FANUC AC SPINDLE SERVO UNIT

MAINTENANCE MANUAL

This manual describes the following products:

Name of products	Abbreviation
FANUC AC SPINDLE SERVO UNIT MODEL 1	MODEL 1 AC SPINDLE SERVO
FANUC AC SPINDLE SERVO UNIT MODEL 2	MODEL 2 UNIT series
FANUC AC SPINDLE SERVO UNIT MODEL 3	MODEL 3
FANUC AC SPINDLE SERVO UNIT MODEL 6	MODEL 6
FANUC AC SPINDLE SERVO UNIT MODEL 8	MODEL 8
FANUC AC SPINDLE SERVO UNIT MODEL 12	MODEL 12
FANUC AC SPINDLE SERVO UNIT MODEL 15	MODEL 15
FANUC AC SPINDLE SERVO UNIT MODEL 18	MODEL 18
FANUC AC SPINDLE SERVO UNIT MODEL 22	MODEL 22
FANUC AC SPINDLE SERVO UNIT MODEL 30	MODEL 30
FANUC AC SPINDLE SERVO UNIT MODEL 40	MODEL 40
FANUC AC SPINDLE SERVO UNIT MODEL 1S	MODEL 1S
FANUC AC SPINDLE SERVO UNIT MODEL 1.5S	MODEL 1.5S
FANUC AC SPINDLE SERVO UNIT MODEL 2S	MODEL 2S
FANUC AC SPINDLE SERVO UNIT MODEL 3S	MODEL 3S
FANUC AC SPINDLE SERVO UNIT MODEL 2H	MODEL 2H
FANUC AC SPINDLE SERVO UNIT MODEL 2VH	MODEL 2VH

In this manual we have tried as much as possible to describe all the various matters.

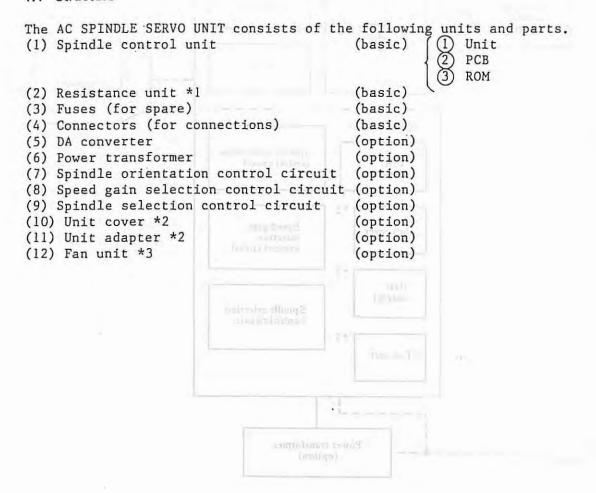
However, we cannot describe all the matters which must not be done, or which cannot be done, because there are so many possibilities.

Therefore, matters which are not especially described as possible in this manual should be regarded as "impossible".

	There's lording not sagaire at CONTENTS angulant be bon and family	
St.	step spindle speed bhange This see	
	A Margarit of Margarit Sensor Spinis Oriensition &	
I.		
35	method of magnetizing elegent and magnetic sensor	3
0.5	1.1 Structure	3
	Thursts forman and takes her attacks and all and a stacks and a stack and a st	4
2	DAILY MAINTENANCE AND MAINTENANCE TOOLS	7
	2.1 AC Spindle Motor	7
70	2.2 AC Spindle Servo Unit	7
74	2.3 Maintenance Tools	7
	2.3.1 Tools used for adjustment 2.4 Major Maintenance Parts	7 8
	그걸 하다는 아이들은 아이들은 사람들이 살아왔다면 아이들이 아이들이 아이들이 아이들이 아이들이 아이들이 아이들은 아이들이 아이들이	٥
3	TROUBLESHOOTING (SAME TURNED TO VELA OBE) THE OUTS AN ALIGNITURE OF THE OUTS AND ALIGNITURE OUTS AND ALIGNITURE OUTS AND ALIGNITURE OUTS AND ALIGNITURE OUTS	9
TT	3.1 Power Voltage Check	9
77	3.1 Power Voltage Check	11
	3.3 Alarm Lamp Lights on PCB	12
LL,	3.4 Motor does not Rotate, or Motor does not Rotate the Specified	27
	Revolutions	27
7.7	3.5 Vibrations or noises are Noticeable during Rotation	27
7.8		28
35	3.8 Cutting Power is Low	28
	3.9 Orientation is not Correct	28
18	3.10 Acceleration/Deceleration Time is Long	29
	INSTALLATION	30
4	INSTALLATION 4.1 Installation Procedure	30
	4.2 Power Connection	30
85	4.2.1 Power voltage and capacity check	30
85	4.2.2 Protective earth connection	31
	4.2.3 Power connection	
98	4.3 AC Spindle Motor Connection	31
	4.4 Signal Cable Connection	31
5	. SETTING AND ADJUSTMENT	32
8.0	5.1 Setting of Unit and PCB	
8	5.2 Setting and Adjustment of Spindle Orientation Control Circuit	E.
88	Option	37
96	. EXCHANGE METHODS OF FUSES AND PCB	2.0
6	EXCHANGE METHODS OF FUSES AND PCB	38
	6.1 Exchange of Fuses	40
100	6.2.1 MODEL 1/2/small MODEL 3	40
曹	6.2.1 MODEL 1/2/small MODEL 3	42
WE	6.3 Exchange of Spindle Orientation Control Circuit PCB	43
	6.3.1 MODEL 1/2/small MODEL 3	43
	6.3.2 MODEL 3 - 40	44
7	. SPINDLE ORIENTATION CONTROL CIRCUIT	45
OI		45
01	7.2 Adjustment of Position Coder System Spindle Orientation	1
7	Control Circuit	46
10	7.2.1 Setting and adjustment of spindle orientation control circuit	1
	in 2-step spindle speed change	46

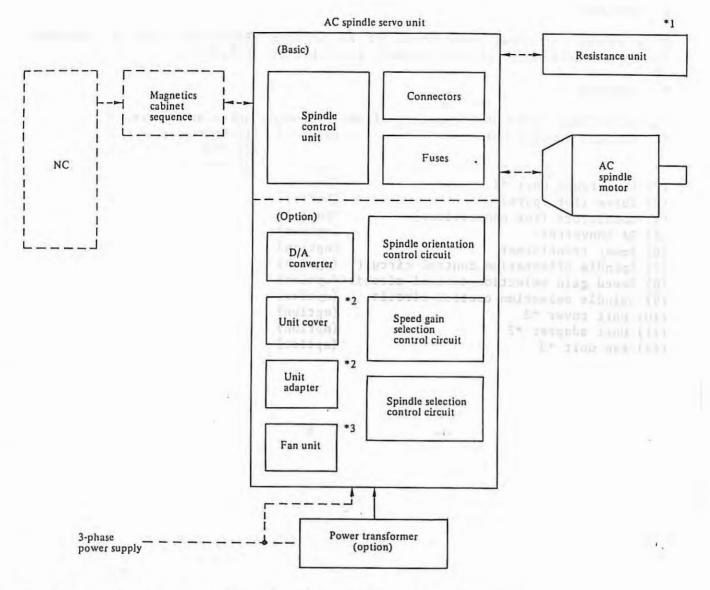
	7.2.2 Setting and adjustment for spindle orientation control circuit 3 or 4 step spindle speed change	
1	3 Adjustment of Magnetic Sensor Spindle Orientation	
253	Control Circuit 7.3.1 Mounting method of magnetizing element and magnetic sensor .	55
-	7.3.2 Setting and adjustment of spindle orientation control circuit in 2-step speed change spindle for standard type7.3.3 Setting and adjustment of spindle orientation control circuit	56
	in 2-step spindle speed for high speed	63
	in case of 3-step spindle speed change	70
	7.3.5 Method of checking the spindle position loop gain	
II.	AC SPINDLE SERVO UNIT (380/415V AC INPUT TYPE)	2.
	TRACE TRACE TO THE	
1.	OUTLINE	77
2.	DAILY MAINTENANCE AND MAINTENANCE TOOL	77
3.	INSTALLATION	77
4.	SETTING AND ADJUSTMENT	78
Mary Street, Square, Street, Square, S	1 Setting on PCB	78
5.	TROUBLESHOOTING AND COUNTERMEASURE	81
III.	DIGITAL AC SPINDLE SERVO UNIT (MODEL 3 - 22)	4.
1.	OUTLINE OUTLINE	85 85
2.	DAILY MAINTENANCE AND INSTRUMENTS FOR MAINTENANCE	86
3.	INSTALLATION TRANSPORT OF A PRINTERS	86
4.	SETTING	. 87
4	1 Method of Parameter Setting	. 87
4	2 Number and Contents of Parameter	88
100	3 Rank at Setting	96
1 1 4	TROUBLESHOOTING AND COUNTERMEASURE	98
6.	METHOD OF REPLACEMENT OF FUSE AND PRINTED CIRCUIT BOARD	100
7.	SPINDLE ORIENTATION CONTROL CIRCUIT	. 100
Service of	DIGITAL AC SPINDLE SERVO UNIT (MODEL 1S, 1.5S, 2S, 3S, 2H, 2VH)	7.
1. 1	OUTLINE	103
2.	DAILY MAINTENANCE AND MAINTENANCE TOOL	104
3	TNSTALLATION	104

(A)


4.1 Parameter Setting Method 4.2 Number and Content of Parameter 4.3 Setting Rank 4.4 Setting Method of Short Pin 4.5 Adjustment Method of Variable Resistor	105 106 113 114
5. TROUBLESHOOTING AND COUNTERMEASURE	116
6. REPLACEMENT METHOD OF FUSE AND PCB	117
7. SPINDLE ORIENTATION CONTROL CIRCUIT	117
APPENDIXES	
APPENDIX 1 CONNECTION DIAGRAMS	121
APPENDIX 2 CABLE ENTRANCE DIAGRAM	132
APPENDIX 3 CABLE SPECIFICATIONS	134
APPENDIX 4 MAIN CIRCUIT DIAGRAM	139
4.1 Main Circuit	139
APPENDIX 5 MOUNTING LAYOUT OF SPINDLE SERVO UNIT PARTS (OTHER THAN PCB)	142
APPENDIX 6 MOUNTING LAYOUT OF SPINDLE CONTROL CIRCUIT PCB	151
APPENDIX 7 MAJOR PARTS LIST	158
APPENDIX 8 PCB ADJUSTMENTS	
APPENDIX 9 CHECKING METHOD FOR PCB 1. Check Terminal 2. Check Terminal Data Confirmation Method 3. Digital AC Spindle (MODEL 3 to 22) 4. Digital AC Spindle (MODEL 1S, 1.5S, 2S, 3S, 2H, 2VH)	168 176 180 184
APPENDIX 10 MAGNETIC SENSOR SIGNALS CHECKING METHOD	
1. Application	
APPENDIX 11 PARAMETER LIST FOR DIGITAL AC SPINDLE SERVO UNIT	190

I. AC SPINDLE SERVO UNIT (200/220 V AC INPUT)

1. OUTLINE


This manual describes maintenance of AC SPINDLE SERVO UNIT and its options. (For applicable units of this manual, see Table 1.1 (a),(b))

1.1 Structure

HIMIT HOLD HOLD SHAP IS (ADAB-SDAR-HID), HIMIT SHAP IS (ADAB-SDAR-HID), HIMIT SHAP IS (ADAB-SDAR-HID), HIMIT SHAP IS (ADAB-SDAR-HID), HIMIT SHAPE

mergers final first

- *1: The resistance unit is employed for MODEL 1/2/small type 3 (A06B-6052-H001, H002, H003) only.
- ± 2 : These options are used for MODEL 8 and 12 (A06B-6044-H108, H112) only.
- *3: This fan unit is used for MODEL 30 and 40 (A06B-6044-H130, H140) only.

Fig 1.1 Block diagram

Table 1.1 (a) Major components (basic)

MODEL of AC	Specificat	ion number	Unit	Unit number PCB	PCR	ROM		Applicable AC spindle motor
spindle servo unit	rvo unit External Standard External Standard radiation type type radiation type type		PCB	Specified number	Туре	specification drawing number		
MODEL 1	A06B-60	52-н001	A06B-60	52-C001	A16B-1100-0080 A16B-1100-0090	A06B-6052-C501	J21	A06B-1001-B100,-B200
MODEL 2	A06B-60	52-H002	A06B-60	52-C002	A16B-1100-0080 A16B-1100-0091	A06B-6052-C502	J22	A06B-1002-B100,-B200
Small type MODEL 3	A06B-60	52-н003	A06B-60	52-C003	A16B-1100-0080 A16B-1100-0092	A06B-6052-C503	J23	A06B-0704-B001,-B002 A06B-1003-B100,-B200
MODEL 3	A06B-6044-H203	A06B-6044-H007 A06B-6044-H103	A06B-6044-C203	A06B-6044-C008 A06B-6044-C103	A20B-0009-0530 A20B-1000-0690	A06B-6044-C507/J10	J10	
MODEL 6	A06B-6044-H206	A06B-6044-H008 A06B-6044-H106	A06B-6044-C206	A06B-6044-C008 A06B-6044-C106	A20B-0009-0531 A20B-1000-0691	A06B-6044-C508/J11	J11	A06B-0707-B001,-B002 A06B-1006-B100,-B200
High-speed MODEL 6	A06B-6044-H260	A06B-6044-H009 A06B-6044-B160	A06B-6044-C208	A06B-6044-C009 A06B-6044-C108	A20B-0009-0532 A20B-1000-0692	A06B-6044-C521	J74	A06B-1006-B903,-B904
MODEL 8	A06B-6044-H208	A06B-6044-H010 A06B-6044-H108		9 80	2	A06B-6044-C509	J02	A06B-0706-B001,-B002 A06B-1008-B100,-B200
MODEL 12	A06B-6044-H212	A06B-6044-H112	A06B-6044-C212	A06B-6044-C010 A06B-6044-C112	A20B-0009-0533 A20B-1000-0693	A06B-6044-C510	J03	A06B-0705-B001,-B002 A06B-1012-B100,-B200
MODEL 15	A06B-6044-H023	A06B-6044-H011	A06B-6044-C017	A06B-6044-C011	A20B-0009-0534	A06B-6044-C511	J04	A06B-0708-B001,-B002 A06B-1015-B100,-B200
MODEL 18	A06B-6044-H034	A06B-6044-H016	A06B-6044-C019	A06B-6044-C012	A20B-0009-0538	A06B-6044-C516	J05	A06B-0709-B001,-B002
MODEL 22	A06B-6044-H027	A06B-6044-H017	A06B-6044-C018	A06B-6044-C013	A20B-1000-0539	A06B-6044-C517	J06	A06B-0710-B001,-B002
MODEL 30	A06B-60	144-H130	A06B-60	44-C130	A20B-1000-0700	A06B-6044-C536	J07	A06B-1030-B100,-B200
MODEL 40	A06B-60	044-H140	A06B-60	44-C140	A20B-1000-0701	A06B-6044-C529	J08	A06B-1040-B100,-B200

- Note 1) Mounting parts of PCB A20B-0009-0530 0539 are identical to each other, except for ROM, but their setting and adjustment differ from each other.
- Note 2) Mounting parts of PCB A20B-1000-0690 0693 are identical to each other, except for ROM, but their setting and adjustment differ from each other.
- Note 3) Mounting parts of PCB A20B-1000-0700 0701 are identical to each other, except for ROM, but their setting and adjustment differ from each other.
- Note 4) Mounting parts of PCB Al6B-1100-0090 0092 are identical to each other, but their setting and adjustment differ each other.
- Note 5) The ROM mounting position shows MD25 (MH28 in case of A16B-1100-0080) (See appendix 6 PCB parts wiring diagram)
- Note 6) The ROM type is indicated as shown in the right figure.

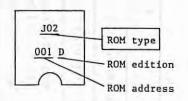


Table 1.1 (b) Order specification

	Name	Specification No.	PCB No.
D/	'A converter (BCD)	A06B-6041-J031	
D/	A converter (BINARY)	A06B-6041-J032	
	Orientation AS (Position coder type, 2-stage speed change gear spindle)	A06B-6052-J110	A20B-0008-0240
type 3	Orientation BS (Position coder type, 2-stage speed change gear spindle)	A06B-6052-J111	A20B-0008-0241
1/2/small	Orientation CS (Magnetic sensor type, 2-stage speed change gear spindle)	A06B-6052-J120	A20B-0008-0030
MODEL 1	Orientation GS (Magnetic sensor type, 2-stage speed change gear spindle)	A06B-6052-J122	A20B-0008-0031
	Speed gain selection control circuit	A06B-6052-J701	A16B-1700-0020
(P	ientation A osition coder type, stage speed change gear spindle)	A06B-6041-J110	A20B-0008-0240
(P	ientation B osition coder type, stage speed change gear spindle)	A06B-6041-J111	A20B-0008-0241
(M	ientation C Magnetic sencer type, stage speed change gear spindle)	A06B-6041-J120	A20B-0008-0030
(M	ientation D lagnetic sencer type, stage speed change gear spindle)	A06B-6041-J121	A20B-0009-0520
(P	ientation E osition coder type, stage speed change gear spindle)	A06B-6041-J130	A20B-1000-0460
(F	eientation F Position coder type, Estage speed change gear spindle)	A06B-6041-J131	A20B-1000-0461
4-	ATT	1 1 n n	W - 30
Or (M	ientation G Magnetic sencer type, stage speed change gear spindle)	A06B-6041-J122	A20B-0008-0031

2. DAILY MAINTENANCE AND MAINTENANCE TOOLS

Check and clean the following items once every 6 months or so for using the AC spindle motor and AC spindle servo units under a normal condition for a long time.

Take the check frequency into consideration according to the contamination degrees in each item.

2.1 AC Spindle Motor

If the ventilation hole, cooling fan, and fan finger guard (net) of the AC spindle motor become dusty, the radiation efficiency of the motor drops. Clean the AC spindle motor by using the factory air and a vacuum cleaner.

2.2 AC Spindle Servo Unit

Since a cooling fan is mounted at the upper part of the servo unit, its nearby resistor and other parts become dusty after a long-time use. If they are dusty, clean them using the vacuum cleaner or the like.

2.3 Maintenance Tools

2.3.1 Tools used for adjustments

Use tools indicated in Table 2.3.1 (a) for adjustments and tools indicated in Table 2.3.1 (b) for repairing troubles.

Table 2.3.1 (a) Tools used for adjustments

Name	Specification	Use
AC Voltmeter	1 ∿ 300 V <u>+</u> 2% or less	AC power voltage measurement
⊕,⊝ screwdrivers	large, medium size large, medium, small size	

Table 2.3.1 (b) Tools used for repairing troubles

Name	Specification	Use		
AC Voltmeter	1 ∿ 300 V <u>+</u> 1% or less	AC power voltage measurement DC power voltage measurement and offset voltage check		
DC voltmeter	1 mV ∿ 500 V <u>+</u> 1% or less			
Circuit tester		Resistance value check		
⊕,⊝ screwdrivers	large, medium size large, medium, small size			

2.4 Major Maintenance Parts

I DAILY MARKTENANCE AND MAINTENANCE TOOLS

For maintenance parts, see appendix 7 Major maintenance parts. 34 Bas 1000 Major maintenance parts. 34 Bas 1000 Major maintenance parts.

the the check frequency into consideration trurping to the contaction

2.1 AC Spindle Motor

If the ventilation hole, cooling fan, and con these punts that it the AC apindle motor become dusty, the radiation efficiency of the rotor done is the AC soundle motor by using the factory alt and a range alcaner.

2.2 AC Spindle Servo Unit

Since a cooling fan is mounted at the upper part of the salve mail, its meathy resistor and other parts become dusty after a long-time use. If they are dusty, slean them using the vacuum cleaner or the like.

2.3 Maintenance Tools

2.3.1 Tools used for adjustments
Use tools indicated in Table 2.3.1 (a) for adjustments and tools indicated in Table 2.3.1 (b) for repairing troubles.

Table 2.3.1 (a) Tools used for adjustments

3 20(4)	Specification	Name
AC power vol.age measurement	1 v 300 V +2% or less	AC Voltmeter
	① large, medium size	() C screwdrivers
	large, medium, small size	

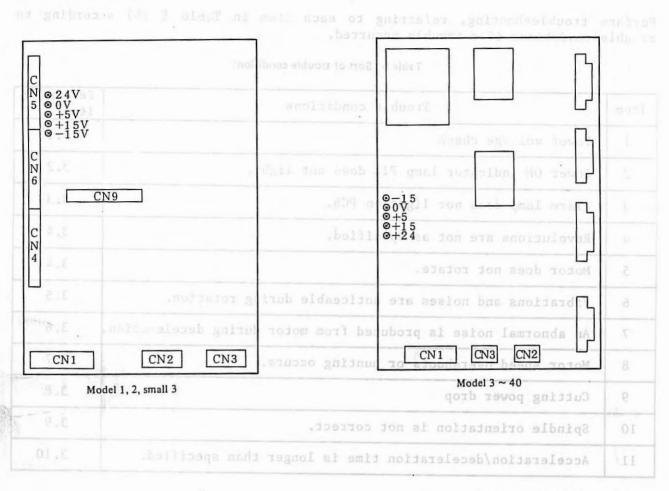
Table 2.3.1 (b) Tools used for repairing troubles

	Specification	Name
AC power voltage measurement	1 ~ 300 V +1% or less	AC Volumeter
DC power voltage measurement and offset voltage check	1 mV v 500 V +1% or less	DC voltmeter
Resistance value chedl		Circuit tester
	(large, medium size all size size	⊕.⊖ screwdrivers

3. TROUBLESHOOTING

Perform troubleshooting, referring to each item in Table 5 (b) according to trouble conditions if a trouble occurred.

Table 5 Sort of trouble conditions


Item	Trouble conditions	Reference item
1	Power voltage check	3.1
2	Power ON indicator lamp PIL does not light.	3.2
3	Alarm lamp does not light on PCB.	3.3
4	Revolutions are not as specified.	3.4
5	Motor does not rotate.	3.4
6	Vibrations and noises are noticeable during rotation.	
7	An abnormal noise is produced from motor during deceleration.	
8	Motor speed overshoots or hunting occurs.	3.7
9	Cutting power drop	3.8
10	Spindle orientation is not correct.	3.9
11	Acceleration/deceleration time is longer than specified.	3.10

3.1 Power Voltage Check

Check AC power voltage and DC power voltage on PCB check terminals and standard values are as specified in Table 3.1.

Table 3.1 Power voltage check

AC power voltage check	Che	eck at INPUT term	inals R,S,T (See 4.2)
DC power voltage check	Voltage	Check terminal	Standard value
on res	+24 V	+24 V - 0 V	About 25 V +10%, ripple about 0.5 V
	+15 V	+15 V - 0 V	+15 V <u>+</u> 4% (Not adjustable)
	+5 V	+5 V - 0 V	+5 V +1% (Adjustable by RV15)
	-15 V	-15 V - 0 V	-15 V +4% (Not adjustable)

3.1 Power Voltage Check

Check AC power voltage and DC power voltage on PCB check terminals and mandard values are as specified in Table 3.1.

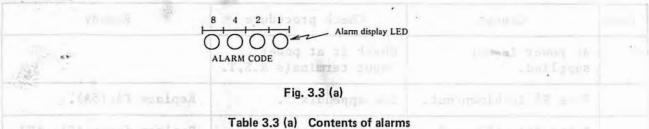
Table 3.1 Power voltage check

	inals H.S.T (See A.2)	ck, at INPUT term	Che	AC power voltage check
1				
	Stadderd yalue	Check terminal	Voltage	DC power voltage check
	About 25 V $\pm 10Z_1$ ripple about 0.5 $V_{\rm rel}$	+24 V - 0 V	+24 V	on PCB
	+15 V +4%. (Not adjustable)	+15 V - 0 V	+15 V	
	+5 V ±1%. (Adjustable by RVI5)	V 0 - ∇ - 5+	V S+	
	-15 V +17 (Not adjustable)	A 0 - A 51-	-15 V.	

3.2 Power ON Indicator Lamp OIL does not Light

Table 3.2 Check procedure and remedy

Item	Causes	Check procedure	Remedy	
1	AC power is not supplied.	Check it at power input terminals R,S,T.		
2	Fuse F4 is blown out.	See appendix 5.	Replace F4 (5A).	
3	Fuses AF1, AF2, and AF3 are blown out.	Check if alarm indi- cations of fuses AF1, AF2, AF3 appear. See appendix 5.	Replace fuses AF1, AF2, AF3. Replace PCB, if these fuses are blown out again soon after replacing them.	
4	PCB connectors CN6 and CN7 are not plugged correctly.	Check if the connector guide groove appears on the PCB connector surface.	Insert connectors correctly.	
5	Neither 19A nor 19B is output because of the defective transformer TF.	Check voltage at check terminals 19A-CT and 19B-CT of PCB. Measuring voltage values should be about AC 19 V between these terminals.	Replace transformer TF.	
defective of abuses I can		Lamp PIL is lit by +5 V and -15 V. Check power voltage according to Table 3.1.	Replace PCB.	


Note) Item 2 and 3 differ in AC spindle servo unit model 1/2/small model 3 as follows.

Item	Causes	Check procedure	Remedy
2	Fuse Fl is blown out.	Fl is mounted on the lower PCB. See appendix 6.	Replace F1 (5A).
3	Fuse AF1 or fuse resistors FR1, 2 are blown out.	Check if alarm indi- cation of fuse AF1 appears or not. See appendix 6.	Replace fuse AF1 or fuse resistors FR1, 2. Replace PCB, if these parts are blown out again soon after replacing them.

3.3 Alarm Lamp Lights on PCB

An alarm is displayed by four binary codes using LEDs mounted on PCB as shown in Table 3.3.

Militar new 210 gent to minimit till myset Lie

(1) Alarm contents in AC spindle servo unit model 1/2/small model 3.

he i	Alarm display (o: Light)		Light)				
No.	8	mio4 3:	san2	Tot1son	Contents of alarms		
1	, in		1.00	0 30	Motor is overheated (thermostat operates).		
2	Burrales	ice tra	l g s o	c check T and	Speed is deviated from the command value due to overload and others.		
3			o	31000 a	Regenerative circuit is faulty.		
6		0	0		The motor speed exceeds the maximum rated speed (analog system detection).		
7		.0	О	o	The motor speed exceeds the maximum rated speed (digital system detection).		
8	0	Batte	el 1/2	unit mo	Power voltage is higher than specified.		
9	0		The state of	0	Radiator for power semiconductors is overheated.		
10	O _{AZ}	Lag and	lgep1	n the	+15 V power voltage is abnormally low.		
11	0		0	0	DC link voltage is abnormally high.		
12 93	FRI LIO CD	relest 1ce ⁰ PCB		AFI_ See	DC link current is flows excessively.		
13	0	noon (agai repl	o	CPU and peripheral parts are defective.		
14	0	0	o		ROM is defective.		

2 Alarm contents in MODEL 3-40.

37.	Alarm display (o: Light)			Light)		
No.	8 4 2 1	Contents of alarms				
1	274144	Est.		0	Motor is overheated (thermostat operates)	
2	en limi	i el añs	9 o		Speed is deviated from the command value due to overload and others.	
3	an afai	folianies al si mo	ó	0	Fuse F7 in DC link is blown out.	
4	initia)	0		jos - Snu ser	Fuses F1, F2, or F3 in AC input circuit are blown out.	
5		О	oulsy	o Jacannot	Fuse AF2 or AF3 on PCB is blown out.	
6	7 ksa	o No	ò	тцья	The motor speed exceeds the maximum rated speed (analog system detection).	
	cutette and m			hacó a	The motor speed exceeds the maximum rated speed (digital system detection).	
8	ınsosta		Rep		Power voltage (+24 V) is higher than specified.	
	ne occe Leratlo			ano P6 by usi		
10	0	ace fu	, Kep	751	+15 V power voltage is abnormally low.	
11	e blown	replac is, if	osnd	o tu	DC link voltage is abnormally high.	
12	I 50 8	VE O	tbA	d feed-	DC link current is flows excessively.	
13	0	0	li-	Noi ja	CPU and peripheral parts are defective.	
14	0	0	o ROM is d		ROM is defective.	
	ndeo th				Option circuit is in trouble.	

1) Alarm No. 1 Motor is overheated.

Item	Causes	Check procedure	Remedy
1	Built-in fan motor of spindle motor is defective.		Replace fan motor.
2	Overload operation	Check it using a load meter.	Re-examine cutting conditions and tools.
3	Motor cooling system is dirty.		Clean it using compressed air or vacuum cleaner.
4	Disconnection or poor contact of wiring	Check connections between motor and servo unit.	Confirm the connection of connector for signal.

2) Alarm No. 2 Speed is deviated from the command value.

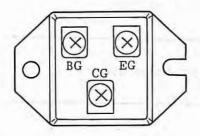
Item	Causes	Check procedure	Remedy	
1	Overload	Check it using a load meter.	Re-examine cutting conditions and tools.	
2	Transistor module is defective.	Transistor collector- emitter is open.	Replace transistor module.	
3	Blow out of fuse in regeneration circuit.	Check fuses F5 and F6 for continuity by using a circuit tester.	Check if the acceleration/deceleration on cycle is to frequent. Replace fuses.	
4	Blow out or poor connection of the driver protective fuse on PCB.	Check fuses FA, FB, FG for blown out or missing.	Connect fuses securely, and replace blown out fuses, if any.	
5	Speed feedback signal is defective.	Check the speed feed- back signal level.	Adjust RV18 and RV19. Set duty to about 50%.	
6	Wiring failure (disconnection, poor contact, etc.)	Check if connection cables are normally connected.	0 0 1	

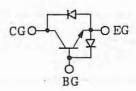
Note 1) Speed feedback signal check
Observe the speed feedback signal using an oscilloscope under the rotation command off (motor stop, drive power off) condition after turning on the power supply. Observe it at the following check terminals, while slowly turning the motor by hand.

Check terminals	Normal wave forms
CH3-OV (PA)	$V_{p-p} = 0.36 \sim 0.5 \text{ V}$ About 2.5V
CH4-0V (PB)	Same as shown above
CH5-OV (RA)	DC 2.5 V +0.2 V
CH6-OV (RB)	Same as shown above
CH7-0V	CH7 (Adjust RV18)
CH8-OV	4.5 V (Adjust RV19)
(In case of CW rotation)	0.4V (Duty: 50%) (CH7 and CH8 signals are inverted in
100g Short, infinial	CCW direction.)

3) Alarm No. 3

① MODEL 1/2/small MODEL 3 regenerative circuit is faulty.


In MODEL 1/2/small MODEL 3, alarm No. 3 indicates that the regenerative


circuit is faulty. A transistor may be defective.

Locate a defective element, and replace it according to the following procedure.

Shart, Antinta	Several 1000	- cerminal Commercial to		100
Simrty Police	Severaf 1000	A FremmaD Indicaya -	1	
-se ::::::::::::::::::::::::::::::::::::	unilactor-emitte	in is bloken; the	islausii s II	
r balder, and hour full when	PCA and short be discon grease wit	y parts, Apply s	os shiyavdesh (lum) sosiqsu onq shistos	, Ei
as rabled red i	onta bon 404 rang	ments reset the		

Procedure	Description				
.1	Turn off AC power supply (turn off the magnetics cabinet breaker) and disconnect the motor power cable.				
2	Remove two screws of the plate which fixes the upper PCB, and check the resistance values of the transistor collector (CG)-emitter (EG), collector (CG)-base (BG), and base (BG)-emitter (EG) of lower PCB, respectively. (See appendix 6 PCB mounting drawing)				

Criteria (when circuit tester is set to $x10\Omega$ range)

Check terminal	Circuit tester terminal	Norma1	Faulty
C-E	Connect C to + terminal	Several 100Ω	Short, infinite
	Connect C to - terminal	Infinite	Short, several 100Ω
С-В	Connect C to + terminal	Several 100Ω	Short, infinite
	Connect C to - terminal	Infinite	Short, several 100Ω
В-Е	Connect B to + terminal	Several 100Ω	Short, infinite
	Connect B to - terminal	Several 100Ω	Short, infinite

If a transistor is broken, the collector-emitter and collector-base are shorted, respectively.

- Remove the screws of the lower PCB and short bar holder, and replace faulty parts. Apply silicon grease without fail when replacing parts.
- After replacement, reset the lower PCB and short bar holder as before, and check the circuit according to procedure 2.

3

Procedure		Description				
5	 Check regenerative transistor driver circuit of lower PCB. ① Turn on AC input power supply. Don't apply any rotation commands (SFR,SRV). ② Measure the BG-EG voltage by using a circuit tester (2∿5 V range). Particularly be careful not to receive any electric shock, since a high voltage (DC 300 V) is applied nearby. Criteria 					
		uit can be checked at glance, since it is nother normal circuits. Base-emitter voltage (based on emitter)				
	Normal	About -0.8 V ∿ -1.3 V				
1	Faulty	About 0.0 V ∿ -0.8 V				
	driver circuit is	firmed to have been faulty, check if the fuse on s blown out or not by using a circuit tester. lown out, replace it and check the circuit again to he trouble has been recovered.				
6	Fix two screws of the plate which fixes the upper PCB.					
	Fix two screws of the plate which fixes the upper PCB.					

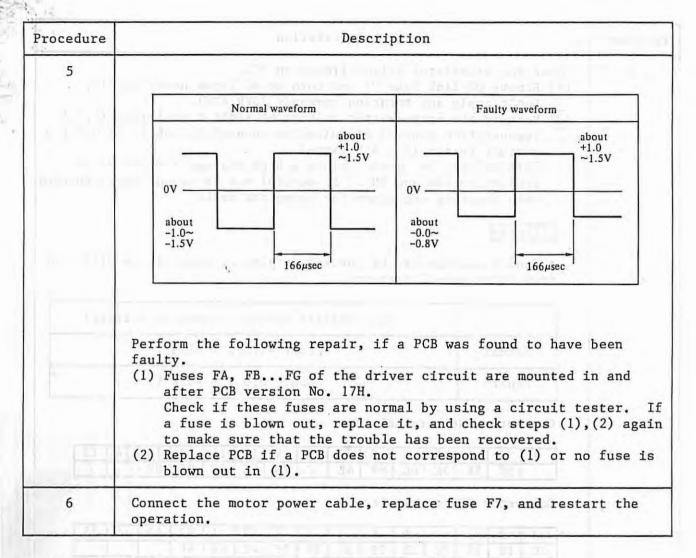
② MODEL 3 ~ 40 DC link fuse (F7) is blown out.

In MODEL 3 \sim 40, alarm No. 3 indicates that the DC link fuse (F7) is blown out.

In this case, a transistor module may be defective.

Locate and replace the defective element according to the following procedure.

Replace PCB if the transistor module may be faulty due to a trouble of the control PCB.

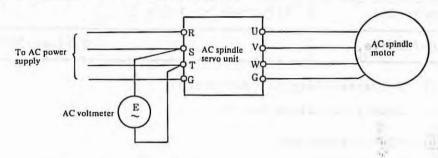

Please contact FANUC service center, if repair is difficult.

(The fuse name is F4 in MODEL 30 and 40)

Procedure	Description
1	Turn off AC power supply (turn off the magnetics cabinet breaker) and disconnect the motor power cable.

Procedure			Des	cription	
2	mo	dule collec	tor (C1,C2)-emit	stance values of the ter (E1,E2), connecter (E1,E2), respectively.	ctor (C1,C2)-base
		/ Notch		1.	- T
- 110			ircuit tester ran	nge x10Ω)	
		Terminal to be observed	Circuit tester terminal	Normal	Faulty
An and	402) 402 402	C-E	Connect C to + terminal	Several 100Ω	Short, infinite
		dan.	Connect C to - terminal	Infinite and the	Short, several 100Ω
	, nc	С-В	Connect C to + terminal	Several 100Ω	Short, infinite
(TD)			Connect C to - terminal	Infinite (FT) send seril 36	Short, several 100Ω
gniwollet to stduczy	inte	В-Е	Connect B to + terminal	Several 100Ω	Short, infinite
	a V	mary due	Connect B to	Several 100Ω	Short, infinite
			or is broken, the	e collector-emitter	and collector-
3 (realest)		place fault en replacin	g them.	coat of silicon g	
4	Af	ter replace	1000	circuit according	

Procedure		Description	» submoon
5	1 Remove DC ling Don't apply at 2 Measure the bacteristic circuit tester Particularly applied to CN	tor drive circuit on PCB. k fuse F7 and turn on AC input pow ny rotation commands (SFR,SRV). ase-emitter voltage of eight trans control circuits)(at connectors CN r (2 ~ 5 V range). be careful since a high voltage (D 6 and CN7. Be careful not to dama the connector using the probe.	istors (U,V,W 6,7) by using a
	Criteria	976	
	A faulty circui	t can be checked at glance, since al circuits.	it is different
	1	Base-emitter voltage (based o	n emitter)
	Normal	About $-0.8 \text{ V} \sim -1.3$	V
	Faulty	About 0.0 V ∿ -0.8	V
- 0	1 2 3 4 5C 5B 5E	5 6 7 8 9 10 11 12	13 14 15 8E
	1 2 3 4 1C 1B 1E 2C (References) The following fig abnormal condition	5 6 7 8 9 10 11 12 2 2B 2E 3C 3B 3E 4C 4B 4E	13 14 15 nal and on it is
nga and	to CN6 and CN7 Apply normal rota (The velocity com Observe the base-	tion and reverse rotation commands mand is Orpm) emitter waveform of each transisto	or (U,V,W
100	insulated oscillo When F7 is remove Short check termi	eits) at CN6 and CN7 connectors by scope. ed, alarm No. 3 occurs. nals "ARS" and OV using a clip or n, detach the clip without fail.	7,000 a w 67



4) Alarm No. 4 AC input fuses (F1, F2, F3) are blown out.

Item	Causes	Check procedure	Remedy
1	High impedance on AC power supply side. (Note 1) (Example) Two transformers are connected in series or when a variable autotransformer is connected.	 Alarm No. 4 lights only when the motor speed is reduced from high speed. Alarm No. 4 may also light, irrespective of normal condition of Fl∿F3. 	 Replace the power supply having low power impedance. Looseness of input cable connector. Example: Open phase due to loosened screws.
2	Transistor module is defective.	See alarm No. 3.	See alarm No. 3. Replace transistor module and fuse.

Item	Causes	Check procedure	Remedy
3	Diode module or thyristor module is defective.	After disconnecting cables of diode modules DMI∿3 and thyristor modules SMI∿3, check A-K by using a circuit tester. (Defective parts are generally shorted.)	Replace defective parts and fuses.
4	Surge absorbers or capacitors are defective.	Check surge absorbers Z1∿3 and capacitors C4∿6.	Replace defective parts and fuses.
5	Input fuses not blown out.	Check if it is not applicable to item 1.	Replace the PCB if not applicable to item 1.

Note) Power impedance checking method.

1 Calculation formula

$$\frac{E_0 - E_1}{E_0} \times 100 (\%) < 7 (\%)$$

where E_0 : Voltage when the motor stops operating. E₁: Voltage during acceleration of motor or voltage just before the motor speed begins lowering with a load applied.

2 Input power specifications

Name	Specifications
Nominal rated voltage	AC200/230V
Allowable voltage fluctuation width	-15% ∿ +10%
Power frequency	50/60Hz
Power impedance	Voltage fluctuation due to load (120% load at 30 minute rating): Less than 7%

5) Alarm No. 5 Fuses AF2 or AF3 on PCB are blown out.

Item	Causes	Check procedure	Remedy
1	PCB is defective	Check AC input voltage.	Replace PCB.
2	Power voltage is abnormal.	See 5 in para 3.2.	

Note) This alarm does not occur in MODEL 1/2/small MODEL 3.

6) Alarm No. 6 Overspeed (analog detection)

Item	Causes	Check procedure	Remedy
1	PCB setting failure or adjusting failure	Check PCB for normal setting and adjustment (S2, S3, S5).	Change S5 setting.
2	Wrong specification of ROM (memory IC)	Check specification referring to Table 1.1.	Replace ROM.
3	PCB is defective.		Replace PCB.

- 7) Alarm No. [7] Overspeed (digital detection)
 Same as in alarm No. 6
- 8) Alarm No. 8 +24V overvoltage

Item	Causes	Check procedure	Remedy
1	AC power voltage exceeds +10% of the rated value.	Check power voltage.	(D) (D) (D) (D)
2	Setting failure of voltage selection toggle switch.	Check power voltage.	Setting from 200V to 230V.

9) Alarm No. 9 Radiator is overheated.

Item	Causes	Check procedure	Remedy
1	Cooling fan is defective.	Check if fan is stopping.	Replace fan.
2	Overload operation.	Check load by using a load meter.	Re-examine the cutting condition.
3	Dusty and dirty.	office III and a	Clean using compressed air or vacuum cleaner.

10) Alarm No. 10 +15V voltage drop.

This alarm indicates abnormally low AC power voltage (-15% or less).

11) Alarm No. [1] Overvoltage of DC link circuit.
(Regenerative circuit is faulty ... Regeneration failure)

Item	Causes	Check procedure	Remedy
1	Fuses F5 and F6 are blown out.	Check fuses F5, F6 by using a circuit tester. If these fuses are blown out, check transistor module by the same procedure as in alarm No. 3.	Replace fuses.
2	High power impedance.		Examine AC power specification.
3	PCB is defective.	The state of the	Replace PCB.

Note) Item 1 does not apply to MODEL 1/2/small MODEL 3.

12) Alarm No. 12 Overcurrent flows to DC link circuit.

Item	Causes	Check procedure	Remedy
1	Output terminals or internal circuit of motor is shorted.	Check connections.	d anne to
2	Transistor module is defective.	Check it by the same procedure as in alarm No. 3.	Replace defective parts.
3	PCB is defective.	N/a a a min	Replace PCB.

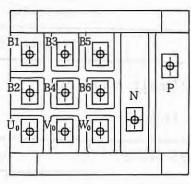
Note) Method of replacing transistor modules in MODEL 1/2/small MODEL 3.

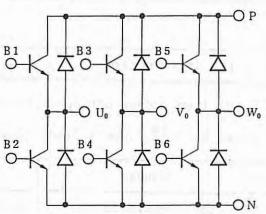
Procedure Description 1 Turn off AC power supply (turn off the magnetics cabin and disconnect the motor power cable.		
		2
3	Remove one upper screw and one lower screw, and open the cabinet to the front left together with the mounting plate without detaching the upper PCB.	

Check resistance values of the following terminals of transistor modules on the lower PCB by using a circuit tester.

(1) P (collector) - Uo,Vo,Wo (emitter)

(2) Uo,Vo,Wo (collector) - N (emitter)


(3) P (collector) - B1,B2,B3 (base)


(4) Uo,Vo,Wo (collector) - B2,B4,B6 (base)

(5) B1,B3,B5 (base) - Uo,Vo,Wo (emitter)

(6) B2,B4,B6 (base) - N (emitter)

(See appendix 6 PCB installation drawing.)

Criteria (circuit tester range x 10Ω)

Terminal to be observed	Circuit tester terminal	Normal	Faulty
С-Е	Connect C to + terminal	Several 100Ω	Short, infinite
	Connect C to - terminal	Infinite	Short, several 100Ω
С-В	Connect C to + terminal	Several 100Ω	Short, infinite
1	Connect C to - terminal	Infinite	Short, several 100Ω
В-Е	Connect B to + terminal	Several 100Ω	Short, infinite
	Connect B to - terminal	Several 100Ω	Short, several

If a transistor is broken, the collector-emitter and collector-base are usually shorted, respectively.

Procedure		Description		
3	Remove the lower PCB first (See Table 6.2 (a)-(1)). Divide the connection part of the short bar holder into 2 parts by using cutting pliers or the like, remove the right side part, and replace the transistor module. Apply a coat of silicon grease without fail when replacing these parts.			
4	PCB onto the s	After replacement, mount the short bar holder and mount the lower PCB onto the short bar holder (See Table 6.2 (b)-(1)). Recheck the circuit according to procedure 2.		
5	(1) Turn on the commands (2) Measure the phases) by Particular vicinity of electric selectric se	ne base-emitter voltage of six transistors (U,V,W using a circuit tester. The cly be careful since a high voltage is applied to the of the driver circuit so as not to receive any		
		Base-emitter voltage (based on emitter)		
	Normal	About -0.8 V ∿ -1.3 V		
	Faulty	About 0.0 V ~ -0.8 V		
¥	reference when tester. Particularly	figure shows normal and abnormal waveforms as a they cannot be checked easily by using a circuit to be careful since a high voltage (about 300V) is the vicinity of the driver circuit.		
	Apply normal of (The velocity Observe the baphases) at each oscilloscope. Short the check	rotation or reverse rotation command. command specifies 0 rpm). ase-emitter waveform of each transistor (U,V,W ch terminal of the lower PCB by using an insulated ck terminal ARS to 0 V by using a clip or the like. e clip without fail after observation.		

Procedure	Description			
	1 - 1 - 1 - 1 - 1	mel mell		filmited I
90 2000	Normal waveform	round and read	121 128 m 12-	lty waveform
Term 100	ov-	about +1.0 ~1.5V	ov	about +1.0 ~1.5V
on to state s	about -1.0~ -1.5V	sec	about 0.0~ -0.8V	166µsec
LTJ vrijbet	Repair the circuit if	the PCB wa iver circui ition by us and check	t are mounte ing a circui	d on PCB. Check these t tester. Replace
6	Connect the motor power	er cable an	d restart th	e operation.

- 13) Alarm No. [3 CPU alarm. Replace PCB.
- 14) Alarm No. 4 ROM is defective.

Item	Causes	Check procedure	Remedy
1	ROM is not mounted at all or not properly mounted.	Check if ROM is unplugged from the socket or if its leads are broken.	Mount ROM properly.
2	ROM is defective.	(if a socia totamia wa iis vito ona to valatary sia y	Replace ROM having correct specification. (see Table 1.1)

15) Alarm No. 15 Option alarm.

Item	Causes	Check procedure	Remedy
I'nd	Spindle selector circuit or other option PCB are faulty.	7 or Bha justimes to Libi bombito galacti	Replace PCB.
2	Option PCB connection is in error.	16	Check and correct the connection.

3.4 Motor does not Rotate, or Motor does not Rotate at the Specified Revolutions

Item	Causes	Check procedure	Remedy
1	Fault analysis	Alarm lamp lights on spindle servo unit when rotation command is given.	Proceed to 3.3.
		Alarm lamp does not light.	Proceed to item 2 or 3.
2	Command signal connection failure	Check signal cable Connection.	
3	PCB is defective.		Replace PCB.

3.5 Vibrations or Noises are Noticeable during Rotation

Item	Causes	Check procedure	Remedy	
1	Motor is defective.		Replace motor.	
2	PCB is defective.	Run the motor idly. When the connector CN2	Replace PCB.	1
		from AC spindle servo unit while rotating the motor, overheat alarm occurs, and the motor	emind tone vellamand B	
		runs idly. If vibra- tions and noises are	Seural Control	godi
		reduced during idle run as compared with normal rotation time, the control circuit is defective.		

3.6 Abnormal Noise is Produced from Motor during Deceleration

During deceleration of the motor, energy is regenerated to the power supply through the regenerative control circuit (this energy is consumed by resistors in MODEL 1/2/small MODEL 3)

If the regenerative energy is excessive, the regeneration limiter circuit operates to change the motor current waveform, causing an abnormal noise to be produced from the motor.

If such a case, turn RV6 (this is normally set to division 3) counterclockwise untill no abnormal noise is produced. When RV6 is turned counterclockwise, the deceleration time increases.

3.7 Speed Overshooting or Hunting Occurs

Item	Causes	Check procedure	Remedy
.1	PCB setting or adjustment failure.	Increase gain by turning RV12 (standard division 5) clockwise.	Readjust RV12.
2	Spindle hunting occurs.	Decrease gain by turning RV12 counterclockwise.	Readjust RV12.

3.8 Cutting Power is Low

Item	Causes	Check procedure	Remedy
1	ROM specification is wrong.	Check it referring to Table 1.1.	Replace ROM.
2	Torque limitation command is applied.	Check signal.	1900
3	Loosened belt.	Check belt for proper tension.	

3.9 Orientation is not Correct

Item	Causes	Check procedure	Remedy
1	Setting or adjusting failure of orientation control circuit.	Check if circuit is set and adjusted as specified in data sheet.	Refer to setting and adjustment of spindle orientation control circuit in chapter 7.
2	Orientation control circuit PCB is defective.		Replace PCB.
3	Spindle control PCB is maladjusted.		Adjust PCB.
4	Position detection (position coder or magnetic sensor) is defective.	Check the output signal waveform of the position detector. (For the magnetic sensor, refer to appendix 10.)	Replace the position coder or magnetic sensor.

3.10 Acceleration/Deceleration Time is Long

Item	Causes	Check procedure	Saulta Remedy Matani
1	Torque limitation command is applied.	Check signal.	serve I) cherking pro
2	ROM specification is wrong.	IIII)TX	Replace ROM.
3	Defection of the regenerative circuit.	See alarm No. 2 item 3, 4.	(1294 yellow system (1294 yellow system)
4	PCB is maladjusted.	If RV6 is set lower than necessary, the deceleration time increases (see para.	Readjust RV6.
	shills old	3.6).	audanic ede speed in

1/4/1	The Annual Service Ser	
1 1	Long and a some move of an ending	
	Check seriful one of foots era	
7	Thro on As provey supply and make and such and a such a such as a such a	
1	Eive -orasium commund to clusternorma rotari un rever-	
8	Chack the spanish of the contract -	
E .	Average Rio Albumo (Aul B.)	

- 29 -

4. INSTALLATION

4.1 Installation Procedure

Observe the checking procedure shown in the following table at the installation time.

Item	Description	Remarks					
1	Check if specification of motor, servo unit, options, etc. are correct.	Check if motor corresponds to units, PCB, and ROM correctly according to table 1.1.					
2	Check appearance for damage	Check resistors, and PCB parts mounted on the upper part for damage.					
3	Check the working AC power supply for voltage, voltage fluctuation, power capacity (KVA) and frequency.	See table 4.2.1.					
4	Connect the earth wire, power cable, drive power cable, and signal cable (See note 1).	See 4.2, 4.3, 4.4 and appendix 1.					
5	Check setting and adjustment results.	See 5.1.					
6	Turn on AC power supply, and make sure that green lamp PIL light on PCB.						
7	Give rotation command to check the normal rotation and reverse rotation movement.						
8	Check the operation over the entire velocity range.						
9	Adjust spindle orientation circuit.	See section 7.					

Note) Check the connection with discharge resistor for MODEL 1/2/small MODEL 3.

4.2 Power Connection

4.2.1 Power voltage and capacity check

Measure the AC power voltage before connecting the power supply, and take the following measure according to power voltage.

Table 4.2.1 (a) Measure to AC power voltage

AC power voltage	Nominal voltage	Measures
170 V ∿ 220 V	200 V	Set toggle switch SW to 200 V
210 V ∿ 253 V	230 V	Set toggle switch SW to 230 V
Higher than 254 V	380 V 550 V	Set input voltage to 230 V by using insulation transformer

The input power specification of the AC spindle servo unit is as specified in Table 4.2.1 (a).

Use a power source having the power capacity having a sufficient allowance so that no trouble due to voltage drop occurs with the maximum load.

Table 4.2.1 (b) Input power specifications of AC spindle servo unit

Nominal rated voltage		AC 200 V/230 V (SW selection), 3 phases										
Allowable	voltage fluctuation	-15% ∿ +10%					tion -15% ∿ +10%					
Frequency			50 Hz/60Hz <u>+</u> 1 Hz (Note 1)									
Power	Motor model	1	2	3	6	8	12	15	18	22	30	40
capacity	Capacity (KVA) with 30-minute rating	4	7	9	12	17	22	26	32	37	54	63

Note 1) Model 40 (A06B-6052-H140) requires the 50/60 Hz selection. However, this selection is not required for other models.

4.2.2 Protective earth connection

Connect the protective earth to connection terminal G before connecting the power supply.

Use the protective earth having sufficient capacity as compared with the feeder circuit breaker capacity.

4.2.3 Power connection

Connect the power cable after protective earth connection. The power phase rotation is not specified for AC spindle servo unit.

4.3 AC Spindle Motor Connection

Connect the AC spindle motor according to the connection diagram in appendix 1. If the drive power cable connection sequence is in error, vibrations are produced or alarm No. 2 occurs to stop the motor. Connect protective earth "G" without fail.

4.4 Single Cable Connection

Connect the signal cable according to the connection diagram in appendix 1.

5. SETTING AND ADJUSTMENTS

5.1 Setting of Unit and PCB

For the parts on the unit and PCBs, refer to mounting layout of parts (APPENDIX 5 and 6). Confirm the following setting before turning on the power switch.

Table 5.1 (a) Setting to be confirmed before turning on the power switch

No.	Check items	Remarks
1	Setting of voltage selection	See para. 4.2
2	Setting (short bars) check	See table 5.1 (b)

Table 5.1 (b) Setting

Setting terminal number	Cont	ents	Sett	Setting at shipment from FANUC	
S1	Machine ready signal (MRDY)	Used FI	OFF	O ON	OFF
DN DL 35	0 02 11 115	Not used	ON	°] ON	Authorities -
S2	Analog over- ride	Used	OFF	o ON	OFF
of governor	Marine of Berne	Not used	ON	о о о о	Joseph El .
S3	Same as the above	Used	ON	o o o o	ON
	white the best of	Not used	OFF	о о о о	Legie town
S4	Velocity command signal	Use of external analog voltage command	OFF) ON	orr
		Use of R01 ∿ R12 commands	ON MOLTAN	0	bnigetia to

the state of the s

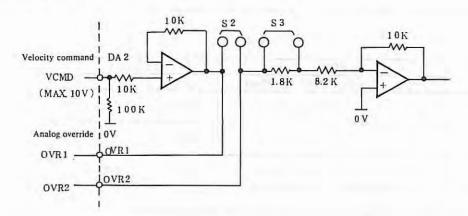
" Allow or the owner of country of a country of the country of the

	ting minal ber	Cont	ents	Settin	g	Setting at shipment from FANU
S5	MODEL 1		4000, 4500, 8000 rpm	A,B: OFF	o A o B	Set to the rating of the motor
	back amount to rated command	6000 rpm	B: ON	o A o B	employed	
	Small MODEL 3		20000 rpm	A: ON	O A O B	
	MODEL		4500 rpm	B: Shorted	о в о A	
	3	To action	6000 rpm	A: Shorted	o B O A	100 m 100 0 T 12 mm
			8000 rpm	A and B: Opened		el a
	S6	Velocity control	56	Depends on m numbers. Se	otor and e table 5	
	S7	phase com- pensation	57			
	S8	Delay time required until	0 sec/option	OFF	0 0 ON	ON (Note 2)
		motor is de- energized	0.2 sec/ standard	ON	°] ON	(AVE
	S9 Machine ready signal func-		MCC is turned off	OFF	0 0 ON	OFF
		tion	MCC is not turned off	ON	°] ON	N III
S10		Overcurrent detection level	Labeled	OFF	©] ON	Determined as speci- fied on
			Not labeled	ON	°] ON	the unit label (Note 3)
	S11	Soft start/ stop time constant	0.6 8 sec	А	o B o A	A
		switching (Adjust by RV20)	3.5 40 sec	В	O B O A	

Setting terminal number	Co	ontents	Se	tting	Setting at shipment from FANUC
S15	Speed-zero detecting	Maximum revolution 10000 ∿ 20000 rpm	ON	o on	Set to the rating of the motor employed. (Note 4)
	100	Maximum revolution lower than 10000 rpm	OFF	o OFF	(NOLE 4)

- Note 1) Be careful since S5 setting differs between MODEL 1, 2, small MODEL 3 and MODEL 3 40.
- Note 2) Insert a short bar without fail even when setting is turned off.
- Note 3) Turn on S10 only when the label at the upper part of the PCB mounting plate represents that S10 is turned on.
- Note 4) S15 is used for AC spindle servo unit MODEL 1/2/small MODEL 3 only.
- Note 5) Presence or absence of setting terminal S8 to S15.

	а	ъ	С
S8	Presence	Presence	Absence
S9	Presence	Presence	Absence
S10	Absence	Presence*	Presence
S11	Absence	Absence	Presence
S15	Presence	Absence	Absence


a: MODEL 1, 2, small 3S

b: MODEL 3 to 22 c: MODEL 30, 40

* S10 was added after PCB edition 17H.

Variable resistors RV1 - RV19 of the spindle control circuit PCB have been adjusted at factory before shipment, and their adjustments are no longer necessary, in principle.

However, the set values of variable resistors shown in Table 5.1 (d) are changeable as required. Readjust variable resistors shown in Table 5.1 (e) after turning on the power supply, if fine adjustment is required for offset, rotating speed, etc.

	Use of	Unuse of	
Setting	Override range Max 120%	Override range Max 100%	override
S2	OFF	OFF	ON
S3	ON	OFF	OFF

Fig. 5.1 (a) Analog override circuit

Table 5.1 (c) Setting of S6 and S7

i) PCB A20B-0009-0534 - 539

Applicable	ROM		Overall version	Setting	
motor	Туре	Version number	number of PCB	Serr	Tug
MODEL 15	J04	After 001F	After 14F	OFF	ON
MODEL 18	J05	After 001C	After 14F	OFF	ON
MODEL 22	J06	After 001A	After 14F	OFF	ON

ii) PCB A20B-1000-0690 - 0693

Applicable		ROM	Sett	ing
motor	Туре	Version number	S6	S7
MODEL 3	J10	After 001E	OFF	ON
MODEL 6	J11	After 001E	OFF	ON
MODEL 8	J02	After 001G	OFF	ON
MODEL 12	J03	After 001G	OFF	ON

iii) PCB A20B-1000-0700 - 0701

Applicable	ROM		Setting	
motor	Туре	Version number	S6	S7
MODEL 30	J06	After 001A	OFF	ON
MODEL 40	J07	After 001A	OFF	ON

iv) PCB A16B-1100 - 0080

Applicable	ROM		Setting	
motor	Type	Version number	S6	S7
MODEL 1	J21	After 001A	OFF	ON
MODEL 2	J22	After 001A	OFF	ON
MODEL 3	J23	After 001A	OFF	ON

1) Variable resistors whose set values are changeable.

Table 5.1 (d)

Variable resistor number	Use	Standard adjustment at shipment from FANUC	Setting change method
RV3	Set speed arrival level	Sends speed arrival signal when the motor speed reaches 85 - 115% of the command speed.	See appendix 8.
RV4	Speed detection level	3% of the maximum speed is detected.	See appendix 8.
RV5	Torque limit value	Co.	See appendix 8.
RV20	Soft start/stop time constant adjust		See appendix 8. (Note 1)

2) Variable resistors for fine adjustment of offset and rated speed.

Table 5.1 (e)

Variable resistor number	Use	Adjusting method
RV1	Adjusts the velocity command voltage level.	See appendix 8.
RV2	Adjusts the velocity command voltage offset.	See appendix 8.
RV9	Finely adjusts the rated speed in normal rotation (SFR).	See appendix 8. (Note 2)
R11	Finely adjusts the rated speed in reverse rotation (SRV).	See appendix 8. (Note 2)
R13	Adjusts the offset when zero speed is commanded.	See appendix 8.

- Note 1) Soft start/stop function is employed only for MODEL 30 and 40. RV20 is not provided to other models.
- Note 2) RV9A, B/RV11A, B are provided for AC spindle servo unit MODEL 1/2/small MODEL 3. Their adjusting methods are the same as specified above.
- Note 3) Don't change the setting of variable resistors other than specified in Table 5.1 (d) and Table 5.1 (e), since these variable resistors have been adjusted at factory before shipment.

 For adjustments of variable resistors, see APPENDIX 8.

5.2 Setting and Adjustment of Spindle Orientation Control Circuit Option

Refer to spindle orientation control circuit, in chapter 7.

6. EXCHANGE METHODS OF FUSES AND PCB

6.1 Exchange of Fuses

Replace fuses F1 - F7 in AC SPINDLE SERVO UNIT series after opening the unit cover as shown in 6.1.

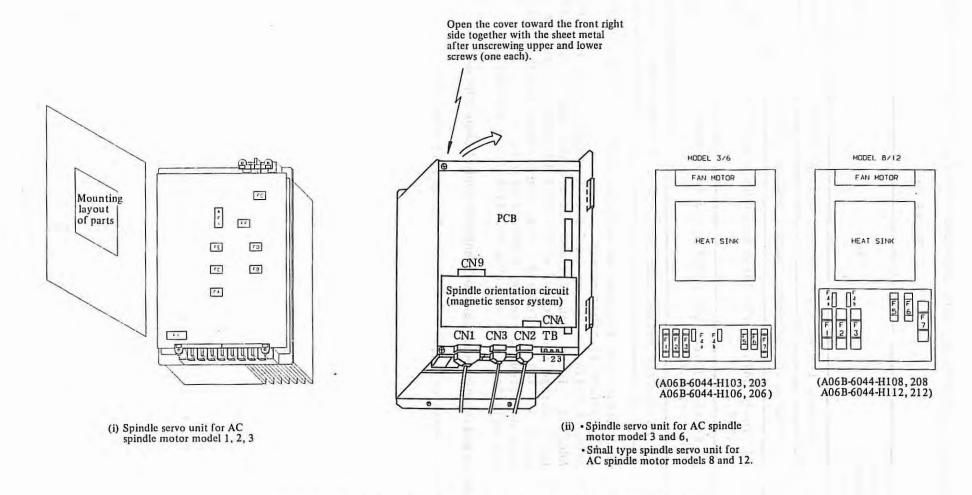
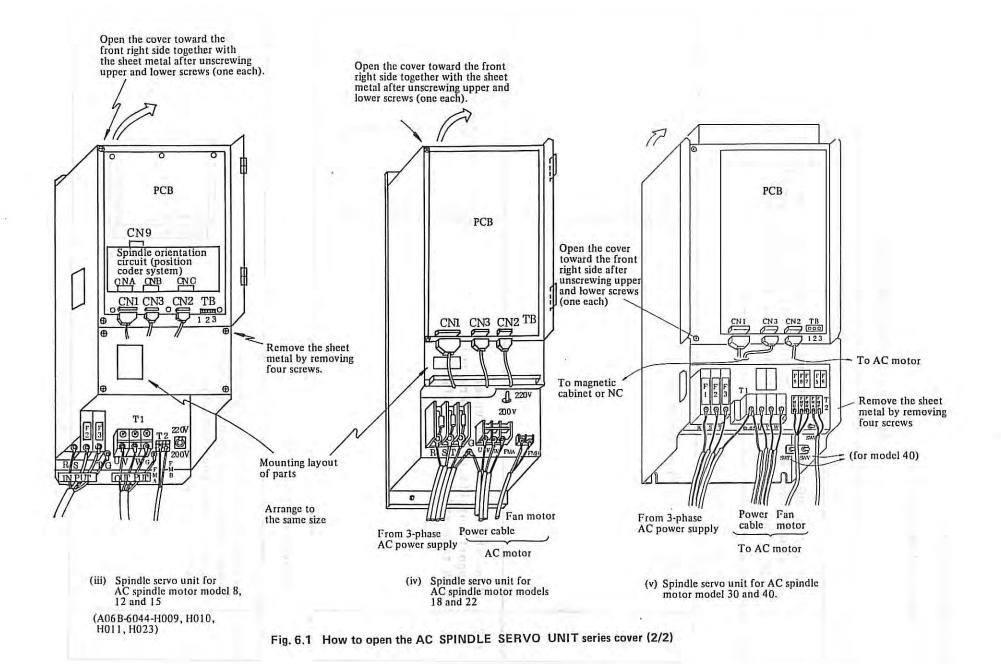
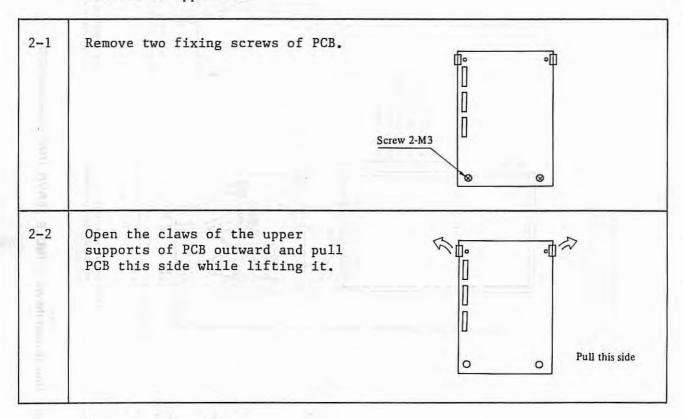



Fig. 6.1 How to open the AC SPINDLE SERVO UNIT series cover (1/2)


6.2 Exchange of PCB

6.2.1 MODEL 1/2/small MODEL 3

Table 6.2.1 (a) How to remove PCB

Step	Procedure
1	Disconnect cables from PCB and also disconnect cables which fix the upper and lower PCB after turning off the power supply. Record the correspondence between cables and connector numbers.

Removal of upper PCB

Removal of lower PCB

Removal of lower PCB

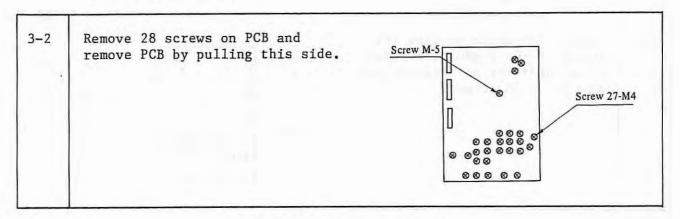
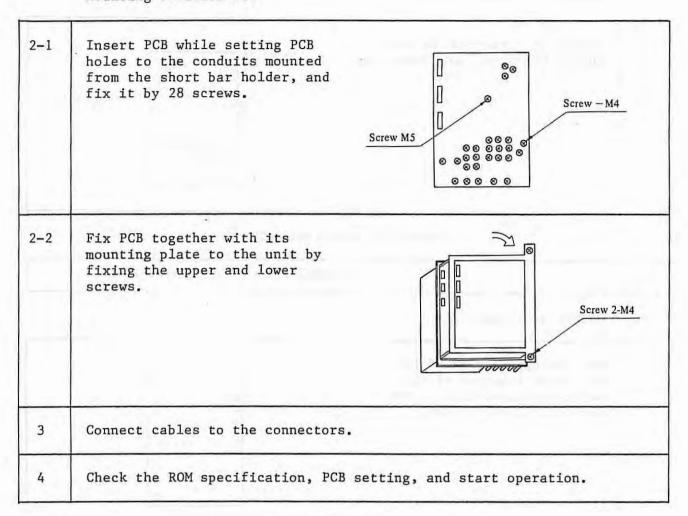



Table 6.2.1 (b) How to mount PCB

P	rocedure
Mounting of upper PCB	
Set the upper holes of PCB to the upper supports of the mounting plate, and push PCB until a click is heard.	
	0 0
Fix the lower part of PCB by 2 screws.	
	Screw 2-M3 ⊗
	Mounting of upper PCB Set the upper holes of PCB to the upper supports of the mounting plate, and push PCB until a click is heard. Fix the lower part of PCB by

6.2.2 MODEL 3~40

Table 6.2.2 (a) How to remove PCB

Step	Procedure
1	Disconnect cables from PCB after turning off power supply. Record the correspondence between cables and connector No.
2	Remove six screws fixing PCB. Screw 6-M3 0 0
	⊕ ⊕

Step	Procedure	
3	Gradually lift the upper right and lower right part of PCB forward at a time, and remove PCB by disconnecting connectors CN4 - 7 (pins are inserted from the rear side).	O O O O O O O O O O O O O O O O O O O

Table 6.2.2 (b) How to mount PCB

Step	Procedure
1	After setting the guide holes of PCB connectors CN4 - 7 to the guide pins on the unit side and insert CN4 - 7 until check groove (see right figure) appears on the PCB connector surface. Guide line Insertion level check groove
2	Fix PCB on the unit by using four screws. Se step 2 in Table 6.2.2 (a).
3	Connect cables to the connectors.
4	Start operating the unit after confirming the ROM specification and PCB setting.

6.3 Exchange of Spindle Orientation Control Circuit PCB

6.3.1 MODEL 1/2/small MODEL 3

Table 6.3.1 How to remove PCB

Step	Procedure
1	Disconnect the flat cable which connects PCBs.
2	Remove four screws which fix the spindle orientation control circuit PCB plate.

Table 6.3.2 How to remove PCB

Step	Procedure
1	Remove the entire PCB from the spindle control unit according to Table 6.2.2 (a) disconnect cables connection PCB.
2	Remove 4 screws which fix the stays of spindle orientation control circuit PCB.
	Orientation PCB

Mount PCB by reversing the procedure specified in Table 6.3.2.

7. SPINDLE ORIENTATION CONTROL CIRCUIT

This chapter describes instructions for maintenance, installation, and adjustment when a pure electric orientation (constant position stop) function is attached to the spindle of an NC machine tool.

7.1 Configuration

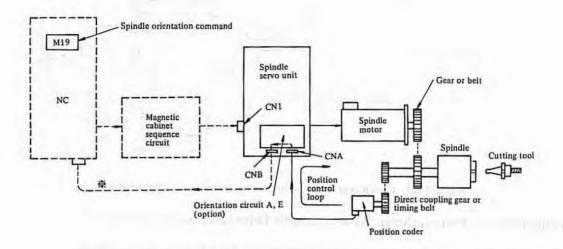


Fig. 7.1 (a) Configuration of spindle orientation using position coder (Internal stop position setting type)

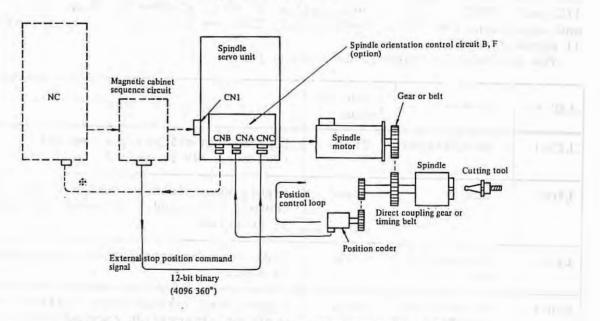


Fig. 7.1 (b) Configuration of spindle orientation using position coder (External stop position setting type)

- Note 1) If a position coder is mounted on a lathe, etc., it is applicable to this system.
- Note 2) Asterisked cable route is employed when the position coder of the lathe or sync. feed position coder in machining center is combined.

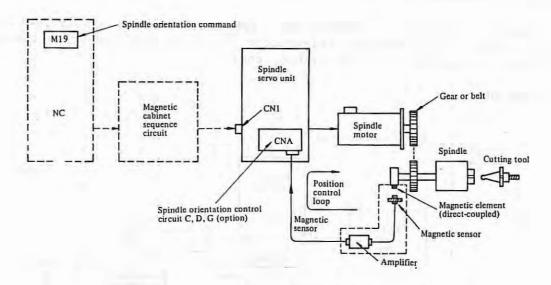


Fig. 7.1 (c) Configuration of spindle orientation using magnetic sensor

7.2 Adjustment of Position Coder System Spindle Orientation Control Circuit

7.2.1 Setting and adjustment of spindle orientation control circuit in 2-step spindle speed change

The MODEL $3\sim40$ require orientation A, B (A06B-6041-J110, J111), while MODEL 1/2/small MODEL 3 require orientation AS or BS (A06B-6052-J110, J111). Setting and adjustment for PCB A20B-0008-0240, 0241 are described in the followings.

1) Display contents

The following display is done using LED.

LED No.	Symbol	Lighting color	Description
LED 1	ORIENTATION	Green	Lights when orientation command (ORCM1, 2 ON) is input.
LED 2	LOW	Green	Lights when cluth switching signal *CTH contact is closed. It means that cluth LOW is selected.
LED 3	IN-POSITION OUT	Green	Light when orientation end signal ORAR1-2 is sent.
LED 4	IN-POSITION ADJUST	Green	Lights when spindle enters within 1 pulse width of orientation command position. Adjust OFFSET adjusting RV3/RV5 so that this LED4 lights at gear HIGH/LOW, and the stop positions at gear HIGH and LOW coincide with each other.

2) Setting

- a) Setting position coder power supply If the position coder power supply +5 V is supplied from the spindle amplifier, short the circuit between +5 V 5 H and 0 G 0 V. Open the circuit between +5 V 5 H and 0 G 0 V when +5 V is supplied from NC machine tool.
- b) Setting of SW4 and SW5

Position coder	Туре	SW4	SW5
Balanced type	Type A	Right	Right
Unbalanced type	Type B	Left	Left

c) Setting of SH01, SH02, SH03 Set SH01, SH02, and SH03 according to the following table.

						SH	01							SH	02				SF	103	
No.	Setting contents	Setting contents		2	3 14	4 13	1	6	7 10	8 1 9	1 	2 15	3 	4 13	5 12	6 11	7 10	11	1	2 3	Remarks
1	Setting of rotating direction in the first orientation after turning on the power switch.	CCW	0			*	14,														(Standard)
H	Setting of rotating direction	CW direction	×	0	×	0	1	1	1-	-	-	1	1	7				-			(6) (1-1)
2	in the second and sub- sequent orientation.	only CW direction only	15		×	×		1				£	7	H				-			(Standard)
		Same as rotat- ing direction			0	×										Ī					(Standard)
	Setting to clamp the orien-	1,					×	×													
3	tation speed determined by position gain to 1, 2/3 and	2/3					0	×													
	1/3.	1/3					×	0			xi										
4	Setting by spindle rotation and rotating direction of position coder.	Same direction Opposite direction							o ×	× 0	4			.4							Depens upon machine tools. Hunting occurs if this setting is inverted.
		+2 pulse									0	0	0	0	0	0					
	Setting of the in-position width when orientation end	f the in-position +4			(+16 pulse corresponds to +1.3°)																
5	signals (ORAR1, 2) are output.	<u>+</u> 8											0	0	0	0					(±10 pulse corresponds to ±1.3)
H	output.	<u>+</u> 16	E				14							0	0	ò					
		<u>+</u> 32													0	0					
		<u>+64</u>														0					
	Setting by hysteresis of	No compensation													1		×	×			(Standard)
6	position coder	+1 pulse													Щ		0	×			
		-1 pulse															×	0			
7	Setting according to the	DC													E				0	×	When DC spindle servo unit is used.
•	types of spindle servo unit.	AC																	×	0	When AC spindle servo unit is used.

Sending condition (C) of orientation end signal are as below:

- * The angle position is located with the in-position setting pulse range.
- * Speed zero signal is turned on.
 * ORCM is turned on.

d) Setting of position switches (SW1, 2, 3)

Setting switch	Pulse number per 1 division	Angle change amount per l division
SW1	4096/16 = 256 pulses	every 22.5°
SW2	256/16 = 16 pulses	every 1.4°
SW3	16/16 = 1 pulse	every 0.088°

SW1 to SW3 are digital switch with 16 scale.

The spindle can be stopped at an optional point during one rotation in the unit of $1/4096 \times 360^\circ = 0.088^\circ$ by setting these switches in the order of SW1, SW2, SW3.

Adjustments

No.	Item	Name of variable resister	Standard adjustment	Measuring point	Description
1	Speed feedback voltage OFFSET	RV1	5 divisions	TSA2 CH14 (TSA2)	Adjust RV1 until TSA2 voltage becomes 0 +1 mV.
2	Gear HIGH position gain	RV2	3 - 4 divisions	Spindle motion or CH14	Set the gain to the maximum within a range where the spindle does not overshoot.
3	Gear HIGH offset	RV3	About 5 divisions	LED4 (ADJUST)	Adjust RV3 until LED4 lights or flickers.
4	Gear LOW position gain	RV4	3 - 6 divisions	Spindle motion or CH14	Set the gain to the maximum within a range where the spindle does not overshoot.
5	Gear LOW offset	RV5	About 5 divisions	LED4 (ADJUST)	Adjust RV5 until LED4 lights or flickers.
6	Speed loop gain (in case of DC spindle motor)	RV6DC	0 division	CH14	Make sure that motor not hunting. the rigidity increases during
7	Speed loop gain (in case of AC spindle motor)	RV6AC	7 divisions	CH14	stop by turning these RV clock- wise.

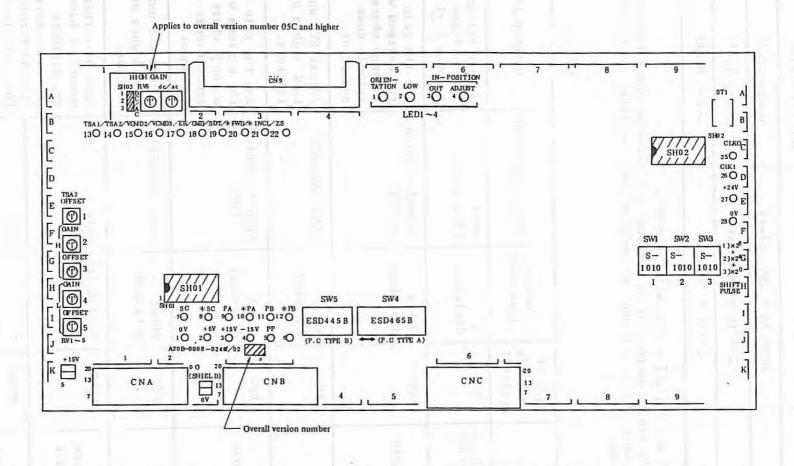


Fig. 7.2.1 (a) Mounting positions of check terminals, variable resistors, setting pins, and light-emitting diodes (LED) (PCB A20B-0008-0240, 0241)

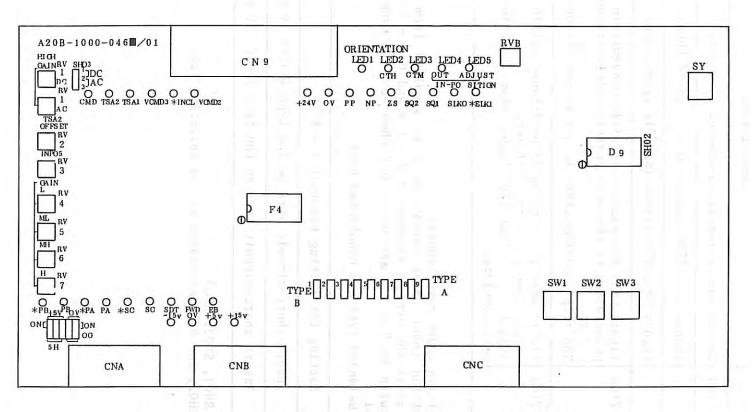


Fig. 7.2.1 (b) Mounting place of check terminal, variable register, setting pin, LED (PCB A20b-1000-0460, 0461)

7.2.2 Setting and adjustment for spindle orientation control circuit 3 or 4 step spindle speed change

Orientation E, F (A06B-6041-J130, J131) are required. Setting and adjustments for the PCB A20B-1000-0460, 0461 are described in the followings.

1) Display contents

LED No.	Symbol	Description
LED1	ORIENTATION	Lights when orientation command is input.
LED2	СТН	Lights when CTH signal (spindle speed change) is input.
LED3	CTM	Lights when CTM signal (spindle speed change) is input.
LED4	IN-POSITION OUT	Lights when the machine is positioned within the setting pulse width of the stop position after orientation motion. The stop position width is set by SHO2 01-06 pins.
LED5	IN-POSITION ADJUST	Lights when the machine is positioned within ±2 pulses of the specified stop position. Adjust RV3 so that LED5 lights when the orientation has been completed.

2) Setting

- a) Setting position coder power supply If the position coder power supply +5 V is supplied from the spindle amplifier, short the circuit between +5 V 5 H and 0 G 0 V. Open the circuit between +5 V 5 H and 0 G 0 V when +5 V is supplied from NC machine tool.
- b) Setting of balanced type and unbalanced type

Position coder	Setting for setting terminal 1 - 9
Balanced type	Insert short-circuit bars on the type A side (9 positions)
Unbalanced type	Insert short-circuit bars on the type B side (9 positions)

c) Setting of SH01, SH02, SH03 Set SH01, SH02, and SH03 according to the following table.

Table 7.2.2 Setting of SH01, SH02 and SH03

O indicates short-circuit, while x indicates opening.

	AT FEEL AND A		E			SH	01							SH	02				SH	103	
No	Setting contents		1 16	2 15	3 14	4 13	5 12	6 11	7 10	8 	1 	2 15	3 14	4 13	5 12	6 11	7 10	Ī	1 2	2 3	Remarks
1	Setting of rotating direction in the first orientation after	CCW	0	×			Į.								H	0.0					(Standard)
	turning on the power switch.	CW	×	0			9									ā,					
2	Setting of rotating direction in the second and sub-	CCW direction only		3 36 6	×	0	8								Ŀ						(Standard)
	sequent orientation.	CW direction only	5		×	×			7						Ē						
		Same as rotat- ing direction			0	×			T.												(Standard)
	Setting to clamp the orien-	1					×	×									1				
3	tation speed determined by position gain to 1, 2/3 and	2/3					0	×									I				
	1/3.	1/3					×	0													
	Setting by spindle rotation	Same direction Opposite							0	×											Depens upon machine tools. Hunting occurs if this setting is inverted.
4	and rotating direction of position coder.	direction			L				×	0						8					ir tins setting is inverted.
		+2 pulse									0	0	0	0	0	0					
	Setting of the in-position width when orientation end	<u>+</u> 4										0	0	0	0	0					(+16 pulse corresponds to +1.3°)
5	signals (ORAR1, 2) are output.	<u>+</u> 8											0	0	0	0					
	output:	<u>+</u> 16												0	0	0					
		+32													0	0			X		
		<u>+64</u>	-								13					0					
	Setting by hysteresis of	No compensation															×	×	× (Standard)		(Standard)
6	position coder	+1 pulse	4									THE SECOND			-		0				
3	1 1 P 0 P 6	-1 pulse	1	(0)				5/				1					×	0	-		
7	Setting according to the	DC			1														0	×	When DC spindle servo unit is used.
1	types of spindle servo unit.	AC	1		15	2		4								I			×	0	When AC spindle servo unit is used.

Sending condition (C) of orientation end signal are as below: (Note)

- * The angle position is located with the in-position setting pulse range.
 * Speed zero signal is turned on.
 * ORCM is turned on.

d) Setting of position switches (SW1, 2, 3)

Setting switch	Pulse number per 1 division	Angle change amount per 1 division
SW1	4096/16 = 256 pulses	every 22.5°
SW2	256/16 = 16 pulses	every 1.4°
SW3	16/16 = 1 pulse	every 0.088°

The spindle can be stopped at an optional point during one rotation in the unit of $1/4096 \times 360^\circ = 0.088^\circ$ by setting these switches in the order of SW1, SW2, SW3.

Adjustment

No.	Item	Name of variable resister	Standard adjusting Value	Measuring point	Description
1	Orientation high gain	RV1 DC (for DC motor)	0 division		Rigidity increases when turning clockwise during stop.
2	Orientation high gain	RV1A AC (for AC motor)	7 divisions		
3	Velocity feedback voltage offset	RV2	5 divisions	TSA2	Adjust until the voltage becomes 0 +1 mV when the spindle is stopping.
// 4	Fine position adjustment	RV3	5 divisions	VCMD3	Adjust so that LED5 (ADJST) lights at high gear position gain.
5	Low gear position gain CTH-ON.CTM-ON	RV4	2 divisions	Spindle motion (TSA2)	Set the gain to the maximum within a range where the spindle does not overshoot.
6	M. Low gear position gain CTH-ON.CTM- OFF	RV5	·2 divisions	Spindle motion (TSA2)	Set the gain to the maximum within a range where the spindle does not overshoot.
7	M. Low gear position gain CTH-OFF.CTM- ON	RV6	2 divisions	Spindle motion (TSA2)	Set the gain to the maximum within a range where the spindle does not overshoot.
8	High gear position gain CTH-OFF.CTM- OFF	RV7	2 division	Spindle motion (TSA2)	Set the gain to the maximum within a range where the spindle does not overshoot.

No.	Item	Name of variable resister	Standard adjusting value	Measuring point	Description
9	ER voltage offset adjustment	RV8	Adjusted before delivery.		
	adjustment	SW1 2. Set No 3. Perfor	m the above	s, SW2, SW3 ing pins (ty adjustments	O division pe A/B) to OFF. after motor has been command turned on.

7.3 Adjustment of Magnetic Sensor Type Spindle Orientation Control Circuit

7.3.1 Mounting method of magnetizing element and magnetic sensor

Determine the mounting directions of the magnetizing element and magnetic sensor according to the following procedure. If they are not mounted correctly, the spindle may repeat normal rotation and reverse rotation without being stopped, the hunting occurs, or the spindle stops at the position where the magnetizing element end is opposite to the sensor head.

Mounting procedure of magnetizing element and magnetic sensor

Item	Procedure
1	Mount the magnetizing element is such a way as the reference hole faces as shown in Fig. 7.3.1 when the spindle is turned by the spindle motor normal rotation command (SFR, VCMD: Positive).
2	Mount the magnetic sensor head so that the pin hole of the flange is opposite to the reference hole.
3	Adjust the gap between the magnetizing element and the sensor head, so that the minimum gap value L becomes L = 1.5 +0.5 mm. Reference hole Moving direction of magnetizing element when the spindle motor turns in normal direction (SFR).
	Magnetizing element Sensor head
	Fig. 7.3.1 (a) Mounting direction of magnetizing element (Reference drawing)

7.3.2 Setting and adjustment of spindle orientation control circuit in 2-step speed change spindle for standard type

The MODEL 3 to 40 require the orientation C (A06B-6041-J120), while MODEL 1/2/small MODEL 3 require orientation C (A06B-6052-J120), (PCB A20B-0008-0030) is used. This circuit is set and adjusted as follows.

1) Setting and adjustment of setting terminals (SH)

Table 7.3.2 (a) shows the setting and functions of setting terminal (SH). Select these terminals by user.

Terminal SHO1 is provided for adjustment and testing at site. Set this SHO1 terminal after turning on the power supply, and disconnect it after adjustment without fail.

(Make sure that LED7 goes out).

Table 7.3.2 (a) Setting and functions of setting terminals (SH)

			Setting and functions of setting (The double frame indicates stand	
	ettin Note	_	Function	Remarks
SH	1-2	2-3	-SUSPECTION AND SERVED SERVED	In the contract of the contract of
01		0	Sets the test model. (Note 2)	Set for adjustment only.
02	clockwise wh command is g operating th		Rotates the motor shaft end clockwise when the orientation command is given before operating the spindle after turning on the power supply.	SH03 setting takes precedence of SH02. This is effective only when SH03: 1-2 are shorted.
	x	0	Rotates counterclockwise	SASSING SET SEEDS
03	o	x	Orients in the direction the spindle was turning just before the orientation command was given.	SH02 setting becomes effective.
	ж	0	Orients the spindle counter- clockwise at all times.	
	х	x	Orients the spindle clockwise at all times.	

	Setting (Note		Function	Remarks	
SH	1-2	2-3	Function	. Remarks	
04	x	ж	Sets the initial orientation speed to about 60 (spindle position loop gain sec 1) of the spindle.	Since the position loop gain of spindle is 5 sec in general, the initial speed is about 300 rpm without limita-	
			Limits the initial orientation speed to 1/3.	tion.	
	х	0	Limits the initial orientation speed to 2/3.	2 1249-III - 2	
05	0	x	For DC spindle servo unit.	Trist-mill	
	x	O	For AC spindle servo unit.	Miles on	

Note 1) o indicates short-circuit, while x indicates opening.

Note 2) Method of setting the TEST MODE.

(1) Turn on spindle orientation command.

(2) Spindle orientation end signal (ORAR1, 2) is not sent.

(3) The spindle turns at the initial orientation speed, while the SW1 (INITIALIZING BUTTON) is being depressed and the spindle stops at the fixed position when SW1 is released.)

(4) Red LED7 lights in this mode.

2) LED display contents

Seven indicator lamps LED1 - 7 are mounted on spindle orientation control circuit C PCB. The following table shows their display contents. Neither LED1 nor LED2 is mounted on PCB of O1A version.

	LED	display c	ontents
LED	Display contents	Lighting color	Description
1	ORIENTATION (Orientation in progress)	Green	Lights when spindle orientation command is given (ORCM1 and 2 are shorted).
2	LOW (Clutch (gear) LOW)	Green	Lights when clutch (gear) LOW signal is turned on (*CTH1 and 2 are shorted).
3	MS PEAK LEVEL (Magnetic flux detection signal peak value adjust- ing indicator)	Green	This adjusting indicator lights when the peak value of the magnetic flux detection signal (MS) exceeds +10 V.

LED	Display contents	Lighting color	Description
4	SLOWDOWN PERIOD (Low-speed rotation period adjusting indicator)	Green	Lights when the spindle approaches the stop position and enters the low speed rotation area during spindle orientation motion.
5	IN POSITION FINE (In-position adjusting indicator)	Green	Lights when the magnetic flux signal (output) value is within the setting range of 0.1° as a converted spindle angle. This LED5 may also light when the sensor is not positioned on the magnetizing element.
6	IN-POSITION (In-position in progress)	Green	Lights when the spindle is within +1° of the aimed adjusting position after completion of spindle orientation. The spindle orientation end signal (ORAR1 and 2 are shorted) is sent when this LED is lighting in a mode other than TEST mode.
	TEST MODE (Test mode in progress)	Red	Lights when setting terminal SH01 pins are shorted. The orientation end signal is not sent in this mode even if the orientation motion is executed.

3) Setting of variable resistors Set the variable resistor scale as shown in the following table before starting adjustments. Asterisked items are readjusted during adjustment procedure described later. Set these items also as the preliminary setting.

Setting and preparation of variable resistors

Name of variable resistor	RV	1*	2*	3	4	5	6*	7*	8	9*	10*	11*	12DC	12AC
Variable resistor scale position		5.0	6.0	1	1	2	2.0	5.0	3	2.0	5.0	5.0	0	7.0

① Setting of RV3 and RV4
Set RV3 and RV4 according to the distance H between the rotation center line of magnetizing element and the center of the sencer head face.

H (mm)	60∿65	∿70	∿75	∿80	∿85	∿90	∿95	∿100	∿105	~110
Scale position	7.0	6.0	5.0	4.0	3.0	2.5	2.0	1.5	1.0	0.5

 $\ \, \ \,$ Setting of RV5 Set RV5 according to the spindle HIGH revolutions N $_{HM}$ when the spindle motor turns at the rated revolutions.

N _{HM}	2,000 ∿	^	5	٧	>	· •	>	^	v	ν
(rpm)	2,200	2,500	2,700	3,100	3,500	4,000	4,500	5,000	5,500	6,000
Scale position	7.5	6.5	5.5	4.5	3.5	2.5	2.0	1.5	1.0	0.5

R _{H/L}	-2.0	-2.2	-2.5	-2.8	-3.2	-3.7	-4.4	-5.3	-6.0	-7.0
Scale position	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	9.5	10

Variable resistor scale

4) Adjustment of variable resistors Adjust RV1 - 12, 12DC, and 12AC according to the following table. Adjust the offset and gain of spindle control circuit PCB before adjusting the orientation circuit. When RV12 and RV13 of the spindle control circuit PCB are changed, the stop position may be deviated.

A COLUMN TO THE PARTY

Table 7.3.2 (b) Adjustments of variable resistors

Set the test mode for the following adjustments by shorting SHO1 pins.

Item	Name of variable resistor	Item to be adjusted	Conditions	Adjusting method (specification)		
1 ,,	Tachogenerator offset. (Compen-		Compare the slow down time during the orientation in normal and reverse directions after completion of this adjustments.	The standard setting value is 5 divisions Adjust RV1 until the difference of the slow down time between normal and reverse rotation become shorter than 0.1 sec.		
2	RV2	MS PEAK LEVEL MS signal ampli- tude value.	Keep depressing SWI (initializing button).	Set VR2 to the position where LED3 (MS PEAK LEVEL) starts flickering.		
3	RV3	SLOWDOWN REFERENCE Slowdown speed reference.	(1)	See 7.3.2 (3) 1.		
4	RV4	AMS PEAK LEVEL AMS signal ampli- tude value.	or has lost to	See 7.3.2 (3) 1.		
5	RV5 SLOWDOWN TIME IN HIGH MODE Slowdown time in clutch (gear) high mode.		Set the clutch (gear) HIGH mode. Stop the spindle at the fixed position by depressing SWl once. *CTH signal is OFF (option).	LED4 (SLOWDOWN PERIOD) should clearly light at a moment just before the spindle stops.		
6	RV6	GAIN (H) Position loop gain.	Same as specified above.	Turn RV6 clockwise to such an extent as does not cause any overshoot when the spindle stops.		
7	RV7	IN-POSITION (H) Spindle stop position (H).	Same as specified above.	LED5 (IN-POS FINE) should light during lighting of LED6 (IN-POSITION).		
	RV8	SLOWDOWN TIME IN LOW MODE Slowdown the in clutch (gear) low mode.	Set the clutch (gear) LOW mode. Stop the spindle at the fixed position by depressing SWl once. *CTH signal is turned on (closed).	LED (SLOWDOWN PERIOD) should clearly light at a moment just before the spindle stops. (See item 5 in this table.)		

Item	Name of variable resistor	Item to be adjusted	Conditions	Adjusting method (specification)
9	RV9	GAIN (L) Position loop gain.	Same as specified . above.	Turn RV9 clockwise to such an extent as does not cause any overshoot when the spindle stops.
10	RV10	IN-POSITION (L) Spindle stop position (L).	Same as specified above.	LED5 (IN-POS FINE) should light during lighting of LED6 (IN-POSITION).
11	RV11	POSITION SHIFT Spindle stop posi- tion shift.		The spindle stop position can be finely adjusted within a range +1° the spindle angle.
12	RV12 DC	HIGH GAIN DC High gain.	Adjust RV12 when DC spindle servo unit is used.	Standard adjusting value: 7 divisions.
13	RV12 AC	HIGH GAIN AC High gain.	Adjust RV12 when AC spindle servo unit is used.	Standard adjusting value: 7 divisions.

After adjustments, cancel the test mode, and make sure that the LED7 (red) goes out.

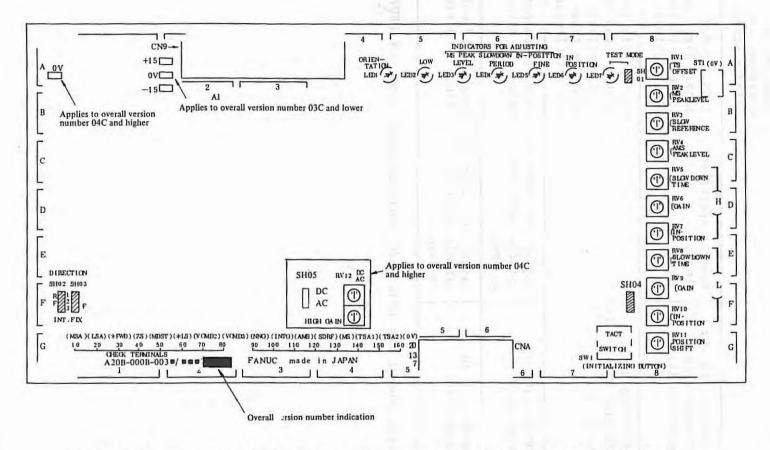


Fig. 7.3.2 Mounting positions of check terminals, variable resistors, setting pins and light-emitting diodes (LED) (PCB A20B-0008-0030)

7.3.3 Setting and adjustment of spindle orientation control circuit in 2-step spindle speed for high speed

The MODEL 3 to 40 require the orientation G (A06B-6041-J122), while MODEL 1/2/small MODEL 3 require orientation GS (A06B-6052-J122), (PCB A20B-0008-0031) is used. This circuit is set and adjusted as follows.

Setting and adjustment of setting terminals (SH)
 Table 7.3.3 (a) shows the setting and functions of setting terminal (SH).
 Select these terminals by user.

Terminal SH01 is provided for adjustment and testing at site. Set this SH01 terminal after turning on the power supply, and disconnect it after adjustment without fail.

(Make sure that LED7 goes out).

Table 7.3.3 (a) Setting and functions of setting terminals (SH)

			Setting and functions of setting (The double frame indicates standards	
	Settin (Note		Function	Remarks
SH	1-2	2-3		
01		o	Sets the test model. (Note 2)	Set for adjustment only.
02	0	x	Rotates the motor shaft end clockwise when the orientation command is given before operating the spindle after turning on the power supply.	SH03 setting takes precedence of SH02. This is effective only when SH03: 1-2 are shorted.
	х	0	Rotates counterclockwise	
03	o	x	Orients in the direction the spindle was turning just before the orientation command was given.	SH02 setting becomes effective.
	х	0	Orients the spindle counter- clockwise at all times.	
	X.	х	Orients the spindle clockwise at all times.	

	Settin (Note		Function	Remarks
SH	1-2	2-3	Function	Kellalks
04	ж	x	Sets the initial orientation speed to about 60 (spindle position loop gain sec 1) of the spindle.	Since the position loop gain of spindle is 5 sec in general, the initial speed is about 300 rpm without limita-
	0	х	Limits the initial orientation speed to 1/3.	tion.
	х	0	Limits the initial orientation speed to 2/3.	
05	0	х	For DC spindle servo unit.	
	x	0	For AC spindle servo unit.	

Note 1) o indicates short-circuit, while x indicates opening.

Note 2) Method of setting the TEST MODE.

(1) Turn on spindle orientation command.

(2) Spindle orientation end signal (ORAR1, 2) is not sent.

(3) The spindle turns at the initial orientation speed, while the SW1 (INITIALIZING BUTTON) is being depressed and the spindle stops at the fixed position when SW1 is released.)

(4) Red LED7 lights in this mode.

2) LED display contents

Seven indicator lamps LED1 - 7 are mounted on spindle orientation control circuit G and GS PCB. The following table shows their display contents.

	LED display contents									
LED	Display contents	Lighting color	Description							
1	ORIENTATION (Orientation in progress)	Green	Lights when spindle orientation command is given (ORCM1 and 2 are shorted).							
2	LOW (Clutch (gear) LOW)	Green	Lights when clutch (gear) LOW signal is turned on (*CTH1 and 2 are shorted).							
3	MS PEAK LEVEL (Magnetic flux detection signal peak value adjust- ing indicator)	Green	This adjusting indicator lights when the peak value of the magnetic flux detection signal (MS) exceeds +10 V.							

LED	Display contents	Lighting color	Description
4	SLOWDOWN PERIOD (Low-speed rotation period adjusting indicator)	Green	Lights when the spindle approaches the stop position and enters the low speed rotation are a during spindle orientation motion.
5	IN POSITION FINE (In-position adjusting indicator)	Green	Lights when the magnetic flux signal (output) value is within the setting range of 0.1° as a converted spindle angle. This LED5 may also light when the sensor is not positioned on the magnetizing element.
6	IN-POSITION (In-position in progress)	Green	Lights when the spindle is within ±1° of the aimed adjusting position after completion of spindle orientation. The spindle orientation end signal (ORAR1 and 2 are shorted) is sent when this LED is lighting in a mode other than TEST mode.
7	TEST MODE (Test mode in progress)	Red	Lights when setting terminal SH01 pins are shorted. The orientation end signal is not sent in this mode even if the orientation motion is executed.

3) Setting of variable resistors

Set the variable resistor scale as shown in the following table before starting adjustments.

Asterisked items are readjusted during adjustment procedure described later. Set these items also as the preliminary setting.

Setting and preparation of variable resistors

Name of variable resistor	RV	1*	2*	3	4	5	6*	7*	8	9*	10*	11*	12DC	12AC
Variable resistor scale position		5.0	5.0	1	1	2	5.0	5.0	3	5.0	5.0	5.0	0	8.0

① Setting of RV3 and RV4
Set RV3 and RV4 according to the distance H between the rotation center line of magnetizing element and the center of the head face.

H (mm)	40~45	∿50	∿55	∿60	∿65	∿70	∿80	∿90	∿100	∿110
Scale position	9.5	7.0	5.0	4.0	3.0	2.5	2.0	1.5	1.0	1.0

2 Setting of RV5 Set RV5 according to the spindle HIGH revolutions N $_{\mbox{\scriptsize HM}}$ when the spindle motor turns at the rated revolutions.

N _{HM} (rpm)	6,000 ~ 6,500	∿ 7,000	√ 7,500	° 8,000	∿ 8,500	√ 9,000	√ 9,500	∿ 10,000	11,000	√ 12,000
Scale position	6.0	5.0	4.5	4.0	3.5	3.0	2.5	2.5	2.0	1.0

 $\ensuremath{\mbox{(3)}}$ Setting of RV8 Set RV8 according to the spindle HIGH/LOW reduction gear ratio $R_{\ensuremath{\mbox{H/L}}}$.

R _{H/L}	∿2.2	∿2.5	∿2.8	∿3.2	∿3.7	∿4.5	∿5.0	∿6.0	∿7.0	٠
Scale position	2.0	3.0	4.0	5.0	6.0	7.0	8.0	8.0	9.0	

Variable resistor scale

4) Adjustment of variable resistors
Adjust RV1 - 12, 12DC, and 12AC according to the following table. Adjust the
offset and gain of spindle control circuit PCB before adjusting the orientation circuit. When RV12 and RV13 of the spindle control circuit PCB are
changed, the stop position may be deviated.

Table 7.3.3 (b) Adjustments of variable resistors

Set the test mode for the following adjustments by shorting SHO1 pins.

Item	Name of variable resistor	Item to be adjusted	Conditions	Adjusting method (specification)			
1	RV I	TS OFFSET Tachogenerator offset. (Compensation for the difference of the slow down time in normal and reverse rotating direction)	Compare the slow down time during the orientation in normal and reverse directions after completion of this adjustments.	The standard setting value is 5 divisions Adjust RV1 until the difference of the slow down time between normal and reverse rotation become shorter than 0.1 sec.			
2	RV2	MS PEAK LEVEL MS signal ampli- tude value.	Keep depressing SW1 (initializing button).	Set VR2 to the position where LED3 (MS PEAK LEVEL) starts flickering.			
3	RV3	SLOWDOWN REFERENCE Slowdown speed reference.) but	See 7.3.3 (3) 1 .			
4	RV4	AMS PEAK LEVEL AMS signal ampli- tude value.		See 7.3.3 (3) 1.			
5	RV5	SLOWDOWN TIME IN HIGH MODE Slowdown time in clutch (gear) high mode.	Set the clutch (gear) HIGH mode. Stop the spindle at the fixed position by depressing SWI once. *CTH signal is OFF (option).	LED4 (SLOWDOWN PERIOD) should clearly light at a moment just before the spindle stops.			
6	RV6	GAIN (H) Position loop gain.	Same as specified above.	Turn RV6 clockwise to such an extent as does not cause any overshoot when the spindle stops.			
7	RV7	IN-POSITION (H) Spindle stop position (H).	Same as specified above.	LED5 (IN-POS FINE) should light during lighting of LED6 (IN-POSITION).			
8	8 RV8 SLOWDOWN TIME IN LOW MODE Slowdown the in clutch (gear) low mode.		Set the clutch (gear) LOW mode. Stop the spindle at the fixed position by depressing SWl once. *CTH signal is turned on (closed).	LED (SLOWDOWN PERIOD) should clearly light at a moment just before the spindle stops. (See item 5 in this table.)			

Item	Name of variable resistor	Item to be adjusted	Conditions	Adjusting method (specification)
9	RV9	GAIN (L) Position loop gain.		Turn RV9 clockwise to such an extent as does not cause any overshoot when the spindle stops.
10	RV10	IN-POSITION (L) Spindle stop position (L).	Same as specified above.	LED5 (IN-POS FINE) should light during lighting of LED6 (IN-POSITION).
11 -(ma 8H)	RV11	POSITION SHIFT Spindle stop posi- tion shift.	00	The spindle stop position can be finely adjusted within a range +1° the spindle angle.
12	RV12 DC	HIGH GAIN DC High gain.	Adjust RV12 when DC spindle servo unit is used.	Standard adjusting value: 7 divisions.
13	RV12 AC	HIGH GAIN AC High gain.	Adjust RV12 when AC spindle servo unit is used.	Standard adjusting value: 7 divisions.

After adjustments, cancel the test mode, and make sure that the LED7 (red) goes out.

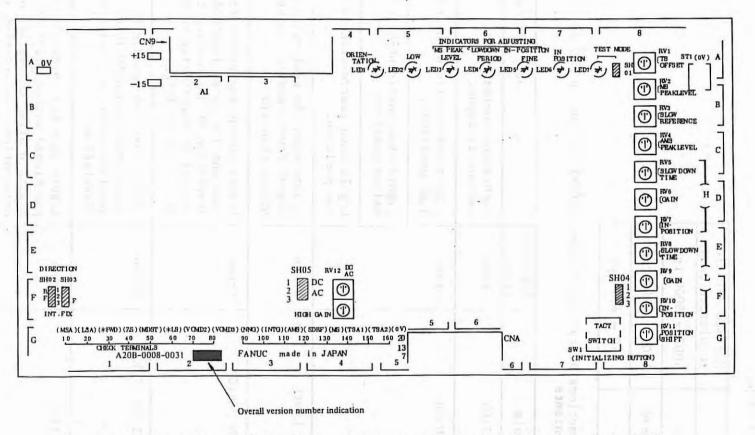


Fig. 7.3.3 Mounting positions of check terminals, variable resistors, setting pins and light-emitting diodes (LED) (PCB A20B-0008-0031)

7.3.4 Setting and adjustment of spindle orientation control circuit in case of 3-step spindle speed change

PCB A20B-0009-0520 is employed as spindle orientation control circuit D (A06B-6041-J121). This paragraph describes the setting and adjusting methods of

Note) Be careful since the maximum spindle revolution range is limited at each speed change step.

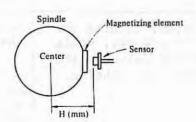
	Maximum spindle revolution range
High speed	4000 - 8000 rpm
Medium speed	1000 - 2000 rpm
Low speed	250 - 677 rpm

1) Setting and functions of setting terminals (SH) same as in 7.3.2 2) LED display contents

LED No.	Symbols	Lighting color	Description
LED1	ORIENTATION	Green	Lights when orientation command is input.
LED2H	GEAR/CLUTCH	Green	Lights when gear/clutch is set to high positions.
LED2M			Lights when gear/clutch is set to medium position.
LED2L		140	Lights when gear/clutch is set to low position.
LED3	MS PEAK LEVEL	Green	Lights when the peak value of MS signal from magnetic sensor is higher than +10 V.
LED4	SLOWDOWN PERIOD	Green	Lights during the period from the constant low speed just before completion of orientation to the arrival of magnetizing sensor at the sensor position.
LED5	IN-POSITION FINE	Green	Lights when the spindle is positioned within ±0.1° of the stop position after completion of orientation.
LED6	IN-POSITION	Green	Lights when the spindle is positioned within ±1.0° of the stop position after completion of orientation. Orientation end signal is sent when this LED is lighting in a mode other than TEST mode.
LED7	TEST MODE	Red	Lights when setting terminal SHO1 is shorted across 01 and 02.

3) Adjustments
Observe the following procedure in the test mode after turning on the power supply.

Item	Variable resistor	Adjustment item	Conditions	Adjusting method
1	RV1	TS OFFSET Tachogenerator offset. (Compensation for the difference of the slow down time in normal and reverse rotating direction)	Compare the slow down time during the orientation in normal and reverse directions after completion of this adjustments.	The standard setting value is 5 divisions Adjust RV1 until the difference of the slow down time between normal and reverse rotation become shorter than 0.1 sec.
2	RV2	MS PEAK LEVEL MS signal ampli- tude value.	Keep depressing SW1	Set VR2 at the posi- tion where LED3 beging flickering.
3	RV3	SLOWDOWN REFERENCE (Slowdown speed reference.)	Check the distance from the spindle center to the sensor	Set RV3 and RV4 according to (Note 1).
4	RV4	AMS PEAK LEVEL (AMS signal amplitude value.)	head.	3
5	RV5	SLOWDOWN TIME (HIGH) (Slowdown time)	Repeat turning on and off SWl while LED2H (clutch (gear) HIGH) is lighting.	LED4 should clearly light for a moment (about 0.2 sec) just before stopping.
6	RV6	GAIN (HIGH) (Position loop gain)		Turn RV6 clockwise to such an extent as does not cause any overshoot when the spindle stops.
7	RV7	IN-POSITION (H) (Spindle stop position adjust- ment)	Same as above	Adjust RV7 so that LED5 lights con- currently while LED6 is lighting. LED5 may flicker.
8	RV8	SLOWDOWN TIME (LOW) (Slowdown time)	Repeat turning on and off SW1, while LED2L (clutch (gear) LOW) is lighting.	Same as in item 5 in this table.
9	RV9	GAIN (LOW) (Position loop gain)		Same as in item 6 in this table.


Item	Variable resistor	Adjustment item	Conditions	Adjusting method
10	RV10	IN-POSITION (LOW) (Spindle stop position adjust- ment)	Repeat turning on and off SW1, while LED2L (clutch (gear LOW) is lighting.	Same as in item 7 in this table.
11	RV11	SLOWDOWN TIME (MEDIUM) (Slowdown time)	Repeat turning on and off SW1 while LED2M (clutch (gear	Same as in item 5 in this table.
12	RV13	GAIN (MEDIUM) (Position loop gain)	MEDIUM) is light- ing.	Same as in item 6 in this table.
13	RV14	IN-POSITION (MEDIUM) (Spindle stop position adjust- ment)		Same as in item 7 in this table.
14	RV11	POSITION SHIFT (Spindle stop position shift)	The spindle stop position can be finely adjusted down to +1° at spindle angle.	Set the key position of ATC arm to the keyway position of spindle.
15	RV15DC	HIGH GAIN DC High gain	Adjustment using DC spindle servo unit.	Standard adjusting value: 0 division.
16	RV15AC	HIGH GAIN AC High gain	Adjustment using AC spindle servo unit.	Standard adjusting value: 7 divisions.

Reset the test mode after adjustments. Note 1) Adjust RV3 and RV4 according to the distance (H) from the spindle center to the sensor as follows.

H (mm)	50	60	70	80	90	100	110	120
RV3, 4 scale	9.5	6.5	4.5	3.0	2.2	1.5	1.0	0.5

Variable resistor scale divisions

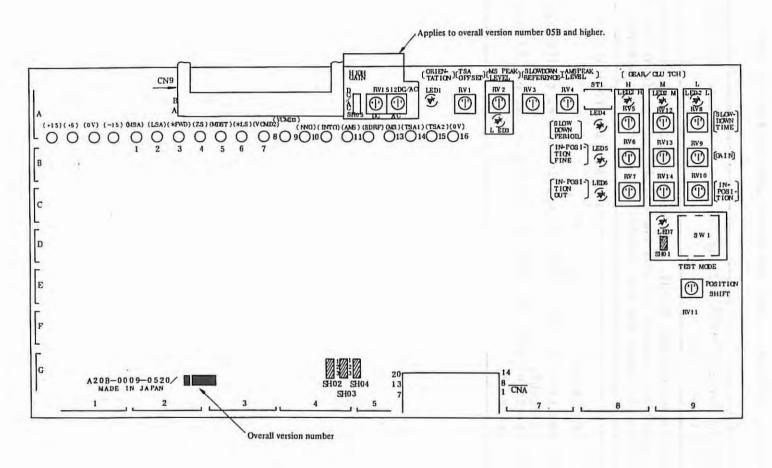


Fig. 7.3.4 Mounting positions of check terminals, variable resistors, setting pins, and light emitting diodes (LED) (PCB A20B-0009-0520)

7.3.5 Method of checking the spindle position loop gain

The spindle position loop gain can be checked according to the following procedure. Check it after adjusting the spindle orientation control circuit.

Procedure of checking the spindle position loop gain

1	Set the mode to TEST mode (LED7 ON) after shorting setting terminal SHO1 pins.
2	Release setting terminal SH04 $1-2$ and $2-3$ pins to release the speed limitation of orientation.
3	Measure spindle revolutions Ns(H), Ns(L) rpm when SW1 (INITIALIZING button) is depressed (turned on) and the spindle clutch (gear) is set to HIGH (*CT *CTH1, 2: Open) and LOW (*CTH1, 2: Closed), respectively.
4	The spindle position loop gain can be obtained by the following formula. K (H or L) : N (H or L) : 55 (sec -1) where K (H): Position loop gain when the spindle is set to HIGH gear (clutch). K (L): Position loop gain when the spindle is set to LOW gear (clutch).

II. AC SPINDLE SERVO UNIT (380/415V AC INPUT)

1. OUTLINE

This Section describes maintenance of the 380/415V AC input type spindle servo unit.

1.1 Configuration

The AC380/415V AC spindle servo unit consists of the unit, PC board, and ROM.

	Considientian	Unit DWG No.	РСВ	ROM		
Model Name	Specification DWG No.		DWG No.	Specified DWG No.	Classification	
Model 30	A06B-6054 -H030	A06B-6054 -C040	A20B-1001	A06B-6054 -C530	JUA	
Model 40	A06B-6054 -H040	A06B-6054 -C040	-0620	A06B-6054 -C540	JUB	

2. DAILY MAINTENANCE AND MAINTENANCE TOOL

See item 2 in Chapter I in this manual.

3. INSTALLATION

For power supply line, power line and signal line connections, refer to the "Connection Diagram" in Appendix 1. A single-phase AC220V power supply line connection is added to this unit. The fan for AC spindle motor cooling employs a 3-phase motor. For a signal line soft start/stop cancel SOCN is added thereto.

4. SETTING AND ADJUSTMENT

4.1 Setting on PCB

For the location on the PCB, refer to the "Parts Location" in Appendix 6. Before turning power ON, check the following setting.

Table 4.1 (a) Setting

Setting terminal number	Cont	ents	Se	tting	Setting at shipment from factor	
S1	Machine ready signal (MRDY)	Used	OFF	°]ON	OFF	
		Not used	ON	°]on		
S2	Analog over- ride	Used .	OFF	ON	OFF	
		Not used	ON	о [
S3	Same as the above	Used .	ON	°) ON	ON	
MIL Andreas		Not used	OFF	©]ON		
S4	Velocity command signal	Use of external analog voltage command	OFF ·	o]on	OFF	
		Use of RO1 - R12 commands	ON	°]ON		
S5A	Setting of		S5A	S5B		
S5B	velocity feedback	2000 rpm	OFF	OFF		
	amount to rated command	3500 rpm	ON	OFF		
		4500 rpm	OFF	ON	0	
		Not used	ON	ON		
S8	Delay time required until	0 sec/option	OFF -	ON	ON (Note 1)	
	motor is de- energized	0.2 sec/ standard	ON	орјом		

Setting terminal number	Co	ntents			Setting	Setting at shipment from factory
S11	Soft start/ stop time constant	0.6	8 sec	A	o B o A	A
	switching (Adjust by RV20)	3.5	40 sec	В	о в о A	

Note 1) Insert a short bar without fail even when setting is turned off.

Variable resistors RV1 - RV19 of the spindle control circuit PCB have been adjusted at factory before shipment, and their adjustments are no longer necessary, in principle.

However, the set values of variable resistors shown in Table 4.1 (b) are changeable as required. Readjust variable resistors shown in Table 4.1 (c) after turning on the power supply, if fine adjustment is required for offset, rotating speed, etc.

1) Variable resistors whose set values are changeable.

Table 4.1 (b)

Variable resistor number	Use	Standard adjustment at shipment from factory	Setting change method
RV3	Set speed arrival level	Sends speed arrival signal when the motor speed reaches 85 - 115% of the command speed.	See appendix 8.
RV4	Speed detection level	3% of the maximum speed is detected.	See appendix 8.
RV5	Torque limit value		See appendix 8.
RV20	Soft start/stop time constant adjust		See appendix 8. (Note 1)

2) Variable resistors for fine adjustment of offset and rated speed.

Table 4.1 (c)

Variable resistor number	Use	Adjusting method
RV1	Adjusts the velocity command voltage level.	See appendix 8.
RV2	Adjusts the velocity command voltage offset.	See appendix 8.
RV9	Finely adjusts the rated speed in normal rotation (SFR).	See appendix 8. (Note 2)
R11	Finely adjusts the rated speed in reverse rotation (SRV).	See appendix 8. (Note 2)
R13	Adjusts the offset when zero speed is commanded.	See appendix 8.

Note 1) For details, refer to the "PCB Adjustment" in Appendix 8 in this manual. Note 2) Adjust the number of revolution both in the forward direction (CCW) and the reverse direction (CW), using RV9.

5. TROUBLESHOOTING AND COUNTERMEASURE

See item 3 in Chapter I in this manual.

III. DIGITAL AC SPINDLE SERVO UNIT (MODEL 3 \sim 22)

1. OUTLINE

This is the manual that describes maintenance of digital AC spindle servo unit $(MODEL\ 3-22)$.

1.1 Configuration

Digital AC SPINDLE SERVO UNIT consists of unit part, printed circuit board, and ROM.

Table 1.1 Element of configuration

Name of AC	Specification of	Specification	Specifi- cation of	ROM		
spindle servo unit	spindle servo unit *Note	of unit part *Note	printed circuit board	Specifications	Type	
MODEL 3 6000rpm	A06B-6055-H103#H500 A06B-6055-H203#H500	A06B-6055-H103 A06B-6055-H203	A20B-1001 -0120	A06B-6055-H500	9600	
MODEL 6 6000rpm	A06B-6055-H106#H501 A06B-6055-H206#H501	A06B-6055-H106 A06B-6055-H206		A06B-6055-H501	9601	
MODEL 8 4500rpm	A06B-6055-H108#H502 A06B-6055-H208#H502	A06B-6055-H108 A06B-6055-H208			A06B-6055-H502	9602
MODEL 8 6000rpm	A06B-6055-H108#H503 A06B-6055-H208#H503			A06B-6055-H503	9603	
MODEL 12 4500rpm.	A06B-6055-H112#H504 A06B-6055-H212#H504	A06B-6055-H112 A06B-6055-H212		A06B-6055-H504	9604	
MODEL 12 6000rpm	A06B-6055-H112#H505 A06B-6055-H212#H505			A06B-6055-H505	9605	
MODEL 15 4500rpm	A06B-6055-H115#H506 A06B-6055-H215#H506	A06B-6055-H115 A06B-6055-H215		A06B-6055-H506	9606	
MODEL 15 6000rpm	A06B-6055-H115#H507 A06B-6055-H215#H507			A06B-6055-H507	9607	
MODEL 18 4500rpm	A06B-6055-H118#H508 A06B-6055-H218#H508	A06B-6055-H118 A06B-6055-H218			A06B-6055-H508	9608
MODEL 22 4500rpm	A06B-6055-H122#H510 A06B-6055-H222#H510	A06B-6055-H122 A06B-6055-H222		A06B-6055-H510	9610	
High- speed MODEL 3 12000rpm	A06B-6055-H103#H512 A06B-6055-H203#H512	A06B-6055-H103 A06B-6055-H203	-	A06B-6055-H512	9612	
High- speed MODEL 6 12000rpm	A06B-6055-H108#H513 A06B-6055-H208#H513	A06B-6055-H108 A06B-6055-H208		A06B-6055-H513	9613	

Note) Upper: Internal ventilation type

Lower: External radiation type

2. DAIRY MAINTENANCE AND INSTRUMENTS FOR MAINTENANCE

See this maintenance manual, item 2 in Chapter I.

3. INSTALLATION

The same interface as for the conventional model is applied. See this maintenance manual, item 4 in Chapter I, for procedure of installation, wiring connection of power supply, and AC spindle motor connection.

здуг	modelà 171 rang			
	(1002H-dE)			
	11:31-2 (10-13:0)			
9502				
	2020-2000-0002		April 2 (18 - 17 12) (18) (18) (18) (18) (18) (18) (18) (18) (18) (18) (18) (18) (18) (18) (18)	
2006				
		 111 11-1280-2100; 5020-0200-0100;		
1141				1716 1716 1716 1716 1716
			team allectus-add/s	

card and december threat and other

4. SETTING

Setting is the same on the unit as for the conventional model. Setting and adjustment of the printed circuit board has been changed into parameter setting from setting by short pin and adjustment with volume, however. See the following instructions for setting.

- 4.1 Method of Parameter Setting
- 4.2 Number and Contents of Parameter
- 4.3 Rank at Setting

4.1 Method of Parameter Setting

Setting switch and display are configured on the printed circuit board as follows. Check and change of setting for each mode can be made by operating this switch as shown in the next page.

Display

Setting switch

1) For checking present mode

a) Number of rotation is shown (in five digits) on the display normally.

Present mode number is indicated when "MODE" key is turned ON.

Mode number is indicated in two digits as "F-XX".

- 2) For checking setting data
 - a) Select the mode (parameter) of the data that needs be checked in the following procedure.
 - b) Keep pressing four buttons "MODE", "OWN", "DOWN", "DATA" key simultaneously for more than one second.
 - c) Display is changed from blank
 - d) Turn OFF all the switches.
 - e) Present mode is displayed when "MODE" key is ON.
 - f) One mode is increased when "TD" key is ON with "MODE" key ON.
 - g) More modes are continuously increased when "UP" key is kept ON with "MODE" key ON.
 - h) One mode is subtracted when "DOWN" key is ON with "MODE" key ON.

	i) More modes are continuously increased w "MODE" key ON.	hen \bigtriangledown key is kept ON with
	j) Data is displayed (in four digits) 0.5 turned OFF.	second later when "MODE" key is
	k) Rotation number display is made in about made.	10 seconds after data display is
	When all the switches are turned off, rotation matter what the mode may be.	on number is displayed finally no
3)	For changing data a) Refer to the procedure shown in (b) to (i to be changed.) to select the mode (parameter)
	b) Data is displayed in about 0.5 second after	er "MODE" key is turned OFF.
	c) One data is increased when "O" key is ON.	
	d) More data is continuously increased when "	
	e) One data is subtracted when "DOWN" key is	OI .
	f) More data is continuously increased when	
	g) Motor is controlled by the data displayed.	
	h) Keep "DATA" key ON for more than a second	
	change.	
	i) Display is changed from blank	to definition for
	j) Follow the procedure from a) for another d	ata change.
	k) Rotation number display is made in about 1 are turned OFF. As for F-13, F-14, and F made about two seconds later, however.	0 seconds after all the switches 7-30, rotation number display is
4.2	Number and Contents of Parameter	
1)	Display of motor revolution number	
	Mode number Display data (five digits)	Contents of data
	F-00	Displays motor revolution number (rpm)
2)	Machine ready signal (MRDY): Use/Non-use	
	Mode number Display data (four digits)	Contents of data
	F-01 0001	0, 1 (Standard setting: 1)
	Explanation: When machine ready signal (MRDY When machine ready signal (MRDY	

Use/Non-use o	f override function		
Mode number	Display data (four di	gits) Contents of data	1
F-02	0001	0, 1 (Standard s	setting: 1)
			Data
Explanation:			
Override rang	e setting	4	
Mode number	Display data (four di	gits) Contents of data	1
F-03	0001	0, 1 (Standard	setting: 1)
	STREET, STREET	Data	
Explanation:			
	opper rimit or override	Tange = - 100% 0	
			setting data =
Setting of ki	nd of velocity command (External analog voltage,	DA converter)
Mode number	Display data (four di	gits) Contents of data	1
7.01			
F-04	0001	0, 1 (Standard s	
Explanation:	When external analog wo	ltage is used	Data
Explanation.			
Satting of ma	wimum rowolution number		
Secting of ma	XIMUM TEVOLUCION NUMBER		
Mode number	Display data (four di	gits) Contents of data	a
F-05		0 - 3 (setting	
		with motor spec:	ifications.)
Explanation:	Standard specification	High-speed specification	Setting data
	- 5000 rpm	- 10000 rpm	0
	- 6000 rpm	- 12000 rpm	1
		- 15000 rpm	2
		- 20000 rpm	3
	Mode number F-02 Explanation: Override range Mode number F-03 Explanation: Caution: Whe O, Setting of kinds and the number F-04 Explanation: Setting of management ma	Explanation: When override function When override function Override range setting Mode number Display data (four different processes of the setting of the	Mode number Display data (four digits) Contents of data F-02 0001 0, 1 (Standard sexplanation: When override function is used

 $\tilde{k} =$

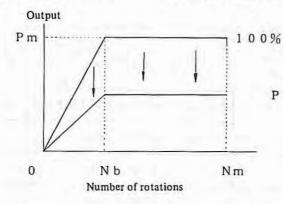
7) Output limit pattern setting

Mode number Display data (four digits) Contents of data

F-06

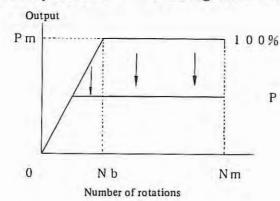
0000

0 - 3 (Standard setting: 0)


Explanation:

No other conventional type units are equipped with this function. Select a proper pattern specified as follows.

- A. Output limiting is made only at acceleration deceleration. Acceleration/deceleration is slowly made and operation is made with rated output at normal rotation. (Setting data: 1) (A similar function to soft start/stop)
- B. Acceleration/deceleration is made with maximum rated output, and output limiting is made at normal rotation. (Setting data: 2)
- C. Alteration of output specification is made for the machine with motor and amplifier of the identical specifications. (Setting data: 3)


Contents	Setting data
Output limiting is not made.	0
Output limiting is made only at acceleration/deceleration.	1
Output limiting is made at normal rotation, not at acceleration/deceleration.	2
Output is limited for all operations.	3

Output limit pattern 1 Setting data = 1, 2, 3

$$P \circ u \ t = \frac{(F - 0.7)}{1.0.0} \times P m$$

Output limit pattern 2 Setting data = 4, 5, 6

$$P \circ u \ t = \frac{(F - 0.7)}{1.0.0} \times P m$$

Contents of data Display data (four digits) Mode number 0 - 100(Standard setting: 100) F-07 0100 Set the value to be limited at 100% of maximum rated output Explanation: (overload tolerance). It is effective at output limit set on the mode F-06. Output limit value = Maximum rated output x (Setting data) % 9) Delay time before cutting motor power supply Contents of data Mode number Display data (four digits) 0 - 255 (Standard setting: 5) F-08 0005 Explanation: Delay time from zero speed signal detection to motor power supply disconnection is set. Delay time = (Setting data) x 40 msec. 10) Use/Non-use of motor power supply shutting off by machine ready signal (MRDY) Display data (four digits) Contents of data Mode number F-09 0000 0, 1 (Standard setting: 0) Explanation: It is used when frequent switching of electro-magnetic contactor is expected. Only motor power supply is shut off while electro-magnetic contactor stays ON, when machine ready signal (MRDY) is turned OFF. Data When this function is used 1 When this function is not used 0 11) Velocity deviation offset adjustment at forward rotation command (SFR) Display data (four digits) Contents of data Mode number 0128 0 - 255(Standard setting: 128) F-10 This adjustment is made in order to stop motor at the time Explanation: forward rotation command (SFR) and velocity command voltage, OV (zero rotation command) are given. Add more data (UP) to stop the motor turning counterclockwise (CCW) relatively to its shaft.

8) Setting of limit value at output limit

1.

reverse rotation OV (zero rotation stop the motor its shaft.	command (SRV) on command) are turning counte	0 - 255(Standard setting: 128 er to stop the motor at the tim) and velocity command voltage e given. Add more data (UP) t erclockwise (CCW) relatively t
reverse rotation OV (zero rotation stop the motor its shaft.	command (SRV) on command) are turning counte) and velocity command voltage e given. Add more data (UP) t
	ent at orienta	
D4 1 1 1		tion command (ORCM)
Dispiay data (f	our digits)	Contents of data
0128		0 - 255 (Standard setting: 28
FINE can not b	e illuminated	ment in case LED 06 IN-POSITIO by adjustment volume on th tion.
r adjustment at	forward rotation	on command (SFR)
Display data (f	our digits)	Contents of data
		0 - 255 (Setting is based on motor specification.)
velocity command	is input at	s specified by the command when forward rotation command (SFR) rease rotation number.
r adjustment at	reverse rotatio	on command (SRV)
Display data (f	our digits)	Contents of data
		0 - 255 (Setting is based on motor specification.)
velocity command	is input at	s specified by the command when reverse rotation command (SRV) rease rotation number.
ation number at	velocity comman	nd voltage, 10 V
Display data (f	our digits)	Contents of data
		0 - Rated rotation number (Setting is based on motor specification.)
	FINE can not be orientation circles adjustment at Display data (for ation number at data ation number at dat	FINE can not be illuminated orientation circuit at orientation respectively. The series of the serie

- 92 -

Rotation number (rpm) at velocity command voltage, 10V=(Setting data)x100

17) Detection range of velocity arrival signal (SAR)

Mode number Display data (four digits) Contents of data

F-16

0015

0 - 100 (Standard setting: 15)

Explanation: Setting of detection range of velocity arrival signal is made. Speed arrival signal (SAR) is fed (ON) when motor revolution

number reaches to +(set data)% of command rotation number.

Detection range = Command rotation number x within +(Set data)%

18) Detection range of speed detection signal (SDT)

Mode number Display data (four digits)

Contents of data

F-17

0003

0 - 100 (Standard setting: 3)

Explanation: Setting of detection range of speed detection signal (SDT) is made. Speed detection signal (SDT) is fed (ON) when motor revolution number becomes less than the (set data)% of maximum

number of revolution.

Detection range = Maximum number of revolution x less than the (Set data)%

19) Setting of torque limit value

Mode number

Display data (four digits)

Contents of data

F-18

0050

0 - 100 (Standard setting: 50)

Explanation: Setting of torque limit value at torque limit signal (TLMH) ON is made.

Torque limit value = Maximum rated torque x (Set data)%

20) Setting of acceleration/deceleration time

Mode number

Display data (four digits)

Contents of data

F-19

0010

0 - 255 (Standard setting: 10)

Explanation: This setting is made when acceleration time from stop to maximum rotation number is more than five seconds.

Set value = Acceleration time (Second) x 2

21)	Limiting of r	egenerated power (adjust	ment of deceleration time)
	Mode number	Display data (four dig	its) Contents of data
	F-20	0060	0 - 100 (Standard setting: 60)
	Explanation:	acceleration time. I setting value is large. is small. Motor may ma is excessively large,	on time so that it is the same as ecceleration time is shortened when Deceleration time gets longer when it ke abnormal sounds if regenerated power as the regeneration limit circuit waveform of the motor current. Make such a case.
22)	Setting of ve	locity control phase com	pensation P: HIGH gear (CTH = 1)
	Mode number	Display data (four dig	its) Contents of data
	F-21	0050	0 - 255 (Standard setting: 50)
23)	Setting of ve	locity control phase com	pensation P: LOW gear (CTH = 0)
	Mode number	Display data (four dig	its) Contents of data
	F-22	0050	0 - 255 (Standard setting: 50)
24)	Setting of ve (CTH = 1)	locity control phase com	pensation P at orientation: HIGH gear
	Mode number	Display data (four dig	its) Contents of data
	F-23	0100	0 - 255(Standard setting: 100)
25)	Setting of ve (CTH = 0)	elocity control phase co	mpensation P at orientation: LOW gear
	Mode number	Display data (four dig	its) Contents of data
	F-24	0100	0 - 255(Standard setting: 100)
26)	Setting of ve	locity control phase com	pensation I: HIGH gear (CTH = 1)
	Mode number	Display data (four dig	its) Contents of data
	F-25	0030	0 - 255 (Standard setting: 30)
27)	Setting of ve	locity control phase com	pensation I: LOW gear (CTH = 0)
	Mode number	Display data (four dig	its) Contents of data
	F-26	0030	0 - 255 (Standard setting: 30)

28)	Setting of ve (CTH = 1)	elocity co	ntrol pha	se compensat	ion I at orientation:	HIGH gear
	Mode number	Display	data (fou	ır digits)	Contents of data	
	F-27		0030		0 - 255 (Standard se	etting: 30)
29)	Setting of ve (CTH = 0)	elocity co	ntrol pha	se compensa	tion I at orientation:	LOW gear
	Mode number	Display	data (for	ır digits)	Contents of data	
	F-28		0030		0 - 255 (Standard se	etting: 30)
30)	Velocity dete	ction offs	set			
	Mode number	Display	data (for	ır digits)	Contents of data	
	F-29		0128		0 - 255 (Adjustment Shipping: about 12	
	Explanation:	Adjust it stopped.	so that	check termi	nal "TS3" is 0 mV, with	h the motor
31)	Adjustment of	revolution	on number	display		
	Mode number	Display	data (for	ır digits)	Contents of data	
	F-30		3990		0 - 8191 (Adjustmen Shipping: about 39	
	Explanation:	number.	Make tl	he setting	of display of motor smaller when more of motor revolution.	
32)	Setting of ri	gid tap mo	ode			
	Mode number	Display	data (for	ır digits)	Contents of data	
	F-31		0000		0 - 1 (Standard set	ting: 0)
	From 1 and 4 and	Тамана 14		1 (TT MT) 4-	Da	ta
	Explanation:				used the same ue limit 0	
		improveme such as	ent of res digit tapp	al (TLML) is sponse chara ping functio	cteristics n as	
221	Catting of					
33)	Setting of mo					
	Mode number	Display	data (for	ır digits)	Contents of data	
	F-32		0010		0 - 100 (Standard s	etting: 10)

34) Setting of motor voltage at orientation

Mode number Display data (four digits) Contents of data

F-33 0010 0 - 100(Standard setting: 10)

35) Setting of motor voltage at rigid tap mode

Mode number Display data (four digits) Contents of data

F-34 0100 0 - 100(Standard setting: 100)

Explanation: This setting is effective when the set data of mode F-31 is "1".

36) Setting of speed zero signal (SST) detection level

Mode number Display data (four digits) Contents of data

F-35 0075 0 - 255(Standard setting: 75)

Explanation: It is setting for speed zero signal (SST) detection level. Speed zero signal is output when the number of revolution of motor becomes less than the (Set data/100)% of maximum number of revolution.

Detection level = {max. number of revolution x (setting data/100)%}

4.3 Rank at Setting

Parameter is already set at shipping for the application similar to the conventional kind. And therefore, the setting of A in the rank below usually needs to be confirmed or altered by machine manufacturers.

Please have your own ranking at change of application conditions (change of rotation number and special setting).

Please be sure not to change setting values.

Setting of rank A (necessary to be confirmed without fail)

Rank	Mode number	Contents		
Α	F-01	Setting of use/non-use of machine ready signal		
	F-02	Setting of use/non-use of override function		
	F-03	Setting of override range		
	F-04	Setting of kind of velocity commands (analog voltage, DA converter)		

Setting of rank B (when rotation number is changed)

Rank	Mode number	Contents
В	F-13	Rotation number adjustment of forward rotation
	F-14	Rotation number adjustment of reverse rotation
	F-15	Rotation number at maximum velocity command voltage (10 V)

Setting of rank C (when special setting is made)

Rank	Mode number	Contents
С	F-16	Detection range of velocity arrival signal
	F-17	Detection level of velocity detection signal
	F-18	Setting of Torque limit value
	F-19	Setting of acceleration/deceleration time
	F-20	Limiting of regenerated power (adjustment of deceleration time)
	F-09	Use/non-use of motor power supply shutting off by machine ready signal
	F-35	Speed zero signal detection level

5. TROUBLESHOOTING AND COUNTERMEASURE

See item 3 in Chapter I for troubleshooting and countermeasure depending on the condition of trouble when there is a trouble.

Note that the following items have been changed.

- 1) Name of the display lamp for power ON is changed as LED1 from PIL.
- 2) Fuse (AF2, AF3) have been changed as fuse resistor (FR1, FR2).
- 3) Alarm display of four LEDs have been replaced by Direct display (AL-OO) with five digits and seven segments.
- 4) Alarm contents are as follows.

Alarm contents

Alarm display	Alarm contents	Alarm output code
AL-01	Motor is overheated. (Thermostat operates)	No. 1
AL-02	Velocity deviation is excessive against command velocity because of overload, etc.	No. 2
AL-03	Fuse F7 at DC link is blown.	No. 3
AL-04	Fuse F1, F2, or F3 at AC input is blown.	No. 4
AL-06	Velocity of motor is exceeded to the maximum rated speed. (Analog system detection)	No. 6
AL-07	Velocity of motor is exceeded to the maximum rated speed. (Digital system detection)	No. 7
AL-08	Power supply voltage is too high.	No. 8
AL-09	Heat sink for power semiconductor is overheated.	No. 9
AL-10	Voltage of +15 V power supply is abnormally low.	No. 10
AL-11	Voltage at DC link is abnormally high.	No. 11
AL-12	Current at DC link is too much.	No. 12
AL-13	Data memories of the CPU are in abnormal condition.	No. 13
AL-16	RAM in NVRAM is in abnormal condition.	
AL-17	ROM in NVRAM is in abnormal condition.	7
AL-18	Sum check alarm of ROM.	
AL-19	Excessive alarm of U phase current detection circuit offset.	
AL-20	Excessive alarm of V phase current detection circuit offset.	
AL-21	Excessive alarm of velocity command circuit offset.	

Dutine of spindle schoolant
Drawing on page 156

Alarm display	Alarm contents	Alarm output code
AL-22	Excessive alarm of velocity detection circuit offset.	No. 13
AL-23	Excessive alarm of ER circuit offset.	out an
AL-14	ROM is in abnormal condition.	III In Pare
AL-15	Spindle selection control circuit is in abnormal condition.	

6. METHOD OF REPLACEMENT OF FUSE AND PRINTED CIRCUIT BOARD

Replace the two ROMs and NVRAM for parameter to new PCB, when change the PCB. After changing the PCB, perform the adjustment of F29 (speed offset) and set the adjustment data.

See item 6 in Chapter I for other contents.

7. SPINDLE ORIENTATION CONTROL CIRCUIT

See item 7 in Chapter I for maintenance and adjustment of spindle orientation control circuit.

See appendix for information of other maintenance.

IV. DIGITAL AC SPINDLE SERVO UNIT (MODEL 1S, 1.5S, 2S, 3S, 2H, 2VH)

1. OUTLINE

This material describes the maintenance of digital AC spindle servo unit model 1S, 1.5S, 2S, 3S, 2H, and 2VH.

1.1 Configuration

A digital AC spindle servo unit is composed of unit part, PCB part, and ROM.

Name	Specification	Unit specification	PCB speci- fication	ROM	
				Drawing number	Туре
Model 1 8000 RPM	A06B-6059-H001#H501	А06В-6059-Н001	A16B-1100 -0200	А06В-6059-Н501	9801
Model 1.5S 8000 RPM	A06B-6059-H002#H508	А06В-6059-Н002	A16B-1100 -0240	А06В-6059-Н508	9808
Model 2S 8000 RPM	A06B-6059-H002#H502	А06В-6059-Н002		A06B-6059-H502	9802
Model 3S 6000 RPM	A06B-6059-H003#H503	А06В-6059-Н003		А06В-6059-Н503	9803
Model 2H 15000 RPM	A06B-6059-H002#H505	А06В-6059-Н002		А06В-6059-Н505	9805
Model 2VH 20000 RPM	A06B-6059-H003#H507	А06В-6059-Н003		A06B-6059-H507	9807

2. DAILY MAINTENANCE AND MAINTENANCE TOOL

Refer to item 2 in Chapter I in this manual.

3. INSTALLATION

The interface is the same as before. Relating to the installing procedures, power supply line connection and AC spindle motor connection, refer to the item 4 in Chapter I in this manual.

4. SETTING

The setting on the unit is the same as conventional digital AC SPINDLE SERVO UNIT (MODEL 3-22).

- 4.1 Parameter Setting Method
- 4.2 Number and Content of Parameter
- 4.3 Setting Rank
- 4.4 Setting Method of Short Pin
- 4.5 Adjustment Method of Variable Resistor

4.1 Parameter Setting Method

The setting switch and the display part are arranged on the PCB like the figure below.

As shown on the following pages, the setting in the respective modes can be checked and changed by manipulating this switch.

Display part

Setting switch

- 1) To confirm the current mode
 - a) The speed is usually displayed at the display part (Five digits). The current mode number can be displayed when "MODE" is turned on. The mode number is displayed as two digits of "F-XX".
- 2) To confirm the setting data
 - a) Select the mode of data to be checked (parameter) in the following manner.
 - b) Continuously turn 4 switches "MODE", "+ UP", "+ DOWN" and "DATA SET" ON at the same time for more than one second.
 - c) The display part changes from the blank to "FFFFF".
 - d) Turned off all switches.
 - e) The current mode is displayed when "MODE" is turned on.
 - f) When "+ UP" is turned ON with "MODE" ON, the mode is incremented by 1 (F01 F02).
 - g) When " \dagger UP" is continuously ON with "MODE" ON, the mode increases continuously (F35 F34).
 - h) When "+ DOWN" is turned ON with "MODE" ON, the mode is decremented by 1.
 - i) When "+ DOWN" is continuously ON with "MODE" ON, the mode decrements continuously.
 - j) With "MODE" OFF, the data is displayed (4 digits) in approx. 0.5 second.
 - k) Approx. 10 seconds after the data display is selected, the speed rpm display is selected. When all switches are turned OFF in any mode, the speed rpm is finally displayed.

- 3) To alter the data
 - a) Select the mode (parameter) to be changed according to the steps 2)-b) to 2)-i).
 - b) Turn "MODE" OFF: The data is displayed in approx. 0.5 second.
 - c) Turn "+ UP" ON: The data is incremented by 1.
 - d) Turn "+ UP" ON continuously: The data is incremented continuously.
 - e) Turn "+ DOWN" ON: The data is decremented by 1.
 - f) Turn "+ DOWN" ON continuously: The data is decremented continuously.
 - g) The motor is controlled by using the displayed data.
 - h) When replacing the data with the modified data, keep turning "DATA SET" ON for one second or more.
 - i) The display part changes from the blank to "88888" and modification of the data completes.
 - j) When changing the data once again, follow the steps from 3)-a) above.
 - k) The speed is indicated automatically after about 10 sec.

4.2 Number and Content of Parameter

1) Motor speed indication

Mode number	Display data (Five digits)	Contents of data
F-00		The speed of the motor is displayed. (rpm)

2) Use/no use of the machine ready signal (MRDY)

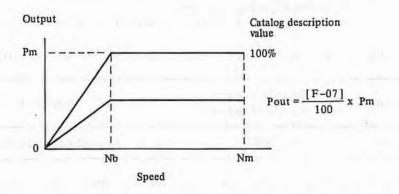
Mode number	Display data (Five digits)	Contents of data
F-01	0001	0, 1 (Standard setting: 0)

Explanation: If the machine ready signal (MRDY) is used : 1
If the machine ready signal (MRDY) is not used: 0

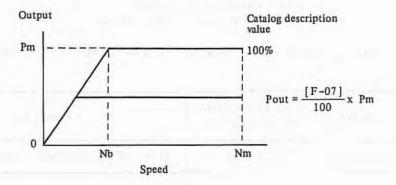
3) Output limit pattern setting

Mode number	Display data (Four digits)	Contents of data
F-06	0000	0 to 6 (Standard setting: 0)

Explanation: This function is not available for a conventional type.


In the following cases, please select a pattern which is appropriate respectively.

- A. When the output is limited only at acceleration and deceleration, the motor accelerates and decelerates slowly, and operates at the rated output during steady rotation (Setting data: 1 or 4) (function similar to soft start and stop)
- B. When the motor accelerates and decelerates at the maximum rated output and the output is limited during steady rotation (Setting data: 2 or 5)


C. When the same motor and amplifier are used to operate the machine as a different output specification machine (Setting data: 3 or 6)

		Setting data		
Item	Content	Pattern 1	Patter 2	
	The output is not limited.	0	0	
Α	Output is limited only at acceleration and deceleration.	1	4	
В	No output is limited at accelera- tion and deceleration but it is limited during steady rotation.	2	5	
C The output is limited over all movements.		3	6	

(Output limit pattern 1): The setting data = 1, 2, 3

(Output limit pattern 2): The setting data = 4, 5, 6

4) Limit value setting when the output is limited

Mode number	Display data (Four digits)	Contents of data
F-07	0100	0 to 100 (Standard setting: 100)

Explanation: With the maximum rated output (overload capacity) as 100%, set the limit value to a value to be limited. This preset value is available when the output is limited according to mode F-06 setting.

Output limit value = Maximum rated output x (setting data) %

5) Delay time to motor power interception

Mode number	Display data (Four digits)	Contents of data
F-08	0005	0 to 255 (Standard setting: 5)

Explanation: The delay time from O speed signal detection to the motor power interception is set.

Delay time = (Setting data) x 40 msec

6) Use/no use of the motor power interception by the machine ready signal (MRDY)

Mode number	Display data (Four digits)	Contents of data
F-09	0000	0, 1 (Standard setting: 0)

Explanation: The function is used when it is presumed that the electromagnetic contactor is switched frequently. When the machine ready signal (MRDY) is turned OFF, only motor power is interrupted, and the electromagnetic contactor remains ON.

If this function is used : 1 If this function is not used: 0

7) Adjustment of speed error offset at the time of the forward rotation command (SFR)

Mode number	Display data (Four digits)	Contents of data
F-10	0128	0 - 255 (Standard setting: 128)

Explanation: The speed error offset is adjusted when stopping motor operation with the forward rotation command (SFR) and speed command voltage 0 V (zero rotation command) applied. Increase the data when stopping the motor rotating counterclockwise (CCW), as viewed from the shaft.

8) Adjustment of speed error offset at the time of the reverse rotation command (SRV)

Mode number	Display data (Four digits)	Contents of data
F-11	0128	0 - 255 (Standard setting: 128)

Explanation: The speed error offset is adjusted when stopping motor operation with the reverse rotation command (SRV) and speed command voltage 0 V (zero rotation command) applied. Increase the data when stopping the motor rotating CCW, as viewed from the shaft.

9) Adjustment of speed error offset at the time of the orientation command (ORCM)

Mode number	Display data (Four digits)	Contents of data
F-12	0128	0 - 255 (Standard setting: 128)

Explanation: The parameter is used for adjustment when no adjustment is possible so that the LED of IN-POSITION FINE lights up at orientation, using the adjusting volume control on the orientation circuit.

- 10) F13 and F14 are not used. Please refer to item 4.5 for speed adjustment.
- 11) Speed adjustment when velocity command voltage is 10 V

Mode number	Display data (Four digits)	Contents of data
F-15		<pre>0 - Rated speed (It is decided by motor specification)</pre>

Explanation: When making velocity adjustments in para. 14) and 15) below, be sure to complete this setting. Set the value of Speed rpm at 10 V velocity command voltage/100.

Speed rpm at 10 V velocity command voltage =

(Setting data) x 100

12) Detection range of speed arrival signal (SAR)

Mode number	Display data (Four digits)	Contents of data
F-16	0015	0 - 100 (Standard setting: 15)

Explanation: The detection range of the speed arrival signal (SAR) is set. The speed arrival signal (SAR) is outputted when the motor speed reaches within \pm (Setting data) % of the command speed. Detection range = Command speed x \pm (Setting data) %

13) Detection range of speed detecting signal (SDT)

Mode number	Display data (Four digits)	Contents of data
F-17	0003	0 - 100 (Standard setting: 3)

Explanation: The detection range of the speed detecting signal (SDT) is set. The speed detecting signal (SDT) is outputted when the motor speed becomes (Setting data) % of a maximum speed or less. Detection range = Maximum speed x (Setting data) %

14) Setting of torque limit value

Mode number	Display data (Four digits)	Contents of data
F-18	0050	0 - 100 (Standard setting: 50)

Explanation:

Torque limit value when the torque limit signal (TLMH) is turned ON is set.

Torque limit value = Maximum ratings torque x (Setting data) %

15) Setting of acceleration/deceleration time

Mode number	Display data (Four digits)	Contents of data
F-19	0010	0 - 255 (Standard setting: 10)

Explanation: Set this time when the acceleration time between the stop and the maximum speed rpm is longer than 5 seconds.

Preset time = Acceleration time (sec) x 2

16) Limit of regenerative power (Adjustment of deceleration time)

Mode number	Display data (Four digits)	Contents of data
F-20	0060	0 - 100 (Standard setting: 60)

Explanation: The deceleration time is adjusted to become the same as the acceleration time.

The deceleration time shortens when the setting is enlarged. The deceleration time lengthens when the setting is reduced. However, when the regenerative power is excessive, the regenerative limit circuit is actuated and the motor current waveform changes; therefore, abnormal noise may be produced from the motor. In this case, this abnormal noise is suppressed by reducing the setting.

17) Setting of velocity control phase compensation P:HIGH gear (CTH = 1)

Mode number	Display data (Four digits)	Contents of data
F-21	0020	0 - 255 (Standard setting: 20)

18) Setting of velocity control phase compensation P:LOW gear (CTH = 0)

Mode number	Display data (Four digits)	Contents of data
F-22	0020	0 - 255 (Standard setting: 20)

19) Setting of velocity control phase compensation P in orientation time: HIGH gear (CTH = 1)

Mode number	Display data (Four digits)	Contents of data
F-23	0040	0 - 255 (Standard setting: 40)

20) Setting of velocity control phase compensation P in orientation time: LOW gear (CTH = 0)

Mode number	Display data (Four digits)	Contents of data
F-24	0040	0 - 255 (Standard setting: 40)

21) Setting of velocity control phase compensation I:HIGH gear (CTH = 1)

Mode number	Display data (Four digits)	Contents of data
F-25	0010	0 - 255 (Standard setting: 10)

22) Setting of velocity control phase compensation I:LOW gear (CTH = 0)

Mode number	Display data (Four digits)	Contents of data
F-26	0010	0 - 255 (Standard setting: 10)

23) Setting of velocity control phase compensation I in orientation time: HIGH gear (CTH = 1)

Mode number	Display data (Four digits)	Contents of data
F-27	0010	0 - 255 (Standard setting: 10)

24) Setting of velocity control phase compensation I in orientation time: LOW gear (CTH = 0)

Mode number	Display data (Four digits)	Contents of data
F-28	0010	0 - 255 (Standard setting: 10)

- 25) F-29 is not used. Please refer to item 4.5 for the speed detection offset adjustment.
- 26) F-30 is not used.
- 27) Setting of rigid tap mode

Mode number	Display data (Four digits)	Contents of data
F-31	0000	0 - 1 (Standard setting: 0)

Explanation: The torque limit signal (TLML) is used to a conventional torque limit: 0

The torque limit signal (TLML) is used for motor voltage switching when improved transient response characteristics are required for rigid tapping operation, for example: 1

28) Setting of motor voltage when usually operated

Mode number	Display data (Four digits)	Contents of data
F-32	0010	0 - 100 (Standard setting: 10)

29) Setting of motor voltage in orientation time

Mode number	Display data (Four digits)	Contents of data
F-33	0010	0 - 100 (Standard setting: 10)

30) Setting of motor voltage in rigid tap mode

Mode number	Display data (Four digits)	Contents of data
F-34	0100	0 - 100 (Standard setting: 100)

Explanation: This preset value is effective when mode F-31 setting data is 1.

31) Detection range of O speed signals (SST)

Mode number	Display data (Four digits)	Contents of data
F-35	0075	0 - 255 (Standard setting: 75)

Explanation: The detection range of O speed signals (SST) is set.

O speed signal (SST) is outputted when the speed of the motor becomes (The setting data/100)% of a maximum speed or less. The detection range = maximum speed x (The setting data/100)%

32) Detection range of load detection signal (LDT)

Mode number	Display data (Four digits)	Contents of data
F-36	0090	0 - 100 (Standard setting: 90)

Explanation: This function transmits a load detection signal when the motor output exceeds the preset value % of the maximum output (120% of 30-minute rating).

4.3 Setting Rank

For the usual applications, the parameter is factory preset before shipment; therefore, the machine tool builder should normally check or modify only the rank A setting.

When changing the operating conditions (change of speed rpm and special setting), the machine tool builder should divide the rank for use. Please pay attention not to alter the setting value by mistake.

Setting of rank A (It must be confirmed without fail)

Rank	Mode number	Content
A	F-01	Setting of the use/no use of the machine ready signal

Setting of rank B (special setting)

Rank	Mode number	Content
В	F-16	Detection range of speed arrival signal
	F-17	Detection level of speed detecting signal
	F-35	Detection level of O speed signal
	F-18	Setting of torque limit value
	F-06, 07	Setting of output limit
	F-19	Setting of acceleration and deceleration time

Rank	Mode number	Content ^S	
	F-20	Limit of regenerative power (Adjustment of deceleration time)	
	F-09	Setting of the use/no use of the interception of the motor power by the machine ready signal	
	F-36	Setting of load detection level	

4.4 Setting Method of Short Pin

Name	Contents	Setting pin status			Setting before shipment	
S1	Control circuit mode	Test mode		TEST	DRIVE	
	changeover	Normal operation mode DRIV				
S2 S3	The setting is as shown on the right, depending on the	Detector I	Detector II	Tee T	Setting	
53	speed rpm during the rating		6000RPM	D	according to each model	
	command (VCMD = 10 V) - Detector I. Gear	450RPM	8000RPM	С		
Torrison Feet	256 teeth - Detector II. Gear 128 teeth	6000RPM	10000RPM 12000RPM	В		
•		8000RPM 10000RPM	15000RPM 20000RPM	A	A COLUMN	
S4 S S5	Setting for gain switching	Normal oper	ation mode	OFF	OFF	
		For gain sw	itching	ON		

4.5 Adjustment Method of Variable Resistor

Name	Contents	Adjustment be	fore shipment	
RV1	Maximum speed adjustment in direction	Adjustment for each model		
RV2	Maximum speed adjustment in direction			
RV3	Offset adjustment of velocit	Adjustment to 0 TS3 with rotation		
RV4	+5 V voltage adjustment	Adjustment to +5 V +0.1 V.		
RV5	Gain adjustment when the gai switched	50%		
RV6	Gain adjustment of velocity	Model	Adjusted value	Maximum speed
	detecting circuit for low speeds	1.5S, 3S, 6S	15 <u>+</u> 3 rpm	6000 rpm
	Apply VCMD (velocity command voltage) 25 mV	1s, 2s, 3	20 <u>+</u> 4 rpm	8000 rpm
	± 2 mV to adjust the speed rpm for each model	2Н	37.5 <u>+</u> 8 rpm	15000 rpm
		2VH	50 +10 rpm	20000 rpm

5. TROUBLESHOOTING AND COUNTERMEASURE

When faults take place, refer to item 3 in Chapter I in this manual according to trouble conditions, and locate the cause and take proper corrective measures. At that time, it should be noted that the following item are modified.

- 1) Change from alarm display using 4 LED's to Alarm No. direct display (AL-XX) using 5-digit segments.
- 2) To reset the alarm, turn "MODE" and "DATA SET" ON at the same time.
- 3) The alarm contents are as shown in the table below.

Content of alarm

Alarm display	Content of alarm
AL-01	The motor or servo unit becomes overheating. (Thermostat action)
AL-02	The speed deviates substantially from the speed command due to overload, for example, producing excessive speed error.
AL-03	The electric discharge circuit part is abnormal.
AL-04 to 05	(not used)
AL-06	The speed of the motor exceeds maximum ratings. (Analog method detection)
AL-07	The speed of the motor exceeds maximum ratings. (Digital method detection)
AL-08	The power supply voltage is too high.
AL-09	(not used)
AL-10	The voltage of power supply (+15 V) abnormally decreases.
AL-11	The voltage of DC link part is rising abnormally.
AL-12	The current of DC link part flows excessively.
AL-13 to 15	(not used)
AL-16 to 23	An arithmetic circuit and a peripheral circuit part are abnormal.
No display	Abnormality is generated in ROM.

6. REPLACEMENT METHOD OF FUSE AND PCB

When replacing PCB, re-mount 2 ROM's and NV RAM (parameter memory element) on a new PCB. For other settings and speed rpm adjustment, for example, do this as needed. For others, refer to item 6 in Chapter I in this manual.

7. SPINDLE ORIENTATION CONTROL CIRCUIT

Refer to item 7 in Chapter I in this manual for the maintenance of the spindle orientation control circuit and the adjustment.

Please refer to the appendix for other maintenance.

APPENDIX 1 CONNECTION DIAGRAMS

- Fig. 1 (a) Connection diagram of MODEL 1/2/small MODEL 3
- Fig. 1 (b) Connection diagram of MODEL 3 ∿ 22
- Fig. 1 (c) Connection diagram of MODEL 30, 40
- Fig. 1 (d) Connection diagram of AC spindle servo unit (380V/415VAC input)
- Fig. 1 (e) Connection diagram of spindle orientation (with position coder employed)
- Fig. 1 (f) Detailed connection diagram of spindle orientation with position coder employed (when the synchronous feed is combined with a turning machine, machining center, etc.)
- Fig. 1 (g) Detailed connection diagram of spindle orientation using position coder (when the spindle orientation only is used with the machining center)
- Fig. 1 (h) Detailed connection diagram of spindle orientation using position coder (when the stop position is externally set)
- Fig. 1 (i) Connection diagram of spindle orientation (when magnetic sensor is used)
- Fig. 1 (j) Detailed connection diagram of spindle orientation using magnetic sensor)

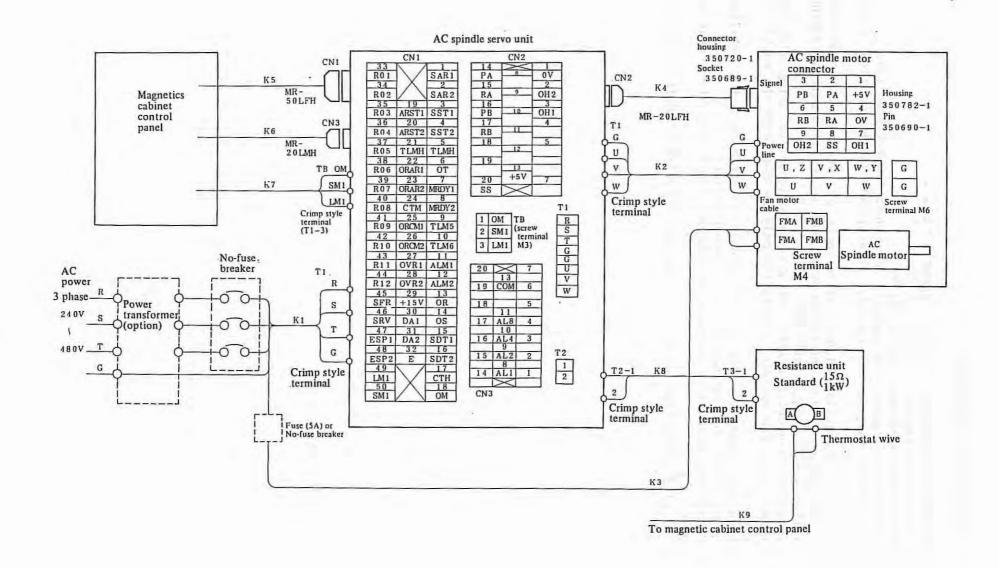


Table 1 (a) Connection diagram of MODEL 1/2/small MODEL 3

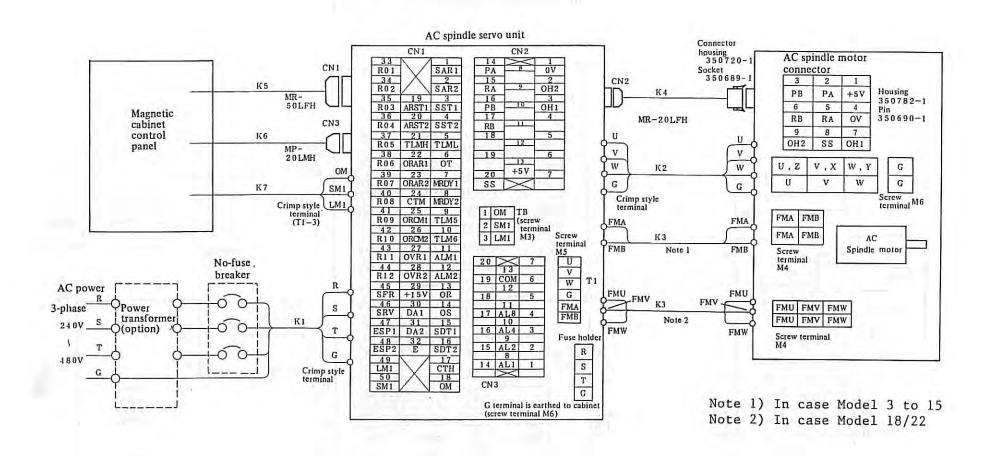


Fig. 1 (b) Connection diagram of MODEL 3~22

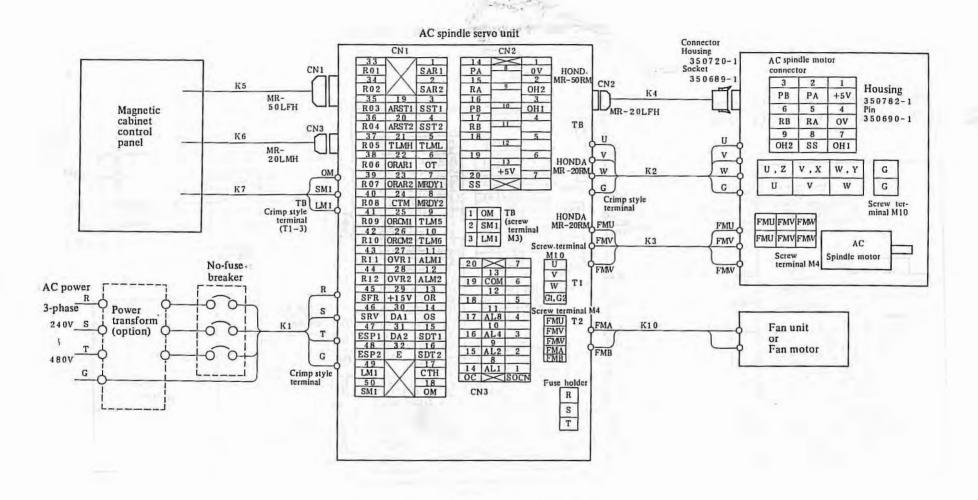


Fig. 1 (c) Connection diagram of MODEL 30, 40

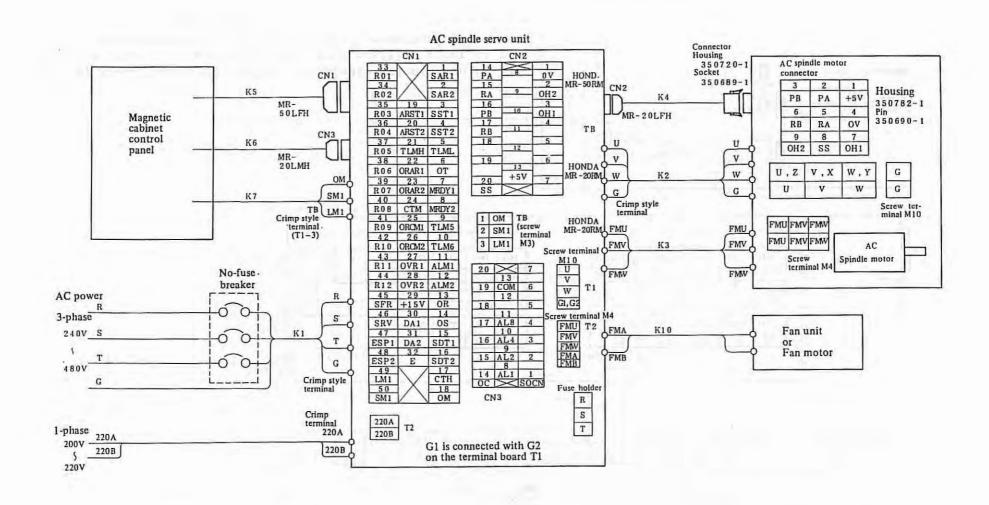


Fig. 1 (d) Connection diagram of AC spindle servo unit (380V/415V AC input)

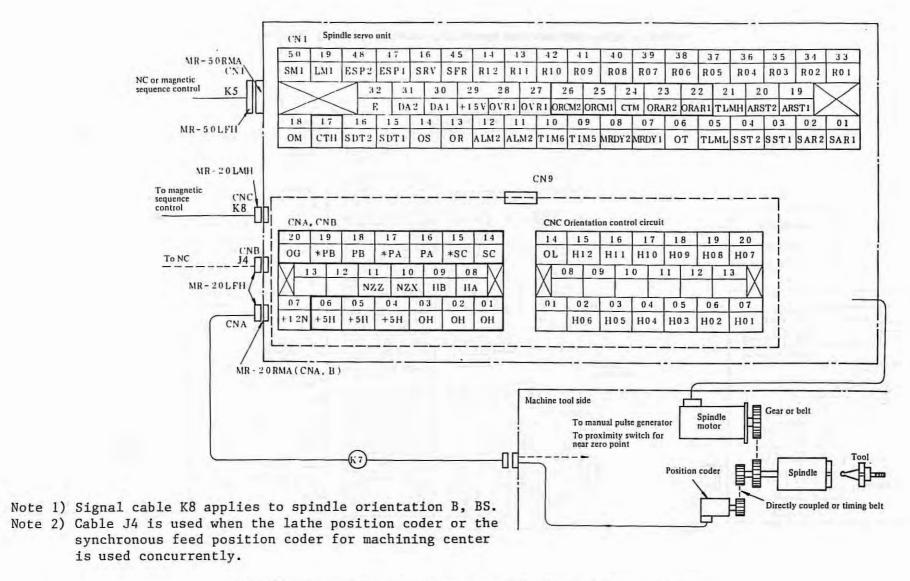


Fig. 1 (e) Connection diagram of spindle orientation (with position coder employed)

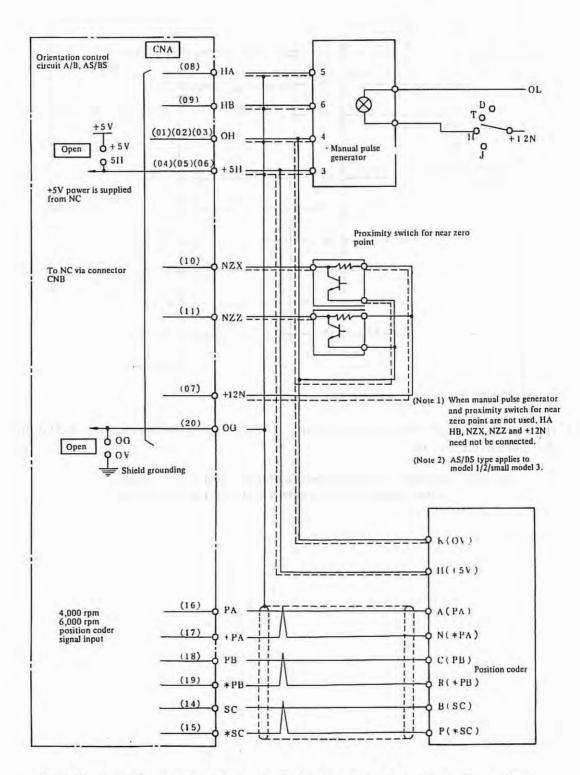
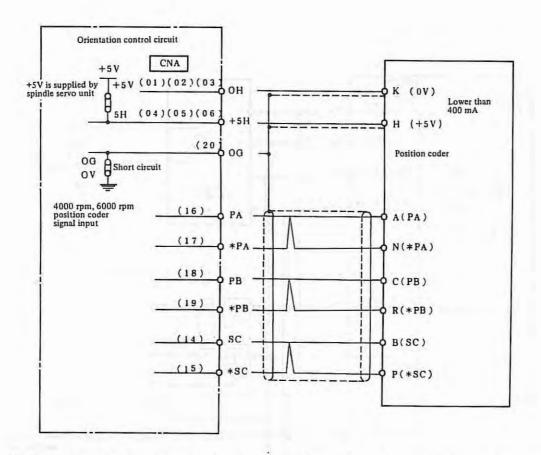



Fig. 1 (f) Detailed connection diagram of spindle orientation with position coder employed (when synchronous feed is combined with turning machine and machining centers etc)

Note) The cable length should be shorter than 20 m between the servo unit and the position coder.

Fig. 1 (g) Detailed connection diagram of spindle orientation using position coder (when spindle orientation only is used for machining centers)

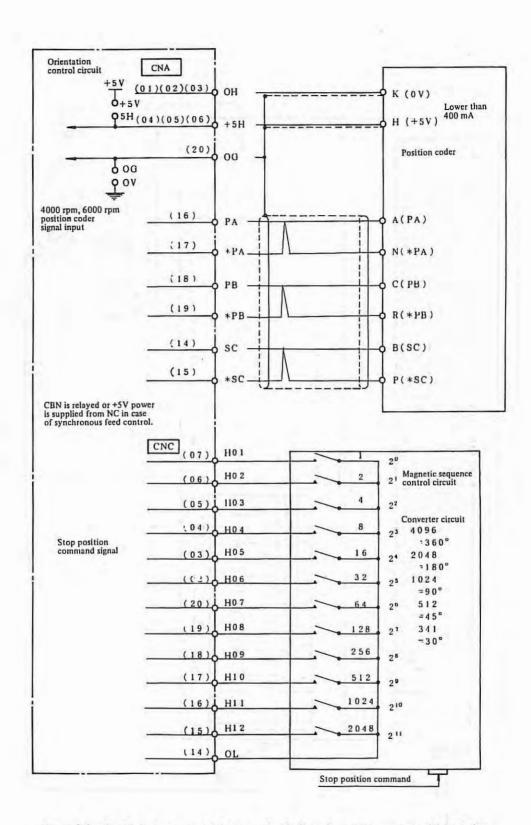
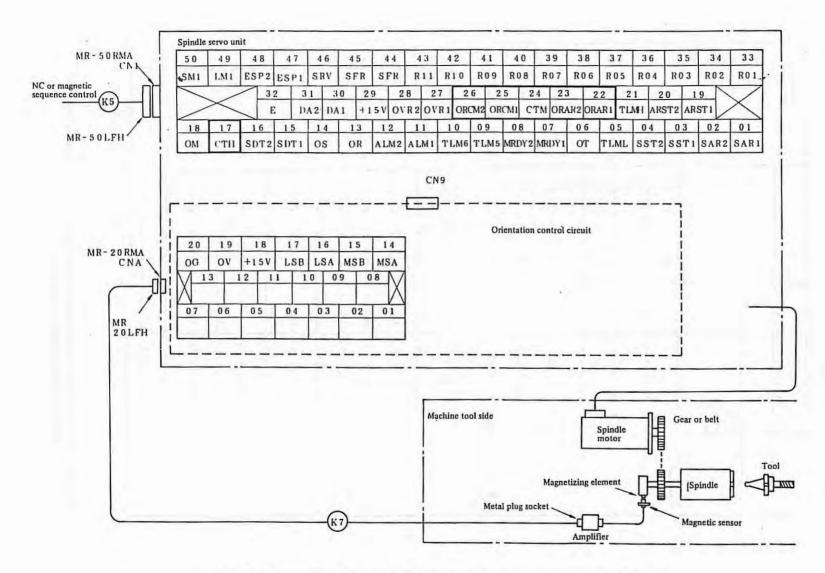
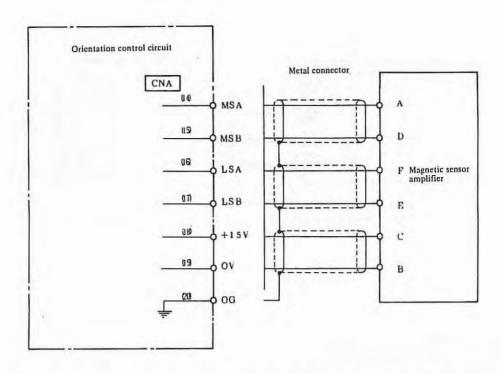
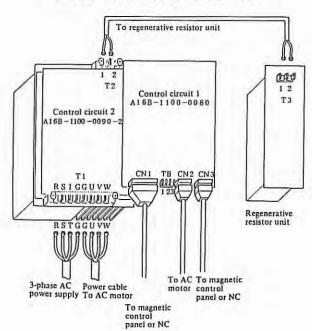


Fig. 1 (h) Detailed connection diagram of spindle orientation using position coder (when the stop position is externally set)


Fig. 1 (i) Connection diagram of spindle orientation (when magnetic sensor is used)

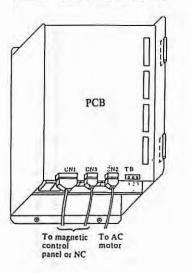
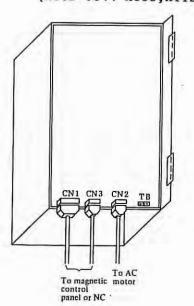
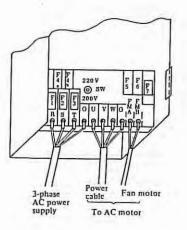
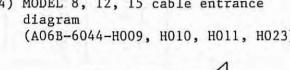

(Note) The cable length should be shorter than 20m between the servo unit and the magnetic sensor amplifier.

Fig. 1 (j) Detailed connection diagram of spindle orientation (when magnetic sensor is used)


1) MODEL 1/2/small MODEL 3 cable entrance diagram (A06B-6052-H001,H002,H003)



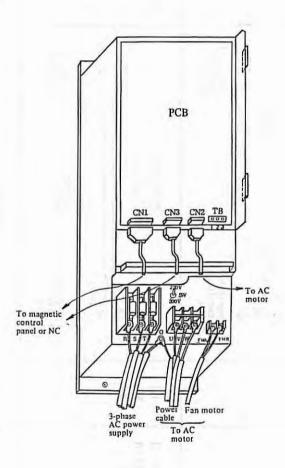
2) MODEL 3, 6 cable entrance diagram (A06B-6044-H103,106)



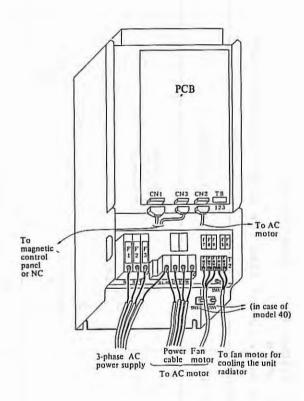
3) MODEL 8, 12 cable entrance diagram (A06B-6044-H108,H112)

4) MODEL 8, 12, 15 cable entrance diagram (A06B-6044-H009, H010, H011, H023)

PCB


To AC motor motor control panel or NC

Power Fan cable motor


To AC motor

3-phase AC power supply

5) MODEL 18, 22 cable entrance diagram

6) MODEL 30, 40 cable entrance diagram

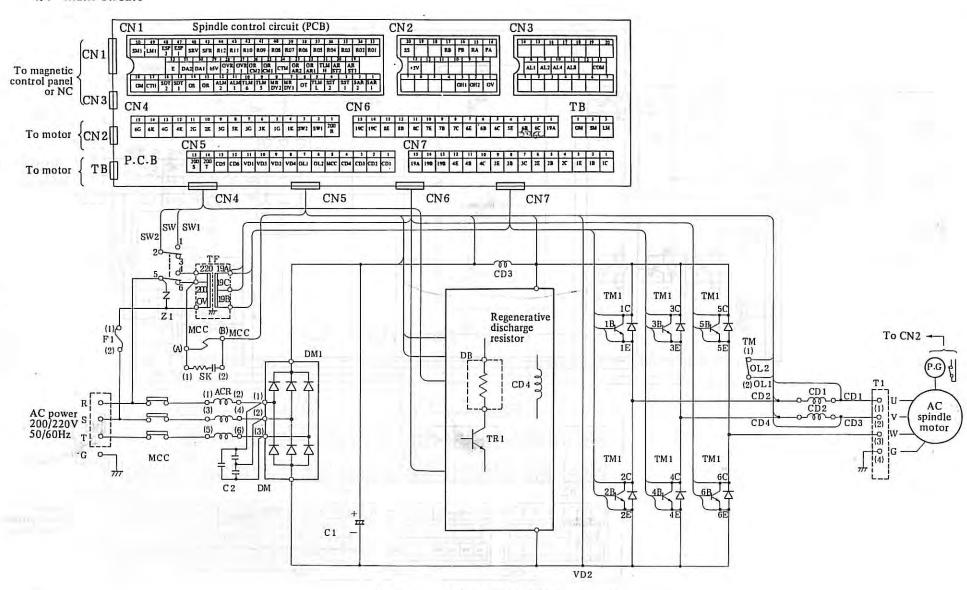
APPENDIX 3 CABLE SPECIFICATIONS

The cable specifications are as shown below. Prepare cables by users.

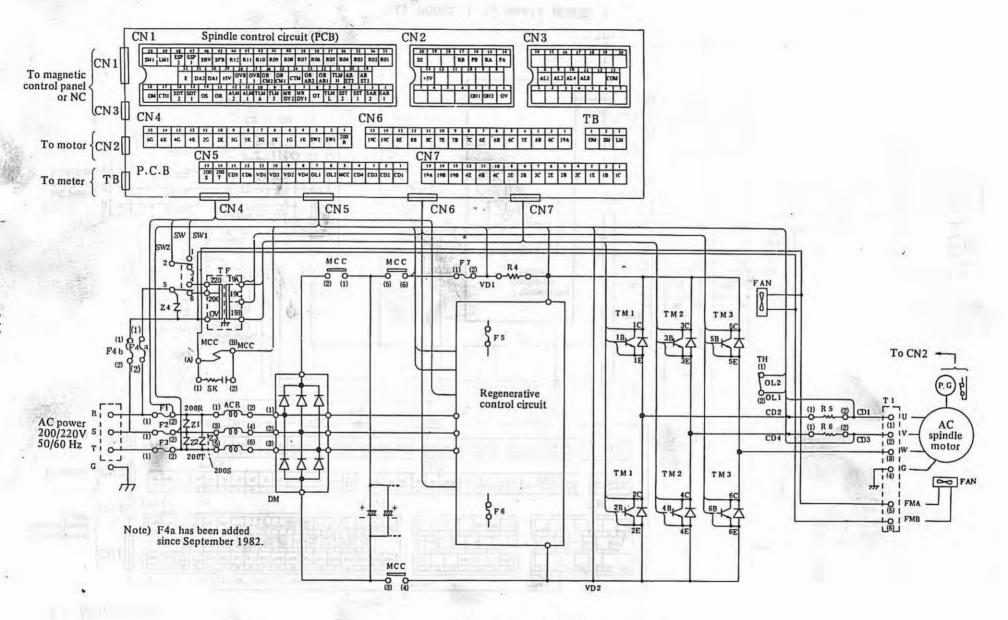
1) Power line and motive power line for respective motor models

Use	Symbol	Specifications	FANUC specification No.
For MODEL 1 (Lower than 5 KVA)	K1 K2	Cabtyre cable JIS C 3312 4 conductors $37/0.26 \qquad (2.0 \text{mm}^2)$ Crimp style terminals T2-4 Crimp style terminals T2-4	
For MODEL 2 (Lower than 7 KVA)	K1 K2	Cabtyre cable JIS C 3312 4 conductors $45/0.32 (3.5 \text{mm}^2)$ Crimp style terminals T5.5-4 Crimp style terminals	
For MODEL 3 (Lower than 12 KVA)	K1 K2	Cabtyre cable JIS C 3312 4 conductors $70/0.32 \qquad 16.5 \phi$ Crimp style terminals T5.5-6 Crimp style terminals T5.5-6	A02B-0008-K853 7 m long
For MODEL 6 (Lower than 16 KVA)	K1 K2	Cabtyre cable JIS C 3312 4 conductors $\begin{array}{cccccccccccccccccccccccccccccccccccc$	A02B-0008-K854 7 m long
For MODEL 8, 12 (Lower than 25 KVA)	к1	Cabtyre cable JIS C 3312 4 conductors	A06B-6044-K017 7 m long
	К2	Crimp style terminals 14-6 (K2: Motive power line) 14-8 (K1: Power line) 14-6	A06B-6044-K018 7 m long

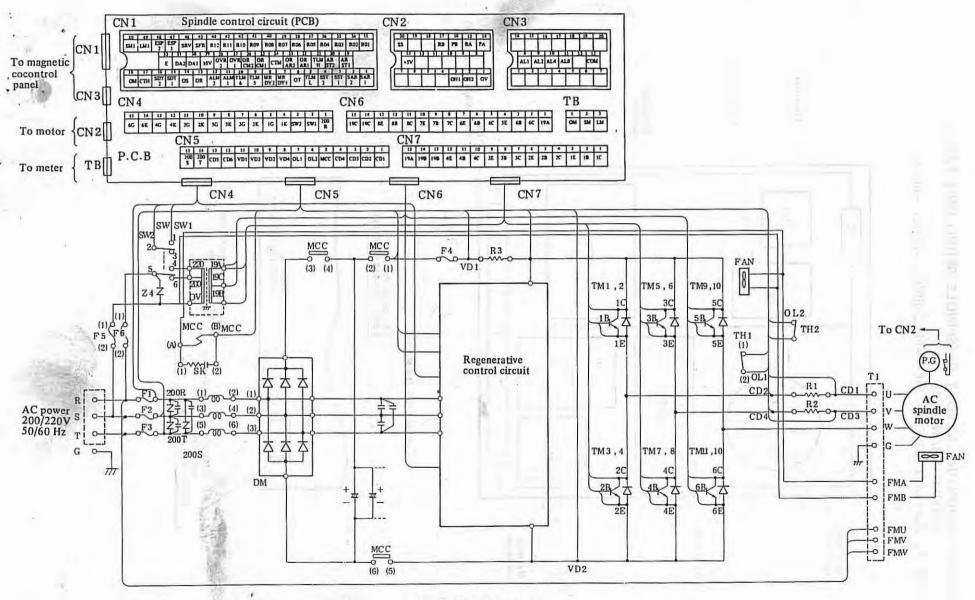
Use	Symbol	Specifications	FANUC specification No.
For MODEL 15 (Lower than 30 KVA)	K1 K2	Heat-proof vinyl cabtyre cable 4 cores Crimp style terminals 22-8 Crimp style terminals R22-6S	A06B-6044-K019 7 m long
For MODEL 18 (Lower than 38 KVA)	K1 K2	Heat-proof vinyl cabtyre cable 4 cores 7/27/0.45 Crimp style terminals 38-8 Crimp style terminals 38-8	A06B-6044-K020 7 m long
For MODEL 22 (Lower than 45 KVA)	K1 K2	Heat-proof vinyl cabtyre cable 4 cores 7/34/0.45 38 \$\phi\$ Crimp style terminals 38-8 Crimp style terminals 38-8	A06B-6044-K021 7 m long
Power cable and power source cable for MODEL 30	K1 K2	Heat-proof cable for 600 VAC Single wire (a) x 3 line and (b) x 1 line (a) Conductor 7/34/0.45 (38mm²) Crimp terminal T38-10 (b) Conductor 7/20/0.45 (22mm²) Crimp terminal T38-10	


Use ""	Symbol	Specifications) (1977)(3	FANUC specification No.
Power cable and power source cable for MODEL 40	K1 K2	Heat-proof cable for 600 VAC Single wire (a) x 3 lines and (b) x 1 line (a) Conductor 19/20/0.45 (50mm²) Crimp terminal T60-10 (b) Conductor		
		7/20/0.45 (22mm²) Crimp terminal T38-10	⊚	dm'

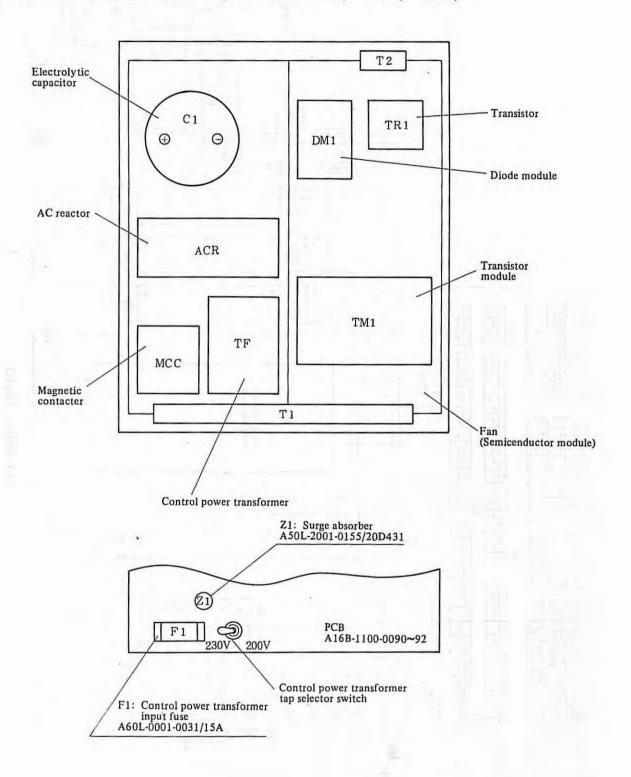
 Common line The following cables are common to each model.

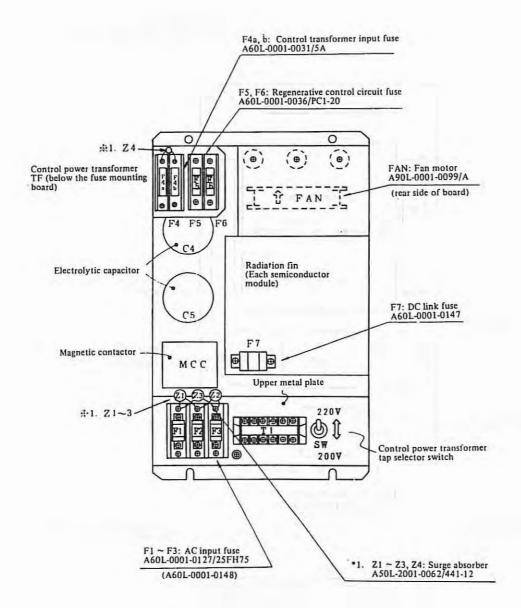

Use	Symbol	Specifications	FANUC specification No.
Spindle servo unit AC spindle motor (cooling fan) (Except Model 18,22,30,40)	К3	Spindle servo Vinyl cabtyre cable unit JIS C 3312, 2 conductors $\frac{10.5 \phi}{10.5 \phi}$ Crimp style terminals $\frac{37/0.26}{(2mm^2)}$ Crimp style terminals $\frac{10.5 \phi}{12.5}$ Crimp style terminals $\frac{10.5 \phi}{12.5}$	A06B-6044-K022 7 m long
Spindle servo unit AC spindle motor (for signal)	к4	Spindle servo unit option connector of spindle motor Less than 10 ϕ CN2 Shielded 4-paired cable MR-20 LFH made by Honda Tsushin Co. PVC sheath shield braided conductor	A06B-6044-K200 7 m long
Spindle servo unit Power magnetic control (for signal)	К5	Spindle servo unit connector (basic) CN1 MR-50 LFH made by Honda Tsushin Co. Power magnetic control 12.5 φ Power magnetic control 12.5 φ Braided shield vinyl cable 50 conductors x 0.2mm² (7/0.18) made by Sanyo Denko	A06B-6044-K023 7 m long
Spindle servo unit Power magnetic control (for signal)	К6	Spindle servo unit connector: (basic) CN3 Shielded 4-paired cable MR-20 LMH made by Honda Tsushin Co.	A06B-6044-K024 7 m long
Speedmeter load meter AC spindle servo unit (for meter)	К7	Vinyl cabtyre cable JIS C 3312, 3 cores 30/0.18 9.2 ϕ Crimp style terminal T1-4 Crimp style terminal T1-4	

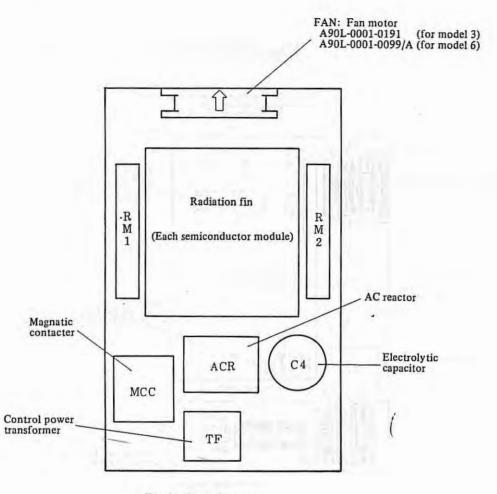
3) Others (line used in some models)

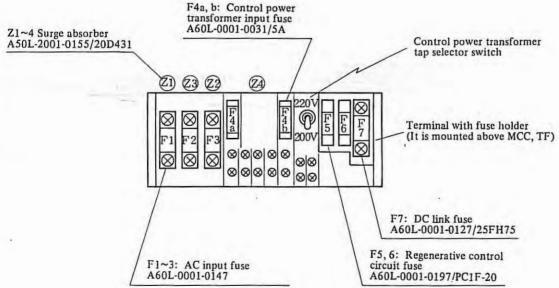

Use	Symbol	Specifications	FANUC specification No.
For motor cooling fan (for MODEL 18,22,30,40)	К3	Vinyl cabtyre cable JIS C 3312, 3 cores Conductor 37/0.26 (2mm²) Outer cover PVC \$\phi 10\$ Crimp style terminal T2-4 10.0 \$\phi\$ Crimp style terminal T2-4	
Resistor unit AC spindle servo unit	K8	Vinyl cabtyre cable JIS C 3312, 2 cores Crimp style terminal T5.5-4 Crimp style (3.5mm²) Crimp style terminal T5.5-4	
Resistor unit Power magnetic control (for thermostat)	К9	Vinyl cabtyre cable JIS C 3312, 2 cores Crimp style terminal T1-4 Crimp style terminal T1-4 Crimp style terminal T1-4 Crimp style terminal T1-4	

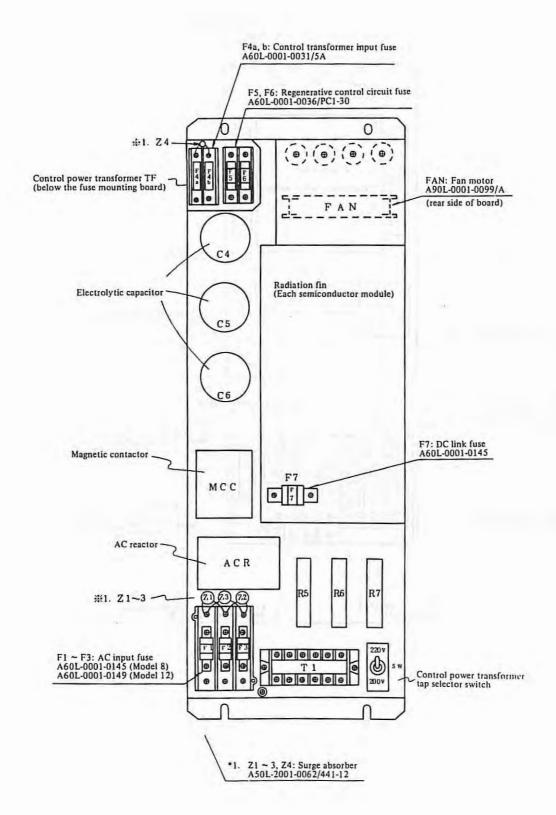
i) MODEL 1,2, small MODEL 3

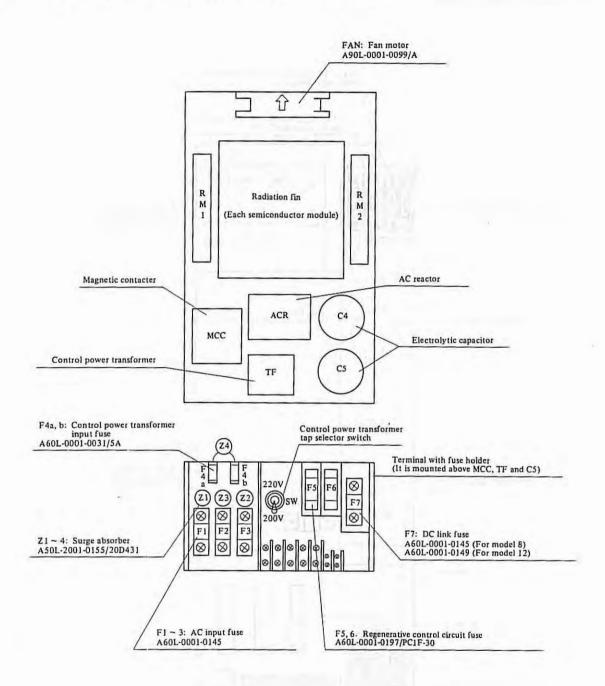

ii) MODEL 3 ∿ 22

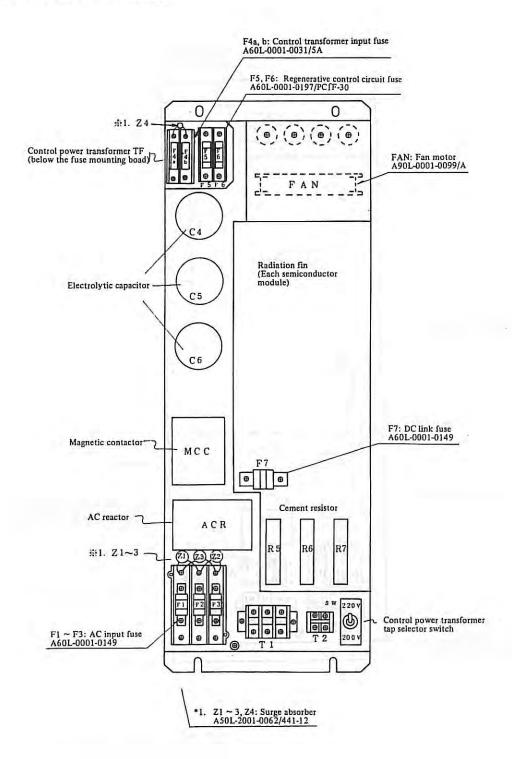

iii) MODEL 30,40

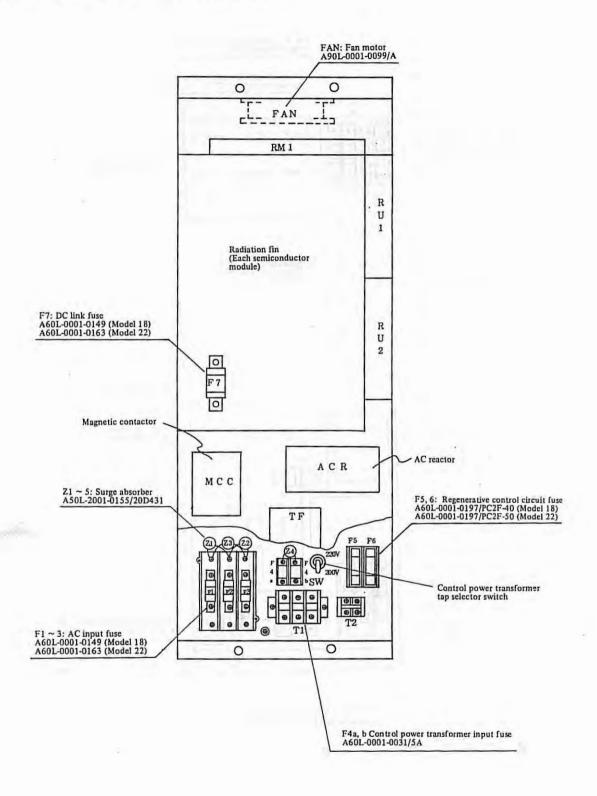

APPENDIX 5 MOUNTING LAYOUT OF SPINDLE SERVO UNIT PARTS (OTHER THAN PCB)

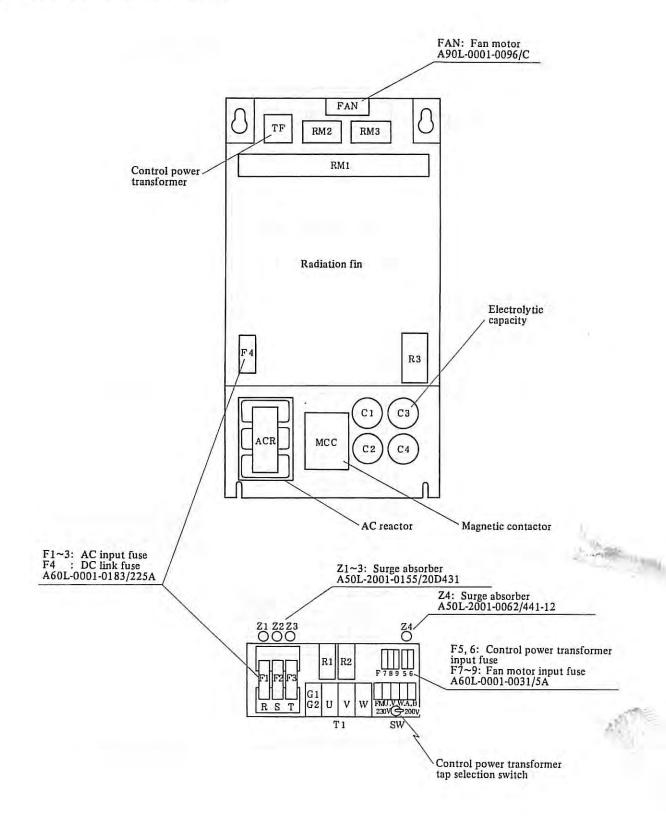

1) MODEL 1, 2, small MODEL 3 (A06B-6052-H001, -H002, -H003)

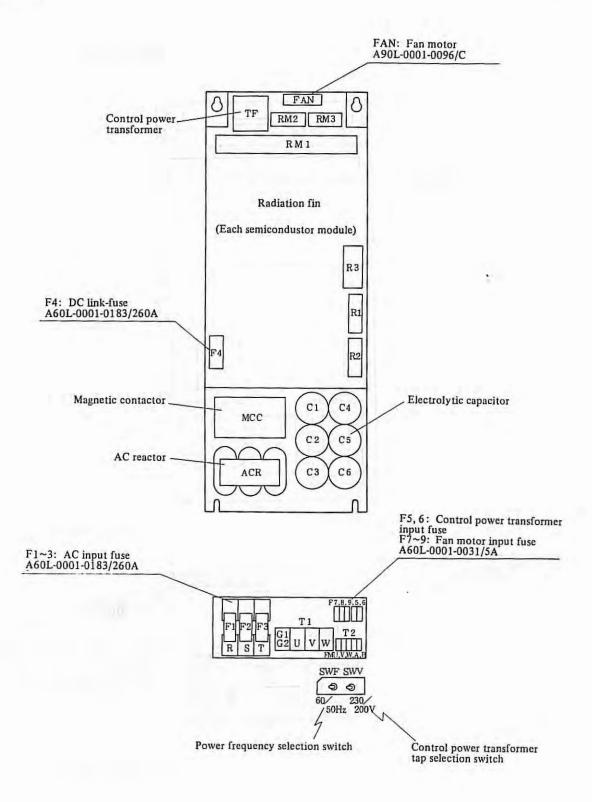

2) Spindle servo unit for AC spindle motor models 3 and 6 (A06B-6044-C008)



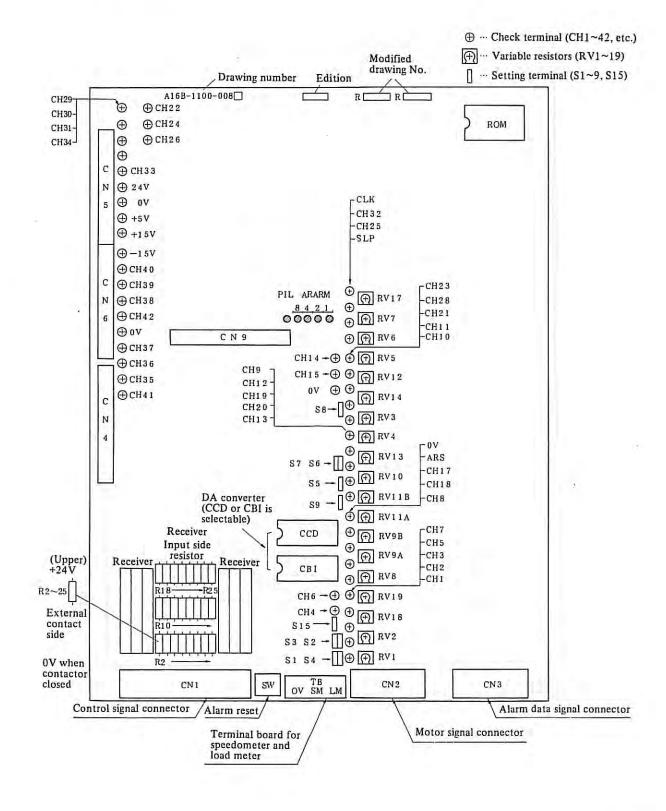

4) Spindle servo unit for AC spindle motor models 8 and 12 (AO6B-6044-CO09, CO10)

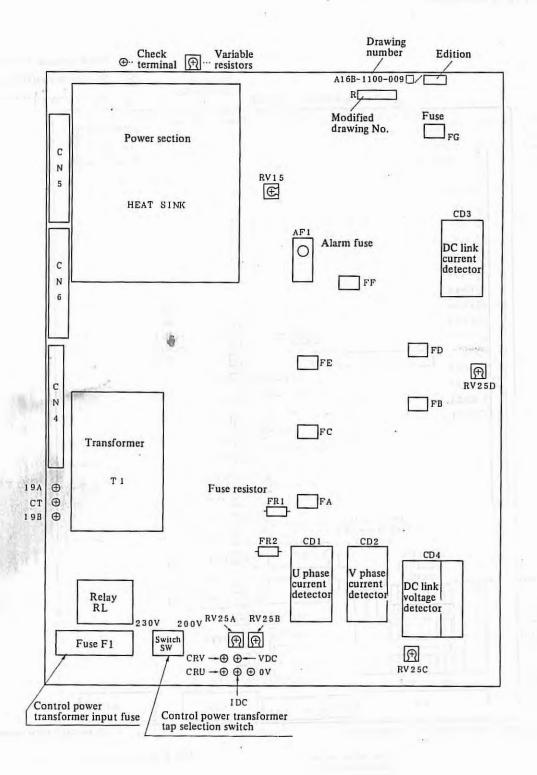

5) MODEL 8, 12 (A06B-6044-H108, H112, H208, H212)

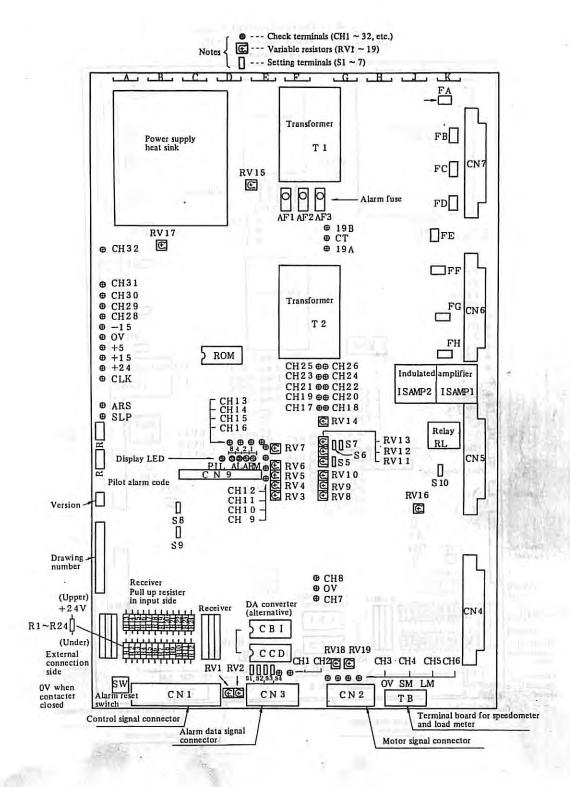


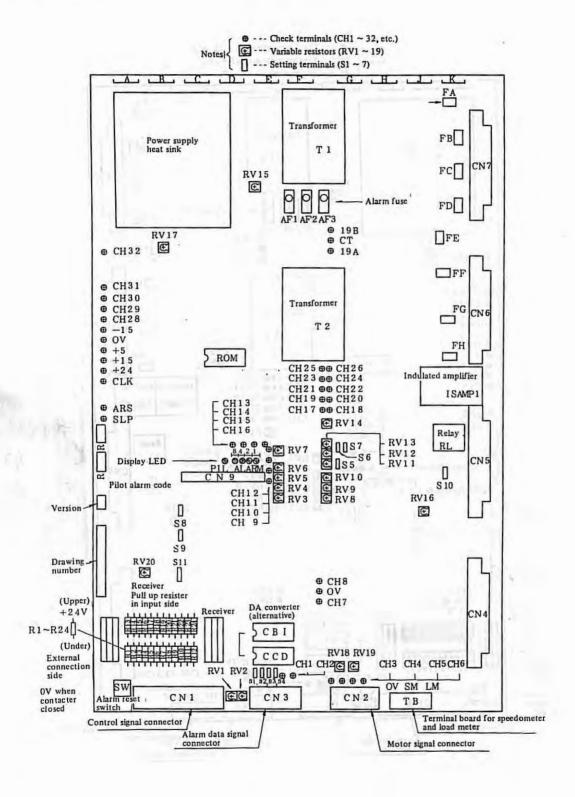

6) MODEL 15 (A06B-6044-H011)

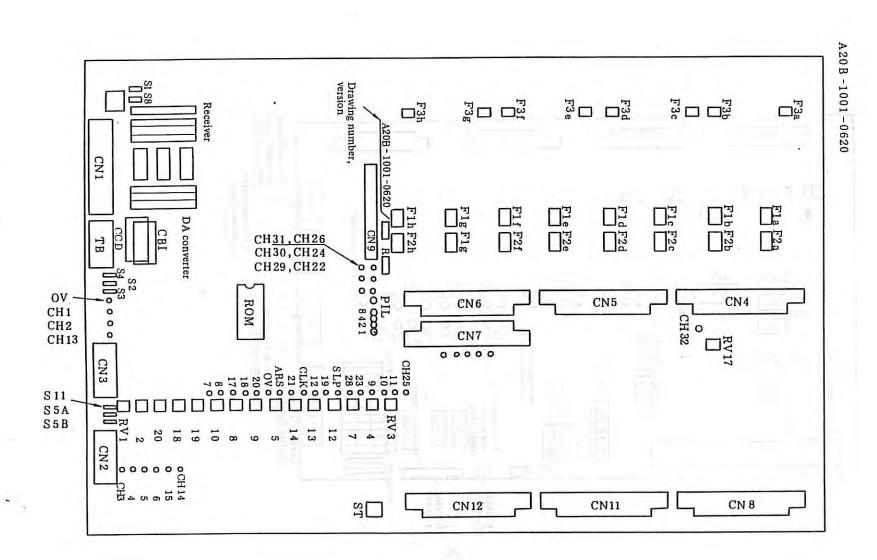
.



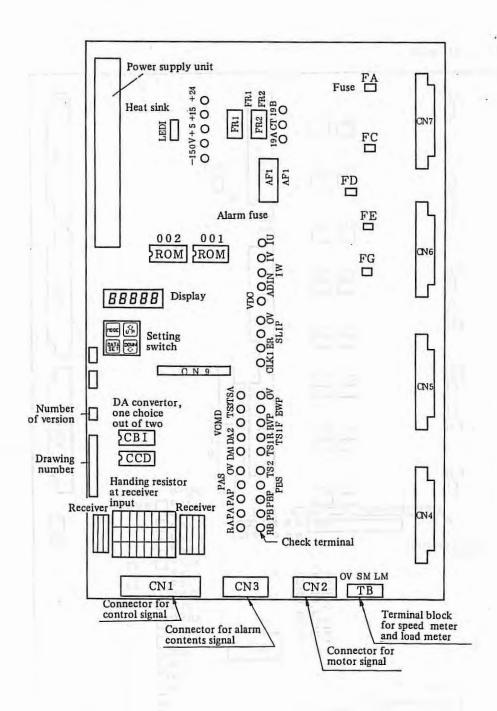


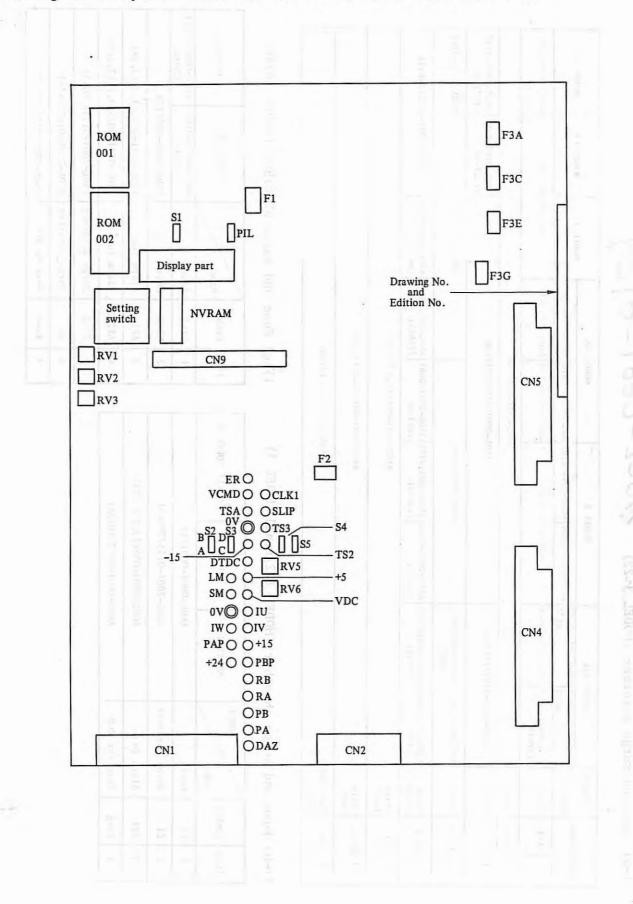

APPENDIX 6 MOUNTING LAYOUT OF SPINDLE CONTROL CIRCUIT PCB


a) MODEL 1, 2, small MODEL 3 i) A16B-1100-0080



E IBIN CONTRACTOR





- 155 -

e) Digital AC spindle servo unit (MODEL 3 to 22)

f) Digital AC spindle servo unit (MODEL 1S, 1.5S, 2S, 3S, 2H, 2VH)

1)-a) Fuse and surge absorber (MODEL 3∿22)

EUL35-0 A50L-0001-0109

	200	MODEL	MODE	L 3/6	MODI	EL 8	MODEL 12				
Item	Symbol	Name	A06B-6044-H007 H008	A06B-6044-H103 H106	A06B-6044-H009	A06B-6044-H108	A06B-6044-H010	A06B-6044-H112	MODEL 15	MODEL 18	MODEL 22
1	F1∿3	Fuse	A60L-0001-0127 /25FH75	A60L-0001-0147	A60L-000	01-0145	A60L-0001-0149	A60L-0001-0145	A60L-000	01-0149	A60L-0001-0163
2	F4a,b	Fuse		A60L-0001-0131/5A							
3	F5,6	Fuse	A60L-0001-0	197/PC1F-20				A60L-0001-0197 /PC2F-40	A60L-0001-0197 /PC2F-50		
4	F7	Fuse	A60L-0001-0147	A60L-0001-0127 /25FH75	A60L-0001-0145 A60L-0001-0149				A60L-0001-0163		
5	2124	Surge absorber		A50L-2001-0155 /20D431	55 A50L-2001-0062 A50L-2001-0155 A50L-2001-0062 A50L-2001-0155 A50L-2001-0162 A50L-2001-0162 A50L-2001-0162 A50L-2001-0162 A50L-2001-0162 A50L-2001-0165/20D43					0155/20D431	
6	AFI	Alarm fuse		A60L-0001-0046/3.2 (3.2A)							
7	AF2,3	Alarm fuse		A60L-0001-0075/3.2 (3.2AS)							
8	Fa-h	Fuse for PCB		A60L-0001-0175 (0.3A)							

1)-b) Fuse and surge absorber (MODEL 1/2/small MODEL 3)

Item	Symbol	MODEL	MODEL 1	MODEL 2	Small MODEL 3	
1	FI	Fuse	A60L-0001-0031/5A			
2	21	Surge absorber	A50L-2001-0155/20D431			
3	AFI	Alarm fuse	A60L-0001-0046/3.2 (3.2A)			
4	Fa-g	Fuse for PCB	A60L-0001-0175 (0.3A)			

1)-c) Fuse and surge absorber (MODEL 30/40)

Item	Symbol	MODEL Name	MODEL 30	MODEL 40	
1	F124	Fuse	A60L-0001-0183 /225A	A60L-0001-0183 /260A	
2	F5∿9	Fuse	A60L-0001-0031/5A		
3	AF1	Alarm fuse	A60L-0001-0046/3.2 (3.2A)		
4	AF2,3	Alarm fuse	A60L-0001-0075/	3.2 (3.2AS)	
5	Z1~3	Surge absorber	A50L-2001-0155/	'20D431	
6	24	Surge absorber	A50L-2001-0162/441-12		
7	Fa-h	Fuse on PCB	A60L-0001-0175 (0.3A)		

2)-a) Main parts (MODEL 3,22)

Item	Symbol (Note)	MODEL Name	MODEL 3	MODEL 6	MODEL 8	MODEL 12	MODEL 15	MODEL 18	MODEL 22
1	P.C.B.	РСВ	A20B-0009-0530 A20B-1000-0690	A20B-0009-0531 A20B-1000-0691	A20B-0009-0532 A20B-1000-0692	A20B-0009-0533 A20B-1000-0693	A20B-0009-0534	A20B-0009-0538	A20B-0009-0539
2	ROM	Memory element	J10	- J11	J02	J03	J04	J05	J06
3	TM (1-12)	Transistor module	A50L-000	1-0096/A	A50L-00	01-0109	A50L-0001-0096 /A	A50L-000	1-0109
4	SM (1-3)	Thyrister module	A50L-5000-0029/30		A	.50L-5000-0029/50		A50L-500	00-0029/80
5	DM (1-3)	Diode module	A50L-2001-0138 A50L-2001-0168			A50L-2001-0146			
6	D (1-3)	Diode	-	A50L-2001-0103/12JH11					
7	D (4-6)	Diode		A50L-2001-0103/12JG11					
8	D (7,8)	Díode		A50L-2001-0097/U06G					
9	C (1-3)	Capacitor				A42L-0001-0103			
10	MCC	Magnetic contactor	A58L-0001-00	94/200V1A1B	A58L-0001-0092/A		A58L-0001-0146	A58L-0001-0165	A58L-0001-0166
11	TF	Transformer				A80L-0001-0276			
12	FAN	Fan motor	A90L-0001-0191		UDHOUS S	A90L-000	01-0099/A		
13	TH	Thermostat	A57L-0001-0051 /B100	A57L-0001-0051 /B90	A57L-0001-0051 /B100 A57L-0001-0052 /B150	A57L-0001-0051 /B95 A57L-0001-0052 /B150	A57L-0001-0028		1-0046/90 1-0046/150
14	ACR	AC reactor	A81L-00	01-0077	A81L-0001-0076	A81L-0001-0075	A81L-0001-0080	A81L-00	001-0063
15	sw	Toggle switch	A57L-0001-0048/A				A56L-0001-0030 /2A	A50L-00	001-0048

Note) Parts number in parenthesis are different depends on unit model. Refer to the parts mounting label in the unit for the details.

2)-b) Main parts (MODEL 1/2/small MODEL 3)

Item	Symbol	Name MODEL	MODEL 1	MODEL 2	Small MODEL 3
1	P.C.B.	PCB I		A16B-1100-0080	The state of
2	P.C.B.	PCB II	A16B-1100-0090	A16B-1100-0091	A16B-1100-0092
3	ROM	Memory element	J21	J22 .	J23
4	TM1	Transistor module	-	A50L-0001-0125	
5	TR1	Transistor		A50L-0001-0126	
6	DM1	Diode module		A50L-2001-0138	
7	Cl	Capacitor		A42L-0001-0142	
8	мсс	Magnetic contactor		A58L-0001-0207	
9	TF	Transformer		A80L-0001-0486	
10	ACR	AC reactor		A81L-0001-0083/	'3

2)-c) Main parts (MODEL 30, 40)

Item:	Symbol	MODEL Name	MODEL 30	MODEL 40
1	P.C.B	РСВ	A20B-1000-0700	A20B-1000-0701
2 .	ROM	Memory element	J07	J08
3	TM (1-22)	Transistor module	A50L-0001-0116	
4	SM (1-3)	Thyristor module	A50L-5000-0033	
5	DM (1-3)	Diode module	A50L-2001-0171	
6	D (1-16)	Diode	A50L-2001-0103/12JH11	
7	D (3-15)	Diode	- A50L-2001-	·0103/12JG11
8	MCC	Magnetic contactor	A58L-0001-0133 /200V	A58L-0001-0159 /200V
9	TF	Transformer	A80L-00	01-0276
10	FAN	Fan motor	A90L-0001-0096/C	
11	TH	Thermostat	A57L-0001-0028	
12	ACR	AC reactor	A81L-0001-0078 A81L-0001-00	
13	SW	Toggle switch	A57L-00	01-0048/A

APPENDIX 8 PCB ADJUSTMENTS

1) MODEL 3 to 22

The following table shows the adjustment of PCB in each AC spindle servo unit. Don't change RV 7, 8,/ $4\sim19$, $25A\simD$ variable resistors, since these parts have already been adjusted by FANUC at the time of delivery.

No.	Symbol	Adjustment items	Standard setting	Measuring terminals	Adjusting methods	
1	RV1	Velocity command voltage level		CH13-0V	See subsection 1).	
2	RV2	Velocity command voltage offset		CH13-0V	See subsection 1).	
3	RV3	Speed arrival detection level		CH10-0V	See subsection 4).	
4	RV4	Speed detection level		CH9-0V	See subsection 5).	
5	RV5	Torque limitation level			See subsection 6).	
6	RV6	Regenerative power limitation	3 divisions		0.000	
7	RV7	VF conversion CH23-0V level (1)		CH23-0V	200 <u>+</u> 2 kHz when voltage is 10 V between LM and OM.	
8	RV8	Speed detection circuit setting		CH18-0V	1.38 ±0.03 V at forward rotation of motor in 45 rpm.	
9	RV9	Forward motor speed adjustment		Number of motor revolutions	See subsection 2).	
10	RV10	Speed detection offset		CH17-0V	Lower than ± 2 V when the spindle stops.	
11	RV11	Reverse motion speed adjustment		Number of motor revolutions	See subsection 2).	
12	RV12	Velocity loop gain	3 divisions			
13	RV13	Velocity loop offset		Number of spindle revolutions	See subsection 3).	

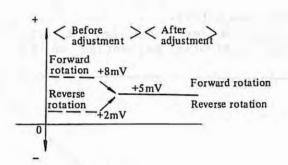
MODEL 1/2/small MODEL 3 ... A16B-1100-0080, A16B-1100-0090 $\sim\!0092$

MODEL 3∿12 ... A20B-1000-0690∿0693, A20B-0009-0530 ∿ 0533

MODEL 15~22 ... A20B-0009-0534~0539 MODEL 30, 40 ... A20B-1000-0700, 0701

No.	Symbol	Adjustment items	Standard setting	Measuring terminals	Adjusting methods
14	RV14	Load meter amplitude adjustment		LM-OM	10 + 0.1 V at acceleration
15	RV15	+5 V voltage adjust- ment		+5V-0V	5 <u>+</u> 0.05 V
16	RV16	Regenerative voltage limitation level	4 divisions		
17	RV17	VF conversion level (2)		CH32-0V	24.5 kHz at input AC 200 V
18	RV18	RA offset adjustment		CH5-0V	The rate of ON time at CH7 waveform to be 50%.
19	RV19	RB offset adjustment		CH6-0V	The rate of ON time at CH8 waveform to be 50%.
20	RV20	Soft start/stop time constant adjustment	0 divisions	CH13-0V	The time constant can be selected by setting of short pin S11. Short A side of S11 0.6~8 sec. Short B side of S11
	de de la companya de				3.5~40 sec. Check waveform of acceleration or deceleration at CH13 (VCMD).
21		Current/voltage detector offset adjustment		CRU, CRV	0 ±2.5 mV when spindle stop

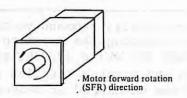
(Note) How to read the variable resistor scale



Velocity command voltage (RV1,RV2)
 When the velocity command voltage is 10 V, the motor rotates at the rated speed.

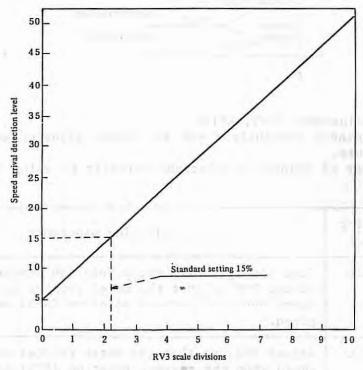
Item	Measuring terminal	Adjusting procedure				
Offset	CH13-0V	Give velocity command voltage 0 V (equivalent to S00) after setting the motor to be ready for operation. Adjust RV2 while alternately giving the forward rotation and reverse rotation commands, until the voltage remains unchanged at measuring terminal. (Note)				
Level	CH13-0V	Give the rated rotation command 10 V to the motor, and adjust RVI until the measuring terminal voltage becomes $+10 \text{ V} \pm 0.05 \text{ V}$ when the spindle forward rotation command is sent.				

Note) If the voltage at CH13 is +5.0 mV when the spindle rotates forward and ± 5.0 mV ± 1.0 mV when the spindle rotates reversely, the offset error becomes ± 1.0 mV when the velocity command voltage directions are inverted.



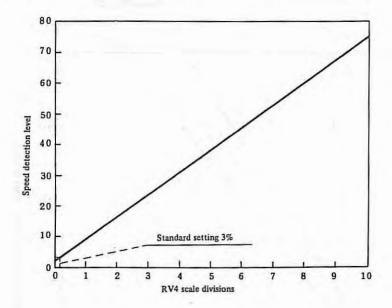
2) Rotation speed adjustment (RV9, RV11) The number of spindle revolutions can be finely adjusted according to the following procedure. Measure the number of spindle revolutions directly by using a stroboscope or a tachometer.

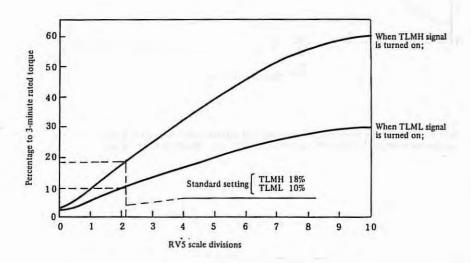
Item	Measuring terminal	Adjusting procedure
Number of forward revolu- tions	Spindle	Give the specified motor rotation command voltage. Adjust RV9 so that the motor rotates at the specified speed when the forward rotation (SFR) command is given.
Number of reverse revolu- tions	Spindle	Adjust RV11 so that the motor rotates at the specified speed when the reverse rotation (SRV) command is given.

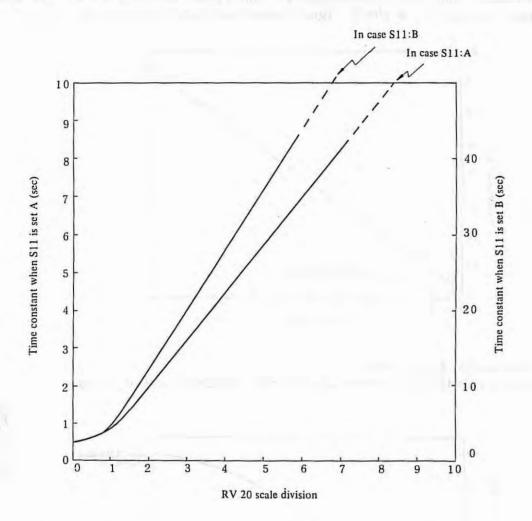

- Note 1) In MODEL 1/2/small MODEL 3, adjust RV9A, 9B during forward rotation or RV11A, 11B during reverse rotation according to the above procedure.
- Note 2) The forward rotation means that the AC spindle motor rotates counterclockwise as viewed from the motor shaft direction and this forward rotation (SFR) does not always correspond to the forward rotation of the machine tool spindle.

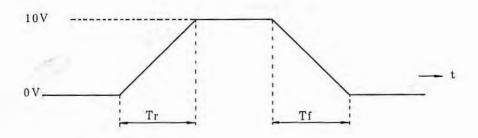
3) Velocity offset (RV13)
Adjust RV13 after completion of the previous adjustments so that the spindle does not rotate at low speed when the velocity command voltage 0 V is given.

Item	Measuring terminal	Adjusting procedure
Velocity offset	Spindle (or motor)	Adjust RV13 so that the spindle does not rotate when the velocity command voltage 0 V and either forward or reverse rotation command are given.


4) Speed arrival detection level (RV3) The speed arrival detection level can be set according to the following graph. The coordinate indicates percentage to the rated revolutions of motor.


Note) Now to read the variable resistor scale divisions.


5) Speed detection level (RV4)
The coordinate indicates percentage to the rated revolutions of the motor.
This signal is used as a check signal when the clutch or gear is changed.


6) Torque limitation level (RV5)
The coordinate indicates percentage to the 30-minute rated torque.

7) Soft start/stop time constant

Note) Soft start/stop time constant shows rising and falling time when set velocity command voltage (VCMD) 0V to 10V or 10V to 0V. Refer to next figure.

Tr = Tf. Soft start/stop time constant

2) PCB for 380/415 VAC input type

POT name	Object of adjustment	Standard scale	Observation terminals	Adjustment standard
RV1	Voltage command voltage lebel	5.0	CH13	10 V ±0.02 V at the rated velocity command of SFR
RV2	Voltage command voltage offset	5.0	CH13	Voltage difference = +1 mV at zero velocity command of SFR and SRV
RV3	Speed arrival detection level	1.5 V 3.0	CH10	Variable from 0.5 to 5.0 V at rated velocity of SFR and SRV
RV4	Speed detection level	0.3 V 1.0	СН9	Variable from 0.15 to 6.7 V
RV5	Torque limiting value		Output torque	A specified torque L \rightarrow 5 \sim 25% of max torque, H \rightarrow 10 \sim 50%
RV7	ER VF conversion ratio	7.0	CH23	200 kHz +2 kHz PPS for 10.0 V between LM-OM
RV8	Low velocity detection level		CH18	-1.38V +0.03 V at velocity command of 45 rpm for CH17
RV9	Velocity detection level		Motor speed	Is rpm of rated velocity at rated velocity command of SFR
RV10	Velocity detection offset		CH17	+5 mV when spindle stops
RV12	Velocity loop gain	5.0	Motor rotation	Be sure not to have over shoot and hunting at high speed
RV13	Velocity offset		Motor rotation	Be sure not to rotate at zero command of SFR
RV14	Calibration of max. amplitude		LM-0M	10 V ±0.1 V at deceleration at acceleration (no torque limit)
RV17	VF conversion ratio of input voltage	7.0	СН32	38 k ±0.6 kpps at 380 VAC of input voltage
RV18	RA offset compensation	5.0	СН5	Specifics CN7/CH8 duty to 50% with CN2
RV19	RB offset compensation	5.0	СН6	Ditto
RV20	Ramp time of velocity command	0.0	CH13	Variable from 0.6 to 8 sec at S11=A or from 3.5 to 40 sec at S11=B when V.command is 10 V

APPENDIX 9 CHECKING METHOD FOR PCB

1. CHECK TERMINAL

For the mounting positions of check terminals, see mounting layout of parts in PCB in Appendix 6.

a) MODEL 3\(\display12 \\ \text{...} \text{ A20B-1000-0690\(\display0693\)} \\
MODEL 15\(\display22 \\ \text{...} \text{ A20B-0009-0530\(\display0593\)} \\
MODEL 30, 40 \\ \text{...} \text{ A20B-1000-0700, 0701}

Name of terminal	Name of signal	Signal data	Remarks
CH1	DA2	Analog command voltage	0 - 10.0V
CH2	DA1	D/A converter output voltage	0 - 10.0V
снз	PA	Pulse generator output A-phase	
CH4	РВ	Pulse generator output B-phase	PA leads PB by 90° in CW rotation
CH5	RA	A-phase reference voltage	PA DC <u>+</u> 25mV
СН6	RB	B-phase reference voltage	PB DC <u>+25mV</u>
СН7	PSA	A-phase squre wave	Duty 50% (at constant speed) +10%
CH8	PSB	B-phase square wave	Duty 50% (at constant speed) ±10% PSA leads PSB by 90° in CW rotation
СН9	SDTRF	Speed detection level	Variable over a range of 0.14 - 7.4V by RV4
CH10	SARRF	Speed arrival level	Variable over a range of 0.5 - 5.0V by RV3
CH11	BUZY	Acceleration/ deceleration in progress	"1" "1" level during acc./dcc.
CH13	VCMD	Velocity command voltage	$0 - \pm 10.0$ V \oplus ; CCW, \ominus ; CW
CH14	RVP	Reverse rotation speed level	Pulse width 3.2 s generated during reverse rotation only
CH15	FWP	Forward rotation speed level	Pulse width 3.2 s generated during forward rotation only
CH16	ov	PCB OV	

Name of terminal	Name of signal	Signal data	Remarks
CH17	TS 1	Velocity feedback F/V output	-8V at 6000 rpm in CCW (forward) rotation
CH18	TS 2	Low speed detection signal	-1.38 ±0.03V at 45 rpm in CCW (forward) rotation
CH20	TSA	Velocity feedback signal	$+10V$ at rated rotation speed and $\overline{(-)}$ in CCW rotation.
CH21	LTRF	Output torque limitation voltage	Output = -(C V _{CH21} + 1.8)/10 x maximum output
CH22	CRU	U-phase current detection signal	Current/V M3.6 M8 M12 M15 M18 M22 M30 M40 16.7 25A 35.750A 50A 62.552.1104.2 A A A A
CH23	ERP	VF conversion output	200 kHz when L_{M} - 0V is 10V, 0.4 μ s width
CH24	CRV	V-phase current detection signal	See CH22
CH25	TRWF	Triangular wave signal	∧ 10Vp−p
CH26	CRW	W-phase current detection signal	See CH22
CLK	CLK	Clock signal	312.5 kHz, 200 ns typ.
+24	24V	+24V power voltage	
+15	15V	+15V power voltage	
+5	5V	+5V power voltage	+5V +1% (already adjusted by RV15
OV	ov	PCB OV	Same as the OV and CH16
-15	-15V	-15V power voltage	-15V <u>+</u> 4%
CH28	ER	Error voltage	0 - 10V
CH29	UCM	U-phase command voltage	
СН30	VCM	V-phase command voltage	
CH31	WCM	W-phase command voltage	
CH32	24VP	24V VFC output	
19A	19A	AC 19V input voltage	For PCB control power supply

Name of terminal	Name of signal	Signal data	Remarks
CT	CT	ov	For PCB control power supply
19B	19B	AC 19V input voltage	For PCB control power supply
SLP	SLP	Slip frequency	Pulse width: 3.2µs

b) MODEL 1/2/small MODEL 3

Name of terminal	Name of signal	Signal data	Remarks
CH1	DA2	Analog command voltage	0 - 10.0V
CH2	DA1	D/A converter output voltage	0 - 10.0V
СНЗ	PA	Pulse generator output A-phase	
СН4	PB	Pulse generator output B-phase	PA leads PB by 90° in CW rotation
СН5	RA	A-phase reference voltage	PA DC <u>+25mV</u>
СН6	RB	B-phase reference voltage	PB DC <u>+</u> 25mV
СН7	PSA	A-phase square wave	Duty 50% (at constant speed) +10%
CH8	PSB	B-phase square wave	Duty 50% (at constant speed) +10% PSA leads PSB by 90° in CW rotation
СН9	SDTRF	Speed detection level	Variable over a range of 0.14 - 7.4V by RV4
CH10	SARRF	Speed arrival level	Variable over a range of 0.5 - 5.0V by RV 3
CH11	BUZY	Acceleration/ deceleration in progress	"1" "1" level during acc./dcc.
CH13	VCMD	Velocity command voltage	$0 - \pm 10.0V \oplus ; CCW, \ominus ; CW$
CH14	RVP	Reverse rotation speed level	Pulse width 3.2 s generated during reverse rotation only
CH15	FWP	Forward rotation speed level	Pulse width 3.2 s generated during forward rotation only

Name of terminal	Name of signal	Signal data	Remarks
CH17	TS 1	Velocity feedback F/V output	-8V at 6000 rpm in CCW (forward) rotation
CH18	TS2	Low speed detection signal	-1.38 ±0.03V at 45 rpm in CCW (forward) rotation
CH20	TSA	Velocity feedback signal	+10V at rated rotation speed and (-) in CCW rotation.
CH21	LTRF	Output torque limitation voltage	Output = -(C V _{CH21} + 1.8)/10 x maximum output
CH22	CRU	U-phase current detection signal	Current/1V M1 M2 M3 6.43A 12.86A 12.86A
CH23	ERP	VF conversion output	200 kHz when $L_{\mbox{\scriptsize M}}$ - 0V is 10V, 0.4 μ width
CH24	CRV	V-phase current detection signal	See CH22
CH25	TRWF	Triangular wave signal	/// 10Vp−p
CH26	CRW	W-phase current detection signal	See CH22
CLK	CLK	Clock signal	312.5 kHz, 200 ns typ.
+24	24V	+24V power voltage	741
+15	15V	+15V power voltage	
+5	5V	+5V power voltage	+5V \pm 1% (already adjusted by RV15
0V	ov	PCB OV	Same as the OV and CH16
-15	-15V	-15V power voltage	-15V <u>+</u> 4%
CH28	ER	Error voltage	0 - 10V
CH29	исм	U-phase command voltage	
СН30	VCM	V-phase command voltage	
CH31	WCM	W-phase command voltage	
CH32	24VP	24V VFC output	
19A	19A	AC 19V input voltage	For PCB control power supply
CT	CT	ov	For PCB control power supply

Name of terminal	Name of signal	Signal data	Remarks
19B	19B	AC 19V input voltage	For PCB control power supply
SLP	SLP	Slip frequency	Pulse width: 3.2μs
СН33	VDCA	DC link voltage detection signal	95V/1V
СН34	IDCA	Dl link current detection signal	10.6A/1V (model 2/3), 5.3A/1V (model 1)
СН35	*INA	A-phase driver control signal	
СН36	*INB	B-phase driver control signal	
СН37	*INC	C-phase driver control signal	
СН38	*IND	D-phase driver control signal	
СН39	*INE	E-phase driver control signal	
СН40	*INF	F-phase driver control signal	
CH41	*REG	Regenerative circuit driver control signal	
CH42	*LMT	Overcurrent/overvoltage limit	Driver circuit is turned off at 56.25A or 420V.
CRU	CRU	U-phase current detection	0.54V <u>+</u> 7% at 50A
CRV	CRV	V-phase current detection	0.54V <u>+</u> 7% at 50A
IDC	IDC	DC link current detection signal	
VDC	VDC	DC link voltage	

c) 380 V/415 VAC input type

Name of terminal	I Signal data		Remarks	
CH1	DA2	Velocity command voltage input	Is 0 - 10 V when external velocit command is given.	
СН2	DA1	DA conversion output voltage	Is changeable by convertor input bit command of 0 - 10 V.	
СНЗ	PA	Pulse generator A-phase	Advances 90° against PB by CW rotation for $Vp-p = 0.36 - 0$. (5 $V/2 \pm 5\%$) ± 0.2 Vtyp.	
CH4	РВ	Pulse generator B-phase	Delays 90° against PA by CW rotation for Vp-p = 0.36 - 0.5 V. (5 V/2 +5%) +0.2 Vtyp.	
СН5	RA	A-phase reference voltage	DC part of PA. (2.5 V +0.25 V)	
СН6	RB	B-phase reference voltage	DC part of PB. (2.5 V <u>+</u> 0.25 V)	
СН7	PSA	A-phase rectangular wave	Pulse width duty 1/2, 256 pulses/1 motor rotation.	
СН8	PSB	B-phase rectangular wave	Pulse width duty 1/2, 256 pulses/1 motor rotation.	
СН9	SDTRF	Velocity detection reference voltage	Is variable in the range of 0.14 - 7.4 V/RV4. Standard setting is 0.3 V.	
CH10	SARRF	Velocity arrival reference voltage	Is variable in the range of 0.5 - 5.0 V/RV3 for velocity command of 10 V. (Standard: 1.5 V)	
CH11	BUZY	Adjustable velocity signal	45 sec typ. level "1" from the step change of more than 1.4 V of velocity command.	
CH12	TEST	C-short terminal for integration	Is short-circuited at both ends of condensor C68 when connected to (0 V) terminal.	
CH13	VCMD	Velocity command voltage	For positive, motor is forward (CCW) and for negative, reverse (CW). Rated velocity command is ± 10 V.	
CH14	CH14 RVP Reverse velocity pulse		Occurs at reverse (CW) with pulse width 3.2 µs and 1024 pulses/ 1 motor rotation.	

Name of terminal	Signal data		Remarks
CH15	FWP	Forward velocity pulse	Occurs at forward (CCW) with pulse width 3.2 µs and 1024 pulses/ 1 motor rotation.
CH17	TAl	Velocity FVC output	Is 10 V for forward 6000 rpm.
CH18	TS2	Low speed detection signal	Is -1.38 <u>+0.03</u> V for forward 45 rpm.
CH19	VLER	Velocity deviation compensating signal	Negative voltage for CCW and positive for CW.
CH20	TSA	Velocity detection signal	± 10 V (for CCW) at rated rotation speed.
CH21	LTRF	Torque limiting reference voltage	Limited output = $[(V_{CH21} +1.8)/10]$ x max.output, (-8.2 V)
CH22	CRU	U-phase current detection signal	CURRENT = $V_{CH22}/(6 \times R_{CD})A$ $M40, M30$ $R_{CD} 3 m\Omega$
СН23	ERP	Error VF conversion output	200 kHz and pulse width $\sim\!0.4~\mu s$ for CH28 (ER).
CH24	CRV	V-phase current detection signal	Refer to CH22.
CH25	TRWF	Triangular wave for PWM reference	1.50025 kHz, 10 Vpp typ.
СН26	CRW	W-phase current detection signal	Refer to CH22.
CH28	ER	Error (or weakening) voltage	0 - 10 V (max. output at 10 V).
СН29	IUCMD	U-phase command voltage	Sine-wave
СН30	IVCMD	V-phase command voltage	Lags 120° against CH29 (UCM) for CCW.
СН31	IWCMD	W-phase command voltage	Lags 240° against CH29 (UCM) for CCW.
СН32	*IVP	Input voltage FVC output	Is 38 kHz for input line voltage 380 V.
SLP	SLP	Slip pulse	Pulse width 3.2 µs.

Name of terminal	Name of signal	Signal data	Remarks
ARS	ARS	Alarm reset terminal	Is this terminal is command to (0) terminal alarm is ignored and "ENABLE" is set.
CLK	CLK	Clock signal	312.5 kHz and pulse width 200 ns.
+24	24 V	+24 V voltage source	+20 V <u>+</u> 0.2 V.
+15	15 V	+15 V voltage source	+15 V <u>+</u> 0.15 V.
+5	5 V	+5 V voltage source	+5 V <u>+</u> 0.05 V.
0 V	0 V	P.C.B. reference voltage	
-15	-15 V	-15 V voltage source	-15 V <u>+</u> 0.15 V.

1

I later of

2. CHECK TERMINAL DATA CONFIRMATION METHOD

Terminal	Voltage check by a circuit tester or the like, or frequency check by a counter or the like	Waveform check during stop	Waveform check during low-speed rotation	Waveform check during acceleration deceleration
CH1	0 - ±10V by velocity command voltage input			
CH2	0 - +10V by velocity command		Table 1	
CH3 CH4 CH5 CH6 CH7 CH8			See (2)	
СН9	0.3V by standard adjustment			
CH10	1.5V (standard) when velocity command voltage is 10V			
CH11				See (3)
CH13	0 - ±10V by velocity command voltage input			
CH14 CH15			See (2)	
CH17				
CH18	+1.38 <u>+</u> 0.03V at motor rotation <u>+</u> 4.5 rpm			
CH19				See (3)
CH20	$0 - \pm 10V$ by rotation spe	ed		
CH28				
CH21	Standard -8.2V (during low-speed rotation)			
CH22 CH24 CH26 CH29 CH30 CH31 CH23 SLP			See (2)	

Terminal	Voltage check by a circuit tester or the like, or frequency check by a counter or the like	Waveform check during stop	Waveform check during low-speed rotation	Waveform check during acceleration/ deceleration
CH25 CLK		See (1)		
+24	At AC200V input, +24.7 +1V		7	
+15	+15.0 <u>+</u> 0.45V			
+5	+ 5.0 <u>+</u> 0.05V			
-15	-15.0 <u>+</u> 0.45V			
19A CT 19B	AC19V at AC200V input between 19A and CT AC19V at AC200V input between 19B and CT			
CH32	24kHz at AC200V input			vite

1) Waveform at stopping

Check terminal	Waveform	Remarks
CLK	Typ 2 0 0 n s	2 100 2 100
CH25	0 v 10 Vp-p	

2) Waveform during low speed Condition: Motor rpm. 45∿1000 rpm Spindle reverse rotation command signal SRV ON

Check terminal	Waveform	Remarks
CH3 CH4	CH3 CH4 about Vp-p 03 6~ 0.5V	
CH5 CH6		
alti To	2.5±0.2V	
CH7 CH8	+5V CH7 O +5V CH8	Set the ON/OFF duty of CHI and CH8 waveform 1 to 1 by RV18 and RV19 at 1000 rpm.
CH14 CH15	CH14 CH15	When spindle rotation direction is reverse, waveform appears at CH15 and not appears at CH14.
CH22	O v	If spindle rotation direction is reverse, phase of CH24 and CH26 are replaced.
CH26	STREET BY STREET	

Check terminal	Waveform	Remarks
CH29		If spindle rotation direction is reverse, phase of CH30 and CH31 are replaced.
СН30		Ov Frequency is in proportion to spindle rotation. When unit and motor is
CH31		normal, Sine-wave appears at check point.
CH23		Pulse number are changed in proportion to voltage of CH28 terminal.
SLP	A L	Ov 10 and

3) Waveform during acceleration/deceleration Conditions: Motor revolutions 0 + 1000 rpm + 0 rpm Spindle reverse rotation command signal (SRV) OFF + ON + OFF

Check terminal	Waveform Waveform	N (LG)	Remarks	# # # # # # # # # # # # # # # # # # #
CH13	0V	0V		Á8
CH20	-2.2 V 1000 rpm	+2.2V	en er engale	W 100
CHZU	ov vanta		13.1	963
CH11				100
DE WA TR	About 10 sec. 1000 rpm	pout Sec.		EAR
CH17	0V +14V 7	+1.33V		
CH18	mgt Governa v 28.04/ n mgtsion (byesion)	A		4181

Check terminal	Waveform	Remarks
CH19	0V +14V	
CH28	-14V	
CH28	+10V	

3. DIGITAL AC SPINDLE (Model 3 to 22)

3.1 Check Terminal

Table 9.3.1 Check terminal (digital spindle)

Name of terminal	Signal data	Remarks	
DA1	D/A converter output voltage	0 - +10 V	
DA2	Analog command voltage	0 - +10 V	
PA	Pulse generator output A-phase	PA leads PB by 90° in CW rotation	
РВ	Pulse generator output B-phase	PB leads PA by 90° in CW rotation	
RA	A-phase reference voltage	+2.5 V	
RB	B-phase reference voltage	+2.5 V	
PAP	A-phase square wave	Duty = 50%	
PBP	B-phase square wave	Duty = 50%	
PAS	A-phase signal	Waveform of the signal PA 10 times amplified when based on RA	
PBS	B-phase signal	Waveform of the signal PB 10 times amplified when based on PR	
TS1F	Forward rotation speed detection signal	+0.82 V at 6000 rpm in CCW (forward) rotation	
TS1R	Reverse rotation speed detection signal	+0.82 V at 6000 rpm in CW (reverse) rotation	

Name of terminal	Signal data	Remarks		
TS2	Low speed detection signal	+1.4 V at 22.5 rpm in CW (forward) rotation		
TS3	Velocity pulse F/V signal	-4.65V6.15 V at 6000 rpm in CCW (forward) rotation		
VCMD	Velocity command voltage	0 - ±10 V, +: CCW -: CW		
FWP	Forward rotation speed pulse	Pulse width 3.2 µs generated during forward rotation only		
RVP	Reverse rotation speed pulse	Pulse width 3.2 µs generated during reverse rotation only		
ER	Error voltage	-4.2 V - +4.8 V		
CLK1	Clock signal	2.5 MHz, Duty = 50%		
SLIP	Slip pulse			
VDC	DC link voltage signal	Signal devided by 100 of DC link voltage		
ADIN	AC converter input signal			
IU	U phase current signal	Model 3/6 8 12 15/18 22		
IV	V phase current signal	Value of 22 33 48 67 83		
IW	W phase current signal	Unit: A/V		
+24	+24 V	- 11		
+15	+15 V	+15 V		
+5	+5 V	+5 V		
-15	-15 V	-15 V		
0 V	0 V	0 V		

3.2 Waveform at Check Terminal

Check terminal	Waveform	Remarks
PA	PA PB Vp-p About 2.5 V 0.36 - 0.5 V	
РВ	0	1 1 2
RA	2.5 ± 0.2 V	
RB	0	
PAP PBP	+5 V PAP 0 V +5 V PBP 0 V	
PAS	2.5 V PBS 3.6 V - 5.0 V	
PBS	0 V V V	
FWP	FWP	When spindle rotation direction is forward. The waveform appears at RVP and not appears at FWI in reverse rotation.
RVP	RVP	

Check terminal	Waveform	Remarks	Janeth L.
VCMD	0 V	.11	Autorial Territoria
	-10 V		
TSA	+10 V	11	
TS1R	+0.8 V		
	+14 V	in a Company	
TS2			
TS3	+5.0 V		
Balla	+4.8 V	1	
ER	-4.2 V	(A-1-)	
	feeter Manny	The property	IST.
IU	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	in/ i i l = =	
IV	WANTER OV		
IW	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	INTERNATION OF THE PARTY OF THE	
		2.5 MHz	127
CLK1	4 V 200ns	1000	
101	0 V 400ns		

4. DIGITAL AC SPINDLE (Model 1S, 1.5S, 2S, 3S, 2H, 2VH)

4.1 Check Terminal Table

Check terminal	Signal data	Remarks		
DA2	Analog speed command voltage	0 - +10 V		
PA	Pulse generator output phase A	90° leading from PB at CW rotation		
РВ	Pulse generator output phase B	90° leading from PA at CW rotation		
RA	Phase A reference voltage	+2.5 V		
RB	Phase B reference voltage	+2.5 V		
PAP	Phase A square wave	Duty = 50%		
PBP	Phase B square wave	Duty = 50%		
TSA	Speed detecting signal	+10 V at rated maximum speed		
TS2	Low speed detecting signal	Adjusted by RV6 according to the model		
TS3	Speed pulse F/V signal	-4.65 - 6.15 V at CCW (forward rotation) 6000 rpm		
VCMD	Velocity command voltage	$0 = \pm 10 \text{ V}, +: \text{CCW}, -: \text{CW}$		
FWP	Forward rotation speed pulse	Pulse width = 3.2 µs, produced only at forward rotation		
RVP	Reverse rotation speed pulse	Pulse width = 3.2 µs, produced only at reverse rotation		
ER	Error voltage	-4.2 V - +4.8 V		
CLK1	Clock signal	2.5 MHz, Duty = 50%		
SLIP	Slip pulse			
·VDC	DC link voltage signal	1/100 signal of DC link voltage		
DTDC	DC voltage of input AC voltage	1/100 signal of DC voltage of input AC voltage		

Check terminal	Signal data	Remarks
IU	Phase U current signal	
IV	Phase V current signal	Current value 22.2 A/V
IW	Phase W current signal	
+24	+24 V	+24 V
+15	+15 V	+15 V
+5	+5 V	+5 V
-15	-15 V	-15 V
OV	0 V	0 V
SM	Signal for speedmeter	Rated maximum speed +10 V
LM	Signal for load meter	+10 V at maximum output

4.2 Waveform of Check Terminal

Check terminal	Waveform	Remarks		
PA	PA PB Vp-p 0.36 - 0.5 V	A CONTRACTOR OF THE PARTY OF TH		
РВ	0	10 P		
RA	2.5 ± 0.2 V			
RB	0			
PAP	+5 V PAP 0 V +5 V PBP			
PBP	0 V			

Check terminal	- Laureles	Waveform	átab Ic	Remar	ks (animas)
	4.5		Lamgi O V	Anvigo V sa	1)
VCMD	₩ 10 2 4 2 K	nation	-10 V		
		il.	Linny		
TSA		# 120 Vil	+10 V		
		7 TH-	0 V		
			+14 V		
TS2		U .	\		
9 70.1	FITS ROTLES	2.18/	0 V +5.0 V		
TS3		1 014	0 V		
			+4.8 V	Total and the same of	
ER	7		ov	of Chicale Terminal	i omgleravi
EK	-4.3	2 V	000033		
				<u></u>	
1			W	19	
IU	WW	MANAMAN MANAMANA	_ 0 V		
IV	My	MANAGEMENT OF THE PROPERTY OF	ov		
	.us///w	MMMM	WHI		
IW	Marrando	WHALL IN WHATHAM	WH OV		
-	MAMA	түүү			
	4	100		2 5 MIL	
1	200n	200ns	_	2.5 MHz	
CLK1	0 V		30	4/4	
	 -	400ns		100	

APPENDIX 10 MAGNETIC SENSOR SIGNALS CHECKING METHOD

1. APPLICATION

This document applies to the following check procedure by observing output signals of the magnetic sensor (specification: A57L-0001-0037) employed for magnetic sensor system spindle orientation.

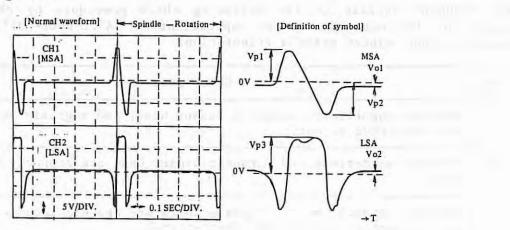
Item	Check item
1	Whether magnetizer, magnetic sensor head, and magnetic sensor amplifier are defective or not.
2	Whether magnetizer and magnetic sensor head are properly mounted or not;
3	Whether magnetic sensor signal cables are properly connected without any connection failure and short-circuit.

2. CHECK PROCEDURE

1) Preparation

(1) Rotate the spindle at about 120rpm. Select the counterclockwise rotating direction as viewed from the AC spindle motor shaft (in such a direction as the voltage at check terminal CH13 (VCMD) of AC spindle control circuit PCB becomes positive (+) to CH16 (OV)). Note) MODEL 1, 2, small MODEL 3 ... A16B-1100-0080, $-0090 \cdot 0092$

... A20B-1000-0690∿0693 MODEL 3∿12 ... A20B-0009-0534∿0539 MODEL 15∿22 ... A20B-1000-0700~0701 MODEL 30, 40


(2) Check the peak voltage and offset voltage levels of the following signal waveforms at the check terminals of the orientation circuit (drawing: A20B-0008-00301 or A20B-0009-0520) using an oscilloscope. The names of check terminals and signal contents are common, irrespective of the kinds of orientation circuit.

Check terminal No.	Signal name	Symbol	Prove common terminal
CH1	Magnetic sensor output singal A	MSA	
CH2	Magnetic sensor output signal B	LSA	(OV)

2) Decision method UCHIEM UNINCHED FLANGER FLANGER DECISION WAS AN ADMINISTRATION OF THE PROPERTY OF THE PROPE

1 Examples of normal waveforms and their criteria are as shown below.

If a trouble occurred, refer to the causes and remedy shown in the following table.

(Criteria table)

Item	Criteria (normal, if these conditions are satisfied.)
Offset voltage	V _{01∿2} < 0.5V
Peak voltage	3V < V _{p1∿2} 10V

2 Remedy to be observed when the above criteria are not satisfied.

Item	Symptoms	Causes	Remedy
bala Sala	Offset voltage of either or both signals is high. Offset voltage is normal. Peak voltage of either signal only is low.	a. Magnetic sensor head or magnetic sensor amplifier is defective.	Replace defective parts.
2	Waveform of either signal does not appear, or waveform of both signals don't appear.	 a. Magnetic sensor head, amplifier, or magnetic sensor amplifier is defective. b. Poor connection or short-circuit of cables or connectors. 	a. Replace defective parts.b. Repair defective parts.
3	Offset voltage is normal, but the entire peak voltage is low.	a. Mounting gap of the magnetic sensor head and the magnetizer is wider than specified.	Readjust the gap.

Item	8	Symptoms	Causes	Remedy
4		ns are nt from	Observe the following pr waveforms.	cocedure according to
	Obser- vation ware- form	CH1 AT	a. Magnetic sensor head is not mounted properly.b. Wrong cable connection.	a. Reverse the pin groove direction of the magnetic sensor head. b. Replace LSA and LSB with each other.
		CH1 +T	a. Magnetizer is not properly mounted.b. Wrong cable connection.	 a. Reverse the direction of the reference hole of magnetizer. b. Replace MSA and MSB with each other. Replace LSA and LSB with each other.
		CH1 AT T	a. Magnetizer and magnetic sensor head are not properly mounted. b. Wrong cable connection.	a. Reverse the mounting directions of both magnetizer and magnetic sensor head. b. Replace MSA and MSB with each other.

Reference) For normal mounting methods and connection methods of signal cables of the magnetizer and magnetic sensor head, refer to 7.3.1 in text and appendix 1 "Connections".

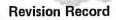
APPENDIX 11. PARAMETER LIST FOR DIGITAL AC SPINDLE SERVO UNIT

1) MODEL 3 to 22

Mode			Contents		-1-vq1-qqa1	Standard setting	Data
F-00	Display of rotati	on n	umber of moto	r	(10)	manking.	
F-01	Use/non-use of ma	chin		1 (MRDY)	Use : 1	1 -	
			Lutinian Hau		Non-use: 1		
F-02	Use/non-use of ov	se/non-use of override function		Use : 1	1		
	Non-use				Non-use: 1	3	
F-03	Setting of overri	de r	ange	4	- 120% : 1	1	
11	- 100% : 0						
F-04	Setting of veloci	ty	Use of exte	rnal analog	g command: 0	0	
111	command voltage		Use of DA c	onverter	: 1		
F-05	Setting of maximu	m ro	tation number			Based on	
# 10 # 10	Standard specification	0				the motor specifi- cation	
0.026	- 5000 rpm	-	10000 rpm	0			
	- 6000 rpm	-	12000 rpm	1			
Euro		-	15000 rpm	2			
10		-	20000 rpm	3			
F-06	Pattern setting o	f ou	tput limit			0	
	Cont	ents		Setting			
	No output limit	No output limiting made					
	Output limit is made only at acceleration/deceleration			1	1		
	Output limit is made only at normal rotation, not at acceleration/deceleration		2				
	Output limit is operations	mad	e for all	3			
F-07	Setting of limit output limit	valu	e at Rated	maximum ou	itput is 100	100	

Mode	Military III	Standard setting	Data		
F-08	Setting of delay to Delay time = (Set	ime before shut-off of mo value) x 40 msec.	tor power	5	(4 = 1
F-09	Use/non-use of shut-off of motor power by use : machine ready signal (MRDY)		Use : 1	0	Ų.
	machine ready signs	i (MADI)	Non-use: 0		
F-10	Velocity deviation command (SFR)	offset adjustment at for	ward rotation	128	
F-11	Velocity deviation command (SRV)	offset adjustment at rev	erse rotation	128	
F-12	Velocity deviation command (OCR)	128			
F-13	Rotation number ad	justment at forward rotat	ion	Based on	-
F-14	Rotation number ad	justment at reverse rotat	ion	the motor	
F-15	Rotation number at Rotation number =	cation	21-7		
F-16	Detection range of velocity arrival signal Detection range = Within +(Set value)% of command rotation number				AB-1
F-17	Detection level of velocity detection signal Detection range = Less than (Set value)% of maximum rotation number				
F-18	Setting of torque limit value Torque limit value = Less than (Set value)% of maximum output				
F-19	Setting of time needed for acceleration/deceleration Time = (Set value) sec.				
F-20	Limiting of regenerated power Setting = 0 - 100 (Adjustment of deceleration time), range				
F-21	Setting of velocity control phase compensation P: HIGH gear (CTH = 1)				
F-22	Setting of velocity control phase compensation P: LOW gear (CTH = 0)				
F-23	Setting of velocity compensation P at	100			
F-24	Setting of velocity compensation P at o	y control phase prientation: LOW gear	-	100	

Mode	gutiles Contents Financia	Standard setting	Data	
F-25	Setting of velocity control phase compensation I: HIGH gear (CTH = 1)	3 yeled	(X=9)	
F-26	Setting of velocity control phase compensation I: LOW gear (CTH = 0)	30	()-T	
F-27	Setting of velocity control phase compensation I at orientation: HIGH gear	30) I=Y	
F-28	Setting of velocity control phase compensation I at orientation: LOW gear	30	[-1]	
F-29	Adjustment of velocity detection offset (adjusted at shipping)	Approx.	1-1	
F-30	Adjustment of rotation number display (adjusted at shipping)	Approx. 3990	Te	
F-31	Setting of rigid tap mode	0	100	
F-32	Setting of normal motor voltage	10		
F-33	Setting of motor voltage at orientation	10		
F-34	Setting of motor voltage at rigid tap mode	100		
F-35	Setting of speed zero signal detection level detection level = less than {max. number of revolution x (Setting data/100)%}	75		


2) MODEL 1S, 1.5S, 2S, 3S, 2H, 2VH

Mode	SHEEZVE	Contents				Standard setting	Data
F-00	Speed ind	dication of motor				obscured	
F-01	The use/no use of the machine ready signal Use : 1					1	
	(MRDY)		No use: 0			Imcucian Imcuciin	81-1
F-01 to F-05	Not used sale to a sale to				i jakanne Langue L	81-	
F-06	Pattern s	etting of output l		on the same	- iii -retr	0	0.(-)
	0	ontents	Set	ting	switch Abert	10 - 421	
			Pattern 1			le aresta	111-
	The outp	ut is not limited ut is limited acceleration and	mer i es		VI 1000 (0.0	- butteright)	
	No outpu	t is limited at tion and decele-	100	1,15-,10		time multi	1,25
	The state of the s	ut it is limited ing steady	2	5		Levy MOS	.55=
	The outp	out is limited movements	3	6	6		13-
F-07		imit value setting when Maximum rated output is the output is limited made 100					45-
F-08	Setting of delay time to motor power interruption Delay time = (Setting value) x 40 msec				V and 135 of Vines (13.0)	20-	
F-09	Use or no use of motor power interruption by Use : 1					de galatona	81-
	machine ready signal MRDY No use: 0				Toak MILL		
F-10		Speed error offset adjustment at the time of the forward rotation command (SFR)					
F-11		ed error offset adjustment at the time of the reverse ation command (SRV)					
F-12	Speed error offset adjustment at the time of the orientation command (ORCM)					128	101-
F-13	(The speed rpm should be adjusted, using RV1 and 2 in						TB)
F-14	reference with item 4.5.)					1000000	AE
F-15	Speed rpm at 10 V speed command voltage (Speed rpm = (preset value) x 100 rpm)				11110	Lip-	

2) MODEL | No. 125, 28, 131, 1800M (E.

Mode	Contents	Standard setting	Data
F-16	Detection range of speed arrival signal: Detection range = within +(preset value)% of command speed rpm	ni baaqi	00-3
F-17	Detection level of speed detecting signal: Detection range = Less than (preset value)% of maximum speed	(Yrdvig()	reso
F-18	Setting of torque limit value: Torque limit value = Less than (preset value)% of maximum output	50	100 F
F-19	Setting of time for acceleration/deceleration Time = (Setting value) sec.	10	Aile;
F-20	Limit of regenerative power Setting = 0 - 100 (Adjustment of deceleration time) range	60	
F-21	Setting of velocity control phase compensation P: HIGH gear (CTH = 1)	20	
F-22	Setting of velocity control phase compensation P: LOW gear (CTH = 0)	20	
F-23	Setting of velocity control phase compensation P is orientation time: HIGH gear	40	
F-24	Setting of velocity control phase compensation P in orientation time LOW gear	40	
F-25	Setting of velocity control phase compensation I: HIGH gear (CTH = 1)	10	
F-26	Setting of velocity control phase compensation I: LOW gear (CTH = 0)	10	
F-27	Setting of velocity control phase compensation I in orientation time: HIGH gear	. 10	
F-28	Setting of velocity control phase compensation I in orientation time: LOW gear	10	
F-29 F-30	Not used (The adjustment of the speed detection offset is explained in item 4.5. Please adjust by RV3)		
F-31	Setting of rigid tap mode	0	
F-32	Setting of usual motor voltage	10	
F-33	Setting of motor voltage in orientation time	10	
F-34	Setting of motor voltage of rigid tap mode	. 100	

Mode	Contents	Standard setting	Data
F-35	O speed signal detection level: Detection range = Less than (Preset value/100)% of maximum speed	75	
F-36	Load detection signal level: Detection range = Less than (Preset value/100)% of maximum output	90	

FANUC AC SPINDLE SERVO UNIT MAINTENANCE MANUAL (B-53425E)

Edition	Date	Contents	Edition	Date	Contents
01	9, '81		06	6, '85	 Adding the contents of AC spindle motor model 1, 2, 30, 40. Adding the contents of AC spindle servo unit model 1, 2, small model 3, 30, 40.
02	11, '81	Correction of errata	07	8, '86	• Adding digital AC spindle servo unit.
03	8, '82	All contents are changed.	08	11, '86	 Adding parameter F 35 Adding of check terminal table and waveform at check terminal for digital spindle.
04	11, '83	All contents are changed.	09	3, '87	 Adding of Digital AC spindle servo unit MODEL 1S, 1.5S, 2S, 3S, 2H, 2VH. Adding of 380V/415V AC input type AC spindle servo unit.
05	1, '84	Adding of small type servo unit (A06B-6044-H108, H112) for motor MODEL 8 and 12.			