－	（Positive）	$\square P L$	POS	＂Depend on LI assignment on each function（LI1 to LI4 L or H）． See function assignment page $51^{\prime \prime}$
Integrated EMC filter	－	Yes	－	Yes	＂Possible to disable filter using IT jumper．See page 28．＂
LI assignment	L 11	Forward	L 11	Forward	No change．
	L12	Reverse	L12	－	Change rrS（COnF，FULL，Fun，rrS），LI2．
	L1ヨ	2 Preset speeds	L1ヨ	－	Change PS2（COnF，FULL，Fun，PSS，Pr2），LI3．
	L 14	4 Preset speeds	L 14	－	Change PS4（COnF，FULL，Fun，PSS，Pr4），LI4．
Speed reference	$5 P 己$	10	5 52	10	No change．
	5Pヨ	25	5Pヨ	15	Change SP3（COnF，FULL，Fun，PSS，SP3）， 25.
	5 P4	50	$5 P 4$	20	Change SP4（COnF，FULL，Fun，PSS，SP4）， 50.
AO assignment	$\begin{aligned} & (d \square, \\ & A C t), \\ & r F r \end{aligned}$	Motor frequency	Aロ I	－	Change AO1（COnF，FULL，I－O，AO1－，AO1），OFr．
Al assignment	$\begin{aligned} & \text { (A It, } \\ & \text { A }[t), 5 u \end{aligned}$	Speed ref． 5V	A I It	Speed ref． 5V	No change．
Command channel	L 5 r	－	Fr I	－	No change．
	$55 r$	－	FL	－	No change．（possible setting on FLO \＆FLOC）
			FL ${ }^{\text {c }}$	－	
Motor parameter choice	［ 05	According to rating	［ 05	－	COS is visible only if Motor parameter choice＂MPC＂ is set to COS． Change MPC（COnF，FULL，drC－，MPC），COS． Change COS（COnF，FULL，drC－，COS），According to rating．
Motor control type	unchangeabl e	SVC	Ctt	STD（U／F）	Change CTT（COnF，FULL，drC－，CTT），PERF （SVCU）．
Application Underload time delay	$t U L$	5	ULE	0	The function is deactivated in factory setting．
Application Overload time delay	E \square	5	－LE	0	The function is deactivated in factory setting．

Functions－Comparison with ATV11॰e॰A versions

Function	ATV11		ATV12		Comments，Action
	Code	Value	Code	Value	
Frequency	b Fr	50	bFr	50	No change．
High Speed	H5P	50	H5P	50	No change．
LI operation Logic	－	（Positive）	$\square P \mathrm{~L}$	POS	＂Depend on LI assignment on each function（LI1 to LI4 L or H）． See function assignment page $51^{\prime \prime}$
Integrated EMC filter	－	No	－	Yes	＂Possible to disable filter using IT jumper．See page 28．＂
LI assignment	L 11	Forward	L 11	Forward	No change．
	Lİ	Reverse	LIE	－	Change rrS（COnF，FULL，Fun，rrS），LI2．
	L1ヨ	2 Preset speeds	L1ヨ	－	Change PS2（COnF，FULL，Fun，PSS，Pr2），LI3．
	L 14	4 Preset speeds	L 14	－	Change PS4（COnF，FULL，Fun，PSS，Pr4），LI4．
Speed reference	$5 P 己$	10	$5 P 己$	10	No change．
	5Pヨ	25	5 Pヨ	15	Change SP3（COnF，FULL，Fun，PSS，SP3）， 25.
	5 54	50	$5 P 4$	20	Change SP4（COnF，FULL，Fun，PSS，SP4）， 50.
AO assignment	（ $+\square$ ， A다）， $r \mathrm{Fr}$	Motor frequency	Fロ1	－	Change AO1（COnF，FULL，I－O，AO1－，AO1），OFr．
Al assignment	$\begin{aligned} & (\text { (} I t, \\ & \text { A }[t), 5 u \end{aligned}$	Speed ref． 5 V	A1It	Speed ref． 5V	No change．
Command channel	$L 5 r$	LOC	Fr I	Al1	Change FR1（COnF，FULL，CtL－，FR1），AlU1．
	$\begin{aligned} & (t L[, \\ & A \subset t), \\ & L \square L \end{aligned}$	Local control （RUN／ STOP）	CHLF	SIM	No change．
			［dI	－	
Motor parameter choice	［ 05	According to rating	ᄃロ5	－	COS is visible only if Motor parameter choice＂MPC＂ is set to COS． Change MPC（COnF，FULL，drC－，MPC），COS． Change COS（COnF，FULL，drC－，COS），According to rating．
Motor control type	unchangeabl e	SVC	くヒヒ	$\begin{aligned} & \text { STD } \\ & \text { (U/F) } \end{aligned}$	Change CTT（COnF，FULL，drC－，CTT），PERF （SVCU）．
Application Underload time delay	EUL	5	ULE	0	The function is deactivated in factory setting．
Application Overload time delay	E $\square 1$	5	ロLE	0	The function is deactivated in factory setting．

Functions－Comparison with ATV11e๗0E327 versions

Function	ATV11		ATV12		Comments，Action
	Code	value	Code	value	
Frequency	b Fr	50	$b F_{r}$	50	No change．
High Speed	H5P	50	H5P	50	No change．
LI operation Logic	－	（Positive）	$n P L$	POS	＂Depend on LI assignment on each function（LI1 to LI4 L or H）． See function assignment page $51^{\prime \prime}$
Integrated EMC filter	－	Yes	－	Yes	＂Possible to disable filter using IT jumper．See page 28．＂
Li assignment	L 11	Forward	L I I	Forward	No change．
	Lİ	Reverse	Lİ	－	Change rrS（COnF，FULL，Fun，rrS），LI2．
	L1ヨ	2 Preset speeds	L1ヨ	－	Change PS2（COnF，FULL，Fun，PSS，Pr2），LI3．
	L 14	4 Preset speeds	L 14	－	Change PS4（COnF，FULL，Fun，PSS，Pr4），LI4．
Speed reference	$5 P 己$	10	$5 P 己$	10	No change．
	5Pヨ	25	5 Pヨ	15	Change SP3（COnF，FULL，Fun，PSS，SP3）， 25.
	5 54	50	$5 P 4$	20	Change SP4（COnF，FULL，Fun，PSS，SP4）， 50.
AO assignment	（ $+\square$ ， A다）， $r \mathrm{Fr}$	Motor frequency	Fロ1	－	Change AO1（COnF，FULL，I－O，AO1－，AO1），OFr．
Al assignment	$\begin{aligned} & (\text { (} I t, \\ & \text { A }[t), 5 u \end{aligned}$	Speed ref． 5V	A1It	Speed ref． 5V	No change．
Command channel	$L 5 r$	LOC	Fr I	Al1	Change FR1（COnF，FULL，CtL－，FR1），AlU1．
	$\begin{aligned} & (t L[, \\ & A \subset t), \\ & L \square L \end{aligned}$	Local control （RUN／ STOP）	CHLF	SIM	No change．
			［dI	－	
Motor parameter choice	［ 05	Acc．to rating	ᄃロ5	－	COS is visible only if Motor parameter choice＂MPC＂ is set to COS． Change MPC（COnF，FULL，drC－，MPC），COS． Change COS（COnF，FULL，drC－，COS），Acc．To rating．
Motor control type	unchangeabl e	SVC	CtE	STD（U／F）	Change CTT（COnF，FULL，drC－，CTT），PERF （SVCU）．
Application Underload time delay	EUL	5	ULE	0	The function is deactivated in factory setting．
Application Overload time delay	E \square	5	－LE	0	The function is deactivated in factory setting．

Diagnostics and Troubleshooting

Drive does not start, no error code displayed

- If the display does not light up, check the power supply to the drive (ground and input phases connection, see page 20).
- The assignment of the "Fast stop" or "Freewheel" functions will prevent the drive starting if the corresponding logic inputs are not powered up. The ATV12 then displays $n 5 t$ in freewheel stop and $F 5 t$ in fast stop, it will display $r d y$ en freewhell stop. This is normal since these functions are active at zero so that the drive will be stopped if there is a wire break. Assignment of LI to be checked in $\left[\square_{n} \mathrm{~F} /\right.$ FULLIFUn-/5tt - menu.
- Make sure that the run command input(s) is activated in accordance with the selected control mode (parameters Type of control $t[\square$ page 48 and 2 wire type control $t[t$ page 51 , in $[\square \cap F / F U L L / I-\square$-menu).
- If the reference channel or command channel is assigned to Modbus, when the power supply is connected, the drive displays " $n 5$ t" freewheel and remain in stop mode until the communication bus sends a command.
- In factory setting "RUN" button is inactive. Adjust parameters Reference channel $1 \mathrm{~F}_{r} /$ / page $\underline{62}$ and Command channel $1[d$ / page $\underline{63}$ to control the drive locally ($[\square \cap F / F U L L /[E L$ - menu). See How to control the drive locally page 46 .

Fault detection codes that cannot be cleared automatically

The cause of the detected fault must be removed before clearing by turning off and then on.
$5 \square F$ and $\notin \cap F$ faults can also be cleared remotely by means of a logic input (parameter Detected fault reset assignment $r 5 F$ page $\underline{91}$ in $[\square \cap F / F U L L / F L E-m e n u)$.

Code	Name	Possible causes	Remedy
LrFl	Precharge	- Charging relay control fault or charging resistor damaged	- Turn the drive off and then back on again - Check the connections - Check the stability of the main supply - Contact your local Schneider Electric representative
InF 1	Unknown drive rating	- The power card is different from the card stored	- Contact your local Schneider Electric representative
InF 2	Unknown or incompatible power board	- The power card is incompatible with the control card	- Contact your local Schneider Electric representative
InF ${ }^{\text {a }}$	Internal serial link	- Communication interruption between the internal cards	- Contact your local Schneider Electric representative
InF 4	Invalid industrialization zone	- Inconsistent internal data	- Contact your local Schneider Electric representative
InFg	Current measurement circuit	- Current measurement is not correct due to hardware circuit	- Contact your local Schneider Electric representative
--	Problem of application Firmware	- Invalid application firmware update using the Multi-Loader tool	- Flash again the application firmware of the product
InFb	Internal thermal sensor detected fault	- The drive temperature sensor is not operating correctly - The drive is in short circuit or open	- Contact your local Schneider Electric representative
InFE	Internal CPU	- Internal microprocessor	- Turn the drive off and then back on again - Contact local Schneider Electric representative

Fault detection codes that cannot be cleared automatically (continued)

Code	Name	Possible causes	Remedy
प[F]	Overcurrent	- Parameters in the Motor control menu dr [- page 57 are not correct - Inertia or load too high - Mechanical locking	- Check the parameters - Check the size of the motor/drive/load - Check the state of the mechanism - Connect line chokes - Reduce the Switching frequency $5 \mathrm{Fr}_{r}$ page 59 - Check the ground connection of drive, motor cable and motor insulation.
$5[F I$	Motor short circuit	- Short-circuit or grounding at the drive output - Ground fault during running status - Commutation of motors during running status - Significant current leakage to ground if several motors are connected in parallel	- Check the cables connecting the drive to the motor, and the motor insulation - Connect motor chokes
$5[F \exists$	Ground short circuit		
$5[F 4$	IGBT short circuit	- Internal power component short circuit detected at power on	- Contact your local Schneider Electric representative
$5 \square F$	Overspeed	- Instability - Overspeed associated with the inertia of the application	- Check the motor - Overspeed is 10% more than Maximum frequency t Fr page $\underline{57}$ so adjust this parameter if necessary - Add a braking resistor - Check the size of the motor/drive/load - Check parameters of the speed loop (gain and stability)
$t \cap F$	Auto-tuning	- Motor not connected to the drive - One motor phase loss - Special motor - Motor is rotating (being driven by the load, for example)	- Check that the motor/drive are compatible - Check that the motor is present during auto tuning - If an output contactor is being used, close it during auto-tuning - Check that the motor is completely stopped

Fault detection codes that can be cleared with the automatic restart function, after the cause has disappeared

These faults can also be cleared by turning on and off or by means of a logic input (parameter Detected fault reset assignment $r 5 \mathrm{~F}$ page 91).

Code	Name	Possible causes	Remedy
LFF I	AI current lost fault	Detection if: - Analog input Al1 is configured as current - Al1 current scaling parameter of $0 \%[r L$ \| page $\underline{52}$ is greater than 3 mA - Analog input current is lower than 2 mA	- Check the terminal connection
ロьF	Overbraking	- Braking too sudden or driving load too high	- Increase the deceleration time - Install a module unit with a braking resistor if necessary - Check the line supply voltage, to be sure that it is under the maximum acceptable (20% over maximum line supply during run status)
ロHF	Drive overheat	- Drive temperature too high	- Check the motor load, the drive ventilation and the ambient temperature. Wait for the drive to cool down before restarting. See Mounting and temperature conditions page 13.
- L [Process overload	- Process overload	- Check the process and the parameters of the drive to be in phase
$\square L F$	Motor overload	- Triggered by excessive motor current	- Check the setting of the motor thermal protection, check the motor load.
DPF I	1 output phase loss	- Loss of one phase at drive output	- Check the connections from the drive to the motor - In case of using downstream contactor, check the right connection, cable and contactor
$\square P F 2$	3 output phase loss	- Motor not connected - Motor power too low, below 6% of the drive nominal current - Output contactor open - Instantaneous instability in the motor current	- Check the connections from the drive to the motor - Test on a low power motor or without a motor: In factory settings mode, motor phase loss detection is active Output Phase loss detection $\square P L$ page $\underline{94}=y E 5$. To check the drive in a test or maintenance environment, without having to use a motor with the same rating as the drive, deactivate motor phase loss detection Output Phase loss detection $\square P L=n \square$ - Check and optimize the following parameters: IR compensation (law U/F) U Fr page 58, Rated motor voltage $U n 5$ page $\underline{57}$ and Rated motor current $n[r$ page $\underline{57}$ and perform an Auto-tuning $t U n$ page 60 .
-5F	Main overvoltage	- Line voltage too high: - At drive power on only, the supply is 10% over the maximum acceptable voltage level - Power with no run order, 20% over the maximum line supply - Disturbed line supply	- Check the line voltage

Fault detection codes that can be cleared with the automatic restart function, after the cause has disappeared (continued)

Code	Name	Possible causes	Remedy
PHF	Input phase loss	- Drive incorrectly supplied or a fuse blown - Failure of one phase - 3-phase ATV12 used on a singlephase line supply - Unbalanced load - This protection only operates with the drive on load	- Check the power connection and the fuses. - Use a 3-phase line supply. - Disable the fault by setting Input Phase loss detection $I P L$ page $\underline{94}=n \square$.
$5[F 5$	Load short circuit	- Short-circuit at drive output - Short circuit detection at the run order or DC injection order if parameter IGBT test $5 t r t$ page 95 is set to $Ч E 5$	- Check the cables connecting the drive to the motor, and the motor's insulation
5LFI	Modbus communication	- Interruption in communication on the Modbus network	- Check the connections of communication bus. - Check the time-out (Modbus time out $t \in \square$ parameter page 97) - Refer to the Modbus user manual
$5 L F 2$	SoMove communication	- Communication interruption with SoMove	- Check the SoMove connecting cable. - Check the time-out
5LFヨ	HMI communication	- Communication interruption with the external display terminal	- Check the terminal connection
$5 P / F$	PIFeedback detected fault	- PID feedback below lower limit	- Check the PID function feedback - Check the PI feedback supervision threshold $L P /$ and time delay $t P I$, page 76 .
$U L F$	Process underload fault	- Process underload - Motor current below the Application Underload threshold $L U L$ parameter page 55 during a period set by Application underload time delay $U L E$ parameter page $5 \mathbf{5}$ to protect the application.	- Check the process and the parameters of the drive to be in phase
$t\lrcorner F$	IGBT overheat	- Drive overheated - IGBT internal temperature is too high according to ambient temperature and load	- Check the size of the load/motor/drive. - Reduce the Switching frequency 5 Fr page 59 . - Wait for the drive to cool before restarting

Faults codes that will be cleared as soon as their causes disappear
The USF fault can be cleared remotely by means of a logic input (parameter Detected fault reset assignment $r 5 \mathrm{~F}$ page $\underline{91}$).

Code	Name	Possible causes	Remedy
[F F	Incorrect configuration	- HMI block replaced by an HMI block configured on a drive with a different rating - The current configuration of customer parameters is inconsistent	- Return to factory settings or retrieve the backup configuration, if it is valid. - If the fault remains after reverting to the factory settings, contact your local Schneider Electric representative
[Fl (1)	Invalid configuration	- Invalid configuration The configuration loaded in the drive via the bus or communication network is inconsistent. The configuration upload has been interrupted or is not fully finished.	- Check the configuration loaded previously. - Load a compatible configuration
[F1 ${ }^{\text {c }}$	Download invalid configuration	- Interruption of download operation with Loader or SoMove	- Check connection with Loader or SoMove. - To reset the default re-start the download operation or restore the factory setting
U5F	Undervoltage	- Line supply too low - Transient voltage dip	- Check the voltage and the parameters of Undervoltage Phase Loss Menu 4 5 ь - page 95 .

(1) When the CFI is present in the past fault menu, it means the configuration has been interrupted or is not fully finished.

HMI block changed

When an HMI block is replaced by an HMI block configured on a drive with a different rating, the drive locks in Incorrect configuration L F F fault mode on power-up. If the card has been deliberately changed, the fault can be cleared by returning to factory setting.

Fault detection codes displayed on the remote display terminal

Code	Name	Description
$\ln 1 t$	On initializing itself	- Micro controller initializing - Communication configuration search
ᄃロП. E (1)	Communication error	- It has 50 ms time out error. - This message is shown after 220 retry attempts.
$\begin{gathered} A-17 \\ (1) \end{gathered}$	Key alarm	- Key has been pressed consecutively for more than 10 seconds. - Membrane switch disconnected. - Keypad woken up while a key is being pressed.
$c \underset{(1)}{c}$	Confirm Fault reset	- This message appears if the STOP key is pressed when there is a keypad fault.
$d E U . E$ (1)	Drive mismatch	- Drive type (brand) did not match with keypad type (brand)
$\underset{(1)}{\left\ulcorner\square \Pi_{1}\right.} E \text { ? }$	ROM abnormality	- Keypad ROM abnormality detected by the checksum calculation.
$\underset{(1)}{\text { r }} \underset{(1)}{ }$	RAM abnormality	- Keypad RAM abnormality detected.
$\begin{gathered} \text { LPU. } \\ (1) \end{gathered}$	The other defect	- The other detected fault.

(1) Flashing

2-wire control (source)

$\begin{array}{lll}\text { (a): Run Forward } & \text { (b): Run Reverse }\end{array}$

3-wire control (sink)

(a): Run Forward

1. Connect the ground terminal to the grounding screws located below the output terminals.
2. Connect the power terminals.
3. Connect the logic inputs.
4. Turn on the drive without giving a run command.
5. Assign factory settings to the drive, Factory / recall customer parameter set $F[5$ page 46 set to 1 n I.
6. Set the motor parameters (in COnF mode) only if the factory configuration of the drive is not suitable.
(a) 7. Perform an auto-tuning.
7. Set Reverse direction r r 5 parameter page 66 to $L I$ IH

8. Start
9. Connect the ground terminal to the grounding screws located below the output terminals.
10. Connect the power terminals.
11. Connect the logic inputs.
12. Turn on the drive without giving a run command.
13. Assign factory settings to the drive, Factory / recall customer parameter set $F[5$ page 46 set to 1 n I.
14. Set $\in[ᄃ$ to $\exists[$ see page 48
15. Set the motor parameters (in $[\square \cap F$ mode) only if the factory configuration of the drive is not suitable.
16. Perform an auto-tuning.
17. Set Logic inputs type $\cap P L$ parameter page $\underline{51}$ to $\cap E \square$

18. Start

2-wire control (sink)

(a): Run Forward

1. Connect the ground terminal to the grounding screws located below the output terminals.
2. Connect the power terminals.
3. Connect the logic inputs.
4. Turn on the drive without giving a run command.
5. Assign factory settings to the drive, Factory / recall customer parameter set $F[5$ page 46 set to \ln I.
6. Set $t[[$ to $\exists[$ see page 48
7. Set the motor parameters (in $[\square \cap F$ mode) only if the factory configuration of the drive is not suitable.
8. Perform an auto-tuning.
9. Set Logic inputs type $\cap P L$ parameter page 51 to $E \cap E G$

10. Start

Speed control 0-20 mA (source)

(a) Run Forward

1. Connect the ground terminal to the grounding screws located below the output terminals.
2. Connect the power terminals.
3. Connect the logic input LI1 and analog input Al1.
4. Turn on the drive without giving a run command.
5. Assign factory settings to the drive, Factory / recall customer parameter set F $[5$ page 46 set to 1 п $/$.
6. Set the motor parameters (in COnF mode) only if the factory configuration of the drive is not suitable.
7. Perform an auto-tuning.
8. Set Al1 type A I It page 52 to \square A and Al1 current scaling parameter of $0 \%[r L$ । page $5 \underline{2}$ to 0 A .
Check that Al1 current scaling parameter of 100% [r H I page $\underline{52}$ is set to 20 mA .

9. Start.

4 Preset speeds (source)

Note: Please refer to Function compatibility table page 36.

1. Connect the ground terminal to the grounding screws located below the output terminals.
2. Connect the power terminals.
3. Connect the logic inputs.
4. Turn on the drive without giving a run command.
5. Assign factory settings to the drive, Factory / recall customer parameter set F [5 page 46 set to $\operatorname{In} \mathrm{I}$.
6. Set the motor parameters (in COnF mode) only if the factory configuration of the drive is not suitable.
7. Perform an auto-tuning.
8. Set 2 Preset speeds $P 5$ page 70 to $L 己 H$.

Set Preset speed 25 P ᄅ page $\underline{70}$ to 20 Hz .

Set 4 Preset speeds $P 54$ page $7 \underline{0}$ to $L \exists H$.

Applicative notes

Set Preset speed 3 รPヨ page $\underline{70}$ to 30 Hz .

Applicative notes

4 Preset speeds (source) continued

Set Preset speed $45 P 4$ page $\underline{70}$ to 40 Hz .

Terminals command channel with Modbus reference channel

Note: Please refer to Function compatibility table page 36 .

1. Connect the ground terminal to the grounding screws located below the output terminals.
2. Connect the power terminals.
3. Connect the logic input LI1 and plug RJ45 cable to the Modbus socket.
4. Turn on the drive without giving a run command.
5. Assign factory settings to the drive, Factory / recall customer parameter set $F[5$ page 46 set to $\operatorname{In} \mathrm{I}$.
(a) 6. Set the motor parameters (in COnF mode) only if the factory configuration of the drive is not suitable.
6. Perform an auto-tuning.
7. Set Channel configuration $[H[F$ page 62 to $5 E P$.

Set Reference channel 1 Fr I page $\underline{62}$ to $\Pi \mathrm{d}$ b.

Check that Command channel $1[d$ । page $\underline{63}$ is set to $E E r$.

9. Start

Recommended fuse ratings for UL and CSA requirements. Components for use together in accordance with standard UL508

ATV12 Drive					Short Circuit Current Ratings ${ }^{1}$									
$\begin{aligned} & \text { Input } \\ & \text { Voltage } \\ & +10 \% /-15 \% \\ & 60 \mathrm{~Hz} \\ & \mathrm{Y} \end{aligned}$	(kW)		input withstand Rating $(k A)^{6}$	Reference	With QO Circuit Breaker					With GV2P/3P		With Fuses		
					QO	QOB	QOU	A	$\begin{gathered} \hline \text { SCCR } \\ (\mathrm{kA})^{7} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \text { GV2P/3P } \\ & \text { Type E }{ }^{2,3} \end{aligned}$	$\begin{gathered} \text { SCCR } \\ (\mathrm{kA}) \end{gathered}$	$\begin{gathered} \text { Fuses(A) }{ }^{5} \\ \text { Z1, Z2 } \end{gathered}$	$\begin{aligned} & \text { SCCR } \\ & (\mathrm{kA}) \end{aligned}$	Line Reactor ${ }^{4}$
120 V, 1 phase	0.18	0.25	1	ATV12H018F1	yes	yes	yes	10	1	GV2P10	1	Ferraz HSJ (15)	1	-
	0.37	0.5	1	ATV12•037F1	yes	yes	yes	20	1	GV2P14	1	Ferraz HSJ (25)	1	-
	0.75	1	1	ATV12H075F1	yes	yes	yes	25	1	GV2P20	1	Ferraz HSJ (40)	1	-
240 V , 1 phase	0.18	0.25	1	ATV12H018M2	yes	yes	yes	10	1	GV2P08	1	Fast Acting Class CC Ferraz ATDR (7)	1	-
	0.37	0.5	1	ATV12•037M2	yes	yes	yes	10	1	GV2P10	1	Ferraz HSJ (15)	1	-
	0.55	0.75	1	ATV12•055M2	yes	yes	yes	15	1	GV2P14	1	Ferraz HSJ (25)	1	-
	0.75	1	1	ATV12•075M2	yes	yes	yes	20	1	GV2P14	1	Ferraz HSJ (25)	1	-
	1.5	2	1	ATV12HU15M2	no	no	yes	25	1	GV2P20	1	Ferraz HSJ (40)	1	-
	2.2	3	1	ATV12HU22M2	no	no	yes	35	1	GV2P22	1	Ferraz HSJ (45)	1	-
240 V , 3 phase	0.18	0.25	5	ATV12H018M3	yes	yes	yes	10	5	GV2P07	5	Fast Acting Class CC Ferraz ATDR (7)	5	-
	0.37	0.5	5	ATV12•037M3	yes	yes	yes	10	5	GV2P08	5	Fast Acting Class CC Ferraz ATDR (7)	5	-
	0.75	1	5	ATV12•075M3	yes	yes	yes	15	5	GV2P14	5	Ferraz HSJ (15)	5	-
	1.5	2	5	ATV12•U15M3	yes	yes	yes	15	5	GV2P16	5	Ferraz HSJ (25)	5	-
	2.2	3	5	ATV12•U22M3	yes	yes	yes	25	5	GV2P20	5	Ferraz HSJ (25)	5	-
	3	3	5	ATV12•U30M3	no	no	yes	30	5	GV2P21	5	Ferraz HSJ (40)	5	-
	4	5	5	ATV12•U40M3	no	no	yes	40	5	GV2P22		Ferraz HSJ (45)	5	-
240 V, 3 phase	0.18	0.25	5	ATV12H018M3	yes	yes	yes	10	10	GV2P07	50	3	65	3\%
	0.37	0.5	5	ATV12•037M3	yes	yes	yes	10	10	GV2P08	50	8	65	3\%
	0.75	1	5	ATV12•075M3	yes	yes	yes	15	10	GV2P14	50	15	65	3\%
	1.5	2	5	ATV12•U15M3	yes	yes	yes	15	10	GV3P13	50	25	65	3\%
	2.2	3	5	ATV12•U22M3	yes	yes	yes	25	10	GV3P18	50	30	65	3\%
	3	3	5	ATV12•U30M3	no	no	yes	30	10	GV3P25	50	40	65	3\%
	4	5	5	ATV12•U40M3	no	no	yes	40	10	GV3P32	50	50	65	3\%

1. Types of enclosures that can be used: $1,12,3,3 R, 4$, and $4 X$-all non-ventilated.
2. The GV2Peo self-protected manual combination starter must be used with the GV2GH7 insulating barrier to meet the UL 508 Type E rating.
3. The GV3P \bullet self-protected manual combination starter must be used with the GV3G66 insulating barrier and the GVAM11 auxiliary contact block to meet the UL 508 Type E rating.
4. The line reactor is required when the ATV12 drive is used in a system with a current availability higher than the drive's SCCR design.
5. When fuse type is not specified any Class J or $C C$ can be used. If fuse manufacturer is not specified any fuse manufacturer can be used.
6. Input withstand rating is that for which the product has been designed thermally. Installation on a supply greater than this level will require additional inductance to satisfy this level.
7. Output interrupt rating relies on Integral solid state short circuit protection. This does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes. This is dependant on the type of installation.

Suitable for use on a circuit capable of delivering not more than \qquad X rms symmetrical kiloAmperes, \qquad Y Volts maximum, when protected by \qquad Z1 \qquad with a maximum rating of \qquad Z2 -. \qquad
\qquad
\qquad
\qquad -
\qquad

Wiring

With Single-Phase Power Supply, when using GV2P and GV3P manual self-protected combination starters for single-phase input applications, wire the starter as illustrated:

Organization tree

Parameter index

Code	Page	Name	Unit	Possible value／Function		Factory setting	User setting
H［ 2	$\frac{65}{74}$	Acceleration 2	s	$\begin{aligned} & \text { D. } \quad \text { to } \\ & 999.9 \end{aligned}$	－	5 s	
H［［	$\begin{aligned} & \underline{45} \\ & \underline{64} \end{aligned}$	Acceleration	s	$\begin{aligned} & \text { प. } \quad \text { to } \\ & 999.9 \end{aligned}$	－	3.0 s	
Ad［	67	Automatic DC injection		$\begin{aligned} & n \square \\ & y E 5 \\ & E t \end{aligned}$	No Yes Continuous	YES	
Add	$\underline{97}$	Modbus address		－FF to 247	－	Off	
A IIt	$\underline{52}$	Al1 type	－	$\begin{aligned} & 5 U \\ & 10 U \\ & \square A \end{aligned}$	Voltage Voltage Current	5 U	
A IUI	$\begin{aligned} & \frac{37}{\frac{39}{45}} \\ & \frac{45}{62} \end{aligned}$	Analog input virtual	\％	\square to $10 \square$	－	－	
F $\quad 1$	$\underline{56}$	AO1 assignment		$\rightarrow \square$ －［ \quad r DFr ロr P ロP5 DPF DPE ΔP_{r} t Hr EHd	No Motor current Output frequency Ramp output PID reference PID feedback PID error Output power Motor thermal state Drive thermal state	nO	
RロIt	56	AO1 type		$\begin{aligned} & 10 U \\ & 0 A \\ & 4 A \end{aligned}$	Voltage Current Current	OA	
Atr	91	Automatic restart		$\begin{aligned} & n \square \\ & y E S \end{aligned}$	$\begin{array}{\|l\|} \text { No } \\ \text { Yes } \end{array}$	nO	
bFr	$\begin{aligned} & \underline{45} \\ & \underline{57} \end{aligned}$	Standard motor frequency	Hz	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	－	50 Hz	
brA	$\underline{65}$	Decel Ramp Adaptation assignment		$\begin{aligned} & \text { n } \\ & Y E 5 \\ & d Y \cap A \end{aligned}$	No Yes Motor braking	YES	
［ 154	41	Card 1 Software Version	－	－	－	－	－
［25］	41	Card 2 Software Version	－	－	－	－	－
［d 1	$\underline{63}$	Command channel 1		$\begin{aligned} & \text { EEr } \\ & L \square C \\ & L C L \\ & \text { Cd } b \end{aligned}$	Terminals Local Remote display Modbus		
［ F ¢	47	Macro－configuration	－	－	－	－	－
CHLF	62	Channel configuration		$\begin{aligned} & 51 \pi \\ & 5 E P \end{aligned}$	Simultaneous mode Separate mode	SIM	
［ L I	88	Current limitation	A	D． 25 to 1． 5	－	1.5 A	

Parameter index

Code	Page	Name	Unit	Possible value／Function		Factory setting	User setting
［L 2	88	Current limitation 2	A	－ 25 to 1． 5	－	1.5 A	
c口d	43	HMI Password	－	$\begin{aligned} & \square F F \\ & Q_{n} \end{aligned}$	Code disabled Code activated	OFF	
［ロп ।	42	Modbus communication status	－	$\begin{array}{ll} r & \square E \\ r & \square E \\ r & 1 \\ r & I \\ r & I t \end{array}$	－	－	
［ 05	$\underline{57}$	Rated motor cos phi	－	D． 5 to 1	－	according to drive rating	
［rH I	$\underline{52}$	Al1 current scaling parameter of 100\％	mA	\square to $2 \square$	－	20 mA	
［rLI	$\underline{52}$	Al1 current scaling parameter of 0\％	mA	\square to $2 \square$	－	4 mA	
［td	$\underline{55}$	Motor current threshold	In	\square to 1． 5	－	InV	
「ヒヒ	$\underline{57}$	Motor control type	－	5ヒ』 PErF PリாP	Standard Performance Pump	Std	
$d[F$	66	Ramp divider		1 to 10	－	4	
dE 己	65	Deceleration 2	s	$\begin{aligned} & \square . \quad \square \text { to } \\ & 999.9 \end{aligned}$	－	5 s	
dE［	$\underline{45}$	Deceleration	s	$\begin{aligned} & \text { प. } \quad \text { to } \\ & 999.9 \end{aligned}$	－	3.0 s	
$d P 1$	42	Last detected fault 1	－	see page 107		－	－
$d P 己$	$\underline{42}$	Last detected fault 2	－	see page 107		－	－
dPヨ	43	Last detected fault 3	－	see page 107		－	－
$d P 4$	$\underline{43}$	Last detected fault 4	－	see page $\underline{107}$		－	－
$d r n$	$\underline{96}$	Degraded line supply operation		$\begin{aligned} & n \square \\ & y E 5 \end{aligned}$	$\begin{array}{\|l\|} \text { No } \\ \text { Yes } \end{array}$	nO	
EPI	42	State of drive at detected fault 1	－	－	－	－	－
EP己	$\underline{43}$	State of drive at detected fault 2	－	－	－	－	－
EPヨ	$\underline{43}$	State of drive at detected fault 3	－	－	－	－	－
EP4	$\underline{43}$	State of drive at detected fault 4	－	－	－	－	－

Parameter index

Code	Page	Name	Unit	Possible value／Function		Factory setting	User setting
Fb 5	72	PID feedback scale factor	PID	$\begin{aligned} & \text { ㅁ. I to } \\ & \text { Iロロ. } \end{aligned}$	－	1.0	
F［ 5	46	Factory／recall customer parameter set	－	$\begin{aligned} & \operatorname{no} \\ & r E E \\ & \ln \\ & \ln 1 \end{aligned}$	No REC IN INI	nO	
FFd	79	Zero flow detection activation threshold	Hz			0 Hz	
FLE	58	Frequency loop gain	\％	\square to 100	－	20\％	
$F L \square$	$\underline{63}$	Forced local assignment		$\begin{array}{ll} n \\ L & I H \\ L & Z H \\ L & \exists H \\ L & 4 H \end{array}$	No L1h L2h L3h L4h	nO	
$F L \square[$	$\underline{63}$	Forced local reference		пロ A I I L［ $[$ A14।	No Terminal HMI Jog dial	nO	
FLr	$\underline{92}$	Catch on the fly		$\begin{aligned} & \cap \square \\ & Y E 5 \end{aligned}$	$\begin{array}{\|l\|} \text { No } \\ \text { Yes } \end{array}$	nO	
F \quad п	78	Starting frequency of the auxiliary pump	Hz			0.1 Hz	
$F \square F$	78	Auxiliary pump stopping frequency	Hz			0 Hz	
Fr I	$\begin{aligned} & \underline{45} \\ & \underline{62} \end{aligned}$	Reference channel 1			Terminal HMI Modbus Jog dial	Al1	
FrH	$\underline{37}$	Speed reference		$\begin{array}{llll} \hline A & 1 & I \\ L & I & C \\ \Pi & d & b \\ A & I & 1 \end{array}$	Terminal HMI Modbus Jog dial		
Fr 5	$\underline{57}$	Rated motor frequency	Hz	10 to $40 \square$	－	$\begin{gathered} 50 \text { or } 60 \mathrm{~Hz} \\ \text { (to bFr) } \end{gathered}$	
F5t	66	Fast stop assignment		$\begin{array}{ll} n & \square \\ L & I L \\ L & I \\ L & B \\ L & H L \end{array}$	No L1L：LI1 active low L2L：LI2 active low L3L：LI3 active low L4L：LI4 active low	nO	
Ftd	55	Motor frequency threshold	Hz	\square to 4 ロロ	－	50 or 60 Hz	
FtH	42	Fan time display		$\begin{aligned} & \text { ㅁ. } \quad 1 \text { to } \\ & 999 \end{aligned}$	－	－	－
$F \in \square$	$\frac{54}{\underline{77}}$	Time delay before automatic start for the overload fault	min			0 min	
FtU	$\frac{55}{\underline{78}}$	Time delay before automatic start for the underload fault	min			0 min	
H5P	$\begin{aligned} & \underline{45} \\ & \underline{90} \end{aligned}$	High speed	Hz	$L 5 P$ to E Fr	－	50 or 60 Hz	
H5P2	$\underline{90}$	High speed 2	Hz	LSP to tFr	－	50 or 60 Hz according to BFr ，max TFr	
H5Pヨ	$\underline{90}$	High speed 3	Hz	as H5P己	as HS2	as H 5 P 己	

Parameter index

Code	Page	Name	Unit	Possible value／Function		Factory setting	User setting
H5P4	$\underline{90}$	High speed 4	Hz	as H5P己	as HS2	as H5P己	
H5U	41	Display of high speed value	－	－	－	－	－
InH	$\underline{95}$	Detected fault inhibition assignment		$\begin{array}{ll} n & \square \\ L & I H \\ L & Z H \\ L & \exists H \\ L & H \end{array}$	Non active L1h：LI1 active high L2h：LI2 active high L3h：LI3 active high L4h：LI4 active high	no	
$I P L$	$\underline{94}$	Input Phase loss	－	$\begin{aligned} & n 0 \\ & Y E S \end{aligned}$	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Yes } \end{array}$	YES	
リヒ	$\underline{94}$	Motor thermal current	A	ロ． 2 to I． 5	－	according to drive rating	
$\lrcorner \square \square$	$\underline{68}$	Jog assignment		$\begin{array}{ll} n & \square \\ L & I H \\ L & 2 H \\ L & \exists H \\ L & H \end{array}$	No L1h：LI1 active high L2h：LI2 active high L3h：LI2 active high L4h：LI4 active high	nO	
$J P F$	70	Skip frequency	Hz	\square to 4 ロ	－	0 Hz	
L［ 2	88	2nd current limitation commutation		$\begin{array}{lll} n & \square \\ L & I H \\ L & Z H \\ L & \exists & H \\ L & 4 & H \\ L & I & L \\ L & I & L \\ L & \exists & L \\ L & H \end{array}$	No L1h：LI1 active high L2h：LI2 active high L3h：LI3 active high L4h：LI4 active high L1L：LI1 active low L2L：LI2 active low L3L：LI3 active low L4L：LI4 active low	nO	
L［ r	39	Motor current	A	－	－	－	－
LFd	79	Zero flow detection offset	Hz			0 Hz	
LFF	76	Fallback speed	Hz			0 Hz	
LFL I	$\underline{95}$	4－20 mA loss behavior		$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { No } \\ \text { Yes } \end{array}$	nO	
LFr	$\begin{aligned} & \frac{39}{45} \\ & \hline \underline{62} \\ & \hline \end{aligned}$	External reference value	－		－	0	
L 151	41	State of logic inputs LI1 to LI4	－	－	－	－	－
L \quad［	$\frac{\underline{54}}{\underline{77}}$	Application Overload threshold	\％of NCR	70 to 150	－	90 \％	
L 01	53	LO1 assignment		as $\ulcorner 1$	as r 1	nO	
L 15	$\underline{53}$	LO1 status（output active level）		$\begin{aligned} & P Q 5 \\ & \cap E G \end{aligned}$	Positive Negative	POS	
L प5 I	41	State of the logic output LO1 and relay R1	－	－	－	－	－
LP I	76	PI feedback supervision threshold				nO	
L 5 P	$\underline{45}$	Low speed	Hz	\square to $\mathrm{H}_{5} \mathrm{P}$	－	0 Hz	

Parameter index

Code	Page	Name	Unit	Possible value／Function		Factory setting	User setting
$L U L$	$\frac{55}{77}$	Application Underload threshold	\％of In	己口to 10ロ	－	60 \％	
ПdE	78	Selecting the operating mode				nO	
ПP［	$\underline{60}$	Motor parameter choice	－	$\begin{aligned} & n P_{r} \\ & \text { CQ5 } \end{aligned}$	$\begin{aligned} & \mathrm{nPr} \\ & \mathrm{cos} \end{aligned}$	$n P r$	
ПР I	76	Maximum frequency detection hysteresis				YES	
Пヒ п	$\underline{94}$	Motor thermal state memo	－	$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	nO	
n［ 1	$\underline{98}$	Com scanner write address value 1					
n［ $]$	$\underline{98}$	Com scanner write address value 2					
п［ ${ }^{\text {a }}$	$\underline{98}$	Com scanner write address value 3					
n［4	$\underline{98}$	Com scanner write address value 4					
	$\underline{97}$	Com scanner write address parameter 1				2135	
п［ 月 己	$\underline{97}$	Com scanner write address parameter 2				219C	
п［月 ${ }^{\text {¢ }}$	$\underline{97}$	Com scanner write address parameter 3				0	
n［ ${ }^{\text {¢ }}$	$\underline{97}$	Com scanner write address parameter 4					

Parameter index

Code	Page	Name	Unit	Possible value／Function		Factory setting	User setting
$n r^{r}$	$\underline{57}$	Rated motor current	A（1）	ㅁ． 25 to 1． 5	－	according to drive rating	
п［U	41	Drive Power rating					
nFd	79	Zero flow detection period				nO	
пП I	$\underline{98}$	Com scanner read address value 1					
	$\underline{98}$	Com scanner read address value 2					
пПヨ	$\underline{98}$	Com scanner read address value 3					
пПЧ	$\underline{98}$	Com scanner read address value 4					
пПН ।	$\underline{97}$	Com scanner read address parameter 1	－			0 C 81	
пПН己	$\underline{97}$	Com scanner read address parameter 2	－			219C	
пПНヨ	$\underline{97}$	Com scanner read address parameter 3	－			0	
пПН 4	$\underline{97}$	Com scanner read address parameter 4	－			0	
$n P L$	51	Logic inputs type	－	$\begin{aligned} & P Q 5 \\ & R E G \end{aligned}$	Positive Negative	POS	
$n \mathrm{Pr}$	$\begin{aligned} & \underline{46} \\ & \underline{57} \end{aligned}$	Rated Motor Power	kW or HP		－	according to drive rating	
nrd	$\underline{59}$	Motor noise reduction		$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	nO	
п 5 P	$\underline{57}$	Rated motor speed	rpm	\square to $ヨ$ 己 767	－	according to drive rating	
n5t	66	Freewheel stop assignment		$\begin{aligned} & n \square \\ & L I L \\ & L E L \\ & L \quad \exists L \\ & L Y L \end{aligned}$	No L1L：LI1 active low L2L：LI2 active low L3L：LI3 active low L4L：LI4 active low	nO	
QL L	$\underline{94}$	Overload fault management	－	$\begin{aligned} & n \square \\ & y E 5 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Yes } \end{array}$	YES	
$\square P L$	$\underline{94}$	Output Phase loss	－	$\begin{aligned} & n \square \\ & y E S \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	YES	
$\square P_{r}$	39	Output power	\％	－	－	－	－
PRU	74	PID auto／manual assignment		$\begin{aligned} & n \square \\ & L I H \\ & L 2 H \\ & L \exists H \\ & L Y H \end{aligned}$	No L1h：LI1 active high L2h：LI2 active high L3h：LI3 active high L4h：LI4 active high	nO	
PEE	42	Process elapsed time	0.01	－	－	－	－
PFL	$\underline{59}$	Flux Profile	\％	－to 100		20\％	
P IL	74	PID correction reverse	－	$\begin{aligned} & n \square \\ & Y E 5 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Yes } \end{array}$	nO	

（1） $\mathrm{In}=$ nominal drive current

Parameter index

Code	Page	Name	Unit	Possible value／Function		Factory setting	User setting
P IF	$\underline{72}$	PID feedback assignment		$\begin{aligned} & n 0 \\ & \text { R11 } \end{aligned}$	No Terminal	nO	
P 11	72	Activation internal PID reference		$\begin{aligned} & \pi \square \\ & Y E S \end{aligned}$	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Yes } \end{array}$	nO	
P 17	74	PID manual reference		$\begin{array}{ll} n & 0 \\ A & 1 \end{array}$	No Terminal AIV	nO	
Pre	72	2 preset PID assignment	－	$\begin{aligned} & \because \square \\ & L \quad I H \\ & L 己 H \\ & L \exists H \\ & L Y H \end{aligned}$	No L1h L2h L3h L4h	nO	
Pr 4	73	4 preset PID assignment		Pre	as Pr2	nO	
PrP	73	PID reference ramp	s	－to 99． 9	－	0 s	
$P 52$	70	2 Preset speeds		$\begin{aligned} & n \quad \square \\ & L I H \\ & L Z H \\ & L \exists H \\ & L Y H \end{aligned}$	No L1h：LI1 active high L2h：LI2 active high L3h：LI2 active high L4h：LI4 active high	nO	
P54	70	4 Preset speeds		P5 2	as $P 5$ 己	nO	
P5日	70	8 Preset speeds		P5 2	as $P 5$ ？	nO	
P5t	$\underline{62}$	Stop key priority		$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { No } \\ \text { Yes } \end{array}$	YES	
Pt H	42	Power On time display		$\begin{aligned} & \text { ㅁ. } \quad \text { I to } \\ & 999 \end{aligned}$	－	－	－
r 1	$\underline{52}$	R1 assignment	－	$\begin{aligned} & n \square \\ & F L E \\ & r U n \\ & F E A \\ & F L A \\ & C E A \\ & 5 r A \\ & E S A \\ & U L A \\ & C L A \\ & A P I \end{aligned}$	Not assigned No detected error Drive run Frequency threshold reached HSP reached I threshold reached Frequency reference reached Motor thermal reached Underload alarm Overload alarm Al1 Al．4－20	FLt	
$r d \square$	72	PID derivative gain			－	0.00	
rFr	39	Output frequency	Hz	－	－	－	
r IL	72	PID integral gain		$\begin{aligned} & \text { ㅁ. } \quad 1 \text { to } \\ & \operatorname{IDO} \end{aligned}$	－	1	
$r 1 n$	$\underline{62}$	Reverse inhibition		$\begin{aligned} & n \square \\ & y E S \end{aligned}$	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Yes } \end{array}$	nO	
$r \square F$	79	Ramp for auxiliary pump stopping	s			2 s	
$r \square n$	78	Ramp for reaching the auxiliary pump nominal speed	s			2 s	

Parameter index

Code	Page	Name	Unit	Possible value／Function		Factory setting	User setting
rP己	73	2 preset PID reference	\％	\square to 100	－	25\％	
rPヨ	73	3 preset PID reference	\％	\square to 100	－	50\％	
rP4	73	4 preset PID reference	\％	\square to 100	－	75\％	
rPC	39	PID reference	－	－	－	－	－
rPE	39	PID error	－	－	－	－	－
rPF	39	PID Feedback	－	－	－	－	－
rPu	72	PID proportional gain		ロ．$\square 1$ to $10 \square$	－	1	
rPH	73	PID max value reference	\％PID	\square to $10 \square$	－	100\％	
rPl	73	Internal PID reference	\％PID	\square to 100	－	0\％	
$r P L$	73	PID min value reference	\％PID	\square to 100	－	0\％	
rPr	$\underline{96}$	Reset power run		$\begin{aligned} & \pi \square \\ & F \in H \end{aligned}$	Function inactive Reset fan time display	nO	
rP5	64	Ramp switching commutation		$\begin{array}{ll} \Pi & \square \\ L & I H \\ L & 2 H \\ L & \exists H \\ L & H H \\ L & I L \\ L & I L \\ L & \exists L \\ L & H L \end{array}$	No L1h：LI1 active high L2h：LI2 active high L3h：LI3 active high L4h：LI4 active high L1L：LI1 active low L2L：LI2 active low L3L：LI3 active low L4L：LI4 active low	nO	
$r P t$	64	Ramp shape assignment		$\begin{aligned} & L \ln \\ & 5 \\ & U \end{aligned}$	Linear S shape U shape	LIn	
rr 5	$\underline{66}$	Reverse direction	－	$\begin{aligned} & n \square \\ & L I H \\ & L 己 H \\ & L \exists H \\ & L Y H \end{aligned}$	Function inactive L1h active high L2h active high L3h active high L4h active high	nO	
r 5 F	$\underline{91}$	Detected fault reset assignment	－	$\begin{aligned} & \Pi \square \\ & L I H \\ & L Z H \\ & L \exists H \\ & L Y H \end{aligned}$	No L1h：LI1 active high L2h：LI2 active high L3h：LI3 active high L4h：LI4 active high	nO	
r 5L	75	PID wake up level	\％	\square to 100	－	0\％	
reH 1	42	Run elapsed time display	0．01h	D． C ／to 999	－	－	－
$5[5$	46	Store customer parameter set	－	$\begin{aligned} & \text { no } \\ & \text { 5trl } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Yes } \end{array}$	nO	
5d［ 1	$\underline{67}$	Automatic DC injection current	A	\square to 1．已		0.7 A	
5 Fr	$\underline{59}$	Switching frequency	kHz	己 to 16	－	12	
5 F 5	73	PID predictive speed	－	п 0 to 4 ロロ	－	nO	
5 Ft	$\underline{59}$	Switching frequency type	－	$\begin{aligned} & H F I \\ & H F 己 \end{aligned}$	$\begin{aligned} & \text { HF1 } \\ & \text { HF2 } \end{aligned}$	HF1	

Parameter index

Code	Page	Name	Unit	Possible value／Function		Factory setting	User setting
5 Нこ	$\underline{90}$	2 HSP assignment	－	$\begin{aligned} & n \square \\ & L I H \\ & L E H \\ & L \exists H \\ & L Y H \end{aligned}$	No L1h：LI1 active high L2h：LI2 active high L3h：LI3 active high L4h：LI4 active high	no	
5 H 4	$\underline{90}$	4 HSP assignment	－	as 5 Hz	as 5 He	no	
5LE	75	Sleep Threshold Offset	Hz			1 Hz	
$5 L L$	$\underline{96}$	Modbus fault management		$\begin{aligned} & n \square \\ & Y E S \end{aligned}$	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Yes } \end{array}$	YES	
SLP	$\underline{58}$	Slip compensation	$\begin{aligned} & \hline \text { \% of } \\ & \text { nSL } \end{aligned}$	\square to 150	－	100\％	
5 Pᄅ	70	Preset speed 2	－	－	－	－	－
5 Pヨ	70	Preset speed 3	－	－	－	－	－
$5 P 4$	70	Preset speed 4	－	－	－	－	－
$5 P 5$	$\underline{70}$	Preset speed 5	Hz	\square to 4 ロロ	－	25 Hz	
$5 P 6$	70	Preset speed 6	Hz	\square to 4 ロ	－	30 Hz	
$5 P 7$	$\underline{70}$	Preset speed 7	Hz	\square to 4 ロロ	－	35 Hz	
5P日	$\underline{70}$	Preset speed 8	Hz	\square to 4 वا	－	40 Hz	
	41	Specific Product Number	－	－	－	－	－
5ヒ月	58	Frequency loop stability	\％	\square to 100	－	20\％	
5t月t	40	Product status	－	－	－	－	－
5ヒワ	95	Undervoltage ramp deceleration time	s	D．\square to $10 . \square$	－	1.0 s	
StP	$\underline{95}$	Undervoltage prevention	－	$\begin{aligned} & n \square \\ & r \Pi P \end{aligned}$	No Ramp stop	nO	
5trt	$\underline{95}$	IGBT test		$\begin{aligned} & n \square \\ & Y E 5 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { No } \\ \text { Yes } \end{array}$	nO	
5tt	$\underline{66}$	Type of stop		$\begin{aligned} & \text { rחP } \\ & \text { F5t } \\ & \text { n5t } \end{aligned}$	Ramp stop Fast stop Freewheel	rMP	
thr	91	Max．automatic restart time		$\begin{aligned} & 5 \\ & 10 \\ & \exists 0 \\ & 1 H \\ & 2 H \\ & \exists H \\ & C t \end{aligned}$	5 min 10 min 30 min 1 h 2 h 3 h Infinite	5 min	
tbr	$\underline{97}$	Modbus baud rate		4．日 9． 5 19．己 ヨ日． 4	4.8 kbps 9.6 kbps 19.2 kbps 38.4 kbps	19.2 kbps	
t［［	48	Type of control	－	$\begin{aligned} & 2[\\ & \exists[\end{aligned}$	2 wire control 3 wire control	2 C	
t［	51	2 wire type control	－	$\begin{aligned} & L E L \\ & E r n \\ & P F B \end{aligned}$	Level Transition Priority FW	trn	

Parameter index

Code	Page	Name	Unit	Possible value／Function		Factory setting	User setting
td［1	67	Automatic DC injection time	s	D．I to $\exists \square$		0.5 s	
t F \quad	$\underline{97}$	Modbus format	－		801 8E1 8 n 1 8n2	8E1	
t Fr	57	Maximum frequency	Hz	10 to $40 \square$		$\begin{aligned} & 60 \text { or } 72 \mathrm{~Hz} \\ & \text { (to bFr) } \end{aligned}$	
tHd	39	Drive thermal state	－	－	－	－	－
t Hr	39	Motor thermal state	\％	－	－	－	－
t Ht	$\underline{94}$	Motor protection type	－	$\begin{aligned} & \text { ACL } \\ & F C \Gamma \end{aligned}$	Self－ventilated Moto－ventilated	ACL	
$t L 5$	$\begin{aligned} & \underline{74} \\ & \underline{89} \\ & \hline \end{aligned}$	Low speed operating time	s	$\begin{aligned} & \text { ロ. I to } \\ & 999.9 \end{aligned}$	－	nO	
E $\square F$	79	Time delay before the auxiliary pump stop command	s			2 s	
t $\square 1$	$\frac{54}{\underline{77}}$	Application Overload time delay	s	\square to 100	－	5 s	
ヒロп	78	Time delay before starting the auxiliary pump	s			2 s	
EPI	76	PI feedback supervision function time delay	s			0 s	
tヒd	55	Motor thermal state threshold	$\begin{aligned} & \% \text { of } \\ & \mathrm{tHr} \end{aligned}$	－to 11日		100\％	
ヒヒロ	$\underline{97}$	Modbus time out	－	ロ．I to $\exists \square$	－	10	
ヒUn	$\underline{60}$	Auto－tuning	－	$\begin{aligned} & n \square \\ & Y E S \\ & d \square \cap E \end{aligned}$	No Yes Done	nO	
$U F_{r}$	58	IR compensation（law U／F）	\％	25 to 2ロロ	－	100\％	
$U L \square$	$\underline{39}$	Main voltage	V		－	－	－
$U L E$	$\frac{55}{\underline{77}}$	Application underload time delay	s	\square to $10 \square$	－	5 s	
$U \cap 5$	57	Rated motor voltage	V	100 to 4日ロ	－	230 V	
$\triangle P P$	75	Wake－up threshold	\％	\square to $10 \square$	－	0	
U5	$\underline{95}$	Undervoltage fault management	－	$\begin{aligned} & \square \\ & 1 \end{aligned}$	Detected fault＋ R1 open Detected fault＋ R1 closed	0	
U［ \quad L	41	Drive voltage rating	－	－	－	－	－

[^0]: CAUTION
 MOTOR OVERHEATING

 - This drive does not provide direct thermal protection for the motor.
 - Use of a thermal sensor in the motor may be required for protection at all speeds or loading conditions.
 - Consult the motor manufacturer for the thermal capability of the motor when operated over the desired speed range

 Failure to follow these instructions can result in equipment damage.

[^1]: ()

 Parameter that can be modified during operation or when stopped.

[^2]: (1) $\mathrm{In}=$ nominal drive current

[^3]: ()

 Parameter that can be modified during operation or when stopped.

[^4]: 0 Parameter that can be modified during operation or when stopped.

[^5]: ()

 Parameter that can be modified during operation or when stopped.

[^6]: ()

 Parameter that can be modified during operation or when stopped.

[^7]: 0
 Parameter that can be modified during operation or when stopped.

[^8]: (】 Parameter that can be modified during operation or when stopped

