Modicon Lexium 17D Series Servo Drive User Guide

890 USE 120 00 Eng

Preface

The data and illustrations found in this book are not binding. We reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be construed as a commitment by Schneider Electric.

Schneider Electric assumes no responsibility for any errors that may appear in this document. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of the Publisher, Schneider Electric.

CAUTION!

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to assure compliance with documented system data, repairs to components should be performed only by the manufacturer.

Failure to observe this precaution can result in injury or equipment damage.

MODSOFT® is a registered trademark of Schneider Electric

The followir	ig are trademarks	of Schneider	Electric:	
Modbus	Modbus Plus	Modicon	984	Quantum

DIGITAL® and DEC® are registered trademarks of Compaq Computer Corp.

IBM® and IBM AT® are registered trademarks of International Business Machines Corporation.

Microsoft® and MS-DOS® and Windows® are registered trademarks of Microsoft Corporation.

©Copyright 2001, Schneider Electric

Contents

Chapter 1 Introduction

At a Glance	1
Document Scope	1
What's in this Chapter	1
About this User Guide	2
Who Should Use this User Guide	2
How this User Guide Is Organized	2
Related System Components	4
Single-Axis Motion Control System	4
UniLink Commissioning Software for 17D	4
Related Documentation	5
Documents	5
Hazards, Warnings and Guidelines	6
Hazards and Warnings	6
Additional Safety Guidelines	9
Qualified Personnel	9
Standards and Compliances	10
European Directives and Standards	10
EC Directive Compliance	10
UL and cUL Compliance	11
Conventions	12
Acronyms and Abbreviations	12

Chapter 2 Product Overview

At a Glance	15
Introduction	15
What's in this Chapter	15
The 17D Series Servo Drive Family	16
Introducing the 17D Drive Family	16
Drives Available	16
Implementing the Drives	16
Applicable Servo Motor Types	16
Electrical Considerations	17
17D Drive Family Portrait	18
17D Drives Front View	19
Equipment Supplied	20
Equipment Available	20
17D System Configuration Diagram	21
Digital Control	22
Usability Enhancements	23
Overview of 17D Internal Electronics	24
17D Internal Electronics Block Diagram	24
General Characteristics	25
Primary Power	25
Bias Power	25
EMI Suppression	25
Internal Power Section	26
DC Link Capacitor Reconditioning	26
Integrated Safe Electrical Separation	26
LED display	27
Overview of System Software	28
Setup	28
Setting Parameters	28
Automatic Card Recognition	28
Default Settings	28
UniLink Commissioning Software	29
	_0

Chapter 3 Mounting and Physical Dimensions

At a Glance	31
What's in this Chapter	31
Installation Safety Precautions	32
Power Supply Overcurrent Protection	34

Earth Connections	34
Cable Separation	34
Air Flow	34
Drive Mounting and Physical Dimensions	35
17D Height, Width and Depth Dimensions	35
17D Drive and Mounting Area Dimensions	36
External Regen Resistor Assembly Dimensions	37
Motor Choke Assembly Dimensions	38

Chapter 4 Wiring and I/O

At a Glance Introduction What's in this Chapter	39 39 40
Wiring and I/O Initial Considerations Initial Considerations Grounding	41 41 41
Wiring Overview Overview of 17D Wiring Connections	42 42
Cable Shield Connections	45
Connecting Cable Shields to the Front Panel Cable Shield Connection Diagram	45 46
Power Wiring	47
AC Mains Power Supply Connection	47
Bias Supply Connection	47
External Regen Resistor Connection	48
Regen Circuit Functional Description	48
Lexium BPH Servo Motor Connection (excluded BPH055)	49
Lexium BPH 055 Servo Motor Connection Servo Motor (with Optional Dynamic Brake Resistors	50
and Contactor) Connection	51
Servo Motor Holding-Brake Control Functional Description	52
Signal Wiring	54
Lexium BPH Resolver Connection (excluded BPH055)	54
Lexium BPH055 Resolver Connection	55
Encoder Input Connection	56
Incremental Encoder Output Connection	57
Incremental Encoder Output Functional Description	57
SSI Encoder Output Connection	58

SSI Encoder Output Functional Description	58 59
Analog I/O Connection	62
Analog Inputs	62
Servo Motor Rotation Direction	62
Analog Outputs	63
Fault Relay and Digital I/O Connection	64
Digital Inputs and Outputs	64
Using Functions Pre-programmed into the Drive	65
Serial Communications Connection	66
Serial Communications Connection Diagram	66
CANopen Interface	67
CAN bus cable	68
Stepper Motor Control Interface Connection	69
Stepper-Motor Control Interface Connection Functional Description	69
Stepper-Motor Control Interface Connection Diagram	69
Stepper-Motor Speed Profile and Signal Diagram	70

Chapter 5 System Operation

At a Glance	71
What's in this Chapter	71
Powering Up and Powering Down the System	72
Power-on and Power-off Characteristics	72
Stop Function	73
Emergency Stop strategies	73
Wiring example	74
Procedure for Verifying System Operation	75
Overview	75
Quick Tuning Procedure	75
Parameter setting	77
Multi-axis system	77
Front Panel Controls and Indicators	78
Keypad Operation	78
LED Display	78

Chapter 6 Troubleshooting

At a Glance	79
What's in this Chapter	79
Warning Messages	80
Warning Identification and Description	80
Error Messages	81
Error Identification and Description	81
Troubleshooting	85
Problems, Possible Causes and Corrective Actions	85

Appendix A Specifications

At a Glance	87
What's in this Appendix	87
Performance Specifications	88
Performance Specifications Table	88
Environmental and Mechanical Specifications	89
Environmental Specifications Table	89
Mechanical Specifications Table	90
Electrical Specifications	91 91
Electrical Specifications - Power	92
Line Input Specifications Table	92
Bias Input Specifications Table	93
External Fuse Specifications Table	93
Motor Output Specifications Table	94
Internal Power Dissipation Specifications Table	95
Electrical Specifications - Regen Resistor	96
Regen Circuit Specifications	96
Electrical Specifications - Signal	97
Motor Overtemperature Input Specifications Table	97
Resolver Input Specifications Table	97
Encoder Input Specifications Table	98
Emulated Encoder Output (Incremental Format) Specifications Table	98
Encoder Output (Incremental Format) Timing Diagram	98

Encoder Output (SSI Format) Specifications Table	99
Encoder Input (Slave) Specifications Table	100
Discrete Input Specifications Table	100
Discrete Output Specifications Table	101
Fault Relay Output Specifications Table	101
Brake Output Specifications Table	101
Analog Input Specifications Table	102
Analog Output Specifications Table	102
Serial Communications Specifications Table	103
Wire Specifications	104

Appendix B Parts List

At a Glance	105
What's in this Appendix	105
Lexium 17D Drives	106
Drives Available	106
External 24Vdc supply	107
Drive Cables	108
Drive to Motor Cables	108
RS-232 Serial Communications Cable Part Table	108
Encoder Output Cables Parts Table	108
Regen Resistor Assemblies	109
Regen Resistor Assembly Part Table	109
Servo Motor Choke	110
Servo Motor Choke Part Table	110
Spare Parts	111
Spare Parts Table	111

Appendix C Drive-to-Controller Wiring Diagrams

At a Glance	113
What's in this Appendix	113
Typical Motion Controller Interface Connections	114
Motion Controller Interface Diagram	114

Wiring a 17D Drive to TSX Premium CAY Motion Modules TSX Premium CAY Single Axis Drive Option Diagram TSX Premium CAY Multi-Axis Breakout Module Wiring Diagram TSX Premium CAY Multi-Axis and Breakout Mod. Diag., First of Four Axes	116
Wiring a 17D Drive to a MOT 201 Motion Module	118
MOT 201 Control Wiring Diagram	118
MOT 201 Encoder Wiring Diagram: Option 1	119
MOT 201 Encoder Wiring Diagram: Option 2	120
Wiring a 17D Drive to Quantum 140 MSx Motion Modules	121
Quantum 140 MSx Control and Encoder Wiring Diagram	121
Wiring a 17D Drive to B885-11x Motion Modules	122
B885-11x Control Wiring Diagram	122
B885-11x Encoder Wiring Diagram: Option 1	123
B885-11x Encoder Wiring Diagram: Option 2	124

Appendix D Cable Connection Wiring Diagrams

At a Glance	125
What's in this Appendix	125
Wiring a Sub-D Connector with Shielding	126
Wiring the Sub-D Connector	126
Sub-D Connector Diagram	127
Wiring the Motor Power Connector (Drive end)	128
Wiring the Motor Power Connector	128
Motor Power Connector (Drive end) Diagram (excluded BPH055)	129
BPH055 Motor Power Connector (Drive end) Diagram	130
Serial Communication Interface Connection (X6)	131
Serial Communication Interface Cable Connectors	131

Appendix E Servo Loop Diagrams

At a Glance What's in this Appendix	
17D Current Controller Overview 17D Current Controller Diagram	
17D Velocity Controller Loop 17D Velocity Controller Loop Diagram	

136
136
136
137
138
139
140

Appendix F Expansion Options

At a Glance	
What's in this Appendix	141
Expansion Cards	142
Overview	142
Fitting expansion card	142
Modbus Plus Communication Card	143
Modbus Plus Communication Card	143
I/O Expansion Cards	144
24 Vdc Discrete I/O Expansion Card	144
Connector and LED Location Diagram	144
Light-Emitting Diodes (LEDs)	145
Terminal Assignments	145
Controlling Pre-programmed Motion Tasks	147
Programming the PLC	147
Motion Task Coordination	147
Motion Task Application Examples	147
Example of a Motion Task Number	148
Connection Diagram	149

Appendix G External Regen Resistor Sizing

At a Glance	151
What's in this Appendix	151
Overview	152
Determining When Energy Is Absorbed	152
Determining External Regen Resistor Size	153
Power Dissipation Calculation Procedure	153
Drive Energy Absorption Capability	154

Example Regen Resistor Power Dissipation Calculation Example Motor and Drive Specifications	
Example Step 1	156
Example Step 2	157
Example Step 3	157
Example Step 4	158
Example Step 5	158
Example Step 6	158
Example Step 7	158
Example Step 8	159

Introduction

1

At a Glance

Document Scope	This user guide contains complete installation, wiring interconnection, power application, test and maintenance information on the Lexium 17D series servo drive.		
What's in this Chapter	This chapter provides general information following topics:		ind contains the
	Торіс	Page	-
	About this user guide	2	
	Related system components	4	
	Related documentation	5	
	Hazards, warnings, and guidelines	6	
	Standards and compliances	10	
	Conventions	12	

About this User Guide

Who Should Use this User Guide

How this User

This user guide is written for any qualified person at your site who is responsible for installing (mounting and interconnecting), operating, testing and maintaining your Lexium 17D servo drive and the servo system equipment with which it interfaces. In addition, the following precautions are advised:

- Transportation of the servo drive to, or from, an installation site should only be performed by personnel knowledgeable in handling electrostatically sensitive components.
- Commissioning of the equipment should only be performed by personnel having extensive knowledge of, and experience with, electrical and servo drive technologies.

You are expected to have some overall understanding of what your 17D servo drive does and how it will function in a high-performance, single-axis motion control system. Accordingly, be sure you read and understand the general information, detailed descriptions and associated procedures presented in this manual, as well as those provided in other relevant manuals, before installing your 17D. (See *Related System Components* later in this chapter.)

If you have questions, please consult your Schneider Electric customer representative.

Guide Is			
Organized	Chapter/Appendix	Description	
	Chapter 1 About this User Guide	An introduction to this manual — who should use this manual, how this manual is organized, related publications, hazards and warnings.	
	Chapter 2 Lexium 17D Product Overview	General descriptions of the 17D servo drives, descriptions of components that are supplied by Schneider in a typical 17D system, and a block diagram for internal electronics.	
	Chapter 3 Mounting and Physical Dimensions	Physical dimensions and information for mounting the servo drive, Regen resistor and servo motor choke.	

This manual is organized as follows.

About this User Guide, continued

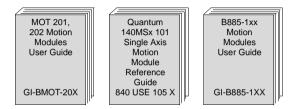
How this User Guide Is Organized, continued

Chapter/Appendix	Description
Chapter 4 <i>Wiring and I/O</i>	Wiring diagrams for the power connections and wiring diagrams and descriptions for all signal wiring connections — encoder, resolver, analog I/O, discrete I/O, and serial communications cable.
Chapter 5 System Initialization, Commissioning and Operation	Detailed procedures and associated descriptions on how to initialize, commission and operate a typical 17D system.
Chapter 6 <i>Troubleshooting</i>	Description of faults, probable causes and recommended corrective actions.
Appendix A <i>Specifications</i>	Specifications for the servo drives, including general, electrical, signal, and power specifications.
Appendix B <i>Parts List</i>	Part numbers related to the 17D servo drive system.
Appendix C Drive to Controller Wiring Diagrams	Wiring diagrams that show signal wiring between a 17D servo drive and MOT 201, Quantum MSx, B885-11x, and TSX Premium CAY motion modules.
Appendix D Cable Connection Wiring Diagrams	Procedures and associated diagrams that show how to wire Sub-D and power cable connectors as well as the serial communication cable used with the drive.
Appendix E <i>Servo Loop Diagrams</i>	Illustrations of the 17D servo drive and single- axis motion module servo loops.
Appendix F <i>Expansion Options</i>	Description and procedure for using the I/O expansion card with the drive.
Appendix G External Regen Resistor Sizing	Description and procedure for determining the power dissipation requirement for the external Regen resistor.

Related System Components

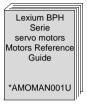
Single-Axis Motion Control System	The 17D servo drive is typically only one component in a larger, single-axis motion control system. A single axis comprises one motion module, one servo drive, and one motor.
	Compatible Schneider motion modules include:
	 Quantum 140 MSx series motion modules
	Compact MOT 201 motion modules
	B885-11x series motion modules
	TSX Premium CAY motion modules
UniLink Commissioning Software for 17D	To configure your single-axis system, you will be using the UniLink axis commissioning software, which Schneider supplies.
	UniLink allows you to configure your 17D servo drive axis and tune the motor quickly and easily. With its graphical user interface and oscilloscope tuning features, UniLink provides an easy point-and-click method for configuring motion setup parameters. UniLink minimizes or eliminates cumbersome programming tasks.
	For complete information on UniLink, please see the UniLink online help.

Related Documentation


Documents

Related documentation that covers all these system components is illustrated below.


You will need these:


Depending on which motion module you have, you will also need one of these:

If you have a TSX Premium motion module CAY, you will also need this:

If you have a BPH motor, you will also need this:

* included in AM0 CSW 001V•00 (CDROM)

Hazards, Warnings and Guidelines

Hazards and Warnings

Read the following precautions very carefully to ensure the safety of personnel at your site. Failure to comply will result in death, serious injury or equipment damage.

DANGER!

ELECTRIC SHOCK HAZARDS

- During operation, keep all covers and cabinet doors closed.
- Do not open the servo drives; depending on degree of enclosure protection, the servo drives may have exposed components.
- Control and power connections on the drive may be energized even if the motor is not rotating.
- Never attempt to disconnect the electrical connections to the servo drive with power applied. Failure to comply may result in arcing at the contacts.
- Wait at least five minutes after disconnecting the servo drive from the mains supply voltage before touching energized sections of the equipment (for example, contacts) or disconnecting electrical connections. Capacitors can still have dangerous voltages present up to five minutes after switching off the supply voltages. To ensure safety, measure the voltage in the DC Link circuit and wait until it has fallen below 40V before proceeding.
- Check to ensure all energized connecting elements are protected from accidental contact. Lethal voltages up to 900V can be present. Never disconnect any electrical connections to the servo drive with power applied; capacitors can retain residual and dangerous voltage levels for up to five minutes after switching off the supply power.

Failure to follow any one of these instructions will result in death, serious injury or equipment damage.

Hazards, Warnings and Guidelines, continued

WARNING!

THERMAL HAZARD

During operation, the front panel of the servo drive, which is used as a heat sink, can become hot and may reach temperatures above 80°C. Check (measure) the heat sink temperature and wait until it has cooled below 40°C before touching it.

Failure to observe this precaution can result in severe injury.

WARNING!

OVERCURRENT, OVERLOAD AND OVERHEATING PROTECTION

Separate motor overcurrent, overload and overheating protection is required to be provided in accordance with the Canadian Electrical Code, Part 1 and the National Electrical Code.

Failure to observe this precaution can result in severe injury.

Hazards, Warnings and Guidelines, continued

CAUTION!

SAFETY INTERLOCKS

Schneider recommends the installation of a safety interlock with separate contacts for each motor. Such a system should be hard wired with over-travel limit switches and a suitable emergency stop switch. Any interruption of this circuit or fault indication should:

- Open the motor contacts
- Shunt dynamic braking resistors across each motor, if they are present.

Failure to observe this precaution can result in equipment damage.

CAUTION!

ELECTROSTATIC COMPONENTS

The servo drives contain electrostatically sensitive components that may be damaged by improper handling. Appropriately discharge yourself before touching the servo drive and avoid contact with highly insulating materials (artificial fabrics, plastic film, and so on). Place the servo drive on a conductive surface.

Failure to observe this precaution can result in equipment damage.

Hazards, Warnings and Guidelines, continued

Additional Safety Guidelines	Read this documentation and adhere to the safety guidelines contained herein before engaging in any activities involving the servo drives.
	• Ensure that all wiring is in accordance with the National Electrical Code (NEC) or its national equivalent (CSA, CENELEC, etc.), as well as in accordance with all prevailing local codes.
	• Exercise extreme caution when using instruments such as oscilloscopes, chart recorders, or volt–ohm meters with equipment connected to line power.
	• Handle the servo drives as prescribed herein. Incorrect handling can result in personal injury or equipment damage.
	• Adhere to the technical information on connection requirements identified on the nameplate and specified in the documentation.
	• The servo drives may only be operated in a closed switchgear cabinet with appropriate compensation for ambient conditions (as defined in Appendix A).
Qualified Personnel	Only properly qualified personnel having extensive knowledge in electrical and servo drive technologies should install, commission and/or maintain the Lexium 17D servo drives.

Standards and Compliances

European Directives and Standards	The Lexium 17D servo drives are incorporated into an electrical plant and into machinery for industrial use. When the servo drives are built into machines or a plant, do not operate the servo drive until the machine or plant fulfills the requirements of these European Standards:
	 EC Directive on Machines 89/392/EEC EC Directive on EMC (89/336/EEC)
	 EN 60204 EN 292
	In connection with the Low Voltage Directive 73/23/EEC, the associated standards of the EN 50178 series in conjunction with EN 60439-1, EN 60146 and EN 60204 are applied to the servo drives.
	The manufacturer of the machine or plant is responsible for meeting the requirements of the EMC regulations.
EC Directive Compliance	Compliance with the EC Directive on EMC 89/336/EEC and the Low Voltage Directive 73/23/EEC is mandatory for all servo drives used within the European Community.
	The Lexium 17D servo drives were tested by an authorized testing laboratory and determined to be in compliance with the directives identified above. Continued on next page

Standards and Compliances, continued

UL and cUL UL Listed (cUL Certified) servo drives (Underwriters Laboratories Inc.) comply with the relevant American and Canadian standards (in this case, UL 840 and UL 508C).

This standard describes the minimum requirements for electrically operated power conversion equipment (such as frequency converters and servo drives) and is intended to eliminate the risk of injury to personnel from electric shock or damage to equipment from fire. Conformance with the United States and Canadian standard is determined by an independent UL (cUL) fire inspector through the type testing and regular checkups.

UL 508C

UL 508C describes the minimum requirements for electrically operated power conversion equipment (such as frequency converters and servo drives) and is intended to eliminate the risk of fire caused by that equipment.

UL 840

UL 840 describes air and insulation creepage spacings for electrical equipment and printed circuit boards.

Conventions

Acronyms and Abbreviations

The acronyms and abbreviations used in this manual are identified and defined in the table below.

Acronym or Abbreviation	Description
CE	European Community (EC)
CLK	Clock signal
СОМ	Serial communication interface for a PC-AT
cUL	Underwriters Laboratory (Canada)
DIN	German Institute for Norming
Disk	Magnetic storage (diskette, hard disk)
EEPROM	Electrically erasable programmable read only memory
EMC	Electromagnetic compatibility
EMI	Electromagnetic Interference
EN	European norm
ESD	Electrostatic discharge
IEC	International Electrotechnical Commission
IGBT	Insulated Gate Bipolar Transistor
ISO	International Standardization Organization
LED	Light Emitting Diode
МВ	Megabyte
MS-DOS	Microsoft Disk Operating System for PC-AT
PC-AT	Personal computer in AT configuration
PELV	Protected extra low voltage
PWM	Pulse-width modulation
RAM	Random Access Memory (volatile)
Regen	Regen resistor
RFI	Radio Frequency Interference

Conventions, continued

.

Acronyms and Abbreviations, continued

Acronym or Abbreviation	Description
PLC	Programmable Logic Controller
SRAM	Static RAM
SSI	Synchronous Serial Interface
UL	Underwriters Laboratory
Vac	Voltage, Alternating Current
Vdc	Voltage, Direct Current

Product Overview

2

At a Glance

Introduction

This chapter contains a product overview of the Lexium 17D series servo drives and includes:

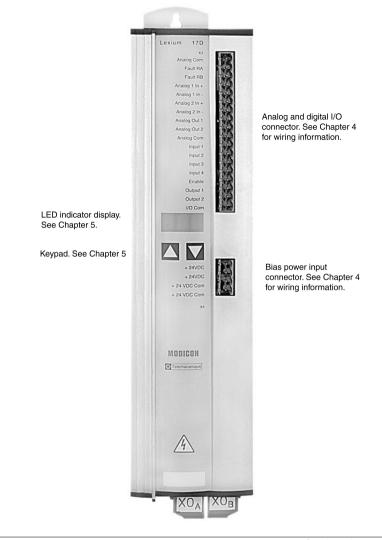
- Available drive models and related system components
- Feedback and performance information
- Power and signal electronics
- Software and axis configuration

What's in this Chapter

This chapter contains the following topics:

Торіс	Page
The 17D series servo drive family	16
Overview of usability features	22
Overview of 17D internal electronics	24
Overview of system software	28

The 17D Series Servo Drive Family


Introducing the 17D Drive Family		kium 17D series family is comp r, power supply and high-perfo sure.	•
Drives Available	The 17D drives are avai current levels as identifi	lable in five models which are o ed in the following table.	correlated to different output
	Output Current (Peak)	17D Drive]
	4A	MHDA1004N00	
	8A	MHDA1008N00	
	17A	MHDA1017N00	
	28A	MHDA1028N00	
	56A	MHDA1056N00	
Implementing the Drives		drives are intended for incorpor and can only be commissione	
Applicable Servo Motor Types	The Lexium 17D servo of servo motors.	drives are intended to drive NU	M BPH series brushless
			Continued on next page

Electrical Considerations	The Lexium 17D family of servo amplifiers is to be used on earthed three-phase industrial mains supply networks (TN-system, TT-system with earthed neutral point, not more than 5000 rms symmetrical amperes).
	The Lexium 17 D drives are incompatible with the IT system because interference suppression filters are internal and connected to earth. If the user wants to connect Lexium drives to an IT system, he may:
	• use an insulation star transformer in order to re-create a local TT or TN system. This way allows the rest of the wiring to stay an IT system (only warning in case of the first fault.)
	 use a special Residual Current Circuit Breaker (RCCB) that is able to work with dc and high peak currents. This device detects unbalance of phases with regard to earth.
	Warning: When the first fault occurs, the RCCB has to switch off quickly power of the drives. Set of the residual current value must be carefully done and must be started with the lowest available value (for example: 30mA.)
	Following equipment of Merlin Gerin can be used:
	 Vigirex, model RH328AF (Reference: 50055)
	 One of these magnetic cores: model TA, 30mm in internal diameter (Reference: 50437) model PA, 50mm in internal diameter (Reference: 50438) model IA, 80mm in internal diameter (Reference: 50439)
	If the servo amplifiers are used in residential areas, or in business or commercial premises, then additional filter measures must be implemented by the user.
	The Lexium 17D family of servo amplifiers is only intended to drive specific brushless synchronous servomotors from the Lexium BPH series, with closed-loop control of torque, speed and/or position. The dielectric withstand voltage of the motors must be at least as hight as the DC-link voltage of the servo amplifier.
	Use only copper wire. Wire size may be determinated from EN 60204 (or table 310- 16 of the NEC 60°C or 75°C column for AWG size).
	We only guarantee the conformance of the servo amplifiers with the standards for industrial areas, if the components (motors, cables, amplifiers etc) are delivered by Schneider Automation.
	Continued on next page


17D Drive Family Portrait The following photograph shows a representative member of the 17D drive family. The complete family consists of five models partitioned into two physical sizes. Models MHDA1004N00, MHDA1008N00, MHDA1017N00 and MHDA1028N00 have dimensionally identical physical housings while Model MHDA1056N00 has a wider housing. (See Chapter 3 for detailed dimensional information.)

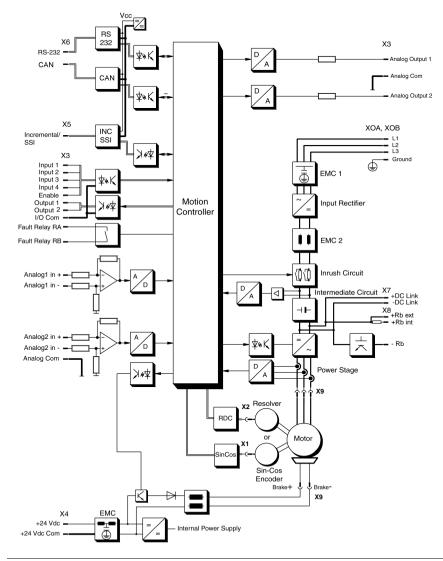
17D Drives Front The following photograph shows a typical 17D front view with legends and labels. **View**

Equipment		Each 17D servo drive includes the following hardware.
Supplied		 Mating connectors X3, X4, X0_A, X0_B, X7 and X8
		Read me first.
	17	Note : The mating Sub-D connectors and servo motor connector X9 are supplied with the appropriate cable.
Equipment Available		The following items are optionally available to you from Schneider for use with the 17D servo drives:
		Lexium BPH series brushless servo motors
		Servo motor power and feedback cables
	F	Note : Power and feedback cables are available in lengths from 575 m and are supplied by Schneider with the connector for the servo motor attached to the cable and with the connector for the drive unassembled and unattached to the cable. The 10 m length cable is supplied (from stock) by Schneider with connectors attached to each end of the cable.
		• Optional Servo motor choke (for motor power cable lengths exceeding 25m)
		Optional External Regen resistor
		 Serial communications cable (between drive and PC)
		 Pre-configured cables for various Telemecanique and Modicon motion controllers.
		Optional expansion cards.
		Continued on next page

Note: Connections are simplified to show functionality only. Refer to Wiring and I/O for specifc connection information.

Overview of Usability Features

Digital Control The 17D drive provides complete digital control of a brushless servo system. This includes:


- A digital field-oriented current controller operating at an update rate of 62.5 µs
- A fully programmable digital PI-type speed controller operating at an update rate of 250 µs
- If required by user application, an integrated, digital, position controller with configurable trajectory generation operating at an update rate of 250 µs is also available. Up to 180 independent motion tasks can be configured and stored in the drive depending upon the application requirements.
- An integral step/direction input is provided for use with an external indexer which allows the 17D drive and the applicable BPH motor to be used as a stepper motor/drive replacement.
- Full digital evaluation of motor position feedback (primary feedback) from either a standard two-pole resolver or a high precision Sin-Cos type encoder (hiperface).
- Full digital emulation of either a standard incremental encoder or a SSI encoder is also available from position information derived from the primary feedback device. The drive may also be configured as a slave to follow a master incremental encoder with a programmable gear ratio.

Overview of Usability Features, continued

Usability Enhancements	The following features are incorporated into the 17D drive to facilitate the set-up and operation of the servo system:
	 Two analog +/-10 V inputs can be programmed for a multitude of functions depending upon the application. Both inputs incorporate automatic offset compensation, dead-band limitation and slew-rate limitation.
	• Two +/-10 V analog monitor outputs can be programmed to support a multitude of internal drive control loop variables via the analog voltage output levels.
	• Four fully programmable 24 V discrete inputs; two of which are typically defined as hardware limit switches.
	 Two fully programmable 24 V outputs and a separate 24 V brake output capable of driving a maximum of 2 Amps.
	• An integrated and fully isolated RS-232 connection for communication with a PC; used to set configuration parameters and tune the system with the Unilink configuration software.
	 Integrated CANopen (default 500 kBauds), for integration into CANopen systems and for setting parameters for several amplifiers via the PC-interface of one amplifier
	 A separate 24V bias supply input which may be connected through a UPS to preserve system data in the event of an interruption in the AC mains supply.

Overview of 17D Internal Electronics

17D Internal Electronics Block Diagram The following block diagram illustrates the 17D internal electronics and depicts internal interfaces for power, signal I/O, and communication.

Overview of 17D Internal Electronics, continued

General Characteristics	The Lexium 17D servo drives are available in five peak output current ratings (4.2, 8.4, 16.8, 28 and 56 A) that are partitioned into two groups based on the width of the package; the 70 mm drives are rated to handle currents up to 28 A and the 120 mm wide drive is rated to handle currents up to 56 A. All Lexium drives operate with an input voltage which may range from 208 V -10% 60 Hz, 230 V -10% 50 Hz through 480 V +10% 50-60 Hz.
	Each drive provides:
	Direct shield connection points
	Two analog setpoint inputs
	 Integrated and electrically isolated RS-232 communications
Primary Power	A single phase input supply may be used for commissioning and set-up and for continuous operating with various smaller drive/motor combinations. See the Lexium 17/ BPH motor torque speed curves for details. Fusing (e.g. fuse cut-out) is provided by the user.
Bias Power	The 17D drive requires 24 Vdc bias power from an external, electrically isolated supply.
EMI Suppression	EMI suppression for the 17D drives is integrally provided by filters on both the primary power (EN550011, Class A, Group 1) input as well as on the 24 Vdc bias supply (Class A) input.
	Continued on next page

Overview of 17D Internal Electronics, continued

Internal Power Section	The In	ternal power section of the 17D drive includes the following:	
Section		ower input: A rectifier bridge directly connected to the three-phase apply system, integral power input filter and inrush current limiting	
		otor power output: PWM current-controlled voltage source IGBT-i plated current measurement	inverter with
	the	egen circuit: Dynamic distribution of Regen power between sever e same DC Link circuit. An internal Regen resistor is standard; e egen resistors are available as required by your application.	
		C Link voltage: 300700 V dc, nominal (900 Vdc, intermittent) ar perated in parallel.	nd can be
DC Link Capacitor Reconditioning		servo drive has been stored for longer than one year, then the DC itors will have to be reconditioned as follows:	C Link
	-		
	1	Ensure that all electrical connections to the drive are disconnected.	
	-		

Overview of 17D Internal Electronics, continued

LED display A three-character LED display on the front of the 17D drive indicates drive status after the 24 Vdc bias supply is turned on. If applicable during operation, error and/ or warning codes are displayed.

Overview of System Software

Setup	Configuration software is used for setting up and storing the operating parameters for the Lexium 17D series drives. The drive is commissioned with the assistance of the UniLink software and, during this process, the drive can be controlled directly through this software.
Setting Parameters	You must adapt the servo drives to the requirements of your installation. This is usually accomplished by connecting a PC (programming unit) to the drive's RS-232 serial interface then running the Schneider-supplied UniLink configuration software.
	The UniLink software and the associated documentation are provided on a CD- ROM. Use the UniLink software to alter parameters; you can instantly observe the effect on the drive because there is a continuous (online) connection to the drive. In addition, actual values are simultaneously received from the drive and displayed on the PC monitor.
Automatic Card Recognition	Any interface modules (expansion cards) that may be built into the drive or that you install are automatically recognized by the drive's internal firmware. Any additional parameters required for position control or motion-block definition are made available automatically in the UniLink configuration software.
Default Settings	Motor-specific default settings for all the reasonable combinations of drive and servo motor are incorporated into the drive's firmware. In most applications, you will be able to use these default values to get your drive running without any problems. (Refer to the UniLink online help for additional information on default values.)

Overview of System Software, continued

UniLink Commissioning Software The minimum PC system requirements needed for the UniLink commissioning software are specified in the following table:

Item	Minimum Requirement
Operating System	Windows 95 Windows 98
	Windows 90 Windows NT 4.0
	Willdows INT 4.0
Hardware:	
Processor	486 or higher
Graphics adapter	VGA
RAM	8 Mbytes
Hard drive space	5 Mbytes available
Communications	One RS-232 Serial Port

Mounting and Physical Dimensions

At a Glance

What's in this Chapter

This chapter provides information on the mounting requirements for, and physical dimensions of, the Lexium 17D series servo drives and includes the following topics:

Торіс	Page
Installation safety precautions	32
Installation considerations	34
Drive mounting and physical dimensions	35
External Regen resistor mounting and dimensions	37
Choke mounting and dimensions	38

Installation Safety Precautions

CAUTION!

MECHANICAL STRESS

Protect the drive from physical impact during transport and handling. In particular, do not deform any exterior surfaces; doing so may damage internal components or alter critical insulation distances.

Failure to observe this precaution can result in injury or equipment damage.

CAUTION!

ELECTRICAL STRESS

At the installation site, ensure the maximum permissible rated voltage at the Mains and bias input connectors on the drive are not exceeded. (See EN 60204-1, Section 4.3.1.) Excessive voltages on these terminals can result in destruction of the Regen circuit and/or the drive's electronics.

Failure to observe this precaution can result in injury or equipment damage.

CAUTION!

ELECTRICAL CONNECTIONS

Never disconnect the electrical connections to the servo drive while power is applied.

Failure to observe this precaution can result in injury or equipment damage.

Installation Safety Precautions, continued

CAUTION!

CONTAMINATION AND THERMAL HAZARD

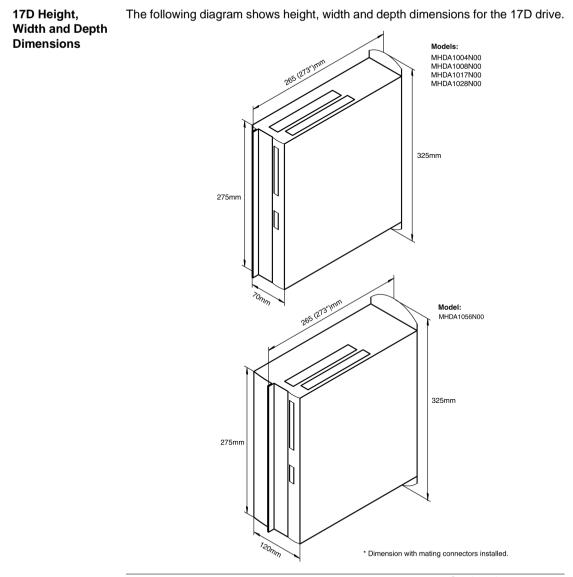
Ensure the 17D drive is mounted within an appropriately vented and closed switchgear cabinet that is free of conductive and corrosive contaminants. Ensure the ventilation clearances above and below the drive conform to requirements. (Refer to Chapter 3 for additional information.)

Failure to observe this precaution can result in injury or equipment damage.

DANGER!

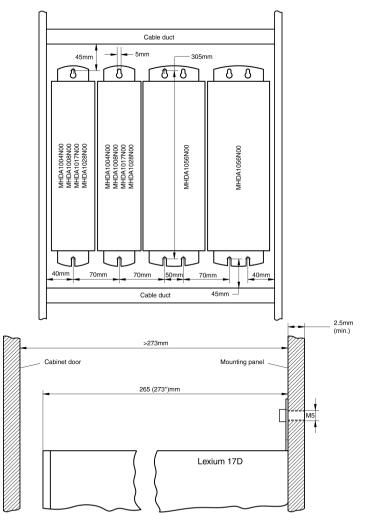
ELECTRIC SHOCK HAZARD

Residual voltages on the DC link capacitors can remain at dangerous levels for up to five minutes after switching off the mains supply voltage. Therefore, measure the voltage on the DC Link (+DC/-DC) and wait until the voltage has fallen below 40 V.

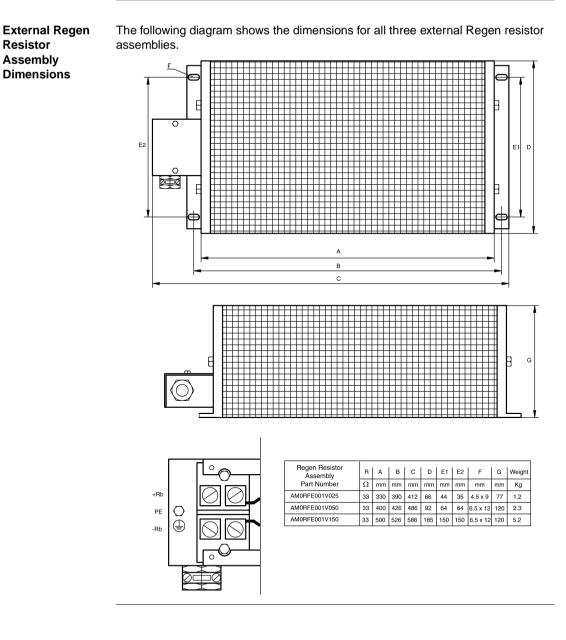

Control and power connections can still be energized, even when the motor is not rotating.

Failure to observe these instructions will result in death or serious injury.

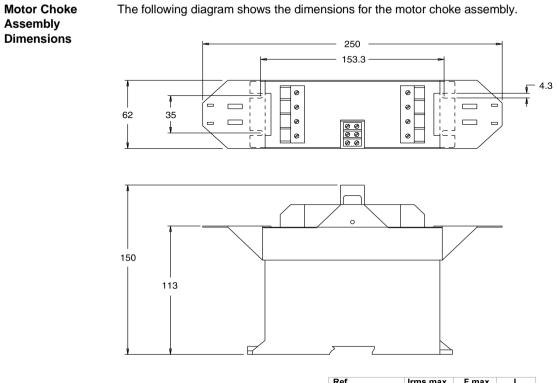
Installation Considerations


Power Supply Overcurrent Protection	You are responsible for providing overcurrent protection (via circuit breakers and/or fuses) for the Vac mains supply and the 24 Vdc bias supply that are connected to the drive.
Earth Connections	Ensure the drive and associated servo motor are properly connected to earth.
Cable Separation	Route power and control (signal) cables separately. Schneider recommends a separation of at least 20 cm. This degree of separation improves the performance of the system. If a servo motor power cable includes wires for brake control, those wires have a separate shield which must be connected to earth at both ends of the cable.
Air Flow	Ensure that there is an adequate flow of cool, filtered air into the bottom of the switchgear cabinet containing the drive.

Drive Mounting and Physical Dimensions


Drive Mounting and Physical Dimensions, continued

17D Drive and Mounting Area Dimensions The following diagram shows depth dimensions and mounting area requirements for the 17D drive.



* Dimension with mating connectors installed.

External Regen Resistor Mounting and Physical Dimensions

Motor Choke Mounting and Dimensions

	Ref.	Irms max.	F max.	L	
Note: All dimensions are in millimeters (mm).	AM0FIL001V056	3 x 20 A	8.3 kHz	1.2 mH	

38

Wiring and I/O

4

At a Glance

Introduction This chapter describes and illustrates all power wiring connections, all signal wiring connections, and I/O wiring connections on the 17D drive. Power and signal wiring connections are:

- AC mains power through a four-position, plug-in, terminal block connector
- Bias power through four-position, plug-in, terminal block connector
- Serial power connections among multiple drives
- Servo motor power through a six-position, plug-in, terminal block connector
- Optional Regen power resistor through a four-position, plug-in, terminal block connector
- Resolver feedback input through a nine-pin, plug-in, Sub-D connector
- Encoder feedback input through a 15-pin, plug-in, Sub-D connector
- Auxiliary encoder/command interface through a nine-pin, plug-in, Sub-D connector
- Master-Slave drive interface through a nine-pin, plug-in, Sub-D connector
- Analog/digital I/O through an 18-position, plug-in terminal block connector
- Serial communications interface through a nine-pin, plug-in, Sub-D connector
- Stepper-motor control interface through an nine-pin, plug-in, Sub-D connector

At a Glance, continued

What's in this Chapter

This chapter contains the following topics.

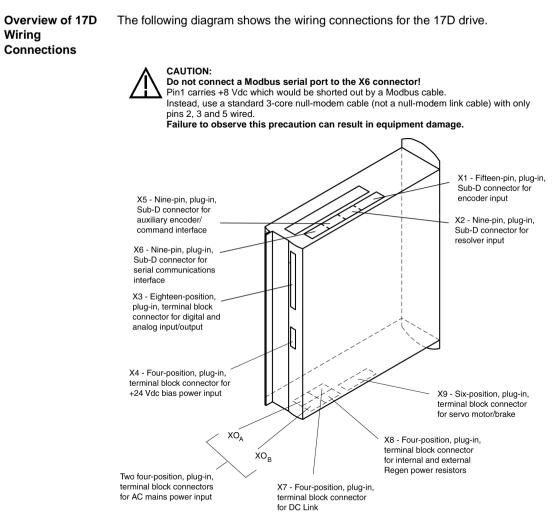
Торіс	Page
Wiring and I/O initial considerations	41
Wiring overview	42
Cable shield connections	45
Power wiring	47
Signal wiring	55
Analog I/O connections	63
Fault Relay and Digital I/O connections	65
Serial communications connections	67
Stepper-motor control interface connections	70

Wiring and I/O Initial Considerations

Initial Considerations Some descriptions and illustrations contained in this chapter are provided as examples. Actual implementation depends on the application of the equipment; thus, appropriate variations are allowed provided they neither violate any safety precautions nor jeopardize the integrity of the equipment.

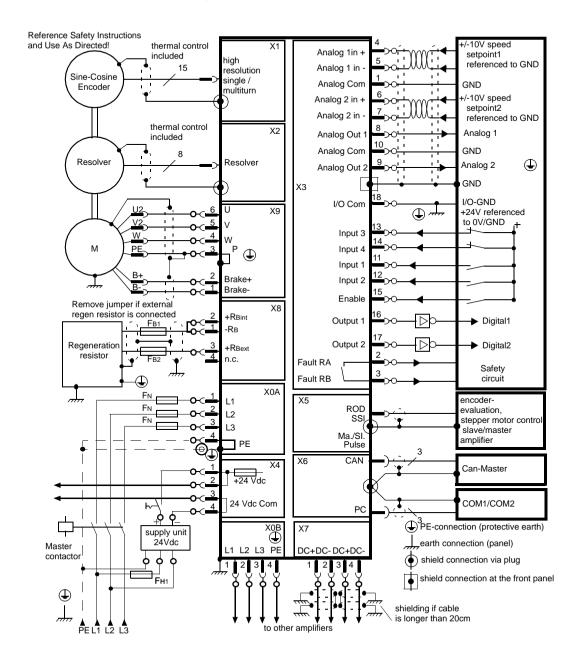
DANGER!

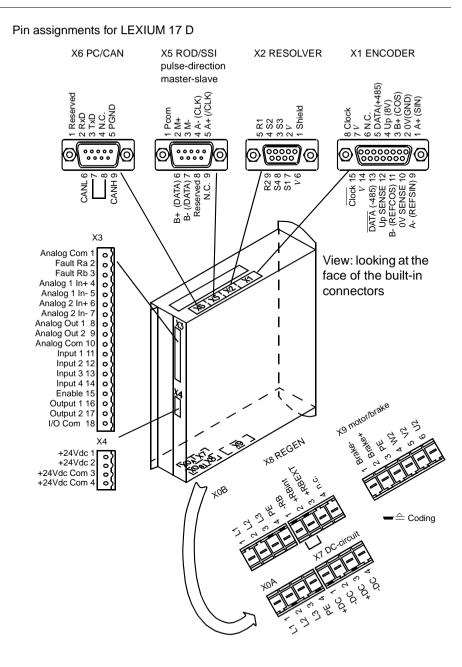
ELECTRIC SHOCK HAZARD


Before you wire and connect cables, ensure the mains power supply, the 24 Vdc bias power supply and the power supplies to any other connected equipment, are OFF. Ensure any cabinet to be accessed is first electrically disconnected, secured with a lock-out and tagged with warning signs.

Failure to observe these safety instructions will result in death or serious injury.

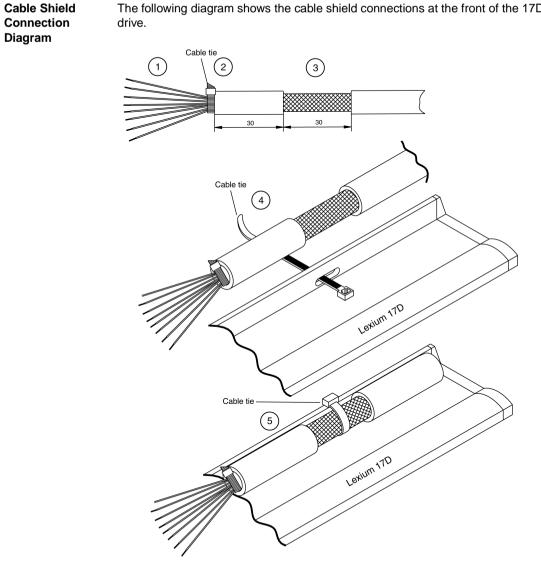
Grounding


Ensure the drive mounting plate, servo motor housing and Analog Com for the controls are connected to common panel earth ground point.


Wiring Overview

Note: The connectors described above appear in many wiring diagrams throughout the remainder of this document and are identified in those diagrams by their alphanumeric designations only (for example, X4); the term *connector* is excluded.

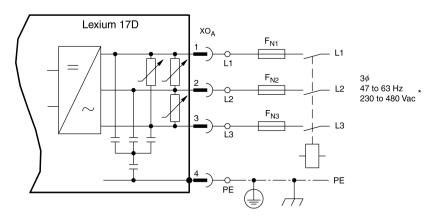
Connection diagram for LEXIUM 17 D


Cable Shield Connections

Connecting Cable Shields to the Front Panel

The following procedure and associated diagram describe how to connect cable shields to the front panel of the 17D drive:

Step	Action
1	Remove a length of the cable's outer covering and braided shield sufficient to expose the required length of wires.
2	Secure the exposed wires with a cable tie.
3	Remove approximately 30 mm of the cable's outer covering while ensuring the braided shield is not damaged during the process.
4	At the front panel of the drive, insert a cable tie into a slot in the shielding rail.
5	Use the previously inserted cable tie to secure the exposed braided shield of the cable firmly against the shielding rail.


Cable Shield Connections, continued

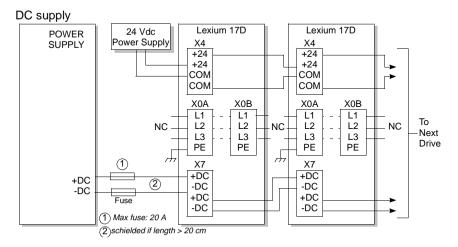
The following diagram shows the cable shield connections at the front of the 17D

Power Wiring

AC Mains Power Supply Connection The following diagram shows the connections for the AC mains power supply input to the 17D drive.

*3 x 230 V +10% max. with a BPH055 Servo motor

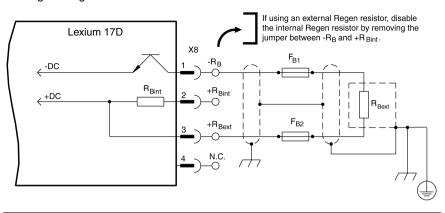

Bias Supply Connection The following diagram shows the connections for the bias power supply input to the 17D drive.



Serial Power Connections

The following diagram shows the serial connections for the AC mains and bias power among multiple 17D drives.

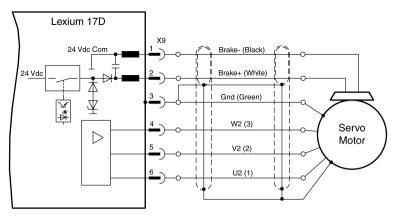
AC supply



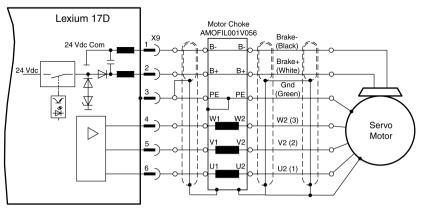
Notes: -Inrush current must be limited to 20 A between power supply and drives. - Drives have to be configured (see Unilink commands) to suppress faults.

External Regen Resistor Connection

The following diagram shows the connections between the external Regen resistor and the 17D drive. The drive is shipped with a jumper installed on connector X8, terminals R_B and R_{Bint} . If you are going to use an external Regen resistor, then remove the jumper to disconnect (and thus disable) the internal Regen resistor **Fusing of the two lines to external Regen Resistor is mandatory.** Use high voltage AC/DC and fast fuses..

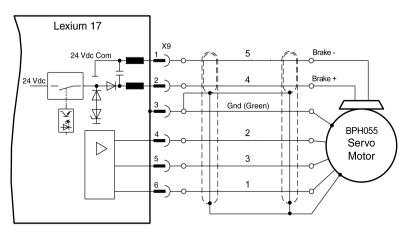

Regen Circuit Functional Description

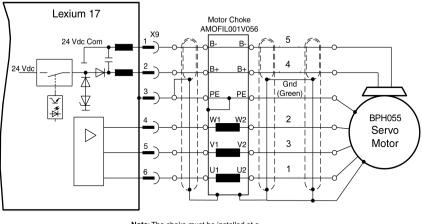
During braking, energy from the servo motor is returned to the drive and converted into heat in the Regen resistor. Operation of the Regen resistor is controlled by the Regen circuit using thresholds that are adjusted to the main supply voltage that is configured in the UniLink software. The following is an abbreviated functional description of the Regen circuit operation.


- Individual drive (not coupled through the DC Link circuit) The circuit starts to respond at a DC Link voltage of 400V, 720V or 840V (depending on the supply voltage). If the energy fed back from the servo motor is higher than the preset Regen power, then the drive issues a "Regen power exceeded" signal and the Regen circuit will be switched off. Upon the next internal check of the DC Link voltage, an overvoltage will be detected, the fault relay contact will be opened and the drive will be switched off with the error message "Overvoltage".
- **Multiple drives** (coupled through the DC Link circuit) In this case, the Regen energy is distributed equally among all the drives.

Lexium BPH Servo Motor Connection (excluded BPH055) The following diagrams show the connections between a servo motor (excluded BPH055) and the 17D drive. When the interface cable length exceeds 25 m, a motor choke must be installed as shown and at a distance of one meter or less from the drive.

Connection between servo motor and drive when interface cable length is 25 m or less.

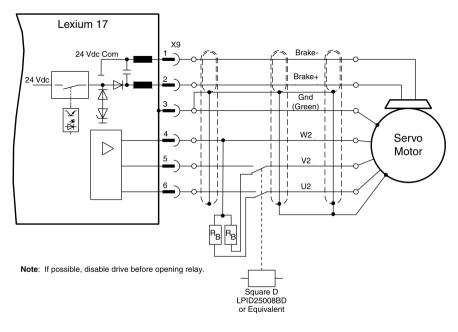

Connection between servo motor and drive when interface cable length exceeds 25 m.


Note: The choke must be installed at a distance of one meter or less from the drive

Lexium BPH 055 Servo Motor Connection

The following diagrams show the connections between a BPH055 servo motor and the 17D drive. When the interface cable length exceeds 25 m, a motor choke must be installed as shown and at a distance of one meter or less from the drive. Connection between servo motor and drive when interface cable length is 25 m or less.

Connection between servo motor and drive when interface cable length exceeds 25 m.



Note: The choke must be installed at a distance of one meter or less from the drive

STOP With a BPH 3 x 230 Vac

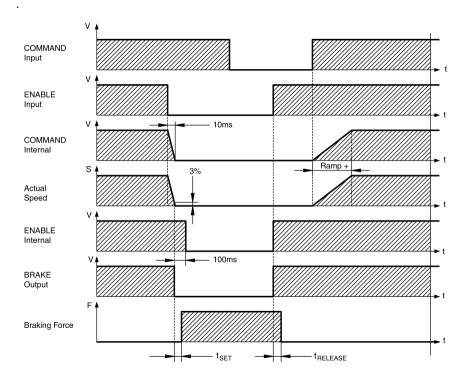
With a BPH055 Servo motor, power supply of the 17D drive must be limited to 3 x 230 Vac +10%

Servo Motor (with Optional Dynamic Brake Resistors and Contactor) Connection The following diagram shows the connections between a servo motor and the 17D drive when the optional dynamic brake rersistors and associated contactor are incorporated.

BRAKING RESISTORS - To determine the values of the braking resistors, use these formulas:

 MINIMUM RESISTANCE (Rdb)
 RESISTOR POWER RATING (Pb)

 $Rb = \frac{\begin{pmatrix} max speed \\ 1000 \\ I_{MAX} X 0.8 \end{pmatrix} X BEMF}{I_{MAX} X 0.8}$ $Pb = \underbrace{\left(I_{MAX} X 0.8\right)^2 X Rb}{10}$


 where:
 max speed is the maximum speed of the motor in RPM*

 BEMF
 is the back electromotive force of the motor in V / KPRM*

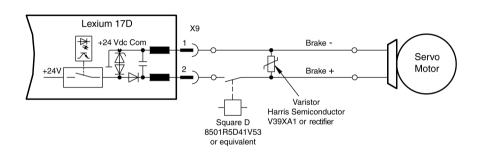
 IMAX
 is the maximum current of the motor in Amps RMS*

 * These values are provided in the motor specification sheet.

Servo Motor Holding-Brake Control Functional Description A 24V holding brake in the servo motor is controlled directly by the 17D drive through software-selectable BRAKE parameter settings. The time and functional relationships between the ENABLE signal, speed setpoint, speed and braking force are shown in the following diagram.

During the fixed ENABLE delay time of 100 ms, the speed setpoint of the drive is internally driven down a 10 ms ramp to 0 V. The 3 % region of actual speed is scaled to V_{LIM} .

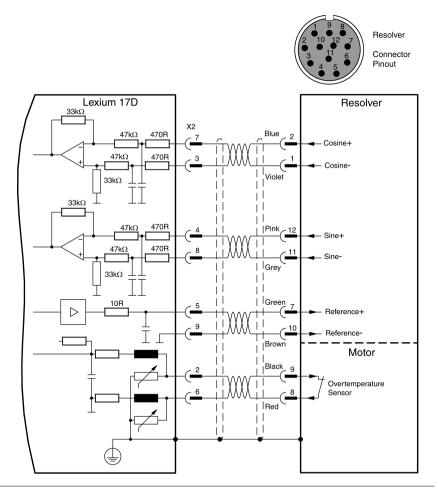
Note: The set and release times of the holding brake vary with the servo motor and thus must be considered when setting parameters.



WARNING!

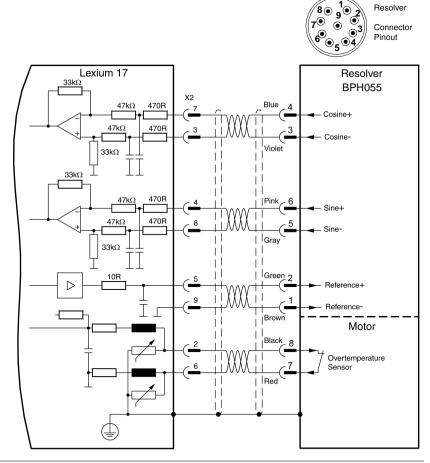
IMPACT HAZARD

The off-the-shelf configuration of the holding-brake function does not ensure the safety of personnel. In order to make this function safe for personnel, a normally-open contact and a user-installed suppressor device (varistor) must be incorporated into the brake circuit as shown in the following diagram.


Failure to observe this precaution can result in severe injury or equipment damage.

Signal Wiring

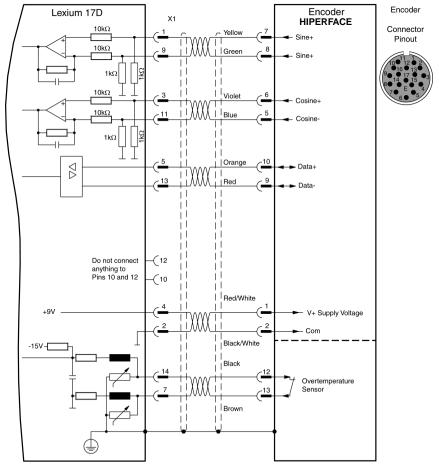
The following diagram shows the connections between the resolver and the 17D drive.


Note: The standard Lexium BPH series servo motors are equipped with two-pole, integral resolvers. The thermistor contact in the servo motor is connected via the resolver cable to the 17D drive.

Signal Wiring, continued

Lexium BPH055 Resolver Connection The following diagram shows the encoder input connections between the encoder and the 17D drive.

Note: The BPH055 servo motors are equipped with two-pole, integral resolvers. The thermistor contact in the servo motor is connected via the resolver cable to the 17D drive.

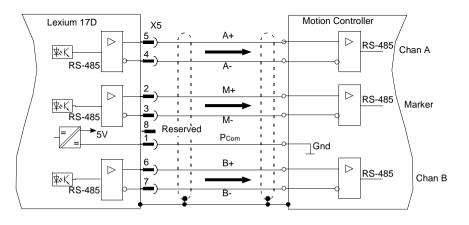


Signal Wiring, continued

Encoder Input Connection The following diagram shows the encoder input connections between the encoder and the 17D drive.

۲ک ا

Note: The BPH series servo motors can be optionally fitted with a single-turn or multi-turn sine-cosine encoder, which is used by the 17D positioning or extremely smooth running. In addition, the thermistor contact in the servo motor is connected via the encoder cable to the 17D drive.


Signal Wiring, continued

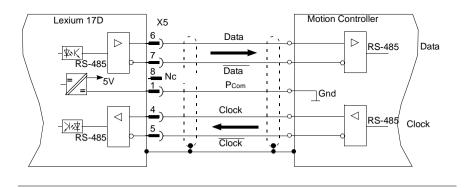
rf

Incremental Encoder Output Connection

The following diagram shows the incremental encoder output connections between the 17D drive and the motion controller.

Note: The drivers are supplied from an internal supply voltage. P_{Com} must always be connected to the controller ground. Use a cable with twisted pairs and shield.

Incremental Encoder Output Functional Description


The position of the servo motor shaft is calculated using the cylic-absolute signals from the resolver or encoder. The calculated position information is used to generate two incremental-encoder compatible signals (A and B) with a 90° phase difference and a marker pulse.

Signal Wiring, continued

SSI Encoder Output Connection The following diagram shows the connections between a motion controller and the 17D drive.

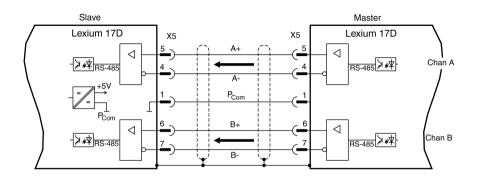
Note: The drivers are supplied from an internal supply voltage. P_{Com} must always be connected to the controller ground.

SSI Encoder Output Functional Description

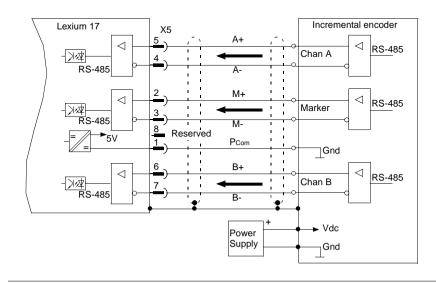
The SSI interface is synchronous serial absolute-encoder emulation. The position of the servo motor shaft is calculated using the cyclic-absolute signals from the resolver or encoder. This calculation is then used to generate a synchronous, serial, cyclic-absolute 12-bit information output that is compatible with the data format of normal commercial SSI absolute encoders. A total of 24 bits are transmitted as follows:

- The upper 12 bits are fixed at zero.
- The lower 12 bits contain the cyclic absolute position information.

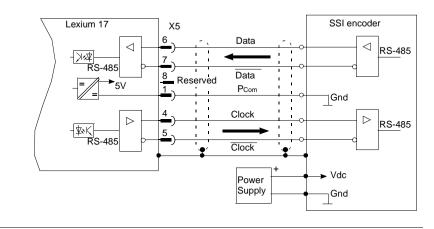
The interface is read in as a multi-turn encoder, but delivers valid single-turn data. The signal sequence can be output in either:


- Gray code (standard)
- Binary code (parameter SSI-CODE)

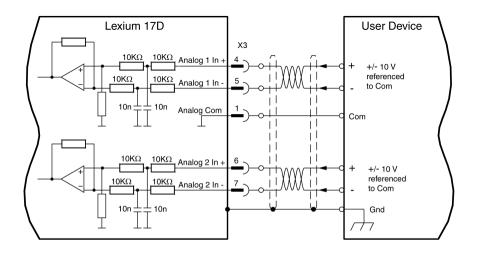
The count increments positively when the motor shaft is rotating clockwise (when viewed from the shaft end).


Signal Wiring, continued

Auxiliary Encoder Interface Master-slave Operation of Drives Diagram: The encoder interface can be used to link one or more 17D drives together in a master-slave operation, as shown in the following diagram. Up to 16 slave drives can be controlled by a designated master drive via the encoder output. The UniLink software allows you to setup the parameters for the slave drive(s) and to adjust the gear ratio (number of pulses/turn).


Note: In this configuration, the analog setpoint inputs are disabled and Analog Com and I/O Com (connector X3) must be connected.

- Incremental-Encoder Input Connection. The following diagram shows the incremental encoder input connections between the 17 drive and an external incremental encoder.
- Note: The receivers are supplied from an internal supply voltage. P_{Com} must always be connected to the encoder ground. Incremental encoder is powered by an external Power Supply.

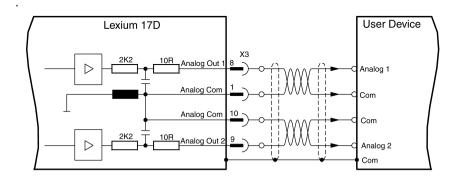

- SSI Encoder Input Connection: The following diagram shows the connections between an external SSI encoder and the 17 drive.
- Note: The drivers are supplied from an internal supply voltage. P_{Com} must always be connected to the encoder ground. SSI encoder is powered by an external Power Supply

Analog I/O Connection

Analog Inputs The following diagram shows the connections between the two fully programmable, differential analog inputs on the 17D drive and a user device. (Refer to the list of pre-programmed functions contained in the UniLink online help.)

Note: The Analog Com must always be connected to the user device Com as a ground reference.

Servo Motor Rotation Direction

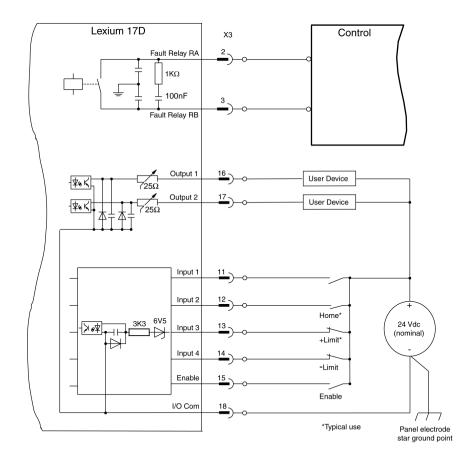

The standard setting for direction of positive rotation of the servo motor shaft is clockwise (looking at the shaft end) and is achieved as follows:

- Positive voltage on connector X3, between terminals 4 (+) and 5 (-), or
- Positive voltage on connector X3, between terminals 6 (+) and 7 (-)

To reverse the direction of rotation, change the ROT. DIRECTION parameter in the "Speed controller" window; this window is accessed via the UniLink Configuration software.

Analog I/O Connection, continued

Analog Outputs The following diagram shows the connections between the two programmable, analog outputs on the 17D drive and a typical user device. (Refer to the list of preprogrammed functions in the UniLink online help.)


The outputs (+/-10V with 10-bit resolution) can be configured for various monitoring functions such as current or actual speed. The default settings are:

- Analog Out 1: Tachometer voltage (speed). The output delivers ±10V at the preset limit speed.
- Analog Out 2: Current setpoint (torque). The output delivers ± 10V at the preset peak current (effective RMS value).

Fault Relay and Digital I/O Connection

Digital Inputs and Outputs

The following diagram shows the connections between the fault relay, the four fullyprogrammable, digital inputs, dedicated enable input and two digital outputs on the 17D drive and typical user devices. (A list of pre-programmed functions is contained in the UniLink online help.)

Fault Relay and Digital I/O Connection, continued

Using Functions Pre-programmed into the Drive **Fault Relay**- The isolated fault relay contacts are closed during normal operation and open when a fault condition exists. The relay state is not affected by the enable signal, I²t limit or warnings. All faults cause the Fault RA/RB contact to open and the switch-off of the output stage. A list of error messages can be found in chapter Troubleshooting.

Digital Inputs 1, 2, 3 and 4 - You can use the four digital inputs to initiate preprogrammed functions that are stored in the drive.

Digital Outputs 1 and 2 - You can use the two digital outputs to send messages from pre-programmed functions that are stored in the drive.

Enable Input - This is a dedicated, level-sensitive (as opposed to edge-sensitive) hardware input which will enable the output stage of the drive when 24 Vdc is applied and no fault conditions exist.

Note: The hardware enable is powered up upon detection of state sense versus transition sensitivity. Refer to the UniLink on-line help for software enable information.

Serial Communications Connection

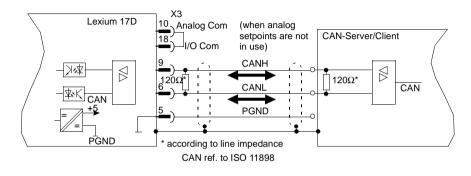
Serial Communications Connection Diagram The following diagram depicts the RS-232 communication connection between the Lexium 17D and a PC.

See wiring in Appendix D

The setting of the operating, position control, and motion-block parameters can be carried out with an ordinary commercial PC.

Connect the PC interface (X6) of the servo amplifier while the supply to the equipment is switched off via a normal commercial 3-core cable to a serial interface on the PC. Do not use a null-modem link cable!

The interface is electrically isolated through an optocoupler, and is at the same potential as the CANopen interface.


CANopen The interface for connection to the CAN bus (default 500 kBaud). The integrated profile is based on the communication profile CANopen DS301 and the drive profile DSP402.

The following functions are available in connection with the integrated position controller:

Jogging with variable speed, reference traverse (zeroing), start motion task, start direct task, digital setpoint provision, data transmission functions and many others.

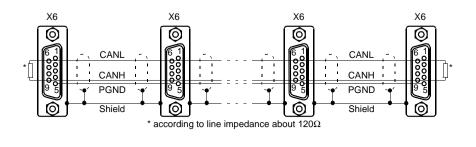
Detailed information can be found in the CANopen manual. The interface is electrically isolated by optocouplers, and is at the same potential as the RS232 interface. The analog setpoint inputs can still be used.

If the analog setpoint inputs are not used, then Analog Com and I/O Com (terminal X3) must be joined together !

CAN bus cable To meet ISO 11898 you should use a bus cable with a characteristic impedance of 120Ω . The maximum usable cable length for reliable communication decreases with increasing transmission speed. As a guide, you can use the following values which we have measured, but they are not to be taken as assured limits:

Cable data:	Cable data: Characteristic impedance	
	Cable capacitance	max. 60 nF/km
	Lead resistance (loop)	159.8 Ω/km

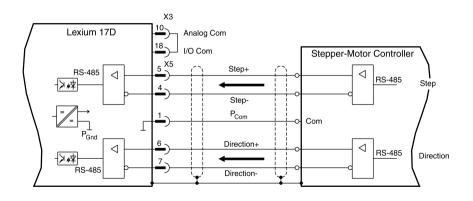
Cable length, depending on the transmission rate


Transmission rate (kBauds)	max. cable lenght (m)
1000	20
500	70
250	115

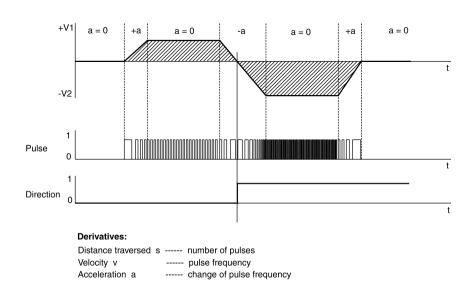
Lower cable capacitance (max. 30 nF/km) and lower lead resistance (loop, 115 Ω /km) make it possible to achieve greater distances.

(Characteristic impedance $150 \pm 5\Omega =:>$ terminating resistor $150 \pm 5\Omega$).

For EMC reasons, the SubD connector housing must fulfill the following conditions:


- metal or metallized housing
- shield connection to housing.

Stepper Motor Control Interface Connection


Stepper-Motor Control Interface Connection Functional Description This interface can be used to connect the servo drive to a third-party stepper motor controller. The parameters for the drive are set using the UniLink software and the number of steps are adjustable to allow the drive to correlate to the step-direction signals of any stepper-motor controller. In this configuration, the analog inputs are disabled and the drive can provide various monitoring signals.

Stepper-Motor Control Interface Connection Diagram The following diagram depicts the communication connection between the Lexium 17D and a stepper-motor controller.

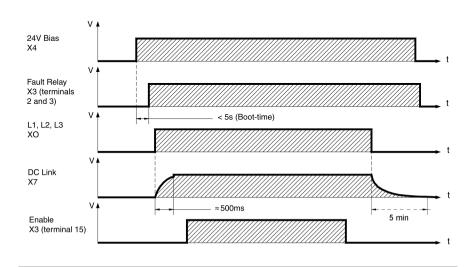
Stepper Motor Control Interface Connection, continued

Stepper-Motor Speed Profile and Signal Diagram The following is the speed profile and signal diagram of the stepper-motor configuration.

System Operation

5

At a Glance


What's in this Chapter

This chapter provides information on operating the Lexium 17D series servo drives and includes the following topics:

Торіс	Page
Powering up and powering down the system	72
Procedure for verifying system operation	75
Front panel controls and indicators	78

Powering Up and Powering Down the System

Power-on and Power-off Characteristics The following diagram illustrates the functional sequence that occurs when the drive is turned on and off.

Powering Up and Powering Down the System, continued

Stop Function If a fault occurs the output stage of the servo amplifier is switched off and the Fault RA/RB contact is opened. In addition, a global error signal can be given out at one of the digital outputs (terminals X3/16 and X3/17). These signals can be used by the higher-level control to finish the current PLC cycle or to shut down the drive (with additional brake or similar.).

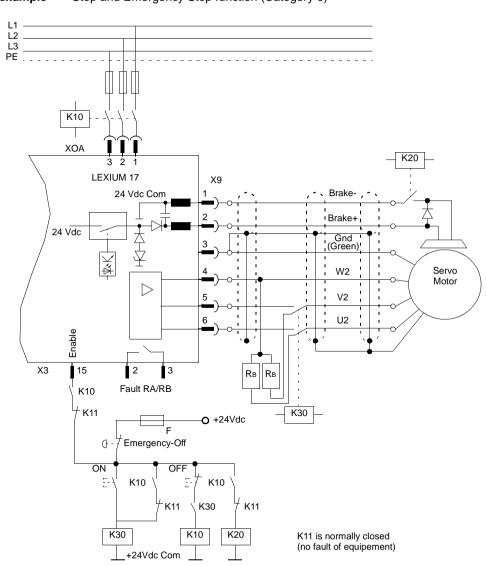
Instruments which are equipped with a selected "Brake" function use a special sequence for switching off the output stage.

The Stop functions are defined in EN 60204 (VDE 0113), Para. 9.2.2, 9.2.5.3.

There are three categories of Stop functions:

- Category 0: Shut down by immediately switching off the supply of energy to the drive machinery (i.e an uncontrolled shut-down);
- Category 1: A controlled shut-down, during which the supply of energy to the drive machinery is maintained to perform the shut-down, and where the energy supply is only interrupted when the shut-down has been completed;
- Category 2: A controlled shut-down, where the supply of energy to the drive machinery is maintained.

Every machine must be equipped with a Stop function to Category 0. Stop functions to Categories I and/or 2 must be provided if the safety or functional requirements of the machine make this necessary.


Emergency Stop The Emergency Stop function is defined in EN 60204 (VDE 0113), Para. 9.2.5.4. Implementation of the Emergency Stop function:

- Category 0: The controller is switched to "disable", the electrical supply (400VAC) is disconnected.
 The motor must be held by an electromagnetic holding device (brake).
 In multiaxis systems with connected DC-link bus (intermediate circuit) the motor leads have to be disconnected by a changeover switch and shortcircuited by resistors connected in a star configuration.
- Category 1: If hazardous conditions can result from an emergency stop switchoff with an unbraked run-down, then the drive can be switched off by a controlled shut-down.
 Stop Category 1 permits electromotive braking with a switch-off when zero speed has been reached. Safe shut-down can be achieved, when the loss of the mains supply is not rated as a fault and the control takes over the disabling of the servo amplifier.

In the normal situation, only the supply power is switched off in a safe manner.

The 24V auxiliary supply remains switched on.

Powering Up and Powering Down the System, continued

Procedure for Verifying System Operation

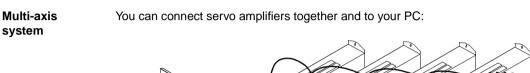
Overview The following procedure and associated information verifies operation of the system without creating a hazard to personnel or jeopardizing the equipment. This procedure presumes the drive has been configured with UniLink software in OpMode 1 as a speed controller with analog input command.

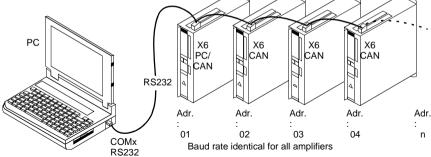
Note: Default parameters for each Schneider Lexium BPH series motor are loaded into your drive at the factory and contain valid and safe values for the current and speed controllers. A database for the servo motor parameters is stored in the drive. During commissioning, you must select the data set for the connected servo motor and store it in the drive. For most applications, these settings will provide good servo loop efficiency. For a description of all parameters and motor tuning, see the UniLink online help.

Quick TuningThis procedure will enable you to rapidly assess the operational readiness of the
system.Proceduresystem.

Step	Action
1	Disconnect the drive from the power source.
	WARNING!
STOP	MECHANICAL MOVEMENT HAZARD
	Ensure the motor is securely mounted and that the load is disconnected from the motor.
	Failure to observe this precaution can result in severe injury or equipment damage.
2	Ensure 0 V is applied to the enable input (connector X3, terminal 15).
3	Connect the PC to the drive via the serial communications cable.
4	Turn on the 24 Vdc bias supply. After the initialization procedure (< 5 seconds) the status is shown in the LED display.
5	Switch on the PC, start the UniLink software and select the serial communication port to which the drive is connected. (The parameters that are stored in the SRAM of the drive are transferred to the PC.)

Procedure for Verifying System Operation, continued


Quick Tuning Procedure,		
continued	Step	Activity
	6	Use the UniLink software to check/establish the following:
		• Drive Parameters - Set/restore the drive parameters to the factory default values
		• Supply voltage - Set the supply voltage to the actual mains supply voltage
		• Servo Motor - Select the applicable BPH servo motor.
		• Feedback - Ensure the feedback matches the feedback unit in the servo motor
	7	Check safety devices such as hardware limit switches, emergency stop circuitry and so forth.
	стор	WARNING!
	STOP	MECHANICAL MOVEMENT HAZARD
		Ensure personnel, tools and all other obstructions are clear of the equipment.
		Failure to observe this precaution can result in severe injury or equipment damage.
	8	Apply 0V to the analog command input on connector X3, terminals 4 and 5 or 6 and 7.
	9	Turn on the AC mains power supply.
	10	Enable 24 Vdc on connector X3, terminal 15. Observe that 500 ms after the power supply was switched on, the servo motor is motionless with a standstill torque of M_0 .
	11	Apply a small analog setpoint of about 0.5V (recommended) to connector X3, terminals 4 and 5 or 6 and 7. If the servo motor oscillates, the Kp parameter in the "speed controller" menu page must be reduced.


Procedure for Verifying System Operation, continued

ParameterA default parameter set is loaded into your servo amplifier by the manufacturer.settingThis contains valid and safe parameters for the current and speed controllers.

A database for motor parameters is stored in the servo amplifier. During commissioning you must select the data set for the motor that is connected and store it in the servo amplifier. For most applications these settings will already provide good control loop characteristics.

An exact description of all parameters and the possibilities for optimizing the control loop characteristics can be found in the help of Unilink.

With the PC connected to just one servo amplifier you can now use the setup software to select all amplifiers throught the preset station addresses and set up the parameters.

Front Panel Controls and Indicators

KeypadThe keypad is reserved for use with the factory-installed SERCOS expansion card.Operation

LED Display The alphanumeric display indicates drive power status conditions, error codes and warning codes. The power status conditions are shown below; error and warning codes are described in the pages that follow.

	Status 1
	Status 2
PCI	Status 3
EBL	Status 4

	Status 1:	24 Vdc switched on. Displays the firmware version then after 1 second displays Status 2, 3 or 4.
ļ	Status 2:	24 Vdc switched on. Displays the continous current rating of the drive; in this case, 1A. (Dot will be flashing.)
l I	Status 3:	24 Vdc and mains supply switched on. (Dot will be flashing.)
l l	Status 4:	24 Vdc and mains supply switched on and drive enabled. (Dot will be flashing.)

Troubleshooting

6

At a Glance

What's in this Chapter

This chapter provides information on correcting problems with the drive and contains the following topics:

Торіс	Page
Warning messages	80
Error messages	81
Troubleshooting	85

Warning Messages

Warning Identification and Description

A warning is generated when a non-fatal fault occurs. Non-fatal faults allow the drive to remain enabled and the fault relay contact to remain closed. Either of the programmable digital outputs can be programmed to indicate that a warning condition has been detected. The cause of the warning is presented as an alphanumeric code on the drive's front panel LED display; these warning codes are identified and described in the following table.

Warning Code	Designation	Explanation
n01	I ² t warning	Current threshold set by "I ² t Message" parameter was exceeded.
n02	Regen power	Power threshold set by "Max Regen Power" parameter was exceeded.
n03	Following Fault	Following error threshold set by "Following Error" parameter was exceeded.
n04	Response monitoring	Response monitoring (fieldbus) is active
n05	Mains phase	Mains phase missing. Can be disabled for single phase operation with the "Mains Phase Missing" parameter.
n06	Sw limit-switch 1	Passed software limit-switch 1.
n07	Sw limit-switch 2	Passed software limit-switch 2.
n08	Motion task error	A faulty motion task was started.
n09	No "Home" reference point	Motion task started with no "Home" reference point set.
n10	Positive Limit	Positive limit-switch activated.
n11	Negative Limit	Negative limit-switch activated.
n12	Default values	Only HIPERFACE®: motor default values loaded.
n13	Reserved	Reserved
n14	HIPERFACE®-reference mode	Attempt to reset while HIPERFACE®-reference mode was active.
n15	Table error	Velocity current table INXMODE 35 error
n16 n31	Reserved	reserved
n32	Firmware beta version	The firmware is not a released beta version
А	Reset	RESET is active at DIGITAL IN x

Error Messages

Error Identification and Description

Errors are generated when a fatal fault occurs. Fatal faults cause the drive to be disabled, the brake (if installed) to be activated and the fault relay contacts to open. Either of the programmable digital outputs can also be programmed to indicate that an error has been detected. The cause of the error is presented as an alphanumeric code on the drive's front panel LED display; these error codes are identified and described in the following table.

Error Code	Error (Fault)	Possible Cause/Corrective Action
F01	Drive heat sink overtemperature.	- Improve ventilation.
		- Reduce motion profile duty cycle.
F02	DC link voltage limit exceeded.	- Check Parameter "Mains Supply Voltage" for correct setting.
		- Supply voltage too high; use a mains transformer.
		 Regen power limit was exceeded; adjust motion profile or install larger regen resistor.
F03	Following error limit exceeded.	- Increase I _{rms} or I _{peak} (keep within motor operating range).
		- SW ramp parameters set too large.
F04	Feedback signals missing or incorrect.	- Defective feedback device.
		- Check for correct device type selected in "Feedback Type" parameter.
		- Check feedback cable and connections.
F05	DC-link voltage less then factory preset (100V).	Supply voltage not present or too low when drive was enabled. Only enable the drive when the mains supply voltage has been on longer than 500 ms.

Error Messages, continued

Error Identification			
and Description, continued	Error Code	Error (Fault)	Possible Cause/Corrective Action
	F06	Motor overtemperature.	- I _{rms} or I _{peak} set too high.
			- Defective motor
			 If motor is not hot, check feedback cables and connectors.
			- Reduce motion profile duty cycle
			- Improve ventilation of the motor
	F07	Internal 24 Vdc fault.	Return drive to manufacturer
	F08	Motor speed limit	- Feedback parameters not set correctly.
		exceeded.	- Incorrect feedback wiring.
			- Motor phases reversed.
			- Check Parameter "Overspeed" for correct setting.
	F09	EEPROM checksum error.	Return drive to manufacturer.
	F10	Flash-EPROM checksum error.	Return drive to manufacturer.
	F11	Motor brake fault.	- Brake parameter set to "WITH" when brake does not exist.
			- Defective brake.
			- Check motor power cable and connections.
	F12	Motor phase missing.	- Defective motor.
			- Check motor power cable and connections
	F13	Drive internal temperature exceeded.	- Improve ventilation.
			- Reduce motion profile duty cycle.

Error Messages, continued

Error
Identification
and Description,
continued

Error Code	Error (Fault)	Possible Cause/Corrective Action
F14	Drive output stage fault.	- Check motor cable for damage or shorts.
		- Output module is overheated; improve ventilation.
		- Short-circuit or short to ground in the external Regen resistor.
		- Motor has short-circuit/ground short; replace motor.
		- Output stage is faulty; return drive to manufacturer.
F15	l ² t maximum value exceeded.	- I _{rms} or I _{peak} set incorrectly.
		- Reduce motion profile duty cycle.
F16	Mains supply missing two or three phases.	- Check mains fuses.
	'	- Check mains wiring and connections on drive.
F17	A/D converter error.	Return drive to manufacturer
F18	Regen circuit faulty or incorrect setting.	- Check jumper on X8 if using internal regen resitor.
		- Check wiring of external regen resistor if used.
		- Check fuses of external regen resistor.
F19	Mains supply missing one phase.	 For single phase operation, set "Phase Missing" parameter to "no message".
		- Check mains supply fuses.
		- Check mains connector on drive.
		- Check mains supply wiring.
F20	Slot fault	Hardware fault of the expansion card
F21	Handling fault	Software fault of the expansion card
F22	Reserved	Reserved
F23	CAN Bus off	CAN Bus total communication error
F24	Reserved	Reserved
F25	Commutation error	Encoder system only

Error Code	Error (Fault)	Possible Cause/Corrective Action
F26	Reserved	Reserved
F27	Reserved	Reserved
F28	Reserved	Reserved
F29	Reserved	Reserved
F30	Reserved	Reserved
F31	Reserved	Reserved
F32	System error	System software not responding correctly, return drive to manufacturer.

Troubleshooting

Problems, Possible Causes and Corrective Actions

The following table identifies some common system problems, their possible causes and recommended corrective actions. However, the configuration of your installation may create other reasons, and consequently other corrections, for the problem.

Problem	Possible Causes	Corrective Actions
No communication	- Wrong cable used.	- Check cable.
with PC	- Cable plugged into wrong position in drive or PC.	- Plug cable into the correct sockets on the drive and PC.
	- Wrong PC interface selected.	- Select correct interface.
Motor does not rotate	- Drive not enabled.	- Apply enable signal
	- Break in analog input cable.	- Check cable
	- Motor phases swapped.	- Correct motor phase sequence
	- Brake not released.	- Check brake control
	- Motor is mechanically blocked.	- Check mechanism
	- Motor pole number set incorrectly.	- Set motor pole number.
		- Set up feedback correctly.
	- Feedback set up incorrectly.	

Troubleshooting, continued

nd Corrective	Problem	Possible Causes	Corrective Actions
Actions , ontinued	Motor oscillates	- Gain too high (speed controller).	- Reduce Kp (speed controller).
		- Shielding in feedback cable has a break.	- Replace feedback cable.
		- Analog Com not connected.	- Connect Analog Com to controller common.
	Poor servo performance	- Kp (speed controller) too low.	- Increase Kp (speed controller)
	(drive too soft)	- Tn (speed controller) too high.	- Use motor default value for Tn (speed controller).
		- PID-T2 too high.	- Reduce PID-T2.
		- T-Tacho too high.	- Reduce T-Tacho.
	Motor runs roughly	- Kp (speed controller) too high.	- Reduce Kp (speed controller).
		- Tn (speed controller) too low.	- Use motor default value for Tn (speed controller).
		- PID-T2 too low.	- Increase PID-T2.
		- T-Tacho too low.	- Increase T-Tacho.

Specifications

Α

At a Glance

What's in this Appendix

This appendix contains the following topics.

Торіс	Page
Performance specifications	88
Environmental and mechanical specifications	89
Electrical specifications	91
Wire specifications (recommended)	104

Performance Specifications

Performance Specifications	The following table lists 17D performance specifications.			
Table	PERFORMANCE			
	Servo updates	Torque	62.5 µsec	
		Velocity	250 µsec	
		Position	250 µsec	
	Tuning procedure	UniLink application*		
	* Included in AM0CSW001V•00 (CD-ROM)			

Environmental and Mechanical Specifications

Environmental Specifications Table The following table provides 17D environmental specifications.

ENVIRONMENTAL		
Storage	High temperature, non–operating	+70°C maximum
	Low temperature, non–operating	–25°C minimum
Humidity	Non-operating	95% RH maximum, non-condensing
	Operating	85% RH maximum, non-condensing
Operating temperature (ambient measured at fan inlet)	Full power	0 45°C
	With linear derating 2,5% / °C (available power: 75% of rated output at 55°C)	45 55°C max
Vibration (operational)	10 57 Hz	Sinusoidal, 0.75 mm amplitude
	57 150 Hz	1.0 g
Air pressure	Operating:	
	Full power	1000 m (90 kPa)
	With linear derating 1,5% / 100m (available power: 75% of rated output at 2500m)	1000 2500m (73kPa) max
	Transport	57 kPa (4540 m)
Contaminants	Pollution degree 2, as defined in EN60204/EN5017	
Cooling	Models: MHDA1004N00 MHDA1008N00 MHDA1017N00 MHDA1028N00 MHDA1056N00	Integrated heatsink with internal fan.

Environmental and Mechanical Specifications, continued

Mechanical Specifications	The following table provides 17D mechanical specifications.				
Table	Drive Model Number	Height	Width	Depth	Weight
	MHDA1004N00	325 mm	70 mm	265 mm	2.5 kg
	MHDA1008N00				
	MHDA1017N00				
	MHDA1028N00				
	MHDA1056N00	325 mm	120 mm	265 mm	3.0 kg

Electrical Specifications

What's	in	this
Sectior	۱	

This section provides tables for the following topics.

Торіс	Page
Electrical Specifications - Power	92
Electrical Specifications - Regen resistor	96
Electrical Specifications - Signal	97

Electrical Specifications - Power

Line Input
Specifications
Table

The following table provides 17D line input specifications.

LINE INPUT				
Voltage	208 Vac -10% 60 Hz, 230 Vac -10% 50 Hz. 480 Vac +10%, 50 - 60 Hz, three-phase*			
Current	MHDA1004N00	1.8 A RMS**		
	MHDA1008N00	3.6 A RMS		
	MHDA1017N00	7.2 A RMS		
	MHDA1028N00	12 A RMS		
	MHDA1056N00	24 A RMS		
Inrush current Internally limited				
Efficiency	Greater than 98%			
 * Read carefully "Electrical considerations" ** Single-phase operation permitted. 				

Electrical Specifications - Power, continued

 Bias Input
Specifications
 The following table provides 17D bias input specifications.

 Motor Brake Present
 Bias Input
 Value

 No
 Voltage
 20 ... 30 Vdc

 Current
 0.75 A to 1.2 A

 Yes
 Voltage
 24 Vdc -10%, +5%

ï₹

Note: The bias input also provides power to the optional motor brake.

3 A max.

External Fuse Specifications Table The following table provides 17D external fuse specifications.

Current

Input Type	Model Number	Fuse
Line	MHDA1004N00	6 A, time delay
	MHDA1008N00	
	MHDA1017N00	10 A, time delay
	MHDA1028N00	
	MHDA1056N00	20 A, time delay
External Regen	MHDA1004N00	4 A, fast acting*
	MHDA1008N00	
	MHDA1017N00	6 A, fast acting*
	MHDA1028N00	
	MHDA1056N00	
*Two fuses in series, >= 500 V, dimensions: 10 x 38.		

Electrical Specifications - Power, continued

Motor Output Specifications Table

Parameter Model Number Current Туре Output current (RMS) Continuous MHDA1004N00* 1.5 A MHDA1008N00 3 A MHDA1017N00 6 A MHDA1028N00 10 A MHDA1056N00 20 A Intermittent** MHDA1004N00 3 A MHDA1008N00 6 A 12 A MHDA1017N00 MHDA1028N00 20 A MHDA1056N00 40 A Switching frequency 8 kHz ± 0.1% Cable length*** 75 m (maximum) Maximum cable capacitance (motor 150 pF/m phase to ground or shield) * For single phase main connection, the output current is limited to the output current specifed above or 4 amps, whichever is lower. ** Duration depends on settings in Unilink. *** Cable lengths exceeding 25 m require the use of motor choke AM0FIL001V056

The following table provides 17D motor output specifications.

Ľ₹'

Note: Motors must be compatible with following table:

Motor Inductance:		
Model	Min (mH)	Max (mH)
MHDA1004N00	16	400
MHDA1008N00	8	200
MHDA1017N00	4	100
MHDA1028N00	3.5	60
MHDA1056N00	1.5	30

Electrical Specifications - Power, continued

Internal Power Dissipation Specifications Table The following table provides 17D internal power dissipation at maximum continuous output power. This information may be useful to size the thermal capability of the mounting cabinet.

Model Number	Power
MHDA1004N00	30 W
MHDA1008N00	40 W
MHDA1017N00	60 W
MHDA1028N00	90 W
MHDA1056N00	200 W

Note: These power dissipations are measured at maximum continuous power and should be considered worst case. Often in sizing servo systems, factors such as profile duty cycle may reduce these numbers. These values do not include power dissipated in the Regen resistor. This is application-specific and must be calculated separately.

Quiescent dissipation when output stage is disabled is 15 W

Electrical Specifications - Regen Resistor

Regen CircuitThe following table provides technical data on the Regen circuit.Specifications

Parameter		Rated data		Model Number (prefix with MHDA10)	
				04N00 08N00	17N00 28N00 56N00
Supply Voltage	3 phase,	Upper switch-on level of Regen circuit	V	400	- 430
	230 V	Switch-off level of Regen circuit	V	380	- 410
		Continuous power of Regen circuit (RBint)	W	80	200
		Continuous power of Regen circuit (RBext) maximum.	kW	0.25	0.75
		Pulse power, internal (RBint max. 1s)	kW	2.5	5
		Pulse power, external (RBext max. 1s)	kW		5
	3 phase,	Upper switch-on level of Regen circuit	V	720 - 750	
	400 V	Switch-off level of Regen circuit	V	680 - 710	
		Continuous power of Regen circuit (RBint)	W	80	200
		Continuous power of Regen circuit (RBext) max.	kW	0.4	1.2
		Pulse power, internal (RBint max. 1s)	kW	8	16
		Pulse power, external (RBext max. 1s)	kW	1	6
	3 phase,	Upper switch-on level of Regen circuit	V	840	- 870
	480 V	Switch-off level of Regen circuit	V	800 - 830	
		Continuous power of Regen circuit (RBint)	W	80	200
		Continuous power of Regen circuit (RBext) maximum.	kW	0.5	1.5
		Pulse power, internal (RBint maximum 1s)	kW	10.5	21
		Pulse power, external (RBext maximum 1s)	kW	2	:1
Internal Regen resistor			Ω	66	33
External Regen resist	or		Ω	3	3

Electrical Specifications - Signal

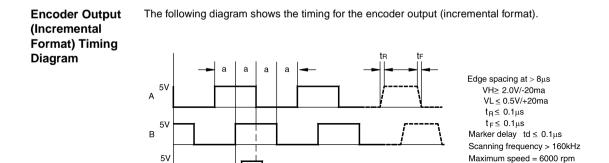
Motor Overtemperature	The following tabl	e provides 17D motor overtemperature input specifications.
Input	MOTOR OVERTEMPERATURE INPUT	
Specifications Table	Thermistor	PTC, will generate fault when resistance exceeds 290 Ω ± 10% (default value)*
	Thermostat	Closed for normal operation
*The value of the thresh (see Unilink commands)		threshold is adjustable by the parameter MAXTEMPM mands)

Resolver Input Specifications Table

The following table provides resolver input specifications.

RESOLVER	
Reference	8kHz ± 0.1%
Drive capability	35 mA RMS
Amplitude	4.75V RMS
Pair of poles	1 (default)
Resolution	14 bits (0.02°)
Accuracy	12 bits (0.09°)
Conversion method	Tracking
Resolver type	Transmit mode
Resolver transformation ratio	0.5
Loss of feedback	Detection circuit included
Maximum cable length	75 m
Maximum cable capacitance (signal connector to shield)	120 pF/m

Encoder Input Specifications Table


The following table provides 17D encoder input specifications

ENCODER INPUT			
Internal power supply	Voltage	9V ± 5%	
	Current (maximum)	200 ma	
Input Signal	but Signal Sin-Cos encoder (cyclic absolute) Sin-Cos encoder	Absolute accuracy	15 bits (39 arc-seconds or 0.01°)
		Resolution	20 bits (1.2 arc-seconds or 0.0003°)
		Turn counter	12 bits
(multi-turn absolute)	Absolute accuracy within one turn	15 bits (39 arc-seconds or 0.01°)	
		Resolution within one turn	20 bits (1.2 arc-seconds or 0.0003°)

Emulated Encoder Output (Incremental	The following table provides 17D emulated encoder output (in incremental format) specifications.		
Format)	EMULATED ENCODER OUTPUT (INCREMENTAL FORMAT)		
Specifications	Channels	A, B, and Marker	
Table	Туре	Differential, RS-485 compliant	
	Resolution with:		
	Resolver feedback	512, 1024 line count; 1024/2048/4096 edges	

512/1024/2048/4096/8192/16384 line count Sin-Cos Encoder feedback

М

 Encoder Output (SSI Format)
 The following two tables provide 17D encoder output (in SSI format) specifications

 Specifications
 ENCODER OUTPUT (SSI FORMAT) - ELECTRICAL

 Table
 Data and Clock

td td

ENCODER OUTPUT (SSI FOR	(MAT) - ELECTRICAL
Channels	Data and Clock
Туре	Differential, RS-485 compliant

ENCODER OUTPUT - SSI FORMATTING	
Primary Feedback Type Possible Emulations	
Resolver	Single-turn SSI - 12 upper bits set to 0, 12 lower bits for
Sin-Cos (single-turn)	position within one turn. Configurable for Gray or binary code.
Sin-Cos (multi-turn)	Single-turn SSI - 12 upper bits set to 0, 12 lower bits for position within one turn (SSIMODE 0). Configurable for Gray or binary code.
	Multi-turn SSI - 12 upper bits for turns count, 12 lower bits for position within one turn (SSIMODE 1). Configurable for Gray or binary code.

Fall time

(Slave) Specifications	ENCODER INPUT (SLAVE)		
Table	Channels	A and B	
	Туре	Differential, RS-485 compliant	
	Voltage	8 V nominal	
	Current	200 mA (maximum)	
	Maximum frequency	500 kHz	
	Rise time	<u>≤</u> 0.1 μs	

. _ .

Discrete Input Specifications . Table

The following table provides 17D discrete input specifications.

<u><</u> 0.1 μs

DISCRETE INPUT	
Channels	Five (four programmable and one dedicated for enable)
Туре	Solid state, optically isolated, compatible IEC1131-2 type1.
Transient isolation voltage	250 Vac (channel to chassis)
V _{IN} maximum	30 Vdc
I _{IN} @ V _{IN} = 24 V	5 mA
V _{IH} minimum	12 V (minimum input voltage to be recognized as high - true)
V _{IL} maximum	7 V (maximum input voltage to be recognized as low – false)
Scan time: Normal High speed	1 ms < 50 μsec

Discrete Output Specifications Table	The following table provides 17D discrete output specifications.					
	Channels	Two				
	Туре	Solid state: open collector 30 Vdc max., optically isolated				
	Transient isolation voltage	250 Vac (channel to chassis)				
	Sense	True low, sinking				
	I _{OUT}	10 mA maximum				
	Protection	Yes (PTC resistor 25 Ohm)				
	Scan time	1 ms				

Fault Relay Output	The following table provides 17D fault relay output specifications.				
Specifications Table	FAULT RE	LAY OUTPUT]		
	Туре	Relay contact			
	Sense	True (open)			
	V _{MAX}	36 Vdc; 42 Vac			

I_{OUT}

Brake Output Specifications	The following table provides 17D brake output specifications.				
Table	BRAKE OUT	PUT			
	V _{OUT}	Internally connected to			

500 mA resistive

V _{OUT}	Internally connected to bias supply
I _{OUT}	2 A (maximum)

I

Note: An external brake relay is required for cable lengths greater than 50 m.

Analog Input Specifications Table

The following table lists the analog inputs specifications.

ANALOG INPUTS	
Channels	Тwo
Туре	Differential, non-isolated
Maximum common mode voltage referenced to AGND	±10V
Measurement range	±10 Vdc
Maximum differential input	±12 V
Accuracy	12 bits
Resolution	Input 1 = 14 bits (±10V range)
	Input 2 = 12 bits (±10V range)
Input impedance	20 κΩ
Scan time	250 μs

Analog Output Specifications Table

The following table lists the analog output specifications.

ANALOG OUTPUTS	
Channels	Two
Туре	Single-ended, non-isolated referenced to AGND
V _{OUT}	± 10 V
I _{OUT}	± 5 mA
Output impedance	2.2 kΩ
Maximum load capacitance	0.1µF
Resolution	10 bits
Update time	5 msec

Serial Communications	The following	table lists the serial communications	s specifications.
Specifications	SERIAL I/O		
Table	Data bits	Eight	
	Stop bits	One	
	Parity	None	
	Baud rate	9600	

Wire Specifications (Recommended)

Wire Specifications

The following table lists the recommended wire specifications. Use only copper wire with insulation rated at 75°C or greater, unless otherwise specified.

Item	Drive Model No.	Wire Size	Notes
AC mains	MHDA1004N00 MHDA1008N00 MHDA1017N00 MHDA1028N00	1.5 mm ² (14 AWG)	
	MHDA1056N00	4.0 mm ² (12 AWG)	
Protective earth	All	4.0 mm ² (12 AWG)	
DC Link	MHDA1004N00 MHDA1008N00 MHDA1017N00 MHDA1028N00	1.5 mm ² (14 AWG)	Shielded for lengths greater than 20cm
	MHDA1056N00	4.0 mm ² (12 AWG)	Shielded for lengths greater than 20cm
Analog signals	All	0.25 mm ² (22 AWG) minimum	Twisted pairs, shielded
Digital I/O and Fault Relay	All	0.5 mm ² (20 AWG) minimum	
Brake	All	1.0 mm ² (18 AWG) minimum	Shielded
Bias power	All	2.5 mm ² (14 AWG) maximum	
External Regen resistor	All	1.5 mm ² (14 AWG)	High temperature insulation (155°C or greater)

Parts List

Β

At a Glance

What's in this Appendix

This appendix contains information about the following Lexium 17D parts and assemblies.

Торіс	Page
Lexium 17D drives	106
Drive cables	108
Regen resistor assemblies	109
Servo motor choke	110
Spare parts	111

Lexium 17D Drives

Drives Available The Lexium 17D drives are available in five models according to different output current levels as identified in the following table.

Model	Intermittent (Peak) Output Current	Continuous (RMS) Output Current
MHDA1004N00	4.2 A	1.5 A
MHDA1008N00	8.4 A	3.0 A
MHDA1017N00	16.8 A	6.0 A
MHDA1028N00	28.0 A	10.0 A
MHDA1056N00	56.0 A	20.0 A

Lexium 17D Drives, continued

External 24VdcA reminder of the a 24 V consumption for the Lexium MHDA/MHDS servodrivessupplywith BHP motors is given below.

Lexium servodrive	MHD•10 1008N0		MHD•′	1017N00	MHD•1028N00		MHD•1056N00		
Associated BPH motor	075•	095•	095•	115•	095•	115•	142•	142•	190•
Current without brake (A)	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1.2	1.2
Current with brake (A)	1.25	1.45	1.45	1.55	1.45	1.55	1.75	2.2	2.7
Description	Outpu	t voltage	Ra	ating	Para	llel conr	nection	Ref.	Weight
		v		Α					Kg
Module ~ 100240 V 50/60 - 400 Hz and 125 Vdc		Vdc ELV		1.1		Yes		TSX SUP 1011 (1) (2)	0.720
Module ~ 100120 V and ~ 200240V,		Vdc ELV	:	2.2	Yes		TSX SUP 1021 (1) (2)	1.090	
50/60 - 400 Hz				5	Yes		TSX SUP 1051 (1) (2)	1.120	
Unit ~ 100120V and ~ 200240V, 50/60 - 400 Hz		Vdc ELV		10 Yes		TSX SUP 1101 (1)	2.100		
(1) Product supplied as	standa	rd with a	bilingu	al refere	nce gu	ide: Fr	ench ar	d English.	

(2) Mounted in Premium TSX RKY 6/8/12/6E/8E/12E racks (any slot except the slot for TSX PSY••0M power supply modules), on AM1-DE200/DP200 rails or on AM1-PA mounting plate.

Drive Cables					
Drive to Motor Cables	Consult the BPH part numbers.	mo	tors manual for dri	ve-to-motor cable part nu	mbers and motor
RS-232 Serial Communications	To connect the d	rive'	s serial interface p	ort to your PC, use the fo	llowing cable.
Cable Part Table	Part Number		Description	ן	
	AM0CAV001V003		3 m cable		
Encoder Output Cables Parts Table	The following tab		sts encoder output	cables for the Lexium 17	D drive.
	TSXCXP235		m 17D to CAY, incre	mental format	-
	TSXCXP635		m 17D to CAY, incre		
	TSXCXP245	2	m 17D to CAY, SSI 1	format	-
	TSXCXP645	6	m 17D to CAY, SSI f	format	_
	690MC100206	6	m 17D to tinned lead	ds	1
	690MC100206	6	m 17D to tinned lead	ds	

Regen Resistor Assemblies

Regen Resistor Assembly Part Table The following table identifies the external Regen resistor assemblies available for the Lexium 17D drive.

Part Number	Description
AM0RFE001V025	33Ω, 250 W, Regen resistor
AM0RFE001V050	33Ω, 500 W, Regen resistor
AM0RFE001V150	33Ω, 1,500 W, Regen resistor

Servo Motor Choke

Servo Motor Choke Part C

These following table identifies the servo motor choke available for the Lexium 17D drive.

Part Number	Description
AM0FIL001V056	Motor choke

Spare Parts

Spare Parts Table These field-replaceable spare parts are available from Schneider.

Part Number	Description
AM0SPA001V000	17D Connector Kit: I/O connector 24 V connector DC Bus connector Regen resistor connector Mains supply connector

Drive-to-Controller Wiring Diagrams

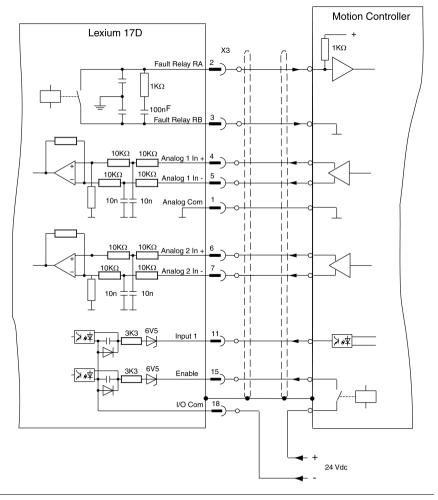
At a Glance

What's in this Appendix

This appendix provides diagrams that show you how to wire the signal connections between the Lexium 17D drive and all the Schneider closed-loop positioning modules that support it:

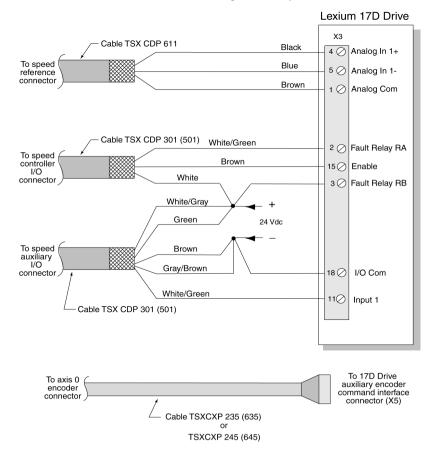
- Typical motion controller interface connections
- Modicon MOT 201 compact motion module
- Modicon Quantum Automation Series 140 MSx 101 00 motion modules
- Modicon B885-11x motion modules
- TSX Premium CAY motion modules

This appendix presents the following topics:


Торіс	Page
Typical motion controller interface connections	
Wiring a 17D drive to TSX Premium CAY motion modules	115
Wiring a 17D drive to a MOT 201 motion module	
Wiring a 17D drive to Quantum 140 MSx motion modules	121
Wiring a 17D drive to B885-11x motion modules	122

Typical Motion Controller Interface Connections

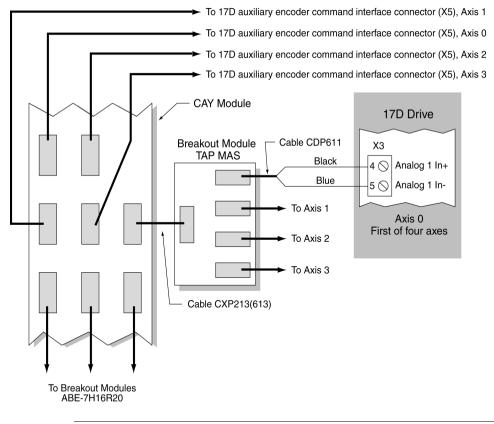
Motion Controller Interface Diagram The following diagram shows the connections between the 17D drive and a typical motion controller. (Refer to the list of pre-programmed functions contained in the UniLink online help.)



Note: The Analog Com must always be connected to the Controller Com as a ground reference.

Wiring a 17D Drive to TSX Premium CAY Motion Modules

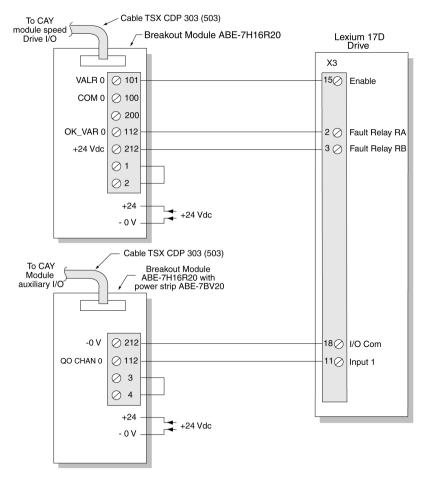
TSX Premium CAY Single Axis Drive Option Diagram The following diagram shows wiring between a TSX Premium CAY motion module and the X3 connector on a single Lexium 17D axis.



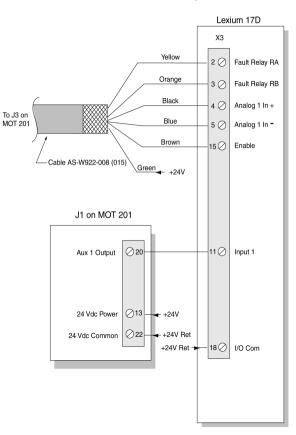
TSX Premium CAY Single Drive Option

Wiring a 17D Drive to TSX Premium CAY Motion Modules, continued

TSX Premium CAY Multi-Axis Breakout Module Wiring Diagram The following diagram shows how the TAP MAS breakout module facilitates wiring between a TSX Premium CAY multi-axis motion module and the Lexium 17D Analog I/O connector. This represents the first of four axes. It also shows wiring from the motion module to the Lexium 17D auxiliary encoder command interface connectors (X5) for four axes.


TSX Premium CAY Multi-Axis Motion Module and Breakout Module for Four 17D Axes

Wiring a 17D Drive to TSX Premium CAY Motion Modules, continued


TSX Premium CAY Multi-Axis and Breakout Module Diagram, First of Four Axes The following diagram shows how breakout module ABE-7H16R20 facilitates wiring from the TSX Premium CAY multi-axis motion module and the Lexium 17D X3 connector. This represents the first of four axes.

TSX Premium CAY Multi-Axis Breakout Modules Wiring, First of Four Axes

Wiring a 17D Drive to a MOT 201 Motion Module

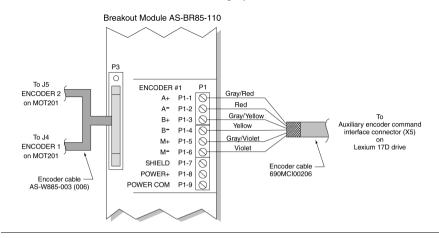
MOT 201 ControlThe following diagram shows the wiring between the MOT 201 connectors J3 and
J1 and the Lexium 17D drive X3 connector as well as the 24 Vdc bias field power
connection.

MOT 201 Control Wiring

Continued on next page

Wiring a 17D Drive to a MOT 201 Motion Module, continued

MOT 201 Encoder Wiring Diagram: Option 1 The following diagram shows the wiring between the MOT 201 connector J4 and the Lexium 17D drive and the auxiliary encoder command Interface connector (X5).

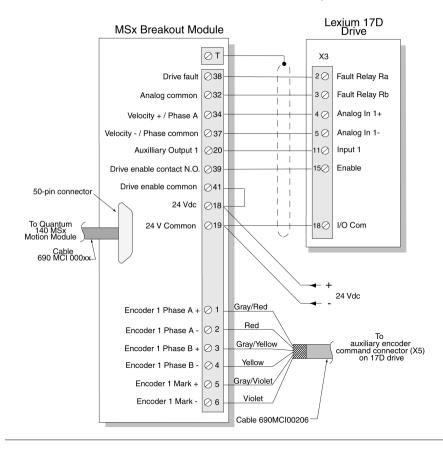

To auxiliary encoder command interface connector (X5)

MOT 201 Encoder Wiring Option 1

on Lexium 17D drive Blue 5 A + White 6 В+ Orange 2 M + To J4 on MOT 201 Green 4 A -Brown 7 в-Violet ้ 3 м-User-installed DB 9 femaleconnector on cable AS-W922-008 (015)

Wiring a 17D Drive to a MOT 201 Motion Module, continued

MOT 201 Encoder Wiring Diagram: Option 2 The following diagram shows how the AS-BR85-110 breakout module facilitates encoder wiring between a MOT 201 motion module and an Lexium 17D drive. At one end, the MOT J5 and J4 connectors are plugged into the breakout module P3 connector. At the other end, the breakout module P1 connector is wired to the drive's auxiliary encoder command Interface connector.



MOT 201 Encoder Wiring Option 2

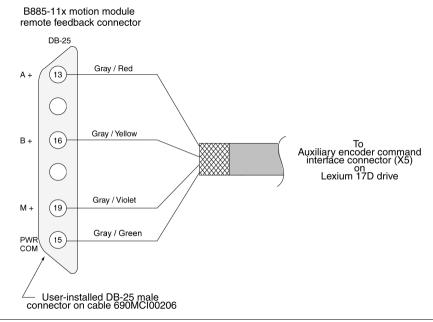
Wiring a 17D Drive to Quantum 140 MSx Motion Modules

Quantum 140 MSx Control and Encoder Wiring Diagram The following diagram shows how a Quantum 140 MSx breakout module facilitates control and encoder wiring between a Quantum 140 MSx 101 00 motion module and an Lexium 17D drive.

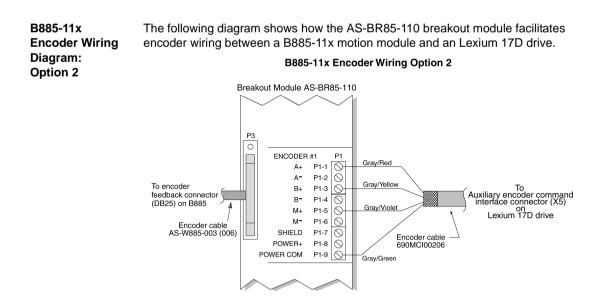
Quantum 140 MSx 101 00 Control and Encoder Wiring

Wiring a 17D Drive to B885-11x Motion Modules

B885-11x ControlThe following diagram shows the wiring between a B885-11x motion module
connectors TB1 and TB3 to the Lexium 17D drive X3 connector.



B885-11x Control Wiring


Wiring a 17D Drive to B885-11x Motion Modules, continued

B885-11x Encoder Wiring Diagram: Option 1 The following diagram shows the encoder wiring between the B885-11x motion module DB-25 connector and the Lexium 17D drive auxiliary encoder command interface connector (X5).

Wiring a 17D Drive to B885-11x Motion Modules, continued

Cable Connection Wiring Diagrams

D

At a Glance

What's in this Appendix

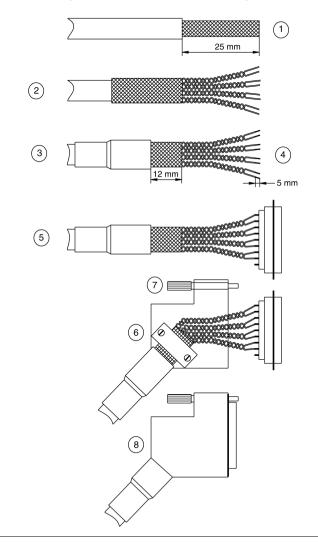
This appendix provides procedures and diagrams that show you how to wire certain cable connectors that are used with the Lexium 17D drive.

This appendix presents the following topics.

Торіс	Page
Wiring a Sub-D connector with shielding	126
Wiring up the motor power connector (drive end)	
Serial communications interface connector (X6)	131

Wiring a Sub-D Connector with Shielding

Wiring the Sub-D Connector

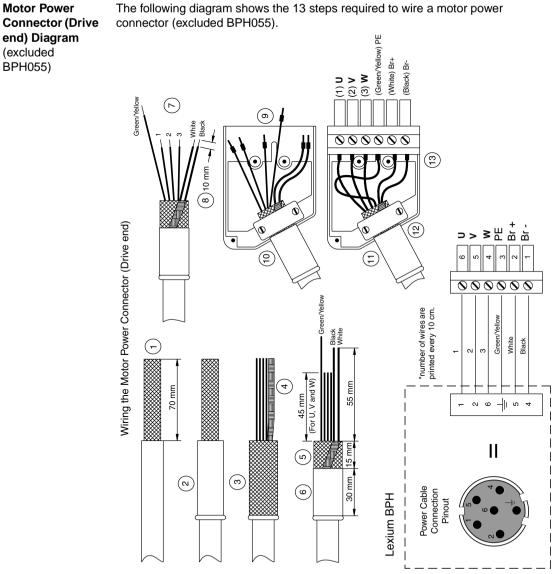

If you construct your own Sub-D connector with shielding, please do so according to the following procedure which correlates to the eight steps in the diagram that follows this procedure.

Step	Action
1	Carefully remove about 25mm of the outer covering while taking care not to damage the braided shield.
2	Push the exposed braided shield back over the outer covering.
3	Leave the first 12mm of the braided shield free and insulate the rear portion with shrink tubing.
4	Carefully strip about 5mm from the individual wires while taking care not to damage the copper strands.
5	Verify pin assignments then solder the individual wires to the solder cups of the Sub-D connector. (Check the wire colors.)
6	Attach the cable to the connector housing strain relief; the strain relief must have good contact with the exposed shielding of the cable.
7	Place the knurled screws in position.
8	Place the Sub-D connector in the groove of the half-housing (pin 1 at bottom) and press the two halves together.
	Note: Once the halves of the housing have been pressed together, they cannot be opened without damaging them.

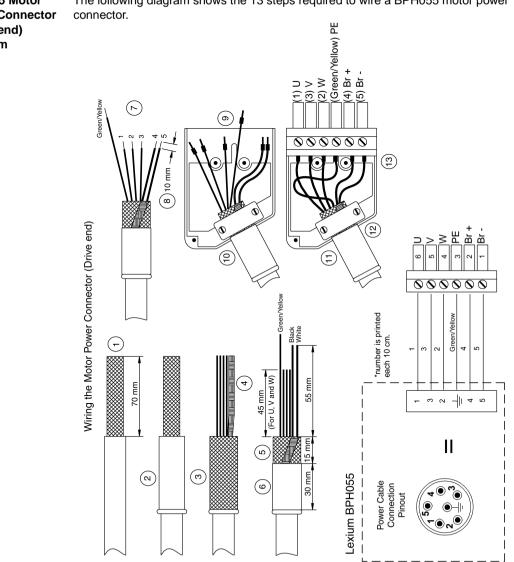
Wiring a Sub-D Connector with Shielding, continued

Sub-D ConnectorThe following diagram shows the eight steps required to wire a Sub-D connector
with shielding.

Wiring a Sub-D Connector with Shielding


Wiring the Motor Power Connector (Drive end)

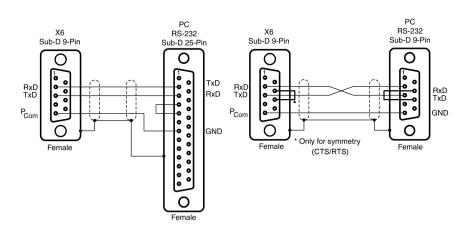
Wiring the Motor Power Connector


If you construct your own motor power connector, please do so according to the following procedure which correlates to the 13 steps in the diagram that follows this procedure.

Step	Action
1	Carefully remove about 70 mm of the outer jacket while taking care not to damage the braided shield.
2	Push the grommet over the cable until the end is flush with the jacket.
3	Push the outer braided shield back over the grommet.
4	Position the shielding for the brake wires over the outer shielding braid and ensure good electrical contact.
5	Push the filling wires and protective cloth back over the shielding.
6	Push the shrink tubing (30mm long) over the shielding and leave about 15mm exposed.
7	Use a hot-air blower to shrink the tubing then shorten the wires for U, V, W to 45mm and those for BR+, BR- to 55mm.
8	Carefully remove about 10mm of the ends of the wires while taking care not to damage the copper strands.
9	Attach crimp ferrules to the ends of the wires
10	Place the shielding plate in the connector housing and push the contact tabs into the PE terminal clamp of the connector.
11	Attach the cable with the strain relief.
12	Ensure the clamping loop of the strain relief sits properly on the shielding braid.
13	Push the wire ferrules into the corresponding terminals in the connector and tighten.

Wiring the Motor Power Connector (Drive end), continued

Wiring the Motor Power Connector (Drive end), continued



BPH055 Motor **Power Connector** (Drive end) Diagram

The following diagram shows the 13 steps required to wire a BPH055 motor power

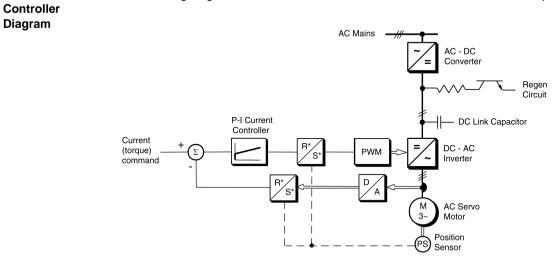
Serial Communication Interface Connection (X6)

Serial Communication Interface Cable Connectors The following diagram details the null modem connection between the drive and a PC.

Servo Loop Diagrams

Ε

At a Glance

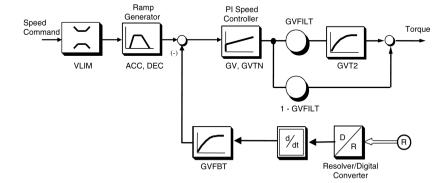

What's in this Appendix

This appendix illustrates several servo loops within a 17D single-axis system.

Торіс	Page
17D current controller overview	134
17D velocity controller loop	135
17D analog input loop diagrams	136

17D Current Controller Overview

17D Current

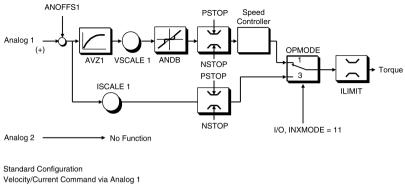


The following diagram shows an overview of the 17D current controller servo loop.

* R = Rotor oriented (I_d, I_q); S = Stator oriented (I_a, I_b, I_c)

17D Velocity Controller Loop

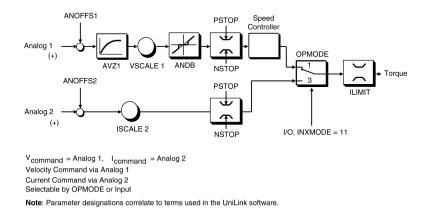
17D Velocity Controller Loop Diagram The following diagram shows a 17D velocity controller servo loop.

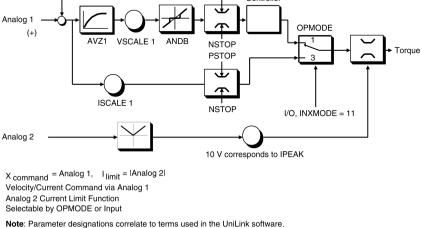


Note: Parameter designations correlate to terms used in the UniLink software.

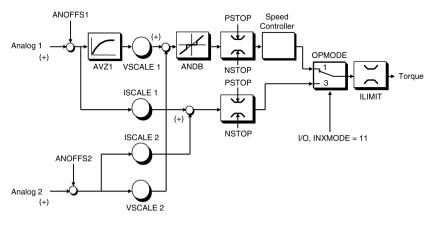
17D Analog Input Loop Diagrams

Overview The following illustrations show simplified servo loops for analog input Modes 0, 1, 2, 3 and 4.

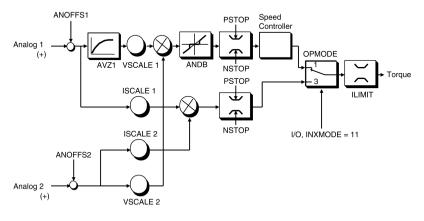

17D Analog Input The following diagram shows an 17D analog input Mode 0 servo loop. **Mode 0 Loop Diagram**


Velocity/Current Command via Analog Analog 2 no Function Selectable by OPMODE or Input

Note: Parameter designations correlate to terms used in the UniLink software.


17D Analog Input The following diagram shows an analog input Mode 1 servo loop. Mode 1 Loop Diagram

17D Analog Input Mode 2 Loop Diagram ANOFFS1 Analog 1 Analog 1 Analog 1 AnoFFS1 ANO


17D Analog Input The following diagram shows an analog input Mode 3 servo loop. **Mode 3 Loop Diagram**

X_{command} = Analog 1 + Analog 2 Sum of Velocity/Current Command Analog 1 and Analog 2 Selectable by OPMODE or Input

Note: Parameter designations correlate to terms used in the UniLink software.

17D Analog Input The following diagram shows an analog input Mode 4 servo loop. **Mode 4 Loop Diagram**

X _{command} = Analog 1 * Analog 2 Product of Velocity/Current Command Analog 1 and Analog 2 Selectable by OPMODE or Input

Note: Parameter designations correlate to terms used in the UniLink software.

Expansion Options

F

At a Glance

What's in this Appendix

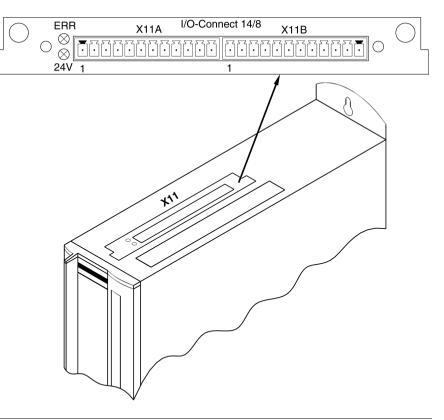
This appendix contains the following topics.

Торіс	Page
Expansion cards	142
Modbus Plus Communication Card	143
I/O Expansion Cards	144

Expansion Cards					
Overview	The Lexium 17 drive includes a standard expansion slot which can be used to increase the functionality of the drive. This slot can accommodate one expansion card. Available expansion cards are a 24 Vdc discrete I/O expansion card and a Modbus+ communication card.				
Fitting expansion card	If you want to fit an expansion card into the Lexium 17 D, please observe the followin:				
	 Unscrew the two relevant bolts and detach the cover from the expansion/option slot. Take care that no small items (such as bolts) fall into the guide rails that are provided. 				
	 Push the expansion card carefully, and without twisting it, into the guide rails that are provided. 				
	 Press the expansion card firmly into the slot, until the front cover sits on the fixing lugs. This ensures that the connector has a good contact. 				
	• Screw the bolts in the front cover into the threaded holes in the fixing lugs.				

Modbus Plus Communication Card

Modbus Plus Communication Card	The Modbus Plus AM0MBP001V000 communication card is used to connect a Lexium analog Drive to Modbus Plus networks.			
	The Lexium 17D drive can receive and respond to periodic data and messaging when functioning as a network node.			
	This data exchange enables a network to access some Lexium drive functions such as:			
	Remote loading of configuration parameters			
	Command and control			
	Monitoring			
	Diagnostics			
	WARNING: This card can be only used with analog 17D drives with RL (Revision Level) >=08.			


I/O Expansion Cards

Connector and

LED Location Diagram

24 Vdc Discrete I/O Expansion Card	The 24 Vdc discrete I/O Expansion Card (I/O Card) increases the available I/O to the drive. With the I/O Card installed, the drive can accommodate an additional 14 discrete inputs and 8 discrete outputs which are fully compatible with Modicon/Tele- mecanique family of PLCs. The drive must be powered off (both the AC Mains and the 24 Vdc Bias Supply) when the I/O Card is installed. The card is automatically recognized upon power-up of the drive.

The following diagram shows the locations of the Light-Emitting Diodes (LEDs) and the connectors for the I/O Expansion Card.

I/O Expansion Cards, continued

Light-Emitting Diodes (LEDs) As shown in the diagram above, the two LEDs are mounted next to the terminals on the expansion card. The green LED signals that the 24 Vdc bias supply is available for the expansion card. The red LED signals faults in the outputs from the expansion card (overload of the switching elements, short-circuit).

TerminalThe terminal assignments for I/O connector X11A are provided in the following
table.

CONNECTOR X11A				
Terminal	Function	Signal Identification	Notes	
1	Input	A0	Motion task number 2 ⁰ (LSB)	
2	Input	A1	Motion task number 2 ¹	
3	Input	A2	Motion task number 2 ²	
4	Input	A3	Motion task number 2 ³	
5	Input	A4	Motion task number 2 ⁴	
6	Input	A5	Motion task number 2 ⁵	
7	Input	A6	Motion task number 2 ⁶	
8	Input	A7	Motion task number 2 ⁷ (MSB)	
9	Input	Reference		
10	Input	Sfault clear	See UniLink	
11	Input	Start MT Next	online help.	
12	Input	Start Jog v=x		

I/O Expansion Cards, continued

Terminal	
Assignments,	
continued	

The terminal assignments for I/O connector X11B are provided in the following table.

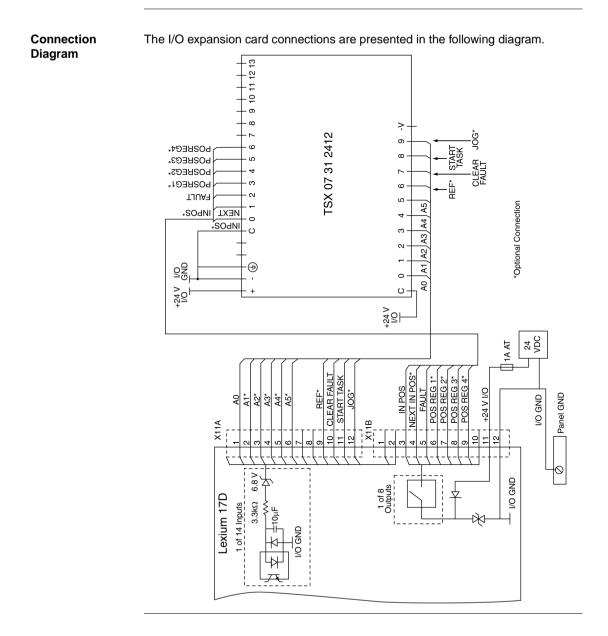
CONNECT	CONNECTOR X11B				
Terminal	Function	Signal Identification	Notes		
1	Input	Motion task restart			
2	Input	Start motion task number X			
3	Output	InPos	See		
4	Output	Next-InPos	UniLink		
5	Output	Sfault	online help.		
6	Output	PosReg1			
7	Output	PosReg2			
8	Output	PosReg3			
9	Output	PosReg4			
10	Output	Not Used	Reserved for future use		
11	Power	24 Vdc	Auxiliary supply voltage		
12	Power	I/O-Gnd	Digital ground (for controls)		

I/O Expansion Card, continued

Controlling Pre- programmed Motion Tasks	The additional I/O points provided by the expansion card are used for controlling the execution of pre-programmed, independent motion tasks which can be stored in the drive via the Unilink configuration software. The I/O is used to provide the address of the next internally stored motion task to be executed by the drive and to synchronize the start and finish of these tasks. When connected through this simple discrete I/O interface to a Modicon/Telemecanique PLC, a very cost effective, high functionality single axis positioner can be realized without the expense of purchasing any special external positioning modules.
Programming the PLC	As the interface between the drive and the PLC is realized with standard discrete I/O in this configuration, the user is free to program the PLC in any preferred lan- guage. The PLC will handle all program flow and branching while the drive will exe- cute the appropriate motion task when commanded by the PLC. Up to 180 separate motion tasks can be stored in the drive's standard non-volatile memory. An additional 75 motion tasks can be stored in the drive's volatile memory at sys- tem start-up.
Motion Task Coordination	Coordination between the PLC and the drive is achieved through the "In position" output of the drive, the "Start next motion task" input to the drive and the required discrete inputs to the drive corresponding to the binary decoded address of the next motion task to be executed.
Motion Task Application Examples	Two examples of motion task applications are as follows: • If the application under consideration requires configuration and storage of 50 separate motion tasks in the drive, then 6 discrete inputs to the drive must be reserved to uniquely address each task with a 7th discrete input of the drive dedicated to the "Start next motion task" bit and a discrete output of the drive dedicated to the "In position" bit.

I/O Expansion Card, continued

Motion Task Application Examples, continued If the application under consideration requires only 4 separate motion tasks in the drive, then only 2 discrete inputs to the drive need be reserved to uniquely address the stored motion tasks along with the dedicated "In position" and "Start next motion task" bits.



Note: A complete description of the operation of the drive's internal positioner and stored motion tasks can be found in the Unilink online help.

Example of a Motion Task Number An example of a motion task number is provided in the following table.

Motion Task Number								
Decimal				Bin	ary			
	A7	A6	A5	A4	A3	A2	A1	A0
174	1	0	1	0	1	1	1	0

I/O Expansion Card, continued

149

External Regen Resistor Sizing

G

At a Glance

What's in thisThis appendix contains descriptions and procedures for calculating the powerAppendixdissipation requirements for the external Regen resistor.

This appendix presents the following topics.

Торіс	Page
Determining external Regen resistor size	153
Example Regen resistor power dissipation calculation	155

At a Glance, continued

Overview	When the drive is braking or decelerating a moving load, the kinetic energy of the load must be absorbed by the drive. As the drive decelerates the load, this energy charges the DC link capacitors to successively higher voltages. To prevent damage to the internal electronics, a shunt regulator circuit will apply the Regen resistor across the capacitors when the voltage rises to a set voltage level (determined by the "Mains Voltage" parameter). This dissipates the remaining energy as heat in the Regen resistor. The energy dissipated by the Regen resistor must be calculated in order to determine the proper power rating of the resistor.
Determining When Energy Is Absorbed	To determine when the drive is absorbing energy, examine the motion profile (that is, a graphical plot) of axis speed and torque applied to the motor. Whenever the sign (+ or -) of the torque applied to the motor is opposite that of the speed, the drive is absorbing energy. This typically happens when the drive is decelerating the motor, the motor is controlling tension in a web application, or the motor is lowering a mass in a vertical axis.

Determining External Regen Resistor Size

Power Dissipation Calculation Procedure The following is the procedure for calculating the power dissipated by the Regen resistor in a simple system wherein friction is negligible. Ignoring friction in the following calculations gives worst case results since friction will absorb a portion of the energy during deceleration. An example of each step in this procedure is provided later in this chapter.

Step	Action				
1	Plot speed versus time and torque versus time for the entire move cycle. (Magnitude of the torque is not required; only the direction is required.)				
2	Identify each section of the plot where the drive is decelerating the load or where speed and torque have opposite signs.				
3	Calculate the energy returned to the drive in each deceleration using the formula E = $\frac{1}{2} J_t \omega^2$ Where E = Energy in joules J_t = Total system inertia, including motor, in kg(m ²) ω = Speed at start of deceleration in radians per second (ω = 2 π RPM / 60)				
4	Compare the energy in each deceleration with the energy required to turn on the Regen circuit. (See Drive Energy Absorption Capability table.) If the energy is less than that listed in the table, disregard that deceleration for the remainder of the calculations.				
5	Calculate the energy dissipated by the Regen resistor by subtracting the energy listed in the table from the energy of the deceleration. $E_{dissipated} = E_{generated} - E_{absorbed by capacitors}$				
6	Calculate the pulse power of each deceleration by dividing the dissipated energy by the time of the deceleration. $P_{pulse} = E_{dissipated} / T_{decel (seconds)}$				
7	Calculate the continuous power dissipated by the Regen resistor by totaling all the dissipated energy and dividing it by the total cycle time. P _{continuous} = (E1 _{dissipated} + E2 _{dissipated} ++En _{dissipated}) / T _{total cycle} (seconds)				

Determining External Regen Resistor Size, continued

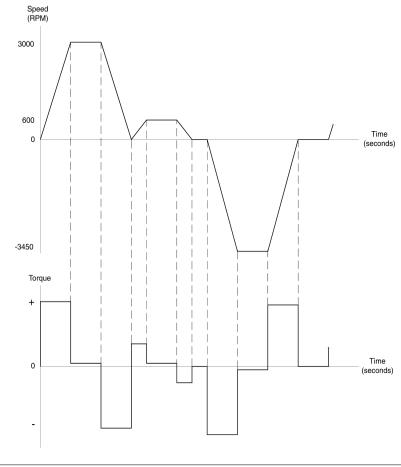
י ב	Step	Action
	8	Compare the pulse power and the continuous power calculated with the ratings of the internal Regen resistor in the drive. If either one is greater then an external Regen resistor must be chosen and installed. (See the Parts List appendix for a list of the available external Regen resistors.)

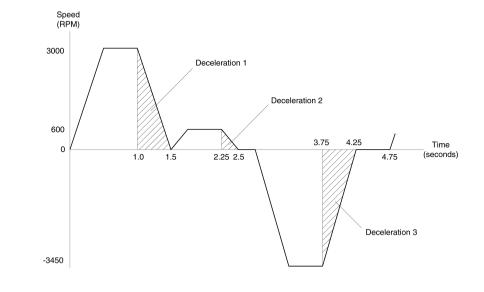
Drive Energy Absorption Capability

The drive energy absorption capability values (in joules) that are needed during the sizing calculations are provided in the following table.

Drive Energy Absorption Capability (joules)							
Line Volta	ige	230 VAC	400 VAC	480 VAC			
Drive Model Number	MHDA1004N00 MHDA1008N00 MHDA1017N00 MHDA1028N00	5	19	23			
	MHDA1056N00	10	38	47			

Note: Multiple drives can be interconnected via the DC-Link. When this is done, the energy absorption capability of the drives and the continuous power ratings of the Regen resistors are additive. The energy absorbed by the drives must be calculated by superimposing all the time speed plots and calculating the energy generated by each axis. (For calculating the power in complex multi-drive applications contact Schneider Electric for assistance.)


Example Motor and Drive Specifications The following is an example application of each step in the power dissipation calculation procedure using the motor, drive and input power specifications identified below. Refer to the power dissipation calculation procedure presented earlier in this chapter.


Motor = BPH1423N with brake

Total Inertia $(J_T) = J_M + J_B + J_L = 0.002 + 0.001 + 0.007 = 0.01 \text{ kgm}^2$ where: Motor inertia $(J_M) = 0.002 \text{ kg}(m^2)$ Brake inertia $(J_B) = 0.001 \text{ kg}(m^2)$ Load inertia $(J_L) = 0.007 \text{ kg}(m^2)$

- Drive = MHDA1028N00
- Line Voltage = 480 Vac

Example Step 1 Plot speed versus time and torque versus time for the entire move cycle.

Example Step 2 Identify each deceleration of the plot where the drive is decelerating the load.

Example Step 3 Calculate the energy returned to the drive in each deceleration as follows:

Deceleration 1

 $\omega = 2 \pi 3000$ RPM / 60 = 314 radians/sec E = $\frac{1}{2} 0.01$ kgm² (314 radians/sec)² = 493 joules

Deceleration 2

 $\omega = 2 \pi 600$ RPM / 60 = 63 radians/sec E = $\frac{1}{2} 0.01$ kgm² (63 radians/sec)² = 20 joules

Deceleration 3

ω = 2 π 3450RPM / 60 = 361 radians/sec E = ½ 0.01kgm² (361 radians/sec) ² = 652 joules

Example Step 4	Compare the energy in each deceleration with the energy required to turn on the Regen circuit (that is, the energy absorbed by the internal capacitors).				
	As specified in the Drive Energy Absorption Capability table, the MHDA1028N00 drive at 480 Vac can absorb 23 joules without turning on the Regen resistor circuit.				
	Deceleration 1: 493 joules > 23 joules				
	Deceleration 2: 20 joules < 23 joules (disregard this segment in the remaining steps)				
	Deceleration 3: 652 joules > 23 joules				
Example Step 5	Calculate dissipated energy as follows:				
	Deceleration 1: $E = 493 - 23 = 470$ joules				
	Deceleration 3: $E = 652 - 23 = 629$ joules				
Example Step 6	Calculate the pulse power as follows:				
	Deceleration 1: P _{pulse} = 470 joules / 0.5 seconds = 940 watts				
	Deceleration 3: P _{pulse} = 629 joules / 0.5 seconds = 1258 watts				
Example Step 7	Calculate continuous power as follows:				
	P _{continuous} = (470 joules + 629 joules) / 4.75 seconds = 231 watts				
	Continued on next page				

Example Step 8Compare the ratings as follows:Internal Regen resistor ratings of the MHDA1028N00: $P_{pulse} = 21 \text{ kW}$ $P_{continuous} = 200W$ Deceleration 1: $P_{pulse} = 940W < 21 \text{ kW}$ ratingDeceleration 2: $P_{pulse} = 1258W < 21 \text{ kW}$ rating $P_{continuous} = 231W > 200W$ Requires an external Regen resistor be used. Select the 250W external
Regen resistor or modify the profile to reduce the continuous power
dissipated.

Index

Α

AC mains power supply connection, 47 acronyms and abbreviations, 12 additional safety guidelines, 9 air flow, 34 analog I/O connection, 62 input mode 0 servo loop, 136 input specifications, 102 output specifications, 102 automatic card recognition, 28 auxiliary encoder interface, 59

В

B885-11x control wiring, 122 encoder wiring, 123, 124 wiring to drive, 122 bias input specifications, 93 power, 25 supply, connection, 47 BPH055 Motor Power Connector (Drive end) Diagram, 130 brake output specifications, 101 breakout module wiring for TSX Premium CAY, 116, 117

С

cable separation, 34 shield connections, 45 cables drive to motor, 108 parts list, 108 CAN bus cable. 68 CANopen Interface, 67 connection diagram for LEXIUM 17 D. 43 control wiring B885-11x. 122 MOT 201, 118 Quantum 140 MSx. 121 controlling pre-programmed motion tasks, 147 current controller servo loop, 134

D

DC Link capacitor recharging, 26 default settings, 28 determining external regen resistor size, 153 digital control, 22 digital inputs and outputs, 64 dimensions, physical, 42, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 60, 62, 63, 64, 114, 144, 149 discrete input specifications, 100 output specifications, 101 document scope, 1 drive and mounting area dimensions, 36 drive dimensions, 35 drive energy absorption capability, 154 drive implementation, 16 drive models, 16, 106 drive mounting and physical dimensions, 35 drive to motor cables, 108 drives, family, 18 drives, front view, 19 drive-to-motor cables, 108

Ε

earth connections, 34 EC directive compliance, 10 electric shock hazards. 6 electrical considerations, 17 electrical specifications, 91, 95 electrical specifications, power, 92 electrical specifications. Regen resistor, 96 electrical specifications, signal, 97 electrostatic components precaution. 8 emergency stop strategies, 73 EMI suppression, 25 encode input connection, 56 encoder input specifications, 98 output cables, 108 output specifications, 98, 99, 100 output timing, 99 wiring for MOT 20x, 119, 120 wiring for Quantum 140 MSx. 121 wiring to B885-11x, 123, 124 environmental and mechanical specifications, 89 environmental specifications, 89 equipment available, 20 equipment supplied, 20 error identification and description, 81 error messages, 81 european directives and standards. 10 example motor and drive specifications, 155

expansion card, 142 external 24Vdc supply, 107 external fuse specifications, 93 external regen resistor mounting and physical dimensions, 37 external regen resistor, connection, 48

F

fault relay and digital I/O, connection, 64 fault relay output specifications, 101 fitting expansion card, 142 front panel controls and indicators, 78

G

general characteristics, 25 grounding, 41

Η

hazards and warnings, 6

I

I/O expansion card connection diagram, 149
incremental encoder output, connection, 57
incremental encoder output, functional description, 57
incremental-encoder input, connection, 60
installation considerations, 34
installation safety precautions, 32
internal electronics, block diagram, 24
internal power, 26
internal power dissipation specifications, 95

Κ

keypad operation, 78

L

LED display, 27, 78

Lexium 17D drives, 106 Lexium BPH resolver connection (excluded BPH055), 54 Lexium BPH055 resolver connection, 55 line input specifications, 92

Μ

master-slave operation, 59 mechanical specifications, 90 Modbus Plus communication card, 143 models, drive, 16, 106 MOT 201 control wiring, 118 MOT 20x encoder wiring, 119, 120 signal wiring, 118 motion controller interface, typical connections, 114 motion task applications, 147 motion task coordination. 147 motion task number. 148 motor output specifications, 94 overtemperature specifications, 97 to drive cables, 108 motor choke mounting and dimensions. 38 motor power connector wiring diagram (exclude BPH055), 129 mounting dimensions. 36 multi-axis system, 77

0

output cables, 108 overcurrent protection, 34 overview drive models, 16, 106

Ρ

parameter setting, 77 parts list cables, 108 overview, 105 regen resistor assemblies, 109 spare parts, 110, 111 performance specifications, 88 physical dimensions, 35 pin assignments for LEXIUM 17 D, 44 power dissipation calculation, 153 electrical specifications, 92 supply overcurrent protection, 34 wiring, 47 power-on and power-off characteristic, 72 pre-programmed functions, use, 65 primary power, 25 problems, possible causes and corrective actions, 85 products, introduction, 15 programming the PLC, 147

Q

qualified personnel, 9 Quantum 140 MSx wiring to drive, 121 quick tuning procedure, 75

R

regen circuit functional description, 48 regen circuit specifications, 96 regen resistor assembly parts list, 109 regen resistor power dissipation calculation, example, 155 regen resistor, determining when energy is absorbed, 152 regen resistor, overview, 152 related documents, 5 resolver input specifications, 97 RS232 interface cable connectors, 131

S

safe electrical separation, 26 serial communication interface connection, 131 serial communications, connection diagram, 66 servo loops analog input mode 0, 136 analog input mode 1, 137 analog input mode 2, 138 analog input mode 3, 139 analog input mode 4, 140 current controller. 134 velocity controller, 135 servo motor (excluded BPH055). connection, 49 servo motor (with options), connection, 51 servo motor BPH 055, connection, 50 servo motor holding-brake control, 52 servo motor, rotation direction, 62 servo motors, types, 16 setting parameters, 28 signal wiring, 54 single-axis motion control system, 4 software setup, 28 spare parts, 110, 111 specifications analog input, 102 analog output, 102 bias input. 93 brake output, 101 discrete input, 100 discrete output, 101 electrical. 91 encoder input, 98 encoder output, 98, 99, 100 environmental. 89 external fuse, 93 fault relay output. 101 internal power dissipation, 95 line input, 92 mechanical, 90 motor output, 94 motor overtemperature, 97 power electrical, 92 resolver input. 97 SSI encoder input connection, 61 SSI encoder output, connection, 58 SSI encoder output, functional description. 58 stepper motor control, interface connection, 69

stepper-motor control interface connection, functional description, 69 stepper-motor control, interface connection diagram, 69 stepper-motor, speed profile and signal diagram, 70 system configuration, diagram, 21

Т

thermal hazard, 7 troubleshooting, 85 TSX Premium CAY breakout module multi-axis wiring, 116 multi-axis wiring, 117 single axis wiring, 115

U

UL 508C, 11 UL 840, 11 UL and cUL compliance, 11 UniLink commissioning software, 4 usability enhancements, 23 usability features, 22 user guide organization, 2

V

velocity servo loop, 135 verifying system operation, 75

W

warning identification and description, 80 warning messages, 80 who should use this guide, 2 wire specifications, 104 wiring a 17D drive to a MOT 201 motion module, 118 and I/O, initial considerations, 41 connections, 42 drive to B885-11x, 122 drive to MOT 20x, 118 drive to Quantum 140 MSx, 121 drive to TSX Premium CAY, 115 overview, 42 wiring a Sub-D connector with shielding, 126 wiring the motor power connector, 128 wiring the Sub-D connector, 126