

Quick Reference for E7 Parameters

Parameter Number	Factory Setting	User Setting	Parameter Number	Factory Setting	User Setting	Parameter Number	Factory Setting	User Setting Setting	Parameter Number	Factory Setting	User Setting
A1-00	0		b5-06	100		E1-06	60		L3-06	120	
A1-01	2		b5-07	0		E1-07	3		L4-01	0	
A1-03	0		b5-08	0		E1-08	18		L4-02	2	
A1-04	0		b5-09	0		E1-09	1.5		L4-05	1	
A1-05	0		b5-10	1		E1-10	10.8		L4-06	80	
A2-01			b5-11	0		E1-11	0		L5-01	0	
A2-02			b5-12	0		E1-12	0		L5-02	0	
A2-03			b5-13	0		E1-13	0		L5-03	10	
A2-04			b5-14	1		E2-01	kVA Dep.		L6-01	6	
A2-05			b5-15	0		E2-03	kVA Dep.		L6-02	15	
A2-06			b5-16	0		E2-05	kVA Dep.		L6-03	10	
A2-07			b5-17	0		F6-01	1		L8-01	0	
A2-08			b5-18	0		F6-02	0		L8-02	95	
A2-09			b5-19	0		F6-03	1		L8-03	4	
A2-10			b5-20	1		F6-05	0		L8-06	5	
A2-11			b5-21	1		H1-01	24		L8-09	1	
A2-12			b5-22	0		H1-02	14		L8-10	0	
A2-13			b5-23	0		H1-03	3		L8-11	300	
A2-14			b5-24	0		H1-04	4		L8-12	45	
A2-15			b5-25	0		H1-05	6		L8-15	1	
A2-16			b5-26	0		H2-01	0		L8-18	1	
A2-17			b5-27	60		H2-02	A		L8-19	20	
A2-18			b5-28	0		H3-02	100		n1-01	1	
A2-19			b5-29	1		H3-03	0		n1-02	1	
A2-20			b5-30	0		H3-08	2		n3-01	5	
A2-21			b8-01	0		H3-09	2		n3-02	150	
A2-22			b8-04	kVA Dep.		H3-10	100		n3-03	1	
A2-23			b8-05	20		H3-11	0		n3-04	40	
A2-24			b8-06	0		H3-12	0.3		01-01	6	
A2-25			C1-01	30		H3-13	0		01-02	1	
A2-26			C1-02	30		H4-01	2		01-03	0	
A2-27			C1-03	30		H4-02	100		01-05	3	
A2-28			C1-04	30		H4-03	0		01-06	0	
A2-29			C1-09	10		H4-04	8		01-07	2	
A2-30			C1-11	0		H4-05	50		01-08	3	
A2-31			C2-01	0.2		H4-06	0		02-01	1	
A2-32			C2-02	0.2		H4-07	0		02-02	1	
b1-01	1		C4-01	1		H4-08	0		02-03	0	
b1-02	1		C4-02	200		H5-01	1F		02-04	kVA Dep.	
b1-03	0		C6-02	kVA Dep.		H5-02	3		02-05	1	
b1-04	1		C6-03	kVA Dep.		H5-03	0		02-06	1	
b1-07	0		C6-04	kVA Dep.		H5-04	3		02-07	0	
b1-08	0		C6-05	0		H5-05	1		02-08	1	
b1-11	0		d1-01	0		H5-06	5		02-09	1	
b1-12	0		d1-02	0		H5-07	1		02-10	0	
b2-01	0.5		d1-03	0		H5-08	0		02-12	0	
b2-02	50		d1-04	0		H5-09	2		02-14	0	
b2-03	0		d1-17	6		L1-01	1		02-15	1	
b2-04	0		d2-01	100		L1-02	8		03-01	0	
b2-09	0		d2-02	0		L1-03	3		03-02	0	
b3-01	2		d2-03	0		L1-04	1		T1-02	kVA Dep.	
b3-02	120		d3-01	0		L1-05	0.2		T1-04	kVA Dep.	
b3-03	2		d3-02	0		L2-01	2				
b3-05	0.2		d3-03	0		L2-02	0.1				
b3-14	1		d3-04	1		L2-03	0.1				
b4-01	0		d4-01	0		L2-04	0.3				
b4-02	0		d4-02	10		L2-05	190				
b5-01	0		E1-01	240 V or 480 V		L3-01	1				
b5-02	2		E1-03	F		L3-02	120				
b5-03	5		E1-04	60		L3-04	1				
b5-04	100		E1-05	240 V or 480 V		L3-05	1				

Warnings and Cautions

> This Section provides warnings and cautions pertinent to this product, that if not heeded, may result in personal injury, fatality, or equipment damage. Yaskawa is not responsible for consequences of ignoring these instructions.

A WARNING

YASKAWA manufactures component parts that can be used in a wide variety of industrial applications. The selection and application of YASKAWA products remain the responsibility of the equipment designer or end user. YASKAWA accepts no responsibility for the way its products are incorporated into the final system design. Under no circumstances should any YASKAWA product be incorporated into any product or design as the exclusive or sole safety control. Without exception, all controls should be designed to detect faults dynamically and fail safely under all circumstances. All products designed to incorporate a component part manufactured by YASKAWA must be supplied to the end user with appropriate warnings and instructions as to that part's safe use and operation. Any warnings provided by YASKAWA must be promptly provided to the end user. YASKAWA offers an express warranty only as to the quality of its products in conforming to standards and specifications published in the YASKAWA manual. NO OTHER WARRANTY, EXPRESS OR IMPLIED, IS OFFERED. YASKAWA assumes no liability for any personal injury, property damage, losses, or claims arising from misapplication of its products.

A WARNING

- Read and understand this manual before installing, operating, or servicing this Drive. All warnings, cautions, and instructions must be followed. All activity must be performed by qualified personnel. The Drive must be installed according to this manual and local codes.
- Do not connect or disconnect wiring while the power is on. Do not remove covers or touch circuit boards while the power is on. Do not remove or insert the digital operator while power is on.
- Before servicing, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. Status indicator LEDs and Digital Operator display will be extinguished when the DC bus voltage is below 50 VDC. To prevent electric shock, wait at least five minutes after all indicators are OFF and measure DC bus voltage level to confirm safe level.
- Do not perform a withstand voltage test on any part of the unit. This equipment uses sensitive devices and may be damaged by high voltage.

A WARNING

- The Drive is not suitable for circuits capable of delivering more than the specified RMS symmetrical amperes. Install adequate branch short circuit protection per applicable codes. Refer to the specification. Failure to do so may result in equipment damage and/or personal injury.
- Do not connect unapproved LC or RC interference suppression filters, capacitors, or overvoltage protection devices to the output of the Drive. These devices may generate peak currents that exceed Drive specifications.
- To avoid unnecessary fault displays caused by contactors or output switches placed between Drive and motor, auxiliary contacts must be properly integrated into the control logic circuit.
- YASKAWA is not responsible for any modification of the product made by the user; doing so will void the warranty. This product must not be modified.
- Verify that the rated voltage of the Drive matches the voltage of the incoming power supply before applying power.
- To meet CE directives, proper line filters and proper installation are required.
- Some drawings in this manual may be shown with protective covers or shields removed, to describe details. These must be replaced before operation.
- Observe electrostatic discharge procedures when handling circuit cards to prevent ESD damage.
- The equipment may start unexpectedly upon application of power. Clear all personnel from the drive, motor, and machine area before applying power. Secure covers, couplings, shaft keys, and machine loads before energizing the Drive.
- Please do not connect or operate any equipment with visible damage or missing parts. The operating company is responsible for any injuries or equipment damage resulting from failure to heed the warnings in this manual.

- Intended Use

Drives are intended for installation in electrical systems or machinery.
For use in the European Union, their installation in machinery and systems must conform to the following product standards of the Low Voltage Directive:
EN 50178, 1997-10, Equipping of Power Systems with Electronic Devices
EN 60201-1, 1997-12 Machine Safety and Equipping with Electrical Devices
Part 1: General Requirements (IEC 60204-1:1997)/
EN 61010, 1997-11Safety Requirements for Information Technology Equipment
(IEC 950:1991 + A1:1992 + A2:1993 + A3:1995 + A4:1996, modified)
CE certification is carried out to EN 50178, using the line filters specified in this manual and following the appropriate installation instructions.

■Other

The E7 Drive is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes, 240Vac maximum (240 V Class) and 480 Vac maximum (480 V Class). When protected by a circuit breaker or fuses having an interrupting rating not less than 100,000 RMS symmetrical amperes, 600 Vac maximum.

Introduction

The E7 Drive is a Pulse Width Modulated Drive for AC induction motors. This type of Drive is also known as an Adjustable Frequency Drive, Variable Frequency Drive, AC Drive, AFD, ASD, VFD, and Inverter. In this manual, the E7 Drive will be referred to as the "Drive".

The E7 Drive is a variable torque AC drive, designed specifically for HVAC applications in building automation, including fans, blowers and pumps. A new benchmark for size, cost, performance, benefits, and quality, the E7 includes numerous built-in features such as network communications, H/O/A, PI, and energy-savings functions.

The E7 has embedded communications for the popular building automation protocols, Johnson Controls Metasys ${ }^{\circledR}$ and Siemens APOGEE ${ }^{\text {TM }}$ FLN, as well as Modbus ${ }^{\circledR}$. An optional LONWORKS ${ }^{\circledR}$ interface card is also available.

The LCD keypad/operator is equipped with Hand/Off/Auto functions, copy feature, 7 language choices, and 5 lines of display with 16 characters per line. Optional software allows upload/download, as well as graphing and monitoring of drive parameters from a PC for ease of drive management. User parameter settings can be recovered at any time via "user initialization".

Built-in PI eliminates the need for closed loop output signals from a building automation system. It includes feedback display, inverse, square root and differential control functions, and maintains setpoint for closed loop control of fans and pumps for pressure, flow, or temperature regulation.

This manual is applicable to E7 Drives defined by model numbers of CIMR-E7U \qquad . These models are designed for sale and use in North and South America.

This manual is subject to change as product improvements occur. The latest version of the manual can be obtained from the Yaskawa website www.drives.com . The date shown on the rear cover is changed when revisions are made. The latest version of Drive software is also shown.

In this manual, some figures portray the product with covers removed for clarity. The Drive should never be operated without covers installed.

This manual may describe trademarked equipment, which is the property of other companies. These trademarks are the property of the registered owner companies. These trademarks may include the following:

APOGEE ${ }^{\text {TM }}$ FLN, trademark of Siemens Building Technologies, Inc.
Metasys ${ }^{\circledR}$, trademark of Johnson Controls Inc.
Modbus ${ }^{\circledR}$, trademark of Schneider Automation, Inc.
LONWORKS ${ }^{\circledR}$, trademark of Echelon Corporation

Other Documents and Manuals may be available to support special use or installation of this product. These documents may be provided with the product or upon request. Contact Yaskawa Electric America, Inc. as required. Documents may include the following:

TM.E7.02.Programming... Manual included on CD ROM with product
TM.E7.11.Modbus ${ }^{\circledR} \ldots$ Manual included on CD ROM with product
TM.E7.20.LONWORKS ${ }^{\circledR}$... Manual included on CD ROM with product
TM.E7.21.APOGEE ${ }^{\text {TM }}$ FLN... Manual included on CD ROM with product
TM. E7.22. Metasys ${ }^{\circledR}$... Manual included on CD ROM with product
TM.E7B.01. Bypass... This manual should be used when the E7 Drive is packaged with Bypass Control
DriveWizard ${ }^{\mathrm{TM}}$... Software and Manual...Included on CD ROM with product
Option Instructions... Included on CD ROM with product

Table of Contents

Quick Reference Parameter List Inside front cover
Warnings and Cautions i
Safety Precautions and Instructions for Use iii
Introduction v
1 Physical Installation 1-1
E7 Model Number and Enclosure Style 1-2
Confirmations Upon Delivery 1-3
Exterior and Mounting Dimensions 1-7
Checking and Controlling Installation Site 1-11
Installation Orientation and Clearances 1-12
Removing and Attaching Terminal Cover 1-13
Removing/Attaching Digital Operator and Front Cover 1-14
2 Electrical Installation 2-1
Terminal Block Configuration 2-2
Wiring Main Circuit Terminals 2-3
Control Wiring 2-12
EMC Compatibility 2-19
3 Digital Operator 3-1
Digital Operator Display 3-1
Digital Operator Keys 3-2
Drive Mode Indicators 3-4
Drive Menus 3-7
Main Menu Structure 3-8
Operation Menu 3-9
Quick Setting Menu 3-12
Programming Menu 3-13
Modified Constants Menu 3-14
Auto-Tuning Menu 3-14
Example of Changing a Parameter 3-15
4 Start Up 4-1
Preparation for Drive Start Up 4-2
Drive Start Up Procedures 4-3
5 Basic Programming 5-1
Basic Programming Parameters 5-2
Language Selection 5-2
Speed Command Source Selection 5-2
Run Command Source Selection 5-3
Stopping Method Selection 5-5
Reverse Operation Selection 5-6
Drive Delay 5-7
PI Function 5-8
Energy Savings 5-14
Accel/Decel Time Settings 5-15
Speed Command Limits 5-15
Input Voltage Setting 5-16
Motor Rated Current Setting 5-16
Option Communication Selection 5-16
Gain And Bias Adjustment 5-16
Momentary Power Loss Function 5-17
Speed Command Loss Detection 5-18
Auto Restart 5-18
Torque Detection 5-19
Cooling Fan Operation 5-21
Monitor Configuration 5-21
User Initialization 5-22
Speed Command Setting Selection 5-22
Elapsed Timer Function 5-23
Digital Operator COPY Function 5-23
Auto Tuning 5-26
6 Diagnostic \& Troubleshooting 6-1
Fault Detection 6-2
Alarm Detection 6-8
OPE Errors 6-11
Auto-Tuning Faults 6-12
Digital Operator Copy Function Faults 6-13
Troubleshooting 6-14
Main Circuit Test Procedure 6-20
Drive Date Stamp Information 6-24
7 Maintenance 7-1
Periodic Inspection 7-2
Preventative Maintenance 7-3
Periodic Maintenance of Parts 7-4
Cooling Fan Replacement. 7-5
Removing and Mounting the Terminal Card 7-7
If the Motor Rotates Even When Inverter Output is Stopped 7-22
If Zero Volts is Detected When the Fan is Started, or Fan Stalls 7-22
If Output Frequency Does Not Rise to Frequency Reference 7-22
Appendix A - Parameter List A-1
User Parameter A-2
Monitor Display A-26
Appendix B - Capacity Related Parameters B-1
Parameters Affected by Drive Capacity B-2
Appendix C-Specifications C-1
Standard Drive Specification C-2
Appendix D-Communications D-1
Using Modbus Communication D-2
Modbus Function Code Details D-6
Data Tables D-8
Self- Diagnosis D-13
Appendix E-Peripheral Devices E-1
Branch Short Circuit Protection E-2
Peripheral Devices E-4
Appendix F - Spare Parts F-1
E7 Primary Spare Parts - 208-240Vac F-2
E7 Primary Spare Parts - 480Vac F-3
Support Services Inside rear cover

Chapter 1 Physical Installation

This chapter describes the requirements for receiving or installing the E7 Drive.
E7 Model Number and Enclosure Style 1-2
Confirmations upon Delivery 1-3
Exterior and Mounting Dimensions 1-7
Checking and Controlling Installation Site 1-11
Installation Orientation and Clearances 1-12
Removing and Attaching Terminal Cover 1-13
Removing/Attaching Digital Operator and Front Cover 1-14

- E7 Model Number and Enclosure Style

The E7 Drive covers two voltage ranges: 208-240Vac and 480Vac. Applicable ratings vary from 0.5 to 500 HP .

Table 1.1 E7 Model Numbers and Enclosure Style		
3-Phase Voltage	$\begin{gathered} \text { E7 } \\ \text { Model-Number } \end{gathered}$	EnclosureStyle
208-240Vac	CIMR-E7U20P4	NEMA 1 (IP20)
	CIMR-E7U20P7	NEMA 1 (IP20)
	CIMR-E7U21P5	NEMA 1 (IP20)
	CIMR-E7U22P21	NEMA 1 (IP20)
	CIMR-E7U23P7	NEMA 1 (IP20)
	CIMR-E7U25P5	NEMA 1 (IP20)
	CIMR-E7U27P5	NEMA 1 (IP20)
	CIMR-E7U2011	NEMA 1 (IP20)
	CIMR-E7U2015	NEMA 1 (IP20)
	CIMR-E7U2018	NEMA 1 (IP20)
	CIMR-E7U2022	NEMA 1 (IP20)
	CIMR-E7U2030	NEMA 1 (IP20)
	CIMR-E7U2037	Open Chassis (IP00)
	CIMR-E7U2045	Open Chassis (IP00)
	CIMR-E7U2075	Open Chassis (IP00)
	CIMR-E7U2090	Open Chassis (IP00)
	CIMR-E7U2110	Open Chassis (IP00)
480 Vac	CIMR-E7U40P4	NEMA 1 (IP20)
	CIMR-E7U40P7	NEMA 1 (IP20)
	CIMR-E7U41P5	NEMA 1 (IP20)
	CIMR-E7U42P2	NEMA 1 (IP20)
	CIMR-E7U43P7	NEMA 1 (IP20)
	CIMR-E7U45P5	NEMA 1 (IP20)
	CIMR-E7U47P5	NEMA 1 (IP20)
	CIMR-E7U4011	NEMA 1 (IP20)
	CIMR-E7U4015	NEMA 1 (IP20)
	CIMR-E7U4018	NEMA 1 (IP20)
	CIMR-E7U4030	NEMA 1 (IP20)
	CIMR-E7U4037	NEMA 1 (IP20)
	CIMR-E7U4045	NEMA 1 (IP20)
	CIMR-E7U4055	NEMA 1 (IP20)
	CIMR-E7U4075	Open Chassis (IP00)
	CIMR-E7U4090	Open Chassis (IP00)
	CIMR-E7U4110	Open Chassis (IP00)
	CIMR-E7U4160	Open Chassis (IP00)
	CIMR-E7U4185	Open Chassis (IP00)
	CIMR-E7U4220	Open Chassis (IP00)
	CIMR-E7U4300	Open Chassis (IP00)

Physical Installation 1-2

- Confirmations upon Delivery

■Receiving Checks

Check the following items as soon as the Drive is received.

Table 1.2 Received Checks	
Item	Method
Has the correct model of Drive been delivered?	Check the model number on the nameplate on the right side of the Drive. Reconcile with packing slip and/or order information.
Is the Drive damaged in any way?	Inspect the entire exterior of the Drive to see if there are any dents, scratches or other damage resulting from shipping.
Are any screws or other components loose?	Use a screwdriver or other tool to check for tightness.

If there are any irregularities in the above items, contact the shipping company, the representative who sold the Drive, or a Yaskawa representative immediately.

■ Nameplate Information

A nameplate is attached to the right side of each Drive. The following nameplate is an example for a standard Drive.

Fig 1.1 E7 Drive Nameplate

Drive Model Numbers

The model number of the Drive on the nameplate indicates the design specification, voltage, and drive rating of the Drive in alphanumeric codes.

Fig 1.2 Drive Model Number Structure

■ Drive Enclosure and Revision Code

The "Spec" number on the nameplate indicates the voltage, Drive rating, enclosure type, and the revision code of the Drive in alphanumeric codes.

Fig 1.3 "Spec" Number Structure

[^0]
- Component Names

■ Models CIMR-E7U20P4 thru 2018 and 40P4 thru 4018

The external appearance, component names, and terminal arrangement of the Drive are shown in Fig 1.4. and 1.5.

Fig 1.4 Drive Appearance

Fig 1.5 Terminal Arrangement (Terminal Cover Removed)

Models CIMR-E7U2022 thru 2110 and 4030 thru 4300

The external appearance, component names, and terminal arrangement of the Drive are shown in Fig 1.6 and 1.7.

Fig 1.6 Drive Appearance

Fig 1.7 Terminal Arrangement (Terminal Cover Removed)

Exterior and Mounting Dimensions

DIMENSIONS: E7 (NEMA 1) 208/240V (3.6-74.8AMPS) 480V (1.8-40AMPS)
S - 5516

RATED INPUT	MODEL CIMR-E7U	OUTPUT CURRENT RATING (AMPS)	$\begin{aligned} & \text { NOM. } \\ & \text { HP. } \end{aligned}$	DIMENSIONS IN INCHES																	APPROX. WEIGHT (LBS.)
				mounting		H	w	H2	W2	D	D1	A	B	C	E	F	G	J	K	L	
				H1	W1																
208 V	20221	88	30	15.16	7.68	21.06	10.00	. 30	1.16	10.24	3.94	1/4	5.00	6.50	7.88	1.73	5.90	2.44	1.97	1.10	53
	20301	115	40	17.13	8.66	24.21	10.98	. 30	1.16	10.24	3.94	1/4	5.00	6.50	7.88	1.73	5.90	2.44	1.97	1.10	60
240 V	20221	88	30	15.16	7.68	21.06	10.00	. 30	1.16	10.24	3.94	1/4	5.00	6.50	7.88	1.73	5.90	2.44	1.97	1.10	53
	20301	115	40	17.13	8.66	24.21	10.98	. 30	1.16	10.24	3.94	1/4	5.00	6.50	7.88	1.73	5.90	2.44	1.97	1.10	60
480 V	40301	67.2	40-50	17.13	8.66	21.06	10.98	. 30	1.16	10.24	3.94	1/4	5.00	6.50	7.88	1.73	5.90	1.97	1.97	1.10	53
	40371	77	75	21.06	10.24	25.00	12.95	. 30	1.36	11.22	4.13	1/4	5.18	6.70	8.07	1.73	6.70	1.97	1.97	1.10	88
	40451	96	60	21.06	10.24	28.15	12.95	. 30	1.36	11.22	4.13	1/4	5.18	6.70	8.07	1.73	6.70	2.44	1.97	1.10	88
	40551	125	100	21.06	10.24	28.15	12.95	. 30	1.36	11.22	4.13	1/4	5.18	6.70	8.07	1.73	6.70	2.44	1.97	1.10	88

FOR REFERENCE ONLY UNLESS PROPERLY ENDORSED.
IN ORDER TO ACHIEVE ADEQUATE COOLING
THE DRIVE MUST BE POSITIONED TO ALLOW A MINIMUM
OF FREE AIR SPACE OF 12 INCHES ON SIDES AND
5 INCHES TOP AND BOTTOM

APPVL. KJG 7.15.02

Physical Installation 1-8

Physical Installation 1-9

Checking and Controlling Installation Site

Install the Drive as described below and maintain optimum conditions.

- Installation Site

Install the Drive under the following conditions in Pollution Degree $1 \& 2$ environments per UL Standards. This excludes wet locations where surfaces may become conductive due to moisture and contaminant loading.

Table 1.3 Installation Site Specifications				
Type	Ambient Operating Temperature	Humidity	Plenum Rated	
NEMA 1 Type	$14^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}\left(-10\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$	95% RH or less (no condensation)	Yes	
Open Chassis	$14^{\circ} \mathrm{F}$ to $113^{\circ} \mathrm{F}\left(-10\right.$ to $\left.+45^{\circ} \mathrm{C}\right)$	$95 \% \mathrm{RH}$ or less (no condensation)	No	

Protective covers are attached to the top and bottom of the Drive. It is recommended to remove the protective covers before operating a CIMR-E7U2030/4055 Drive and smaller in a panel to obtain the $113^{\circ}\left(45^{\circ} \mathrm{C}\right)$ ambient operating temperature.
Observe the following precautions when installing the Drive:

- in a clean location which is free from oil mist and dust.
- in an environment where metal shavings, oil, water, or other foreign materials do not get into the Drive.
- in a location free from radioactive materials and combustible materials (e.g. wood).
- in a location free from harmful gasses and liquids.
- in a location free from excessive vibration.
- in a location free from chlorides.
- in a location away from direct sunlight.

-Controlling the Ambient Temperature

To enhance the reliability of operation, the Drive should be installed in an environment free from extreme temperature variations. If the Drive is installed in an enclosure, use a cooling fan or air conditioner to maintain the internal air temperature below $113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$.

- Protecting the Drive from Foreign Matter

During Drive installation, it is possible to have foreign matter, such as metal shavings or wire clippings, fall inside the Drive. To prevent foreign matter from falling into the Drive, place a temporary cover over the Drive.
Always remove the temporary cover from the Drive after completing installation. Otherwise, ventilation will be reduced, causing the Drive to overheat.

Installation Orientation and Clearances

Install the Drive vertically so as not to reduce the cooling efficiency. When installing the Drive, always provide the following installation clearances to allow normal heat dissipation. Ensure that the heatsink is against a closed surface to avoid diverting cooling air around the heatsink.

Fig 1.8 Drive Installation Orientation and Clearance

1. The same clearance is required horizontally and vertically for both Open Chassis (IP00) and NEMA 1 Type Drives.
2. Always remove the protection covers before installing a CIMR-E7U2018/4018 and smaller Drive in a panel.
Always provide enough clearance for lifting eye bolts and the main circuit wiring when installing a CIMR-E7U2022 /4030 and larger Drive in a panel.

Removing and Attaching Terminal Cover

Remove the terminal cover to connect cables to the control circuit and main circuit terminals.

\bullet Removing the Terminal Cover

■ Models CIMR-E7U20P4 thru 2018 and 40P4 thru 4018

Loosen the screw at the bottom of the terminal cover, press in on the sides of the terminal cover in the directions of arrows 1, and then lift up on the terminal in the direction of arrow 2.

Fig 1.9 Removing the Terminal Cover

■ Models CIMR-E7U2022 thru 2110 and 4030 thru 4300

Loosen the screws on the left and right at the top of the terminal cover, pull down the terminal cover in the direction of arrow 1 and then lift up on the terminal cover in the direction of arrow 2 .

Fig 1.10 Removing the Terminal Cover

- Attaching the Terminal Cover

After wiring the terminal block, attach the terminal cover by reversing the removal procedure.
For Models CIMR-E7U2018/4018 and smaller, insert the tab on the top of the terminal cover into the groove on the Drive and press in on the bottom of the terminal cover until it clicks into place.
For Drives CIMR-E7U2022/4030 and larger, insert the tab on the top of the terminal cover into the groove on the Drive, and place the terminal cover by lifting it up toward the top of the Drive.

Physical Installation 1-13

Removing/Attaching Digital Operator and Front Cover

- Models CIMR-E7U20P4 thru 2018 and 40P4 thru 4018

For Models CIMR-E7U2018/4018 and smaller, remove the terminal cover and then use the following procedures to remove the Digital Operator and front cover.

■Removing the Digital Operator

Press on the side of the Digital Operator in the direction of arrow 1 to unlock the Digital Operator and lift the Digital Operator in the direction of arrow 2 to remove the Digital Operator as shown in Fig 1.13.

Fig 1.11 Removing the Digital Operator

■Removing the Front Cover

Press the left and right sides of the front cover in the direction of arrows 1 and lift the bottom of cover in the direction of arrow 2 to remove cover as shown in Fig 1.14.

Fig 1.12 Removing the Front Cover

■ Mounting the Front Cover

Mount the front cover to the Drive by performing the steps to remove the front cover in reverse order.

1. Do not mount the front cover with the Digital Operator attached to the front cover; otherwise, Digital Operator may malfunction due to imperfect contact.
2. Insert the tab of the upper part of the front cover into the groove of the Drive and press the lower part of the front cover onto the Drive until the front cover snaps shut.

- Models CIMR-E7U2022 thru 2110 and 4030 thru 4300

For Models CIMR-E7U2022/4030 and larger, remove the terminal cover and then use the following procedures to remove the Digital Operator and front cover.

■Removing the Digital Operator

Use the same procedure for Models CIMR-E7U2018/4018 and smaller.

■Removing the Front Cover

Loosen all screws on the front cover. Lift up at the location labeled 1 at the top of the control circuit terminal card in the direction of arrow 2.

Fig 1.13 Removing the Front Cover

■ Attaching the Front Cover

Attach the front cover by reversing the procedure to remove it.
1.Confirm that the Digital Operator is not mounted on the front cover. Contact faults can occur if the cover is attached while the Digital Operator is mounted to it.
2. Insert the tab on the top of the front cover into the slot on the Drive and press in on the cover until it clicks into place on the Drive.

■Attaching the Digital Operator

Use the same procedure for Models CIMR-E7U2018/4018 and smaller.

■ Mounting the Digital Operator

Attach the front cover, mount the Digital Operator onto the Drive using the following procedure.

1. Hook the Digital Operator at A (two locations) on the front cover in the direction of arrow 1 as shown in the following illustration.
2. Press the Digital Operator in the direction of arrow 2 until it snaps in place at B (two locations).

Fig 1.14 Mounting the Digital Operator

1. Do not remove or attach the Digital Operator or mount or remove the front cover using methods other than those described above, otherwise damage to the Digital Operator or Drive may occur.
IMPORTANT
2. Never attach the front cover to the Drive with the Digital Operator attached to the front cover. Damage to the Digital Operator will occur. Always attach the front cover to the Drive first, and then attach the Digital Operator to the front cover.

Chapter 2 Electrical Installation

This chapter describes wiring terminals, main circuit terminal connections, main circuit terminal wiring specifications, control circuit terminals, and control circuit wiring specifications.
Terminal Block Configuration 2-2
Wiring Main Circuit Terminals. 2-3
Control Wiring 2-12
EMC Compatibility 2-19

Terminal Block Configuration

The wiring terminals are shown in Fig 2.1, Fig 2.2 and Fig 2.3.

Fig 2.1 Terminal Configuration for Models CIMR-E7U2018/4018 and smaller

Fig 2.2 Terminal Configuration for Models CIMR-E7U2022/4030 and larger

Fig 2.3 Control Circuit Terminal Layout

Wiring Main Circuit Terminals

Applicable Wire Sizes and Closed-loop Connectors
Select the appropriate wires and crimp terminals from Table 2.1 to Table 2.2.

Table 2.1 208-240Vac Wire Sizes and Connector Specifications						
Drive Model CIMR-E7U	Terminal Symbol	Terminal Screws	Clamping Torque lb. in. (N•m)	Wire Size Range AWG $\left(\mathrm{mm}^{2}\right)$	Recommended Wire Size AWG (mm^{2})	Wire Type
20P4	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \oplus, \oplus 1, \oplus_{\mathrm{U}} \mathrm{\oplus} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3 \end{gathered}$	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & \text { (1.2 to } 1.5 \text {) } \end{aligned}$	$\begin{aligned} & 14 \text { to } 10 \\ & (2 \text { to } 5.5) \end{aligned}$	$\begin{aligned} & 14 \\ & (2) \end{aligned}$	600 Vac UL-type vinyl-sheathed or equivalent
20P7	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \Theta_{\mathrm{e}}, \oplus_{1}, \oplus_{2}, \\ \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3 \end{gathered}$	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & \text { (1.2 to } 1.5 \text {) } \end{aligned}$	$\begin{aligned} & 14 \text { to } 10 \\ & (2 \text { to } 5.5) \end{aligned}$	$\begin{aligned} & 14 \\ & (2) \end{aligned}$	
21P5	$\underset{\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3}{\mathrm{R} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \oplus_{2},}{ }_{2},$	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{aligned} & 14 \text { to } 10 \\ & (2 \text { to } 5.5) \end{aligned}$	$\begin{aligned} & 14 \\ & (2) \end{aligned}$	
22P2	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \underset{\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3}{\oplus} 1, \oplus_{2}, \\ \oplus \end{gathered}$	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{aligned} & 14 \text { to } 10 \\ & (2 \text { to } 5.5) \end{aligned}$	$\begin{aligned} & 14 \\ & (2) \end{aligned}$	
23P7	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \Theta_{\mathrm{e}}, \oplus_{1}, \oplus_{2}, \\ \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3 \end{gathered}$	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{gathered} 12 \text { to } 10 \\ (3.5 \text { to } 5.5) \end{gathered}$	$\begin{gathered} 12 \\ (3.5) \end{gathered}$	
25P5	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \Theta, \oplus 1, \oplus_{2}, \\ \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3 \end{gathered}$	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{gathered} 10 \\ (5.5) \end{gathered}$	$\begin{gathered} 10 \\ (5.5) \end{gathered}$	
27P5	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \Theta_{\mathrm{e}}, \oplus_{1, \oplus_{2},}^{\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3} \end{gathered}$	M5	$\begin{gathered} 21.99 \\ (2.5) \end{gathered}$	$\begin{gathered} 8 \text { to } 6 \\ (8 \text { to } 14) \end{gathered}$	$\begin{gathered} 8 \\ (8) \end{gathered}$	
2011	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \Theta, \oplus_{1}, \oplus_{2}, \\ \text { U/T1, V/T2, W/T3 } \end{gathered}$	M5	$\begin{gathered} 21.99 \\ (2.5) \end{gathered}$	$\begin{gathered} 6 \text { to } 4 \\ (14 \text { to } 22) \end{gathered}$	$\begin{gathered} 6 \\ (14) \end{gathered}$	
2015	R/L1, S/L2, T/L3, $\odot, \oplus_{1, ~}^{\text {¢ }}$ 2, U/T1, V/T2, W/T3	M6	$\begin{gathered} 35.2 \text { to } 43.99 \\ (4.0 \text { to } 5.0) \\ \hline \end{gathered}$	$\begin{gathered} 4 \text { to } 2 \\ (30 \text { to } 38) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (30) \\ \hline \end{gathered}$	
2015	$\stackrel{1}{ }(\underline{ }$	M6	$\begin{gathered} 35.2 \text { to } 43.99 \\ (4.0 \text { to } 5.0) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (22) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (22) \\ \hline \end{gathered}$	
	R/L1, S/L2, T/L3, $\ominus \oplus_{1}, \oplus_{2}$, U/T1, V/T2, W/T3	M8	$\begin{aligned} & 79.2 \text { to } 87.97 \\ & \text { (} 9.0 \text { to } 10.0 \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} 3 \text { to } 2 \\ (30 \text { to } 38) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (30) \\ \hline \end{gathered}$	
	(1)	M6	$\begin{gathered} 35.2 \text { to } 43.99 \\ (4.0 \text { to } 5.0) \end{gathered}$	$\begin{gathered} 4 \\ (22) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (22) \\ \hline \end{gathered}$	
	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, ~ \ominus, \oplus 1, \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \\ \mathrm{~W} / \mathrm{T} 3, \mathrm{R} 1 / \mathrm{L} 11, \mathrm{~S} 1 / \mathrm{L} 21, \mathrm{~T} 1 / \mathrm{L} 31 \\ \hline \end{gathered}$	M8	$\begin{aligned} & 79.2 \text { to } 87.97 \\ & \text { (} 9.0 \text { to } 10.0 \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} 3 \text { to } 1 \\ (30 \text { to } 60) \end{gathered}$	$\begin{gathered} 3 \\ (30) \\ \hline \end{gathered}$	
2022	± 3	M6	$\begin{gathered} 35.2 \text { to } 43.99 \\ (4.0 \text { to } 5.0) \\ \hline \end{gathered}$	$\begin{gathered} 8 \text { to } 4 \\ (8 \text { to } 22) \\ \hline \end{gathered}$	-	
	(1)	M8	$\begin{aligned} & 79.2 \text { to } 87.97 \\ & \text { (9.0 to } 10.0 \text {) } \end{aligned}$	$\begin{gathered} 4 \text { to } 2 \\ (22 \text { to } 38) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (22) \\ \hline \end{gathered}$	
2030	$\begin{gathered} \text { R/L1, S/L2, T/L3, } \\ \mathrm{V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3, \mathrm{R} 1 / \mathrm{L} 11, \mathrm{~S} 1 / \mathrm{L} 21, \mathrm{~T} 1 / \mathrm{L} 31 \\ \hline \end{gathered}$	M8	$\begin{aligned} & 79.2 \text { to } 87.97 \\ & \text { (} 9.0 \text { to } 10.0 \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} 1 \text { to } 1 / 0 \\ (50 \text { to } 60) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (50) \end{gathered}$	
	\dagger_{+3}	M6	$\begin{gathered} 35.2 \text { to } 43.99 \\ (4.0 \text { to } 5.0) \\ \hline \end{gathered}$	$\begin{gathered} 8 \text { to } 4 \\ (8 \text { to } 22) \\ \hline \end{gathered}$	-	
	(1)	M8	$\begin{aligned} & 79.2 \text { to } 87.97 \\ & (9.0 \text { to } 10.0) \\ & \hline \end{aligned}$	$\begin{gathered} 4 \text { to } 2 \\ (22 \text { to } 38) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (22) \\ \hline \end{gathered}$	

Electrical Installation 2-3

Table 2.1 208-240Vac Wire Sizes and Connector Specifications						
Drive Model CIMR-E7U	Terminal Symbol	Terminal Screws	Clamping Torque lb. in. ($\mathrm{N} \cdot \mathrm{m}$)	$\begin{aligned} & \hline \text { Wire Size } \\ & \text { Range } \\ & \text { AWG } \\ & \left(\mathrm{mm}^{2}\right) \\ & \hline \end{aligned}$	Recommended Wire Size AWG $\left(\mathrm{mm}^{2}\right)$	Wire Type
2037	R/L1, S/L2, T/L3,,$- \oplus_{1 \mathrm{U} / \mathrm{T} 1,}$ V/T2, W/T3, R1/L11, S1/L21, T1/L31	M10	$\begin{aligned} & 154.8 \text { to } 197.9 \\ & (17.6 \text { to } 22.5) \end{aligned}$	$\begin{gathered} 2 / 0 \text { to } 4 / 0 \\ \text { (60 to } 100 \text {) } \end{gathered}$	$\begin{gathered} 2 / 0 \\ (60) \end{gathered}$	600Vac UL-type vinyl-sheathed or equivalent
	\dagger^{+}	M8	$\begin{aligned} & 77.4 \text { to } 95.0 \\ & \text { (8.8 to } 10.8 \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} 10 \text { to } 4 \\ \text { (5.5 to } 22 \text {) } \\ \hline \end{gathered}$	-	
	(1)	M10	$\begin{aligned} & 154.8 \text { to } 197.9 \\ & (17.6 \text { to } 22.5) \\ & \hline \end{aligned}$	$\begin{gathered} 2 \text { to } 2 / 0 \\ (30 \text { to } 60) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (30) \\ \hline \end{gathered}$	
		M4	$\begin{aligned} & 11.4 \text { to } 12.3 \\ & (1.3 \text { to } 1.4) \\ & \hline \end{aligned}$	$\begin{gathered} 20 \text { to } 10 \\ (0.5 \text { to } 5.5) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (1.25) \\ \hline \end{gathered}$	
2045	R/L1, S/L2, T/L3,,$- \oplus_{1 \mathrm{U} / \mathrm{T} 1,}$ V/T2, W/T3, R1/L11, S1/L21, T1/L31	M10	$\begin{aligned} & 154.8 \text { to } 197.9 \\ & (17.6 \text { to } 22.5) \end{aligned}$	$\begin{gathered} 3 / 0 \text { to } 4 / 0 \\ (80 \text { to } 100) \end{gathered}$	$\begin{gathered} 3 / 0 \\ (80) \\ \hline \end{gathered}$	
	$+_{3}$	M8	$\begin{array}{r} 77.4 \text { to } 95.0 \\ \text { (8.8 to } 10.8 \text {) } \\ \hline \end{array}$	$\begin{gathered} 10 \text { to } 4 \\ \text { (5.5 to } 22 \text {) } \\ \hline \end{gathered}$	-	
	(1)	M10	$\begin{aligned} & 154.8 \text { to } 197.9 \\ & (17.6 \text { to } 22.5) \\ & \hline \end{aligned}$	$\begin{gathered} 1 \text { to } 2 / 0 \\ (38 \text { to } 60) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (38) \\ \hline \end{gathered}$	
		M4	$\begin{aligned} & 11.4 \text { to } 12.3 \\ & (1.3 \text { to } 1.4) \\ & \hline \end{aligned}$	$\begin{gathered} 20 \text { to } 10 \\ (0.5 \text { to } 5.5) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (1.25) \\ \hline \end{gathered}$	
2055	R/L1, S/L2, T/L3, \odot, \oplus_{1}	M12	$\begin{aligned} & 276.2 \text { to } 344.8 \\ & (31.4 \text { to } 39.2) \\ & \hline \end{aligned}$	$\begin{gathered} 1 / 0 \text { to } 4 / 0 \\ (50 \text { to } 100) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 0 \mathrm{X} 2 \mathrm{P} \\ (50 \mathrm{X} 2 \mathrm{P}) \\ \hline \end{gathered}$	
	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M10	$\begin{aligned} & 154.8 \text { to } 197.9 \\ & (17.6 \text { to } 22.5) \\ & \hline \end{aligned}$	$\begin{gathered} 4 / 0 \\ (100) \\ \hline \end{gathered}$	$\begin{gathered} 4 / 0 \\ (100) \\ \hline \end{gathered}$	
	${ }_{+}+3$	M8	$\begin{aligned} & 77.4 \text { to } 95.0 \\ & \text { (8.8 to } 10.8 \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} 10 \text { to } 2 / 0 \\ (5.5 \text { to } 60) \\ \hline \end{gathered}$	-	
	$\stackrel{1}{ }{ }^{\text {a }}$	M10	$\begin{aligned} & 154.8 \text { to } 197.9 \\ & (17.6 \text { to } 22.5) \\ & \hline \end{aligned}$	$\begin{gathered} 3 \text { to } 4 / 0 \\ (30 \text { to } 60) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 0 \\ (50) \\ \hline \end{gathered}$	
	$\mathrm{r} / \ell 1, d^{\prime} / 2$	M4	$\begin{aligned} & 11.4 \text { to } 12.3 \\ & (1.3 \text { to } 1.4) \\ & \hline \end{aligned}$	$\begin{gathered} 20 \text { to } 10 \\ (0.5 \text { to } 5.5) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (1.25) \\ \hline \end{gathered}$	
	R/L1, S/L2, T/L3, \odot, ${ }_{1}$	M12	$\begin{gathered} 276.2 \text { to } 344.8 \\ (31.4 \text { to } 39.2) \\ \hline \end{gathered}$	$\begin{array}{r} 3 / 0 \text { to } 250 \\ (80 \text { to } 125) \\ \hline \end{array}$	$\begin{gathered} 3 / 0 \mathrm{X} 2 \mathrm{P} \\ (80 \mathrm{X} 2 \mathrm{P}) \\ \hline \end{gathered}$	
	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M10	$\begin{aligned} & 154.8 \text { to } 197.9 \\ & (17.6 \text { to } 22.5) \\ & \hline \end{aligned}$	$\begin{gathered} 3 / 0 \text { to } 4 / 0 \\ (80 \text { to } 100) \\ \hline \end{gathered}$	$\begin{gathered} 3 / 0 \mathrm{X} 2 \mathrm{P} \\ (80 \mathrm{X} 2 \mathrm{P}) \\ \hline \end{gathered}$	
2075	± 3	M8	$\begin{aligned} & 77.4 \text { to } 95.0 \\ & \text { (8.8 to } 10.8 \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} 10 \text { to } 2 / 0 \\ \text { (5.5 to } 60 \text {) } \\ \hline \end{gathered}$	-	
	(1)	M10	$\begin{aligned} & 154.8 \text { to } 197.9 \\ & (17.6 \text { to } 22.5) \\ & \hline \end{aligned}$	$\begin{gathered} 3 / 0 \text { to } 400 \\ \text { (100 to 200) } \\ \hline \end{gathered}$	$\begin{gathered} 3 / 0 \\ (100) \\ \hline \end{gathered}$	
	$\mathrm{r} / \ell 1, \Delta / / 2$	M4	$\begin{aligned} & 11.4 \text { to } 12.3 \\ & (1.3 \text { to } 1.4) \\ & \hline \end{aligned}$	$\begin{gathered} 20 \text { to } 10 \\ (0.5 \text { to } 5.5) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (1.25) \\ \hline \end{gathered}$	
	R/L1, S/L2, T/L3, $\ominus^{\text {, }}{ }_{1}$	M12	$\begin{gathered} 276.2 \text { to } 344.8 \\ \text { (31.4 to } 39.2 \text {) } \\ \hline \end{gathered}$	$\begin{gathered} 250 \text { to } 400 \\ (150 \text { to } 200) \\ \hline \end{gathered}$	$\begin{gathered} 250 \mathrm{X} 2 \mathrm{P} \\ (150 \mathrm{X} 2 \mathrm{P}) \\ \hline \end{gathered}$	
	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M12	$\begin{aligned} & 276.2 \text { to } 344.8 \\ & (31.4 \text { to } 39.2) \\ & \hline \end{aligned}$	$\begin{gathered} 4 / 0 \text { to } 300 \\ (100 \text { to } 150) \\ \hline \end{gathered}$	$\begin{gathered} 4 / 0 \mathrm{X} 2 \mathrm{P} \\ (100 \mathrm{X} 2 \mathrm{P}) \\ \hline \end{gathered}$	
2090	$\oplus_{+} 3$	M8	$\begin{aligned} & \hline 77.4 \text { to } 95.0 \\ & \text { (8.8 to } 10.8 \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} 10 \text { to } 2 / 0 \\ (5.5 \text { to } 60) \\ \hline \end{gathered}$	-	
	$\stackrel{1}{ }$)	M12	$\begin{gathered} 276.2 \text { to } 344.8 \\ (31.4 \text { to } 39.2) \\ \hline \end{gathered}$	$\begin{gathered} 2 / 0 \text { to } 300 \\ (60 \text { to } 150) \\ \hline \end{gathered}$	$\begin{gathered} 2 / 0 \mathrm{X} 2 \mathrm{P} \\ (60 \mathrm{X} 2 \mathrm{P}) \\ \hline \end{gathered}$	
		M4	$\begin{aligned} & 11.4 \text { to } 12.3 \\ & (1.3 \text { to } 1.4) \\ & \hline \end{aligned}$	$\begin{gathered} 20 \text { to } 10 \\ (0.5 \text { to } 5.5) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (1.25) \\ \hline \end{gathered}$	
2110	R/L1, S/L2, T/L3, \odot, \oplus_{1}	M12	$\begin{gathered} 276.2 \text { to } 344.8 \\ (31.4 \text { to } 39.2 \text {) } \end{gathered}$	$\begin{gathered} 350 \text { to } 600 \\ (200 \text { to } 325) \end{gathered}$	$\begin{gathered} 350 \mathrm{X} 2 \mathrm{P}, \text { or } 1 / 0 \\ \mathrm{X} 2 \mathrm{P}(200 \mathrm{X} 2 \mathrm{P}, \\ \text { or } 50 \mathrm{X} 4 \mathrm{P}) \\ \hline \end{gathered}$	
	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M12	$\begin{gathered} 276.2 \text { to } 344.8 \\ (31.4 \text { to } 39.2 \text {) } \end{gathered}$	$\begin{gathered} 150 \text { to } 325 \\ (300 \text { to } 600) \end{gathered}$	$\begin{gathered} 300 \mathrm{X} 2 \mathrm{P}, \text { or } 1 / 0 \mathrm{X} \\ 4 \mathrm{P}(150 \mathrm{X} 2 \mathrm{P} \text {, or } \\ 1 / 0 \mathrm{X} 4 \mathrm{P}) \\ \hline \end{gathered}$	
	\dagger_{+3}	M8	$\begin{aligned} & 77.4 \text { to } 95.0 \\ & \text { (8.8 to } 10.8 \text {) } \\ & \hline \end{aligned}$	$\begin{gathered} 10 \text { to } 2 / 0 \\ (5.5 \text { to } 60) \\ \hline \end{gathered}$	-	
	(1)	M12	$\begin{gathered} 276.2 \text { to } 344.8 \\ (31.4 \text { to } 39.2) \\ \hline \end{gathered}$	$\begin{gathered} 300 \\ (150) \\ \hline \end{gathered}$	$\begin{gathered} 300 \mathrm{X} 2 \mathrm{P} \\ (150 \mathrm{X} 2 \mathrm{P}) \\ \hline \end{gathered}$	
	$\mathrm{r} / \ell 1, \Delta^{\prime} / 2$	M4	$\begin{aligned} & 11.4 \text { to } 12.3 \\ & (1.3 \text { to } 1.4) \\ & \hline \end{aligned}$	$\begin{gathered} 20 \text { to } 10 \\ (0.5 \text { to } 5.5) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (1.25) \\ \hline \end{gathered}$	

Electrical Installation 2-4

Table 2.2 480Vac Wire Sizes and Connector Specifications						
Drive Model CIMR-E7U	Terminal Symbol	Terminal Screws	Clamping Torque lb. in. ($\mathrm{N} \cdot \mathrm{m}$)	Wire Size Range AWG $\left(\mathrm{mm}^{2}\right)$	Recommended Wire Size AWG (mm^{2})	Wire Type
40P4	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \Theta, \oplus 1, \oplus_{\mathrm{U}}^{\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3} \\ \hline \end{gathered}$ (1)	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{gathered} 14 \text { to } 10 \\ (2 \text { to } 5.5) \end{gathered}$	$\begin{aligned} & 14 \\ & \text { (2) } \end{aligned}$	
40P7	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \oplus, \oplus 1, \oplus_{\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3}, \\ \hline \end{gathered}$	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{aligned} & 14 \text { to } 10 \\ & (2 \text { to } 5.5) \end{aligned}$	$\begin{aligned} & 14 \\ & (2) \end{aligned}$	
41 P 5	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \Theta_{\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3}^{\oplus}, \oplus_{2}, \end{gathered}$	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{gathered} 14 \text { to } 10 \\ (2 \text { to } 5.5) \end{gathered}$	14 (2)	
42P2	$\underset{\mathrm{U} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \underset{\mathrm{U} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3}{\oplus}, \oplus_{2},}{ }$ (M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{aligned} & 14 \text { to } 10 \\ & (2 \text { to } 5.5) \end{aligned}$	$\begin{aligned} & 14 \\ & (2) \end{aligned}$	
43 P 7	$\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \ominus_{\mathrm{C}} \oplus_{1}, \oplus_{2}$, U/T1, V/T2, W/T3	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{gathered} 14 \text { to } 10 \\ (2 \text { to } 5.5) \end{gathered}$	$\begin{gathered} 12 \\ (3.5) \\ \hline 14 \\ (2) \end{gathered}$	600Vac UL-type vinyl-sheathed or equivalent
45P5	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \mathrm{U}_{\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3}^{\oplus}, \oplus_{2}, \end{gathered}$	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{gathered} 12 \text { to } 10 \\ (3.5 \text { to } 5.5) \end{gathered}$	$\begin{gathered} 12 \\ (3.5) \end{gathered}$	
	$\stackrel{(1)}{ }$			$\begin{aligned} & \hline 14 \text { to } 10 \\ & (2 \text { to } 5.5) \end{aligned}$	$\begin{aligned} & 14 \\ & (2) \end{aligned}$	
47P5	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \underset{\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3}{\oplus} \oplus_{1, ~}^{\oplus}+\mathrm{B} 1, \mathrm{~B} 2, \\ \hline \end{gathered}$	M4	$\begin{aligned} & 10.6 \text { to } 13.2 \\ & (1.2 \text { to } 1.5) \end{aligned}$	$\begin{gathered} 10 \\ (5.5) \end{gathered}$	$\begin{gathered} 10 \\ (5.5) \end{gathered}$	
	(1)			$\begin{gathered} 12 \text { to } 10 \\ (3.5 \text { to } 5.5) \end{gathered}$	$\begin{gathered} 12 \\ (3.5) \end{gathered}$	
4011	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \Theta, \mathrm{U}_{\mathrm{U}}^{-\mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3} 1, \oplus_{2}, \end{gathered}$	M5	$\begin{gathered} 21.99 \\ (2.5) \end{gathered}$	$\begin{gathered} 10 \text { to } 6 \\ (5.5 \text { to } 14) \end{gathered}$	$\begin{gathered} 8 \\ (8) \\ \hline 10 \\ (5.5) \end{gathered}$	
4015	$\underset{\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3}{\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3,} \oplus_{2}^{\oplus},$	M5	$\begin{gathered} 21.99 \\ (2.5) \end{gathered}$	$\begin{gathered} 8 \text { to } 6 \\ (8 \text { to } 14) \end{gathered}$	8 (8)	
	$\stackrel{1}{1}$	M5 M6	21.99 (2.5) 35.2 to 43.99 $(4.0$ to 5.0$)$	$\begin{gathered} 5.5 \text { to } 14 \\ (5.5 \text { to } 14) \end{gathered}$	$\begin{gathered} 10 \\ (5.5) \end{gathered}$	
4018	$\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \Theta^{+} \oplus_{1}, \oplus_{3, \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3,}$	M6	$\begin{gathered} 35.2 \text { to } 43.99 \\ (4.0 \text { to } 5.0) \end{gathered}$	$\begin{gathered} 8 \text { to } 2 \\ (8 \text { to } 38) \end{gathered}$	$\begin{gathered} 8 \\ (8) \end{gathered}$	
	$\stackrel{(}{\ominus}$	M6	$\begin{gathered} 35.2 \text { to } 43.99 \\ (4.0 \text { to } 5.0) \end{gathered}$	$\begin{gathered} 8 \text { to } 4 \\ (8 \text { to } 22) \end{gathered}$	$\begin{gathered} 8 \\ (8) \end{gathered}$	
4030	$\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, ~-, \oplus_{1}, \oplus_{3}, \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3$, R1/L11, S1/L21, T1/L31	M6	$\begin{gathered} 35.2 \text { to } 43.99 \\ (4.0 \text { to } 5.0) \end{gathered}$	$\begin{gathered} 4 \\ (22) \end{gathered}$	$\begin{gathered} 4 \\ (22) \end{gathered}$	
	(1)	M8	$\begin{aligned} & 79.2 \text { to } 87.97 \\ & \text { (9.0 to } 10.0 \text {) } \end{aligned}$	$\begin{gathered} 4 \text { to } 2 \\ (22 \text { to } 38) \end{gathered}$	$\begin{gathered} 4 \\ (22) \end{gathered}$	
4037	$\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \underset{\mathrm{~S} 1 / \mathrm{L} 21, \mathrm{~T} 1 / \mathrm{L} 31}{-} \underset{1}{\boldsymbol{\oplus}} \mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3, \mathrm{R} 1 / \mathrm{L} 11,$	M8	$\begin{aligned} & 79.2 \text { to } 87.97 \\ & \text { (9.0 to } 10.0 \text {) } \end{aligned}$	$\begin{gathered} 4 \text { to } 1 / 0 \\ (22 \text { to } 60) \end{gathered}$	$\begin{gathered} 2 \\ (38) \end{gathered}$	
	\oplus_{3}	M6	$\begin{gathered} 35.2 \text { to } 43.99 \\ (4.0 \text { to } 5.0) \end{gathered}$	$\begin{gathered} 8 \text { to } 4 \\ (8 \text { to } 22) \end{gathered}$	-	
	(1)	M8	$\begin{aligned} & 79.2 \text { to } 87.97 \\ & \text { (9.0 to } 10.0 \text {) } \end{aligned}$	$\begin{gathered} 4 \text { to } 2 \\ (22 \text { to } 38) \end{gathered}$	$\begin{gathered} 4 \\ (22) \end{gathered}$	

Electrical Installation 2-5

Table 2.2 480Vac Wire Sizes and Connector Specifications						
Drive Model CIMR-E7U	Terminal Symbol	Terminal Screws	Clamping Torque lb. in. ($\mathrm{N} \cdot \mathrm{m}$)	Wire Size Range AWG $\left(\mathrm{mm}^{2}\right)$	Recommended Wire Size AWG (mm^{2})	Wire Type
4055	$\begin{gathered} \mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3, \underset{\mathrm{~W} / \mathrm{T} 3, \mathrm{R} 1 / \mathrm{L} 11, \mathrm{~S} 1 / \mathrm{L} 21, \mathrm{~T} 1 / \mathrm{L} 31}{\oplus} \mathrm{H} 1, \mathrm{~T} 1, \mathrm{~V} 2, \\ \hline \end{gathered}$	M8	$\begin{aligned} & 79.2 \text { to } 87.97 \\ & (9.0 \text { to } 10.0) \end{aligned}$	$\begin{aligned} & 1 \text { to } 1 / 0 \\ & (50 \text { to } 60) \end{aligned}$	$\begin{gathered} 1 \\ (50) \end{gathered}$	600Vac UL-type vinyl-sheathed or equivalent
	\dagger_{3}	M6	$\begin{gathered} 35.2 \text { to } 43.99 \\ (4.0 \text { to } 5.0) \end{gathered}$	$\begin{gathered} 8 \text { to } 4 \\ (8 \text { to } 22) \end{gathered}$	-	
	${ }^{(1)}$	M8	$\begin{aligned} & 79.2 \text { to } 87.97 \\ & \text { (9.0 to } 10.0 \text {) } \end{aligned}$	$\begin{gathered} 4 \text { to } 2 \\ (22 \text { to } 38) \end{gathered}$	$\begin{gathered} 4 \\ (22) \end{gathered}$	
4075	R/L1, S/L2, T/L3, \odot, ${ }_{1}$	M12	$\begin{gathered} \hline 276.2 \text { to } 344.8 \\ \text { (31.4 to } 39.2 \text {) } \end{gathered}$	$\begin{gathered} 2 / 0 \text { to } 4 / 0 \\ (60 \text { to } 100) \end{gathered}$	$\begin{gathered} \hline 2 / 0 \\ () \end{gathered}$	
	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M10	$\begin{aligned} & 154.8 \text { to } 197.5 \\ & (17.6 \text { to } 22.5) \end{aligned}$	$\begin{gathered} \hline 1 / 0 \text { to } 4 / 0 \\ (50 \text { to } 100) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 / 0 \\ (50) \\ \hline \end{gathered}$	
	± 3	M8	$\begin{aligned} & 77.4 \text { to } 95.0 \\ & \text { (8.8 to } 10.8 \text {) } \end{aligned}$	$\begin{aligned} & 5.5 \text { to } 22 \\ & (10 \text { to } 4) \end{aligned}$	-	
	(1)	M12	$\begin{aligned} & 276.2 \text { to } 344.8 \\ & \text { (31.4 to } 39.2 \text {) } \end{aligned}$	$\begin{gathered} 2 \text { to } 2 / 0 \\ \text { (38 to } 60 \text {) } \end{gathered}$	$\begin{gathered} 2 \\ (38) \end{gathered}$	
	$\mathrm{r} / \ell 1, \Delta 200 / \ell_{2} 200, \Delta 400 / \ell_{2} 400$	M4	$\begin{aligned} & 11.4 \text { to } 12.3 \\ & (1.3 \text { to } 1.4) \end{aligned}$	$\begin{gathered} 20 \text { to } 10 \\ (0.5 \text { to } 5.5) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (1.25) \\ \hline \end{gathered}$	
4090	R/L1, S/L2, T/L3, \odot, \oplus_{1}	M12	$\begin{aligned} & 276.2 \text { to } 344.8 \\ & \text { (31.4 to } 39.2 \text {) } \end{aligned}$	$\begin{gathered} 3 / 0 \text { to } 4 / 0 \\ (80 \text { to } 100) \end{gathered}$	$\begin{gathered} \hline 4 / 0 \\ (100) \end{gathered}$	
	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L31	M10	$\begin{aligned} & 154.8 \text { to } 197.5 \\ & \text { (17.6 to } 22.5 \text {) } \end{aligned}$	$\begin{gathered} 3 / 0 \text { to } 4 / 0 \\ (80 \text { to } 100) \end{gathered}$	$\begin{gathered} \hline 4 / 0 \\ (100) \end{gathered}$	
	± 3	M8	$\begin{aligned} & 77.4 \text { to } 95.0 \\ & \text { (8.8 to } 10.8 \text {) } \end{aligned}$	$\begin{gathered} 8 \text { to } 4 \\ (8 \text { to } 22) \end{gathered}$	-	
	$\stackrel{1}{ }{ }^{\text {a }}$	M12	$\begin{gathered} 276.2 \text { to } 344.8 \\ (31.4 \text { to } 39.2) \end{gathered}$	$\begin{gathered} 1 \text { to } 4 / 0 \\ (50 \text { to } 100) \end{gathered}$	$\begin{gathered} 1 \\ (50) \end{gathered}$	
		M4	$\begin{aligned} & 11.4 \text { to } 12.3 \\ & (1.3 \text { to } 1.4) \end{aligned}$	$\begin{gathered} 20 \text { to } 10 \\ (0.5 \text { to } 5.5) \end{gathered}$	$\begin{gathered} 16 \\ (1.25) \end{gathered}$	
	R/L1, S/L2, T/L3, $\ominus_{1} \oplus_{1}$	M12	$\begin{aligned} & 276.2 \text { to } 344.8 \\ & \text { (31.4 to } 39.2 \text {) } \end{aligned}$	$\begin{gathered} \hline 1 / 0 \text { to } 4 / 0 \\ (50 \text { to } 100) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 0 \times 2 \mathrm{P} \\ (50 \times 2 \mathrm{P}) \\ \hline \end{gathered}$	
	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L33	M12	$\begin{aligned} & 276.2 \text { to } 344.8 \\ & \text { (31.4 to } 39.2 \text {) } \end{aligned}$	$\begin{aligned} & 1 / 0 \text { to } 4 / 0 \\ & (50 \text { to } 100) \end{aligned}$	$\begin{gathered} 1 / 0 \times 2 \mathrm{P} \\ (50 \times 2 \mathrm{P}) \end{gathered}$	
4110	${ }_{+}{ }_{3}$	M8	$\begin{aligned} & 77.4 \text { to } 95.0 \\ & \text { (8.8 to } 10.8 \text {) } \end{aligned}$	$\begin{gathered} 8 \text { to } 2 / 0 \\ (80 \text { to } 60) \end{gathered}$	-	
	\dagger	M12	$\begin{gathered} 276.2 \text { to } 344.8 \\ \text { (31.4 to } 39.2 \text {) } \end{gathered}$	$\begin{gathered} \hline 2 / 0 \text { to } 300 \\ (60 \text { to } 150) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2 / 0 \\ (600) \\ \hline \end{gathered}$	
	$\mathrm{r} / \ell 1, \stackrel{200}{ } / \ell_{2} 200, \Delta 400 / \ell_{2} 400$	M4	$\begin{aligned} & 11.4 \text { to } 12.3 \\ & (1.3 \text { to } 1.4) \end{aligned}$	$\begin{gathered} \hline 20 \text { to } 10 \\ (0.5 \text { to } 5.5) \end{gathered}$	$\begin{gathered} 16 \\ (1.25) \end{gathered}$	
4160	R/L1, S/L2, T/L3, \odot, \oplus_{1}	M12	$\begin{gathered} 276.2 \text { to } 344.8 \\ (31.4 \text { to } 39.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 / 0 \text { to } 400 \\ (100 \text { to } 200) \end{gathered}$	$\begin{gathered} 4 / 0 \times 2 \mathrm{P} \\ (100 \times 2 \mathrm{P}) \end{gathered}$	
	U/T1, V/T2, W/T3, R1/L11, S1/L21, T1/L33	M12	$\begin{aligned} & 276.2 \text { to } 344.8 \\ & \text { (31.4 to } 39.2 \text {) } \end{aligned}$	$\begin{aligned} & 3 / 0 \text { to } 400 \\ & (80 \text { to } 200 \text {) } \end{aligned}$	$\begin{gathered} 3 / 0 \times 2 \mathrm{P} \\ (80 \times 2 \mathrm{P}) \end{gathered}$	
	${ }_{+}{ }_{3}$	M8	$\begin{aligned} & 77.4 \text { to } 95.0 \\ & \text { (8.8 to } 10.8 \text {) } \end{aligned}$	$\begin{gathered} 8 \text { to } 2 / 0 \\ (80 \text { to } 60) \end{gathered}$	-	
	(1)	M12	$\begin{aligned} & 276.2 \text { to } 344.8 \\ & \text { (31.4 to } 39.2 \text {) } \end{aligned}$	$\begin{gathered} \hline 1 / 0 \text { to } 300 \\ (50 \text { to } 150) \\ \hline \end{gathered}$	$\begin{gathered} 1 / 0 \times 2 \mathrm{P} \\ (50 \times 2 \mathrm{P}) \\ \hline \end{gathered}$	
	$\mathrm{r} / \ell 1, \iota_{2} 200 / \ell_{2} 200, \stackrel{4}{ } 00 / \ell_{2} 400$	M4	$\begin{aligned} & \hline 11.4 \text { to } 12.3 \\ & (1.3 \text { to } 1.4) \\ & \hline \end{aligned}$	$\begin{gathered} 20 \text { to } 10 \\ (0.5 \text { to } 5.5) \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ (1.25) \\ \hline \end{gathered}$	

Electrical Installation 2-6

Determine the wire size for the main circuit so that line voltage drop is within 2% of the rated voltage. Line
IMPORTANT voltage drop is calculated as follows:

Line voltage $\operatorname{drop}(V)=\sqrt{3} \times$ wire resistance $(W / k m) \times$ wire length $(m) \times$ current $(A) \times 10^{-3}$

- Main Circuit Terminal Functions

Main circuit terminal functions are summarized according to terminal symbols in Table 2.3. Wire the terminals correctly for the desired purpose.

Table 2.3 Main Circuit Terminal Functions (208-240Vac and 480Vac)			
	Terminal Designation	Model: CIMR-E7U_---	
		$208-240 \mathrm{Vac}$	480 Vac
Main circuit power input	$\mathrm{R} / \mathrm{L} 1, \mathrm{~S} / \mathrm{L} 2, \mathrm{~T} / \mathrm{L} 3$	20 P 4 to 2110	40 P 4 to 4300
	R1/L11, S1/L21, T1/L31	2022 to 2110	4030 to 4300
Drive outputs	$\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2, \mathrm{~W} / \mathrm{T} 3$	20 P 4 to 2110	40 P 4 to 4300
DC power input	$\oplus 1, \Theta$	20 P 4 to 2110	40 P 4 to 4300
DC reactor connection	$\oplus 1, \oplus 2$	20 P 4 to 2018	40 P 4 to 4018
Ground	\oplus	20 P 4 to 2110	40 P 4 to 4300

- Main Circuit Configurations 208-240Vac

The 208-240Vac main circuit configurations of the Drive are shown in Table 2.4.

Table 2.4 Drive Main	rcuit Configurations
208-240Vac	
CIMR-E7U20P4 to 2018	CIMR-E7U2037 to 2110
CIMR-E7U2022 and 2030	
Note 1. Input fuses or molded case circuit breakers are required for proper branch circuit protection for all Drives. Failure to use recommended fuses/circuit breakers (See Appendix E) may result in damage to the Drive and/or personal injury. 2. Control power is supplied internally from the main circuit DC power supply for all Drives. 3. Consult your Yaskawa representative before using 12-pulse rectification.	

Main Circuit Configurations 480Vac

The 208-240Vac main circuit configurations of the Drive are shown in Table 2.4.

Table 2.5 Drive	ircuit Configurations
480 Vac	
CIMR-E7U40P4 to 4018	
CIMR-E7U4075 to 4160	
Note 1. Input fuses or molded case circuit breakers are required for proper branch circuit protection for all Drives. Failure to use recommended fuses/circuit breakers (See Appendix E) may result in damage to the Drive and/or personal injury. 2. Control power is supplied internally from the main circuit DC power supply for all Drives. 3. Consult your Yaskawa representative before using 12-pulse rectification.	

Cable Length between Drive and Motor

If the cable between the Drive and the motor is long, the high-frequency leakage current will increase, causing the Drive output current to increase as well. This may affect peripheral devices. To prevent this, reduce cable length, or if necessary, adjust the carrier frequency (set in C6-02) as shown in Table 2.6.

Table 2.6 Motor Cable Length vs. Carrier Frequency			
Motor Cable Length	164 ft (50 m) maximum	$328 \mathrm{ft} .(100 \mathrm{~m})$ maximum	More than $328 \mathrm{ft} .(100 \mathrm{~m})$
Carrier Frequency	15 kHz maximum	10 kHz maximum	5 kHz maximum

■Ground Wiring

Observe the following precautions when connecting the ground wire:

1. 208-240Vac Drives should have a ground connection with resistance of less than 100Ω.
2. 480 Vac Drives should have a ground connection with resistance of less than 10Ω.
3. Do not share the ground wire with other devices, such as welding machines, motors or large-current electrical equipment.
4. Always use a ground wire that complies with technical standards on electrical equipment and minimize the length of the ground wire. Leakage current flows through the Drive. Therefore, if the distance between the ground rod and the ground terminal is too long, potential on the ground terminal of the Drive will become unstable.
5. When using more than one Drive, be careful not to loop the ground wire. See Fig 2.4.

Fig 2.4 Ground Wiring Examples

Control Wiring

- Control Circuit Wire Sizes

For remote operation, keep the length of the control wiring to 50 m or less. Separate the control wiring from high-power lines (input power, motor leads or relay sequence circuits) to reduce noise induction from peripheral devices.

When setting speed commands from an external speed potentiometer (and not from the Digital Operator), use shielded twisted-pair wires and ground the shield to terminal $\mathrm{E}(\mathrm{G})$, as shown in Fig 2.5. Terminal numbers and wire sizes are shown in Table 2.7.

Fig 2.5 Analog Input Terminal Configuration

Table 2.7					
Terminal Numbers and Wire Sizes (Same for all Drives)					
Terminals	Terminal Screws	Tightening Torque lb-in $(N \cdot m)$	Possible Wire Sizes AWG $\left(\mathrm{mm}^{2}\right)$	Recommended Wire Size AWG $\left(\mathrm{mm}^{2}\right)$	Wire Type

- Wiring Checks

After all wiring is completed, perform the following checks:

1. Is all wiring correct?
2. Have all wire clippings, screws or other foreign material been removed from the Drive enclosure?
3. Are all terminal screws tight?

- Control Circuit Terminal Functions

The factory default functions of the control circuit terminals are shown in Table 2.8.

Table 2.8 Control Circuit Terminals							
Type	No.	Signal Name	Description		Signal Level		
Digital input signals	S1	Forward run/stop command	Forward run when CLOSED; stopped when OFF.		$24 \mathrm{Vdc}, 8 \mathrm{~mA}$ Photocoupler isolation		
	S2	Reverse run/stop command	Reverse run when CLOSED; stopped when OFF.				
	S3	External fault input ${ }^{* 1}$	Fault when CLOSED.	Multi-function digital inputs Functions set by H1-01 to H1-05.			
	S4	Fault reset ${ }^{* 1}$	Reset when CLOSED				
	S5	Multi-step speed reference 1 ${ }^{* 1}$ (Master/auxiliary switch)	Auxiliary frequency reference when CLOSED.				
	S6	Multi-step speed reference $2^{* 1}$	Multi-step setting 2 when CLOSED.				
	S7	Jog frequency reference ${ }^{* 1}$	Jog frequency when CLOSED.				
	SN		Refer to Table 2.10 for connection details.				
	SC	Sequence input common					
	SP						
Analog input signals	+V	+15 Vdc power output	+15 Vdc power supply for analog references		$\begin{gathered} +15 \mathrm{Vdc} \\ \text { (Max. current: } 20 \mathrm{~mA} \text {) } \end{gathered}$		
	A1	Frequency reference	0 to $+10 \mathrm{Vdc} / 100 \%$		0 to $+10 \mathrm{~V}(20 \mathrm{k} \Omega)$		
	A2	Multi-function analog input	$\begin{aligned} & \hline 4 \text { to } 20 \mathrm{~mA} / 100 \% \\ & 0 \text { to }+10 \mathrm{Vdc} / 100 \% \end{aligned}$	Function set by H3-09.	$\begin{aligned} & 4 \text { to } 20 \mathrm{~mA}(250 \Omega) \\ & 0 \text { to }+10 \mathrm{~V}(20 \mathrm{k} \Omega) \end{aligned}$		
	AC	Analog common	-		-		
	E(G)	Shield wire, optional ground line connection point	-		-		
Digital output signals	M1	During Run (N.O. contact)	CLOSED during operation	Multi-function digital outputs Functions set by H2-01 \& H2-02.	Dry contacts Contact capacity: 1 A max. at 250Vac 1 A max. at 30 Vdc		
	M2						
	M3	Remote/Auto Operation (N.O. contact)	CLOSED				
	M4						
	MA	Fault digital output signal (SPDT)	MA/MC: CLOSED during fault condition $\mathrm{MB} / \mathrm{MC}$: OPEN during fault condition		Dry contacts Contact capacity: 1 A max. at 250 Vac 1 A max. at 30 Vdc		
	MB						
	MC						
Analog output signals	FM	Multi-function analog output (output frequency)	0 to $+10 \mathrm{Vdc} / 100 \%$ frequency	Multi-function analog monitor 1 Function set by H4-01	$\begin{gathered} 0 \text { to }+10 \mathrm{Vdc} \max . \pm 5 \% \\ 2 \mathrm{~mA} \text { max. } \end{gathered}$		
	AC	Analog common	-				
	AM	Multi-function analog output (output current)	0 to $+10 \mathrm{Vdc} 100 \%$ Drive's rated output current	Multi-function analog monitor 2 Function set by H4-02			
$\begin{gathered} \text { RS-485/ } \\ 422 \end{gathered}$	R+	Modbus communication input	For 2-wire RS-485, jumper R+ and S+ and jumper R- and S-.		Differential input, PHC isolation		
	R-						
	S+	Modbuscommunication output			Differential input, PHC isolation		
	S-						
	IG	Signal common	-		-		
*1. The default settings are given for terminals S 3 to S 7 . For a 3-wire sequence, the default settings are a 3-wire sequence for S 5 , multi-step speed setting 1 for S 6 and multi-step speed setting 2 for S 7 .							

■ DIP Switch S1

DIP Switch S 1 is described in this section. The functions of DIP switch S 1 are shown in Table 2.9.

Fig 2.6 DIP Switch S1 Location

Table 2.9 DIP Switch S1		
Name	Function	Setting
S1-1	RS-485 and RS-422 terminating resistance	OFF: No terminating resistance ON: Terminating resistance of 110Ω
S1-2	Input method for analog input A2	OFF: 0-10 Vdc (internal resistance: 20K Ω) ON: 4-20mA (internal resistance: 250Ω)

Sinking/Sourcing Mode

The input terminal logic can be switched between sinking mode (0 V common) and sourcing mode (+24 V common) by using the terminals SN, SC, and SP. An external power supply can also be connected, providing more freedom in signal input methods.

Terminal Connections

Connections to Drive terminals are shown in Fig 2.7.

Fig 2.7 Terminal Connections

- Control Circuit Wiring Precautions

Observe the following precautions when wiring control circuits:

1. Separate control wiring from power/motor wiring (terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, $\oplus, \oplus 1, ~ \oplus 2$, and $\oplus 3$) and other high-power lines.
2. Separate wiring for control circuit terminals $\mathrm{MA}, \mathrm{MB}, \mathrm{MC}, \mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3$, and M 4 (digital outputs) from wiring to other control circuit terminals.
3. If using an optional external power supply, ensure it is a UL Listed Class 2 power supply source.
4. Use twisted-pair or shielded twisted-pair cables for control circuits to prevent operating faults. Prepare cable ends as shown in Fig 2.8.
5. Connect the shield wire to terminal $\mathrm{E}(\mathrm{G})$.
6. Insulate the shield with tape to prevent contact with other signal lines and equipment.

Fig 2.8 Preparing the Ends of Twisted-pair Cables

- Field Wiring Diagram

Use this diagram to document field wiring. It may be helpful to copy this page based on installation needs.

Fig 2.9 Field Wiring Diagram

EMC Compatibility

■ Introduction

This section describes the measures necessary to comply with the EMC Directive. The manual's installation and wiring instructions must be followed for compliance.

Yaskawa products are tested by authorized organizations using the standards listed below.
Product standard: EN 61800-3:1996
EN 61000-3-2; A1, A2, A14:2000

■ Measures to Ensure Conformity of Installed Yaskawa Drives to the EMC Directive

Yaskawa Drives are not required to be installed in a switch cabinet.
It is not possible to give detailed instructions for all possible types of installations, therefore this manual provides general guidelines.

All electrical equipment produces radio and line-borne interference at various frequencies. The power leads pass this on to the surrounding environment like an antenna. Connecting an item of electrical equipment (e.g. Drive) to a supply without a line filter can allow High Frequency (HF) or Low Frequency (LF) interference to penetrate the power distribution system. The basic countermeasures are isolation of the wiring of control and power components, proper grounding, and shielding of cables.

A large contact area is necessary for low-impedance grounding of HF interference. The use of grounding, straps instead of cables is therefore highly recommended.

Cable shields must be connected with ground clips.

■ Cable Installation

Measures Against Line-Borne Interference:
Line filter and Drive must be mounted on the same metal plate. Mount the two components as close to each other as possible, with cables kept as short as possible (see Figure 2.11).

Use a power cable with a well-grounded shield. Use a shielded motor cable not exceeding 82 feet (25 m) in length. Arrange all grounds to maximize the end of the lead area in contact with ground (e.g. metal plate).
Use a shielded cable with braided shield and ground the maximum possible area of the shield. It is advisable to ground the shield by connecting the cable to the ground plate with metal clips (see Figure 2.10).

Electromagnetic Compatibility (EMC)

■Recommended EMC Filters

Drive Model CIMR-E7U	EMC Filter			
	Model Number	Current Rating	Weight lb . (kg)	Dimensions inches (mm)
208-240 Vac				
20P4	FS5972-10-07	10 A	$\begin{aligned} & 2.43 \\ & (1.1) \end{aligned}$	$\begin{gathered} 5.500 \times 13 \times 1.875 \\ (141 \times 330 \times 46) \end{gathered}$
20P7				
21P5				
22P2	FS5972-18-07	18 A	$\begin{aligned} & \hline 2.87 \\ & (1.3) \end{aligned}$	$\begin{gathered} 5.500 \times 13 \times 1.875 \\ (141 \times 330 \times 46) \end{gathered}$
23P7	FS5973-35-07	35 A	$\begin{aligned} & \hline 3.09 \\ & (1.4) \end{aligned}$	$\begin{gathered} 5.500 \times 13 \times 1.875 \\ (141 \times 330 \times 46) \end{gathered}$
25P5				
27P5	FS5973-60-07	60 A	6.61 (3)	$\begin{gathered} 8 \times 14 \times 2.375 \\ (206 \times 355 \times 60) \end{gathered}$
2011	FS5973-100-07	100 A	$\begin{aligned} & 10.8 \\ & (4.9) \end{aligned}$	$\begin{aligned} & 9.3125 \times 16 \times 3.125 \\ & (236 \times 408 \times 80) \end{aligned}$
2015				
2018				
2022	FS5973-130-35	130 A	$\begin{aligned} & 9.48 \\ & (4.3) \end{aligned}$	$\begin{gathered} 3.5315 \times 14.40625 \times 7 \\ (90 \times 366 \times 180) \end{gathered}$
2030				
2037	FS5973-160-40	160 A	$\begin{gathered} 13.23 \\ (6) \end{gathered}$	$\begin{gathered} 4.750 \times 17.750 \times 6.6875 \\ (120 \times 451 \times 170) \end{gathered}$
2045	FS5973-240-37	240 A	$\begin{gathered} 24.25 \\ (11) \end{gathered}$	$\begin{gathered} 5.125 \times 24 \times 9.4375 \\ (130 \times 610 \times 240) \end{gathered}$
2055				
480 Vac				
40P4	FS5972-10-07	10 A	$\begin{aligned} & \hline 2.43 \\ & (1.1) \end{aligned}$	$\begin{gathered} 5.500 \times 13 \times 1.875 \\ (141 \times 330 \times 46) \end{gathered}$
40P7				
41P5	FS5972-18-07	18 A	$\begin{aligned} & 2.87 \\ & (1.3) \end{aligned}$	$\begin{aligned} & 5.50 \times 13 \times 1.875 \\ & (141 \times 330 \times 46) \end{aligned}$
42P2				
43 P 7				
45P5				
47P5				
4011	FS5972-35-07	35 A	$\begin{aligned} & \hline 4.63 \\ & (2.1) \end{aligned}$	$\begin{gathered} 8.125 \times 14 \times 1.9375 \\ (206 \times 355 \times 50) \\ \hline \end{gathered}$
4015	FS5972-60-07	60 A	$\begin{gathered} \hline 8.82 \\ (4) \end{gathered}$	$\begin{aligned} & 9.250 \times 16 \times 2.50 \\ & (236 \times 408 \times 65) \end{aligned}$
4018				
4030	FS5972-70-52	70 A	$\begin{gathered} \hline 7.5 \\ (3.4) \\ \hline \end{gathered}$	$\begin{gathered} 3 \times 13 \times 7.250 \\ (80 \times 329 \times 185) \\ \hline \end{gathered}$
4037	FS5972-130-35	130 A	$\begin{aligned} & 10.36 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 3.5 \times 14.375 \times 7 \\ & (90 \times 366 \times 180) \end{aligned}$
4045				
4055				
4075	FS5972-170-40	170 A	$\begin{gathered} 13.23 \\ (6) \\ \hline \end{gathered}$	$\begin{gathered} 4.750 \times 17.750 \times 6.6675 \\ (120 \times 451 \times 170) \\ \hline \end{gathered}$

Electrical Installation 2-20

Drive Model CIMR-E7U	EMC Filter			
	Model Number	Current Rating	Weight lb. (kg)	Dimensions inches (mm)
	FS5972-250-37	250 A	24.25 (11)	$5.125 \times 24 \times 9.4375$ $(130 \times 610 \times 240)$
4110				

Fig 2.10 Grounding Surface Layout

The grounding surfaces must be highly conductive bare metal. Remove any varnish or paint from grounding surfaces.

- Ground the cable shields at both ends.
- Ground the motor of the machine/application.

Fig 2.11 EMC Filter Layout

Chapter 3 Digital Operator

Digital Operator Display 3-2
Digital Operator Keys 3-3
Drive Mode Indicators 3-4
Drive Main Menus 3-7
Main Menu Structure 3-8
Operation Menu 3-9
Quick Setting Menu 3-12
Programming Menu 3-13
Modified Constants Menu 3-14
Auto-Tuning Menu 3-14
Example of Changing a Parameter 3-15

Digital Operator

The Digital Operator is used for programming, operating, and monitoring drive operation. The E7 Drive will not run unless the digital operator is securely attached to the Drive.

- Digital Operator Display

The various items included on the Digital Operator are described below.

Fig 3.1 Digital Operator Component Names and Functions

Digital Operator Keys

The names and functions of the Digital Operator Keys are described in Table 3.1.

Table 3.1 Digital Operator Keys		
Key	Name	Function
AUTO	AUTO Key	- Pressing the AUTO key will put the Drive in the "Auto" mode. - In the "Auto" mode, the Drive will be capable of starting/stopping depending on the setting of parameter " $\mathrm{b} 1-02$ " (Run Command Selection). - In the "Auto" mode, the Drive speed command will depend on the setting of parameter "b1-01" (Frequency Reference Selection). - If the OFF key is pressed, the "Auto" mode frequency reference will continue to be displayed on the keypad. - Pressing the AUTO key will start the Drive if the run command is already closed. - If the Drive is running in the "Auto" mode and the OFF key is pressed, the Drive will stop. If the run command remains closed, pressing the AUTO key will restart the Drive. - While the Drive is running, the run command can be opened to stop and closed to restart without taking the Drive out of the "Auto" mode. - The Drive must be in a stopped condition before it can be transferred to "Auto" or "Hand" mode.
MENU	MENU Key	Scrolls through the five main menus.
ESC	ESCAPE Key	Returns to the display before the DATA/ENTER key was pressed.
MONITOR	MONITOR Key	Selects the monitor mode from the Operation, Quick Setting, Programming and Modified Constants menus.
Λ	INCREASE Key	Increases parameter numbers and set values. Used to move to the next item or data value.
V	DECREASE Key	Decreases parameter numbers and set values. Used to move to the previous item or data value.
	SHIFT/RESET Key	Selects the digit to be changed. The selected digit will blink. Also resets the Drive when a fault has occurred.
DATA	DATA/ENTER Key	Pressed to enter menus and parameters as well as to set values.

Table 3.1 Digital Operator Keys		
Key	Name	Function
HAND	Pressing the HAND key will put the Drive in the "Hand" mode and start the Drive. - In the "Hand" mode, the drive speed command will depend on the setting of parameter "bl-11" (Hand Frequency Reference Selection). - If the OFF key is pressed, the "Hand" mode speed command will continue to be displayed on the keypad. The Dirve must to be in a stopped condition before it can be transferred to "Hand" or "Auto" mode.	
OFF Key	Stops Drive operation.	

- Drive Mode Indicators

The definition of the Drive mode indicators are shown in Table 3.2.

Table 3.2 Drive Mode Indicators	
Indicator	Definition
FWD	Lit when a forward run command is input and when Drive is in "Hand" Mode.
REV	Lit when a reverse run command is input.
AUTO SEQ	See Table 3.3
AUTO REF	See Table 3.4
ALARM	Lit when a fault has occurred. Flashes when an alarm has occurred.

AUTO Sequence (SEQ) Indicator

The status of the AUTO "Sequence" (SEQ) indicator is shown in Table 3.3. This indicator is always "Off" when the Drive is in the "Hand" mode. When the Drive is in the "Auto" mode, the SEQ indicator status is dependent on the setting of parameter "b1-02" (Run Command Selection).

Table 3.3 AUTO Sequence (SEQ) Indicator		
Indicator Status	Hand Mode	Auto Mode
On	The SEQ Indicator will never turn "On".	Parameter "b1-02" (Run Command Selection) is set to terminal strip, communications, or an option board as indicated below: b1-02=1 (Terminals) $=2$ (Communications) $=3$ (Option PCB)
	The SEQ Indicator will always be "Off".	Parameter "b1-02" (Run Command Selection) is set to digital operator as indicated below: b1-02=0 (Operator)

AUTO Reference (REF) Indicator

The status of the AUTO "Reference" (REF) indicator is shown in Table 3.4. This indicator is always "Off" when the Drive is in the "Hand" mode. When the Drive is in the "Auto" mode, the REF indicator status is dependent on the setting of parameter "b1-01" (Frequency Reference Selection).

Table 3.4 AUTO Reference (REF) Indicator		
Indicator Status	Hand Mode	Auto Mode
On	The REF Indicator will never turn "On".	Parameter "b1-01" (Frequency Reference Selection) is set to terminal strip, communications, or an option board as indicated below: b1-01=1 (Terminals) $=2$ (Communications) $=3$ (Option PCB)
Off	The REF Indicator will always be "Off".	Parameter "b1-01" (Frequency Reference Selection) is set to digital operator as indicated below: b1-01=0 (Operator)

Run Indicator

The status of the "RUN" indicator is shown in Table 3.5 when the Drive is in either the "Hand" or "Auto" mode.

Table 3.5 RUN Indicator	
Indicator Status	Condition
On	Drive is running
Blinking	Drive is decelerating to a stop
Off	Drive is stopped

Stop Indicator

The status of the "STOP" indicator is shown in Table 3.6 when the Drive is in either the "Hand" or "Auto" mode.

Table 3.6 STOP Indicator	
Indicator Status	Condition
On	Drive is decelerating to a stop or stopped
Blinking	Drive is in a run condition but the frequency reference is zero or Drive is running in "Auto" mode and OFF is pressed
Off	Drive is running

Drive Main Menus

The Drive's parameters and monitoring functions are organized into groups called menus that make it easier to read and set parameters. The Drive is equipped with five menus. The five menus and their primary functions are shown in Table 3.7.

Table 3.7 Drive Main Menus	
Main Menu	Primary Function(s)
Operation - DRIVE -	The Drive can be run in this menu. Use this menu for monitoring values such as frequency reference or output current, displaying fault history or displaying the fault traces.
Quick Setting - QUICK -	The Drive can be programmed in this menu. Use this menu to set/read the most commonly used parameters.
Programming - ADV -	The Drive can be programmed in this menu. Use this menu to set/read every parameter.
Modified Constants - VERIFY -	The Drive can be programmed in this menu. Use this menu to set/read the parameters that have been modified from their factory default settings.
Auto-Tuning - A.TUNE -	The Drive can be programmed in this menu. Use this menu to auto-tune the Drive in order to optimize motor control as well as utilize the bi-directional speed search feature.

Main Menu Structure

The menu selection display will appear when the MENU key is pressed from a monitor or setting display. While viewing the menu selection display, press the MENU key repeatedly to scroll between the menu selections.

Fig 3.2 Main Menu Structure
Press the DATA/ENTER key to enter the desired menu selection.

- Operation Menu

This menu is used for setting a speed command or monitoring values such as output frequency and output current. It is also used for displaying the fault history and the fault traces. The Drive must be in this menu in order to run.

U1 Monitor List

Follow the key operations below to access the Operation Menu:

Fig 3.3 U1 Monitor List Access Procedure

Use \wedge and V keys to scroll through the U1 "Monitor" parameter list.

Table 3.8 U1 Monitor List	
Monitor	
U1-01	Frequency Ref
U1-02	Output Freq
U1-03	Output Current
U1-06	Output Voltage
U1-07	DC Bus Voltage
U1-08	Output kWatts
U1-10	Input Term Sts
U1-11	Output Term Sts
U1-12	Int Ctl Sts 1
U1-13	Elapsed Time
U1-14	FLASH ID
U1-15	Term A1 Level
U1-16	Term A2 Level
U1-18	Mot SEC Current
U1-20	SFS Output
U1-24	PI Feedback
U1-28	CPU ID
U1-29	kWh
U1-30	MWh
U1-34	OPE Detected
U1-36	PI Input
U1-37	PI Output
U1-38	PI Setpoint
U1-39	Transmit Err
U1-40	FAN Elapsed Time
U1-51	Auto Mode Fref
U1-52	Hand Mode Fref
U1-53	PI Feedback 2

U2 Fault Trace List

After viewing the "Monitor" parameter list, in order to view the "Fault Trace" parameter list, follow the key operations below:

Fig 3.4 U1 Monitor List Access Procedure

Use | |
| :---: |
| and |
| keys to scroll through the U2 "Fault Trace" parameter list. |

Table 3.9 U2 Fault Trace List	
Fault Trace Parameters	
U2-01	Current Fault
U2-02	Last Fault
U2-03	Frequency Ref
U2-04	Output Freq
U2-05	Output Current
U2-07	Output Voltage
U2-08	DC Bus Voltage
U2-09	Output kWatts
U2-11	Input Term Sts
U2-12	Output Term Sts
U2-13	AC Drive Status
U2-14	Elapsed Time

U3 Fault History List

After viewing the "Fault Trace" parameter list, in order to view the "Fault History" parameter list, follow the key operations below:

Fig 3.5 U3 Fault History Access Procedure

Use \wedge and \vee keys to scroll through the U3 "Fault History" parameter list.

Table 3.10 Fault History List	
Fault History Parameters	
U3-01	Last Fault
U3-02	Fault Message 2
U3-03	Fault Message 3
U3-04	Fault Message 4
U3-05	Elapsed Time 1
U3-06	Elapsed Time 2
U3-07	Elapsed Time 3
U3-08	Elapsed Time 4
U3-09	Fault Message 5
U3-10	Fault Message 6
U3-11	Fault Message 7
U3-12	Fault Message 8
U3-13	Fault Message 9
U3-14	Fault Message 10
U3-15	Elapsed Time 5
U3-16	Elapsed Time 6
U3-17	Elapsed Time 7
U3-18	Elapsed Time 8
U3-19	Elapsed Time 9
U3-20	Elapsed Time 10

- Quick Setting Menu

This menu is used to set/read the most commonly used parameters in the Drive. Follow the key operations below to access the Quick Setting Menu:

Fig 3.6 U1 Monitor List Access Procedure

Use \triangle and keys to scroll through the "Quick Setting" parameter list.

Table 3.11 Quick Setting Parameter List			
Parameter Number	Parameter Name	Parameter Number	Parameter Name
A1-00	Language Selection	b5-29	PI Square Root Gain
b1-01	Frequency Reference Selection	b5-30	Output Square Root Monitor Selection
b1-02	Run command Selection	b8-01	Energy Savings Control Selection
b1-03	Stopping Method Selection	C1-01	Acceleration Time 1
b1-04	Reverse Operation Selection	C1-02	Deceleration Time 1
b5-01	PI Mode Selection	d2-01	Frequency Reference Upper Limit
b5-02	Proportional Gain Setting	d2-02	Frequency Reference Lower Limit
b5-03	Intregral Time Setting	E1-01	Input Voltage Setting
b5-04	Intregral Limit Setting	E2-01	Motor Rated Current
b5-06	PI Output Limit	F6-01	Operation Selection After Communication Error
b5-07	PI Offset Adjustment	H3-02	Terminal A1 Gain Setting
b5-08	PI Primary Delay Time	H3-03	Terminal A1 Bias Setting
b5-09	PI Output Level Selection	H3-10	Terminal A2 Gain Setting
b5-10	PI Output Gain Setting	H3-11	Terminal A2 Bias Setting
b5-11	PI Output Reverse Selection	L2-01	Momentary Power Loss Detection Selection
b5-12	PI Feedback Reference Missing Detection Selection	L2-02	Momentary Power Loss Ride-thru Time
b5-13	PI Feedback Loss Detection Level	L4-05	Frequency Reference Loss Detection Selection
b5-14	PI Feedback Loss Detection Time	L4-06	Frequency Reference Level at Loss Frequency
b5-15	PI Sleep Function Start Level	L5-01	Number of Auto Restarts Attempts
b5-16	PI Sleep Delay Time	L5-03	Maximum Restart Time After Fault
b5-17	PI Accel/Decel Time	L6-01	Torque Detection Selection 1
b5-18	PI Setpoint Selection	L6-02	Torque Detection Level 1
b5-19	PI Setpoint Value	L6-03	Torque Detection Time 1
b5-20	PI Setpoint Display Setting	L8-11	Heatsink Cooling Fan Operation Delay Time
b5-21	PI Sleep Input Source	o1-01	User Monitor Selection
b5-22	PI Snooze Level	o1-05	LCD Brightness Adjustment
b5-23	PI Snooze Delay Time	o1-07	Second Line User Monitor Selection
b5-24	PI Snooze Deactivation Level	o1-08	Third Line User Monitor Selection
b5-25	PI Setpoint Boost Setting	o2-03	User Parameter Default Value
b5-26	PI Maximum Boost Time	o2-05	Frequency Operation Time Selection
b5-27	PI Snooze Feedback Level	o2-08	Cumulative Operation Time Selection
b5-28	PI Feedback Square Root Ac Function Selection	o3-02	Read Allowed Selection

- Programming Menu

This menu is used to set/read every parameter in the Drive. Follow the key operations below to access the Programming Menu.

Fig 3.7 Programming Menu Access Procedure
Use \wedge, \square, and $\underset{\text { RESET }}{>}$ keys to scroll through the "Programming" parameter list.

Table 3.12 Programming	
Parameter Group List	
Parameter Group Functions	
A1	Initialization
A2	User Parameters
b1	Sequence
b2	DC Braking
b3	Speed Search
b4	Delay Timers
b5	PI Control
b8	Energy Saving
C1	Accel/Decel
C2	S-Curve Acc/Dec
C4	Torque Comp
C6	Carrier Freq
d1	Preset Reference
d2	Reference Limits
d3	Jump Frequencies
d4	Sequence
E1	V/F Pattern
E2	Motor Setup
F6	Com OPT Setup
H1	Digital Inputs
H2	Digital Outputs
H3	Analog Inputs
H4	Analog Outputs
H5	Serial Com Setup
L1	Motor Overload
L2	PwrLoss Ridethru
L3	Stall Prevention
L4	Ref Detection
L5	Fault Restart
L6	Torque Detection
L8	Hdwe Protection
n1	Hunting Prev
n3	High Slip
o1	Monitor Select
o2	Key Selections
o3	COPY Function

- Modified Constants Menu

This menu is used to set/read the parameters that have been modified from their original factory default settings. Follow the key operations below to access the Modified Constants Menu.

Fig 3.8 Modified Constants Menu Access Procedure
If there are not any parameters that have been modified from their original factory default settings, then the display will state "None Modified". Otherwise, use the "increase" and "decrease" keys to scroll through the "Modified Constants" list.

- Auto-Tuning Menu

This menu is used to auto-tune the Drive in order to optimize motor control as well as utilize the bi-directional speed search feature. Follow the key operations below to access the Auto-Tuning Menu.

Fig 3.9 Auto-Tuning Menu Access Procedure

Use Λ and V keys to scroll through the "Auto-Tuning" parameter list.

Table 3.13 Auto-Tuning Parameter List	
Auto-Tuning Parameters	
T1-02	Mtr Rated Power
T1-04	Rated Current

Example of Changing a Parameter

Table 3.8 provides an example of how to change parameter "C1-02" (Deceleration Time 1) from 30 seconds to 40 seconds.

Table 3.14 Changing a Parameter in the Programming Menu		
Step Number	Digital Operator Display	Description
1	-DRIVE- Rdy Frequency Ref U1-01 $=$ 0.00 Hz $102=$ 0.00 zz U1-023 0.00 A	The Drive is first powered up.
2	-DRIVE- $* *$ Main Menu ** $\cdots \ldots \ldots \ldots \ldots-\ldots-\ldots$ Operation	Press the MENU key to scroll to "Operation" menu.
3		Press the MENU key to scroll to "Quick Setting" menu.
4		Press the MENU key to scroll to "Programming" menu.
5	- ADV- Initialization A1-01= A1- Select Language	Press the DATA/ENTER key to enter "Programming" menu.
6	-ADV- Accel/Decel C1-01= $\quad 1.0$ osec Accel Time 1	Press the INCREASE key until C1-01 (Accel/Decel) is displayed.
7		Press the SHIFT/RESET key to move flashing digit to the right.

Table 3.8 Changing a Parameter in the Programming Menu		
Step Number	Digital Operator Display	Description
8	-ADV- Decel Time 1 C1-02 $=3$ $\substack{\text { (0.0.0.000.0.0.0. } \\ (30.05 e c}$	Press the INCREASE key to display C1-02 (Decel Time 1).
9		Press the DATA/ENTER key to access setting display.
10		Press the SHIFT/RESET key to move the flashing digit to the right.
11		Press the SHIFT/RESET key to move the flashing digit to the right.
12		Press the INCREASE key to increase the set data.
13		Press the DATA/ENTER key to enter the set data. "Entry Accepted" is displayed for 1.0 sec after the data setting has been confirmed.
14	-ADV- Decel Time 1 C1-022 $\substack{(0.0 \sim 0000.0 \text { sec } \\ \text { a30.0secec }}$	The monitor display for C1-02 returns.
15	-DRIVE- $* *$ Main Menu $* *$ $-\ldots \ldots-\ldots-\ldots$ Operation	Press the MENU key to scroll to "Operation" menu.
16	-DRIVE- Rdy Frequency Ref $\mathrm{U1}-01=$ 0.00 Hz $\mathrm{U1-02=}$ 0.0 Cl $\mathrm{U1}-03=$ 0.00 Hz	Press the DATA/ENTER key to enter "Operation" menu.

Digital Operator 3-16

Chapter 4 Start Up

This chapter describes the procedures to prepare the Drive for start up and the procedures to conduct a Drive start up.
Drive Start Up Preparation 4-2
Drive Start Up Procedures 4-5

Start Up

In order to provide the most reliable Drive available and to avoid any extra costs related to loss or reduction of warranty coverage, an authorized Yaskawa service representative should complete this start up procedure. Please complete the following checklist and maintain it in a secure location as technical service personnel may request information from this checklist.

- DRIVE START UP PREPARATION

Date:

Start Up Person:

\qquad
Sales Order \#: \qquad
Printed Name: \qquad
Phone \#: \qquad

Owners Representative:

Printed Name: \qquad
Company: \qquad

Start Up Location: \qquad
Serial \#: \qquad
Drive Location: \qquad
Signature: \qquad

Phone \#: \qquad
Signature: \qquad

Step

1. The Drive is thoroughly tested at the factory. The start up person should verify that the drive is free of shipping and installation damage. Shipping damage is not covered by the Yaskawa warranty. Claims must be filed with the shipping company as soon as possible for any potential recovery via insurance.
$\square \quad$ 2. Review the E7 User Manual (TM.E7.01) shipped with the Drive.
\square 3. Verify that the model number and voltage ratings in the purchase order match the nameplate data for each unit.4. Location of the Drive is important to achieve proper performance and normal operating life. The unit should be installed in an area where it is protected from:
-Direct sunlight, rain or moisture

- Corrosive gases or liquids
- Vibration, airborne dust or metallic particles
\square 5. Ensure the Drive is on a vertical surface with adequate space for air circulation (4.75" above and below, 1.2" on each side). Refer to Fig. 1-10.6. Verify that the proper branch circuit protection is installed in front of the Drive. Refer to Appendix E-Peripheral Devices for proper input fuse or circuit breaker sizing.
$\square \quad$ 7. Avoid running input and output wiring in the same conduit.

8. Avoid routing power wiring near equipment sensitive to electrical noise.9. Never allow wire leads to touch metal surfaces. Short-circuit may result.10. Never connect $A C$ main power to output terminals $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$ and $\mathrm{W} / \mathrm{T} 3$.
9. Never connect power factor correction capacitors or noise filters to the Drive output.12. Use 600 Vac vinyl-sheathed wire or equivalent. Wire size should be determined considering voltage drop of leads. Line voltage $\operatorname{drop}(V)=\sqrt{3} \times$ wire resistance $(W / k m) x$ wire length $(\mathrm{m}) x$ current $(\mathrm{A}) \times 10^{-3}$13. It is recommended that the motor lead length not exceed 164 feet (50 meters) and motor wiring be run in a separate conduit from the power wiring. If lead length must exceed this distance, reduce the carrier frequency (See Table 2.6) and consult Yaskawa toll free at 1-800-YASKAWA (927-5292) for proper installation procedures.
\square 14. Signal and control leads must be separated from main circuit leads (R/L1, S/L2, T/L3, U/T1, V/T2, W/T3).15. Determine proper wire size for power and motor leads. Refer to Tables 2.1 and 2.2 for details.16. Review proper ground connections for the Drive. Refer to Chapter 2 -Electrical Installation for details. The Drive must be solidly grounded using the main circuit ground terminal. Ground resistance should be less than 100Ω for a $208-240 \mathrm{Vac}$ Drive. Ground resistance should be less than 10Ω for a 480 Vac Drive. Select wire size suitable for size of terminal screw. Make the length as short as possible.

Never ground the drive in common with welding machines, motors or other large-current electrical equipment.

Where several Drives are used, ground each Drive directly or daisy-chain to the ground pole(s). DO NOT FORM A LOOP WITH THE GROUND LEADS. See Figure 2.4.
17. Review terminal functions of signal and control circuits. Refer to Table 2.8.
18. Verify if any customer safeties are required (e.g. firestat, freezestat, high static pressure).
19. Record the following motor nameplate information:

Voltage: \qquad Amps: \qquad
20. Verify that the commercial power supply is within the rated Drive input voltage:

Power Supply: \qquad Vac Drive Input Voltage: \qquad Vac21. Verify that the leads in the electric motor conduit box are configured for the proper voltage.22. Ensure Motor Rated Current is less than or equal to Drive Output Amps. If multiple motors are being used, make sure that the Motor Rated Current sum is less than or equal to Drive Output Amp rating. Please note that if multiple motors are being operated off one Drive, each motor must have its own overload protection.23. Wire all necessary power leads to the Drive. DO NOT CONNECT DRIVE TO MOTOR YET.24. Wire all necessary ground wires to the Drive.25. Wire all necessary control wires to the Drive.
26. Ensure that the power leads are connected to the R/L1, S/L2 and T/L3 terminals in the Drive.27. Tighten all of the three-phase power and ground connections. Please check that all control and signal terminations are tight.28. Inspect the control circuit connections (including the shield) and determine if a motor "safety circuit" is connected.

If normally closed, these contacts may be wired in series with the RUN command contacts, which are between terminals $\mathbf{S 1}$ and $\mathbf{S N}$ of the Drive. No special programming is required. Refer to Chapter 2 - Electrical Installation.

Alternately, these contacts could be wired between terminals S3 and SN as External Fault Inputs, and may be either normally closed or normally open contacts.29. Record any other connections to the Drive using the blank terminal connection drawing in Chapter 2 - Electrical Installation to determine if special programming is required for the following:
-Multi-function Inputs - refer to Appendix A - Parameter List
-Multi-Function Outputs - refer to Appendix A - Parameter List

THIS COMPLETES THE DRIVE START UP PREPARATION.

- DRIVE START UP PROCEDURES

Please review "Drive Start Up Preparation" on page 4-2.

Step

1. Confirm that all three phases are present and that the input voltage is correct for the Drive being set up. Measure the voltage on the top side of the $\mathrm{MCCB} /$ disconnect and record below.

Table 4.1 Input Voltage Check	
Measurement Location	Voltage (Vac)
L1 - L2	
L2 - L3	
L1 - L3	

\square 8. Press the MENU key two times. Press the DATA/ENTER key once to enter the Quick Setting Menu. Press the ∇ key 25 times to display parameter E1-01 "Input Voltage". This parameter selects the nominal input voltage the Drive will receive. Set this parameter per your application. Press the DATA/ENTER key once. Use the $\boldsymbol{\Delta}, \boldsymbol{\nabla}$, and keys and the DATA/ENTER key to set this parameter per the application.

Table 4.2 Input Voltage Setting				
Parameter No.	Parameter Name Digital Operator Display	Setting Range	Factory Setting	Menu Location
		230.0 E1-01	Input Voltage Setting Input Voltage	

Ensure the DATA/ENTER key is pressed to enter the selection in the Drive. "Entry Accepted" briefly appears and the display is now not flashing.9. Press the $\boldsymbol{\Delta}$ key once to display E2-01 "Motor Rated FLA".

This parameter is the foundation of motor protection. It can be set automatically when auto-tuning is performed. Set this parameter according to the motor rated current (FLA). Press the DATA/ENTER once. Use the $\boldsymbol{\Delta}, \boldsymbol{\nabla}$, and $\boldsymbol{\nabla}$ keys to adjust E2-01 to the motor rated full load amps.

Table 4.6 Motor Rated Current					
Parameter No.	Parameter Name Digital Operator Display	Setting Range	Factory Setting	Menu Location	
E2-01	Motor Rated Current Motor Rated FLA	kVA Dependent	kVA Dependent	Quick Setting	

Ensure the DATA/ENTER key is pressed to enter the value in the Drive. "Entry Accepted" briefly appears and your display is not flashing.
10. Press the ESC once. Press DATA/ENTER once. Press $\boldsymbol{\Delta}$ key twice to display b1-02 "Run Source". This parameter selects where the Drive will receive the run command. Press the DATA/ENTER key once. Use the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ keys and the DATA/ENTER key to set this parameter per the application.

Table 4.7 Run Command Selection						
Parameter No.	Parameter Name Digital Operator Display	Setting Choices	Setting Range	Factory Setting	Menu Location	
b1-02	Run Command Selection Run Source	0: Operator 1: Terminals 2: Serial Com 3: Option PCB	$0-3$	1	Quick Setting	

Ensure the DATA/ENTER key is pressed to enter the selection in the Drive. "Entry Accepted" briefly appears and the display is now not flashing.
11. Press the $\boldsymbol{\nabla}$ key once to display b1-01 "Reference Source". This parameter selects where the Drive will receive the speed command. Press the DATA/ENTER key once. Use the $\mathbf{\Delta}$ or $\boldsymbol{\nabla}$ keys and the DATA/ENTER key to set this parameter per the application.

Table 4.8 Speed Command Selection					
Parameter No.	Parameter Name Digital Operator Display	Setting Choices	Setting Range	Factory Setting	Menu Location
b1-01	Frequency Reference Selection Reference Source	0: Operator 1: Terminals 2: Serial Com 3: Option PCB	$0-3$	1	Quick Setting

Ensure the DATA/ENTER key is pressed to enter the selection in the Drive. "Entry Accepted" briefly appears and the display is now not flashing.
12. Press the $\mathbf{\Delta}$ key twice to display b1-03 "Stopping Method".

This parameter selects the stopping method used when a stop command is given to the Drive.

Fig 4.5 Stopping Method Selection						
Parameter No.	Parameter Name Digital Operator Display	Setting Choices	Setting Range	Factory Setting	Menu Location	
b1-03	Stopping Method Selection Stopping Method	0: Ramp to Stop 1: Coast to Stop 2: DCInj to Stop 3: Coast w/Timer	$0-3$	0	Quick Setting	

Press the DATA/ENTER key once. Use the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ keys to select the stopping method. Ensure the DATA/ENTER key is pressed to enter the selection in the Drive. "Entry Accepted" briefly appears and the display is not flashing.13. Press the MENU key once to display "Operation".14. Press the DATA/ENTER key once to display "Frequency Ref".15. The STOP and FWD lights are on.16. Press the DATA/ENTER key once to enable entering of a speed command in U1-01. Use the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ keys to set a speed command of 6.00 Hz .17. Press the HAND key once to start the motor and verify correct motor rotation for the application. The RUN light turns on and the STOP light turns off.

If the direction of motor rotation is wrong, press the OFF key. The RUN light turns off and the STOP light turns on. REMOVE POWER from the Drive. Wait for the Red CHARGE LED (near the power terminals) to go out. When it does, swap the wires connected to terminals $\mathbf{U} / \mathbf{T} 1 \& \mathbf{V} / \mathbf{T} \mathbf{2}$ in the Drive. Be sure to re-tighten the terminal lugs.
APPLY POWER.

To verify the motor rotation is now correct for the application, press the HAND key once to turn off the AUTO SEQ and AUTO REF lights. The FWD light turns on and the motor will rotate at the speed entered in step 16.
18. Press the MONITOR key to display the U1 monitors. Use the and ∇ keys to view Output Current (U1-03), Output Voltage (U1-06), and DC Bus Voltage (U1-07) while running the Drive throughout its entire speed range. Record the following information at each speed:

Frequency (Hz) Monitor U1-01	Output Current (A) Monitor U1-03	Output Voltage (Vac) Monitor U1-06	DC Bus Voltage (Vdc) Monitor U1-07
6.0			
10.0			
15.0			
20.0			
25.0			
30.0			
35.0			
40.0			
45.0			
50.0			
55.0			
60.0			

When this table is complete, press the OFF key. The Drive will stop and the FWD light remains on. This step provides benchmark data for the application during initial start up.19. Press the MENU key once to display "Operation". Press the DATA/ENTER key to display "Frequency Ref". If using a remote speed command, press the AUTO key so the AUTO SEQ and AUTO REF indicators are on. This puts the Drive in Auto mode.20. If using an external speed command, determine whether the speed command is a $0-10 \mathrm{Vdc}$ or a $4-20 \mathrm{~mA}$ signal. Connect the positive side of a $0-10 \mathrm{Vdc}$ signal to terminal A1. Connect the positive side of a $4-20 \mathrm{~mA}$ signal to terminal A2. Connect the COMMON of the speed command to terminal AC.

Note: Connect only one input. The factory default is 0-10Vdc. To change to 4-20mA adjust parameter H3-09 to " $4-20 m A$ " and ensure DIP Switch S1-2 (located on the terminal board) is in the ON position.
21. Check the signal for proper polarity. Observe if the speed command can achieve the minimum and maximum speeds desired. If not, perform the following:

For 0-10Vdc input (Terminal A1)

1. With no input, adjust Bias (H3-03 setting) until an output of " 0.0 Hz " is obtained.
2. With full-scale input, adjust Gain (H3-02 setting) until an output of " 60.0 Hz " (or other desired maximum frequency) is obtained.

For 4-20mA input (Terminal A2)

1. With 4 mA input, adjust Bias (H3-11 setting) until an output of " 0.0 Hz " is obtained.
2. With 20 mA input, adjust Gain (H3-10 setting) until an output of " 60.0 Hz " (or other desired maximum frequency) is obtained.

THIS COMPLETES THE DRIVE START UP PROCEDURE.

Notes:

Chapter 5 Basic Programming

Basic Programming Parameters 5-2
Language Selection 5-2
Speed Command Source Selection 5-2
Run Command Source Selection 5-3
Stopping Method Selection 5-5
Reverse Operation Selection 5-6
Drive Delay 5-7
PI Function 5-8
Energy Savings 5-14
Accel/Decel Time Settings 5-14
Speed Command Limits 5-15
Input Voltage Setting 5-15
Motor Rated Current Setting 5-16
Option Communication Error Selection 5-16
Gain and Bias Adjustment 5-16
Momentary Power Loss Function 5-17
Speed Command Loss Detection 5-18
Auto Restart 5-18
Torque Detection 5-19
Cooling Fan Operation 5-21
Monitor Configuration 5-21
User Initialization 5-22
Speed Command Setting Selection 5-22
Elapsed Timer Function 5-23
Digital Operator COPY Function 5-23
Auto-Tuning 5-26

E7 Basic Programming Parameters

■ Language Selection

A1-00 Select Language

The setting of parameter A1-00 determines which international language the Drive will display non-numerical text. The A1-00 parameter will not be changed by either an Initialization of the drive $(\mathrm{A} 1-03=1110,2220$, or 3330) or a change in the setting of o2-09 (Initialization Mode Selection).

If the Drive is accidentally set to an unfamiliar language, locating the parameter to change the operator language can be accomplished by performing the following steps:

1. Press the MENU key until the "-ADV-" is shown in the upper left corner of the digital operator.
2. Press the DATA/ENTER key to enter the programming menu. The first parameter shown is A1-00 (Select Language).
3. Press the DATA/ENTER key again and use the INCREASE and DECREASE keys to choose the preferred language from the list below:
$0:$ English
$1:$ Japanese
$2:$ Deutsch (German)
$3:$ Francais (French)
$4:$ Italiano (Italian)
$5:$ Español (Spanish)
$6:$ Portuguës (Portuguese)

■ Speed Command Source Selection

b1-01 Reference Source

In order to run the motor in "Auto" Mode, the Drive must receive a run command and a speed command from an external source world. Parameter b1-01 specifies from where an auto mode speed command will be accepted.

Switching to "Auto" mode can be done by pressing the AUTO button while the Drive is stopped.

NOTE: If a run command is input to the Drive but no corresponding speed command is input, the RUN indicator on the digital operator will turn on and the STOP indicator on the digital operator will blink.

To have the Drive follow the speed command set by the digital operator:
Either use the "Hand" mode or set $\mathrm{b} 1-01=0$. The speed command can then be entered into the U1-01 monitor.

To have the Drive follow an analog Speed Command:
Set b1-01 $=1$ and connect a $0-10 \mathrm{Vdc}$ signal to A 1 and AC or a $4-20 \mathrm{~mA}$ signal to A 2 and AC .

To have the Drive receive the speed command from serial communication:
Set b1-01=2 and connect your RS-485/422 serial communications to R+, R-, S+, and S- on the removable terminal block.

To use LONWorks ${ }^{\text {TM }}$ to input a speed command:
Set $\mathrm{b} 1-01=3$ and plug a LONWorks ${ }^{\mathrm{TM}}$ option board into the 2 CN port on the Drive Control PCB. Consult the manual supplied with the option board for instructions on integrating the Drive into the LONWorks ${ }^{\mathrm{TM}}$ System.

Warning: If b1-01=3 but a LONWorks ${ }^{\mathrm{TM}}$ card is not installed in 2 CN , an OPE05 fault will be displayed on the digital operator and the Drive will not run.

■Run Command Source Selection

b1-02 Run Source

To successfully operate the Drive, a RUN command must be received by the Drive. Parameter b1-02 specifies from where an "Auto" RUN command will be accepted.

Although the Run Source and the Reference Source (b1-01) can be taken from the same source (e.g. digital operator, terminals or serial communication), this is not required.

To issue a run command from the digital operator:
Set b1-01 $=0$ and use the HAND and OFF buttons to start and stop the Drive.

To issue the run command from the terminals:
Set b1-01=1 and select between 2-wire and 3-wire operation by doing the following:

2-Wire The factory setting is for 2-wire operation. In the 2-wire configuration a closure between S 1 and SN will be interpreted as a Forward run command by the Drive. A closure between S 2 and SN will be interpreted as a Reverse run command. If both S1 and S2 are closed, the Drive will fault and the digital operator will display an EF fault.

Fig 5.1 2-wire Sequence Wiring Example (Factory Default)

3-Wire When any of the multi-function digital input parameters, H1-01 through H1-05, is set to 0, terminals S1 and S2 become Run and Stop, respectively. The multi-function digital input that was set to 0 will function as a Forward/Reverse input for the Drive. When the Forward/Reverse input is open, the Drive will run in the Forward direction and when the input is closed, the Drive will run in the Reverse direction.

Fig 5.2 3-wire Sequence Wiring Example

In 3-wire operation, a momentary closure ($>50 \mathrm{mS}$) of S 1 will cause the Drive to run provided that S 2 is held closed. The Drive will Stop anytime the $\mathrm{S} 2-\mathrm{SN}$ connection is broken. If the 3-wire configuration is implemented via a 3-wire Initialization (A1-03=3330), then terminal S3 becomes the Forward/Reverse input.

Fig 5.3 3-wire Sequence Run Command Example
To issue a run command via serial communication:

Set b1-02=2 (Communication) and connect RS-485/422 serial communication to $\mathrm{R}+, \mathrm{R}-, \mathrm{S}+$, and $\mathrm{S}-$ on the removable terminal block.
To issue the RUN command via the LONWorks ${ }^{\mathrm{TM}}$ option card:

Set b1-02 $=3$ and plug a LONWorks ${ }^{\mathrm{TM}}$ option board into the 2 CN port on the Control PCB. Consult the manual supplied with the option board for instructions on integrating the Drive into your LONWorks ${ }^{\mathrm{TM}}$ System.

Warning: If b1-02=3 but a LONWorks ${ }^{\text {TM }}$ card is not installed in 2CN, an OPE05 Fault will be displayed on the digital operator and the Drive will not run.

■Stopping Method Selection

b1-03 Stopping Method

There are four methods of stopping the Drive when the RUN command is removed.

0: Ramp to stop: When the run command is removed, the Drive will decelerate the motor to 0 rpm . The rate of deceleration is determined by the active deceleration time. The factory default Decel Time is parameter C1-02.

When the output frequency has dropped below the DC Injection Start Frequency (b2-01), DC current will be injected in the motor at a level determined by b2-02 and the injection will last as long as specified by b2-04.

Fig 5.4 Ramp to Stop
The actual deceleration time can be determined by the following formula:

Time to Stop $=$ Output Freq. at time of stop command $\quad x$ Setting of active Decel Time (C1-02)
Maximum Frequency (E1-04)

If S-curve characteristics (C2-02) are specified by the Drive programming, they will add to the total time to stop.

1: Coast to stop: When the run command is removed, the Drive will turn off its output transistors. The friction of the driven equipment will eventually overcome any residual inertia of the system and the motor will stop.

Fig 5.5 Coast to Stop
Note: After a stop is initiated, subsequent run commands input before the Minimum Baseblock Time (L2-03) has expired will be ignored.
2: DcInj to Stop: When the run command is removed, the Drive will Baseblock (turn off all output transistors) for the Minimum Baseblock Time (L2-03). Once the Minimum Baseblock Time has expired, the Drive will inject DC current into the motor windings to attempt to lock the motor shaft. The stopping time will be reduced as compared to Coast to Stop.

The level of DC Injection current is set by parameter b2-02. The length of time that DC current is injected into the motor windings is determined by the set value in
b2-04 and the output frequency at the time the run command is removed.

Fig 5.6 DC Injection Braking (DB) Stop

Note: If an overcurrent (OC) fault occurs during DcInj to Stop, lengthen the Minimum Baseblock Time (L2-03).

3: Coast w/Timer: When the run command is removed, the Drive will turn off its output transistors and the motor will coast to a stop. If a run command is input before time T (value of $\mathrm{C} 1-02$) expires, the Drive will not run and the run command will need to be cycled before operation can occur. The time T (value of $\mathrm{C} 1-02$) is determined by the output frequency when the run command is removed and the active deceleration time.

Output Frequency at Stop Command Input

Fig 5.7 Coast to Stop with Timer

■ Reverse Operation Selection

b1-04 Reverse Operation

For some applications reverse motor rotation is not applicable and may even cause problems (e.g., fans, pumps, etc.). Setting parameter b1-04 to 1 or 3 will cause the Drive to ignore any inputs for reverse operation.

Setting parameter bl-04 to either 2 or 3 will change the motor shaft rotation when a Forward Run command is given by exchanging the order of the output phasing.

The factory default setting of parameter b1-04 is " 0 ". When b1-04=0, reverse operation is allowed and no exchanging of output phasing occurs.

■ Drive Delay

b1-11 Drive Delay Time Setting

The Drive will delay any run command from executing until the bl-11 time has expired.

During the drive delay time, the digital operator will display:

Both the ALARM and RUN indicators will blink while the Drive waits to execute the run command.

■ PI Function

The capability to accept an analog signal as feedback for a PI (Proportional - Integral) control function is built into the Drive.

Frequency Reference / PI Setpoint

Fig 5.8 PI Block Diagram
The analog feedback to the Drive for the PI control is via the A2 terminal. The Drive must be programmed (H3-09=B) to use terminal A2 as feedback for the PI functionality of the Drive.

The PI setpoint can be configured to come from one of many different inputs or parameters. The table below describes the options for originating the PI setpoint.

Table 5.1 PI Setpoint Options			
	If these conditions are true		
The PI Setpoint will be read from:	Status of b5-18	Status of Memobus Register 0Fh bit 1	Status of b1-01
Constant b5-19	$=1$	N/A	N/A
Memobus Register 06H	$=0$	ON	N/A
D1-01	$=0$	OFF	$=0$
Terminal A1	$=0$	OFF	$=1$
Analog Option Card	$=0$	OFF	$=2$

Basic Programming 5-8

In some situations there is no setpoint but rather two feedback inputs. The drive can be programmed to maintain a set differential between two analog signals. If input A2 is configured as a "PI Differential" (H3-09=16), then the Drive will attempt to maintain a set difference between the measurements read on inputs A1 and A2. This set difference is programmed by the PI Offset parameter (b5-07).

b5-01 PI Mode

The Drive can be used as a stand-alone PI controller. If PI functionality is selected by parameter b5-01, the Drive will adjust its output to cause the feedback from a transducer match the PI setpoint (b5-19). The setting of b5-01 will determine whether PI functionality is disabled $(b 5-01=0)$, enabled $(b 5-01=1)$, or enable with the output of the PI function used to trim the Speed Command (b5-01=2).

b5-02 Proportional Gain Setting

The proportional gain will apply a straight multiplier to the calculated difference between the PI Setpoint (b5-19) and the measured transducer feedback.

b5-03 Integral Time Setting

The Integral factor of PI functionality is a time-based gain that can be used to eliminate the offset (difference between the setpoint and feedback at steady state). The smaller the Integral Time set into b5-03, the more aggressive the Integral factor will be. To turn off the Integral Time, set $\mathrm{b} 5-02=0.00$.

Fig 5.9 PI Response With and Without Intregal Factor
b5-04 Integral Limit Setting
On some applications, especially those with rapidly varying loads, the output of the PI function may have large oscillations. To suppress these oscillations, a limit can be applied to the intregal factor by programming b5-04.
b5-06 PI Output Limit
Places a cap on the output of the PI function. Limiting the PI function may help to prevent large overshoots in the Drive's response to error (the difference between the setpoint and the feedback).

Every time the PI output is updated, the PI offset is summed with the PI output. If the Drive is configured for Differential PI Regulation (H3-09=16), then the PI Offset is the targeted maintained differential between the signal measured on analog input A1 and the signal measured on analog input A2.

b5-08 PI Primary Delay Time Constant

Acts as a time based filter that lowers the responsiveness of the PI function, but also makes the function more stable when the setpoint varies rapidly or when the feedback is noisy.

b5-09 PI Output Level Selection

Normally, the output of the PI function causes an increase in motor speed whenever the measured feedback is below the setpoint. This is referred to as direct acting response. However, if $\mathrm{b} 5-09=1$, the output of the PI function causes the motor to slow down when the feedback is below the setpoint. This is referred to as reverse acting response.

b5-10 PI Output Gain Setting

Applies a multiplier to the output of the PI function. Using the gain can be helpful when the PI function is used to trim the Speed Command. Increasing b5-10 causes the PI function to have a greater regulating affect on the speed command.
b5-12 PI Feedback Reference Missing Detection Selection
b5-13 PI Feedback Loss Detection Level
b5-14 PI Feedback Loss Detection Time
Loss of feedback can cause great and potentially dangerous problems to a PI application. The Drive can be programmed to turn on a digital output whenever a loss of feedback occurs.

Feedback Loss Detection is turned on by b5-12. When $\mathrm{b} 5-12=1$, the Drive acknowledges the loss of feedback without stopping or turning on the fault output (MA-MB). If $b 5-12=2$, the Drive coasts to a stop and turns on the fault output if the feedback is determined to be lost.

The Drive interprets feedback loss whenever the feedback signal drops below the value of b5-13 and stays below that level for at least the time set into b5-14.

Fig 5.10 PI Feedback Loss Detection Chart
b5-15 Sleep Function Start Level
b5-16 Sleep Delay Time
b5-21 Sleep Input Source

The Sleep Function prevents the Drive from running when the PI loop output or the speed command is so low that no usable work is being done and equipment damage may result, the Sleep Function. If the Drive's output drops below the level set by PI Sleep Function Start Level (b5-15) and remains there at least as long as the delay time determined by the PI Sleep Delay Time (b5-16), then the Drive's internal run command drops out and the Drive output ceases. Though the Drive's output has ceased, all other Drive functions continue. Once the Drive's output returns to a level above the PI Sleep Function Start Level (b5-15) and remains above that level for at least the PI Sleep Delay Time (b5-16), the internal run command returns and the Drive output begins again.

Fig 5.11 PI Sleep Time Chart
The sleep function can be used even if the PI function is disabled $(\mathrm{b} 5-01=0)$.

The setting of parameter b5-21 determines whether the PI Sleep Function Start Level (b5-15) is compared to the speed command as determined by b1-01 (b5-21=0), the output of the PI function summed with the Speed Command (b5-21=1), or not used at all (b5-21=2). If $\mathrm{b} 5-21=2$, then the system feedback is compared to a preset level to awaken the Drive from the Snooze Function. (see parameter b5-22)

b5-17 PI Accel/Decel Time

This is a soft start function that is applied to the speed command and/or PI setpoint. Instead of having nearly instantaneous changes in reference levels, there is a programmed set ramp applied to level changes.

b5-18 PI Setpoint Selection

When PI Setpoint is enabled (b5-18=1) parameter b5-19 is used as the PI Setpoint. If b5-18=0 (disabled), the PI Setpoint will be either Modbus Register 06H (if Register 0FH bit 1 is high), or the active speed command before PI was enabled (e.g., the setting of b1-01.

b5-19 PI Setpoint Value

Parameter b5-19 is a preset PI Setpoint value. When $\mathrm{b} 5-18=1$, the value of $\mathrm{b} 5-19$ will take precedent over any other PI setpoint unless the Drive is set up for Differential Feedback, in which case, b5-18 has no affect on the PI function.

b5-20 PI Setpoint Display Scaling

The PI Setpoint Display Scaling value (b5-20) is a scaling factor that is applied to the monitor display for both the PI Setpoint (U1-38) and the PI Feedback (U1-24).

Table 5.2 PI Setpoint Display Scaling Options	
If b5-20 is:	U1-24 and U1-38 Display Increments.
0	0.01 Hz
1	0.00%
2 through 39 (enter the \# of motor poles)	0 RPM
40 through 39999	Engineering Units

If the monitors seem most natural in terms of percentage, set $\mathrm{b} 5-20=1$. If the monitors are easiest to work with when displaying the equivalent synchronous RPM, set b5-20= [the number of motor poles]. If another engineering unit, such as fpm or cfm, is desired, set b5-20=xxxx, where Digits 1 through 3 set the desired number to be displayed at 100% speed and Digit 4 determines the number of decimal places.

$\underline{\mathrm{X}} \underline{\mathrm{X}} \underline{\mathrm{X}} \underline{\mathrm{X}}$

Digit 5 Digit 4 Digit 3 Digit 2 Digit 1

Digits 1 through 4 set the desired number to be displayed at 100% speed.
Digit 5 determines the number of decimal places

$$
\begin{array}{ll}
\text { If Digit } 5=0 & \text { number format is XXXX } \\
\text { If Digit } 5=1 & \text { number format is XXX.X } \\
\text { If Digit } 5=2 & \text { number format is XX.XX } \\
\text { If Digit } 5=3 & \text { number format is X.XXX }
\end{array}
$$

For example:

If $\mathrm{b} 5-20=1425$, then at 100% output the digital operator would display 42.5 for monitor U1-38 or U1-24.
b5-22 PI Snooze Level
b5-23 PI Snooze Delay Time
b5-24 PI Snooze Deactivation Level

The Snooze Function is a variation on the Sleep Function. The Snooze function must be selected by setting parameter $\mathrm{b} 5-21=2$. Once the Snooze Function is selected, the Drive monitors the output frequency. If the output frequency drops below the PI Snooze Level (b5-22), and stays below that level for at least the PI Snooze Delay Time (b5-23), the Drive output shuts off.

This is different from the Sleep Function because it is the feedback that must drop below the PI Snooze Deactivation Level (b5-24) before normal Drive output will begin again.

b5-25 PI Setpoint Boost Setting

Just before the Snooze Function is activated, the PI Setpoint can be temporarily increased to create an overshoot of the intended PI Setpoint. The temporary boost is determined by the PI Setpoint Boost Setting (b5-25). Once the temporary boost level is reached (or the PI Maximum Boost Time (b5-26) is exceeded), the Drive output shuts off (snoozes) and the intended PI Setpoint returns. From this point on, the Snooze Function operates normally and the Drive output returns when the feedback level exceeds b5-24.

b5-26 PI Maximum Boost Time

Associated with the Snooze Function. In cases where the temporary PI Setpoint (intended PI setpoint + PI Setpoint Boost) cannot be reached within the PI Maximum Boost Time (b5-26), the Setpoint Boost is interrupted and the Drive output is turned off.

This is a second method of initiating the Snooze Function. If the PI feedback level exceeds the PI Snooze Feedback Level (b527), then the Drive output shuts off. Once the PI feedback drops below the PI Snooze Deactivation Level (b5-24) then normal Drive and PI operation return.
b5-28 PI Feedback Square Root Function Activation

If $\mathrm{b} 5-28=1$, the square root of the PI feedback is compared to the PI Setpoint in order to determine appropriate Drive output to properly regulate the system. This is helpful in cases where the measured feedback is pressure but the PI loop needs to regulate flow.

b5-29 PI Square Root Gain

A multiplier applied to the square root of the feedback.

b5-30 PI Output Square Root Monitor Selection

If the PI Function is regulating the flow of a closed loop system by using a pressure feedback, it may be convenient to view the square root of the PI output using monitor U1-37.

■ Energy Savings

b8-01 Energy Savings Selection

When the Energy Savings function is enabled ($\mathrm{b} 8-01=1$), the Drive reduces the output voltage to the motor below the voltage value specified by the programmed V ratio whenever the motor load is light. Because torque is reduced during this voltage reduction, the voltage returns to the specified voltage values when the load returns. The energy savings is realized through improved motor efficiency. A motor is most efficient when it is fully loaded (e.g. slipping the most). Reduced output voltage increases rotor slipping even with a light load.

■Accel/Decel Time Settings

C1-01 Acceleration Time 1
C1-02 Deceleration Time 1

C1-01 (Acceleration Time 1) sets the time to accelerate from zero to maximum speed (E1-04). C1-02 (Deceleration Time 1) sets the time to decelerate from maximum speed to zero. C1-01 and C1-02 are the factory default active accel/decel "pair". Another accel/decel pair (C1-03 and C1-04) exists that can be activated by a multi-function digital input (H1-0x=7), or specified by a switch over point (C1-11).

When output frequency \geq C1-11, acceleration and deceleration are performed using Acceleration/deceleration Time 1 (C1-01, C1-02).
When output frequency < C1-11, acceleration and deceleration are performed using Acceleration/deceleration Time 2 (C1-03, C1-04).

Fig 5.12 Acceleration/deceleration Time Switching Frequency

■ Speed Command Limits

d2-01 Frequency Reference Upper Limit

d2-02 Frequency Reference Lower Limit

The use of parameters d2-01 and d2-02 places limitations on the speed command that the Drive accepts. The parameters are set in units of percentage of the maximum frequency (E1-04) of the Drive and cause dead bands on any remote speed command input. By setting upper or lower frequency limits, the Drive programmer can prevent operation of the Drive in certain ranges that may cause resonance, equipment damage, or both.

Fig 5.13 Frequency Reference Upper and Lower Limit Characteristics
Parameter d2-01 can be set above 100%, however only in the "Hand" mode will the Drive operate above the maximum frequency.

Input Voltage Setting

E1-01 Input Voltage Setting

Set the Input Voltage parameter (E1-01) to the nominal voltage of the connected AC power supply. This parameter adjusts the levels of some protective features of the Drive (e.g. Overvoltage, Stall Prevention, etc.). E1-01 also serves as the Maximum/Base Voltage used by the Preset V/Hz curves (E1-03=0 to E).

■ Motor Rated Current Setting

E2-01 Motor Rated Current

The Motor Rated Current parameter (E2-01) is necessary information used by the Drive to help protect the motor. The motor protection parameter is L1-01 and must be enabled. Set E2-01 to the full load amps (FLA) stamped on the motor's nameplate.

During Auto-tuning, the motor rated current (T1-04) must be entered in the Auto-tuning menu. If the Auto-tuning operation completes successfully, the value entered into T1-04 will also be written into E2-01.

■Option Communication Error Selection

F6-01 Operation Selection After Communication Error

If a serial communication option board is attached to the Drive at the 2 CN connector, the Drive will automatically monitor the card for any type of communication error. This monitoring is performed whether or not a run command or speed command is coming via the option board.

The setting of F6-01 determines whether the communication error is seen as a fault or an alarm. If F6-01=3, then the fault output is not energized when a communication error occurs. All other settings of F6-01 causes the fault output to energize.

The setting of F6-01 has no effect on the communication errors seen at the RS-485/422 terminals on the removable terminal block.

■ Gain and Bias Adjustments

H3-02 Terminal A1 Gain Setting
H3-03 Terminal A1 Bias Setting

In order to have the Drive correctly interpret an analog input, it may be necessary to apply a gain and/or a bias to the signal.
$\mathrm{H} 3-02$ should be set such that if 10 Vdc is read on the A 1 input the speed command is the setting of $\mathrm{H} 3-02$. For example, $5 \mathrm{Vdc}=100 \%$ speed command is desired, then H3-02 should be set to 200%. a simple ratio can be used to determine the value of H3-02 that corresponds to the desired speed command:

$$
\begin{aligned}
& \frac{\mathrm{H} 3-02}{10 \mathrm{Vdc}}=\frac{100 \%}{5 \mathrm{Vdc}} \\
& \mathrm{H} 3-02=\frac{10 \mathrm{Vdc}}{5 \mathrm{Vdc}} \times 100 \% \\
& \mathrm{H} 3-02=200 \%
\end{aligned}
$$

H3-03 should be set such that, if 0 Vdc is read on the A1 input, the speed command is the setting of H3-03. Setting a bias is useful to compensate for drift. If 0 Vdc does not produce 0 RPM , then H3-03 is used to offset the drift. If the drift is positive, set H3-03 less than zero. However, if the drift is negative, set H3-03 greater than zero.

Fig 5.14 Terminal A1 and A2 Analog Inputs Gain Adjustment Example
H3-10 Terminal A2 Gain Setting
H3-11 Terminal A2 Bias Setting

The gain and bias of analog input A2 are adjusted by H3-10 \& H3-11 respectively. See the example below:

Problem: A $0-20 \mathrm{~mA}$ signal is desired for a PI Feedback signal, instead of the factory default 4-20mA signal.

Solution: H3-10 would be unchanged since the top end, 100% feedback, is still equal to 20 mA . The Drive needs to have 0 mA equate to 0% feedback. This is done by setting H3-11 $=25 \%$.

Fig 5.15 Analog Input Bias Adjustment

Momentary Power Loss Function

L2-01 Momentary Power Loss Detection Selection

L2-02 Momentary Power Loss Ride-thru Time
The Drive allows different responses to momentary power losses. The setting of L2-01 determines whether the Drive will attempt to restart after a short loss of incoming AC power and for what length of time this capability remains active.

If L2-01=0, the Drive detects a UV1 fault and restarting after any momentary power loss is impossible. The Drive cannot restart until the external run command is removed and the UV1 fault is reset.

If $\mathrm{L} 2-01=1$, the Drive restarts without the UV1 fault if power is returned within the time specified in L2-02, the Momentary Power Loss Ride-thru Time. During the power loss but before the fault trip, the digital operator will display a UV alarm. If L2-02 is set for a time longer than the control power supply can be sustained, a UV1 fault will not occur and the Drive restarts upon the return of AC power. The time that the control power supply can be maintained varies with Drive size. The larger the Drive is, the greater the potential ride-thru time.

If $\mathrm{L} 2-01=2$, the Drive ignores $\mathrm{L} 2-02$ and attempts a restart as long as the control power supply is still able to maintain a minimal voltage level. In effect, setting L2-01=2 is programming the Drive for maximum Power Loss Ride-thru. An equivalent setting is $\mathrm{L} 2-01=1$ with $\mathrm{L} 2-02$ set to a time longer than the control power supply can be maintained after power is lost.

Note: The run command must be held during power loss for any power loss ride-thru capability to be possible. It is for this reason that 3-wire control is not recommended for use with the Momentary Power Loss function.

Speed Command Loss Detection

L4-05 Frequency Reference Loss Detection Selection
L4-06 Frequency Reference at Loss of Frequency Reference
The Drive can be configured to compensate for the loss of its external speed command. An external speed command is considered lost if it drops 90% of its value in 400 mS or less.

Fig 5.16 Loss of Frequency Reference Response Chart
To enable Frequency loss detection, set $\mathrm{L} 4-05=1$. If Frequency Reference Loss Detection is enabled and the reference is lost, the Drive continues to operate at the speed commanded by parameter L4-06. Once the speed command returns, the Drive once again follows the speed command.

Only when L4-05=1, does setting H2-01/H2-02=C configure a digital output as a Frequency Reference Loss warning.

■ Auto Restart

L5-01 Number of Auto Restart Attempts
 L5-03 Maximum Restart Time After Fault

All faults will cause the Drive to stop operating the motor. For some faults, it is possible to configure the Drive to attempt a restart. After the fault occurs, the Drive baseblocks for L2-03 seconds. After the baseblock is removed, the Drive attempts to restart. If the restart is successful, the Drive performs a Speed Search from set speed command and the Auto Restart Attempts count is increased by 1 . If the restart fails (or is not attempted due to a continuing fault condition, e.g. an OV fault) the Drive waits L5-03 seconds before attempting another restart.

Fig 5.17 Auto Restart Timing Chart
The Auto Restart count is reset back to zero if any of the following occur:

* No further faults for ten minutes after the last retry.
* The Drive's power is turned off (the Drive must be unpowered long enough to let control power dissipate).
* The SHIFT/RESET key is pushed after the last reset attempt.

The following faults are covered by the Auto Restart function:

```
* OC (Overcurrent)
* LF (Output Open Phase)
* PF (Input Phase Loss)
* PUF (DC Bus Fuse)
* OL1 (Motor Overload)
* OL3 (Overtorque)
* OL2 (Inverter Overload)
* OV (DC Bus Overvoltage)
* GF (Ground Fault)
* UV1 (DC Bus Undervoltage)
* OH1 (Overheat)
```

In order for Auto Restart after a UV1 fault, to be successful, Momentary Power Loss Ride-thru must be enabled (L2-01=1 or 2).

Setting H2-01 or H2-02 equal to " 1 E " can configure a digital output as a "Restart Enabled" to signal if an impending Auto Restart is possible.

■Torque Detection

L6-01 Torque Detection Selection 1
L6-02 Torque Detection Level 1
L6-03 Torque Detection Time 1

The Drive can be programmed to indicate when either an overtorque or an undertorque condition exists. A digital output must be programmed for "Torque Detection" (H2-01/H2-02=B or 17). Warning of an overtorque condition can indicate a motor jam and an undertorque condition can indicate a broken belt, for example.

To configure Torque Detection requires the following decisions:
a. Do you wish to check for an overtorque condition or an undertorque condition?
b. Do you wish to check for the torque condition whenever the Drive is running or only at speed agree? Nuisance detection during acceleration, when high torques are normally required, can be avoided by using Torque Detection only at Speed Agree.
c. Do you want the Drive to fault if the torque condition is detected, or only alarm and continue operation?

The following table can help choose the proper setting for Torque Detection Selection:

Table 5.3 L6-01 Setting Choices							
L6-01 Setting	Overtorque	Undertorque	Fault	Alarm	Always Detected	Only Detected at Spd Agree	
0	Torque Detection Disabled						
1	$*$			$*$		$*$	
2	$*$			$*$	$*$		
3	$*$		$*$			$*$	
4	$*$		$*$		$*$		
5		$*$		$*$		$*$	
6		$*$		$*$	$*$		
7		$*$	$*$			$*$	

After selecting the proper detection scheme, the Torque Detection Level (L6-02) must be specified. If the current level read by the output DCCTs rises above (overtorque), or drops below (undertorque), and remains there for at least the Torque Detection Time (L6-03). The Torque Detection Function will change the state of any digital output configured for Torque Detection (H2-01/H2-02=B or 17).

Fig 5.18 Over Torque Detection Timing Chart

Fig 5.19 Under Torque Detection Timing Chart

■Cooling Fan Operation

L8-11 Heatsink Cooling Fan Operation Delay Time

The Drive can be programmed to allow the cooling fan to run for up to 5 minutes after the run command is removed. This delayed stop for the heatsink fan is effective only when $L 8-10=0$.

Fig 5.20 Cooling Fan ON/OFF Timing Chart

■Monitor Configuration

o1-01 User Monitor Selection
o1-02 Power-On Monitor

When the Drive is powered up, three monitors are displayed on the digital operator. The first and largest monitor is the PowerOn monitor. The factory default Power-On monitor is Speed Command (U1-01). Below the Speed Command monitor are the next two sequential monitors, Output Frequency (U1-02) and Output Current (U1-03). Pressing the INCREASE key once scrolls the monitors to show the User Monitor as selected by o1-01. The factory default for ol-01 is the Output Voltage monitor (U1-06).

The active monitor display when the Drive is powered on can be changed to either be U1-01, U1-02, U1-03, or the User Monitor. The two monitors displayed below the Power-On top monitor, are the next two sequential monitors. See example below:

For example, to display the Flash ID as the Power-On monitor, then o1-01 must be set to " 14 " and o1-02 must be set to " 4 ". The next time Drive power is cycled, the digital operator displays U1-14, U1-15, and U1-16.

o1-06 User Monitor Selection Mode
o1-07 Second Line User Monitor
o1-08 Third Line User Monitor
Normally, the monitors shown directly below the active monitor are the next two sequential monitors. If ol-06 (User Monitor Selection Mode) is set to " 1 ", those two monitors are locked as specified by parameters o1-07 and o1-08 and will not change as the top monitor is scrolled with the INCREASE and DECREASE keys.

■ User Initialization

o2-03 User Parameter Default Value

The Drive gives the option of configuring any and all of the programming parameters and then saving the parameters as a special initialization. After configuring the Drive, set parameter $02-03=1$ to save the parameters to a User Initialization. Once this has been done, the Initialize Parameters parameter (A1-03) will offer the choice of "1110:User Initialize". Choosing A1-03 $=1110$ will reset all parameters back to what they were the last time they were set using o2-03.

The choice of setting A1-03=1110 is unavailable until the User Initialization has been defined using o2-03. An existing User Initialization can be cleared by setting o2-03=2 (Clear All). After the clearing of the User Initialization, the choice of " 1110 : User Initialize" is no longer available in A1-03.

■ Speed Command Setting Selection

o2-05 Frequency Reference Setting Method Selection

Normally when setting a Speed Command via the digital operator ("Hand" mode), it is necessary to press the DATA/ENTER key before the Drive begins to accelerate or decelerate to the new set speed. The DATA/ENTER key also stores the speed command to memory. When o2-05=1 the digital operator INCREASE and DECREASE keys change the speed command without the need for pressing the DATA/ENTER key. This is referred to as MOP (Motor Operated Potentiometer) type functionality. When $02-05=1$, the speed command is stored to memory 5 seconds after the INCREASE or DECREASE keys are released.

To change the Speed Command in the HAND mode, U1-01 must be the top monitor and then the ENTER key must be pressed
in order to access the Speed Command function. This is not to be confused with pressing the ENTER key to achieve a change in speed, which is the subject of parameter 02-05.

■Elapsed Timer Function

o2-08 Cumulative Operation Time Selection

The Drive features an Elapsed Timer function. The Elapsed Timer monitor is U1-13. Parameter 02-08 programs the function to either accumulate elapsed hours based on time the Drive is powered ($02-08=0$) or time the Drive is running ($02-08=1$). The Drive is considered "running" anytime there is an active run command or when the Drive is outputting voltage (e.g. during deceleration).

-DRIVE-		Rdy
Elapsed Time		
U1-13 $=$	OH	
$\cdots \cdots \cdots \cdots$		
U1-14=	03010	
U1-15 $=$	50.5%	

■ Digital Operator COPY Function

o3-01 COPY Function Selection
o3-02 Read Allowed Selection
The digital operator has parameter COPY capabilities via built-in non-volatile memory. The digital operator can READ all of the parameters in the Drive and store them for later COPY back to the Drive or into another Drive with the same product code and software number.

To read the parameter values and store them in the digital operator, set $03-02=1$. Attempting to READ the data, which overwrites any previously stored data, without first setting $03-02=1$, will result in get the following error message:

```
-ADV-
    PRE
    READ IMPOSSIBLE
```

After setting o3-02=1, it is possible to store parameter values in the digital operator by setting 03-01 $=1$ (INV \rightarrow OP READ).

```
-ADV
    READ
    INV }->\mathrm{ OP READ
```

A successful READ of the parameter values will display:

```
-ADV-
    READ
    READ COMPLETE
```

An error may occur while saving the parameter values to memory. If an error is displayed, press any key to cancel the error display and return to parameter o3-01.

Error displays and their meanings are covered in Chapter 6: Diagnostics and Troubleshooting.

To COPY parameter values into a Drive, set o3-01=2. During the writing of the parameter values into the Drive the digital operator will display:

```
-ADV-
```

 COPY
 OP \(\rightarrow\) INV COPYING
 A successful COPY of the parameter values will display:
-ADV-

COPY
 COPY COMPLETE

An error may occur while writing the parameter values to the Drive. If an error is displayed, press any key to cancel the error display and return to parameter o3-01.

Error displays and their meanings are covered in Chapter 6: Diagnostics and Troubleshooting.

It is possible to compare the parameter values stored in the digital operator with the parameter values currently in the Drive by using the VERIFY function. To do this, set $03-01=3$. During the comparing of the parameter values into the Drive the digital operator will display:

```
-ADV-
    VERIFY
    DATA VERIFYING
```

A successful VERIFY of the parameter values will display:

```
-ADV-
    VERIFY
VERIFY COMPLETE
```

If all the parameter values stored in the digital operator do not match those programmed in the Drive, the digital operator displays the following:

```
-ADV-
```


VYE

``` VERIFY ERROR
```

The digital operator will not display which parameters did not match, only that the verification found discrepancies in some parameter values.

Yaskawa Electric America offers DriveWizard ${ }^{\text {TM }}$ software that can also READ, COPY, and Verify Drive parameter values. DriveWizard ${ }^{\mathrm{TM}}$ lists all discrepancies between the Drive and a pre-saved parameter file when verifying is performed.

NOTE: In order to properly use the COPY or VERIFY functions, the following Drive data must match that of the Drive from which the digital operator stored its parameter values:

* Drive Product and type (e.g. E7)
* Software Number (e.g. 03010 also known as FLASH ID)
* Drive capacity and voltage e.g. CIMR-E7U4018 (480Vac, _A)

■ Auto-Tuning

T1-02 Motor Rated Power
T1-04 Motor Rated Current

The Drive requires Line-To-Line Resistance auto-tuning before it can properly perform the Estimated Speed Search method. This type of motor auto-tuning allows for bi-directional speed search. The T1 parameters are found under the Auto-Tuning menu.

1. In T1-02, enter the rated power in kilowatts (kW) of the motor attached to the Drive. If the motor nameplate lists the rated power in terms of horsepower (HP), use the following formula to convert to kW before setting the value of T1-02:

$$
\mathrm{kW}=\mathrm{HP} \times 0.746
$$

2. In T1-04, enter the Full Load Amps (FLA) as stamped on the motor's nameplate.
3. Press the INCREASE key once to display:
```
-ATUNE- Rdy
    Auto-Tuning
    0Hz/ 0.00A
    Tuning Ready ?
    Press HAND key
```

4. If ready, press the HAND key once to start auto-tuning. This process will last approximately 15 seconds. When auto-tuning is finished, the digital operator will display:

-ATUNE- Tune Successful
$0 \mathrm{~Hz} / 0.00 \mathrm{~A}$

5.To exit the Auto-Tuning menu, press the MENU key once.

NOTE: It is possible to get a "Data Invalid" error if either T1-02 or T1-04 fall outside the reasonable levels for the programmed size of the Drive (o2-o4).

Chapter 6
 Diagnostics \& Troubleshooting

This chapter describes diagnostics and troubleshooting for the Drive.

Fault Detection 6-2
Alarm Detection 6-8
OPE Errors 6-11
Auto-Tuning Faults 6-12
Digital Operator Copy Function Faults 6-13
Troubleshooting 6-14
Main Circuit Test Procedure 6-20
Drive Date Stamp Information 6-24

Fault Detection

When the Drive detects a fault, fault information is displayed on the digital operator, the fault contact closes, and then the motor coasts to stop. (However, a fault that selects a stopping method will operate according to the stopping method.)

- If a fault occurs, take appropriate action according to the table by investigating the cause.
- To restart, reset the fault with any of the following procedures:
- Turn ON the fault reset signal.
-(Set the fault reset (set value: 14) to multi-function digital input (H1-01 to H1-05).
- Press the RESET key of the digital operator.
- Shut off the Drive input power once, and then turn on again.

Table 6.1 Fault Displays and Processing			
Digital Operator Display	Description	Cause	Corrective Action
BUS Option Com Err	Option Communication Error After initial communication was established, the connection was lost.	Connection is broken, master has stopped communicating	Check all connections, verify all user-side software configurations.
CE Memobus Com Err	Modbus Communication Error Control data was not received correctly for two seconds	Connection is broken, master has stopped communicating	Check all connections, verify all user-side software configurations.
CPFOO COM-ERR(OP\&INV)	Operator Communication Fault 1 Transmission between the Drive and the digital operator cannot be established within 5 seconds after supplying power	Digital operator cable not securely connected, digital operator defective, control board defective	Remove the digital operator once and then reinstall it
	External RAM of CPU is defective	Control circuit damage	Cycle power off and on to the Drive
			Replace the Drive
CPF01 COM-ERR(OP\&INV)	Operator Communication Fault 2 After communication started with the digital operator, a communication fault occurred for 2 seconds or more	Digital operator cable not securely connected, digital operator defective, control board defective	Remove the digital operator once and then reinstall it
			Cycle power off and on to the Drive
			Replace the Drive
CPFO2 BB Circuit Err	Baseblock Circuit Fault Baseblock circuit fault at power-up	Gate array hardware failure during power-up	Perform a factory initialization
			Cycle power off and on to the Drive
			Replace the control board
CPFO3 EEPROM Error	EEPROM Fault EEPROM fault, check sum not valid	Noise or spike on the control circuit input terminals	Perform a factory initialization
			Cycle power off and on to the Drive
			Replace the control board
CPF04 Internal A/D Err	CPU Internal A/D Converter Fault	Noise or spike on the control circuit input terminals	Perform a factory initialization
			Cycle power off and on to the Drive
			Replace the control board

Table 6.1 Fault Displays and Processing			
Digital Operator Display	Description	Cause	Corrective Action
CPF05 External A/D Err	CPU External A/D Converter Fault	Noise or spike on the control circuit input terminals	Perform a factory initialization
			Cycle power off and on to the Drive
			Replace the control board
CPF07 RAM-Err	ASIC Internal RAM Fault (RAM)	---	Cycle power off and on to the Drive
		Control circuit damage	Replace the Drive
CPFO8 WAT-Err	Watchdog Timer Fault (WAT)	---	Cycle power off and on to the Drive
		Control circuit damage	Replace the Drive
$\begin{aligned} & \text { CPF09 } \\ & \text { CPU-Err } \end{aligned}$	CPU-ASIC Mutual Diagnosis Fault (COY)	---	Cycle power off and on to the Drive
		Control circuit damage	Replace the Drive
$\begin{gathered} \text { CPF10 } \\ \text { ASIC-Err } \end{gathered}$	ASIC Version Fault (ASIC)	Control circuit damage	Replace the Drive
CPF20 Option A/D Error	Option Card Fault	Option card connector connection fault	Remove all inputs to the option board
		Option card A/D converter fault	Perform a factory initialization
			Cycle power off and on to the Drive
			Replace the option board
			Replace the Control board
CPF21 Option CPU Down	Self-diagnosis Fault of Communication Option Card	Noise or spike on the communication line, defective option board	Perform a factory initialization
			Cycle power off and on to the Drive
			Replace the option board
			Replace the control board
CPF22 Option Type Err	Communication Option Card Code Number Fault	Unrecognizable option board is connected to the control board	Remove any option boards
			Cycle power off and on to the Drive
			Perform a factory initialization
			Replace the option board
			Replace the control board

Table 6.1 Fault Displays and Processing		Digital Operator Display	Description

Table 6.1 Fault Displays and Processing			
Digital Operator Display	Description	Cause	Corrective Action
$\begin{gathered} \text { OC } \\ \text { Over Current } \end{gathered}$	Overcurrent Drive output current exceeded the overcurrent detection level (approximately 180% of Drive rated output current)	Shorted Drive output phase to phase, shorted motor, locked rotor, load too heavy, accel/ decel time too short, contactor on the Drive output is opened and closed, a special motor or a motor with a FLA rating larger than Drive rated output current	Remove the motor and run the Drive without the motor
			Check the motor for a phase-tophase short
			Check the Drive for a phase-tophase short at the output
			Verify C1-01 and C1-02 are set correctly
			Check load conditions
OH 1Heatsnk MAX Temp	Cooling Fin/Cooling Fin Fan Overheat The temperature of the Drive cooling fin exceeded the temperature programmed in parameter L8-02	Cooling fan(s) are not working, high ambient temperature, a heat source is too close to the Drive	Check for dirt build-up on the fans and cooling fins
			Reduce the ambient temperature around the Drive
	Drive Internal Cooling Fan		Remove the heating unit
$\begin{gathered} \text { OH3 } \\ \text { Motor Overheat } 1 \end{gathered}$	Motor Overheating Alarm The Drive stops or continues operation according to the setting of L1-03.	Overheating of motor as measured by motor thermistor	Recheck the cycle time and the size of the load
			Recheck the accel/decel time (C1-01 and C1-02)
			Recheck the V/F pattern (E1-01 thru E1-13)
			Recheck the motor rated current value (E2-01)
OH 4 Motor Overheat 2	Motor Overheating Fault The Drive stops operation according to the setting of L1-04.	Overheating of motor as measured by motor thermistor	Recheck the cycle time and the size of the load
			Recheck the accel/decel time (C1-01 and C1-02)
			Recheck the V/F pattern (E1-01 thru E1-13)
			Recheck the motor rated current value (E2-01)
$\begin{gathered} \text { OL1 } \\ \text { Motor Overloaded } \end{gathered}$	Motor Overload Designed to protect the motor. Fully adjustable from parameter E2-01	The load is too large. The cycle time is too short at the accel/decel time	Recheck the cycle time and the size of the load as well as the times set in C1-01 and C1-02
		The voltage of the V/F pattern is high	Review the V/F pattern parameters, E1-01 thru E1-13
		Motor rated current setting is improper	Check the motor rated current value in E2-01
$\begin{gathered} \text { OL2 } \\ \text { Inv Overloaded } \end{gathered}$	Drive Overload Designed to protect the Drive	The load is too large. The cycle time is too short at the accel/decel time	Recheck the cycle time and the size of the load as well as the times set in C1-01 and C1-02
		The voltage of the V/F pattern is high	Review the V/F pattern parameters, E1-01 thru E1-13
		The size of the Drive is small	Change to a larger size Drive

Table 6.1 Fault Displays and Processing			
Digital Operator Display	Description	Cause	Corrective Action
$\stackrel{\text { OL3 }}{\text { Overtorque Det } 1}$	Overtorque Detection 1 Drive output current > L6-02 for more than the time set in L6-03	Motor is overloaded	Ensure the values in L6-02 and L6-03 are appropriate
			Check application/machine status to eliminate fault
$\begin{gathered} \text { OPR } \\ \text { Oper Disconnect } \end{gathered}$	Digital Operator Connection Fault The Drive will stop if the digital operator is removed when the Drive is commanded to run through the digital operator	The digital operator is not attached or the digital operator connector is broken	Attach the digital operator
			Check the digital operator connector
			Verify the setting of 02-06
$\begin{gathered} \text { OV } \\ \text { DC Bus Overvolt } \end{gathered}$	DC Bus Overvoltage 208-240Vac: Trip point is $\geq 400 \mathrm{Vdc}$ 480 Vac : Trip point is $\geq 800 \mathrm{Vdc}$	High input voltage at R/L1, S/L2 and T/L3	Check the input circuit and reduce the input power to within specifications
		The deceleration time is set too short	Extend the time in C1-02
		Power factor correction capacitors are being used on the input to the Drive	Remove the power factor correction capacitors
PF Input Pha Loss	Input Phase Loss Drive input power supply has an open phase or has a large imbalance of input voltage	Open phase on the input of the Drive	Check the input voltage
		Loose terminal screws at R/L1, S/L2 or T/L3.	Tighten the terminal screws
		Momentary power loss occurred	Check the input voltage
		Input voltage fluctuation too large	Check the input voltage
		Parameter L8-06 value is set incorrectly	Adjust L8-06 according to your application. The higher the value the less sensitive it becomes.
PUF DC Bus Fuse Open	DC Bus Fuse Detects if the DC bus fuse has opened	Shorted output transistor(s) or terminals	Remove power from the Drive
			Disconnect the motor
			Perform the checks without power in Table 6.6
			Replace the shorted component(s)
			Replace the defective fuse
$\begin{gathered} \text { RH } \\ \text { DynBrk Resistor } \end{gathered}$	Dynamic Braking Resistor The protection of the dynamic braking resistor based on setting of L8-01	Overhauling load, extended dynamic braking duty cycle, defective dynamic braking resistor	Verify dynamic braking duty cycle
			Monitor DC bus voltage
			Replace dynamic braking resistor

Table 6.1 Fault Displays and Processing			
Digital Operator Display	Description	Cause	Corrective Action
RR DynBrk Transistr	Dynamic Braking Transistor The dynamic braking transistor failed	Shorted dynamic braking transistor, high DC bus voltage, defective dynamic braking resistor	Cycle power off and on to the Drive
			Replace defective dynamic braking transistor or resistor
			Monitor DC bus voltage
UL3 Undertorq Det 1	Undertorque Detection 1 Drive output current $<$ L6-02 for more than the time set in L6-03	Motor is underloaded	Ensure the values in L6-02 and L6-03 are appropriate
			Check application/machine status to eliminate fault
UV1 DC Bus Undervolt	DC Bus Undervoltage The DC bus voltage is $\leq \mathrm{L} 2-05$ $208-240 \mathrm{Vac}$: Trip point is $\leq 190 \mathrm{Vdc}$ 480 Vac : Trip point is $\leq 380 \mathrm{Vdc}$	Low input voltage at R/L1, S/L2 and T/L3	Check the input circuit and increase the input power to within specifications
		The acceleration time is set too short	Extend the time in C1-01
		Voltage fluctuation of the input power is too large	Check the input voltage
UV2 CTL PS Undervolt	Control Power Supply Undervoltage Undervoltage of the control circuit when running	External load connected pulling down the Drive power supplies	Cycle power off and on to the Drive
			Repair or replace the Power PCB/ Gate Drive PCB
			Remove all control wiring and test Drive
UV3 MC Answerback	Soft Charge Circuit Fault The pre-charge contactor opened while the Drive was running	Contacts on the soft charge contactor are dirty and the soft charge contactor does not function mechanically	Cycle power off and on to the Drive
			Check the condition of the soft charge contactor
			Repair or replace the Power PCB/ Gate Drive PCB

Alarm Detection

Alarms are detected as a type of Drive protection function that do not operate the fault contact. The Drive will automatically return to its original status once the cause of the alarm has been removed.

The Digital Operator display flashes and the alarm is output at the multi-function outputs (H2-01 to H2-02).
When an alarm occurs, take appropriate countermeasures according to the table below.

Table 6.2 Alarm Displays and Processing			
Digital Operator Display	Description	Cause	Corrective Action
$\begin{gathered} \text { BUS } \\ \text { Option Com Err } \end{gathered}$	Option Communication Error After initial communication was established, the connection was lost.	Connection is broken, master has stopped communicating	Check all connections, verify all user side software configurations.
$\begin{gathered} \text { CALL } \\ \text { SI-F/G ComCall } \end{gathered}$	Serial communication transmission error. Communication has not yet been established	Connection not made properly, user software not configured to the proper baud rate or configuration	Check all connections, verify all user side software configurations
EF External Fault	Both the forward and the reverse run commands are input simultaneously for 500 mS or more. This alarm stops the motor.	An external forward and reverse command are input simultaneously	Check external sequence logic
EFO Opt External FIt (Flashing)	Communication Option Card External Fault	An external fault condition exists	Check for an external condition
			Verify the parameters
			Verify communication signal
EF3 Ext Fault S3 (Flashing)	External Fault at Terminal S3	An external fault condition exists connected to a multi-function digital input	Eliminate the cause of an external fault condition
EF4 Ext Fault S4 (Flashing)	External Fault at Terminal S4		
EF5 Ext Fault S5 (Flashing)	External Fault at Terminal S5		
EF6 Ext Fault S6 (Flashing)	External Fault at Terminal S6		
EF7 Ext Fault S7 (Flashing)	External Fault at Terminal S7		Remove the fault from a multifunction digital input

Table 6.2 Alarm Displays and Processing			
Digital Operator Display	Description	Cause	Corrective Action
FBL Feedback Loss	PI Feedback Loss This fault occurs when PI Feedback Loss Detection is programmed to fault (b5-12 = 2) and the PI Feedback < PI Feedback Loss Detection Level (b5-13) for the PI Feedback Loss Detection Time (b5-14)	PI Feedback source (e.g. transducer, sensor, building automation signal) is not installed correctly or is not working	Verify Drive is programmed to receive the PI Feedback source signal
			Check to ensure the PI Feedback source is installed and working properly
			Check the motor for a phase-tophase short
			Check the Drive for a phase-tophase short at the output
			Verify C1-01 and C1-02 are set correctly
			Check load conditions
OH Heatsnk Overtemp (Flashing)	Cooling Fin/Cooling Fin Fan Overheat The temperature of the Drive cooling fin exceeded the temperature programmed in parameter L8-02	Cooling fan(s) are not working, high ambient temperature, a heating unit in close proximity to Drive is present	Check for dirt build-up on the fans and cooling fins
			Reduce the ambient temperature around the Drive
	Drive Internal Cooling Fan		Remove the heating unit
OH 2 Over Heat 2 (Flashing)	Drive overheat pre-alarm signal is input from a multi-function digital input terminal	An external overheat condition exists connected to one of the multi-function input terminals S3, S4, S5, S6 or S7	Check for an external condition
			Verify the program parameters H1-01 thru H1-05
OH3 Motor Overheat 1 (Flashing)	Motor Overheating Alarm The Drive stops or continues operation according to the setting of L1-03.	Overheating of motor	Recheck the cycle time and the size of the load
			Recheck the accel/decel time (C1-01 and C1-02)
			Recheck the V/F pattern (E1-01 thru E1-13)
			Recheck the motor rated current value (E2-01)
			Check the digital operator connector
			Verify the setting of o2-06
OV DC Bus Overvolt (Flashing)	DC Bus Overvoltage $208-240 \mathrm{Vac}$: Trip point is $\geq 400 \mathrm{Vdc}$ 480 Vac : Trip point is $\geq 800 \mathrm{Vdc}$	High input voltage at $\mathrm{R} / \mathrm{L} 1$, S/L2 and T/L3	Check the input circuit and reduce the input power to within specifications
		The deceleration time is set too short	Extend the time in C1-02
		Power factor correction capacitors are being used on the input to the Drive	Remove the power factor correction capacitors

Diagnostic \& Troubleshooting 6-9

Table 6.2 Alarm Displays and Processing			
Digital Operator Display	Description	Cause	Corrective Action
UL3 Undertorq Det 1 (Flashing)	Undertorque Detection 1 Drive output current $<$ L6-02 for more than the time set in L6-03	Motor is underloaded	Ensure the values in L6-02 and L6-03 are appropriate
			Check application/machine status to eliminate fault
UV DC Bus Undervolt (Flashing)	DC Bus Undervoltage The DC bus voltage is $\leq \mathrm{L} 2-05$ $208-240 \mathrm{Vac}$: Trip point is $\leq 190 \mathrm{Vdc}$ 480 Vac: Trip point is $\leq 380 \mathrm{Vdc}$	Low input voltage at R/L1, S/L2 and T/L3	Check the input circuit and increase the input power to within specifications
		The acceleration time is set too short	Extend the time in C1-01
		Voltage fluctuation of the input power is too large	Check the input voltage
UV2 CTL PS Undervolt	Control Power Supply Undervoltage of the control circuit when running	External load connected pulling down the Drive power supplies	Cycle power off and on to the Drive
			Repair or replace the Power PCB/ Gate Drive PCB
UV3 MC Answerback	Soft Charge Circuit Fault The pre-charge contactor opened while the Drive was running	Contacts on the soft charge contactor are dirty and the soft charge contactor does not function mechanically	Cycle power off and on to the Drive
			Check the condition of the soft charge contactor

- Operator Programming Errors (OPE)

An Operator Programming Error (OPE) occurs when an inapplicable parameter is set or an individual parameter setting is inappropriate.
The Drive does not operate until the parameter is set correctly. (Alarm output and fault contact do not operate.)
If an OPE occurs, change a parameter by checking the cause shown in Table 6.3.

Table 6.3 OPE Error and Fault Displays			
Digital Operator Display	Description	Cause	Corrective Action
OPE01 kVA Selection t	Drive kVA setting error.	The control board was replaced and the kVA parameter is set incorrectly	Enter the correct kVA setting (o2-04) by referring to the Drive model number in Appendix B
OPE02 Limit	Constant data out of range.	Parameter set above the allowable range.	Verify the program settings

Auto-Tuning Faults

Auto-tuning faults are shown below. When the following faults are detected, the fault is displayed on the digital operator and the motor coasts to a stop during operation. The fault contact is not activated.

Table 6.4 Auto-Tuning Displays and Processing		
Digital Operator Display	Probable Cause	Corrective Action
$\begin{gathered} \mathrm{Er}-01 \\ \text { Fault } \end{gathered}$	-There is an error in the data input for autotuning. -There is an error in the relationship between the motor output and the motor rated current.	- Check input data. - Check Drive and motor capacity. - Check motor rated current.
Er-02 Minor Fault	A minor fault is detected during auto-tuning.	- Check input data. - Check wirings and around the machine. - Check the load.
$\begin{gathered} \text { Er - } 03 \\ \text { STOP key } \end{gathered}$	The STOP key is pressed during auto-tuning, and the auto-tuning is interrupted.	-
Er-04 Resistance	Auto-tuning is not completed within the specified time. The auto-tuning result became other than the parameter set range.	- Check input data. - Check motor wiring. - If a motor and a machine are connected, disconnect the motor from the machine.
Er-09 Accelerate	The motor did not accelerate in the specified time.	- Increase C1-01 (acceleration time). - If L7-01 and L7-02 (torque limit value) are decreased, then increase the values. - If a motor and a machine are connected, separate the motor from the machine.
$\begin{gathered} \mathrm{Er}-12 \\ \text { I-det. Circuit } \end{gathered}$	- Current flow exceeded the motor rated current. -Current detection value symbol was reversed. - Any of U/TI, V/T2, and W/T3 has open-phase.	- Check current detection circuit, wiring and mounting procedure.
$\mathrm{Er}-13$ Leakage Inductance Fault	Auto-tuning did not finish within the set time. Tuning result became other than the parameter setting range.	- Check motor wiring.
End - 3 Data Invalid	Rated current set value is set too high.	- Check input data (especially, motor output current and motor rated current value).

- Digital Operator COPY Function Faults

These faults can occur occurred during the operator COPY function. Fault content is displayed on the operator. An error during the COPY function application does not activate the fault contact output or alarm output.

Table 6.5 Digital Operator COPY Function Faults			
Function	Digital Operator Display	Probable Causes	Corrective Action
READ Function	PRE READ IMPOSSIBLE	o3-01 was set to 1 to write a parameter when the Digital Operator was write-protected $(03-02=0)$.	Set o3-02 to 1 to enable writing parameters with the Digital Operator.
	IFE READ DATA ERROR	The read data length does not agree. The write data is incorrect.	- Repeat the Read. - Check the Digital Operator cable. - Replace digital operator.
	RDE DATA ERROR	An attempted write of a parameter to EEPROM on the Digital Writer failed.	- A low Inverter voltage has been detected. - Repeat the read - Replace Digital Operator.
COPY Function	CPE ID UNMATCHED	The Drive product code or software number is different.	Use COPY function for the same product code and software number.
	VAE INV. KVA UNMATCH	The capacity of the Drive being copied and the capacity in the Digital Operator are different.	Use COPY function for the same Drive capacity.
	CRE CONTROL UNMATCHED	The control method of the Drive being copied and the control method in the Digital Operator are different.	Use the COPY function for the same control method.
	CYE COPY ERROR	The parameter written to the Drive was compared with the parameter in the Digital Operator and they were different.	COPY retest
	CSE SUM CHECK ERROR	The checksum in the Drive parameter area was compared with the checksum in the Digital Operator parameter area and they were different.	Retry the copy.
Verify Function	VYE VERIFY ERROR	The set value of the digital operator and the Drive do not match.	Retry Verify function After COPY is retested, Verify is retested

Troubleshooting

Due to parameter setting errors, faulty wiring, etc., the Drive and motor may not operate as expected when the system is started up. If this occurs, use this section as a reference and apply the appropriate measures.

If a fault is displayed on the digital operator, refer to Fault Detection, Table 6.1.

- If Parameter Cannot Be Set

Use the following information if a Drive parameter cannot be set.

■The display does not change when the INCREASE and DECREASE keys are pressed.

The following causes are possible.

The Drive is operating (drive mode).

There are some parameters that cannot be set during operation. Remove the run command and then set the parameters.

Parameter write enable is input.

This occurs when "parameter write enable" (set value: 1B) is set for a multi-function digital input terminal (H1-01 to H1-05). If the parameter write enable input is OFF, the parameters cannot be changed. Turn it ON and then set the parameters.

Passwords do not match. (Only when a password is set.)

If the parameter A1-04 (Password) and A1-05 (Password Setting) numbers are different, the parameters for the initialize mode cannot be changed. Enter the correct password in A1-04.
If you cannot remember the password, display A1-05 (Password Setting) by pressing the Shift/Reset Key and the MENU Key simultaneously while in the A1-04 display. Reset the password and input the reset password in parameter A1-04.

■OPE01 through OPE11 is displayed.

The set value for the parameter is wrong. Refer to Operation Errors in this chapter and correct the setting.

■CPF00 or CPF01 is displayed.

This is a Digital Operator communications error. The connection between the Digital Operator and the Drive may be faulty. Remove the Digital Operator and then re-install it.

- If the Motor Does Not Operate

Use the following information if the motor does not operate.

■Ensure the digital operator is securely connected to the Drive.

\square The motor does not operate when the HAND key on the Digital Operator is pressed.

The following causes are possible:

The Speed Command is too low.

If the Speed Command is set below the frequency set in E1-09 (Minimum Output Frequency), the Drive will not operate.
Raise the Speed Command to at least the minimum output frequency.

There is a multi-function analog input setting error.

If multi-function analog input H3-09 is set to 1 (frequency gain), and if no voltage (current) is input, then the Speed Command will be zero. Check that the set value and analog input value are correct.

■The motor does not operate when an external run command is input.

The following causes are possible.

The Drive is not in drive mode.

If the Drive is not in drive mode, it will remain in ready status and will not start. Press the MENU key once and press the DATA/ENTER key. The Drive is now in drive mode.

A 3-wire sequence is in effect.

The input method for a 3-wire sequence is different than when operating by forward/stop and reverse/stop (2-wire sequence). When 3-wire sequence is set, the motor will not operate even when a digital input terminal suitable for forward run/stop and reverse run/stop is turned ON .

When using a 2-wire sequence, set the multi-function digital input terminal (H1-01 through H1-05, terminals S3 to S7) to a value other than 0 .

The Speed Command is too low.

If the Speed Command is set below the frequency set in E1-09 (Minimum Output Frequency), the Drive will not operate. Raise the Speed Command to at least the minimum output frequency.

There is a multi-function analog input setting error.

If multi-function analog inputs $\mathrm{H} 3-05$ and $\mathrm{H} 3-09$ are set to 1 (frequency gain), and if no voltage (current) is input, then the Speed Command will be zero. Check to be sure that the set value and analog input value are correct.

■The motor stops during acceleration or when a load is connected.

The load may be too heavy. The Drive has a stall prevention function and an automatic torque boost function, but the motor responsiveness limit may be exceeded if acceleration is too rapid or if the load is too heavy. Lengthen the acceleration time (CI-01) or reduce the load. Also consider increasing the motor size.

\square The motor only rotates in one direction.

"Reverse run prohibited" may be selected. If b1-04 (Prohibition of Reverse Operation) is set to 1 (reverse run prohibited), the Drive will not receive reverse run commands. To use both forward and reverse operation, set b1-04 to 0, and operate in Auto mode.

The Direction of the Motor Rotation is Reversed

If the motor rotates in the wrong direction, the motor output wiring is incorrect. When the Drive $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, and $\mathrm{W} / \mathrm{T} 3$ terminals are properly connected to the motor, the motor operates in a forward direction when a forward run command is received. The forward direction depends on the manufacturer and the motor type, so be sure to check the specifications.

The direction of rotation can be reversed by switching two wires among U/TI, V/T2, and W/T3 .

- If the Motor Does Not Put Out Torque or If Acceleration is Slow

Use the following information if the motor does not output torque or if acceleration is too slow.

■The stall prevention level during acceleration is too low.

If the value set for L3-02 (Stall Prevention Acceleration Level) is too low, the acceleration time will be too long. Check to be sure that the set value is suitable.

■The stall prevention level during running is too low.

If the value set for L3-06 (Stall Prevention Level during Running) is too low, the speed will drop before outputting torque. Check to be sure that the set value is suitable.

- If the Motor Operates Higher Than the Speed Command

Use the following information if the motor operates higher than the Speed Command.

■The analog frequency reference bias setting is wrong (the gain setting is wrong).

The Speed Command bias set in parameter H3-03 is added to the Speed Command. Check to be sure that the set value is suitable.

■A signal is being input to the Speed Command (current) terminal A2.

When 1F (frequency reference) is set for parameter H3-09 (Multi-function Analog Input Terminal A2 Function Selection), a frequency corresponding to the terminal A2 input voltage (current) is added to the Speed Command. Check to be sure that the set value and analog input value are suitable.

- If the Motor Overheats

Take the following steps if the motor overheats.

■The load is too heavy.

If the motor load is too heavy and the motor is used when the effective torque exceeds the motor's rated torque, the motor will overheat. Reduce the load amount by either reducing the load or increasing the acceleration/deceleration times. Also consider increasing the motor size.

■The ambient temperature is too high.

The motor rating is determined by a particular ambient operating temperature range. The motor will burn out if it is run continuously at the rated torque in an environment where the maximum ambient operating temperature is exceeded. Lower the motor's ambient temperature to within its acceptable range.

■The withstand voltage between the motor phases is insufficient.

When the motor is connected to the Drive output, a surge is generated between the Drive switching and the Drive motor coil. Normally the maximum surge voltage is three times the Drive's input power supply voltage (i.e., 1200Vac for a 480 Vac). Be sure to use a motor with a withstand voltage between the motor phases that is greater than the maximum surge voltage. In particular, when using a 480Vac Drive, use an inverter-duty motor.

- If Peripheral Devices Like PLCs or Others are Influenced by Starting or Running Drive

If noise is generated by Drive switching, implement the following countermeasures:

1. Change the Drive's Carrier Frequency Selection (C6-02) to lower the carrier frequency. This will help to reduce the amount of internal switching.
2. Install an Input Noise Filter at the Drive's input power terminals.
3. Install an Output Noise Filter at the Drive's motor terminals.
4. Use metal tubing. Electric waves can be shielded by metal, so encase the Drive in metal.
5. Ground the Drive and motor.
6. Separate main circuit wiring from control wiring.

- If the Ground Fault Interrupter Operates When the Drive is Run

The Drive performs internal switching, so there is a certain amount of leakage current. This may cause the ground fault interrupter to operate and cut off the power supply. Change to a ground fault interrupter with a high leakage detection level (i.e., a sensitivity current of 200 mA or greater per Unit, with an operating time of 0.1 s or more), or one that incorporates high frequency countermeasures (i.e., one designed for use with Drives). It will also help to change the Drive's Carrier Frequency Selection (C6-02) to lower the carrier frequency. In addition, remember that the leakage current increases as the cable is lengthened.

- If There is Mechanical Oscillation

Use the following information when there is mechanical oscillation.

The application is making unusual sounds.

The following causes are possible.

There may be resonance between the mechanical system's characteristic frequency and the carrier frequency.

This is characterized by the motor running with no problems and the machinery oscillating with a high-pitched whine. To prevent this type of resonance, adjust the carrier frequency with parameters C6-02 to C6-05.

There may be resonance between an applications characteristic frequency and the output frequency of the

 Drive.To prevent this from occurring, either use the jump frequency functions in parameters d3-01 to d3-04, or install rubber padding on the motor base to reduce oscillation.

■ Oscillation and hunting are occurring with V/f control.

The gain adjustment may be insufficient. Reset the gain to a more effective level by raising the value of $\mathrm{C} 4-02$ (Torque Compensation Primary Delay Time Parameter) and then lowering the setting of n1-02 (Hunting Prevention Gain).

■Oscillation and hunting are occurring with PI control.

If there is oscillation or hunting during PI control, check the oscillation cycle and individually adjust P and I parameters.

- If the Motor Rotates Even When Drive Output is Stopped

If the motor rotates even when the Drive is stopped, the DC injection braking may be insufficient. If the motor continues operating at low speed, without completely stopping after a stop has been executed, it means that the DC injection braking is not decelerating the motor enough. Adjust the DC injection braking as follows:

- Increase the parameter b2-02 (DC Injection Braking Current) setting.
- Increase the parameter b2-04 (DC Injection Braking (initial excitation) Time at Stop) setting.

- If $\mathbf{0} \mathbf{V}$ is Detected When a Driven Fan is Started or Stalls

Generation of 0 V (main circuit voltage) and stalling can occur if a fan is turning when it is started. The DC injection braking is insufficient when starting.

This can be prevented by slowing motor rotation by DC injection braking before starting the motor. Increase parameter b2-03 (DC injection braking time at start) setting.

- If Output Frequency Does Not Rise to Speed Command

Use the following information if the output frequency does not rise to the Speed Command.

■The Speed Command is within the jump frequency range.

When the jump frequency function is used, the output frequency does not change within the jump frequency range. Check to be sure that the Jump Frequency (parameters d3-01 to d3-03) and Jump Frequency Width (parameter d3-04) settings are suitable.

■The frequency reference upper limit has been reached.

The output frequency upper limit is determined by the following formula:
Maximum Output Frequency (E1-04) \times Frequency Reference Upper Limit (d2-01) / 100
Check to be sure that the parameter E1-04 and d2-01 settings are suitable.

Main Circuit Test Procedure

Before attempting any troubleshooting checks, make sure that the three-phase power is disconnected and locked out. With power removed from the unit, the DC bus capacitors will stay charged for several minutes. The Charge LED in the Drive will glow red until the DC bus voltage is below 10 Vdc . To ensure that the DC bus is completely discharged, measure between the positive and negative bus with a DC voltmeter set to the highest scale.

Table 6.6 Main Circuit Test Procedure	
Check	Procedure
Measure DC Bus Voltage	1. Set the digital multi-meter to its highest VDC scale. 2. Measure between $\oplus 1$ and (-) for the following check: Place the positive (red) meter lead on $\oplus 1$. Place the negative (black) meter lead on (-). 3. If the measured voltage is $<10 \mathrm{Vdc}$, it is safe to work inside the Drive. If not, wait until the DC Bus has completely discharged.
$\begin{aligned} & \text { Input Diodes } \\ & \text { (D1-D12 or Q1) } \end{aligned}$	The input diodes rectify or transform the three-phase input AC voltage into a DC voltage. 1. Set a digital multi-meter to the Diode Check setting. 2. Place the positive (red) meter lead on terminal R/L1. Place the negative (black) meter lead on terminal $\oplus 1$. Expected reading is about 0.5 Volts. 3. Place the positive (red) meter lead on terminal S/L2. Place the negative (black) meter lead on terminal $\oplus 1$. Expected reading is about 0.5 Volts. 4. Place the positive (red) meter lead on terminal T/L3. Place the negative (black) meter lead on terminal $\oplus 1$. Expected reading is about 0.5 Volts. 5. Place the positive (red) meter lead on terminal R/L1. Place the negative (black) meter lead on terminal (-). Expected reading is OL displayed. 6. Place the positive (red) meter lead on terminal S/L2. Place the negative (black) meter lead on terminal (-). Expected reading is OL displayed. 7. Place the positive (red) meter lead on terminal T/L3. Place the negative (black) meter lead on terminal (-). Expected reading is OL displayed. 8. Place the positive (red) meter lead on terminal (-). Place the negative (black) meter lead on terminal R/L1. Expected reading is about 0.5 Volts. 9. Place the positive (red) meter lead on terminal (-). Place the negative (black) meter lead on terminal S/L2. Expected reading is about 0.5 Volts. 10. Place the positive (red) meter lead on terminal (-). Place the negative (black) meter lead on terminal T/L3. Expected reading is about 0.5 Volts. (Continued on next page)

Table 6.6 Main Circuit Test Procedure	
Check	Procedure
Input Diodes (D1-D12 or Q1)	(Continued from previous page) 11. Place the positive (red) meter lead on terminal $\oplus 1$. Place the negative (black) meter lead on terminal R/L1. Expected reading is OL displayed. 12. Place the positive (red) meter lead on terminal $\oplus 1$. Place the negative (black) meter lead on terminal S/L2. Expected reading is OL displayed. 13. Place the positive (red) meter lead on terminal $\oplus 1$. Place the negative (black) meter lead on terminal T/L3. Expected reading is OL displayed.
Soft Charge Resistor Check (R1, R2, 6PCB)	The soft charge resistor works in conjunction with the soft charge contactor to slowly charge the DC bus capacitors to minimize the inrush current when power is applied to the Drive. 1. Conduct a visual inspection. Check for physical damage. 2. Set a digital multi-meter to the $\mathrm{R} \times 1$ scale. 3. If the resistor is damaged, the measured value will be infinite ohms.
Soft Charge Contactor (K1)	The purpose of the soft charge contactor is to bypass the soft charge resistor after the DC bus voltage has reached its normal operating level. 1. Conduct a visual inspection. Check for physical damage. 2. Set a digital multi-meter to the $\mathrm{R} \times 1$ scale. 3. On Drives with a board-mounted contactor, verify that each contact resistance measures infinite ohms. 4. On Drives without a board-mounted contactor, press the plunger in, and verify that each contact measures zero ohms. 5. On Drives without a board-mounted contactor, release the plunger, and verify that the resistance is the ohmic value of the soft charge resistor. 6. On Drives with a board-mounted contactor, verify that the contactor coil measures about 300 ohms. The coil can be tested by applying the appropriate voltage to verify the contacts change states. 7. On Drives without a board-mounted contactor, verify that the 230 Vac contactor coil measures about 175 ohms. The coil can be tested by applying the appropriate voltage to verify the contacts change states. 8. On Drives without a board-mounted contactor, verify that the 24 Vdc auxiliary coil measures about 2.2 M ohms. The coil can be tested by applying the appropriate voltage to verify the contacts change states.
DC Bus Fuse (F1)	The DC bus fuse is located in the negative portion of the DC Bus. The DC bus fuse is used to protect the main circuit components if the output transistors short. If the DC bus fuse is open, at least one of the output transistors has failed. When a transistor fails, there is a short between the positive and negative portions of the DC Bus. The DC bus fuse does not protect the transistors, but protects the rest of the main circuit from the high current present during a short. Never replace the DC bus fuse without first checking all of the output transistors. 1. Set a digital multi-meter to the $\mathrm{R} \times 1$ scale. 2. Place one lead of the multi-meter on one side of the fuse and place the other lead of the multi-meter on the other side of the fuse. 3. If the fuse is good, the measured value will be zero ohms. If the fuse is bad, the measured value will be infinite ohms.

Table 6.6 Main Circuit Test Procedure

Check	Procedure
Output Transistors (Q1-Q12)	The output transistors are used to switch the DC bus voltage to allow current to flow to the motor. 1. Set a digital multi-meter to the Diode Check setting. 2. Place the positive (red) meter lead on terminal U/T1. Place the negative (black) meter lead on terminal $\oplus 1$. Expected reading is about 0.5 Volts. 3. Place the positive (red) meter lead on terminal V/T2. Place the negative (black) meter lead on terminal $\oplus 1$. Expected reading is about 0.5 Volts. 4. Place the positive (red) meter lead on terminal W/T3. Place the negative (black) meter lead on terminal $\oplus 1$. Expected reading is about 0.5 Volts. 5. Place the positive (red) meter lead on terminal U/T1. Place the negative (black) meter lead on terminal (-). Expected reading is OL displayed. 6. Place the positive (red) meter lead on terminal V/T2. Place the negative (black) meter lead on terminal (-). Expected reading is OL displayed. 7. Place the positive (red) meter lead on terminal W/T3. Place the negative (black) meter lead on terminal (-). Expected reading is OL displayed. 8. Place the positive (red) meter lead on terminal (-). Place the negative (black) meter lead on terminal U/T1. Expected reading is about 0.5 Volts. 9. Place the positive (red) meter lead on terminal (-). Place the negative (black) meter lead on terminal V/T2. Expected reading is about 0.5 Volts. 10. Place the positive (red) meter lead on terminal (-). Place the negative (black) meter lead on terminal W/T3. Expected reading is about 0.5 Volts. 11. Place the positive (red) meter lead on terminal $\oplus 1$. Place the negative (black) meter lead on terminal U/T1. Expected reading is OL displayed. 12. Place the positive (red) meter lead on terminal $\oplus 1$. Place the negative (black) meter lead on terminal V/T2. Expected reading is OL displayed. 13. Place the positive (red) meter lead on terminal ??1. Place the negative (black) meter lead on terminal W/T3. Expected reading is OL displayed.
Control Power Fuse	All Drives have a Control Power Fuse. The fuse is located on either the Power PCB (3PCB) or the Gate Drive PCB (3PCB). The Control Power Fuse protects the primary switching mode power supply. 1. Set a digital multi-meter to the $\mathrm{R} \times 1$ scale. 2. Place one lead of the multi-meter on one side of the fuse and place the other lead of the multi-meter on the other side of the fuse. 3. If the fuse is good, the measured value will be zero ohms. If the fuse is bad, the measured value will be infinite ohms.

Table 6.6 Main Circuit Test Procedure	
Check	Procedure
24Vdc Cooling Fans	
(Heat Sink \& Internal)	The Heat Sink \& Internal Cooling Fans cool the heat sink as well as the output transistor mod- ules of the Drive. 1. Conduct a visual inspection to ensure the fan turns freely. 2. If there is no physical evidence that the fan is bad, the fan motor can be checked with a digital mutli-meter.
3. Set the digital multi-meter to the R x 1 scale.	
4. Measure across the fan motor terminals. If zero ohms are measured, conclude that the fan	
motor is shorted. If infinite ohms are measured, conclude that the fan motor is burned open.	
5. If the fan is not working, then disconnect the fan and apply 24 Vdc to the fan to test the	
motor.	

- Drive Date Stamp Information

This information is used to determine when a Drive was built to see if it is within its warranty period. The date stamp is located on the lower right side of the Drive.

Fig 6.1 Date Stamp Location

Chapter 7 Maintenance

This chapter describes basic maintenance and inspection of the Drive. Please refer to these instructions to ensure that your Drive receives the proper maintenance to maintain overall performance.
Periodic Inspection 7-2
Preventive Maintenance 7-3
Periodic Maintenance of Parts 7-4
Cooling Fan Replacement 7-5
Removing and Mounting the Terminal Card 7-7

-Periodic Inspection

Check the following items during periodic maintenance.

- The motor should not be vibrating or making unusual noises.
- There should be no abnormal heat generation from the Drive or motor.
- The ambient temperature should be within the Drive specification of $-10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$.
- The output current value shown on U1-03 should not be higher than the motor rated current for an extended period of time.
- The cooling fan in the Drive should be operating normally.

Always turn OFF the input power before beginning inspection. Confirm that the digital operator indicators on the front cover have all turned OFF, and then wait an additional five minutes before beginning the inspection. Be sure not to touch terminals immediately after the power has been turned off. Doing so can result in electric shock.

Table 7.1 Periodic Inspections With no Power Applied		
Item	Inspection	Corrective Action
External terminals, mounting bolts, connectors, etc.	Are all screws and bolts tight?	Tighten loose screws and bolts firmly.
	Are connectors tight?	Reconnect the loose connectors.
Cooling fins	Are the fins dirty or dusty?	Clean off any dirt and dust with an air gun using clean and dry air at a pressure between 55-85 psi.
$\begin{gathered} \text { Control PCB } \\ \text { Terminal PCB } \\ \text { Power PCB } \\ \text { Gate Drive PCBs } \end{gathered}$	Is there any conductive dirt or oil mist on the PCBs?	Clean off any dirt and dust with an air gun using clean and dry air at a pressure between $55-85 \mathrm{psi}$. Replace the boards if they cannot be made clean.
Input Diodes IPMs Output Transistors	Is there any conductive dirt or oil mist on the modules or components?	Clean off any dirt and dust with an air gun using clean and dry air at a pressure between 55-85 psi.
DC bus capacitors	Are there any irregularities, such as discoloration or odor?	Replace the capacitors or Drive.

Apply power to the Drive and conduct the following inspection.

Table 7.2 Periodic Inspections With Power Applied		
Item	Inspection	Corrective Action
Cooling fan(s)	Is there any abnormal noise or vibration, or has the total operating time exceeded 20,000 hours	Check U1-40 for elapsed cooling fan operation time.

-Preventive Maintenance

Table 7.3 Preventive Maintenance				
Inspection Points	Item	Check Points	Every 3-6 Months	Yearly
General	Environment	Ambient Temperature Humidity Dust Harmful Gas Oil Mist	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	
	Equipment	Abnormal vibration or noise	X	
	AC Power Supply	Main circuit \& control voltage	X	
AC Power Circuit \& Devices	Conductors \& Wire Connections	Loose lugs, screws \& wires Hot spots on parts Corrosion Bent conductors Breakage, cracking or discoloration Check spacing		$\begin{aligned} & \hline \mathrm{X} \\ & \hline \end{aligned}$
	Transformers \& Reactors	Discoloration or Noise	X	
	Terminal Blocks	Loose, damaged		X
	DC Bus Capacitors	Leakage Ruptures, broken, expansion Capacitance \& insulation resistance		X X X
	Relays \& Contactors	Noisy Contact discoloration		$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$
	Soft Charge Resistors	Cracked Discoloration		$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \\ & \hline \end{aligned}$
Control Circuits	Operation	Speed reference voltage/current I/O contact operation		$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$
Cooling System	Cooling Fans/Fins \& Heatsink	Abnormal fan noise Loose connectors Free of accumulation	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X
Keypad/Display	Digital Operator	LEDs Monitor display values Key functionality Clean	$\begin{aligned} & \hline \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\underset{\mathrm{X}}{\mathrm{X}}$

If the Drive is used under the following conditions, it may be necessary to inspect more often:

- High ambient temperatures, humidity or altitudes above 3,300 feet
- Frequent starting and stopping
- Fluctuations of the AC power supply or load
- Excessive vibration and/or shock loading
- Poor environment, including dust, metal dust, salt, sulfuric acid, chlorine
- Poor storage conditions

Periodic Maintenance of Parts

In order to keep the Drive operating normally over a long period of time, it is necessary to perform periodic inspections and replace parts according to their service life.

Periodic inspection standards vary depending the Drive's installation environment and usage conditions. The Drive's maintenance periods are noted below.

- Heatsink Cooling Fan Replacement

■ Models CIMR-E720P4 thru 2018 and 40P4 thru 4018

A cooling fan is attached to the bottom of the Drive.
If the Drive is installed using the mounting holes on the back of the Drive, the cooling fan can be replaced without removing the Drive from the installation panel.
If the Drive is mounted with the heatsink external to the enclosure, the cooling fan can only be replaced by removing the Drive from the enclosure.

Removing the Heatsink Cooling Fan

1. Always turn OFF the input power before removing and installing the heatsink cooling fan.
2. Press in on the right and left sides of the fan cover in the direction of arrows " 1 " and then pull the fan out in the direction of arrow " 2 ".
3. Pull out the cable connected to the fan from the fan cover and disconnect the power connector. See Figure 7.1
4. Open the fan cover on the left and right sides in the direction of arrows " 3 " and remove the fan cover from the fan.

Fig 7.1 Cooling Fan Replacement Procedure

Installing the Heatsink Cooling Fan

1. Attach the fan cover to the cooling fan. Be sure that the air flow direction indicated by the arrows above faces into the Drive.
2. Connect the power connector securely and place the power connector and cable into the fan cover.
3. Mount the fan cover on the Drive. Be sure that the tabs on the sides of the fan cover click into place on the Drive.

■ Models CIMR-E72022 thru 2010 and 4030 thru 4300

A cooling fan assembly is attached to the top inside the Drive. The cooling fan assembly includes the heat sink cooling fans and the internal cooling fan. The cooling fan(s) can be replaced without removing the Drive from the installation panel.

Removing the Cooling Fan Assembly

1. Always turn OFF the input power before removing and installing the heatsink cooling fan assembly.
2. Remove the terminal cover, Drive cover, Digital Operator, and front cover from the front of the Drive.
3. Remove the Control PCB bracket (if necessary) to which the cards are mounted. Remove all cables connected to the Control PCB and remove the cooling fan power connector from the fan board (13 PCB) positioned near the top of the Drive.
4. Remove the cooling fan power connectors from the gate drive board (3PCB) positioned at the back of the Drive.
5. Remove the fan assembly screws and pull out the fan assembly from the Drive.
6. Remove the cooling fan(s) from the fan assembly.

Mounting the Cooling Fan Assembly

After attaching a new cooling fan, reverse the above procedure to attach all of the components.
When attaching the cooling fan to the mounting bracket, be sure that the air flow goes toward the top of the Drive.

Fig 7.2 Cooling Fan Assembly Replacement Procedure

- Removing and Mounting the Terminal Card

The terminal card can be removed and mounted without disconnecting the control wiring.

```
IMPORTANT
Always confirm that input power is removed and the Charge LED is not lit before removing or mounting the terminal card.
```


■Removing the Terminal Card

1. Remove the terminal cover on the Drive.
2. Remove the Digital Operator and front cover on the Drive.
3. Remove the wires connected to FE and NC on the terminal card.
4. Loosen the mounting screws on the left and right sides of the terminal card until they are free. It is not necessary to remove the mounting screws completely. They are captive and self-rising.
5. Pull the terminal card out in the direction of the block arrow.

■Mounting the Terminal Card

Reverse the removal procedure to mount the terminal card.
Confirm that the terminal card and the Control PCB properly meet at connector CN8 before insertion.
The connector pins may be bent if the terminal card is forced into place, possibly preventing correct Drive operation.

Fig 7.3 Terminal Card Removal Procedure

Notes:

Appendix A Parameter List

This appendix lists all the parameter numbers and names, along with a description of each. Also, below the parameter name in bold type is the abbreviated name as it appears on the digital operator display/keypad.
User Parameter A-2
Monitor Display A-26

Table 1: E7 Parameter List

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Initialization			
$\mathrm{A} 1-00$	Language Selection Select Language	Language selection for digital operator display 0: English 1: Japanese 2: Deutsch 3: Francais 4: Italiano 5: Espanol 6: Portugues *Not returned to factory setting by initialization	0 to 6	0	Quick Setting
$\stackrel{\mathrm{A} 1-01}{ }$	Access Level Selection Access Level	This setting determines which parameters are accessable. 0 : Operation Only 1: User Level 2: Advanced Level	0 to 2	2	Programming
A1-03	Initialize Parameters Init Parameters	Used to return all parameters to their factory or user setting. 0: No Initialize 1110: User Initialize (The user must set their own parameter default values and then parameter o2-03 must be set to " 1 " to save them. If the parameter values are changed after $02-03$ is set to " 1 ", the user default values can be restored by setting A1-03 to 1110.) 2220: 2-Wire Initial 3330: 3-Wire Initial	$\begin{gathered} 0 \text { to } \\ 3330 \end{gathered}$	0	Programming
A1-04	Password 1 Enter Password	When the value set into A1-04 does NOT match the value set into A1-05, parameters A1-01 thru A1-03 and A2-01 thru A2-32 cannot	0 to 9999	0	Programming
A1-05	Password 2 Select Password	be changed. All other parameters as determined by A1-01 can be changed. Parameter A1-05 can be accessed by pressing the MENU key while holding the RESET key.	0 to 9999	0	Programming
		User Parameters			
A2-01	User Parameter 1 User Param 1			-	Programming
A2-02	User Parameter 2 User Param 2			-	Programming
A2-03	User Parameter 3 User Param 3	Selects the parameters to be available in the User Access Level (A1-01 = 1). These are the only parameters accessible for the user	b1-01	-	Programming
A2-04	User Parameter 4 User Param 4			-	Programming
A2-05	User Parameter 5 User Param 5			-	Programming
A2-06	User Parameter 6 User Param 6			-	Programming
Denotes that parameter can be changed when the drive is running.					

Parameter List A-2

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
A2-07	User Parameter 7 User Param 7	Selects the parameters to be available in the User Access Level (A1-01 =1). These are the only parameters accessible for the user level. These parameters are not related to the User Initialize function.	$\begin{aligned} & \text { b1-01 } \\ & \text { to } \\ & \text { o3-02 } \end{aligned}$	-	Programming
A2-08	User Parameter 8 User Param 8			-	Programming
A2-09	User Parameter 9 User Param 9			-	Programming
A2-10	User Parameter 10 User Param 10			-	Programming
A2-11	User Parameter 11 User Param 11			-	Programming
A2-12	User Parameter 12 User Param 12			-	Programming
A2-13	User Parameter 13 User Param 13			-	Programming
A2-14	User Parameter 14 User Param 14			-	Programming
A2-15	User Parameter 15 User Param 15			-	Programming
A2-16	User Parameter 16 User Param 16			-	Programming
A2-17	User Parameter 17 User Param 17			-	Programming
A2-18	User Parameter 18 User Param 18			-	Programming
A2-19	User Parameter 19 User Param 19			-	Programming
A2-20	User Parameter 20 User Param 20			-	Programming
A2-21	User Parameter 21 User Param 21			-	Programming
A2-22	User Parameter 22 User Param 22			-	Programming
A2-23	User Parameter 23 User Param 23			-	Programming
A2-24	User Parameter 24 User Param 24			-	Programming
A2-25	User Parameter 25 User Param 25			-	Programming
A2-26	User Parameter 26 User Param 26			-	Programming
A2-27	User Parameter 27 User Param 27			-	Programming
A2-28	User Parameter 28 User Param 28			-	Programming
A2-29	User Parameter 29 User Param 29			-	Programming
A2-30	User Parameter 30 User Param 30			-	Programming
A2-31	User Parameter 31 User Param 31			-	Programming
A2-32	User Parameter 32 User Param 32			-	Programming

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Sequence			
b1-01	Frequency Reference Selection Reference Source	Selects the speed command input source. 0: Operator - Digital preset speed d1-01 1: Terminals - Analog Input Terminal A1 (or Terminal A2 see parameter H3-13) 2: Serial Com - RS-485 terminals R+, R-, S+ and S- 3: Option PCB - Option board connected at 2CN	0 to 3	1	Quick Setting
b1-02	Run Command Selection Run Source	Selects the run command input source. 0: Operator - "Hand" and "Off" keys on digital operator 1: Terminals - Contact Closure on Terminal S1 2: Serial Com - RS-485 terminals R+, R-, S+ and S- 3: Option PCB - Option board connected at 2CN	0 to 3	1	Quick Setting
b1-03	Stopping Method Selection Stopping Method	Selects the stopping method when the run command is removed. 0: Ramp to Stop 1: Coast to Stop 2: DC Injection to Stop 3: Coast w/Timer (A new run command is ignored if input before the time in C1-02 expires.)	0 to 3	0	Quick Setting
b1-04	Reverse Operation Selection Reverse Oper	Determines the forward rotation of the motor, and if reverse operation is disabled. 0: Reverse Enabled 1: Reverse Disabled 2: Exchange Phase - Change direction of forward motor rotation. 3: ExchgPhs, Rev Dsbl - Change direction of forward motor rotation and disable reverse operation.	0 to 3	0	Quick Setting
b1-07	Local/Remote Run Selection LOC/REM RUN Sel	0: Cycle Extern RUN - If the run command is closed when switching from hand(local) mode to auto(remote) mode, the drive will not run. 1: Accept Extrn RUN - If the run command is closed when switching from hand(local) mode to auto(remote) mode, the drive WILL run.	0 or 1	0	Programming
b1-08	Run Command Selection During Program RUN CMD at PRG	0 : Disabled - Run command accepted only in the operation menu. 1: Enabled - Run command accepted in all menus (except when b1-02 = 0).	0 or 1	0	Programming
b1-11	Drive Delay Time Setting Wait to Run Time	After a run command, drive output will start after this delay time.	0 to 600	0sec	Programming
b1-12	Hand Frequency Reference Selection HAND Fref Source	Selects the speed command input source in hand mode. 0: Operator - Digital preset speed d1-01 1: Terminals - Analog Input Terminal A1 (or Terminal A2 see parameter H3-13)	0 or 1	0	Programming
		DC Braking			
b2-01	DC Injection Braking Start Frequency DCInj Start Freq	Sets the frequency at which DC injection braking starts when ramp to stop (b1-03 $=0$) is selected. If b2-01<E1-09, DC Injection braking starts at E1-09.	0.0 to 10.0	0.5 Hz	Programming
b2-02	DC Injection Braking Current DCInj Current	Selects the DC injection braking current as a percentage of the Drive rated current.	0 to 100	50\%	Programming
b2-03	DC Injection Braking Time at Start DCInj Time@Start	Sets the time length of DC injection braking at start in units of 1 second.	$\begin{gathered} 0.00 \text { to } \\ 10.00 \end{gathered}$	0.00sec	Programming
b2-04	DC Injection Braking Time at Stop DCInj Time @Stop	When b1-03 $=2$ actual DC Injection time is calculated as follows: b2-04 * 10 * Output Frequency / E1-04. When b1-03 $=0$, this parameter determines the amount of time DC Injection is applied to the motor at the end of the decel ramp. This should be set to a minimum of 0.50 seconds when using HSB. This will activate DC injection during the final portion of HSB and help ensure that the motor stops completely.	$\begin{gathered} 0.00 \text { to } \\ 10.00 \end{gathered}$	0.00 sec	Programming
b2-09	Motor Pre-Heat Current Preheat Current	Motor Pre-heat current in \% of drive rated current. This is used to keep the motor warm to prevent condensation and is used in conjunction with a digital input (data $=60$).	0 to100	0\%	Programming

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Speed Search			
b3-01	Speed Search Selection SpdSrch at Start	Enables/disables and selects the speed search function at start. 0: SpdsrchF Disable - Speed search at start is disabled (estimated speed method is used at other times) 1: SpdsrchF Enable - Speed search is enabled (estimated speed method) 2: SpdsrchI Disable - Speed search at start is disabled (current detection method is used at other times) 3: SpdscrhI Enable - Speed search is enabled (current detection method) Estimated Speed Method: Actual motor speed and direction is estimated, then the motor is ramped from that speed to the commanded speed. Current Detection Method: Current level is monitored while output frequency is ramped down.	0 to 3	2	Programming
b3-02	Speed Search Deactivation Current SpdSrch Current	Used only when b3-01 $=3$. Sets the speed search operation current as a percentage of drive rated current.	0 to 200	120\%	Programming
b3-03	Speed Search Deceleration Time SpdSrch Dec Time	Used only when b3-01 $=3$. Sets the deceleration time during speed search.	0.1 to 10.0	2.0sec	Programming
b3-05	Speed Search Delay Time Search Delay	Delays the speed search operation after a momentary power loss to allow time for an external output contactor to re-energize.	$\begin{gathered} 0.0 \text { to } \\ 20.0 \mathrm{sec} \end{gathered}$	0.2 sec	Programming
b3-14	Bidirectional Speed Search Selection Bidir Search Sel	0: Disabled 1: Enabled	0 or 1	1	Programming
		Delay Timers			
b4-01	Timer Function ON-Delay Time Delay-ON Timer	Used in conjunction with a multi-function digital input and a multifunction digital output. This sets the amount of time between when the digital input is closed, and the digital output is energized.	$\begin{gathered} 0.0 \text { to } \\ 3000.0 \end{gathered}$	0.0 sec	Programming
b4-02	Timer Function OFF-Delay Time Delay-OFF Timer	Used in conjunction with a multi-function digital input and a multifunction digital output. This sets the amount of time the output stays energized after the digital input is opened.	$\begin{gathered} 0.0 \text { to } \\ 3000.0 \end{gathered}$	0.0 sec	Programming
		PI Control			
b5-01	Proportional Gain Setting PI Mode	This parameter enables / disables the closed loop (PI) controller. 0: Disabled 1: Enabled (commanded speed becomes PI setpoint) 3: Fref+PI	0, 1, 3	0	Quick Setting
b5-02	Proportional Gain Setting PGain	Sets the proportional gain of the PI controller.	$\begin{gathered} 0.00 \text { to } \\ 25.00 \end{gathered}$	2.00	Quick Setting
$\overline{b 5-03}$	Intregral Time Setting PI I Time	Sets the integral time for the PI controller. A setting of zero disables integral control.	0.0 to 360.0	5.0sec	Quick Setting
b5-04	Intregral Limit Setting PI I Limit	Sets the maximum output possible from the integrator. Set as a $\%$ of fmax.	$\begin{aligned} & \hline 0.0 \text { to } \\ & 100.0 \end{aligned}$	100\%	Quick Setting
b5-06	PI Output Limit PI Limit	Sets the maximum output possible from the entire PI controller. Set as a \% of fmax.	$\begin{gathered} 0.00 \text { to } \\ 100.0 \end{gathered}$	100.0\%	Quick Setting
b5-07	PI Offset Adjustment PI Offset	Sets the amount of offset of the output of the PI controller. Set as a \% of fmax.	$\begin{gathered} -100.0 \text { to } \\ +100.0 \end{gathered}$	0.0\%	Quick Setting
b5-08	PI Primary Delay Time Constant PI Delay Time	Sets the amount of time for a filter on the output of the PI controller.	$\begin{gathered} 0.00 \text { to } \\ 10.00 \end{gathered}$	0.00 sec	Quick Setting
b5-09	PI Output Level Selection Output Level Sel	Determines whether the PI controller will be direct or reverse acting. 0 : Normal Output (direct acting) 1: Reverse Output (reverse acting)	0 or 1	0	Quick Setting
b5-10	PI Output Gain Setting Output Gain	Sets the output gain of the PI controller.	0.0 to 25.0	1.0	Quick Setting
b5-11	PI Output Reverse Selection Output Rev Sel	0: 0 limit (when PI output goes negative Drive stops) 1: Reverse (when PI goes negative Drive reverses) 0 limit automatic when reverse prohibit is selected using b1-04	0 or 1	0	Quick Setting
b5-12	PI Feedback Reference Missing Detection Selection Fb los Det Sel	0: Disabled 1: Alarm 2: Fault	0 to 2	0	Quick Setting

Parameter List A-5

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
b5-13	PI Feedback Loss Detection Level Fb los Det Lvl	Sets the PI feedback loss detection level as a percentage of maximum frequency (E1-04).	0 to 100	0\%	Quick Setting
b5-14	PI Feedback Loss Detection Time Fb los Det Time	Sets the PI feedback loss detection delay time in terms of seconds.	0.0 to 25.5	1.0 sec	Quick Setting
b5-15	PI Sleep Function Start Level Sleep Level	Sets the PI sleep function start frequency.	0.0 to 200.0	0.0 Hz	Quick Setting
b5-16	PI Sleep Delay Time Sleep Time	Sets the PI sleep function delay time in terms of seconds.	0.0 to 25.5	0.0 sec	Quick Setting
b5-17	PI Accel/Decel Time PI Acc/Dec Time	Applies an accel/decel time to the PI setpoint reference.	0.0 to 25.5	0.0sec	Quick Setting
b5-18	PI Setpoint Selection PI Setpoint Sel	0: Disabled 1: Enabled	0 or 1	0	Quick Setting
b5-19	PI Setpoint Value PI Setpoint	*Depends on b5-20.	$\begin{aligned} & 0.00 \text { to } \\ & 100.00 \end{aligned}$	0.00\%	Quick Setting
b5-20	PI Setpoint Display Scaling Setpoint Scaling	Set display/setting Unit of b1-19.	0 to 39999	1	Quick Setting
b5-21	PI Sleep Input Source PI Sleep Source	Input Source Selection for Sleep function Mode. 0: PI Input 1: PI Setpoint 2: Snooze	0 to 2	1	Quick Setting
b5-22	PI Snooze Level Snooze Level	Sets the PI snooze function start level as a percentage of maximum frequency (E1-04).	0 to 100	0\%	Quick Setting
b5-23	PI Snooze Delay Time Snooze Delay Time	Sets the PI snooze function delay time in terms of seconds.	0 to 3600	0sec	Quick Setting
b5-24	PI Snooze Deactivation Level Wake-Up Level	When the PI feedback drops below this level, normal PI operation starts again. Set as a percentage of maximum frequency (E1-04).	0 to 100	0\%	Quick Setting
b5-25	PI Setpoint Boost Setting Setpoint Boost	Temporary increase of PI setpoint to create an overshoot of the intended PI setpoint.	0 to 100	0\%	Quick Setting
b5-26	PI Maximum Boost Time Max Boost Time	Sets a time limitation for reaching temporarily boosted PI setpoint (intended PI setpoint $+\mathrm{b} 5-25$).	0 to 3600	0sec	Quick Setting
b5-27	PI Snooze Feedback Level Snooze Feedback	PI snooze mode will be activated when PI feedback is above this level. Set as a percentage of maximum frequency (E1-04).	0 to 100	60\%	Quick Setting
b5-28	PI Feedback Square Root Function Selection PI Feedback SqRt	0: Disabled 1: Enabled	0 or 1	0	Quick Setting
b5-29	PI Square Root Gain PI Fb SqRt Gain	A multiplier applied to the square root of the feedback.	0.00 to 2.00	1.00	Quick Setting
b5-30	Output Square Root Monitor Selection PI Out Moni SqRt	0: Disabled 1: Enabled	0 or 1	0	Quick Setting
\checkmark Denotes that parameter can be changed when the drive is running.					

Table 1: E7 Parameter List (Continued)

Parameter List A-7

Table 1: E7 Parameter List (Continued)

Parameter List A-8

Table 1: E7 Parameter List (Continued)

Table 1: E7 Parameter List (Continued)

Table 1: E7 Parameter List (Continued)

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Digital Inputs			
H1-01	Terminal S3 Function Selection Terminal S3 Sel	0: 3-wire control FWD/REV selection for 3-wire sequence 1: Local/Remote Sel Hand/Auto Selection - Closed $=$ Hand, Open $=$ Auto 2: Option/Inv Sel Selects source of speed command and sequence Closed $=$ Option Card, Open $=\mathrm{b} 1-01 \& \mathrm{~b} 1-02$ 3: Multi-Step Ref 1 Closed $=$ speed command from d1-02 or Terminal A2, Open $=$ speed command determined by b1-01 4: Multi-Step Ref 2 Closed $=$ speed command from d1-03 or d1-04 Open speed command determined by b1-01 6: Jog Freq Ref Closed $=$ speed command from d1-17 Open $=$ speed command determined by b1-01 7: Multi-Acc/Dec 1 Closed $=$ Accel \& Decel Ramps determined by C1-03 \& C1-04, Open = Accel \& Decel Ramps determined by C1-01 \& C1-02 8: Ext BaseBlk N.O. Closed = Output transistors forced off, Open = Normal operation 9: Ext BaseBlk N.C. Closed $=$ Normal Operation, Open $=$ Output transistors forced off	0 to 6E	24	Programming
H1-02	Terminal S4 Function Selection Terminal S4 Sel	Closed $=$ Acceleration suspended and speed held, Open $=$ Normal Operation C: Term A2 Enable Closed $=$ Terminal A2 is active, Open $=$ Terminal A2 is disabled F: Term Not Used Terminal has no effect 10: MOP Increase Closed $=$ Speed Command Increases, Open $=$ Speed Command Held. Must be set in conjunction with MOP Decrease and b1-02 must be set to 1 . 11: MOP Decrease Closed $=$ Speed Command Decreases, Open $=$ Speed Command Held. Must be set in conjunction with MOP Increase and b1-02 must be set to 1 .	0 to 6E	14	Programming

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
H1-03	Terminal S5 Function Selection Terminal S5 Sel	12: Forward Jog Closed = drive runs forward at speed command entered into parameter d1-17. 13: Reverse Jog Closed $=$ drive runs in reverse at speed command entered into parameter d1-17. 14: Fault Reset Closed = Resets the drive after the fault and the run command have been removed. 15: Fast-Stop N.O. Closed $=$ Drive decelerates using C1-09, regardless of run command status. 17: Fast-Stop N.C. Closed $=$ Normal operation Open = Drive decelerates using C1-09, regardless of run command status. 18: Timer Function Input for independent timer, controlled by b4-01 and b4-02. Used in conjunction with a multi-function digital output. 19: PI Disable Turns off the PI controller, and PI setpoint becomes speed command. 1B: Program Lockout Closed =All parameter settings can be changed. Open = Only speed command at U1-01 can be changed. 1C: TrimCtl Increase Closed $=$ Increase motor speed by value in d4-02. Open = Return to normal speed command. Not effective when using d1-01 thru d1-04 as a speed command. Must be used in conjunction with Trim Ctrl Decrease. 1D: Trim Ctl Decrease Closed $=$ Decrease motor speed by value in d4-02 Open $=$ Return to normal speed command. Not effective when using d1-01 thru d1-04 as speed command. Must be used in conjunction with Trim Ctrl Increase.	0 to 6E	$\begin{aligned} & \text { 3: 2-wire } \\ & 0: 3 \text {-wire } \end{aligned}$	Programming

Table 1: E7 Parameter List (Continued)

Table 1: E7 User Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Digital Outputs			
H2-01	Terminal M1-M2 Function Selection Term M1-M2 Sel	0 : During RUN $1=$ Closed when a run command is input or the drive is outputting voltage. 1: Zero Speed = Closed when drive output frequency is less than Fmin (E1-09) 2: Fref/Fout Agree 1 = Closed when drive output speed equals the speed command within the bandwidth of L4-02. 3: Fref/Set Agree 1 = Closed when the drive output speed and the speed command are equal to the value in L4-01 within the bandwidth of L4-02. 4: Freq Detect $1=$ Closed when the drive output speed is less than or equal to the value in L4-01, with hysteresis determined by L4-02. 5: Freq Detect $2=$ Closed when the drive output speed is greater than or equal to the value in L4-01, with hysteresis determined by L4-02. 6: Inverter Ready $=$ Closed when the drive is not in a fault state, and not in program mode. 7: DC Bus Undervolt = Closed when the DC bus voltage falls below the UV trip level (L2-05) 8: Base Blk 1 = Closed when the drive is not outputting voltage. 9: Option Reference $=$ Closed when the speed command is coming from the digital operator. A: Remote/Auto Oper = Closed when the run command is coming from the digital operator. B: Trq Det 1 N.O. - Closes when the output current exceeds	0 to 3B	0	Programming
H2-02	Terminal M3-M4 Function Selection Term M3-M4 Sel	L6-02 for more time than is set in parameter L6-03. C: Loss of Ref - Closes when the drive has detected a loss of analog speed command. Speed command is considered lost when it drops 90% in 0.4 seconds. Parameter L4-05 determines drive reaction to a loss of speed command. E: Fault - Closes when the drive experiences a major fault. F: Not Used 10: Minor Fault - Closes when drive experiences a minor fault or alarm. 11: Reset Cmd Actve - Closes when the drive receives a reset command from terminals or serial comms. 12: Timer Output - Output for independant timer, controlled by b4-01 and b4-02. Used in conjunction with a multi-function digital input. 17: Trq. Det 1 N.C. - Opens when the output current exceeds the value set in parameter L6-02 for more time than is set in parameter L6-03. 1A: Reverse Dir - Closes when the drive is running in the reverse direction. 1E: Restart Enabled - Closes when the drive is performing an automatic restart. Automatic restart is configured by parameter L5-01. 1F: Overload (OL1) - Closes before a motor overload occurs. (90% of OL1 time) 20: OH Prealarm - Closes when the Drive's heatsink temperature exceeds the setting of parameter L8-02. 38: Drive Enable - Closes when the drive enable input is active. 39: Waiting to Run - Closes during the time after a run command is issued, but the Drive is not running due to the time set in parameter b1-10. 3A: OH Freq Reduce 3B: Run Src Com/Opt	0 to 3B	A	Programming

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Analog Inputs			
$\mathrm{H} 3-02$	Terminal A1 Gain Setting Terminal A1 Gain	Sets the speed command when 10 V is input, as a percentage of the maximum output frequency (E1-04).	$\begin{gathered} 0.0 \text { to } \\ 1000.0 \end{gathered}$	100.0\%	Quick Setting
H3-03	Terminal A1 Bias Setting Terminal A1 Bias	Sets the speed command when 0 V is input, as a percentage of the maximum output frequency (E1-04).	$\begin{gathered} -100.0 \text { to } \\ +100.0 \end{gathered}$	0.0\%	Quick Setting
H3-08	Terminal A2 Signal Level Selection Term A2 Signal	Selects the signal level of terminal A2. 0: 0-10VDC (switch S1-2 must be in the off position) 2: 4-20 mA (switch S1-2 must be in the on position)	0 or 2	2	Programming
H3-09	Terminal A2 Function Selection Terminal A2 Sel	Selects what effect terminal A2 has on the drive. 0 : Frequency Bias - $0-100 \%$ bias 2: Aux Reference B: PI Feedback D: Frequency Bias 2-0-100\% bias E: Motor Temperature - See parameters L1-03 \& L1-04 16: PI Differential 1F: Not Used	0 to 1F	2	Programming
H3-10	Terminal A2 Gain Setting Terminal A2 Gain	Sets the percentage when $10 \mathrm{~V}(20 \mathrm{~mA})$ is input.	$\begin{gathered} 0.0 \text { to } \\ 1000.0 \end{gathered}$	100.0\%	Quick Setting
H3-11	Terminal A2 Bias Setting Terminal A2 Bias	Sets the percentage when $0 \mathrm{~V}(4 \mathrm{~mA})$ is input.	$\begin{gathered} -100.0 \text { to } \\ +100.0 \end{gathered}$	0.0\%	Quick Setting
H3-12	Analog Input Filter Time Constant Filter Avg Time	Used to "smooth" out erratic or noisy analog input signals.	$\begin{gathered} 0.00 \text { to } \\ 2.00 \end{gathered}$	0.30sec	Programming
H3-13	Master Frequency Reference Terminal Selection TA1/A2 Select	Determines which terminal will be the main reference source. 0: Main Fref TA1 - Terminal TA1 is the main speed command and Terminal TA2 is the Aux speed command. 1: Main Fref TA2 - Terminal TA2 is the main speed command and Terminal TA1 is the Aux speed command. Only effective when H3-09 is set to 2 "Aux Reference".	0 or 1	0	Programming
\checkmark Denotes that parameter can be changed when the drive is running.					

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Analog Outputs			
H4-01	Terminal FM Monitor Selection Terminal FM Sel	Selects which monitor will be output on terminals FM and FC. 1: Frequency $\operatorname{Ref}(100 \%=$ max. output frequency $)$ 2: Output Freq $(100 \%=$ max. output frequency $)$ 3: Output Current $(100 \%=$ drive rated current $)$ 6: Output Voltage $(100 \%=230 \mathrm{~V}$ or $100 \%=460 \mathrm{~V})$ 7: DC Bus Voltage $(100 \%=400 \mathrm{~V}$ or $100 \%=800 \mathrm{~V})$ 8: Output kWatts $(100 \%=$ drive rated power $)$ 15: Term A1 Level 16: Term A2 Level 18: Mot SEC Current ($100 \%=$ Motor rated secondary current) 20: SFS Output ($100 \%=$ max. output frequency $)$ 24: PI Feedback 31: Not Used 36: PI Input 37: PI Output $(100 \%=$ max. output frequency $)$ 38: PI Setpoint 51: Auto Mode $\operatorname{Fref}(100 \%=$ max. output frequency $)$ 52: Hand Mode Fref ($100 \%=$ max. output frequency) 53: PI Feedback 2 NOTE: $100 \%=10 \mathrm{~V}$ DC output * FM gain setting (H402).	1 to 53	2	Programming
$\mathrm{H} 4-02$	Terminal FM Gain Setting Terminal FM Gain	Sets terminal FM output voltage (in percent of 10 V) when selected monitor is at 100% output.	$\begin{gathered} \hline 0.0 \text { to } \\ 1000.0 \end{gathered}$	100.0\%	Programming
$\mathrm{H} 4-03$	Terminal FM Bias Setting Terminal FM Bias	Sets terminal FM output voltage (in percent of 10 V) when selected monitor is at 0% output.	$\begin{gathered} \hline-110.0 \text { to } \\ 110.0 \\ \hline \end{gathered}$	0.0\%	Programming
H4-04	Terminal AM Monitor Selection Terminal AM Sel	Selects which monitor will be output on terminals AM and FC. 1: Frequency $\operatorname{Ref}(100 \%=$ max. output frequency $)$ 2: Output Freq ($100 \%=$ max. output frequency $)$ 3: Output Current $(100 \%=$ drive rated current $)$ 6: Output Voltage $(100 \%=230 \mathrm{~V}$ or $100 \%=460 \mathrm{~V})$ 7: DC Bus Voltage $(100 \%=400 \mathrm{~V}$ or $100 \%=800 \mathrm{~V})$ 8: Output kWatts $(100 \%=$ drive rated power $)$ 15: Term A1 Level 16: Term A2 Level 18: Mot SEC Current ($100 \%=$ Motor rated secondary current) 20: SFS Output ($100 \%=$ max. output frequency $)$ 24: PI Feedback 31: Not Used 36: PI Input 37: PI Output $(100 \%=$ max. output frequency $)$ 38: PI Setpoint 51: Auto $\operatorname{Mode} \operatorname{Fref}(100 \%=$ max. output frequency $)$ 52: Hand Mode Fref ($100 \%=$ max. output frequency $)$ 53: PI Feedback 2 NOTE: $100 \%=10 \mathrm{~V}$ DC output * AM gain setting (H4-05).	1 to 53	8	Programming
$\stackrel{\mathrm{H} 4-05}{ }$	Terminal AM Gain Setting Terminal AM Gain	Sets terminal AM output voltage (in percent of 10 V) when selected monitor is at 100% output.	$\begin{gathered} 0.0 \text { to } \\ 1000.0 \end{gathered}$	50.0\%	Programming
\checkmark Denotes that parameter can be changed when the drive is running.					

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Analog Outputs			
$\mathrm{H} 4-06$	Terminal AM Bias Setting Terminal AM Bias	Sets terminal AM output voltage (in percent of 10V) when selected monitor is at 0% output.	$\begin{gathered} -110.0 \text { to } \\ 110.0 \end{gathered}$	0.0\%	Programming
H4-07	Terminal FM Signal Level Selection AO Level Select1	$\begin{aligned} & \text { 0: } 0-10 \mathrm{VDC} \\ & \text { 2: } 4-20 \mathrm{~mA}^{*} \end{aligned}$	0 or 2	0	Programming
H4-08	Terminal AM Signal Level Selection AO Level Select2	$0: 0-10 \mathrm{VDC}$ 2: $4-20 \mathrm{~mA}^{*}$ * An analog output of 4-20 mA can not be used with the standard terminal board. Therefore an optional terminal board (with shunt connector CN15) is needed.	0 or 2	0	Programming
		Serial Com Setup			
H5-01	Drive Node Address Serial Comm Adr	Selects drive station node number (address) for terminals R+, R-, S+, S-.*	0 to 20	1F	Programming
H5-02	Communication Speed Selection Serial Baud Rate	Selects the baud rate for terminals $\mathrm{R}+, \mathrm{R}-, \mathrm{S}+$ and $\mathrm{S}-$.* 0: 1200 Baud 1: 2400 Baud 2: 4800 Baud 3: 9600 Baud 4: 19200 Baud	0 to 4	3	Programming
H5-03	Communication Parity Selection Serial Com Sel	Selects the communication parity for terminals R+, R-, S+ and S-.* 0: No Parity 1: Even Parity 2: Odd Parity	0 to 2	0	Programming
H5-04	Stopping Method after Communication Error Serial Fault Sel	Selects the stopping method when a communication error is detected. 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only	0 to 3	3	Programming
H5-05	Communication Error Detection Selection Serial Flt Dtct	Enables or disables the communications timeout detection function. 0: Disabled - A communications loss will NOT cause a communications fault. 1: Enabled - If communications are lost for more than the time specified in parameter $\mathrm{H} 5-09$, a communications fault will occur.	0 or 1	1	Programming
H5-06	Drive Transmit Wait Time Transmit Wait TIM	Sets the time from when the drive receives data to when the drive sends data.	5 to 65	5 ms	Programming
H5-07	RTS Control Selection RTS Control Sel	Enables or disables "request to send" (RTS) control: 0 : Disabled (RTS is always on) 1: Enabled (RTS turns on only when sending)	0 or 1	1	Programming
H5-08	Communication Protocol Selection Protocol Select	Selects the communication protocol. 0: Memobus (Modbus) 1: N2 (Metasys) 2: P1 (Apogee)	0 to 2	0	Programming
H5-09	Communication Error Detection Time CE Detect Time	Determines how long communications must be lost before a fault is annunciated. Works in conjunction with parameters H5-05 and H5-04. * After these parameters are changed, drive power must be cycled before the changes will take effect.	0.0 to 10.0	2.0sec	Programming
Denotes that parameter can be changed when the drive is running.					

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Motor Overload			
L1-01	Motor Overload Protection Selection MOL Fault Select	Enables or disables the motor thermal overload protection. 0: Disabled 1: Std Fan Cooled (Enabled)	0 to 1	1	Programming
L1-02	Motor Overload Protection Time MOL Time Const	Determines how much time will elapse prior to a motor overload fault (OL1), when motor amps exceed the value set in parameter E2-01 by 10%. Actual (OL1) trip time will vary depending on severity of overload.	0.1 to 20.0	8.0 min	Programming
L1-03	Motor Overheat Alarm Operation Selection Mtr OH Alarm Sel	Operation selection when the motor temperature analog input (H3-09=E) exceeds the OH3 alarm level (1.17V) 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only	0 to 3	3	Programming
L1-04	Motor Overheat Fault Operation Selection Mtr OH Fault Sel	Stopping method when the motor temperature analog input (H3-09=E) exceeds the OH4 level (2.34V). 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop	0 to 2	1	Programming
L1-05	Motor Temperature Input Filter Time Mtr Temp Filter	Delay Time applied to motor temperature analog input (H3-09=E) for filtering purposes.	$\begin{gathered} 0.00 \text { to } \\ 10.00 \end{gathered}$	0.20sec	Programming
		PwrLoss Ridethru			
L2-01	Momentary Power Loss Detection Selection PwrL Selection	Enables and disables the momentary power loss function. 0 : Disabled - Drive trips on (UV1) fault when power is lost. 1: PwrL Ride Thru t-Drive will restart if power returns within the time set in L2-02.* 2: CPU Power Active - Drive will restart if power returns prior to internal power supply shut down.* * In order for a restart to occur, the run command must be maintained throughout the ride thru period.	0 to 2	2	Quick Setting
L2-02	Momentary Power Loss Ride-thru Time PwrL Ridethru t	Determines the power loss ride-thru time. This value is dependent on the capacity of the drive. Only effective when $\mathrm{L} 2-01=1$.	$\begin{gathered} 0.0 \text { to } \\ 25.5 \mathrm{sec} \end{gathered}$	kVA Dependant	Quick Setting
L2-03	Momentary Power Loss Minimum Base Block Time PwrL Baseblock t	Used to allow the residual motor voltage to decay before the drive output turns back on. After a power loss, if L2-03 is greater than L2-02, operation resumes after the time set in L2-03.	0.1 to 5.0 sec	kVA Dependant	Programming
L2-04	Momentary Power Loss Voltage Recovery Ramp Time PwrL V/F Ramp t	The time it takes the output voltage to return to the preset V / f pattern after speed search (current detection mode) is complete.	0.0 to 5.0 sec	kVA Dependant	Programming
L2-05	Undervoltage Detection Level PUV Det Level	Sets the drive's DC Bus undervoltage trip level. If this is set lower than the factory setting, additional AC input reactance or DC bus reactance may be necessary.	150 to 210	190VDC	Programming

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Stall Prevention			
L3-01	Stall Prevention Selection During Accel StallP Accel Sel	0: Disabled (Motor accelerates at active acceleration, C1-01 or C1-03. The motor may stall if load is too heavy or accel time is too short.) 1: General Purpose (When output current exceeds L302 level, acceleration stops. It starts to accelerate at current value recovery.) 2: Intelligent (The active acceleration rate, C1-01 or C102 , is ignored. Acceleration is completed in the shortest amount of time w/o exceeding the current value set in L3-02.	0 to 2	1	Programming
L3-02	Stall Prevention Level During Accel StallP Accel Lvl	This function is enabled when L3-01 is " 1 " or " 2 ". Drive rated current is 100%. Decrease the set value if stalling occurs at factory setting.	0 to 200	120\%	Programming
L3-04	Stall Prevention Selection During Decel StallP Decel Sel	0: Disabled (The drive decelerates at the active deceleration rate, $\mathrm{C} 1-02$ or C1-04. If the load is too large or the deceleration time is too short, an OV fault may occur.) 1: General Purpose (The drive decelerates at the active deceleration rate, $\mathrm{C} 1-02$ or C1-04, but if the main circuit DC bus voltage reaches the stall prevention level the output frequency will clamp. Deceleration will continue once the DC bus level drops below the stall prevention level.) 2: Intelligent (The active deceleration rate is ignored and the drive decelerates as fast as possible w/o hitting OV fault level.) 3: Stall prev w/R (When using a dynamic braking resistor, be sure to set L3-04 to either " 0 " or " 3 ". Setting " 3 " will yield a quicker deceleration rate than "0".)	0 to 3	1	Programming
L3-05	Stall Prevention Level During Decel StallP Run Sel	0 : Disabled (Drive runs a set frequency.) A heavy load may cause the drive to trip on an OC fault. 1: Decel Time 1 (In order to avoid stalling during heavy loading, the drive will start to decelerate at Decel time 1 (C1-02) if the output current exceeds the level set by L3-06. Once the current level drops below the L3-06 level the drive will accelerate back to its set frequency at the active acceleration rate.) 2: Decel Time 2 (Same as setting 1 except the drive decelerates at Decel Time 2 (C1-04).) For 6 Hz or less frequency, stall prevention function during run is disabled regardless of L3-05 set.	0 to 2	1	Programming
L3-06	Stall Prevention Level During Running StallP Run Level	This function is enabled when L3-05 is " 1 " or " 2 ". Drive rated current is set as 100%. *Normally, changing the setting is not required. Decrease the set value if stalling occurs at factory setting.	30 to 200	120\%	Programming

Table 1: E7 Parameter List (Continued)

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Hdwe Protection			
L8-01	Internal Dynamic Braking Resistor Protection Selection DB Resistor Prot	0: Not Provided 1: Provided	0 or 1	0	Programming
L8-02	Overheat Pre-Alarm Level OH Pre-Alarm Lvl	When the cooling fin temperature exceeds the value set in this parameter, an overheat pre-alarm (OH) will occur.	50 to 130	$95^{\circ} \mathrm{C}$	Programming
L8-03	Overheat Pre-Alarm Operation Selection OH Pre-Alarm Sel	Drive Operation upon OH Pre Alarm Detection. 0: Ramp to Stop (Decel Time C1-02). 1: Coast to Stop 2: Fast-Stop (Decel Time $=$ C1-09). 3: Alarm Only *0 to 2 is recognized as fault detection, and 3 is recognized as alarm. (For the fault detection, the fault contact operates.) 4: OH Alarm \& Reduce (Continue operation and reduce output frequency by L8-19)	0 to 4	4	Programming
L8-06	Input Phase Loss Detection Level Ph Loss In Lvl	Monitors the DC Bus current ripple and activates when one of the input phases is lost (PF).	0.0 to 25.0	5.0\%	Programming
L8-09	Output Ground Fault Detection Selection Ground Fault Sel	Enables and disables drive output ground fault detection. 0: Disabled 1: Enabled	0 or 1	1	Programming
L8-10	Heatsink Cooling Fan Operation Selection Fan On/Off Sel	Controls the Heatsink Cooling Fan Operation. 0: Fan On-Run Mode (Fan will operate only when drive is running and for L8-11 seconds after RUN is removed). 1: Fan Always On (Cooling fan operates whenever drive is powered up.)	0 or 1	0	Programming
L8-11	Heatsink Cooling Fan Operation Delay Time Fan Delay Time	When L8-10 $=0$ this parameter sets a delay time for Cooling Fan de-energization after the run command is removed.	0 to 300	300sec	Quick Setting
L8-12	Ambient Temperature Setting Ambient Temp	When the drive is installed in an ambient temperature exceeding its rating, drive overload (OL2) protection level is reduced.	45 to $60^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	Programming
L8-15	OL2 Characteristic Selection at Low Speeds OL2 Sel@ L-Spd	This parameter assists in protecting the output transistor junctions from overheating when output current is high and output frequency is low. 0: Disabled 1: Enabled (L8-18 is active)	0 or 1	1	Programming
L8-18	Soft CLA Selection Soft CLA Sel	Enables and disables current limit "A" 0: Disabled 1: Enabled.	0 or 1	1	Programming
L8-19	OH Frequency Reference Reduction Level Fref During OH	Sets the amount of frequency reference reduction when an Overheat Pre-alarm (OH) is detected.	$\begin{gathered} \hline 0.0 \\ \text { to } \\ 100.0 \end{gathered}$	20.0\%	Programming

Table 1: E7 Parameter List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Menu Location
		Hunting Prev			
n1-01	Hunting Prevention Selection Hunt Prev Select	0: Disabled (Hunting prevention function disabled.) 1: Enabled (Hunting prevention function enabled.) If the motor vibrates while lightly loaded, hunting prevention may reduce the vibration. There is a loss of responsiveness if hunting prevention is enabled.	0 or 1	1	Programming
n1-02	Hunting Prevention Gain Setting Hunt Prev Gain	Gain setting for the Hunting Prevention Function. If the motor vibrates while lightly loaded and $\mathrm{n} 1-01=1$, increase the gain by 0.1 until vibration ceases. If the motor stalls while $n 1-01=1$ decrease the gain by 0.1 until the stalling ceases.	0.00 to 2.50	1.00	Programming
		HighSlip			
n3-01	High-Slip Braking Deceleration Frequency Width HSB Decel Width	Sets how aggressively the drive decreases the output frequency as it stops the motor. If overvoltage (OV) faults occur during HSB, this parameter may need to be increased.	1 to 20	5\%	Programming
n3-02	High-Slip Braking Current Limit HSB Current Ref	Sets the maximum current to be drawn during a HSB stop. Higher n3-02 settings will shorten motor stopping times but cause increased motor current, and therefore increased motor heating.	100 to 200	150\%	Programming
n3-03	High-Slip Braking Dwell Time at Stop HSB DwelTim@ Stp	Sets the amount of time the Drive will dwell at E1-09 (Minimum Frequency). If this time is set too low, the machine inertia can cause the motor to rotate slightly after the HSB stop is complete and the Drive output is shut off.	0.0 to 10.0	1.0sec	Programming
n3-04	High-Slip Braking Overload Time HSB OL Time	Sets the time required for a HSB Overload Fault to occur when the Drive output frequency does not change for some reason during a HSB stop. Normally this does not need to be adjusted.	30 to 1200	40sec	Programming
		Monitor Select			
$\stackrel{\mathrm{ol}-01}{ }$	User Monitor Selection User Monitor Sel	Selects which monitor will be displayed upon power-up when ol-02 $=4$.	6 to 53	6	Quick Setting
o1-02	User Monitor Selection After Power-Up Power-On Monitor	Selects which monitor will be displayed upon power-up. 1: Frequency Ref 2: Output Freq 3: Output Current 4: User Monitor (set by o1-01)	1 to 4	1	Programming
ol-03	Digital Operator Display Selection Display Scaling	Sets the units of the Frequency References (d1-01 through d1-17) and the Frequency Reference Monitor (U1-01). 0: Hz 1: \% (100%. = E1-04) 2 to 39: RPM. (Enter the number of motorpoles.) 40 to 39999: User display Desired set/display value is set at Max. output frequency. 4 digit number. The number of digits from the right the decimal point is displayed. Example: If "200.0 is displayed at Max. output frequency, set " 12000 ".	0 to 39999	0	Programming

Table 1: E7 Parameter List (Continued)

Table 1: E7 Parameter List (Continued)

Table 2: E7 Monitor List

Parameter No.	Parameter Name Digital Operator Display	Description
		Monitor
U1-01	Frequency Reference Frequency Ref	Frequency reference (speed command) monitor when in auto mode, frequency reference (speed command) setting location when in hand mode. Units changeable via o1-03.
U1-02	Output Frequency Output Freq	Output frequency (speed) monitor. Units changeable via ol-03.
U1-03	Output Current Output Current	Output current monitor
U1-06	Output Voltage Output Voltage	Displays Drive output voltage
U1-07	DC Bus Voltage DC Bus Voltage	Displays DC Bus Voltage
U1-08	Output Power Output kWatts	Displays Drive output power
U1-10	Input Terminal Status Input Term Sts	Displays Drive input terminal status
U1-11	Output Terminal Status Output Term Sts	Output terminal ON/OFF Check
U1-12	Drive Operation Status Int Ctl Sts 1	

Table 2: E7 Monitor List (Continued)

Parameter No.	Parameter Name Digital Operator Display	Description	
U1-13	Cumulative Operation Time Elapsed Time	Misplays total operating or power-on time of the Drive.	

Table 3: E7 Fault Trace List

	Fault Trace
U2-01	Current Fault Current Fault
U2-02	Previous Fault Last Fault
U2-03	Frequency Reference at Most Recent Fault Frequency Ref
U2-04	Output Frequency at Most Recent Fault Output Freq
U2-05	Output Current at Most Recent Fault Output Current
U2-08	Output Voltage at Most Recent Fault Output Voltage
U2-09	DC Bus Voltage at Most Recent Fault DC Bus Voltage
U2-11	Output Power at Most Recent Fault Output kWatts
U2-14	Input Terminal Status at Most Recent Fault. The format is the same as for U1-10. Input Term Sts
U2-12	Output Terminal Status at Most Recent Fault. The format is the same as for U1-11. Output Term Sts
Note) Fault trace is not executed at CPF00, CPFo1, CPF03, UVI and UV2.	
Elapsed time	

Table 4: E7 Fault History List

Fault Trace	
U3-01	Most Recent Fault Last Fault
U3-02	$2^{\text {nd }}$ Most Recent Fault Fault Message 2
U3-03	$3^{\text {rd }}$ Most Recent Fault Fault Message 3
U3-04	$4^{\text {th }}$ Most Recent Fault Fault Message 4
U3-05	Cumulative Operation Time at Most Recent Fault Elapsed Time 1
U3-06	Cumulative Operation Time at $2^{\text {nd }}$ Most Recent Fault Elapsed Time 2
U3-07	Cumulative Operation Time at $3^{\text {rd }}$ Most Recent Fault Elapsed Time 3
U3-08	Cumulative Operation Time at $4^{\text {th }}$ Most Recent Fault Elapsed Time 4
U3-09	$5^{\text {th }}$ Most Recent Fault Fault Message 5
U3-10	$6^{\text {th }}$ Most Recent Fault Fault Message 6
U3-11	$7^{\text {th }}$ Most Recent Fault Fault Message 7
U3-12	$8^{\text {th }}$ Most Recent Fault Fault Message 8
U3-13	$9^{\text {th }}$ Most Recent Fault Fault Message 9
U3-14	$10^{\text {th }}$ Most Recent Fault Fault Message 10
U3-15	Cumulative Operation Time at $5^{\text {th }}$ Most Recent Fault Elapsed Time 5
U3-16	Cumulative Operation Time at $6^{\text {th }}$ Most Recent Fault Elapsed Time 6
U3-17	Cumulative Operation Time at $7^{\text {th }}$ Most Recent Fault Elapsed Time 7
U3-18	Cumulative Operation Time at $8^{\text {th }}$ Most Recent Fault Elapsed Time 8
U3-19	Cumulative Operation Time at $9^{\text {th }}$ Most Recent Fault Elapsed Time 9
U3-20	Cumulative Operation Time at $10^{\text {th }}$ Most Recent Fault Elapsed Time 10
(Note) Faults such as CPF00, CPF01, CPF02, CPF03, UV1, and UV02 are not stored in fault history.	

Notes:

Parameter List A-30

Appendix B

Capacity Related Parameters

This appendix lists the parameters affected by the Drive Capacity setting of o2-04.
Drive Capacity Selection B-2
Parameters Affected by Drive Capacity Setting B-3

If a Control PCB is changed, the next time the Drive is powered up, parameter o2-04 must be set to the appropriate value listed in Table B. 1 for the Drive model number. This will automatically program the values of all other parameters listed in Table B. 2 to the factory settings for that particular Drive rating.

Parameter o2-04 sets the Drive capacity according to the model number. Parameter o2-04 will need to be adjusted when replacing a control board.

Table B. 1 Drive Capacity Selection		
Voltage	E7 Model Number	o2-04 Setting
208-240Vac	CIMR-E7U20P4	0
	CIMR-E7U20P7	1
	CIMR-E7U21P5	2
	CIMR-E7U22P2	3
	CIMR-E7U23P7	4
	CIMR-E7U25P5	5
	CIMR-E7U27P5	6
	CIMR-E7U2011	7
	CIMR-E7U2015	8
	CIMR-E7U2018	9
	CIMR-E7U2022	A
	CIMR-E7U2030	B
	CIMR-E7U2037	C
	CIMR-E7U2045	D
	CIMR-E7U2055	E
	CIMR-E7U2075	F
	CIMR-E7U2090	10
	CIMR-E7U2110	11
480Vac	CIMR-E7U40P4	20
	CIMR-E7U40P7	21
	CIMR-E7U41P5	22
	CIMR-E7U42P2	23
	CIMR-E7U43P7	24
	CIMR-E7U45P5	26
	CIMR-E7U47P5	27
	CIMR-E7U4011	28
	CIMR-E7U4015	29
	CIMR-E7U4018	2A
	CIMR-E7U4030	2 C
	CIMR-E7U4037	2D
	CIMR-E7U4045	2E
	CIMR-E7U4055	2 F
	CIMR-E7U4075	30
	CIMR-E7U4090	31
	CIMR-E7U4110	32
	CIMR-E7U4160	34
	CIMR-E7U4185	35
	CIMR-E7U4220	36
	CIMR-E7U4300	37

Capacity Related Parameters B-2

The factory setting of the following parameters may change when the Drive capacity is changed.

Table B.2 Parameters Affected by o2-04	
Parameter Number	Parameter Name Digital Operator Display
b8-04	Energy Saving Coefficient Value Energy Save COEF
C6-02	Carrier Frequency Selection CarrierFreq Sel
E2-01	Motor Rated Current Motor Rated FLA
E2-05	Motor Line-to-Line Resistance Term Resistance
L2-02	Momentary Power Loss Ride-thru Time PwrL Ridethru t
L2-03	Momentary Power Loss Minimum Base Block Time PwrL Baseblock t
L2-04	Momentary Power Loss Voltage Recovery Ramp Time PwrL V/F Ramp t
L8-02	Overheat Pre-Alarm Level OH Pre-Alarm Lvl
L8-06	Input Phase Loss Detection Level Ph Loss In Lvl
Drive/kVA Selection	
Inverter Model \#	

Notes:

Appendix C Specifications

This appendix details the standard Drive Specifications.

Standard Drive Specifications C-2

Standard Drive Specifications

The standard Drive specifications are listed in the following tables.

- Specifications by Model

Specifications are given by model in the following tables.

■ 208-240Vac

Table C. 1 200-240Vac Drive Specifications																				
Model Number CIMR-E7U			20P4	20P7	21P5	22P2	23P7	25P5	27P5	2011	2015	2018	2022	2030	2037	2045	2055	2075	2090	2110
$\begin{array}{l\|l} \hline \begin{array}{l} \text { Rated output capacity } \\ (\mathrm{kVA}) \end{array} \\ \hline \end{array}$			1.2	1.6	2.7	3.7	5.7	8.8	12.0	17.0	22.0	27.0	32.0	44.0	55.0	69.0	82.0	110.0	130.0	160.0
	Rated outpu	current (A)	3.6	4.6	7.8	10.8	16.8	23.0	31.0	46.2	59.4	74.8	88.0	115.0	162.0	192.0	215.0	312.0		
	Max. output voltage (V)		3 -phase; 200, 208, 220, 230, or 240 Vac(Proportional to input voltage)																	
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Max. output } \\ (\mathrm{Hz}) \end{array} \\ \hline \end{array}$	frequency	120 Hz																	
Power supply characteristics	Rated voltage (V) Rated frequency (Hz)		3-phase, 200/208/220/230/240Vac, $50 / 60 \mathrm{~Hz}$																	
	Allowable voltage fluctuation		+ 10%, -15%																	
	Allowable frequency fluctuation		$\pm 5 \%$																	
$\begin{aligned} & \frac{0}{2} \\ & \frac{5}{5} \end{aligned}$	Measures for power supply harmonics	DC Reactor	Optional										Built in							
$\begin{aligned} & \overline{0} \\ & \text { 頻 } \end{aligned}$		12-Pulse Rectification	Not possible										Possible ${ }^{* 2}$							
Note: The maximum applicable motor output is given for a standard 4-pole motor. When selecting the actual motor and Drive, be sure that the Drive's rated output current is applicable for the motor's rated current. A 3-wire transformer is required on the power supply for 12-pulse rectification.																				

■480Vac

Table C. 3 480Vac Drive Specifications													
Model Number CIMR-E7U			4030	4037	4045	4055	4075	4090	4110	4160	4185	4220	4300
	Rated output capacit	(kVA)	46.0	57.0	69.0	85.0	110.0	140.0	160.0	230.0		390.0	
	Rated output current	(A)	67.2	77.0	96.0	125.0	156.0	180.0	240.0	304.0		506.0	
	Max. output voltage (V)		3 -phase, 380, 400, 415, 440, 460 or 480Vac (Proportional to input voltage)										
	Max. output frequency (Hz)		120 Hz										
	Max. voltage (V) Rated frequency (Hz)		3-phase, 380, 400, 415, 440, 460, or 480Vac, $50 / 60 \mathrm{~Hz}$										
	Allowable voltage fluctuation		+ 10%, - 15\%										
	Allowable frequency fluctuation		$\pm 5 \%$										
	Measures for power supply harmonics	DC Reactor	Built in										
$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$		12-Pulse Rectification	Possible ${ }^{* 2}$										

Note: The maximum applicable motor output is given for a standard 4-pole motor. When selecting the actual motor and Drive, be sure that the Drive's rated output current is applicable for the motor's rated current.
A 3-wire transformer is required on the power supply for 12-pulse rectification.

- Common Specifications

The following specifications apply to both 208-240Vac and 480Vac Class Drives.

Table C. 4 Common E7 Drive Specifications		
	Model Number CIMR-E7U	Specification
	Control method	Sine wave PWM V/f control
	Speed range	40:1
	Speed control accuracy	± 2 to $3 \%\left(77^{\circ} \mathrm{F} \pm 50^{\circ} \mathrm{F}\right)\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$
	Frequency accuracy (temperature characteristics)	Digital references: $\pm 0.01 \%\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)\left(-10^{\circ} \mathrm{C}\right.$ to $\left.+40^{\circ} \mathrm{C}\right)$
		Analog references: $\pm 0.1 \%\left(77^{\circ} \mathrm{F} \pm 50^{\circ} \mathrm{F}\right)\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$
	Frequency setting resolution	Digital references: 0.01 Hz
		Analog references: $0.025 / 50 \mathrm{~Hz}$ (10 bit with sign)
	Overload capacity and maximum current	110% of rated output current for 60 seconds
	Frequency setting signal	0-10 Vdc, 4-20 mA
	Acceleration/Deceleration time	0.0 to 6000.0 s (2 selectable combinations of independent acceleration and deceleration settings)
	Main control functions	Restarting for momentary power loss, bi-directional speed search, overtorque detection, 5 preset speeds, acceleration/deceleration time changes, S-curve acceleration, 3-wire sequence, auto-tuning, cooling fan ON/OFF control, torque compensation, jump frequencies, upper and lower limits for frequency references, DC braking for starting and stopping, high-slip braking, PI control (with sleep function), energy-saving control, Modbus communications (RS-485/422, 19.2 kbps maximum), fault reset, and copy function
00000000000020	Motor protection	Protection by electronic thermal overload relay
	Fuse blown protection	Stops for fuse blown
	Overload protection	110% of rated output current for 60 seconds
	Overvoltage protection	208-240Vac: Stops when main-circuit DC voltage is above 410 V 480 Vac : Stops when main-circuit DC voltage is above 820 V
	Undervoltage protection	208-240Vac: Stops when main-circuit DC voltage is below 190 V 480 Vac: Stops when main-circuit DC voltage is below 380 V
	Momentary power loss ridethru	Stops for 15 ms or more By selecting the momentary power loss method, operation can be continued if power is restored within 2 s
	Cooling fin overheating	Protection by thermistor
	Stall prevention	Stall prevention during acceleration, deceleration, or running
	Grounding protection	Protection by electronic circuits. (50\% of inverter rated current)
	Charge indicator	Lit when the main circuit DC voltage is approx. 50 Vdc or more
Enclosure Type		Enclosed wall-mounted type (NEMA 1): CIMR-E7U20P4 thru 2018 and 40P4 thru 4018 Open chassis type (IP00): CIMR-E7U2022 thru 2110 and 4030 thru 4300
	Ambient operating temperature	$14^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$ NEMA 1 type $14^{\circ} \mathrm{F}$ to $113^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right.$ to $\left.45^{\circ} \mathrm{C}\right)$ Open chassis type
	Ambient operating humidity	95% max. (with no condensation)
	Storage temperature	$68^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+60^{\circ} \mathrm{C}\right)$ short-term temperature during transportation
	Application site	Indoor (no corrosive gas, dust, etc.)
	Altitude	1000 m max.
	Vibration	10 to $20 \mathrm{~Hz}, 9.8 \mathrm{~m} / \mathrm{s}^{2}$ max.; 20 to $50 \mathrm{~Hz}, 2 \mathrm{~m} / \mathrm{s}^{2} \mathrm{max}$

Appendix D Communication

This appendix details the specifications, connections, and programming of the Drive for Modbus communications. This Drive also contains embedded APOGEE ${ }^{\text {TM }}$ FLN and Metasys ${ }^{\circledR}$ communication protocols. For details regarding APOGEE ${ }^{\text {TM }}$ FLN, please refer to the E7 APOGEE ${ }^{\text {TM }}$ FLN Technical Manual (TM.E7.21). For details regarding Metasys ${ }^{\circledR}$, please refer to the E7 Metasys ${ }^{\circledR}$ Technical Manual (TM.E7.22). These two documents can be found on the CD-ROM included with this Drive or at www.drives.com.
Using Modbus Communication D-2
Modbus Function Code Details D-6
Data Tables D-8
Self-Diagnosis D-13

- Using Modbus Communication

Serial communication can be performed with Programmable Logic Controllers (PLCs) or similar devices using the Modbus protocol.

■ Modbus Communication Configuration

Modbus communication is configured using 1 master (PLC) and a maximum of 31 slaves. Serial communication between master and slave is normally initiated by the master and responded to by the slaves.

The master performs serial communication with one slave at a time. Consequently, the slave address of each slave must be initially set, so that the master can perform serial communication using that address. Slaves receiving commands from the master perform the specified functions, and send a response back to the master.

Fig D. 1 Example of Connections between Master and Drive

■Communication Specifications

The Modbus communication specifications are shown below:

Table D.1 Modbus Communication Specifications	
Item	Specifications
Interface	RS-422, RS-485
Communications Cycle	Asynchronous (Start-stop synchronization)
Communications Parameters	Baud rate:
	Delect from 1200, 2400, 4800, 9600, and 19200 bps.
	Parity: length:$\quad 8$ bits fixed
	Select from even, odd, or none.
Stop bits:	1 bit selected

Communication Connection Terminal

Modbus communication uses the following terminals: $\mathrm{S}+, \mathrm{S}-, \mathrm{R}+$, and $\mathrm{R}-$. The terminating resistance must be turned ON only if the Drive is at the very end of the Serial Communication chain. Set the terminating resistance by turning ON pin 1 of switch S1.

Terminating resistance (1/2W, 110 Ohms)
Fig. D. 2 Communication Connection Terminals and Terminating Resistance

IMPORTANT

1. Separate the communication cables from the main circuit cables and control circuit wiring.
2. Use shielded cables for the communication cable, and use proper shield clamps.
3. When using RS-485 communication, connect $S+$ to $R+$, and S - to $R-$, on the control circuit terminal board. See Fig. D-3 below.
4. Shield at one end only.

Fig. D. 3 RS-485 Communication Connection

- Procedure for Setting Up Communication

Use the following procedure to perform communication with the PLC.

1. Turn OFF the input to the Drive power and connect the communication cable between the PLC and the Drive.
2. Turn ON the input power to the Drive.
3. Set the required communication parameters (H5-01 to H5-09) using the Digital Operator.
4. Turn OFF the input to the Drive power, and check that the Digital Operator display has completely disappeared.
5. Turn ON the input power to the Drive once again.
6. Perform communication with the PLC.

Related Parameters

Table D. 2 Serial Communication Related Parameters						
Parameter No.	Parameter Name Digital Operator Display	Description	Setting Range	Factory Setting	Chapter Ref \#	Menu Location
b1-01	Frequency Reference Selection Reference Source	Selects the speed command input source. 0 : Operator - Digital preset speed d1-01 1: Terminals - Analog Input Terminal A1 (or Terminal A2 see parameter H3-13) 2: Serial Com - RS-485 terminals R+, R-, S+ and S- 3: Option PCB - Option board connected at 2CN	0 to 3	1		Quick Setting
b1-02	Run Command Selection Run Source	Selects the run command input source. 0: Operator - "Hand" and "Off" keys on digital operator 1: Terminal - Contact Closure on Terminal S1 2: Serial Com - RS-485 terminals R+, R-, S+ and S- 3: Option PCB - Option board connected at 2 CN	0 to 3	1		Quick Setting
H5-01	Drive Node Address Serial Comm Adr	Selects drive station node number (address) for terminals R+, R-, S+, S-.*	0 to FF	1F		Programming
H5-02	Communication Speed Selection Serial Baud Rate	Selects the baud rate for terminals $\mathrm{R}+, \mathrm{R}-, \mathrm{S}+$ and S-*. 0: 1200 Baud 1: 2400 Baud 2: 4800 Baud 3: 9600 Baud 4: 19200 Baud	0 to 4	3		Programming
H5-03	Communication Parity Selection Serial Com Sel	Selects the communication parity for terminals $\mathrm{R}+$, R-, S+ and S-.* 0: No Parity 1: Even Parity 2: Odd Parity	0 to 2	0		Programming
H5-04	Stopping Method after Communication Error Serial Fault Sel	Selects the stopping method when a communication error is detected. 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only 4: Run at D1-04	0 to 3	3		Programming
H5-05	Communication Error Detection Selection Serial Flt Dtet	Enables or disables the communications timout detection function. 0: Disabled - A comunications loss will NOT cause a communications fault. 1: Enabled - If communications is lost for more than the time specified in parmaeter H5-09, a communications fault will occur.	0 or 1	1		Programming
H5-06	Drive Transmit Wait Time Transmit WaitTIM	Sets the time from when the drive receives data to when the drive sends data.	5 to 65	5 ms		Programming
H5-07	RTS Control Selection RTS Control Sel	Enables or disables request to send (RTS) control: 0 : Disabled 1: Enabled	0 or 1	1		Programming
H5-08	Communication Protocol Selection Protocol Select	Selects the communication protocol. 0 : Modbus 1: N2 (Metasys) 2: P1 (APOGEE)	0 to 2	0		Programming
H5-09	Communication Error Detection Time CE Detect Time	Determines how long coummications must be lost before a fault is annunciated. Works in conjunction with parmaeters $\mathrm{H} 5-05$ and $\mathrm{H} 5-04$. * After these parameters are changed drive power must be cycled before the changes will take effect.	0.0 to 10.0	2.0sec		Programming
* Set H5-01 to	to disable Drive responses to	dbus communications.				

Modbus communication can perform the following operations regardless of the settings in b1-01 and b1-02:

1. Monitoring operation status of the Drive
2. Setting and reading Drive parameters
3. Resetting faults
4. Input multi-function commands

An OR operation is performed between the multi-function command input from the PLC and the command input from multi-function digital input terminals S3 to S7.

Message Format

In Modbus communication, the master sends commands to the slave, and the slave responds. The message format is configured for both sending and receiving as shown below. The length of the data packets is changed by the command (function) contents.

Slave address
Function code
Data
Error check

Fig. D. 4 Message Format

The space between messages must support the following:

Fig. D. 5 Message Spacing

Slave Address

Set the Drive address from 0 to 32. If 0 is selected, commands from the master will be broadcast (i.e., the Drive will not return responses).

Function Code

The function code specifies commands. There are four function codes, as shown below.

Table D.3 Modbus Function Codes								
Function Code (Hexadecimal)	Function		Command Message	Response Message				
		Min. (Bytes)	Max. (Bytes)	Min.* (Bytes)	Max. (Bytes)			
03 H	Reading/Holding Register Contents	8	8	7	37			
06 H	Write In Single Holding Register	8	8	8	8			
08 H	Loopback Test	8	8	8	8			
10 H	Write In Several Holding Registers	11	41	8	8			
*Minimum bytes for a normal Response Message (error response message is always 5 bytes).								

Data

Configure consecutive data by combining the storage register address (test code for a loopback address) and the data the register contains. The data length changes depending on the command details.

Error Check

Errors are detected during communication using CRC-16. Perform calculations using the following method:

1. The factory setting for CRC-16 communication is typically zero, but when using the Modbus system, set the factory setting to one (e.g., set all 16 bits to 1).
2. Calculate CRC-16 using MSB as slave address LSB, and LSB as the MSB of the final data.
3. Calculate CRC-16 for response messages from the slaves and compare them to the CRC-16 in the response messages.

- Modbus Function Code Details

■ Reading/Holding Register Contents (03H)

Read the contents of the storage register only for specified quantities. The addresses must be consecutive, starting from a specified address. The data content of the storage register are separated into higher 8 bits and lower 8 bits.

The following table shows message examples when reading status signals, error details, data link status, and frequency references from the slave 2 Drive.

Command Message

Slave Address		02 H
Function Code		03 H
Start Address	Higher	00 H
	Lower	20 H
Quantity	Higher	00 H
	Lower	04 H
CRC-16	Higher	45 H
	Lower	F 0 H

Response Message (During Normal Operation)

Slave Address		02 H
Function Code		03 H
Data quantity		08 H
st storage register	Higher	00 H
	Lower	Higher
	Lower	00 H
Next storage register	Higher	00 H
	Lower	Higher
	Lower	F4H
CRC-16	Higher	AFH
	Lower	82 H

Response Message (During Error)

Slave Address		02 H
Function Code		83 H
Error code		03 H
CRC-16	Higher	F 1 H
	Lower	31 H

Fig. D. 6 Function Code 03H Message Example

■Write In Single Holding Register (06H)

Command Message

Slave address		01 H
Function code		06 H
Register Address	Upper	00 H
	Uperer	01 H
	Lower	00 H
CRC-16	Upper	98 H
	Lower	0 BH

Response Message
(During Normal Operation)

Slave address		01 H
Function code		06 H
Register Address	Upper	00 H
	Lower	01 H
	Upper	00 H
CRC-16	Upper	03 H
	Uper	98 H

Response Message
(During Error)

Slave address		01 H
$80 \mathrm{H}+$ Function Code		86 H
Error code		21 H
CRC-16	Upper	82 H
	Lower	78 H

Fig. D. 7 Function Code 06H Message Example

■ Loopback Test (08H)

The loopback test returns the command message directly as the response message without changing the contents to check the communications between the master and slave. Set user-defined test code and data values.

The following table shows a message example when performing a loopback test with the slave 1 Drive.

Command Message

Slave address		01 H
Function code		08 H
Test Code	Higher	00 H
	Lower	00 H
Data	Higher	A 5 H
	Lower	37 H
CRC-16	Higher	DAH
	Lower	8 DH

Response Message
(During Normal Operation)

Slave address		01 H
Function code		08 H
Test Code	Higher	00 H
	Lower	00 H
Data	Higher	A5H
	Lower	37 H
CRC-16	Higher	DAH
	Lower	8 DH

Response Message
(During Error)

Slave address		01 H
Function code		89 H
Error Code		01 H
CRC-16	Higher	86 H
	Lower	50 H

Fig. D. 8 Function Code 08H Message Example

■ Write In Several Holding Registers (10H)

Write the specified data to the registers from the specified addresses. The written data must be consecutive, starting from the specified address in the command message: Higher 8 bits, then lower 8 bits, in storage register address order.

The following table shows an example of a message when a forward run command has been set at a speed command of 60.0 Hz in the slave 1 Drive by the PLC.

Command Message

Slave Address		01 H
Function Code		10 H
Start Address	Higher	00 H
	Lower	01 H
Quantity	Higher	00 H
	Lower	02 H
No. of data		04 H
Lead data	Higher	00 H
	Lower	01 H
Next data	Higher	02 H
	Lower	58 H
CRC-16	Higher	63 H
	Lower	39 H

Response Message
(During Normal Operation)

Slave Address		01 H
Function Code		10 H
Start	Higher	00 H
	Lower	01 H
Quantity	Higher	00 H
	Lower	02 H
CRC-16	Higher	10 H
	Lower	08 H

Response Message
(During Error)

Slave Address		01 H
Function Code		90 H
Error code		02 H
CRC-16	Higher	CDH
	Lower	C 1 H

* No. of data $=2 \times$ (quantity)

Fig. D. 9 Function Code 10H Message Example response messages in the same way.

- Data Tables

The data tables are shown below. The types of data are as follows: Reference data, monitor data and broadcast data.

■Reference Data

The reference data table is shown below. Reference data can be read and written to.

Table D. 4 Reference Data		
Register No.	Contents	
0000H	Reserved	
0001H	Frequency reference	
	Bit 0	Run/stop command 1: Run 0: Stop
	Bit 1	Forward/reverse operation 1: Reverse 0: Forward
	Bit 2	External fault 1: Fault (EFO)
	Bit 3	Fault reset 1: Reset command
	Bit 4	ComNet
	Bit 5	ComCtrl
	Bit 6	Multi-function digital input command 3
	Bit 7	Multi-function digital input command 4
	Bit 8	Multi-function digital input command 5
	Bit 9	Multi-function digital input command 6
	Bit A	Multi-function digital input command 7
	Bits B to F	Not used
0002H	Frequency reference (Set units using parameter o1-03)	
0003 H to 0005 H	Not used	
0006H	PI Setpoint	
0007H	Analog output 1 setting ($-11 \mathrm{~V}=726$ to $11 \mathrm{~V}=726$) $\rightarrow 10 \mathrm{~V}=660$	
0008H	Analog output 2 setting (-11 V $=726$ to $11 \mathrm{~V}=726$) $\rightarrow 10 \mathrm{~V}=660$	
0009H	Multi-function contact output setting	
	Bit 0	Digital output 1 (Terminal M1-M2) 1: ON 0: OFF
	Bit 1	Digital output 2 (Terminal M3-M4) 1: ON 0: OFF
	Bit 2	Not Used
	Bits 3 to 5	Not used
	Bit 6	Set fault contact (terminal MA-MC) output using bit 7. 1: ON 0: OFF
	Bit 7	Fault contact (terminal MA-MC) 1: ON 0: OFF
	Bits 8 to F	Not used
000AH to 000EH	Not used	
000FH	Reference selection settings	
	Bit 0	Not used
	Bit 1	Input PI setpoint 1: Enabled 0: Disabled
	Bits 3 to B	Not used
	C	Broadcast data terminal S5 input 1: Enabled 0: Disabled
	D	Broadcast data terminal S6 input 1: Enabled 0: Disabled
	E	Broadcast data terminal S7 input 1: Enabled 0: Disabled
	F	Not used
Note: Write 0 to all unu	ed bits. Also, do	not write data to reserved registers.

■ Monitor Data

The following table shows the monitor data. Monitor data can only be read.

Table D. 5 Monitor Data		
Register No.	Contents	
0020H	Drive status	
	Bit 0	Operation 1: Operating 0: Stopped
	Bit 1	Reverse operation 1: Reverse operation 0: Forward operation
	Bit 2	Drive startup complete 1: Completed 0: Not completed
	Bit 3	Fault 1: Fault
	Bit 4	Data setting error 1: Error
	Bit 5	Multi-function digital output 1 (terminal M1-M2) 1: ON 0: OFF
	Bit 6	Multi-function digital output 2 (terminal M3-M4) 1: ON 0: OFF
	Bit 7	Not used
	Bits 8 to F	Not used
0021H	Fault details	
	Bit 0	Overcurrent (OC) Ground fault (GF)
	Bit 1	Main circuit overvoltage (OV)
	Bit 2	Drive overload (OL2)
	Bit 3	Drive overheat (OH1, OH2)
	Bit 4	Not used
	Bit 5	Fuse blown (PUF)
	Bit 6	PI feedback reference lost (FbL)
	Bit 7	External error (EF, EFO)
	Bit 8	Hardware error (CPF)
	Bit 9	Motor overload (OL1) or overtorque 1 (OL3) detected
	Bit A	PG broken wire detected (PGO), Overspeed (OS), Speed deviation (DEV)
	Bit B	Main circuit undervoltage (UV) detected
	Bit C	Main circuit undervoltage (UV1), control power supply error (UV2), inrush prevention circuit error (UV3), power loss
	Bit D	Missing output phase (LF)
	Bit E	Modbus communications error (CE)
	Bit F	Operator disconnected (OPR)
0022H	Data link status	
	Bit 0	Writing data
	Bit 1	Not used
	Bit 2	Not used
	Bit 3	Upper and lower limit errors
	Bit 4	Data integrity error
	Bits 5 to F	Not used
0023H	Frequency reference	U1-01
0024H	Output frequency	U1-02
0025H	Output voltage reference	U1-06
0026H	Output current	U1-03
0027H	Output power	U1-08
0028H	Torque reference	U1-09
0029H	Not used	
002AH	Not used	

■ Broadcast Data

The following table shows the broadcast data. Broadcast data can be written to.

Table D. 6 Broadcast Data		
Register Address	Contents	
0001H	Operation signal	
	Bit 0	Run command 1: Operating 0: Stopped
	Bit 1	Reverse operation command 1: Reverse 0: Forward
	Bits 2 and 3	Not used
	Bit 4	External error 1: Fault (set using H1-01)
	Bit 5	Error Fault 1: Reset command (set using H1-02)
	Bits 6 to B	Not used
	Bit C	Multi-function digital input terminal S5 input
	Bit D	Multi-function digital input terminal S6 input
	Bit E	Multi-function digital input terminal S7 input
	Bit F	Not used.
0002H	Frequency reference	30000/100\%
Bit signals	fined in the broadcast operal	ion signals use local node data signals continuously.

Enter Command

When writing parameters to the Drive from the PLC using Modbus communication, the parameters are temporarily stored in the constant data area in the Drive. To enable these parameters in the parameter data area, use the Enter command.

There are two types of Enter commands:

1. Enter commands that enable parameter data in RAM
2. Enter commands that write data to EEPROM (non-volatile memory) in the Drive at the same time as enabling data in RAM.

The following table shows the Enter command data. Enter command data can only be written.
The Enter command is enabled by writing 0 to register number 0900 H or 0901 H .

Table D. 7	
Enter Command	
Register No.	Contents
0900 H	Write parameter data to EEPROM
0910 H	Parameter data is not written to EEPROM, but refreshed in RAM only.

[^1]
■Error Codes

The following table shows Modbus communication error codes.

Table D. 8 Error Codes	
$\begin{aligned} & \hline \text { Error } \\ & \text { Code } \end{aligned}$	Contents
01H	Function code error A function code other than $03 \mathrm{H}, 08 \mathrm{H}$, or 10 H has been set by the PLC.
02H	Invalid register number error - The register address you are attempting to access is not recorded anywhere. - With broadcast sending, a start address other than $0000 \mathrm{H}, 0001 \mathrm{H}$, or 0002 H has been set.
03H	Invalid quantity error - The number of data packets being read or written is outside the range of 1 to 16 . - In write mode, the number of data packets in the message is not No. of packets x 2 .
21H	Data setting error - Upper limit or lower limit error has occurred in the control data or when writing parameters. - When writing parameters, the parameter setting is invalid.
22H	Write mode error - Attempting to write parameters to the Drive during run. - Attempting to write via Enter commands during run. - Attempting to write parameters other than A1-00 to A1-05, E1-03, or 02-04 when a CPF03 (defective EEPROM) fault has occurred. - Attempting to write read-only data.
23H	Writing during main circuit undervoltage (UV) fault - Writing parameters to the Drive during UV (main circuit undervoltage) alarm. - Writing via Enter commands during UV (main circuit undervoltage) alarm.
24H	Writing error during parameters processing Attempting to write parameters while processing parameters in the Drive.

■Slave Not Responding

In the following cases, the slave will ignore the write function.

- When a communication error (overrun, framing, parity, or CRC-16) is detected in the command message.
- When the slave address in the command message and the slave address in the Drive do not agree.
- When the data that configures the message and the data time length exceed 24 bits.
- When the command message data length is invalid.

If the slave address specified in the command message is 0 , all slaves execute the write function, but do not return response messages to the master.

- Self-Diagnosis

The Drive has a built-in function for self-diagnosing the operations of serial communication interface circuits. The self-diagnosis function connects the communication parts of the send and receive terminals, receives the data sent by the Drive, and checks if communication is being performed normally.

Perform the self-diagnosis function using the following procedure.

1. Turn ON the power supply to the Drive, and set parameter H1-05 (Terminal S7 Function Selection) to 67 (Comm Test Mode).
2. Turn OFF the power supply to the Drive.
3. Perform wiring according to the following diagram while the power supply is turned OFF.
4. Turn ON the terminating resistance. (Turn ON pin 1 on DIP switch 1.)
5. Turn ON the power supply to the Drive again.

Fig. D. 10 Communication Terminal Connection for Self -Diagnosis Function
6. During normal self-diagnostic operation, the Digital Operator displays the frequency reference value. If an error occurs, a CE (Modbus communication error) alarm will be displayed on the Digital Operator, the fault contact output will be turned ON, and the Drive operation ready signal will be turned OFF.

Notes:

Appendix E Peripheral Devices

This appendix describes recommended branch short circuit protection and peripheral devices.
Branch Short Circuit Protection E-2
Peripheral Devices E-4

- Branch Short Circuit Protection

Select fuses and MCCB based on NEC Table 430-152 and the data provided.

Table E. 1 208-240Vac Input							
			Fuse Selection Criteria		MCCB Selection Criteria		
Model CIMR-E7U	Rated input Amps	Rated Output Amps	Minimum Voltage Rating (Vac)	Maximum $\mathrm{I}^{2} \mathrm{t}$ Melt Rating	Circuit Breaker Type	Minimum Voltage Rating (Vac)	Minimum MCCB Amp Rating
20P4	4.3	3.6	250	17	Inverse Time	240	7
20P7	5.5	4.6	250	17	Inverse Time	240	7
21P5	9.4	7.8	250	27	Inverse Time	240	15
22P2	13	10.8	250	60	Inverse Time	240	30
23P7	20	16.8	250	200	Inverse Time	240	30
25P5	24	23	250	276	Inverse Time	240	30
27P5	37	31	250	560	Inverse Time	240	50
2011	53	46.2	250	810	Inverse Time	240	100
2015	70	59.4	250	1570	Inverse Time	240	100
2018	89	74.8	250	2260	Inverse Time	240	150
2022	98	88	250	2260	Inverse Time	240	150
2030	120	115	250	4010	Inverse Time	240	150
2037	180	162	250	7320	Inverse Time	240	250
2045	212	192	250	9630	Inverse Time	240	400
2055	237	215	250	16000	Inverse Time	240	400
2075	350	312	250	31000	Inverse Time	240	600
2090							
2110							

Table E. 2 480Vac Input							
			Fuse Selection Criteria		MCCB Selection Criteria		
Model CIMR-E7U	Rated Input Amps	Rated Output Amps	Minimum Voltage Rating (Vac)	$\begin{aligned} & \text { Maximum } \mathrm{I}^{2} \mathrm{t} \\ & \text { Melt Rating } \end{aligned}$	Circuit Breaker Type	Minimum Voltage Rating (Vac)	$\begin{aligned} & \text { Minimum MCCB } \\ & \text { Amp Rating } \end{aligned}$
40P4	2.2	1.8	500	26	Inverse Time	480	3
40P7	2.5	2.1	500	26	Inverse Time	480	7
41P5	4.4	3.7	500	26	Inverse Time	480	7
42P2	6.4	5.3	500	26	Inverse Time	480	15
43P7	9	7.6	500	59	Inverse Time	480	15
45P5	15	12.5	500	317	Inverse Time	480	30
47P5	20	17	500	317	Inverse Time	480	30
4011	33	27	500	317	Inverse Time	480	50
4015	40	34	500	564	Inverse Time	480	50
4018	48	40	500	1022	Inverse Time	480	100
4030	74	67.2	500	1022	Inverse Time	480	100
4037	85	77	500	3070	Inverse Time	480	150
4045	106	96	500	3070	Inverse Time	480	150
4055	134	125	500	5200	Inverse Time	480	250
4075	172	156	500	17700	Inverse Time	480	250
4090	198	180	500	17700	Inverse Time	480	400
4110	264	240	500	19000	Inverse Time	480	400
4160	334	260	500	24000	Inverse Time	480	600
4185							
4220	567	515	500	59000	Inverse Time	480	800
4300							

Peripheral Devices E-3

- Peripheral Devices

The following peripheral devices may be required to be mounted between the AC main circuit power supply and the Drive input terminals R/LI, S/L2, and T/L3.

CAUTION Never connect a general LC/RC noise filter to the drive output circuit.
 Never connect a phase-advancing capacitor to the input or output sides, or a surge suppressor to the output side of the Drive. When magnetic contactor is installed between the Drive and the motor, never turn it on or off during operation.

For more details on peripheral devices, contact the manufacturer.

Magnetic Contactor

Mount a surge protector on the coil. When using a magnetic contactor to start and stop the Drive, do not exceed one start per hour.

Ground fault interrupter

Select a ground fault interrupter not affected by high frequencies. To prevent malfunctions, the current should be 200 mA or more and the operating time 0.1 second or more.

AC and DC reactor

Install a reactor to connect to a power supply transform of large capacity (600 kVA or more) or to improve the power factor on the power supply side.

Fig E. 5

Noise filter

Use a noise filter exclusively for the Drive if radio noise generated from the Drive causes other control devices to malfunction.

Appendix F Spare Parts

This appendix lists the primary spare parts that may be needed to maintain or service the Drive.

E7 Primary Spare Parts - 208/230/240Vac F-2
E7 Primary Spare Parts - 480Vac F-3

- E7 Primary Spare Parts - 208/230/240Vac

Table F. 1 208-240Vac E7 Primary Spare Parts					
Drive Model CIMR-E7U	$\begin{gathered} \text { Power PCB } \\ (3 P C B) \end{gathered}$	Gate Drive PCB (3PCB)	Control PCB (1PCB)	Terminal PCB (2PCB)	Diode Module
20P4	ETP617012	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
20P7	ETP617012	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
21P5	ETP617022	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
22P2	ETP617032	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
23P7	ETP617042	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
25P5	ETP617052	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
27P5	ETP617062	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
2011	ETP617422	N/A	ETC618021-S3010	ETC618141	SID003114 (D1)
2015	N/A	ETC617032	ETC618021-S3010	ETC618141	SID003113 (D1)
2018	N/A	ETC617032	ETC618021-S3010	ETC618141	SID003113 (D1)
2022	N/A	ETC617042	ETC618021-S3010	ETC618141	SID003114 (D1,D2)
2030	N/A	ETC617053	ETC618021-S3010	ETC618141	SID003113 (D1,D2)
2037	N/A	ETC617063	ETC618021-S3010	ETC618141	SID003130 (D1,D2)
2045	N/A	ETC617073	ETC618021-S3010	ETC618141	SID003115 (D1,D2)
2055	N/A	ETC617083	ETC618021-S3010	ETC618141	SID003115 (D1,D2)
2075	N/A	ETC617093	ETC618021-S3010	ETC618141	SID003116 (D1,D6)
2090	N/A	ETC617103	ETC618021-S3010	ETC618141	SID003116 (D1,D6)
2110	N/A	ETC617113	ETC618021-S3010	ETC618141	SID003108 (D1,D12)

Table F. 2 208-240Vac E7 Primary Spare Parts

Table F. 2 208-240Vac E7 Primary Spare Parts					
Drive Model CIMR-E7U	Power Module	Transistor Module	DC Bus Fuse	Heat Sink Fan	Internal Fan
20P4	STR001297 (Q1)	N/A	FU-002029 (F1)	N/A	N/A
20P7	STR001297 (Q1)	N/A	FU-002029 (F1)	N/A	N/A
21P5	STR001299 (Q1)	N/A	FU-002029 (F1)	N/A	N/A
22P2	STR001301 (Q1)	N/A	FU-002030 (F1)	N/A	N/A
23P7	STR001303 (Q1)	N/A	FU-002031 (F1)	FAN001041 (B1)	N/A
25P5	STR001304 (Q1)	N/A	FU-002099 (F1)	FAN001041 (B1)	N/A
27P5	STR001278 (Q1)	N/A	FU-002107 (F1)	FAN001041 (B1,B2)	N/A
2011	N/A	STR001315 (Q1)	FU-002108 (F1)	FAN001041 (B1,B2)	FAN001043 (B3)
2015	N/A	STR001315 (Q1)	FU-002108 (F1)	FAN001042 (B1,B2)	N/A
2018	N/A	STR001320 (Q1)	FU-002109 (F1)	FAN001042 (B1,B2)	FAN001043 (B3)
2022	N/A	STR001314 (Q1)	FU-002110 (F1)	FAN001039 (B1,B2)	N/A
2030	N/A	STR001323 (Q1)	FU-002110 (F1)	FAN001039 (B1,B2)	N/A
2037	N/A	STR001293 (Q1-Q3)	FU-002102 (F1)	FAN001049 (B1,B2)	FAN001053 (B4)
2045	N/A	STR001335 (Q1-Q3)	FU-000925 (F1)	FAN001049 (B1,B2)	FAN001053 (B4)
2055	N/A	STR001335 (Q1-Q3)	FU-000938 (F1)	FAN001052 (B1,B2)	FAN001054 (B4)
2075	N/A	STR001349 (Q1-Q6)	FU-000926 (F1)	FAN001056 (B1,B2)	FAN001054 (B4)
2090	N/A	STR001338 (Q1-Q6)	FU-002105 (F1)	FAN001056 (B1,B2)	FAN001054 (B4)
2110	N/A	STR001351 (Q1-Q12)	FU-002106 (F1)	FAN001056 (B1,B2)	FAN001054 (B4)

Spare Parts F-2

- E7 Primary Spare Parts - 480Vac

Table F. 3 480Vac E7 Primary Spare Parts					
Drive Model CIMR-E7U	$\begin{gathered} \text { Power PCB } \\ (3 P C B) \end{gathered}$	Gate Drive PCB (3PCB)	Control PCB (1PCB)	Terminal PCB (2PCB)	Diode Module
40P4	ETP617082	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
40P7	ETP617082	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
41P5	ETP617092	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
42P2	ETP617102	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
43P7	ETP617112	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
45P5	ETP617132	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
4011	ETP617152	N/A	ETC618021-S3010	ETC618141	Inside the Power Module
4015	ETP617162	N/A	ETC618021-S3010	ETC618141	SID003112 (D1)
4018	ETP617172	N/A	ETC618021-S3010	ETC618141	SID000605 (D1)
4030	N/A	ETC617151	ETC618021-S3010	ETC618141	SID003112 (D1,D2)
4037	N/A	ETC617161	ETC618021-S3010	ETC618141	SID003112 (D1,D2)
4045	N/A	ETC617171	ETC618021-S3010	ETC618141	SID000605 (D1,D2)
4055	N/A	ETC617181	ETC618021-S3010	ETC618141	SID000605 (D1,D2)
4075	N/A	ETC617190	ETC618021-S3010	ETC618141	SID003117 (D1,D2)
4090	N/A	ETC617200	ETC618021-S3010	ETC618141	SID003117 (D1,D2)
4110	N/A	ETC617210	ETC618021-S3010	ETC618141	SID003109 (D1,D6)
4160	N/A	ETC617230	ETC618021-S3010	ETC618141	SID003119 (D1,D6)
4185	N/A	ETC617240	ETC618021-S3010	ETC618141	SID003119 (D1,D6)
4220	N/A	ETC617250	ETC618021-S3010	ETC618141	SID003131 (D1,D6)
4300	N/A	ETC617260	ETC618021-S3010	ETC618141	SID003119(D1,D12)

Table F. 4 480Vac E7 Primary Spare Parts

Drive Model CIMR-E7U	Power Module	Transistor Module	DC Bus Fuse	Heat Sink Fan	Internal Fan
40P4	STR001298 (Q1)	N/A	FU-002029 (F1)	N/A	N/A
40P7	STR001298 (Q1)	N/A	FU-002029 (F1)	N/A	N/A
41P5	STR001298 (Q1)	N/A	FU-002029 (F1)	N/A	N/A
42P2	STR001298 (Q1)	N/A	FU-002029 (F1)	N/A	N/A
43P7	STR001300 (Q1)	N/A	FU-002031 (F1)	FAN001041 (B1)	N/A
45P5	STR001302 (Q1)	N/A	FU-002031 (F1)	FAN001041 (B1)	N/A
4011	N/A	STR001280 (Q1)	FU-002037 (F1)	FAN001041 (B1,B2)	FAN001043 (B3)
4015	N/A	STR001318 (Q1)	FU-002038 (F1)	FAN001042 (B1,B2)	N/A
4018	N/A	STR001318 (Q1)	FU-002038 (F1)	FAN001042 (B1,B2)	FAN001043 (B3)
4030	N/A	STR001324 (Q1)	FU-002039 (F1)	FAN001039 (B1,B2)	N/A
4037	N/A	STR001316 (Q1-Q3)	FU-002040 (F1)	FAN001044 (B1,B2)	N/A
4045	N/A	STR001317 (Q1-Q3)	FU-002040 (F1)	FAN001044 (B1,B2)	N/A
4055	N/A	STR001317 (Q1-Q3)	FU-002101 (F1)	FAN001044 (B1,B2)	N/A
4075	N/A	STR001294 (Q1-Q3)	FU-002112 (F1)	FAN001052 (B1,B2)	FAN001054 (B4)
4090	N/A	STR001336 (Q1-Q6)	FU-002113 (F1)	FAN001052 (B1,B2)	FAN001054 (B4)
4110	N/A	STR001336 (Q1-Q6)	FU-002114 (F1)	FAN001056 (B1,B2)	FAN001054 (B4)
4160	N/A	STR001322 (Q1-Q3)	FU-000895 (F1)	FAN001056 (B1,B2)	FAN001054 (B4)
4185	N/A	STR001339 (Q1-Q12)	FU-000895 (F1)	FAN001056 (B1,B4)	FAN001054 (B6,B7)
4220	N/A	STR001341 (Q1-Q12)	FU-002116 (F1)	FAN001056 (B1,B4)	FAN001054 (B6,B7)
4300	N/A	STR001342 (Q1-Q12)	FU-002117 (F1)	FAN001082 (B1,B5)	FAN001054 (B6,B7)

Spare Parts F-3

Notes:

Spare Parts F-4
A. TUNE.. 3-7, 3-14
AC Reactor ... E-4
Accel/Decel
Parameters A-7
Switch Frequency $5-14,5-15$, A-7
Time 5-14
Acceleration
Stall Prevention Level during 6-16, A-20
Time 5-14, A-7
Troubleshooting 6-5, 6-10, 6-12, 6-16
Access Level A-2
ADV 3-7, 3-13
Alarm Displays \& Processing 6-8
ALARM Indicator 3-4
Altitude C-4
Ambient Temperature - See Temperature Analog Inputs 5-16, A-16Bias.
Connection Diagram 2-16
Control Circuit Terminals 2-13
Gain 5-16, A-15
Parameters A-16
Troubleshooting 6-15
Analog Outputs
Bias A-17, A-18
Connection Diagram 2-16
Control Circuit Terminals 2-13
Gain A-17
Parameters A-17, A-18
APOGEE iii, iv, A-18, D-1
ASIC Faults 6-3
AUTO
Key 3-3
Mode 3-3
REF Indicator 3-4, 3-5
SEQ Indicator 3-4, 3-5
Auto Restart 5-18
Count Reset 5-19
Faults Covered 5-19
Max. Restart Time After Fault 5-18
Number of Attempts 5-18
Auto-Tuning
Fault Displays and Processing 6-12
How to 5-26
Line-to-Line Resistance 5-26, A-11
Menu 3-7, 3-14
Motor Rated Current A-25
Motor Rated Power A-25

B

Base Block
After Fault. 5-18
Circuit Fault 6-2
Minimum Time 5-6
Basic Programming 5-1 to 5-26
Baud Rate 6-8, D-2, D-4
Bias Adjustments 5-16, 5-17, A-16, A-18
Braking
DC Injection - See DC Injection Braking High-Slip. A-23
Branch Short Circuit Protection E-2, E-3
C
Cable Length 2-11
Capacitors - See DC Bus Capacitors Capacity, Rated Output C-2, C-3
Capacity Related Parameters B-1
Carrier Frequency
Error 6-11
Lower Limit A-8
Parameters. A-8
Proportional Gain A-8
Selection A-8
Upper limit A-8
Vs. Cable Length 2-11
Characteristic Frequency - See Oscillation
Charge Indicator (LED) i, 1-6, 2-2, 4-5, C-4
Circuit Breakers 2-9, E-2, E-3
Clearances - See Installation, Physical
Coast to Stop 5-5
Coast w/Timer 5-6
Com OPT Setup Parameters. A-11
Communications - Also see Modbus Communications and
Serial CommunicationsErrors (CPF).6-2 to 6-4, 6-8
Parameters. A-18
Component Names $1-5,1-6$
Connections
Preventive Maintenance 7-3
Connectors
Inspection 7-2
Sizing 2-3 to 2-7
Contactors
Magnetic E-4
Soft Charge - See Soft Charge Contactor
Control
Characteristics C-4
Circuit
Connection Diagram 2-16
Terminal Configuration 2-12
Method C-4
PCB
Inspecting 7-2
Spare Parts F-2, F-3
Power Fuse 6-22
Terminal Functions 2-13
Wiring 2-12
Precautions 2-17
Cooling
Fan - See Fan
Fins
Inspecting 7-2
Preventive Maintenance 7-3
COPY Function 5-23, 5-24
Faults 6-13
Read Allowed Selection 5-23, 6-13, A-25
Selection 5-23, A-25
Covers
Protective 1-5 to 1-7, 1-11
Removing and Attaching $1-13,1-14$
CPU Faults 6-3
Critical Frequency Rejection - See Jump FrequencyCurrent
DC Injection Braking 5-6
Maximum Output C-4
Monitor 2-13, A-11
Motor Rated (FLA) $4-7,5-16,6-12, A-11$
Rated OutputC-2, C-3
D
DATA/ENTER Key 3-3
Data Length - See Modbus Communications
Date Stamp Information. 6-24
DC Braking - See DC Injection Braking
DC Bus Capacitors
Inspecting. 7-2
Preventive Maintenance 7-3
DC Bus Fuse
Checking 6-21
Fault 6-6
Spare Parts F-2, F-3
DC Bus Voltage
Checking 6-20
Overvoltage 6-6, 6-9, C-4
Safety 1
Undervoltage $5-17$ to 5-19, 6-7, 6-10, C-4

DC Injection Braking
Current. 5-6
Parameters A-4
Start Frequency 5-5
Time at Start A-4
Time at Stop. 5-6
DC Reactor (See also Specifications) 2-8, E-4
DCInj to Stop. 5-6
DDLY Waiting to RUN - See Drive Delay
Deadband, Prohibited Frequency - See Jump Frequency and
Frequency Limits
Deceleration
Coast to Stop 5-5
Coast w/ Timer 5-6
DCInj to Stop. 5-6
Indicators 3-6
Ramp to Stop 5-5
Stall Prevention during A-20
Time 5-14, A-7
Troubleshooting 6-6, 6-9
DECREASE Key 3-3
Troubleshooting 6-14
Delay Timer Parameters A-5
Diagnostics - See Troubleshooting
Digital Inputs
Connection Diagram. 2-16
Control Circuit Terminals 2-13
Parameters A-12
Sinking/Sourcing Terminals $2-13,2-15,2-16$
Troubleshooting 6-14, 6-15
Digital "Motor Operated Pot" - See MOP
Digital Operator 3-1
Data Display 3-2
Display Selection (Display Scaling) A-23
Drive Operation when Disconnected A-24
Faults/Errors 6-2, 6-6, 6-14
Keys. 3-3
LCD Brightness Adjustment A-24
Lights - See Indicators
Mode Indicators 3-4
Mode Selection 3-3
Monitor Selection (At Power-up) - See Monitor
Preventive Maintenance 7-3
Removing and Attaching 1-14 to 1-16
Write-protected - See COPY Function, Read Allowed
Digital Outputs
Connection Diagram 2-16
Control Circuit Terminals 2-13
Parameters A-15
"Restart Enable" 5-19
Dimensions $1-7$ to $1-10$
Diodes, Input - See Input Diodes
Diode Module
Resistance Test
Spare Parts
\qquad 6-20, 6-21
F-2, F-3
DIP Switch S1 2-14
Displaying Faults - See Fault History, Fault Trace
"Down Arrow" Key - See DECREASE Key
DRIVE - See Operation Menu
Drive Delay Time 5-7, A-4
Drive Mode, Troubleshooting 6-15
DriveWizard Software iv, 5-25
E
EEPROM
Enter Command D-11
Fault/Error 6-2, 6-11, 6-13
Maximum Number of Writes D-11
Elapsed Timer Function 5-23
Monitor 5-23, A-27
Parameters A-24, A-25
EMC
Compatibility. 2-19
Filters. 2-20
Enclosed wall-mounted type 1-2 to1-4, C-4
Enclosure Style 1-2 to1-4, C-4
Energy Saving
Parameters A-7
Selection. 5-14, A-7
Environment - See Installation Site
ESC Key 3-3
External Faults (EF) 6-4, 6-8
External Fault Inputs 2-13, 6-4
F
Factory Repair Inside Back CoverFan
Checking 6-23
Cumulative Operation Time Setting A-25
Fuse, Checking. 6-23
Heatsink Cooling Fan Operation Delay Time 5-21, A-22
Operation Selection A-22
Replacement Method 7-5, 7-6
Spare Parts. F-2, F-3
Inspecting 7-2, 7-3
Internal, Spare Parts F-2, F-3
Troubleshooting 6-19
Fast-Stop Time A-7
Faults
Clearing A-25
Covered by Auto Restart 5-19
Digital Output Signal 2-13
Effect on Drive Operation 5-18
History 3-9 to 3-11, A-29
Listing of 6-2
Reset 3-3
Trace 3-9 to 3-11, A-28
Feedback (PI Function) 5-10
Differential 5-9
Loss Detection Level 5-10, A-6
Loss Detection Time 5-10, A-6
Reference Missing Detection Selection. 5-10, A-5
Square Root Function Activation 5-14, A-6
Field Service . Inside Back Cover
FLA, Motor 4-6, 5-16, 6-12, A-11
Flash ID A-27
Forward Run/Stop Command 2-13, 2-16
Programming 5-3, 5-4, A-4
Frequency Detection Multi-function Output - See DigitalOutputs
Frequency, Output
Accuracy. C-4
Allowable Fluctuation - See Specifications
Carrier - See Carrier Frequency Command Selection - See Speed Command Jump 6-19, A-9
Lower Limit. 5-15, A-9
Max. Output 5-15, A-10
(Also see Specifications)
Meter (Analog Monitor) - See Analog Outputs
Mid Output A-10
Minimum Output 6-15, A-10
Monitor (U1-02) A-26
Prohibited - See Jump Frequency and Frequency Limits Rated - See Specifications Setting Resolution. C-4
Setting Signal C-4
Troubleshooting 6-19
Upper Limit $.5-15,6-19$, A-9
Frequency Reference
Analog Input $2-13,2-16, A-4, A-15$
At Loss of Frequency Reference 5-18
Bias $.5-16,5-17$, A-16
Drift 5-16
Gain 5-16, 5-17, A-16
Jog 2-13, 2-16, A-8
Loss Detection 5-18
Setting Method Selection (MOP) 5-22, A-24
Source (b1-01) $2-12,2-13,2-16,3-3,3-5, \mathrm{~A}-4$
Frequency References 1 thru 4 - See Preset SpeedsFull Load Amps (FLA)4-7, 5-16, 6-12, A-11
Fuse Blown Protection C-4
FWD Indicator. 3-4
G
Gain Adjustments 5-16, 5-17, A-16
Gate Drive PCBs
Inspecting 7-2
Spare Parts F-2, F-3
Ground Fault (GF) 5-19, 6-5
Ground Fault Interrupter (GFI) E-4
Troubleshooting 6-18
Grounding 2-11
Protection C-4
Shield Wire 2-13
HHAND
Frequency Reference Selection 3-4, A-4
Indicators 3-4, 3-5
Key 3-4
Function Selection A-25
Mode 3-4
Troubleshooting 6-15
Hardware Protection Parameters A-22
Harmonics, Power Supply C-2, C-3
Heatsink - See Cooling FinsHeatsink Fan - See Fan, Heatsink CoolingHigh-Slip BrakingA-23
H/O/A (Hand/Off/Auto) - See Digital Operator
Horsepower, converting to kW 5-26
Humidity 1-11
Ambient Operating C-4
Hunting Prevention
Parameters A-23
Troubleshooting 6-18
IIEC IP00 - See Open ChassisIEC IP20 - See Enclosed wall-mounted type
IGBT (Transistor Module)
Inspecting 7-2
Resistance Test 6-20 to 6-22
Spare Parts F-2, F-3
INCREASE Key 3-3
Troubleshooting 6-14
Indicators, Mode 3-4 to 3-6
Initial Start-up 4-1 to 4-10
Initialization
Mode Selection 5-2, 5-22
Parameters A-2
Specification Selection 5-2, A-25
Input
Diodes, Inspecting 7-2
Fuses 2-9, E-2, E-3
Multi-function Terminals - See Analog Inputs andDigital InputsPhase Loss Detection Level.6-6, A-22
Terminal Status (U1-10) A-26
Voltage A-10, C-2, C-3
Setting 4-5, 5-15, A-10
Inputs
Analog - See Analog InputsDigital - See Digital InputsFrequency Reference - See Frequency Reference
Inspection
Periodic 7-2
Receiving 1-3
Installation
Electrical 2-1
Physical 1-1
Adverse Conditions 7-3
Orientation \& Clearances 1-12
Site 1-11, C-4
Integral Limit (PI) 5-9
Interference 2-19 to 2-21
IPM (Intelligent Power Module)
Inspecting 7-2
Spare Parts F-2, F-3
J
Jog Frequency Reference $2-13,2-16, A-8$
Jump Frequency A-9
Troubleshooting 6-19
K
Keypad - See Digital Operator kVA
Auto-Tuning 5-26
Error 6-11, 6-13
Parameters Affected by B-2
Selection A-23
kW, Converting from HP 5-26
kWH User Monitor Initialization A-25
LLamps, Indicator - See Indicators, Mode
Language Selection $.5-2, A-2$
LCD Display- See Digital Operator, Data DisplayLights - See Indicators, ModeLine-borne Interference - See InterferenceLine-to-Line Resistance, Motor5-26, A-11
LonWorks 5-3, 5-5
MMain CircuitTerminals2-2, 2-8
Test Procedure 6-20
Wire Sizes and Connectors 2-3 to 2-7
Wiring Diagrams 2-9, 2-10, 2-11
Main Menu
Functions 3-7
Structure 3-8
Maintenance 7-1 to 7-8
Mass, Drive 1-4, 1-10
Master Frequency Reference Terminal Selection A-16
Master/Auxiliary Switch 2-13
Master/Slave - See Modbus Communications Configuration
Mechanical Oscillation 6-18
Mechanical Resonance 6-18
MENU Key 3-3
Menu Trees, Digital Operator 3-8
Metasys iii, iv, A-18, D-1
Meters - See Analog Outputs
Modbus Communications

\qquad
A-18, D-1 to D-13
(Also see Serial Communications) Baud Rate 6-8, D-2, D-4
Terminals 2-13
Mode Selection 3-3
Model Number 1-4
Modified Constants Menu 3-7, 3-14
Molded Case Circuit Breaker (MCCB) E-4
Momentary Power Loss Ride-thru .5-17, 5-18, A-19, C-4
Monitor
Configuration 5-21
Parameter List 3-9, A-26, A-27
Power-On Monitor 5-21, A-22
User Monitor $.5-21,5-22$, A-23, A-24
MONITOR Key 3-3
MOP (Motor Operated Pot) Function 5-22
Reference Memory A-9
Motor
Auto-Tuning
Fault Displays \& Processing 6-12
How to 5-26
Line-to-Line Resistance 5-26, A-11
Menu. 3-7, 3-14
Motor Rated Current A-25
Motor Rated Power A-25
Direction 4-7, 6-16
No-Load Current (NLA) A-11
Output, Maximum Applicable - See Specifications Parameters A-11
Pre-Heat Current. A-4
Protection 5-16, C-4
Overheat A-19
Overload A-19, C-4
Rated Current (FLA) 4-6, 5-16, 6-12, A-11
Rated Voltage 4-3
Speed (U1-02) A-26
Stopping Method Selection 4-7, 5-5, 5-6, A-4
Temperature Input Filter Time A-19
Troubleshooting 6-15 to 6-19
Wiring 2-13
Mounting Drive - See Installation, Physical Mounting, Inspecting 7-2
Multi-function Analog Inputs - See Analog Inputs
Multi-function Analog Outputs - See Analog Outputs
Multi-function Digital Inputs - See Digital Inputs
Multi-function Digital Outputs - See Digital Outputs
Multi-step Speed Reference (Preset Speed) 2-13, A-8
N
Nameplate Information 1-3, 1-4
NEMA Type 1 $1-2,1-4,1-5$
Noise
Electrical 2-19 to 2-21
Fan 7-2, 7-3
Filter E-4
Mechanical. 6-18
No-Load Current (NLA) A-11
0
OFF Key 3-4
Function during Auto Run A-24
Off-delay Timer A-5
On-delay Timer A-5
Open Chassis $1-2,1-4,1-5$
Operation
Menu 3-7, 3-9
Status (U1-12) A-26
Operator Programming Errors (OPE) 6-11
Option
Card Faults 6-3, 6-4
Communication Error Selection 5-16
Options (Peripheral Devices) E-4
Orientation, Drive. 1-12
Oscillation
Mechanical 6-18
with PI control 6-18
with V/f control 6-18
Output
Current Monitor (U1-03) A-26
Frequency - See Frequency, Output
Ground Fault Detection Selection A-22
Monitors A-26, A-27
Phase Loss 6-9
Power Monitor (U1-08) A-26
Power Ratings - See Specifications, Standard DriveTerminal Status Monitor (U1-11)A-26
Transistors (IGBT)
Inspecting 7-2
Spare Parts F-2, F-3
Testing 6-20 to 6-22
Voltage Monitor (U1-06) A-26
Outputs, Analog - See Analog Outputs
Outputs, Digital - See Digital Outputs
Over Current (OC) 5-6, 5-19, 6-5
Overheat (OH)Alarms/Faults6-9, 6-5
Cooling Fin (Heatsink) 6-5, 6-9, C-4
Drive A-22
Motor. 6-5, 6-9, A-19
Parameters A-19, A-22
Pre-Alarm 6-9, A-22
Overload
Alarms/Faults 5-19, 6-6
Capacity C-4
Drive 6-6
Motor. 6-6, A-18
Overtorque - See Torque Detection
Protection A-19, C-4
Overtorque - See Torque Detection
Overvoltage Protection 6-6, 6-9, C-4
DC Bus - See DC Bus Voltage

P

Parameters

Accel/Decel (C1-01-C1-11) A-7
Analog Inputs (H3-02 - H3-13) A-16
Analog Outputs (H4-01 - H4-08) A-17, A-18
Auto-Tuning (T1-02 - T1-04) A-25
Capacity Related. B-1
Carrier Freq (C6-02 - C6-05) A-8
Com OPT Setup (F6-01 - F6-05) A-11
COPY Function (o3-01 - o3-02) A-25
DC Braking (b2-01 - b2-09) A-4
Delay timers (b4-01 - b4-02) A-5
Digital Inputs (H1-01 - H1-05). A-12 to A-14
Digital Outputs (H2-01 - H2-02) A-14
Energy Saving (b8-01 - b8-06) A-7
Example of Changing 3-15, 3-16
Factory Reset (Initialize) A-2
Fault Restart (L5-01 - L5-03) A-21
Hdwe Protection (L8-01 - L8-19) A-22
High Slip (n3-01 - n3-04) A-23
Hunting Prevention (n1-01-n1-02) A-23
Initialization (A1-00 - A1-05) A-2
Jump Frequencies (d3-01 - d3-04) A-9
Key Selections (o2-01 - o2-15) A-24, A-25
Listing of A-1 to A-29
Modified - See Modified Constants
Monitor Select (o1-01-o1-08) A-23, A-24
MOP/Trim Control (d4-01 - d4-02) A-9
Motor Overload (L1-01 - L1-05) A-19
Motor Setup (E2-01 - E2-05) A-11
PI Control (b5-01 - b5-30) A-5, A-6
Preset Reference (d1-01 - d1-17) A-8
Programming 5-1 to 5-26
PwrLoss Ridethru (L2-01 - L2-05) A-19
Ref Detection (L4-01 - L4-06). A-21
Reference Limits (d2-01 - d2-03) A-9
S-Curve Acc/Dec (C2-01 - C2-02) A-7
Sequence (b1-01-b1-12). A-4
Serial Com Setup (H4-06 - H4-08) A-18
Setting and Reading. 3-13
Speed Search (b3-01 - b3-05) A-5
Stall Prevention (L3-01 - L3-06) A-20
Torque Comp (C4-01 - C4-02) A-8
Torque Detection (L6-01 - L6-03) A-21
Troubleshooting 6-14
User (A2-01 - A2-32) A-2, A-3
V/f Pattern (E1-01 - E1-13) A-10
Parity - See Modbus Communications
Parts
Ordering Replacement Inside Back Cover
Replacement Guidelines 7-4
Spare F-1 to F-3
Password
Setting A-2
Troubleshooting 6-14
PCB
Control
Inspecting 7-2
Spare Parts F-2, F-3
Gate Drive
Inspecting 7-2
Spare Parts F-2, F-3
Power
Inspecting 7-2
Spare Parts F-2, F-3
Terminal
Inspecting 7-2
Removing and Mounting 7-7
Spare Parts F-2, F-3
Peripheral DevicesAC and DC reactor .. E-4
Ground Fault Interrupter E-4
Magnetic Contactor E-4
Molded-case circuit breaker (MCCB) E-2
Noise filter E-4
Phase-advancing capacitor. E-4
Troubleshooting 6-17
Phase Loss Detection
Input 6-6, A-22
Output 6-9
Phase-to-Phase Short 6-5, 6-9
Physical Installation -See Installation, Physical
PI Feedback Loss 6-4
PI Function
Accel/Decel Time 5-12, A-6
Block Diagram 5-8
Feedback 5-10
Differential 5-9
Loss Detection Level 5-10, A-6
Loss Detection Time 5-10, A-6
Reference Missing Detection 5-10, A-5
Square Root Function Activation 5-14, A-6
Integral Limit Setting. 5-9, A-5
Integral Time Setting 5-9, A-5
Maximum Boost Time 5-13, A-6
Offset Adjustment 5-10, A-5
Output 5-10
Gain Setting 5-10, A-5
Level Selection 5-10, A-5
Limit 5-9, A-5
Square Root Monitor 5-14, A-6
Parameters A-5, A-6
Primary Delay Time Constant 5-10, A-5
Setpoint 5-12, A-6
Boost Setting 5-13, A-6
Display Scaling. 5-12, A-6
Selection 5-12, A-6
Value. 5-12, A-6
Sleep
Delay Time 5-11, A-6
Function 5-11
Function Start Level 5-11, A-6
Input Source 5-11, A-6
Snooze
Deactivation Level 5-13, A-6
Delay Time 5-13, A-6
Feedback Level. 5-14, A-6
Function 5-13
Level 5-13, A-6
Square Root Gain 5-14, A-6
PI Mode 5-9, A-5
PI Monitors
Feedback (U1-24) 5-12, A-27
Output Square Root (U1-37) 5-14, A-27
Setpoint (U1-38) 5-12, A-27
PLC (Programmable Logic Controller) Serial Com. Using Modbus Protocol D-2
Troubleshooting 6-17
Plenum Rated. 1-11
Potentiometer (Connection) 2-16
Power
Detection Filter Time A-7
Input, +15 Vdc 2-13, 2-16
Loss Ride-thru 5-17 to 5-19, A-19, C-4
Module Spare Parts F-2, F-3
PCB
Inspecting 7-2
Spare Parts F-2, F-3
Supply Specifications C-2, C-3
Power Factor Correction Capacitors. 6-6
Pre-Operation Considerations i to iv; Ch. 1, 2, 4
Preset Speeds A-8
Preventive Maintenance 7-3
Programming
Basic 5-1 to 5-26
Error (OPE) 6-11
Menu 3-7, 3-13
Proportional Gain (PI) 5-9
Protective C-4
Structure C-4
PWM Frequency - see Carrier Frequency
Q
QUICK - See Quick Setting Menu Quick Setting Menu 3-12
RRAM...D-11
Ramp to Stop 5-5
Rated Current, Motor 4-6, 5-16, 6-12, A-11
Rdy - See Ready Display
Reactors, Preventive Maintenance 7-3
READ 5-24
Ready Display 3-2
Receiving 1-3
REF Indicator 3-4, 3-5
Reference Limits (Also see Frequency) 5-15, 6-19, A-9
Reference Selection
AUTO 3-3
HAND 3-4
Reference Source 5-2, 5-3, A-4
Relays, Preventive Maintenance 7-3
Replacement Parts - Also see Spare Parts Ordering Inside Back Cover
RESET Key - See SHIFT/RESET KeyResistance, Motor Line-to-Line5-26, A-11
Resonance. 5-15
REV Indicator 3-4
Reverse Operation 5-6, A-4
Prohibiting 5-6, 6-16, A-4
Reverse Run/Stop command 2-13, 2-16, A-4
Ride-thru, Momentary Power Loss . 5-17 to 5-19, A-19, C-4
"Right Arrow" Key - See SHIFT/RESET KeyRS-485/4225-4
Communication Wiring D-3
Control Circuit Terminals 2-13
Parameters A-18
Terminating Resistance 2-14, D-3
RTS Control Selection A-18
Run Command
During Program A-4
External, Troubleshooting 6-15
Selection 3-3, 3-5, 4-6, 5-3, A-4
Source 5-3
RUN Indicator 3-6
Running
Signal 2-13
Stall Prevention during A-20
S
Scaling Display
Digital Operator A-23
PI Setpoint 5-12, A-6
S-Curve Characteristic
at Accel End. A-7
at Accel Start A-7
Search Operation Voltage Limit A-7
SEQ. 3-4, 3-5
Sequence Parameters A-4
Serial Communications - See also Modbus Communications
Address D-4
Baud Rate 6-8, D-4
Drive Node Address D-4
Parameters A-18, D-4
Run Command 5-4
Self-Diagnosis Function D-13
Serial Number 1-3
Setpoint (PI Function) 5-12
Boost Setting 5-13, A-6
Display Scaling. 5-12, A-6
Selection 5-12, A-6
Value 5-12, A-6
SHIFT/RESET Key 3-3, 5-19
Shield Wire Grounding 2-13, 2-17
Shipping Damage 1-3
Short Circuit Protection, Branch E-2, E-3
Sinking/Sourcing Mode 2-13, 2-15, 2-16
Skip Frequency - See Jump Frequency and Frequency
Limits
Slave - See Modbus Communication Configuration
Sleep Function - See PI Function, Sleep
Snooze Function - See PI Function, Snooze
Soft Charge Contactor
Alarm 6-10
Checking. 6-21
Fault 6-7
Preventive Maintenance 7-3
Soft Charge Resistor
Checking 6-21
Preventive Maintenance 7-3
Soft CLA Selection A-22
Soft Start - see S-Curve
Software Number A-27
Spare Parts F-1 to F-3
SPEC 1-3, 1-4
Specifications
Design 1-4
General C-4
Selection A-25
Standard Drive C-2
208-240Vac
208-240Vac C-3
Nameplate 1-3
Speed
Agreement A-21
Control Accuracy C-4
Range. C-4
Speed Command - See also Frequency Reference $0-10 \mathrm{Vdc}$ 4-9
$4-20 \mathrm{~mA}$ 4-9
Limits 5-15
Loss Detection 5-18
Selection 4-6, 5-2, 5-3
Setting Selection. 5-22
Signal Polarity 4-9
Troubleshooting 6-15, 6-16
Speed Reference, Multiple (Multi-step Speed Operation) -See Preset Speeds
5-18
Speed Search
5-26
Auto-TuningA-5
Stall Prevention
Parameters A-20
Specifications C-4
Troubleshooting 6-16
Start-up 4-1 to 4-9
Assistance. Inside Back Cover
Benchmark data 4-8
Preparation for 4-2
Procedure 4-5
Station Address (Modbus Control) D-4
Stop bits - See Modbus Communications
STOP Indicator 3-6
Stop Method Selection (OH) A-22
Stopping Method 4-7, 5-5, 5-6, A-4
Coast to Stop 5-5
Coast w/Timer 5-6
DcInj to Stop 5-6
for External Fault from OPT Card A-11
Ramp to Stop 5-5
Stopping Method at Error (Modbus Control) - See Modbus Communications
Storage Temperature C-4
Surge Suppressor E-4
Switching Frequency, Accel/Decel $5-14,5-15, \mathrm{~A}-7$
T
Technical Support Inside Back Cover
Technical Training Inside Back Cover
Temperature
Ambient Operating 1-11, C-4
Ambient, Setting A-22
Effect on Frequency Accuracy C-4
Storage C-4
Troubleshooting 6-17
Terminal PCB
Inspecting 7-2
Removing and Mounting 7-7
Spare Parts F-2, F-3
Terminals
Terminal A1 2-13, 2-16, 5-16, 5-17, A-16
Terminal A2 2-13, 2-16, 5-16, 5-17, A-16
Terminal AM 2-13, 2-16, A-17, A-18
Terminal FM 2-13, 2-16, A-17
Terminal M1-M2 2-13, 2-16, A-15
Terminal M3-M4 Function Selection 2-13, 2-16, A-15
Terminal R+, R-, S+, S- 2-13, 2-16, D-3
Terminal S1, S2 2-13, 2-16, 5-4
Terminals S3-S7 2-13, 2-16, A-12 to A-14
Arrangement 1-6
Configuration 2-2
Connections 2-16
Control Circuit 2-12, 2-16
Main Circuit 2-3 to 2-11
Inspecting 7-2
Wiring 2-3 to 2-7
Preventive Maintenance 7-3
Screw Sizes 2-3 to 2-7
Terminating Resistance. 2-14, D-3
Three-Wire Operation 5-4
Troubleshooting 6-15
Timers, Delay A-5
Timers, Elapsed 5-23, A-25
Torque Compensation
Parameters A-8
Troubleshooting 6-16
Torque Detection
Faults 6-6
Level 5-19, 5-20
Nuisance 5-20
Parameters A-21
Selection 5-19, 5-20
Time 5-19, 5-20
Torque Output 6-16
Transformers, Preventive Maintenance 7-3
Transistor Module
Inspecting 7-2
Resistance Test 6-20 to 6-22
Spare Parts F-2, F-3
Trim Control Level A-9
Troubleshooting 6-1 to 6-24
Two-Wire Operation 5-3
Troubleshooting 6-15
Twelve-pulse rectification 2-9, C-2, C-3
U
U1 Monitor List 3-9, A-26, A-27
U2 Fault Trace List 3-10, A-28
U3 Fault History List. 3-11, A-29
UL File Number 1-3, 1-4
Undertorque Detection (UL) 5-20
Alarm/Fault 6-7, 6-10
Parameters A-21
Undervoltage (UV)
Alarm/Fault 6-7, 6-10
Detection Level A-19
Protection C-4
"Up Arrow" Key - See INCREASE KeyUp/Down Function - See MOP
User Initialization 5-22
User Parameter Default Value 5-22, A-24
User Parameters A-2, A-3
User Monitor 5-21, 5-22, A-23
Voltage
Allowable fluctuation 6-7, 6-10, C-2, C-3
Base A-10
Drop Calculation. 2-7
Input - See Input Voltage Maximum Output C-2, C-3
Rating, Drive 1-4, C-2, C-3
Related Parameters A-10
W
Warranty 6-24
Watchdog Timer 6-3
Weight - See Mass, DriveWire
Clamping Torque 2-3 to 2-7
Gauge - See Wire Size
Length - See Cable Length Size 2-3 to 2-7
Wiring - See also Electrical Installation
Control Circuit 2-12
Diagrams 2-16
Distances - See Cable Length
Field Diagram 2-18
Ground 2-11, 2-21
Main Circuit
Input/Output 2-9, 2-10
Terminals 2-3 to 2-7
Shielded Twisted-Pair Wires 2-17
Sinking/Sourcing 2-15
Three-Wire Control 2-16
Two-Wire Control 2-16
Z
Zero speed signal A-14

V

Ventilation - See Installation SiteVERIFY Function5-25Error 5-25, 6-13
VERIFY Menu - See Modified Constants MenuV/f PatternFaults/Errors6-5, 6-11
Parameters A-10
Vibration, Maximum C-4

Drives Technical Support in USA and Canada

Technical Support for Inverters and Drives is available by phone as follows:
Normal: \quad Monday through Friday during the hours of 8 a.m. to $5: 00$ p.m. C.S.T.
Emergency: After normal hours, 7 days a week including weekends and holidays

To contact Drives Technical Support, please call 1-800-YASKAWA (927-5292).
From the menu, dial 2 for Inverter and Drive Products, then 5 for Technical Support.

Drives Technical Support can also be reached by e-mail at DriveSupport@yaskawa.com.
Support information, such as technical manuals, FAQs, instruction sheets and software downloads are available at our website, www.drives.com.

When calling for technical support, please have the following materials available:

- The appropriate Technical Manual in hand because the support associate may refer to this
- Complete nameplate information from the drive and the motor.
(Confirm that Drive Nameplate Output amps is greater than Motor Nameplate amps)
- A list with your parameter settings
- A sketch of the electrical power train, from AC line to motor, including filters and disconnects

Field Service, Start Up Assistance, Factory Repair, Replacement Parts, and Other Support
Contact Drives Technical Support for help with any of these needs.

Technical Training

Training is conducted at Yaskawa training centers, at customer sites, and via the internet.
For information, visit www.drives.com or call 1-800-YASKAWA (927-5292).
From the menu, dial 2 for Inverter and Drive Products, then 4 for Product Training.

Support in Other Countries

Yaskawa is a multi-national company with offices and service representation around the world.
To obtain support, always contact the local distributor first for guidance and assistance.
Contact the closest Yaskawa office listed for further assistance.

YASKAWA ELECTRIC AMERICA, INC.

Drives Division
16555 W. Ryerson Rd., New Berlin, WI 53151, U.S.A
Phone: (800) YASKAWA (800-927-5292) Fax: (262) 782-3418
Internet: http://www.drives.com

YASKAWA ELECTRIC AMERICA, INC.

Chicago-Corporate Headquarters
2121 Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: (800) YASKAWA (800-927-5292) Fax: (847) 887-7310
Internet: http://www.yaskawa.com

MOTOMAN INC.

805 Liberty Lane, West Carrollton, OH 45449, U.S.A.
Phone: (937) 847-6200 Fax: (937) 847-6277
Internet: http://www.motoman.com

YASKAWA ELECTRIC CORPORATION

New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-0022, Japan Phone: 81-3-5402-4511 Fax: 81-3-5402-4580
Internet: http://www.yaskawa.co.jp

YASKAWA ELETRICO DO BRASIL COMERCIOLTDA

Avenida Fagundes Filho, 620 Bairro Saude Sao Paolo-SP, Brasil CEP: 04304-000
Phone: 55-11-5071-2552 Fax: 55-11-5581-8795
Internet: http://mww.yaskawa.com.br

YASKAWA ELECTRIC EUROPE GmbH

Am Kronberger Hang 2, 65824 Schwalbach, Germany
Phone: 49-6196-569-300 Fax: 49-6196-888-301

MOTOMAN ROBOTICS AB

Box 504 S38525, Torsas, Sweden
Phone: 46-486-48800 Fax: 46-486-41410

MOTOMAN ROBOTEC GmbH

Kammerfeldstrabe 1, 85391 Allershausen, Germany
Phone: 49-8166-900 Fax: 49-8166-9039

YASKAWA ELECTRIC UK LTD

1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, Scotland, United Kingdom Phone: 44-12-3673-5000 Fax: 44-12-3645-8182

YASKAWA ELECTRIC KOREA CORPORATION

Paik Nam Bldg. 901 188-3, 1-Ga Euljiro, Joong-Gu, Seoul, Korea
Phone: 82-2-776-7844 Fax: 82-2-753-2639
YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
Head Office: 151 Lorong Chuan, \#04-01, New Tech Park Singapore 556741, Singapore
Phone: 65-282-3003 Fax: 65-289-3003
TAIPEI OFFICE (AND YATEC ENGINEERING CORPORATION)
10F 146 Sung Chiang Road, Taipei, Taiwan
Phone: 886-2-2563-0010 Fax: 886-2-2567-4677

YASKAWA JASON (HK) COMPANY LIMITED

Rm. 2909-10, Hong Kong Plaza, 186-191 Connaught Road West, Hong Kong Phone: 852-2803-2385 Fax: 852-2547-5773

BEIJING OFFICE

Room No. 301 Office Building of Beijing International Club,
21 Jianguomanwai Avenue, Beijing 100020, China
Phone: 86-10-6532-1850 Fax: 86-10-6532-1851

SHANGHAI OFFICE

27 Hui He Road Shanghai 200437 China
Phone: 86-21-6553-6600 Fax: 86-21-6531-4242
SHANGHAI YASKAWA-TONJI M \& E CO., LTD.
27 Hui He Road Shanghai 200437 China
Phone: 86-21-6533-2828 Fax: 86-21-6553-6677
BEIJING YASKAWA BEIKE AUTOMATION ENGINEERING CO., LTD.
30 Xue Yuan Road, Haidian, Beijing 100083 China
Phone: 86-10-6232-9943 Fax: 86-10-6234-5002
SHOUGANG MOTOMAN ROBOT CO., LTD.
7, Yongchang-North Street, Beijing Economic \& Technological Development Area, Beijing 100076 China
Phone: 86-10-6788-0551 Fax: 86-10-6788-2878

YEA, TAICHUNG OFFICE IN TAIWAIN

B1, 6F, No.51, Section 2, Kung-Yi Road, Taichung City, Taiwan, R.O.C.
Phone: 886-4-2320-2227 Fax:886-4-2320-2239

[^0]: Open Chassis Type (IEC IP00)
 Protected so that parts of the human body cannot reach electrically charged parts from the front when the Drive is mounted in a control panel, also called (protected chassis).
 TERMS

 ## NEMA 1 Type (IEC IP20)

 The Drive is shielded from the exterior, and can thus be mounted to the interior wall of a standard building (not necessarily enclosed in a control panel). The protective structure conforms to the standards of NEMA 1 in the USA. Top protective cover (Fig 1.4) must be installed to conform with IEC IP20 and NEMA Type 1 requirements.

[^1]: The maximum number of times you can write to EEPROM using the Drive is 100,000. Do not frequently execute Enter commands (0900 H) written to EEPROM.
 The Enter command registers are write-only. Consequently, if reading these registers, the register address will become invalid (Error code: 02H).

