

GE Fanuc Automation

Computer Numerical Control Products

Servo Amplifier ai Series

Descriptions

GFZ-65282EN/05 March 2003

Warnings, Cautions, and Notes as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

SAFETY PRECAUTIONS

This "Safety Precautions" section describes the precautions which must be observed to ensure safety when using FANUC servo amplifiers (including spindle amplifiers). Users of any control motor amplifier model are requested to read the "Safety Precautions" carefully before first using the amplifier. Users should also read the relevant description in this manual to become fully familiar with the functions of the servo amplifier.

The users are basically forbidden to do any behavior or action not mentioned in the "Safety Precautions." They are invited to ask FANUC previously about what behavior or action is prohibited.

Contents

1.1	DEFINITION OF WARNING, CAUTION, AND NOTE	s-2
1.2	WARNINGS AND CAUTIONS RELATING TO	
	MOUNTING	s-3
	1.2.1 Warning	s-3
	1.2.2 Caution	s-5
	1.2.3 Note	s-7
1.3	WARNINGS AND CAUTIONS RELATING	
	TO A PILOT RUN	s-8
	1.3.1 Warning	s-8
	1.3.2 Caution	s-9
1.4	WARNINGS AND CAUTIONS RELATING	
	TO MAINTENANCE	s-10
	1.4.1 Warning	s-10
	1.4.2 Caution	s-12
	1.4.2 Note	

1.1 **DEFINITION OF WARNING, CAUTION, AND NOTE**

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

↑ WARNING

Applied when there is a danger of the user being injured or when there is a danger of both the user being injured and the equipment being damaged if the approved procedure is not observed.

A CAUTION

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

- Read this manual carefully, and store it in a safe place.

1.2 WARNINGS AND CAUTIONS RELATING TO MOUNTING

1.2.1 Warning

WARNING

- Check the specification code of the amplifier.

Check that the delivered amplifier is as originally ordered.

- Mount a ground fault interrupter.

To guard against fire and electric shock, fit the factory power supply or machine with a ground fault interrupter (designed for use with an inverter).

- Securely ground the amplifier.

Securely connect the ground terminal and metal frame of the amplifier and motor to a common ground plate of the power magnetic cabinet.

- Be aware of the weight of the amplifier and other components.

Control motor amplifiers and AC reactors are heavy. When transporting them or mounting them in the cabinet, therefore, be careful not to injured yourself or damage the equipment. Be particularly carefull not to jam your fingers between the cabinet and amplifier.

- Never ground or short-circuit either the power supply lines or power lines.

Protect the lines from any stress such as bending. Handle the ends appropriately.

- Ensure that the power supply lines, power lines, and signal lines are securely connected.

A loose screw, loose connection, or the like will cause a motor malfunction or overheating, or a ground fault.

Be extremely careful with power supply lines, motor power lines, and DC link connections through which a large amount of current passes, because a loose screw (or poor contact in a connector or poor connection between a connector terminal and a cable) may cause a fire.

- Insulate all exposed parts that are charged.

- Never touch the regenerative discharge resistor or radiator directly.

The surface of the radiator and regenerative discharge unit become extremely hot. Never touch them directly. An appropriate structure should also be considered.

⚠ WARNING

- Close the amplifier cover after completing the wiring.

 Leaving the cover open presents a danger of electric shock.
- Do not disassemble the amplifier.
- Ensure that the cables used for the power supply lines and power lines are of the appropriate diameter and temperature ratings.
- **Do not apply an excessively large force to plastic parts.**If a plastic section breaks, it may cause internal damage, thus interfering with normal operation. The edge of a broken section is likely to be sharp and, therefore, presents a risk of injury.

1.2.2 Caution

A CAUTION

- Do not step or sit on the amplifier.

Also, do not stack unpacked amplifiers on top of each other.

- Use the amplifier in an appropriate environment.

See the allowable ambient temperatures and other requirements, given in the corresponding descriptions.

- Protect the amplifier from corrosive or conductive mist or drops of water.

Use a filter if necessary.

- Protect the amplifier from impact.

Do not place anything on the amplifier.

- Do not block the air inlet to the radiator.

A deposit of coolant, oil mist, or chips on the air inlet will result in a reduction in the cooling efficiency. In some cases, the required efficiency cannot be achieved. The deposit may also lead to a reduction in the useful life of the semiconductors. Especially, when outside air is drawn in, mount filters on both the air inlet and outlet. These filters must be replaced regularly. So, an easy-to-replace type of filter should be used.

- Connect the power supply lines and power lines to the appropriate terminals and connectors.
- Connect the signal lines to the appropriate connectors.
- Before connecting the power supply wiring, check the supply voltage.

Check that the supply voltage is within the range specified in this manual, then connect the power supply lines.

- Ensure that the combination of motor and amplifier is appropriate.

- Ensure that valid parameters are specified.

Specifying an invalid parameter for the combination of motor and amplifier may not only prevent normal operation of the motor but also result in damage to the amplifier.

- Ensure that the amplifier and peripheral equipment are securely connected.

Check that the magnetic contactor, circuit breaker, and other devices mounted outside the amplifier are securely connected to each other and that those devices are securely connected to the amplifier.

A CAUTION

- Check that the amplifier is securely mounted in the power magnetic cabinet.

If any clearance is left between the power magnetic cabinet and the surface on which the amplifier is mounted, dust entering the gap may build up and prevent the normal operation of the amplifier.

- Apply appropriate countermeasures against noise.

Adequate countermeasures against noise are required to maintain normal operation of the amplifier. For example, signal lines must be routed away from power supply lines and power lines.

1.2.3 Note

NOTE

- Keep the nameplate clearly visible.
- Keep the legend on the nameplate clearly visible.
- After unpacking the amplifier, carefully check for any damage.
- Mount the amplifier in a location where it can be easily accessed periodic inspection and daily maintenance.
- Leave sufficient space around the machine to enable maintenance to be performed easily.
 Do not place any heavy objects such that they would interfere with the opening of the doors.
- Keep the parameter table and spare parts at hand.
 Also, keep the specifications at hand. These items must be stored in a location where they can be retrieved immediately.
 - Provide adequate shielding.

 A cable to be shielded must be securely connected to the ground plate, using a cable clamp or the like.

1.3 WARNINGS AND CAUTIONS RELATING TO A PILOT RUN

1.3.1 Warning

WARNING

- Before turning on the power, check that the cables connected to the power magnetic cabinet and amplifier, as well as the power lines and power supply lines, are securely connected. Also, check that no lines are slack.
- Before turning on the power, ensure that the power magnetic cabinet is securely grounded.
- Before turning on the power, check that the door of the power magnetic cabinet and all other doors are closed.

 Ensure that the door of the power magnetic cabinet containing the amplifier, and all other doors, are securely closed. During operation, all doors must be closed and locked.
- Apply extreme caution if the door of the power magnetic cabinet or another door must be opened.

Only a person trained in the maintenance of the corresponding machine or equipment should open the door, and only after shutting off the power supply to the power magnetic cabinet (by opening both the input circuit breaker of the power magnetic cabinet and the factory switch used to supply power to the cabinet). If the machine must be operated with the door open to enable adjustment or for some other purpose, the operator must keep his or her hands and tools well away from any dangerous voltages. Such work must be done only by a person trained in the maintenance of the machine or equipment.

- When operating the machine for the first time, check that the machine operates as instructed.

To check whether the machine operates as instructed, first specify a small value for the motor, then increase the value gradually. If the motor operates abnormally, perform an emergency stop immediately.

- After turning on the power, check the operation of the emergency stop circuit.

Press the emergency stop button to check that the motor stops immediately, and that the power being supplied to the amplifier is shut off by the magnetic contactor.

- Before opening a door or protective cover of a machine to enable adjustment of the machine, first place the machine in the emergency stop state and check that the motor has stopped.

1.3.2 Caution

A CAUTION

- Note whether an alarm status relative to the amplifier is displayed at power-up or during operation.

If an alarm is displayed, take appropriate action as explained in the maintenance manual. If the work to be done requires that the door of the power magnetic cabinet be left open, the work must be carried out by a person trained in the maintenance of the machine or equipment. Note that if some alarms are forcibly reset to enable operation to continue, the amplifier may be damaged. Take appropriate action according to the contents of the alarm.

- Before operating the motor for the first time, mount and adjust the position and speed sensors.

Following the instructions given in the maintenance manual, adjust the position and speed sensors for the spindle so that an appropriate waveform is obtained.

If the sensors are not properly adjusted, the motor may not rotate normally or the spindle may fail to stop as desired.

- If the motor makes any abnormal noise or vibration while operating, stop it immediately.

Note that if operation is continued in spite of there being some abnormal noise or vibration, the amplifier may be damaged. Take appropriate corrective action, then resume operation.

- Observe the ambient temperature and output rating requirements.

The continuous output rating or continuous operation period of some amplifiers may fall as the ambient temperature increases. If the amplifier is used continuously with an excessive load applied, the amplifier may be damaged.

1.4 Warnings and Cautions Relating to Maintenance

1.4.1 Warning

⚠ WARNING

- Read the maintenance manual carefully and ensure that you are totally familiar with its contents.

The maintenance manual describes daily maintenance and the procedures to be followed in the event of an alarm being issued. The operator must be familiar with these descriptions.

- Notes on replacing a fuse or PC board

- 1) Before starting the replacement work, ensure that the circuit breaker protecting the power magnetic cabinet is open.
- 2) Check that the red LED that indicates that charging is in progress is not lit.
 - The position of the charging LED on each model of amplifier is given in this manual. While the LED is lit, hazardous voltages are present inside the unit, and thus there is a danger of electric shock.
- 3) Some PC board components become extremely hot. Be careful not to touch these components.
- 4) Ensure that a fuse having an appropriate rating is used.
- 5) Check the specification code of a PC board to be replaced. If a modification drawing number is indicated, contact FANUC before replacing the PC board.
 - Also, before and after replacing a PC board, check its pin settings.
- 6) After replacing the fuse, ensure that the screws are firmly tightened. For a socket-type fuse, ensure that the fuse is inserted correctly.
- 7) After replacing the PC board, ensure that it is securely connected.
- 8) Ensure that all power lines, power supply lines, and connectors are securely connected.

- Take care not to lose any screws.

When removing the case or PC board, take care not to lose any screws. If a screw is lost inside the nit and the power is turned on, the machine may be damaged.

⚠ WARNING

- Notes on replacing the battery of the absolute Pulsecoder

Replace the battery only while the power is on. If the battery is replaced while the power is turned off, the stored absolute positioning data will be lost. Some αi series servo amplifier modules have batteries in their servo amplifiers. To replace the battery of any of those models, observe the following procedure: Open the door of the power magnetic cabinet; Leave the control power of the power supply module on; Place the machine in the emergency stop state so that the power being input to the amplifier is shut off; Then, replace the battery. Replacement work should be done only by a person who is trained in the related maintenance and safety requirements. The power magnetic cabinet in which the servo amplifier is mounted has a high-voltage section. This section presents a severe risk of electric shock.

- Check the number of any alarm.

If the machine stops upon an alarm being issued, check the alarm number. Some alarms indicate that a component must be replaced. If the power is reconnected without first replacing the failed component, another component may be damaged, making it difficult to locate the original cause of the alarm.

- Before resetting an alarm, ensure that the original cause of the alarm has been removed.
- Contact FANUC whenever a question relating to maintenance arises.

- Notes on removing the amplifier

Before removing the amplifier, first ensure that the power is shut off. Be careful not to jam your fingers between the power magnetic cabinet and amplifier.

1.4.2 Caution

A CAUTION

- Ensure that all required components are mounted.

When replacing a component or PC board, check that all components, including the snubber capacitor, are correctly mounted. If the snubber capacitor is not mounted, for example, the IPM will be damaged.

- Tighten all screws firmly.

- Check the specification code of the fuse, PC board, and other components.

When replacing a fuse or PC board, first check the specification code of the fuse or PC board, then mount it in the correct position. The machine will not operate normally if a fuse or PC board having other than the correct specification code is mounted, or if a fuse or PC board is mounted in the wrong position.

- Mount the correct cover.

The cover on the front of the amplifier carries a label indicating a specification code. When mounting a previously removed front cover, take care to mount it on the unit from which it was removed.

- Notes on cleaning the heat sink and fan

- 1) A dirty heat sink or fan results in reduced semiconductor cooling efficiency, which degrades reliability. Periodic cleaning is necessary.
- 2) Using compressed air for cleaning scatters the dust. A deposit of conductive dust on the amplifier or peripheral equipment will result in a failure.
- 3) To clean the heat sink, do so only after turning the power off and ensuring that the heat sink has cooled to room temperature. The heat sink becomes extremely hot, such that touching it during operation or immediately after power-off is likely to cause a burn. Be extremely careful when touching the heat sink.
- Unless otherwise specified, do not insert or remove any connector while the power is turned on. Otherwise, the amplifier may fail.

1.4.3 Note

NOTE

- Ensure that the battery connector is correctly inserted.

If the power is shut off while the battery connector is not connected correctly, the absolute position data for the machine will be lost.

- Store the manuals in a safe place.

The manuals should be stored in a location where they can be accessed immediately it so required during maintenance work.

- Notes on contacting FANUC

Inform FANUC of the details of an alarm and the specification code of the amplifier so that any components required for maintenance can be quickly secured, and any other necessary action can be taken without delay.

TABLE OF CONTENTS

SA	FETY	PRECA	AUTION	IS	s-1
1	CON	IFIGUR	ATION		1
	1.1	FEAT	URES O	F THE SERVO AMPLIFIER $lpha i$ SERIES	2
	1.2	CONF	IGURA1	ΓΙΟΝ	3
		1.2.1		Input Series	
		1.2.2		Input Series	
	1.3			ле	
	1.4				
2					
_	2.1			R	
	2.2			NTAL CONDITIONS	
	2.3		ONS OF THE MODULES		
	2.5	2.3.1		Supply Module (PSM)	
		2.3.1		Amplifier Module (SVM)	
				•	
		2.3.3	•	Amplifier Module (SPM)	
	0.4	2.3.4		sindle Amplifier Module (SPMC)	
	2.4				
3	ORD			RMATION	
	3.1 SERVO AMPLIFIER				43
		3.1.1	200-V I	nput Series	
			3.1.1.1	Power supply module (PSM)	
			3.1.1.2	Power supply module (PSMR)	
			3.1.1.3 3.1.1.4	Servo amplifier module (SVM)	
			3.1.1.4	Spindle amplifier module (SPM)	
		3.1.2		Input Series	
		3.1.2	3.1.2.1	Power supply module (PSM-HV)	
			3.1.2.2	Servo amplifier module (SVM-HV)	
			3.1.2.3	Spindle amplifier module (SPM-HV)	
		3.1.3	Others		49
			3.1.3.1	AC reactor	49
			3.1.3.2	AC line filter	49
			3.1.3.3	Sub module SW	49
			3.1.3.4	Connectors	
			3.1.3.5	Fuses	
			3.1.3.6	Power transformer	57

			3.1.3.7 Regenerative discharge unit	61
			3.1.3.8 Cables	62
			3.1.3.9 Circuit breaker and magnetic contactor	63
			3.1.3.10 Lightning surge protector	
			3.1.3.11 Noise filter	
			3.1.3.12 Sensors for spindle	
			3.1.3.13 Power line switch unit	
			3.1.3.14 Battery for absolute Pulsecoder	
4	HOV	V TO SI	ELECT THE MODULE	70
	4.1	HOW	TO SELECT THE SERVO AMPLIFIER MODULE (SVM)	71
		4.1.1	200-V Input Series	72
		4.1.2	400-V Input Series	73
	4.2	HOW	TO SELECT THE SPINDLE AMPLIFIER MODULE (SPM)	74
		4.2.1	200-V Input Series	
		4.2.2	400-V Input Series	75
	4.3	HOW	TO SELECT THE POWER SUPPLY MODULE (PSM)	
		4.3.1	How to Obtain the Power Supply Module Rated Output Capability	
		4.3.2	How to Obtain the Power Supply Module Maximum Output Capability	
		4.3.3	How to Obtain the Power Supply Module Peak Maximum Output Capabi	
		4.3.4	Number of Connected Servo Amplifier Modules and Spindle Amplifier	,
			Modules	78
		4.3.5	Notes on αHVi Series PSM Selection	
	4.4		TO SELECT THE POWER SUPPLY MODULE (PSMR)	
	7.7	4.4.1	How to Obtain the Power Supply Module Rated Output Capability	
		4.4.2	How to Obtain the Power Supply Module Maximum Output Capability How to Obtain the Power Supply Module Maximum Output Capability	
				01
		4.4.3	Number of Connected Servo Amplifier Modules and Spindle Amplifier	02
			Modules	
		4.4.4	Selecting a Regenerative Discharge Unit	83
	4.5		OF MOTOR OUTPUT CAPACITIES FOR POWER SUPPLY	
		SELE	CTION	86
		4.5.1	Servo Motor Continuous Rated Outputs and Maximum Outputs at	
			Acceleration	87
		4.5.2	Spindle Motor Continuous Rated Outputs and Maximum Outputs at	
			Acceleration	89
5	INST	ALLAT	ΓΙΟΝ	91
	5.1		AGE CURRENT	
	5.2		JND	
	5.3		E PREVENTION	
	0.0			

		5.3.1	Separation of Signal Lines	95
		5.3.2	Cable Clamp and Shield Processing	96
		5.3.3	Others	100
	5.4	MODU	LE INSTALLATION	101
6	HEAT	DISSI	PATION	102
	6.1	200-V I	INPUT SERIES	103
		6.1.1	Power Supply Module	103
		6.1.2	Servo Amplifier Module	104
		6.1.3	Spindle Amplifier Module	108
	6.2	400-V I	INPUT SERIES	109
		6.2.1	Power Suplly Module	109
		6.2.2	Servo Amplifier Module	110
		6.2.3	Spindle Amplifier Module	112
7	COOI	LING		113
8	EXTE	RNAL	DIMENSIONS AND MAINTENANCE AREA	114
	8.1		NE DRAWINGS	
		8.1.1	Outline Drawings of Modules, Panel Cut-out, and Maintenance Area	115
		8.1.2	AC Reactor Unit	121
		8.1.3	AC Line Filter	122
		8.1.4	Power Transformer	123
		8.1.5	Regenerative Discharge Unit	129
		8.1.6	Dynamic Brake Module (DBM)	132
		8.1.7	Circuit Breaker	134
		8.1.8	Magnetic Contactors	136
		8.1.9	Lightning Surge Protector	143
		8.1.10	Noise Filter	146
	8.2	PANEL	CUT-OUT DIAGRAMS	147
9	CON	NECTIC	ON	154
	9.1	TOTAL	CONNECTION DIAGRAM	155
	9.2	CONNI	ECTOR LOCATION	157
		9.2.1	Power Supply Module (PSM)	157
		9.2.2	Servo Amplifier Module (SVM)	162
		9.2.3	Spindle Amplifier Module (SPM)	165
	9.3	CABLE	CONNECTION DETAILS	169
		9.3.1	Power Supply Module Connection Diagram	169
			9 3 1 1 Details of cable K1 (nower supply line)	172

10

		9.3.1.2	Details of short bar K2	178
		9.3.1.3	Details of cable K3	182
		9.3.1.4	Details of cable K69	183
		9.3.1.5	Details of cable K6	184
		9.3.1.6	Details of cable K7	185
		9.3.1.7	Details of cable K70	186
		9.3.1.8	Detailed description of the connection of cables K41 (for regenerative	
			discharge resistance), K42 (for thermostat), and K43 (for fan motor)	187
	9.3.2	Servo A	mplifier Module Connection Diagram	189
		9.3.2.1	Details of cable K2	192
		9.3.2.2	Details of cable K4	192
		9.3.2.3	Details of cable K69	192
		9.3.2.4	Details of cable K21	193
		9.3.2.5	Details of cable K22	196
		9.3.2.6	Details of cable K24	200
		9.3.2.7	Details of cable K25	201
		9.3.2.8	Details of cable K26	202
		9.3.2.9	Details of cable K27	203
		9.3.2.10	Connecting the battery (for the absolute Pulsecoder)	204
		9.3.2.11	Details of cable K70	208
	9.3.3	Spindle	Amplifier Module Connection Diagram	209
		9.3.3.1	Details of cable K2	211
		9.3.3.2	Details of cable K69	211
		9.3.3.3	Details of cable K10 (power cable)	211
		9.3.3.4	Details of cable K70	214
		9.3.3.5	Details of cable K11	214
		9.3.3.6	Details of cable K12	215
		9.3.3.7	Details of cable K14	218
		9.3.3.8	Details of cable K16	222
		9.3.3.9	Details of cable K17	224
		9.3.3.10	Details of cable K33	230
		9.3.3.11	Details of cable K36	237
		9.3.3.12	Details of cable K71	240
		9.3.3.13	Details of cable K79	243
		9.3.3.14	Details of cable K88	244
		9.3.3.15	Details of cable K89	245
		9.3.3.16	Details of cable K90	246
		9.3.3.17	Spindle Motor Feedback Cable Connection	247
9.4	DETAI	ILS OF C	CONNECTORS	249
	9.4.1	20-Pin F	Half-Pitch Connectors	249
	9.4.2	Tyco Ele	ectronics AMP D-5000 Series Connector	250
SPIN	DI F₋P	FI ATE	D OPTIONS	252
10.1	OHINL	LE OKI	ENTATION	253

	10.2	POWER LINE SWITCH UNIT	254
		10.2.1 Overview	254
		10.2.2 Specification	254
		10.2.3 Outside and Mounting Dimension Diagrams	255
		10.2.4 Connection	259
		10.2.5 Notes	260
	10.3	SUB MODULE SW	262
		10.3.1 Configuration	262
		10.3.2 Specification	263
		10.3.3 External Dimensions	264
		10.3.4 Connector Installation Diagram (for Combination with SPM-15 <i>i</i>)	266
		10.3.5 Connection	267
11	SPIN	DLE-RELATED DETECTORS	268
	11.1	POSITION CODER	269
		11.1.1 α Position Coder	269
		11.1.2 α Position Coder S	272
		11.1.3 Installation Conditions and Notes	275
	11.2	BZi SENSOR	277
	11.3	CZi SENSOR	283
ΑP	PEND	OIX .	
Α	FITTI	NG A LIGHTNING SURGE PROTECTION DEVICE	293
	A.1	200-V INPUT SERIES POWER SUPPLY	
	A.2	400-V INPUT SERIES POWER SUPPLY	
	A.3	CAUTIONS	
В	CABI	LES	298
_	B.1	10-PAIR CABLE	
	B.2	COMPOSITE 7-CORE CABLE	
	B.3	COMPOSITE 10-CORE CABLE	
	B.4	COMPOSITE 12-CORE CABLE	311
	B.5	COMPOSITE 16-CORE CABLE	313
	B.6	10-PAIR CABLE	314
С	EXTE	ERNAL DIMENSIONS OF EACH CONNECTOR	315
D	FEE	DBACK CABLE LENGTH	325
	D.1	SPINDLE CABLE LENGTH	
		(WHEN RECOMMENDED CABLES ARE USED)	326

	D.2	SERVO CABLE LENGTH	
		(WHEN RECOMMENDED CABLES ARE USED)	327
Ε	POW	ER LINE FOR SERVO MOTOR AND AMPLIFIER	328
	E.1	SELECTING A POWER CABLE	329
	E.2	SAMPLE POWER CABLES SELECTED FOR SERVO MOTORS	
		(REFERENCE)	331
	E.3	SAMPLE POWER CABLES SELECTED FOR SPINDLE MOTORS	
		(REFERENCE)	333

B-65282EN/05 1.CONFIGURATION

1

CONFIGURATION

1.CONFIGURATION B-65282EN/05

1.1 FEATURES OF THE SERVO AMPLIFIER αi SERIES

The servo amplifier αi series employs a modular structure, and is thinner, conserves more space, outputs less heat, and saves more energy than the conventional servo amplifier α series.

Compact

- (1) By employing a leading-edge low-loss power device and newly developed high-efficient heat sink, the fin depth is reduced to 100 mm for all models to decrease the depth of the amplifier by about 10%.
- (2) The amplifier width of boundary models is reduced to the width of models one rank lower. This improvement, together with a reduction in depth, has decreased the mounting space required in the cabinet by about 30% on the average.
- (3) The shape of the cable connector is improved to reduce the length of cable projection into the control board.
- (4) From the $\alpha(HV)i$ series, the capacitor module is removed to reduce the installation area.

Reduction in cabling

- (1) Only one cable is now used for connection between modules.
- (2) The connection from the motor output terminal block to the flange section is made internally to eliminate an external connection via a cable. (A connection from the top of the flange to the system ground on the control board is required.)

Connector attachment to power lines

(1) Connectors are attached to input power lines and motor power lines. (For the large-capacity models, terminal blocks are used.) The time required for power line attachment to and detachment from the servo amplifier cabinet is substantially reduced.

Improved maintainability

- (1) A fan motor can now be replaced in an instant manner, so that the time required to replace a fan motor is reduced substantially.
- (2) Connectors are attached to input power lines and motor power lines, so that the time required for servo amplifier replacement is reduced substantially.
- (3) The need to perform reference position return operation after servo amplifier replacement is eliminated.
 - The servo amplifier αi series has a built-in backup capacitor in the Absolute Pulsecoder as standard. The capacitor enables absolute position detection operation for about 10 minutes, so that reference position return operation after servo amplifier or feedback cable replacement is unnecessary.

1.CONFIGURATION

1.2 CONFIGURATION

The FANUC α*i* series consists of the following units and parts:

1.2.1 200-V Input Series

(1)	Power supply module (PSM)	(Basic)
(2)	Power supply module (PSMR)	(Basic)
	[register discharge type]	
(3)	Servo amplifier module (SVM)	(Basic)
(4)	Spindle amplifier module (SPM)	(Basic)
(5)	Spindle amplifier module (SPMC)	(Basic)
(6)	AC reactor	(Basic)
7)	Connectors (for connection cables)	(Basic)
(8)	Fuses	(Basic)
9)	Power transformer	(Optional)
	AC line filter	
	Regenerative discharge unit	
	Dynamic brake module (DBM)	

Power supply Spindle amplifier Servo amplifier module PSM module SPM module SVM2 DC link (300VDC) Circuit 200R,200S breaker 2 (1) Circuit AC reactor Magnetic 200 to 240 VAC 3¢ fan motor 3φ Spindle motor Lightning Lightning surge protector surge protector

Basic configuration using PSM (example)

Units prepared by the machine tool builder

NOTE

- 1 See Chapter 4 for details of how to combine the power supply module, servo amplifier modules, and spindle amplifier modules.
- 2 A magnetic contactor, AC line filter, and circuit breakers are always required.
- To protect the unit from surge currents caused by lightning, connect surge absorbers between lines, and between the lines and ground, at the power inlet of the power magnetic cabinet. See APPENDIX A for details.

B-65282EN/05 1.CONFIGURATION

Power supply Spindle amplifier Servo amplifier module PSMR module SPM module SVM2 DC link (300VDC) Circuit 200R,200S breaker 2 (1) Magnetic AC line Circuit Regenerative discharge unit 200 to 240 VAC 3¢ fan motor 3ф Spindle motor Lightning Lightning surge protector surge protector

Basic configuration using PSMR (example)

Units prepared by the machine tool builder

NOTE

- 1 See Chapter 4 for details of how to combine the power supply module, servo amplifier modules, and spindle amplifier modules.
- 2 A magnetic contactor, AC line filter, and circuit breakers are always required.
- To protect the unit from surge currents caused by lightning, connect surge absorbers between lines, and between the lines and ground, at the power inlet of the power magnetic cabinet. See APPENDIX A for details.
- 4 When an insulating transformer is installed, high-frequency noise to the power supply is reduced, so the AC line filter is not required. If the insulating transformer is installed outside the power magnetic cabinet, and the cable connecting the amplifier is exposed, the cable must be covered with a grounded metal duct, or an AC line filter must be installed.

1.CONFIGURATION B-65282EN/05

1.2.2 400-V Input Series

(1)	Power supply module (PSM-HV)	(Basic)
(2)	Servo amplifier module (SVM-HV)	(Basic
(3)	Spindle amplifier module (SPM-HV)	(Basic)
(4)	AC reactor	(Basic)
(5)	Connectors (for connection cables)	(Basic)
(6)	Fuses	(Basic)
(7)	Dynamic brake module (DBM)	(Basic

B-65282EN/05 1.CONFIGURATION

Power supply Spindle amplifier Servo amplifier module PSM-HV module SPM-HV module SVM2-HV DC link (300VDC) Circuit 200R,200S 1ф (1) 200 to 240 VAC Lightning Lightning surge 3ф surge AC reactor Circuit Magnetic 400 to 480 VAC 3¢ fan motor Circuit 3φ Spindle motor Lightning Lightning surge surge protector

Basic configuration using PSM-HV (example)

Units prepared by the machine tool builder

NOTE

- 1 For the control power supply, single–phase 200VAC is required.
- 2 See Chapter 4 for details of how to combine the power supply module, servo amplifier modules, and spindle amplifier modules.
- 3 A magnetic contactor, AC line filter, and circuit breakers are always required.
- 4 To protect the unit from surge currents caused by lightning, connect surge absorbers between lines, and between the lines and ground, at the power inlet of the power magnetic cabinet. See APPENDIX A for details.
- 5 Measures must be taken to detect the operation (trip) of circuit breaker 3.

1.CONFIGURATION B-65282EN/05

1.3 MODULE NAME

Power supply module (PSM)

The power supply module (PSM) supplies main power for driving motors and supplies control power to other modules. A PSM specification is selected according to the servo motors and spindle motor used.

There are three types of power supply module, as follows:

<1> Power supply module (PSM)

This power supply module is designed to provide a main power supply of 200 to 240 V. The module uses power regeneration that returns energy to the power supply during motor deceleration (regeneration).

<2> Power supply module (PSMR)

This power supply module is designed to provide a main power supply of 200 to 240 V. The module uses resistance regeneration that allows energy to be consumed by resistance during motor deceleration (regeneration).

Regenerative discharge unit

This unit is a resistance used to consume energy during motor deceleration (regeneration). This unit is required whenever the PSMR is used.

<3> Power supply module (PSM-HV)

This power supply module can be connected to a main power supply of 400 to 480V without a transformer. The module uses power regeneration that returns energy to the power supply during motor deceleration (regeneration). It is used together with a servo amplifier module (SVM-HV) and spindle amplifier module (SPM-HV) of the 400-V input series.

PSM - x HV *i* (A) (B) (C)

(A) Model name: PSM = Power supply module

PSMR= Power supply module (register discharge type)

(B) Rated output: Numeric value representing a continuous rating in kW

(C) For an amplifier supporting 400-V input, "HV" is added.

B-65282EN/05 1.CONFIGURATION

Servo amplifier module (SVM)

The servo amplifier module (SVM) is used to drive servo motors. An SVM is selected according to the servo motor(s) connected to the SVM.

There are two types of servo amplifier module, as follows:

<1> Servo amplifier module (SVM)

This module drives a servo motor of the 200-V input series. Modules for one axis, two axes, and three axes are available.

<2> Servo amplifier module (SVM-HV)

This module drives a servo motor of the 400-V input series. Modules for one axis and two axes are available.

SVM x - x / x / x HV i
(A) (B) (C) (D) (E) (F)

- (A) Model name: SVM = Servo amplifier module
- (B) Number of axes: 1 = One-axis amplifier, 2 = Two-axis amplifier, 3 = Three-axis amplifier
- (C) L-axis maximum output current value [Apeak]
- (D) M-axis maximum output current value [Apeak]
- (E) N-axis maximum output current value [Apeak]
- (F) For an amplifier supporting 400-V input, "HV" is added.

Spindle amplifier module (SPM)

The spindle amplifier module (SPM) is used to drive a spindle motor. An SPM is selected according to the spindle motor connected to the SPM.

There are three types of spindle amplifier module, as follows:

<1> Spindle amplifier module (SPM)

This module drives a spindle motor of the 200-V input series.

<2> Spindle amplifier module (SPMC)

This module drives the αCi series spindle motor.

<2> Spindle amplifier module (SPM-HV)

This module drives a spindle motor of the 400V input series.

SPM - x HV *i* (A) (B) (C)

(A) Model name: SPM = Spindle amplifier module

SPMC= Spindle amplifier module applied to spindle

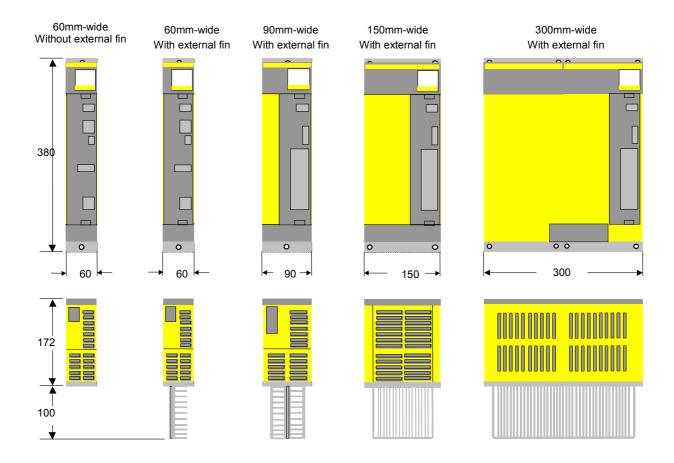
motor αCi series

(B) Output: Numeric value representing the 30-minutes rating of

a matching standard motor (αi) in kW

(C) For an amplifier supporting 400-V input, "HV" is added.

1.CONFIGURATION B-65282EN/05


1.4 LINEUP

200-V input type

Size	PSM	PSMR	SPM	SPMC	SVM1	SVM2	SVM3
60mm-wide		3 <i>i</i>			20 <i>i</i>	4/4 <i>i</i>	4/4/4 <i>i</i>
Without external fin					201	20/20 <i>i</i>	20/20/20 <i>i</i>
					40 <i>i</i>	20/40 <i>i</i>	
60mm-wide	E E :		2.2 <i>i</i>	2.2 <i>i</i>	40 <i>i</i> 80 <i>i</i>	40/40 <i>i</i>	20/20/40 <i>i</i>
With external fin	5.5 <i>i</i>	5.5 <i>i</i>	5.5 <i>i</i>	5.5 <i>i</i>	160 <i>i</i>	40/80 <i>i</i>	20/20/40/
				0.01	1601	80/80 <i>i</i>	
90mm-wide	11 <i>i</i>		11 <i>i</i>	11 <i>i</i>		80/160 <i>i</i>	
With external fin	15 <i>i</i>		15 <i>i</i>	15 <i>i</i>		160/160 <i>i</i>	
450	26 <i>i</i>		22 <i>i</i>				
150mm-wide	30 <i>i</i>		26 <i>i</i>	22 <i>i</i>	360 <i>i</i>		
With external fin	37 <i>i</i>		30 <i>i</i>				
300mm-wide	FF:		45 <i>i</i>				
With external fin	55 <i>i</i>		55 <i>i</i>				

400-V input type

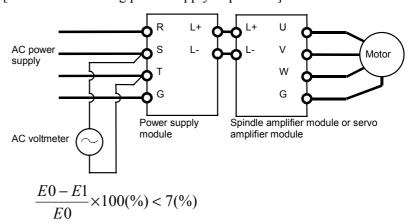
Size	PSM	SPM	SVM1	SVM2
60mm-wide Without external fin			10HVi	10/10HVi
60mm-wide With external fin		5.5HV <i>i</i>	20HV <i>i</i> 40HV <i>i</i> 80HV <i>i</i>	20/20HVi
90mm-wide With external fin	11HV <i>i</i> 18HV <i>i</i>	11HV <i>i</i> 15HV <i>i</i>		20/40HV <i>i</i> 40/40HV <i>i</i> 40/80HV <i>i</i> 80/80HV <i>i</i>
150mm-wide With external fin	30HV <i>i</i> 45HV <i>i</i>	30HV <i>i</i> 45HV <i>i</i>	180HV <i>i</i>	
300mm-wide With external fin	75HV <i>i</i> 100HV <i>i</i>	75HV <i>i</i> 100HV <i>i</i>	360HV <i>i</i>	

2

SPECIFICATIONS

2.1 INPUT POWER

Power supply of 200-V input series


(1) Power specification

Item	Specification				
Power supply voltage for the main circuit	Three-phase 200 VAC to 240 VAC				
Power supply voltage for	Single-phase 200 VAC to 240 VAC (input from				
the control circuit	connector CX1A)				
Allowable voltage	-15% to +10% (including voltage variation due				
deviation	to load)				
Power frequency	50/60Hz, ±1Hz				
Power supply unbalance	±5% of the rated voltage or less				
	The voltage variation must be within ±7% when				
Power supply impedance	a maximum output is produced for voltage at				
(Note)	non-load time (power running and				
	regeneration).				

NOTE

When the power supply impedance is high, and the voltage variation exceeds the specified values, a PSM alarm (DC link undervoltage alarm or DC link overvoltage alarm) can be issued, or the output of the motor can decrease.

[Method of checking power supply impedance]

E0: Voltage at non-load time

E1: Voltage at maximum output time (power running and regeneration)

(2) The control circuit power to the power supply module (power input to CX1A) must be turned on before the power to the CNC is turned on or within 500 ms after the power to the CNC is turned on.

- (3) It is recommended that a capacitor unit for power-factor improvement not be installed. This is because the capacitor unit for power-factor improvement may adversely affect power regeneration.
- (4) The rated output of the motor is guaranteed for the rated input voltage. If the input voltage changes, the rated output may not appear even when the input voltage change is within the allowable range.
- (5) When the power supply is used in an area where the input voltage is not within the range of 200 to 240 VAC, a power transformer is required. When a power transformer is to be provided by the user, the power must satisfy the specifications listed below.

(6-1) PSM

Table 2.1(a) Transformer Specifications

	PSM-5.5 <i>i</i>	PSM-11 <i>i</i>	PSM-15 <i>i</i>	PSM-26 <i>i</i>	PSM-30 <i>i</i>	PSM-37 <i>i</i>	PSM-55 <i>i</i> (45kW output)	PSM-55 <i>i</i> (55kW output)
Rated capacity (kVA)	9	17	22	37	44	53	64	79
Secondary current (A)	26	48	62	105	130	153	185	230
Secondary output voltage	200 to 240 V							
Secondary voltage regulation	5%							
Secondary voltage deviation	±3%							

(6-2) PSMR

Table 2.1(b) Transformer Specifications

	PSMR-3 <i>i</i> (2kW output)	PSMR-3 <i>i</i> (3kW output)	PSMR-5.5 <i>i</i> (5.5kW output)	PSMR-5.5 <i>i</i> (7.5kW output)			
Rated capacity (kVA)	3.5	5	9	13			
Secondary current (A)	10	14	26	38			
Secondary output voltage	200 to 240 V						
Secondary voltage regulation	5%						
Secondary voltage deviation	±3%						

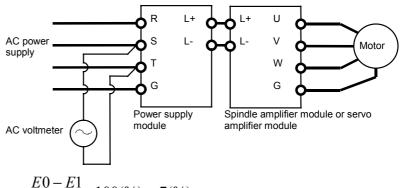
(7) Ground

The main circuit and 200V control power supply must be grounded through the neutral point or one phase of the three-phase power supply.

(8) Noise filter

To satisfy the EMC regulation enforced in the EU countries, a noise filter must be installed in the PSM input section.

Power supply of 400-V input series


(1) Power specification

Item	Specification
Power supply voltage for the main circuit	Three-phase 400 VAC to 480 VAC Star connection, neutral grounding (For details, see Items (5) and (6).) N R S T G
Power supply voltage for the control circuit	Single-phase 200 VAC to 240 VAC (input from connector CX1A) (For details, see Item (7).)
Allowable voltage deviation	-15% to +10% (including voltage variation due to load)
Power frequency	50/60Hz, ±1Hz
Power supply unbalance	±5% of the rated voltage or less
Power supply impedance (Note)	The voltage variation must be within ±7% when a maximum output is produced for voltage at non-load time (power running and regeneration).

NOTE

When the power supply impedance is high, and the voltage variation exceeds the specified values, a PSM alarm (DC link undervoltage alarm or DC link overvoltage alarm) can be issued, or the output of the motor can decrease.

[Method of checking power supply impedance]

 $\frac{E0 - E1}{E0} \times 100(\%) < 7(\%)$

E0: Voltage at non-load time

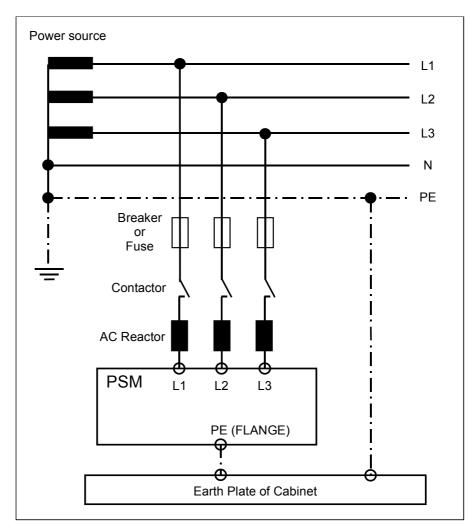
E1: Voltage at maximum output time (power running and regeneration)

(2) The control circuit power to the power supply module (power input to CX1A) must be turned on before the power to the CNC is turned on or within 500 ms after the power to the CNC is turned on.

B-65282EN/05

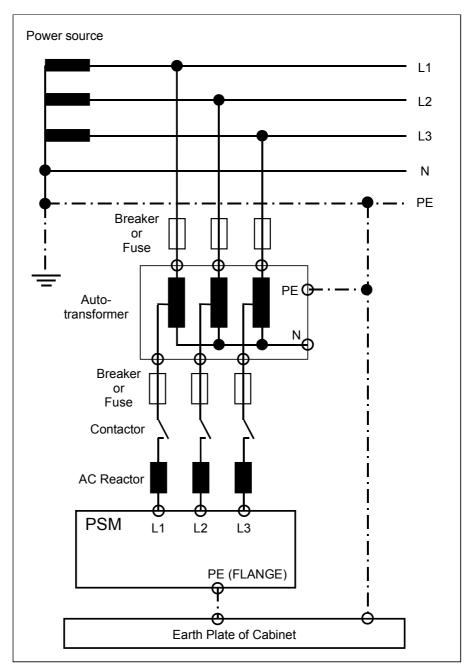
- (3) It is recommended that a capacitor unit for power-factor improvement not be installed. This is because the capacitor unit for power-factor improvement may adversely affect power regeneration.
- (4) The rated output of the motor is guaranteed for the rated input voltage. If the input voltage changes, the rated output may not appear even when the input voltage change is within the allowable range.
- (5) Power supply voltage for the main circuit
 - The power specification of the main circuit for the αHVi series servo amplifier is as follows:
 - <1> Star connection
 - <2> Neutral grounding on the power supply side
 - <3> A PE is provided on the power line. (The PE of the amplifier and motor is connected to the PE of the power line.)
 - <4> The inter-phase voltage of the power supply is 400 VAC to 480 VAC (-15%, +10%).
 - If the power supply does not satisfy the conditions above, the power supply needs to be converted to a power supply for neutral grounding by using a star connection and an isolating-transformer.
 - The αHVi series servo amplifier is designed in compliance with the safety standard EN50178 to implement insulation design of the pattern and components of the printed circuit board by ensuring that the phase voltage of the power supply and the voltage between grounds connected to the neutral point of the star connection are AC 300 Vrms or below.

Accordingly, if the power supply does not satisfy the conditions above, the pattern and components of the printed circuit board are poorly insulated. This can cause very dangerous states including a failure in servo amplifier operation and the occurrence of a high voltage at exposed areas.

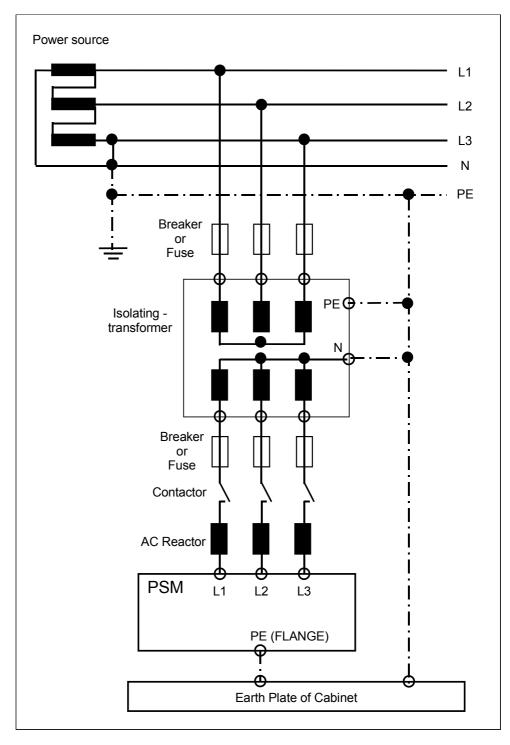

(6) Example of connecting the power supply of the main circuit

No.	Power system	Power specification	Power supply of amplifier
1	TN-power system	 Star connection Neutral grounding on the power supply side PE provided on the power line Power supply voltage specification 400 VAC to 480 VAC (-15%,+10%) 	Directly connectable to the power supply (No transformer is required.)
2	TN-power system	 Star connection Neutral grounding on the power supply side PE provided on the power line Power supply voltage specification Not within the range 400 VAC to 480 VAC (-15%, +10%) 	[When the power supply voltage is lower than the specified power supply voltage] The power supply voltage is increased with an auto-transformer. [When the power supply voltage is higher than the specified power supply voltage] The power supply voltage is decreased with an auto-transformer.
3	TN-power system	 Delta connection Single-phase grounding on the power supply side PE provided on the power line 	 An isolating-transformer is used. A star connection is made on the secondary side of an isolating-transformer, and the neutral point is grounded.
4	TT-power system	Star connection Neutral grounding on the power supply side No PE provided on the power line	
5	TT-power system	 Delta connection Single-phase grounding on the power supply side No PE provided on the power line 	
6	IT-power system	Star connection No direct ground connection made on the power supply side No PE provided on the power line	
7	IT-power system	 Delta connection No direct ground connection made on the power supply side No PE provided on the power line 	 An isolating-transformer is used. A star connection is made on the secondary side of an isolating-transformer, and the neutral point is grounded.

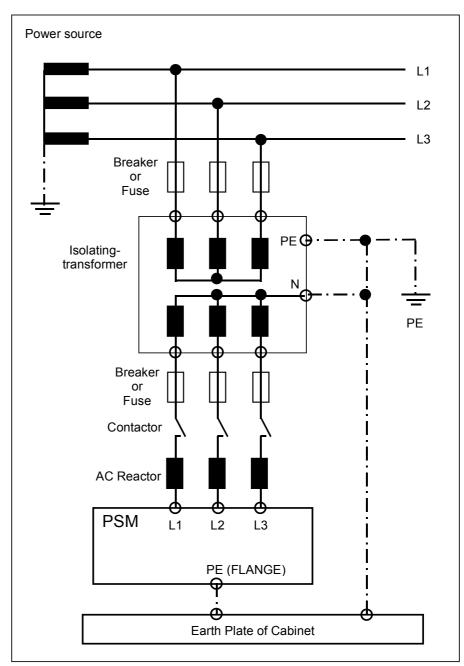
^{*} The TN-power system, TT-power system, and IT-power system are based on the DC power distribution system standard IEC60364.


(a) TN-power system

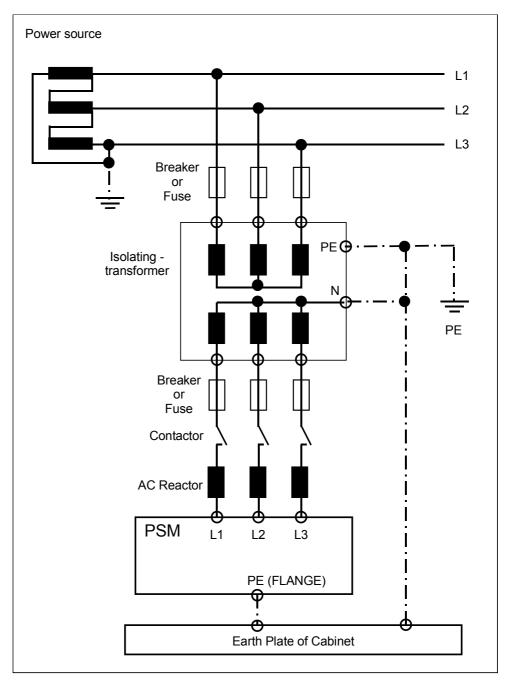
No.	Power system	Power specification	Power supply of amplifier		
1	TN-power system	Star connection	Directly connectable to the power supply		
		Neutral grounding on the power supply side	(No transformer is required.)		
		PE provided on the power line			
		Power supply voltage specification			
		400 VAC to 480 VAC (-15%,+10%)			


(b) TN-power system

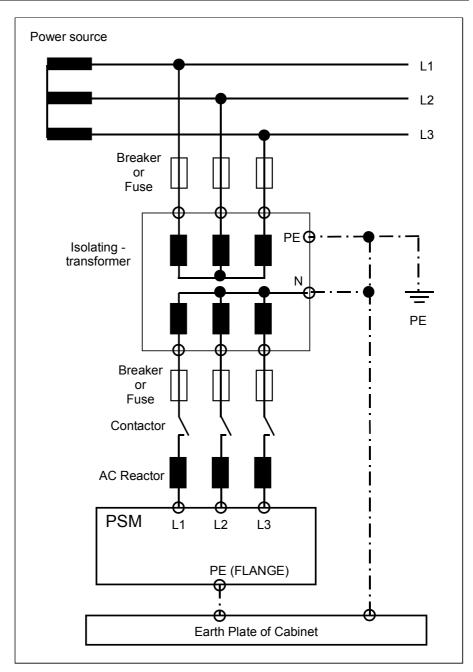
No.	Power system	Power specification	Power supply of amplifier
2	TN-power system	 Star connection Neutral grounding on the power supply side PE provided on the power line Power supply voltage specification 480 VAC or more 	The power supply voltage is decreased with an auto-transformer.


(c) TN-power system

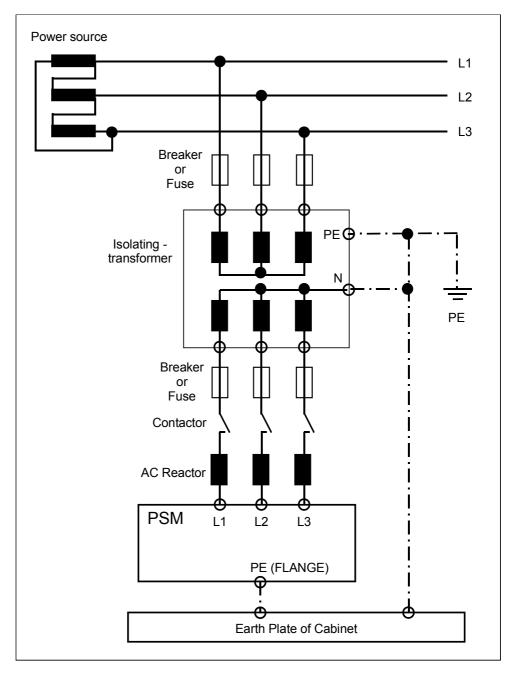
No.	Power system	Power specification	Power supply of amplifier		
3	TN-power system	Delta connection	An isolating-transformer is used.		
		Single-phase grounding on the	A star connection is made on the		
		power supply side	secondary side of an isolating-transformer,		
		PE provided on the power line	and the neutral point is grounded.		


(d) TT-power system

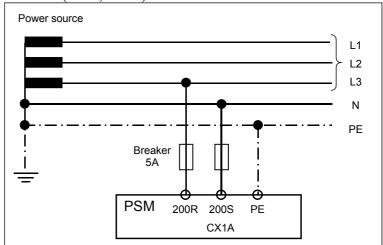
No.	Power system	Power specification	Power supply of amplifier		
4	TT-power system	Star connection	An isolating-transformer is used.		
		Neutral grounding on the power	A star connection is made on the		
		supply side	secondary side of an isolating-transformer,		
		No PE provided on the power line	and the neutral point is grounded.		


(e) TT-power system

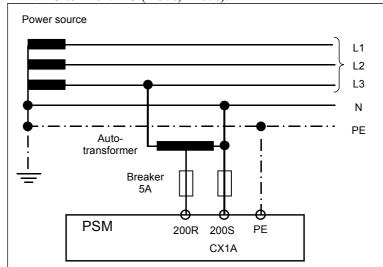
No.	Power system	Power specification	Power supply of amplifier
5	TT-power system	Delta connection	An isolating-transformer is used.
		 Single-phase grounding on the 	A star connection is made on the secondary
		power supply side	side of an isolating-transformer, and the
		No PE provided on the power line	neutral point is grounded.


(f) IT-power system

No.	Power system	Power specification	Power supply of amplifier		
6	IT-power system	Star connection	An isolating-transformer is used.		
		 No direct ground connection 	A star connection is made on the secondary		
		made on the power supply side	side of an isolating-transformer, and the		
		No PE provided on the power line	neutral point is grounded.		



(g) IT-power system


No.	Power system	Power specification	Power supply of amplifier
7	IT-power system	Delta connection	An isolating-transformer is used.
		 No direct ground connection 	A star connection is made on the secondary
		made on the power supply side	side of an isolating-transformer, and the
		No PE provided on the power line	neutral point is grounded.

- (7) Control power supply connection
 - Specification of the control power supply voltage for the αHV*i* series servo amplifier Single-phase 200 VAC to 240 VAC (-15%, +10%)
 - When the power supply has a neutral point, power can be supplied from the neutral point and phase voltage to the control power supply.
 - When an isolating-transformer is used, connect one phase of the control power supply to the neutral point on the secondary side of the isolating-transformer.
 - (a) Example of connection when the three-phase power supply voltage of the main circuit is 400 VAC With the following connection, the control power supply voltage can be converted to single-phase 200 VAC to 240 VAC (-15%, +10%):

(b) Example of connection when the three-phase power supply voltage of the main circuit is 460 VAC to 480 VAC By using an auto-transformer, ensure that the single-phase power supply voltage for the control power supply is 200 VAC to 240 VAC (-15%, +10%).

2.2 ENVIRONMENTAL CONDITIONS

The servo amplifier αi series must be installed in a sealed type cabinet to satisfy the following environmental requirements:

(1) Ambient Temperature

Ambient temperature of the unit:

0 to 55°C (at operation)

-20 to 60°C (at keeping and transportation)

Ambient temperature outside of the cabinet: 0 to 45°C

(2) Humidity

Normally 90% RH or below, and condensation-free

(3) Vibration

In operation: Below 0.5G

(4) Atmosphere

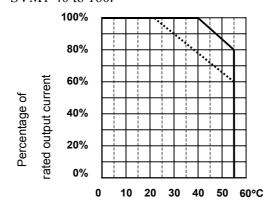
No corrosive or conductive mists or drops should deposit directly on the electronic circuits.

NOTE

Install the electronic circuits in an environment of contamination level 2 as defined in IEC 60664-1. To achieve contamination level 2 in a severe environment where machine tools are used, electronic circuits generally need to be installed in a cabinet complying with IP54.

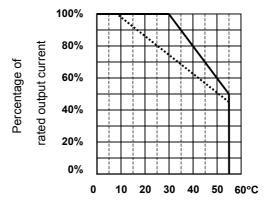
(5) Notes on Installation

The αi series servo amplifier is designed to be installed in the power magnetics cabinet, with its heat sink projecting through the back of the cabinet. This carries away the heat generated by the semi-conductors, thus preventing heat from building up in the cabinet as much as possible. Therefore, note the following when installing the amplifier.

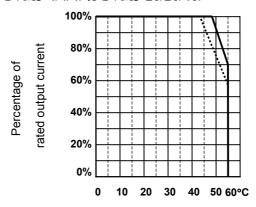

- (a) The heat sink must not be subjected to cutting fluid, oil mist, or cutting chips. Otherwise, the cooling efficiency will be reduced so that the characteristics of the amplifier cannot be guaranteed. This may also shorten the life of the semiconductors. When installing the amplifier in a power magnetics cabinet which is designed to draw in air, fit an air filter to the air inlet. In addition, completely seal all cable holes and doors.
- (b) No dust or cutting fluid must be able to enter through the exhaust port. The flow of cooling air must not be obstructed.
- (c) The amplifier must be installed where it can be easily inspected, removed, and remounted for maintenance.

- (d) Current lines and signal lines must be separated and noise must be suppressed. See the section 5.3 and the connection manual for each CNC for details.
- (f) Each amplifier must be installed vertically.
- (g) Servo amplifiers are to be arranged horizontally. When arranging servo amplifiers vertically from necessity, note the following:
 - 1) Ensure that cooling air from a lower amplifier does not blow directly against the upper amplifier. Otherwise, radiation performance can degrade and the rated output may not be satisfied.
 - 2) Ensure that the flow of cooling air of a lower amplifier is not impeded.
- (h) Maintenance areas must be reserved for each servo amplifier.

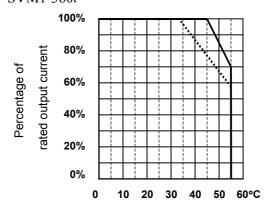
(6) Derating


Consider derating as shown below, according to ambient temperatures. The solid line is a derating line for use when HRV2 is applied, while the dotted line is a derating line for use when HRV3 is applied.

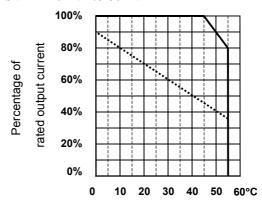
(a) Servo amplifier module SVM1-40 to 160*i*


Ambient temperature

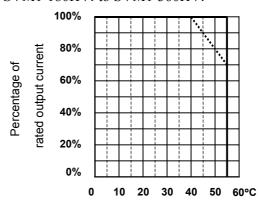
SVM2-20/40i to 160/160i


Ambient temperature

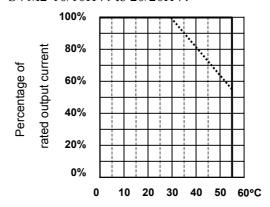
SVM1-4*i* to 20*i* SVM2-4/4*i* to SVM2-20/20*i* SVM3-4/4/4*i* to SVM3-20/20/40*i*


Ambient temperature

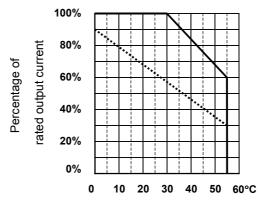
SVM1-360i


Ambient temperature

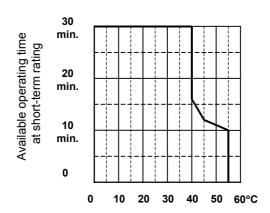
SVM1-10HVi to 80HVi


Ambient temperature

SVM1-180HVi to SVM1-360HVi


Ambient temperature

SVM2-10/10HV*i* to 20/20HV*i*


Ambient temperature

SVM2-20/40HVi to 80/80HVi

Ambient temperature

(b) SPindle amplifier module SPM-2.2*i* to 55*i* SPM-5.5HV*i* to 100HV*i*

Ambient temperature

B-65282EN/05 2.SPECIFICATIONS

2.3 SPECIFICATIONS OF THE MODULES

2.3.1 Power Supply Module (PSM)

200-V input series - power supply regeneration (PSM)

Item	Model	PSM-5.5 <i>i</i>	PSM-11 <i>i</i>	PSM-15 <i>i</i>	PSM-26 <i>i</i>	PSM-30 <i>i</i>	PSM-37 <i>i</i>	PSM-55 <i>i</i>
Power supply	Main circuit		200 to 2	40VAC +	-10%,-15%	6,3φ 50/6	60Hz, ±1Hz	<u>z</u>
(Note) Control power			200 to 240VAC +10%,-15%,1φ 50/60Hz, ±1Hz					
Power equipment	Main circuit	9kVA	17kVA	22kVA	37kVA	44kVA	53kVA	79kVA
capacity	Control power	0.7kVA						
Rated output capa	city	5.5kW	11kW	15kW	26kW	30kW	37kW	55kW
Maximum output capacity		11kW	20kW	28kW	40kW	53kW	70kW	104kW
Peak maximum output capability		20kW	34kW	46kW	66kW	77kW	96kW	174kW
Control method			Regener	ative cont	rol (power	supply reg	generation)

NOTE

A power transformer is necessary for voltages other than those listed in above table.

200-V input series - register discharge (PSMR)

Item	Model	PSMR-3i	PSMR-5.5 <i>i</i>
Power supply	Main circuit	200 to 240VAC	+10%,-15%,3φ 50/60Hz, ±1Hz
(Note)	Control power	200 to 240VAC	+10%,-15%,1φ 50/60Hz, ±1Hz
Power equipment	Main circuit	5kVA	12kVA
capacity	Control power		0.5kVA
Rated output capacity		3kW	7.5kW
Maximum output capacity		12kW	20kW
Control method		Regenerative control (register discharge)	

NOTE

- 1 The PSMR-3*i* and PSMR-5.5*i* require regenerative discharge unit.
- 2 A power transformer is necessary for voltages other than those listed in above table.

400-V input series - power supply regeneration (SVM)

Item	Model	PSM-11HVi	PSM-18HVi	PSM-30HVi	PSM-45HVi	PSM-75HVi	PSM-100HVi	
Power supply	Main circuit		400 to 480V	'AC +10%,	,-15%,3¢ 5	50/60Hz, ±1H	Ηz	
(Note)	Control power		200 to 240V	'AC +10%,	,-15%,1¢ 5	50/60Hz, ±1H	Ηz	
Power equipment	Main circuit	17kVA	26kVA	44kVA	64kVA	107kVA	143kVA	
capacity	Control power	0.7kVA						
Rated output capa	city	11kW	18kW	30kW	45kW	75kW	100kW	
Maximum output capacity		20kW	35kW	60kW	85kW	120kW	150kW	
Peak maximum output capability		34kW 58kW 87kW 124kW 175W 200kW				200kW		
Control method		Regenerative control (power supply regeneration)				n)		

NOTE

A power transformer is necessary for voltages other than those listed in above table.

How to calculate the power equipment capacity

Calculate the power equipment capacity using the formula below.

Power supply capacity (kVA) = $\frac{\text{Rated capacity calculated in Section 4.3 (kW)}}{\text{Rated capacity of power supply module (kW)}}$ ×Power supply capacity of power supply module having rated output (kVA)

NOTE

Select a power supply for which, when the motor is accelerated, the input voltage variation does not exceed 7%.

How to calculate the input current of the PSM

Calculate the input current of the PSM by using the formula below. Refer to the result when selecting the MCC, power cable, and circuit breaker 1, to be connected to the PSM input section. (Margin for selection: 1 to 1.5 times)

(Margin for selection, 1 to 1.5 times)

PSM input current (Arms) = $\frac{\text{Power equipment capacity (kVA)}}{\sqrt{3} \times 3 \text{ Nominal supply voltage (Vrms)}} \times 1.2 \text{ (margin)}$

NOTE

Under normal conditions, assume that the nominal supply voltage (Vrms) is 200 Vrms for the 200-V input series or 400 Vrms for the 400-V input series.

2.3.2 Servo Amplifier Module (SVM)

Specifications (common)

Item	Specifications
Main circuit control method	Sine-wave PWM control with transistor (IGBT) bridge
Applicable CNC	CNC of the <i>i</i> series (MODEL B) with the FSSB interface

200-V input series - SVM 1-axis

<u> </u>	<u> </u>			
	Name	Axis	Rated output current [Arms]	Nominal current limit [Apeak]
	SVM1-20 <i>i</i>	-	6.5	20
	SVM1-40 <i>i</i>	-	13	40
	SVM1-80 <i>i</i>	-	19	80
	SVM1-160 <i>i</i>	-	45	160
	SVM1-360 <i>i</i>	-	115	360

200-V input series - SVM 2-axis

Name	Axis	Rated output current	Nominal current limit
		[Arms]	[Apeak]
SVM2-4/4 <i>i</i>	L	1.5	4
3 1 1 1 1 2 - 4 / 4 1	М	1.5	4
CVM2 20/20:	L	6.5	20
SVM2-20/20 <i>i</i>	М	6.5	20
SVM 2-20/40 <i>i</i>	L	6.5	20
3 V IVI 2-20/401	М	13	40
SVM2-40/40i	L	13	40
5 V IVIZ-40/401	М	13	40
CVM2 40/90:	L	13	40
SVM2-40/80 <i>i</i>	М	19	80
SVM2-80/80 <i>i</i>	L	19	80
5 V IVIZ-00/001	М	19	80
CV/M2 00/400:	L	19	80
SVM2-80/160 <i>i</i>	М	39	160
C)/M2 4C0/4C0:	L	39	160
SVM2-160/160 <i>i</i>	М	39	160

NOTE

The current limit (peak value) is a standard value. It varies by about $\pm 10\%$, depending on the circuit constants.

200-V input series - SVM 3-axis

۰	AMIO						
	Name	Axis	Rated output current [Arms]	Nominal current limit [Apeak]			
		L	1.5	4			
	SVM3-4/4/4 <i>i</i>	М	1.5	4			
		N	1.5	4			
		L	6.5	20			
	SVM3-20/20/20i	M	6.5	20			
		N	6.5	20			
		L	6.5	20			
	SVM3-20/20/40i	М	6.5	20			
		N	13	40			

400-V input series - SVM 1-axis

<u></u>			
Name	Axis	Rated output current [Arms]	Nominal current limit [Apeak]
SVM1-10HVi	-	3.1	10
SVM1-20HVi	-	5.6	20
SVM1-40HVi	-	9.1	40
SVM1-80HVi	-	18.2	80
SVM1-180HV <i>i</i>	-	58	180
SVM1-360HV <i>i</i>	-	115	360

400-V input series - SVM 2-axis

Name	Axis	Rated output current [Arms]	Nominal current limit [Apeak]
SVM2-10/10HV <i>i</i>	L	3.1	10
3 V IVIZ-10/10 H V 1	М	3.1	10
SVM2-20/20HV <i>i</i>	L	5.6	20
3 V IVIZ-20/20 H V 1	М	5.6	20
SVM2-20/40HV <i>i</i>	L	5.6	20
SVIVIZ-20/40HV1	М	9.1	40
SVM2-40/40HV <i>i</i>	L	9.1	40
SVIVIZ-40/40HV1	М	9.1	40
SVM2-40/80HV <i>i</i>	L	9.1	40
3 V IVIZ-40/80HV1	М	18.2	80
CV/M2 90/90UV/:	L	18.2	80
SVM2-80/80HV <i>i</i>	М	18.2	80

NOTE

The current limit (peak value) is a standard value. It varies by about $\pm 10\%$, depending on the circuit constants.

B-65282EN/05 2.SPECIFICATIONS

2.3.3 Spindle Amplifier Module (SPM)

200-V input series

Model	SPM-	SPM-	SPM-	SPM-	SPM-	SPM-	SPM-	SPM-	SPM-
Item	2.2 <i>i</i>	5.5 <i>i</i>	11 <i>i</i>	15 <i>i</i>	22 <i>i</i>	26 <i>i</i>	30 <i>i</i>	45 <i>i</i>	55 <i>i</i>
Rated output (*1)	13A	27A	48A	63A	95A	111A	133A	198A	250A
Main circuit control method		Sine-wave PWM control with transistor (IGBT) bridge							
Speed control range		Speed ratio 1:100							
Speed variation rate		0.1% or	less of m	aximum s	speed (loa	ad variatio	on: 10% t	to 100%)	
Applicable motors (typical examples)	α0.5 <i>i</i> α1 <i>i</i>	α1.5 <i>i</i> α2 <i>i</i> α3 <i>i</i>	α6 <i>i</i> α8 <i>i</i> α12 <i>i</i> _P	α12 <i>i</i> α15 <i>i</i> ρ α18 <i>i</i> ρ	α15 <i>i</i> α18 <i>i</i> α22 <i>i</i> _P α30 <i>i</i> _P	α22 <i>i</i> α40 <i>i</i> ρ α50 <i>i</i> ρ	α 60 <i>i</i> P	α30 <i>i</i> α40 <i>i</i>	

400-V input series

Model	_	SPM-	SPM-	SPM-	SPM-	SPM-	SPM-
Item	5.5HV <i>i</i>	11HV <i>i</i>	15HV <i>i</i>	30HV <i>i</i>	45HV <i>i</i>	75HV <i>i</i>	100HV <i>i</i>
Rated output (*1)	14A	23A	32A	70A	100A	170A	200A
Main circuit control method	Sine-wave PWM control with transistor (IGBT) bridge						
Speed control range			Spe	eed ratio 1:1	100		
Speed variation rate	0.	1% or less of	of maximum	speed (load	d variation:	10% to 1009	%)
Applicable motors (typical examples)	α 0.5HV i α 1HV i α 2HV i α 3HV i	α6HV <i>i</i> α8HV <i>i</i>	α15HV <i>i</i> P	α15HV <i>i</i> α22HV <i>i</i> α40HV <i>i</i> Ρ α50HV <i>i</i> Ρ	α30HV <i>i</i> α40HV <i>i</i> α60HV <i>i</i> P	α60HV <i>i</i> α100HV <i>i</i>	

^{*} The values for SPM-45*i* and 55*i*, and SPM-5.5HV*i* to SPM-100HV*i* assume that the spindle HRV1 is used.

Types (A and B) of SPMs and sensors applicable to each type

Either of two SPM models, types A and B, is available for each detector on the spindle to be used. The following lists combinations of an SPM type, applicable sensors, and functions.

				C	onf	igur	atio	n		Damanka
			1	2	3	4	5	6	7	Remarks
	SPM	TYPE A	0	0	0	0	0			
	SPIVI	TYPE B						0	0	
		Mi sensor	0			0	0	0	0	
		MZi sensor		0						
Chindle avetem	Sensor on the motor	CZi, BZi sensor								
Spindle system configuration		(when a built-in motor is used)			0					
		α position coder				0				*3
	Occasion the environt	External 1-rotation					0			*3
	Sensor on the spindle	CZi, BZi sensor						0		*3
		α position coder S							0	*3
	Rigid tapping		O *1	0	0	0	0 *2	0	0	
	Orientation by a position coder			0	0	0		0	0	
Function.	Orientation by the external one- rotation signal						0 *2			*5
Function	Spindle synchronization	Velocity synchronization	O *2	0	0	0	0 *2	0	0	*4
	-	Phase synchronization		0	0	0		0	0	*4
	Threading			0	0	0		0	0	
	Cs-axis contour control			0	0			0	0	

- *1 The spindle and motor must be interconnected with a timing belt or gear. No orientation is available to adjust the tapping start position.
- *2 The spindle and motor must be interconnected with a timing belt or gear.
- *3 The spindle and detector must be interconnected in one-to-one connection mode.
- *4 Two motor amplifiers are required.
- *5 Note that the stop position moves by a backlash between the spindle and motor because of the theory of operation.

B-65282EN/05 2.SPECIFICATIONS

SPM and CNC matching

SPM and CNC matching conforms to the CNC *i* series model B.

Other functions

	SPM TYPE A	SPM TYPE B	Remarks
Analog output of load meter and speedometer	0	0	Connector JY1
Analog override input	0	0	Connector JY1
Position coder signal output		0	Connector JX4
Spindle EGB function (Communication function between CNC and SPM)		0	Connector JX4

Sub module SW

By using SPM TYPE A or SPM TYPE B with a sub module SW, the spindle switch function for switching between two motors (main and sub) with one spindle amplifier module can be used.

For details of the sub module SW, see Chapter 10.

2.3.4 αC_i Spindle Amplifier Module (SPMC)

200-V input series

Model Item	SPMC-2.2i	SPMC-5.5 <i>i</i>	SPMC-11i	SPMC-15i	SPMC-22i			
Rated output	13A	27A	48A	63A	95A			
Main circuit control method	Sine-wave PWM control with transistor (IGBT) bridge							
Speed control range	Speed ratio 1:50							
Speed variation rate	1% or les	ss of maximum	speed (load v	variation: 10%	to 100%)			
Applicable motors (typical examples)	αC1i	αC1.5 <i>i</i> αC2 <i>i</i> αC3 <i>i</i>	αC6i αC8i	αC12 <i>i</i>	αC15 <i>i</i> αC18 <i>i</i>			

Sensors applicable to SPMC

The following lists combinations of an SPMC, sensor, and function(s).

	, ,		Configur	ation	Domorko	
			1	2	Remarks	
Spindle	SPMC		0	0		
system configuration	Detector on the spindle	α position coder		0	*1	
	Velocity control		0	0		
	Rigid tapping			0		
	Orientation by a position coder			0		
Function	Spindle	Velocity synchronization		0	*2	
	synchronization	Phase synchronization		0	*2	
	Thread cutting			0		

^{*1} The spindle and detector must be interconnected in one-to-one connection mode.

^{*2} Two motor amplifiers are required.

B-65282EN/05 2.SPECIFICATIONS

SPM and CNC matching

SPM and CNC matching conforms to the CNC i series model B.

Other functions

	SPMC	Remarks
One-channel analog output of either		
load meter or speedometer	0	Connector JY1
(Selected by parameter setting)		
Analog override input	0	Connector JY1

2.4 WEIGHT

PSM

Model	Weight	
PSMR-3i	2.6kg	
PSMR-5.5 <i>i</i>	4.3kg	
PSM-5.5 <i>i</i>	4.9kg	
PSM-11 <i>i</i> , 15 <i>i</i> , 11HV <i>i</i> , 18HV <i>i</i>	6.3kg	
PSM-26 <i>i</i> , 30 <i>i</i> , 37 <i>i</i> , 30HV <i>i</i> , 45HV <i>i</i>	10.7kg	
PSM-55i, 75HVi, 100HVi	22.0kg	

AC reactor

Model	Weight
A81L-0001-0083#3C (For PSMR-3i)	1.1kg
A81L-0001-0101#C (For PSMR-5.5i)	3.0kg
A81L-0001-0155 (For PSM-5.5i,11i)	4.5kg
A81L-0001-0156 (For PSM-15i)	6.5kg
A81L-0001-0157 (For PSM-26i)	9.5kg
A81L-0001-0158 (For PSM-30i)	9.2kg
A81L-0001-0159 (For PSM-37i)	16.5kg
A81L-0001-0160 (For PSM-55i)	20.0kg
A81L-0001-0163 (For PSM-11HVi, 18Hvi)	8.0kg
A81L-0001-0164 (For PSM-30HVi, 45HVi)	14.0kg
A81L-0001-0165 (For PSM-75HVi, 100Hvi)	26.0kg

SVM

Model	Weight
SVM1-20 <i>i</i> , 10Hv <i>i</i>	2.2Kg
SVM1-40 <i>i</i> , 80 <i>i</i> , 160 <i>i</i>	2 0Kg
SVM1-20HV <i>i</i> , 40HV <i>i</i> , 80Hv <i>i</i>	3.9Kg
SVM2-4/4i, SVM2-20/20i, 10/10Hvi	2.4Kg
SVM2-20/40i, 40/40i, 40/80i, 80/80i	4.6Kg
SVM2-20/20Hvi	4.6Kg
SVM2-80/160 <i>i</i> , 160/160 <i>i</i>	
SVM2-20/40HVi, 40/40HVi, 40/80HVi,	5.5Kg
SVM2-80/80HV <i>i</i>	
SVM3-4/4/4 <i>i</i> , SVM3-20/20 <i>i</i>	2.6Kg
SVM3-20/20/40 <i>i</i>	3.8Kg
SVM1-360 <i>i</i> , 180HV <i>i</i>	10.7Kg
SVM1-360HV <i>i</i>	22.0Kg
DBM(A06B-6079-H401)	5.4Kg
DBM(A06B-6069-H300)	10.0Kg

SPM

Model	Weight
SPM-2.2 <i>i</i> , SPMC-2.2 <i>i</i>	4.9Kg
SPM-5.5i , 5.5HVi, SPMC-5.5i	6.1Kg
SPM-11 <i>i</i> , 15 <i>i</i> , 11HV <i>i</i> , 15HV <i>i</i>	6.21/3
SPMC-11 <i>i</i> , 15 <i>i</i> ,	6.3Kg
SPM-22 <i>i</i> , 26 <i>i</i> , 30 <i>i</i> , 30HV <i>i</i> , 45HV <i>i</i>	10.7%
SPMC-22i	10.7Kg
SPM-45 <i>i</i> , 55 <i>i</i> , 75HV <i>i</i> , 100HV <i>i</i>	22.0Kg

3

ORDERING INFORMATION

3.1 SERVO AMPLIFIER

3.1.1 200-V Input Series

3.1.1.1 Power supply module (PSM)

Category	Ordering number	Name	Remarks
	A06B-6110-H006	PSM-5.5 <i>i</i>	
	A06B-6110-H011	PSM-11 <i>i</i>	
	A06B-6110-H015	PSM-15 <i>i</i>	
Standard	A06B-6110-H026	PSM-26i	
	A06B-6110-H030	PSM-30 <i>i</i>	
	A06B-6110-H037	PSM-37i	
	A06B-6110-H055	PSM-55 <i>i</i>	

NOTE

See Section 4.3 for details of how to select the power supply module (PSM).

3.1.1.2 Power supply module (PSMR)

Category	Ordering number	Name	Remarks
04	A06B-6115-H003	PSMR-3i	
Standard	A06B-6115-H006	PSMR-5.5 <i>i</i>	

NOTE

See Section 4.4 for details of how to select the power supply module (PSMR).

3.1.1.3 Servo amplifier module (SVM)

SVM 1-axis

Category	Ordering number	Name	Remarks
	A06B-6114-H103	SVM1-20 <i>i</i>	
	A06B-6114-H104	SVM1-40 <i>i</i>	
Standard	A06B-6114-H105	SVM1-80 <i>i</i>	
	A06B-6114-H106	SVM1-160 <i>i</i>	
	A06B-6114-H109	SVM1-360 <i>i</i>	

SVM 2-axis

Category	Ordering number	Name	Remarks
	A06B-6114-H201	SVM2-4/4 <i>i</i>	
	A06B-6114-H205	SVM2-20/20i	
	A06B-6114-H206	SVM2-20/40i	
Ctondord	A06B-6114-H207	SVM2-40/40i	
Standard	A06B-6114-H208	SVM2-40/80i	
	A06B-6114-H209	SVM2-80/80i	
	A06B-6114-H210	SVM2-80/160i	
	A06B-6114-H211	SVM2-160/160i	

SVM 3-axis

Category	Ordering number	Name	Remarks
	A06B-6114-H301	SVM3-4/4/4i	
Standard	A06B-6114-H303	SVM3-20/20/20i	
	A06B-6114-H304	SVM3-20/20/40i	

Dynamic brake module

Category	Ordering number	Name	Remarks
Standard	A06B-6079-H401	DBM	SVM1-360 <i>i</i>

NOTE

- 1 Only the FSSB interface is provided between the SVM and CNC. So, be sure to use the SVM in combination with a CNC of the *i* series that has the FSSB interface.
- 2 See Section 4.1 for details of how to select the servo amplifier module.
- 3 For the SVM1-360*i*, a dynamic brake module (DBM) is required.
 - The dynamic brake module is used to immediately stop the motor at emergency stop. Other SVMs contain a similar function.

3.1.1.4 Spindle amplifier module (SPM)

Ordering numbers depend on the detectors being used (function).

(1) TYPE A (1 spindle sensor input)

Category	Ordering number	Name	Remarks
	A06B-6111-H002#H550	SPM-2.2 <i>i</i>	
	A06B-6111-H006#H550	SPM-5.5 <i>i</i>	
	A06B-6111-H011#H550	SPM-11 <i>i</i>	
	A06B-6111-H015#H550	SPM-15 <i>i</i>	
Standard	A06B-6111-H022#H550	SPM-22i	
	A06B-6111-H026#H550	SPM-26i	
	A06B-6111-H030#H550	SPM-30 <i>i</i>	
	A06B-6111-H045#H550	SPM-45 <i>i</i>	
	A06B-6111-H055#H550	SPM-55i	

(2) TYPE B (2 spindle sensor inputs)

Category	Ordering number	Name	Remarks
	A06B-6112-H002#H550	SPM-2.2 <i>i</i>	
	A06B-6112-H006#H550	SPM-5.5 <i>i</i>	
	A06B-6112-H011#H550	SPM-11i	
	A06B-6112-H015#H550	SPM-15i	
Standard	A06B-6112-H022#H550	SPM-22i	
	A06B-6112-H026#H550	SPM-26i	
	A06B-6112-H030#H550	SPM-30i	
	A06B-6112-H045#H550	SPM-45i	
	A06B-6112-H055#H550	SPM-55i	

3.1.1.5 Spindle amplifier module (SPMC)

Category	Ordering number	Name	Remarks
	A06B-6116-H002#H560	SPMC-2.2i	
	A06B-6116-H006#H560	SPMC-5.5 <i>i</i>	
Standard	A06B-6116-H011#H560	SPMC-11i	
	A06B-6116-H015#H560	SPMC-15i	
	A06B-6116-H022#H560	SPMC-22i	

NOTE

See Section 4.2 for details of how to select the spindle amplifier module.

3.1.2 **400-V Input Series**

3.1.2.1 Power supply module (PSM-HV)

Category	Ordering number	Name	Remarks
	A06B-6120-H011	PSM-11HVi	
	A06B-6120-H018	PSM-18HVi	
Ot a made and	A06B-6120-H030	PSM-30HVi	
Standard	A06B-6120-H045	PSM-45HVi	
	A06B-6120-H075	PSM-75HVi	
	A06B-6120-H100	PSM-100HVi	

NOTE

See Section 4.3 for details of how to select the power supply module (PSM).

3.1.2.2 Servo amplifier module (SVM-HV)

SVM 1-axis

Category	Ordering number	Name	Remarks
	A06B-6124-H102	SVM1-10HVi	
	A06B-6124-H103	SVM1-20HVi	
Otava da sad	A06B-6124-H104	SVM1-40HVi	
Standard	A06B-6124-H105	SVM1-80HVi	
	A06B-6124-H106	SVM1-180HVi	
	A06B-6124-H109	SVM1-360HVi	

SVM 2-axis

Category	Ordering number	Name	Remarks
	A06B-6124-H202	SVM2-10/10HVi	
	A06B-6124-H205	SVM2-20/20HVi	
Ctondord	A06B-6124-H206	SVM2-20/40HVi	
Standard	A06B-6124-H207	SVM2-40/40HVi	
	A06B-6124-H208	SVM2-40/80HVi	
	A06B-6124-H209	SVM2-80/80HVi	

Dynamic brake module

Category	Ordering number	Name	Remarks
	A06B-6079-H401	DBM	SVM1-180HV <i>i</i> , SVM1-360HV <i>i</i>
Standard	A06B-6069-H300	DRM	SVM1-360HV <i>i</i>
			(To drive the α 1000HV i)

NOTE

- 1 Only the FSSB interface is provided between the SVM and CNC. So, be sure to use the SVM in combination with a CNC of the *i* series that has the FSSB interface.
- 2 See Section 4.1 for details of how to select the servo amplifier module.
- 2 For the SVM1-180HV*i* and SVM1-360HV*i*, a dynamic brake module (DBM) is required. The dynamic brake module is used to immediately stop the motor at emergency stop. Other SVMs contain a similar function.

3.1.2.3 Spindle amplifier module (SPM-HV)

Ordering numbers depend on the detectors being used (function).

(1) TYPE A (1 spindle sensor input)

Category	Ordering number	Name	Remarks
	A06B-6121-H006#H550	SPM-5.5HVi	
	A06B-6121-H011#H550	SPM-11HVi	
	A06B-6121-H015#H550	SPM-15HVi	
Standard	A06B-6121-H030#H550	SPM-30HVi	
	A06B-6121-H045#H550	SPM-45HVi	
	A06B-6121-H075#H550	SPM-75HVi	
	A06B-6121-H100#H550	SPM-100HVi	

(2) TYPE B (2 spindle sensor inputs)

Category	Ordering number	Name	Remarks
	A06B-6122-H006#H550	SPM-5.5HVi	
	A06B-6122-H011#H550	SPM-11HVi	
	A06B-6122-H015#H550	SPM-15HVi	
Standard	A06B-6122-H030#H550	SPM-30HVi	
	A06B-6122-H045#H550	SPM-45HVi	
	A06B-6122-H075#H550	SPM-75HVi	
	A06B-6122-H100#H550	SPM-100HVi	

NOTE

See Section 4.2 for details of how to select the spindle amplifier module.

3.1.3 Others

3.1.3.1 AC reactor

Category	Ordering number	Name	Remarks
	A81L-0001-0155	PSM-5.5 <i>i</i> , 11 <i>i</i>	
	A81L-0001-0156	PSM-15 <i>i</i>	
	A81L-0001-0157	PSM-26i	
	A81L-0001-0158	PSM-30 <i>i</i>	
Standard	A81L-0001-0159	PSM-37 <i>i</i>	
	A81L-0001-0160	PSM-55 <i>i</i>	
	A81L-0001-0163	PSM-11HVi, 18HVi	
	A81L-0001-0164	PSM-30HVi, 45HVi	
	A81L-0001-0165	PSM-75HVi, 100HVi	

For the dimensions of the AC reactors, see Section 8.1.2.

3.1.3.2 AC line filter

Category	Ordering number	Name	Remarks
Ot a rad a rad	A81L-0001-0083#3C	PSMR-3i	
Standard	A81L-0001-0101#C	PSMR-5.5 <i>i</i>	

For the dimensions of the AC line filters, see Section 8.1.3.

3.1.3.3 Sub module SW

Category	Ordering number	Name	Remarks
	A06B-6111-H401	SPM TYPE A, TYPE B	Main unit
Option	A06B-6111-K808	SPM 90mm,150mm TYPE A	Connection cable
	A06B-6111-K809	SPM 90mm,150mm TYPE B	Connection cable
	A06B-6111-K810	SPM 60mm, TYPE A	Connection cable
	A06B-6111-K811	SPM 60mm, TYPE B	Connection cable

The sub module SW is 60 mm wide, and enables the spindle switch function when used with SPM TYPE A or SPM TYPE B.

- (a) A cable for connecting the switch module with an SPM needs to be prepared.
- (b) A metal plate for mounting needs to be prepared.

3.1.3.4 Connectors

The ordering drawing number of the connectors required for connection of input/output signals of each module, and the configuration of each connector, are shown below.

The "Use" column of the table indicates connection symbol K*, which is described in Section 9.3, "CABLE CONNECTION DETAILS."

For the connector dimensions, see Appendix C.

(1) Usable with each module:
Connectors for the PSM interface (between CXA2A and CXA2B)

Category	Ordering number	Quantity	Use	Connection tool
Standard	1AA6B-611A-K71A	Housing: 1 pcs.	K69	Contact crimping tool
		Contact: 8 pcs.	(Note 1)	A06B-6110-K220#D2M
	A068-6110-K211	Housing: 1 pcs.	(いのでう)	Contact crimping tool
		Contact: 2 pcs.		A06B-6110-K220#D2M

NOTE

- 1 See Subsection 9.3.1.4.
- 2 See Subsection 9.3.2.10.

(2) Usable with each module:

Power line connectors for motors and power supplies

Category	Ordering number	Quantity	Use	Connection tool
Standard	A06B-6110-K200 #XXSS	Housing: 1 pcs. (XX key) Contact: 4 pcs. (SS size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5SS
	A06B-6110-K200 #XXS	Housing: 1 pcs. (XX key) Contact: 4 pcs. (S size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5S
	A06B-6110-K200 #XXM	Housing: 1 pcs. (XX key) Contact: 4 pcs. (M size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5M
	A06B-6110-K200 #XXL	Housing: 1 pcs. (XX key) Contact: 4 pcs. (L size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5L
	A06B-6110-K201 #XYSS	Housing: 1 pcs. (XY key) Contact: 4 pcs. (SS size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5SS
	A06B-6110-K201 #XYS	Housing: 1 pcs. (XY key) Contact: 4 pcs. (S size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5S
	A06B-6110-K201 #XYM	Housing: 1 pcs. (XY key) Contact: 4 pcs. (M size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5M
	A06B-6110-K201 #XYL	Housing: 1 pcs. (XY key) Contact: 4 pcs. (L size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5L
	A06B-6110-K202 #YYSS	Housing: 1 pcs. (YY key) Contact: 4 pcs. (SS size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5SS
	A06B-6110-K202 #YYS	Housing: 1 pcs. (YY key) Contact: 4 pcs. (S size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5S
	A06B-6110-K202 #YYM	Housing: 1 pcs. (YY key) Contact: 4 pcs. (M size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5M
	A06B-6110-K202 #YYL	Housing: 1 pcs. (YY key) Contact: 4 pcs. (L size)	K1, K10, K21	Contact crimping tool A06B-6110-K220#D5L

(3) For power supply module (PSM)

Category	Ordering number	Quantity	Use	Connection tool
Standard	IA06B-6071-K203	Housing: 1 pcs./module	IK3 K6 K7	Contact crimping tool
		Contact: 7 pcs.		A06B-6110-K220#D3L

(4) For servo amplifier module (SVM)

Category	Ordering number	Quantity	Use	Connection tool
Standard	A06B-6078-K225	Case: 1 pcs. Connector: 1 pcs. Solder type	K22	
		Case: 2 pcs. Connector: 4 pcs.	K24,K25	Contact crimping tool A06B-6110-K220#D3L

(5) For spindle amplifier module (SPM)

Category	Ordering number	Quantity	Use	Use
	A06B-6078-K222	Case: 1 pcs. Connector: 1 pcs. Solder type	K14, K17, K71	
Ctandard	A06B-6078-K223	Case: 1 pcs. Connector: 1 pcs. Crimp type	K12	Purchase a connector for F130-20S from Hirose Electric.
Standard	A06B-6078-K224	Case: 1 pcs. Connector: 1 pcs. Solder type	K33	
	A06B-6078-K225	Case: 1 pcs. Connector: 1 pcs. Crimp type	K16	

NOTE

- 1 Some connectors are attached to a cable by crimping or soldering. Be careful when placing an order.
- When attaching a connector of crimp type, use a dedicated tool prepared by each manufacturer. For the specifications of the tools, see the description of "Connection tools" below.

Connection tools

Connector connection tools are indicated below with their ordering numbers for purchase from FANUC. The connection tools can also be directly purchased from each manufacturer.

(a) Connectors manufactured by Tyco Electronics AMP D-2100 series (for inter-module interface)

Category	Ordering number	Manufacturer part number	Use
Optional	A06B-6110-K220#D2M	191595-1	M size
- p			Contact crimping tool
Optional	A06B-6110-K220#D2R	1276716-1	Contact extractor

D-3000 series (for PSM)

Category	Ordering number	Manufacturer part number	Use
Optional	A06B-6110-K220#D3L	91558-1	L size Contact crimping tool
Optional	A06B-6110-K220#D3R	234168-1	Contact extractor

D-5000 series (for power line)

Category	Ordering number	Manufacturer part number	Use
Optional	A06B-6110-K220#D5SS	91596-1	SS size Contact crimping tool
Optional	A06B-6110-K220#D5S	234170-1	S size Contact crimping tool
Optional	A06B-6110-K220#D5M	234171-1	M size Contact crimping tool
Optional	A06B-6110-K220#D5L	1366044-1	L size Contact crimping tool
Optional	A06B-6110-K220#D5R	409158-1	Contact extractor

(b) Half-pitch 20-pin press-mount connector of Hirose Electric (FI30-20S)

Name	Manufacturer part number			
Jig for neat cabling	FI30-20CAT1			
Jig for press-mounting	HHP-502, FI30-20GP			

(c) Half-pitch 20-pin press-mount connector of Honda Tsushin Kogyo (PCR-E20FA)

Name	Manufacturer part number
Jig for neat cabling	JGPS-015-1/1-20, JGPS-014
Jig for press-mounting	MFC-K1, PCS-K1

Connector configuration

- Configuration of A06B-6110-K210

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CXA2A	AMD Jaman Ltd	1-1318119-4 (housing)	1	For DCM interfoce	C(d)
CXA2B	AMP Japan, Ltd.	131807-1 (contact)	8	For PSM interface	-

- Configuration of A06B-6110-K211

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CXA2A	AMD laware latel	1-1318119-4 (housing)	1	For connection to	C(d)
CXA2B	AMP Japan, Ltd.	131807-1 (contact)	2	separate battery	-

- Configuration of A06B-6110-K200#XXSS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2	AMP Japan, Ltd.	1-917807-2 (housing)	1		-
CZ2L		1318986-6 (contact)	4	For motor power	-

- Configuration of A06B-6110-K200#XXS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2	AMD In the Little	1-917807-2 (housing)	1	-	-
CZ2L	AMP Japan, Ltd.	316040-6 (contact)	4	For motor power	-

- Configuration of A06B-6110-K200#XXM

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ1, CZ2	AMB 1	1-917807-2 (housing)	1	For input power	-
CZ2L	AMP Japan, Ltd.	316041-6 (contact)	4	supply and motor	-

- Configuration of A06B-6110-K200#XXL

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2	AMD laware latel	1-917807-2 (housing)	1		-
CZ2L	AMP Japan, Ltd.	1318697-6 (contact)	4	For motor power	-

- Configuration of A06B-6110-K201#XYSS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
07014	AMD laware latel	3-917807-2 (housing)	1	F	-
CZ2M	AMP Japan, Ltd.	1318986-6 (contact)	4	For motor power	-

- Configuration of A06B-6110-K201#XYS

Conn	ector name	Manufacturer	Part number	Quantity	Use	Dimensions
07014	AMD lenge 14d	3-917807-2 (housing)	1		-	
	CZ2M	AMP Japan, Ltd.	316040-6 (contact)	4	For motor power	-

- Configuration of A06B-6110-K201#XYM

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
07014	AMD lanes I tel	3-917807-2 (housing)	1		-
CZ2M	AMP Japan, Ltd.	316041-6 (contact)	4	For motor power	-

- Configuration of A06B-6110-K201#XYL

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
07014	AMD laware 14d	3-917807-2 (housing)	1	F	-
CZ2M	AMP Japan, Ltd.	1318697-6 (contact)	4	For motor power	Dimensions - -

- Configuration of A06B-6110-K202#YYSS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2N	AMD laman Ltd	2-917807-2 (housing)		Far master masser	-
	AMP Japan, Ltd.	1318986-6 (contact)	4	For motor power	_

- Configuration of A06B-6110-K202#YYS

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2N		2-917807-2 (housing)	1	For motor power	-
CZ2N CZ3	AMP Japan, Ltd.	316040-6 (contact)	4	PSMR regenerative resistor	-

- Configuration of A06B-6110-K202#YYM

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CZ2N	AMD laware litel	2-917807-2 (housing)	1		-
	AMP Japan, Ltd.	316041-6 (contact)	4	For motor power	-

- Configuration of A06B-6110-K202#YYL

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
0701	AMD laware 14d	. 2-917807-2 (housing) 1 _	F	-	
CZ2N	AMP Japan, Ltd.	1318697-6 (contact)	4	For motor power	-

- Configuration of A06B-6071-K203

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
		1-178128-3 (housing)	1	For control, single-	C(a)
CX1A	AMP Japan, Ltd.	1-175218-2 (contact)	3	phase 200VAC input	C(c)
CV4	AMP Japan, Ltd.	1-178128-3 (housing)	1	For emergency stop	C(a)
CX4		1-175218-2 (contact)	2	signal	C(c)
CX3	AMP Japan, Ltd.	2-178128-3 (housing)	1	For ON/OFF control	C(b)
		1-175218-2 (contact)	2	for external MCC	C(c)

- Configuration of A06B-6078-K225 (solder type, side cable type)

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
IT.	Hirose Electric	FI40B-2015S (connector)	1	For pulso codor	C(g)
JFx	Co., Ltd.	FI-20-CVS2 (case)	1	For pulse coder	C(h)

- Configuration of A06B-6073-K216

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
CVO	AMD lanen I tel	2-178128-3 (housing)	1	For DB interlock	C(b)
CX8	AMP Japan, Ltd.	1-175218-2 (contact)	2	signals	C(c)
OVO	AMD laws at 14d	1-178128-3 (housing)	1	Fan DD dairing and	C(a)
CX9	AMP Japan, Ltd.	1-175218-2 (contact)	2	For DB driving coil	C(c)

- Configuration of A06B-6078-K222 (solder type, side cable type)

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
JY1 JYA2	Hirose Electric	FI40B-20S (connector)	1	Coo bolow	C(f)
JYA3 JYA4	Co., Ltd.	FI-20-CVS5 (case)	1	See below.	C(i)

Use Mi sensor, MZi sensor, BZi sensor, external one-rotation signal, speedometer, or analog override

- Configuration of A06B-6078-K223 (crimp type, side cable type)

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
JA7A	Hirose Electric	FI30-20S (connector)	1	One halam	C(e)
JA7B	Co., Ltd.	FI-20-CVS2 (case)	1	See below.	C(h)

Use JA7A and JA7B: For communication between CNC and SPM or SPMC

- Configuration of A06B-6078-K224 (solder type, side cable type)

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
JA7A	Hirose Electric	FI40B-20S (connector)	1	Coo balaw	C(f)
JA7B	Co., Ltd.	FI-20-CVS2 (case)	1	See below.	C(h)

Use JY7B and JY7B: For communication between CNC and SPM or SPMC

- Configuration of A06B-6078-K225 (solder type, side cable type)

Connector name	Manufacturer	Part number	Quantity	Use	Dimensions
JYA3	Hirose Electric	FI40B-2015S (connector)	1	Coo bolow	C(g)
JYA4	Co., Ltd.	FI-2015-CVS (case)	1	See below.	C(j)

Use JYA3: For α position coder JYA4: For α position coder S

3.1.3.5 Fuses

The ordering numbers of fuses used with each module (PSM, SVM, SPM) are indicated below.

(1) For control power supply for PSM

Category	Ordering number	Remarks	
		Manufacturer : Daito Communication	
		Apparatus Co., Ltd.	
Optional	A06B-6077-K250	Manufacturer part number : DM20, DM50	
		Specification: 2A/250V, 5A/250V	
		Use: For short-circuit protection of 200VAC	

(2) For control power supply for PSMR

Category	Ordering number	Remarks
		Manufacturer : Daito Communication
		Apparatus Co., Ltd.
Optional	A06B-6081-K250	Manufacturer part number : DM50
		Specification : 5A/250V
		Use: For short-circuit protection of 200VAC

(3) For control power supply for SVM, SPM, and SPMC

Category	Ordering number	Remarks
Optional	A06B-6073-K250	Manufacturer: Daito Communication Apparatus Co., Ltd. Manufacturer part number: LM32C Specification: 3.2A/48V Use: For short-circuit protection of 24-VDC control power supply

NOTE

- 1 When a fuse blows, the control circuit may often be faulty. In such a case, replacing the fuse does not correct the trouble. Replace the module.
- 2 A fuse is installed on the control board of a module, but is not directly accessible for replacement from the outside. When replacing a fuse, extract the control board.

3.1.3.6 Power transformer

When a power supply module of the 200V input series is used in an area where the input voltage is not within the range of 200 to 230VAC, a power transformer is required. The ordering drawing numbers and specifications of power transformers manufactured by FANUC are listed below. When other than a FANUC power transformers is to be prepared by the user, it must satisfy the transformer specifications indicated Section 2.1.

Ordering drawing numbers of power transformers manufactured by FANUC

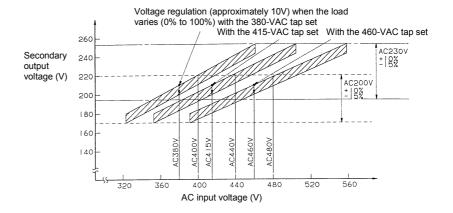
Category	Ordering number	Name	Remarks
	A80L-0024-0006	For PSMR-3i (at 2kw output)	
	A80L-0024-0003	For PSMR-3i (at 3kw output)	
	A06B-6052-J001	For PSMR-5.5 <i>i</i> (at 5.5kw output) PSM-5.5 <i>i</i>	
Optional	A06B-6044-J006	For PSMR-5.5 <i>i</i> (at 7.5kw output) PSM-11 <i>i</i>	Primary 380/415/460VAC
	A06B-6044-J007	PSM-15i	Secondary
	A06B-6044-J010	PSM-26 <i>i</i> , 30 <i>i</i>	200VAC
	A06B-6044-J015	PSM-37 <i>i</i> For PSM-55 <i>i</i> (at 45kw output)	

Specifications of power transformers manufactured by FANUC

Power transformer for PSM

		rower transforme	1		DOM 07:	
Model	PSM-5.5 <i>i</i>	PSM-11 <i>i</i>	PSM-15 <i>i</i>	PSM-26 <i>i</i> , 30 <i>i</i>	PSM-37 <i>i</i> PSM-55 <i>i</i>	
Item					(at 45kw output)	
Ordering drawing number	A06B-6052-J001	A06B-6044-J006	A06B-6044-J007	A06B-6044-J010	A06B-6044-J015	
FANUC drawing number	A80L-0001-0496	A80L-0001-0313	A80L-0001-0314	A80L-0001-0352	A80L-0001-0452	
Rated capacity	10kVA	20kVA	30kVA	45kVA	64kVA	
Rated primary voltage			380/415/460VAC ondary is used as ar % -15%, 50/60±1Hz			
Rated primary current	15A (at 380V) 14A (at 415V) 13A (at 460V)	30A (at 380V) 28A (at 415V) 25A (at 460V)	46A (at 380V) 42A (at 415V) 38A (at 460V)	68A (at 380V) 63A (at 415V) 56A (at 460V)	97A (at 380V) 89A (at 415V) 80A (at 460V)	
Rated secondary voltage	(2071 (01.1001)	200/220/230VAC	307.1(01.1001)	307.1 (41.1001)	
Rated primary current	29A	58A	87A	130A	185A	
Voltage regulation at the secondary		5%				
Voltage deviation at the secondary	±3%					
Connection			Y-Y connection			
Insulation		Class H (maximum allowable temperature : 180°C)				
Ambient temperature		0 to 45°C				
Allowable temperature rise			135deg			
Relative humidity			Max. 95%RH			
Type		Dry ty	pe, natural air coolin	ia type		
Dielectric withstand						
voltage		2	000VAC, for 1 minu	te		
Weight	Max. 61kg	Max. 115kg	Max. 165kg	Max. 260kg	Max. 375kg	
Outline drawing	Fig.8.1.4(a)	Fig.8.1.4(b)	Fig.8.1.4(c)	Fig.8.1.4(d)	Fig.8.1.4(e)	
Connection diagram		R3 0 460 V R1 0 380 V PRI. PRI. (Primary)	SHIELD SEC. (Secondar	230V R4 C 200V O (Neutral point) V S4 O O O O O O O O O O O O O		

Power transformer for PSMR


Model	PSMR-3i	ver transformer for PSI PSMR-3i	PSMR-5.5 <i>i</i>	PSMR-5.5 <i>i</i>	
Item	(at 2kw output)	(at 3kw output)	(at 5.5kw output)	(at 7.5kw output)	
Ordering drawing	(at 2kw output)	(at 3kw output)	(at 5.5kw output)	(at 7.5kw output)	
number	A80L-0024-0006	A80L-0026-0003	A06B-6052-J001	A06B-6044-J006	
FANUC drawing number	A80L-0024-0006	A80L-0026-0003	A80L-0001-0496	A80L-0001-0313	
Rated capacity	3.5kVA	5kVA	10kVA	20kVA	
Rated primary voltage	200/220/230/240V 380/415/460/480/550 ±15%, 50/60	OVAC , Y connection	380/415/460VAC 230VAC(The secondary is used as a autotransformer.) +10% -15%, 50/60±1Hz, 3¢		
Rated primary current	5.3A (at 380V)	7.6A (at 380V)	15A (at 380V) 14A (at 415V) 13A (at 460V)	30A (at 380V) 28A (at 415V) 25A (at 460V)	
Rated secondary voltage	210	VAC	200	VAC	
Rated primary current	9.6A	13.7A	29A	58A	
Voltage regulation at the secondary	2'	%	5	%	
Voltage deviation at the secondary		±3	3%		
Connection	Δ - Δ connection of	r Y-∆ connection	Y-Y connection		
Insulation	Clas (maximum allowable		Class H (maximum allowable temperature: 180°C)		
Ambient temperature	-20 to	55°C	0 to 45°C		
Allowable temperature rise		135	ōdeg		
Thermostat	B co (operating temp		None		
Relative humidity			95%RH		
Туре		Dry type, natura	l air cooling type		
Dielectric withstand voltage	2300VAC, 1	or 1 minute	2000VAC,	for 1 minute	
Weight	Max. 27kg	Max. 36kg	Max. 61kg	Max. 115kg	
Outline drawing	Fig.8.1.5(e)	Fig.8.1.5(e)	Fig.8.1.5(a)	Fig.8.1.5(b)	
Connection diagram	3 0 113V/240V 4 130V 5 130V 7 200V 7 0 0 140V 120V 120V 120V 120V 120V 120V 120V 12	10V 31 31 34 34 37 31 31 31 31 31 31 31 31 31 31 31 31 31	R3 0 460 V SHIEL R2 0 415 V SHIEL R1 0 380 V PRI. T1 0 PRI. T2 T3 0 (Primary) G 0 (Primary)	SEC. V (Neutral point) C SEC. V (Secondary) C G C C C C C C C C C C C C C C C C C	

Connecting a power transformer

Power transformers must be set according to the supply voltage used.

(a) Connection points of power transformers for PSM-5.5*i*, PSM-11*i*, PSM-15*i*, PSM-26*i*, PSM-30*i*, and PSM-37*i*

Supply voltage	Connection points at the primary	Remarks
380 VAC	R - R1, S - S1, T - T1 (380-V tap)	
400 VAC	R - R1, S - S1, T - T1 (380-V tap)	
415 VAC	R - R2, S - S2, T - T2 (415-V tap)	
440 VAC	R - R2, S - S2, T - T2 (415-V tap)	
460 VAC	R - R3, S - S3, T - T3 (460-V tap)	
480 VAC	R - R3, S - S3, T - T3 (460-V tap)	

⚠ CAUTION

- 1 When installing a transformer in a cabinet, be careful to ensure that the transformer does not thermally affect other equipment. For example, separate the transformer from the other equipment.
- 2 When installing a transformer outside the cabinet, make sure that the transformer is not directly exposed to cutting chips or coolant.
- 3 If there is a possibility of the transformer falling, secure the transformer with bolts or similar.

3.1.3.7 Regenerative discharge unit

Whenever a PSMR (resistance regeneration type power supply module) is used, a regenerative discharge unit must be specified. For how to select the regenerative discharge unit, see Subsection 4.4.4.

Category	Name	Ordering number	Remarks
	PSMR-3i	A06B-6089-H510	16Ω/100W (at natural cooling)
		A06B-6089-H500	16Ω/200W (at natural cooling)
	PSMR-3 <i>i</i> , 5.5 <i>i</i>	A06B-6089-H713	16Ω/800W (forced cooling fan
Standard		AU0B-0089-H713	motor is included)
Stariuaru		A06B-6089-H711	8Ω/800W (forced cooling fan
	PSMR-5.5 <i>i</i>	A00B-0009-H7 11	motor is included)
	F SIVIR-5.51	A06D 6090 H712	8Ω/1200W (forced cooling fan
		A06B-6089-H712	motor is included)

See Subsection 8.1.5, "Selecting a Regenerative Discharge Unit" for details of selection.

3.1.3.8 **Cables**

DC link short bar

Category	Ordering number	Applicable terminal-to-terminal distanc		
	A06B-6078-K801	90mm (86mm - 94mm)		
	A06B-6078-K803	64mm (60mm - 68mm)		
Optional	A06B-6078-K840	154mm (150mm - 158mm)		
	A06B-6078-K841	300mm (298mm - 302mm)		
	A06B-6078-K842	150mm (146mm - 154mm)		

See 9.3.1.2 for details.

A06B-6078-K842 is used to connect between a 150-mm wide amplifier (left) and a 300-mm wide amplifier (right).

Cables for connection of modules

Category	Ordering number	Cable length	Applicable amplifier width
	A06B-6110-K801	200mm	150mm width amplifier
0-4:	A06B-6110-K802	150mm	90mm width amplifier
Optional	A06B-6110-K803	100mm	60mm width amplifier
	A06B-6110-K804	400mm	300mm width amplifier

NOTE

- 1 The above table lists the cable for each interface between modules.
 - For connection of CXA2A and CXA2B
- 2 The connection cable for the battery of the absolute pulse coder is not included in the cables shown above. For details, see Subsection 9.3.2.10.

Cables for connection of detectors

Category	Ordering number	Use	Remarks
		For Mi sensor,	
	A06B-6078-K811	MZi sensor or	Cable length : 7m
		BZi sensor	
Optional	A00D 0070 K044		Cable length : 7m
	A06B-6078-K814	For	Connector figure : Straight
	A00D 0070 K04E	Positioncoder	Cable length : 7m
	A06B-6078-K815		Connector figure : Elbow

Cables for FSSB interface

Category	Ordering number	Cable length	Applicable amplifier width
Ontional	A66L-6001-0023#L150R0	150mm	For between CVM and CVM
Optional	A66L-6001-0023#L300R0	300mm	For between SVM and SVM

3.1.3.9 Circuit breaker and magnetic contactor

The circuit breaker and magnetic contactor capacities are determined by the power supply module specifications. The ordering drawing numbers and specifications of the circuit breakers and magnetic contactors are shown below.

When this equipment is to be prepared by the user, it must satisfy the circuit breaker and magnetic contactor specifications indicated below.

Circuit breaker and magnetic contactor specifications

For PSM and PSMR

PSM name	Circuit breaker 1	Circuit breaker 2	Magnetic contactor	Remarks
PSMR-3i	20A		20A	
PSMR-5.5 <i>i</i>	30A		30A	Note 4)
F SIVIN-5.51	50A		50A	Note 5)
PSM-5.5 <i>i</i>	30A		30A	
PSM-11 <i>i</i>	55A	5 A	55A	
PSM-15 <i>i</i>	70A	5A	70A	
PSM-26i	120A		120A	
PSM-30i	140A		140A	
PSM-37i	175A		175A	
PSM-55 <i>i</i>	250A		250A	

NOTE

- 1 For the installation positions of the circuit breakers and magnetic contactor, see Section 1.2.
- 2 Set the rated voltage of circuit breakers 1 and 2 according to the power supply voltage.
- 3 The current and voltage of the operation coil of the magnetic contactor must be within the rating of the internal contact [CX3 (MCC)] of the PSM. For details, see Subsection 9.3.1.5.
- 4 When the PSMR-5.5 is used at a rated output capacity of 5.5 kW
- 5 When the PSMR-5.5 is used at a rated output capacity of 7.5 kW

For PSM-HV

1 01 1 0111 11 1					
PSM name	Circuit	Circuit	Circuit	Magnetic	Remarks
P SIVI Hame	breaker 1	breaker 2	breaker 3	contactor	Kelliaiks
PSM-11HVi	20A			20A	
PSM-18HVi	45A			30A	
PSM-30HVi	75A	2.4	3A	55A	
PSM-45HVi	125A	3A		70A	
PSM-75HVi	200A			120A	
PSM-100HVi	250A			140A	

NOTE

- 1 For the installation positions of the circuit breakers and magnetic contactor, see Section 1.2.
- 2 Set the rated voltage of circuit breakers 1 and 2 according to the power supply voltage.
- 3 The current and voltage of the operation coil of the magnetic contactor must be within the rating of the internal contact [CX3 (MCC)] of the PSM. For details, see Subsection 9.3.1.5.

Recommended parts

Parts manufactured by Fuji Electric Co., Ltd.

PSM name	Circuit breaker 1	Circuit breaker 2	Circuit breaker 3	Magnetic contactor
PSMR-3i	EA53B/30			SC-5-1
PSMR-5.5 <i>i</i> PSM-5.5 <i>i</i>	EA103B/50			SC-1N
PSM-11 <i>i</i>	EA103B/60			SC-2N
PSM-15 <i>i</i>	EA103B/75	EA33/5	-	SC-2SN
PSM-26 <i>i</i>	EA203B/150			SC-4N
PSM-30 <i>i</i>	EA203B/150			SC-5N
PSM-37 <i>i</i>	EA203B/175			SC-7N
PSM-55 <i>i</i>	EA203B/250			SC-8N
PSM-11HVi	EA53B/30			SC-5-1
PSM-18HVi	EA103B/50			SC-1N
PSM-30HVi	EA103B/75	E 4 00 /0	E 4 2 2 / 2	SC-2SN
PSM-45HVi	EA203B/125	EA33/3	EA33/3	SC-4N
PSM-75HVi	EA203B/200			SC-7N
PSM-100HVi	EA203B/250			SC-8N

NOTE

For details, see the brochures available from Fuji Electric Co., Ltd. Note that the specification of the coil voltage of a magnetic contactor may differ depending on the supply voltage and frequency used.

Ordering drawing numbers of circuit breakers

Category	Model	Ordering number	Outline drawing	Circuit breaker specification	Circuit breaker cover specification
	PSMR-3 <i>i</i> PSM-11HV <i>i</i>	A06B-6077-K101	8.1.7(a)	Fuji Electric EA53B/30	Fuji Electric BZ-TB20B-3
	PSMR-5.5 <i>i</i> PSM-5.5 <i>i</i> , 18HV <i>i</i>	A06B-6077-K102	8.1.7(b)	Fuji Electric EA103B/50	Fuji Electric BZ-TB20B-3
	PSM-11 <i>i</i>	A06B-6077-K103	8.1.7(c)	Fuji Electric EA103B/60	Fuji Electric BZ-TB20B-3
	PSM-15 <i>i</i> , 30HV <i>i</i>	A06B-6077-K104	8.1.7(d)	Fuji Electric EA103B/75	Fuji Electric BZ-TB20B-3
Optional	PSM-45HVi	A06B-6077-K108	8.1.7(e)	Fuji Electric EA203B/125	Fuji Electric BZ-TB40B
Optional	PSM-26 <i>i</i> , 30 <i>i</i>	A06B-6077-K105	8.1.7(f)	Fuji Electric EA203B/150	Fuji Electric BZ-TB40B
	PSM-37 <i>i</i>	A06B-6077-K110	8.1.7(g)	Fuji Electric EA203B/175	Fuji Electric BZ-TB40B
	PSM-75HVi	A06B-6077-K109	8.1.7(h)	Fuji Electric EA203B/225	Fuji Electric BZ-TB40B
	PSM-55 <i>i</i> , 100HV <i>i</i>	A06B-6077-K111	8.1.7(i)	Fuji Electric EA403B/250	Fuji Electric BZ-TB60B
	For control power	A06B-6077-K106	8.1.7(j)	Fuji Electric EA33/5	Fuji Electric BZ-TB10B-503

Ordering drawing numbers of magnetic contactors

<u> </u>	j arawing nar				
Category	Model	Ordering number	Outline drawing	Magnetic contactor specification	Magnetic contactor cover specification
	PSMR-3 <i>i</i> PSM-11HV <i>i</i>	A06B-6077-K121	8.1.8(a)	Fuji Electric SC-5-1	Fuji Electric SZ-JC4
	PSMR-5.5 <i>i</i> PSM-5.5 <i>i</i> , 18HV <i>i</i>	A06B-6077-K122	8.1.8(b)	Fuji Electric SC-1N	Fuji Electric SZ-1N/T
0 - (1 1	PSM-11 <i>i</i> , 30HV <i>i</i>	A06B-6077-K123	8.1.8(b)	Fuji Electric SC-2N	Fuji Electric SZ-1N/T
Optional	PSM-15 <i>i</i>	A06B-6077-K124	8.1.8(c)	Fuji Electric SC-2SN	Fuji Electric SZ-2SN/T
	PSM-26 <i>i</i> , 45HV <i>i</i>	A06B-6077-K125	8.1.8(d)	Fuji Electric SC-4N	Fuji Electric SZ-4N/T
	PSM-30 <i>i</i>	A06B-6077-K126	8.1.8(e)	Fuji Electric SC-5N	Fuji Electric Z-5N/T
	PSM-37 <i>i</i> , 75HV <i>i</i>	A06B-6077-K128	8.1.8(g)	Fuji Electric SC-7N	Fuji Electric SZ-5N/T
ı	PSM-55i, 100HVi	A06B-6077-K127	8.1.8(f)	Fuji Electric SC-8N	Fuji Electric SZ-8N/T

NOTE

The coil voltage specification of the magnetic contactor is 200VAC.

3.1.3.10 Lightning surge protector

To protect equipment from surge voltages caused by lightning, install a lightning surge protector between lines and between a line and ground. For how to install protectors, see Appendix A.

Lightning surge protector specifications

Category	Ordering number	Specification	Outline drawing	Remarks
	A06B-6077-K142	For line-to-line installation: RAV-781BYZ-2 For line-to-ground installation: RAV-781BXZ-4	8.1.9(a)	Manufactured by Okaya Electric Industries Co., Ltd. For 200VAC line TÜV approved products
Optional	A06B-6077-K143	For line-to-line installation : RAV-152BYZ-2A For line-to-ground installation : RAV-801BXZ-4	8.1.9(b)	Manufactured by Okaya Electric Industries Co., Ltd. For 400VAC line TÜV approved products
	A06B-6077-K144	Integration type for line-to-line installation/line-to-ground installation: RCM-601BUZ-4	8.1.9(c)	Manufactured by Okaya Electric Industries Co., Ltd. For 200VAC line TÜV approved products

3.1.3.11 Noise filter

A noise filter must be installed in the PSM input section to satisfy the requirements of the EMC Directives which are now being enforced in the EU countries.

Category	Model	Ordering number	Outline drawing	Specification
	PSMR-3 <i>i</i> PSM-5.5 <i>i</i> , 11HV <i>i</i>	A06B-6077-K155	8.1.10	Manufactured by Okaya Electric Industries Co., Ltd. 3SUP-HL30-ER-6
Ontinual	PSMR-5.5 <i>i</i> PSM-11 <i>i</i> ,15 <i>i</i> PSM-18HV <i>i</i> ,30HV <i>i</i>	A06B-6077-K156	8.1.10	Manufactured by Okaya Electric Industries Co., Ltd. 3SUP-HL75-ER-6
Optional	PSM-26 <i>i</i> , 30 <i>i</i> PSM-45HV <i>i</i>	A06B-6077-K157	8.1.10	Manufactured by Okaya Electric Industries Co., Ltd. 3SUP-HL150-ER-6
	PSM-37 <i>i</i> PSM-75HV <i>i</i>	A06B-6077-K158	8.1.10	Manufactured by Okaya Electric Industries Co., Ltd. 3SUP-HL200-ER-6

3.1.3.12 Sensors for spindle

α Positioncoder

Category	Name	Ordering number	Remarks				
Ontional	α Positioncoder	A860-0309-T302	☐68, 10,000min ⁻¹				
Optional	Connector kit	A06B-6088-K211	Straight type				

α Positioncoder S (analog output type)

Category	Name	Ordering number	Remarks
Ontional	α Positioncoder S	A860-0309-T352	☐68, 10,000min ⁻¹
Optional	Connector kit	A06B-6088-K211	Straight type

BZi sensor

Category	Name	Ordering number	Remarks
	BZi sensor 128	A860-2120-T201	128 teeth / 20,000min ⁻¹
	BZi sensor 128H	A860-2120-T211	128 teeth / 50,000min ⁻¹
Ontional	BZi sensor 256	A860-2120-T401	256 teeth / 15,000min ⁻¹
Optional	BZi sensor 256H	A860-2120-T411	256 teeth / 30,000min ⁻¹
	BZi sensor 384	A860-2120-T511	384 teeth / 15,000min ⁻¹
	BZi sensor 512	A860-2120-T611	512 teeth / 10,000min ⁻¹

CZi sensor

Category	Name	Ordering number	Remarks
	CZi sensor 512	A860-2140-T411	512 teeth / 15,000min ⁻¹
Optional	CZi sensor 768	A860-2140-T511	768 teeth / 10,000min ⁻¹
	CZi sensor 1024	A860-2140-T611	1024 teeth / 8,000min ⁻¹

3.1.3.13 Power line switch unit

Spindle switch control (Y/Y switch type)

Output switch control (Y/Y switch type, Y/Δ switch type)

Category	Name	Ordering number	Remarks	
0.15	Y/Y switch type	A06B-6078-K034	SPM-15i or lower model	
	Y/∆ switch type	A06B-6078-K035	SFIVI-131 OF IOWEL MIDGE	
Optional	Y/Y switch type	A06B-6078-K036	CDM 20: or lower model	
	Y/Δ switch type	A06B-6078-K037	SPM-30i or lower model	

3.1.3.14 Battery for absolute Pulsecoder

For connection of a battery for an absolute Pulsecoder, two methods are available. For each method, options are available.

NOTE

- 1 A battery needs to be maintained periodically. So, [connection type 1] is recommended because this type uses a battery (consisting of four size D alkaline cells) easily obtainable from the market.
- 2 A built-in battery used with [connection type 2] is not available on the market, but needs to be purchased from FANUC. So, it is recommended to purchase spare built-in batteries.

[Connection type 1]

Power is fed from one battery to multiple SVMs. (See Subsection 9.3.2.10.)

Category	Ordering number	Name	Remarks		
	A06B-6050-K061	Battery			
Ontional	A06B-6050-K060	Battery case	Four pieces of		
Optional	AOCD C440 KO44	Battery connection	size D battery		
	A06B-6110-K211	connector			

[Connection type 2]

A battery is built into each SVM. (See Subsection 9.3.2.10.)

Category	Ordering number	Name	Remarks
	A06B-6073-K001	Puilt in botton	One piece of
	AU0B-0073-NUU1	Built-in battery	lithium battery
Ontional	A06B-6114-K500	Battery case	
Optional			SVM1-360i
	A06B-6114-K501	Battery case	SVM1-180HV <i>i</i>
		-	SVM1-360HV <i>i</i>

4

HOW TO SELECT THE MODULE

4.1 HOW TO SELECT THE SERVO AMPLIFIER MODULE (SVM)

First select a servo motor, based on the machine specifications. Then, select an appropriate servo amplifier module for the selected servo motor.

Table 4.1(a) Specification

		· · · (w) • p•••														
No	Specification Number of connected axes Input voltage			Interface with CNC												
1	A06B-6114-H1xx	1	200V	FSSB												
2	A06B-6114-H2xx	2	200V	FSSB												
3	A06B-6114-H3xx	3	200V	FSSB												
4	A06B-6124-H1xx	1	400V	FSSB												
5	A06B-6124-H2xx	2	400V	FSSB												

Table 4.1(b) Names

1		Table 4. I(b) Haines	, I	ı
200-V input	200-V input	200-V input	400-V input	400-V input
series for 1 axis	series for 2 axes	series for 3 axes	series for 1 axis	series for 2 axes
SVM1-20 <i>i</i>	SVM2-4/4 <i>i</i>	SVM3-4/4/4i	SVM1-10HVi	SVM2-10/10HV <i>i</i>
SVM1-40 <i>i</i>	SVM2-20/20i	SVM3-20/20/20 <i>i</i>	SVM1-20HVi	SVM2-20/20HVi
SVM1-80 <i>i</i>	SVM2-20/40i	SVM3-20/20/40i	SVM1-40HVi	SVM2-20/40HVi
SVM1-160 <i>i</i>	SVM2-40/40i		SVM1-80HVi	SVM2-40/40HVi
SVM1-360 <i>i</i>	SVM2-40/80i		SVM1-180HV <i>i</i>	SVM2-40/80HVi
	SVM2-80/80i		SVM1-360HVi	SVM2-80/80HVi
	SVM2-80/160i			_
	SVM2-160/160i			

4.1.1 200-V Input Series

		- 1	0.2	0.3	0.4	0.5	1	2	4		8			12		22			30	40	$\overline{}$
		-	U.E	0.0	5.7	0.0					Ľ										α40
	αi						α1 /5000i (20A)	α2 /5000i (20A)		α4 /4000i (40A)		α8 /3000i (40A)			α12 /3000i (80A)		α22 /3000i (80A)		α30 /3000i (160A)	α40 /3000i (160A)	/3000i FAN (160A)
Motor	αis	Axis						α2 /5000is (20A)	α4 /5000is (20A)				α8 /4000is (80A)		α12 /4000is (80A)			α22 /4000is (160A)	α30 /4000 <i>i</i> s (160A)	α40 /4000is (160A)	
	βis		β0.2 /5000is (4A)	β0.3 /5000is (4A)	β0.4 /5000is (20A)	β0.5 /5000is (20A)	β1 /5000is (20A)	β2 /4000is (20A)	β4 /4000is (20A)		β8 /3000is (20A)			β12 /3000is (40A)		β22 /2000is (40A)					
	SVM1-20 i	٠			0	0	0	0	0		0										
SVM1	SVM1-40 i	- 1								0		0		0		0					
1	SVM1-80 i	-											0		0		0				
	SVM1-160 i	\neg																0	0	0	0
	SVM1-360 i	-																			
	SVM1-360 i X2	$\overline{}$																			
	SVM2-4/4 i	L	0	0																	
SVM2		М	0	0																	
	SVM2-20/20 i	_			0	0	0	0	0		0										
		М			0	0	0	0	0		0										
	SVM2-20/40 i	L			0	0	0	0	0		0										
		М								0		0		0		0					
	SVM2-40/40 i	L								0		0		0		0					
		М								0		0		0		0					
	SVM2-40/80 i									0		0		0		0					
		м											0		0		0				
	SVM2-80/80 i	_											0		0		0				
		м											0		0		0				
1	SVM2-80/160 i	L											0		0		ō				
		м																0	0	0	
	SVM2-160/160 i	L																0	0	0	
1		м																-	0	0	
\vdash	SVM3-4/4/4 i	<u></u>	0	0							<u> </u>										
svмз		M	ō	ō																	
		N	ō	ō																	\vdash
	SVM3-20/20/20 i	"			0	0	0	0	0		0										-
1		м			Ö	ō	Ö	ō	0		ö										
		N			ō	ō	ō	ō	0		ō										
1	SVM3-20/20/40 i	ï			0	0	0	Ö	0		Ö										
	212 20/20/10 /	М			0	Ö	Ö	ō	0		Ö										
		N						Ť		0	١Ť	0		0		0					-
-										<u> </u>											

			50	50	100	200	300	500	
Motor	αis	Axis	α50 /3000is (360A)	α50 /3000is FAN (360A)	α100 /2500is (360A)	α200 /2500is (360A)	α300 /2000is (360AX2)	α500 /2000is (360AX2)	
SVM1	SVM1-360 i	-	0	0	0	0			
	SVM1-360 i X2	-					0	0	

4.1.2 400-V Input Series

_	, ,		2	3	4	8		12	22		30	40	50	50	100	200	300	500	1000
Motor	α(HV)i	Axis			α4 /4000HVi (20A)	α8 /3000HVi (20A)		α12 /3000HVi (40A)	α22 /3000HVi (40A)										
	α(HV)/s		α2 /5000HVis (10A)	α4 /5000HVis (10A)			α8 /4000HVis (40A)	α12 /4000HVis (40A)		α22 /4000HVis (80A)	α30 /4000HVis (80A)	α40 /4000HVis (80A)	α50 /3000HVis (180A)	α50 /3000HVis FAN (180A)	α100 /2500HVis (180A)	α200 /2500HVis (180A)	α300 /2000HVis (360A)	α500 /2000HVis (360A)	α1000 /2000HVis (360A x 2)
	SVM1-10HV i	-	0	0															
SVM1	SVM1-20HV i	-			0	0													
	SVM1-40HV i	-					0	0	0										
	SVM1-80HV i	-								0	0	0							
	SVM1-180HV i	-											0	0	0	0			
	SVM1-360HV i	-															0	0	
	SVM1-360HV I x 2	-																	0
	SVM2-10/10HV i	L	0	0															
SVM2		М	0	0															
	SVM2-20/20HV i	L			0	0													
		М			0	0													
	SVM2-20/40HV i	L			0	0													
		М					0	0	0										
	SVM2-40/40HV i	L					0	0	0										
1		М					0	0	0										
1	SVM2-40/80HV i	L					0	0	0										
1		М								0	0	0							
1	SVM2-80/80HV i	L								0	0	0							
		М								0	0	0							

4.2 HOW TO SELECT THE SPINDLE AMPLIFIER MODULE (SPM)

First, select a spindle motor, based on the machine specification. Then, select an appropriate spindle amplifier module for the selected spindle motor.

Spindle amplifier modules and standard motors that can be used together are shown below. When using a built-in motor or a motor with special specifications, refer to relevant specifications, and select a spindle amplifier module accordingly.

Table 4.2(a) Specification

No	Ordering number	Input voltage	Remarks		
1	A06B-6111-Hxxx#H550	200V	TYPE A		
2	A06B-6112-Hxxx#H550	200V	TYPE B		
3	A06B-6116-Hxxx#H560	200V			
4	A06B-6121-Hxxx#H550	400V	TYPE A		
5	A06B-6122-Hxxx#H550	400V	TYPE B		

Table 4.2(b) Specification

200-V input series	400-V input series	Spindle amplifier for αCi (200-V input)
SPM-2.2 <i>i</i>	SPM-5.5HVi	SPMC-2.2i
SPM-5.5 <i>i</i>	SPM-11HVi	SPMC-5.5 <i>i</i>
SPM-11 <i>i</i>	SPM-15HVi	SPMC-11i
SPM-15 <i>i</i>	SPM-30HVi	SPMC-15i
SPM-22i	SPM-45HVi	SPMC-22i
SPM-26 <i>i</i>	SPM-75HVi	
SPM-30 <i>i</i>	SPM-100HVi	
SPM-45 <i>i</i>		
SPM-55 <i>i</i>		

4.2.1 200-V Input Series

	ontinuous ated output	0.55	1.1	1.	.5	2	.2	3	.7	5.5	7	.5	9	1	1	15	18	3.5	2:	2	30	37	45
	αί	α0.5 /10000 <i>i</i>	α1 /10000 <i>i</i>	α1.5 /10000 <i>i</i>		α2 /10000 <i>i</i>		α3 /10000 <i>i</i>		α6 /10000 <i>i</i>	α8 /8000 <i>i</i>			α12 /7000 <i>i</i>		α15 /7000i	a.18 /7000i		α22 /7000i		a30 /6000i	α40 /6000i	α50 /4500i
ē				α1 /15000 <i>i</i>	α1.5 /15000i		α2 /15000 <i>i</i>		α3 /12000 <i>i</i>	α6 /12000 <i>i</i>	α8 /10000 <i>i</i>			α12 /10000 <i>i</i>		a.15 /10000 <i>i</i>	a.18 /10000 <i>i</i>		α22 /10000 <i>i</i>				
Motor	αi _P									α12/ 6000iթ		α15/ 6000i _P	α18/ 6000i _P		α22/ 6000i _P	α30/ 6000i _P		α40/ 6000i _P	α50/ 6000i _P	α60/ 4500iթ			
										α12/ 8000iթ		α15/ 8000iթ	α18/ 8000iթ		α22/ 8000iթ								
Г	SPM-2.2i	0	0																				
l	SPM-5.5i			0		0		0															
l	SPM-11 <i>i</i>								0	0	0												
L	SPM-15i				0							0	0	0									
S	SPM-22i						0								0	0	0						
ľ																		0	0				
'' '	SPM-30i																			0			
l	SPM-45i																				0	0	
ı	SPM-55i																						0

4.2.2 400-V Input Series

	ontinuous rated utput	0.55	1.1	1.5	2.2	3.7	5.5	7	.5	11	15	18.5	22	3	10	37	60	100
Motor	αi	α0.5 /10000 HV <i>i</i>	α1 /10000 HV <i>i</i>	α1.5 /10000 HV <i>i</i>	α2 /10000 HV <i>i</i>	α3 /10000 HV <i>i</i>	α6 /10000 HV <i>i</i>	α8 /8000 HV <i>i</i>			α15 /7000 HV <i>i</i>		α22 /7000 HV <i>i</i>	α30 /6000 HV <i>i</i>		α40 /6000 HVi	α60 /4500 HVi	α100 /4000 HVi
2	αi_{P}								αP15/ 6000 HVi _P	αP22/ 6000 HVi _P		αP40/ 6000 HVi _P	αP50/ 6000 HVi _P		αP60/ 4500 HVi _P			
	SPM-5.5HVi	0	0	0	0	0												
s	SPM-11HVi						0	0										
_P	SPM-15HVi								0									
١٢	SPM-30HVi									0	0	0	0		0			
М	SPM-45HVi													0		0		
1	SPM-75HVi																0	0
	SPM-100HVi							·										

4.3 HOW TO SELECT THE POWER SUPPLY MODULE (PSM)

Calculate the required output rating, maximum output, and peak output capabilities required of a power supply module (PSM) according to the following calculation method, and select the PSM that meets these requirements.

Table 4.2(a) 200-V input

Model Item	PSM-5.5 <i>i</i>	PSM-11 <i>i</i>	PSM-15 <i>i</i>	PSM-26 <i>i</i>	PSM-30 <i>i</i>	PSM-37 <i>i</i>	PSM-55 <i>i</i>
Rated output capability	5.5kW	11kW	15kW	26kW	30kW	37kW	55kW
Maximum output capability	11kW	20kW	28kW	40kW	53kW	70kW	104kW
Peak output capability	20kW	34kW	46kW	66kW	77kW	96kW	174kW

Table 4.2(a) 400-V input

			(w) .00 tpt	• •		
Model	PSM-	PSM-	PSM-	PSM-	PSM-	PSM-
Item	11HV <i>i</i>	18HV <i>i</i>	30HV <i>i</i>	45HV <i>i</i>	75HV <i>i</i>	100HV <i>i</i>
Rated output capability	11kW	18kW	30kW	45kW	75kW	100kW
Maximum output capability	20kW	35kW	60kW	85kW	120kW	150kW
Peak output capability	34kW	58kW	87kW	124kW	175kW	200kW

4.3.1 How to Obtain the Power Supply Module Rated Output Capability

Select a power supply module with a rated output not less than the sum of the total continuous rated output of the spindle motors times 1.15, plus the total continuous rated output of the servo motors times 0.6.

Rated output capacity of power supply module

 $\geq \Sigma$ Continuous rated output of spindle motor \times 1.15

+ Σ Continuous rated output of servo motor \times 0.6

When only spindle amplifier module is to be connected to a power supply module, select the power supply module so that the 30-minute rated output of the spindle motor does not exceed the rated output capacity of the power supply module.

Rated output capacity of a power supply module \geq 30-minute rated output of a spindle motor

Table 4.3 lists the rated output capacities of the power supply modules. Tables 4.5.1(a) to (c) list the continuous rated outputs of the servo motors. Tables 4.5.2(a) and (b) list the continuous rated outputs or 30-minute rated output of the spindle motors.

4.3.2 How to Obtain the Power Supply Module Maximum Output Capability

Select the power supply module whose maximum output capability will not be exceeded by the total of the sum of the maximum acceleration spindle motor outputs and the sum of the maximum acceleration outputs of the servo motors that are accelerated simultaneously and whose acceleration time exceeds 0.3 seconds.

Maximum output of power supply module

- $\geq \Sigma$ Accelerating maximum output of spindle motor +
- Σ Maximum acceleration-time outputs of the servo motors whose acceleration time exceeds **0.3 seconds**.

(on simultaneous acceleration/deceleration axis)

Table 4.3 lists the maximum output capacities of the power supply modules. Tables 4.5.1(a) to (c) list the accelerating maximum outputs of the servo motors. Tables 4.5.2(a) and (b) list the accelerating maximum outputs of the spindle motors.

4.3.3 How to Obtain the Power Supply Module Peak Maximum Output Capability

Select the power supply module whose peak output capability will not be exceeded by the total of the sum of the maximum acceleration spindle motor outputs and the sum of the maximum acceleration outputs of the servo motors that are accelerated simultaneously.

Power supply module peak maximum output capability

- $\geq \Sigma$ spindle motor maximum acceleration outputs
- + Σservo motor maximum acceleration outputs

(on simultaneously accelerated axes)

Table 4.3 lists the peak output capacities of the power supply modules. Tables 4.5.1(a) to (c) list the continuous rated outputs of the servo motors. Tables 4.5.2(a) and (b) list the according maximum outputs of the spindle motors.

4.3.4 Number of Connected Servo Amplifier Modules and Spindle Amplifier Modules

Multiple servo amplifier modules and spindle amplifier modules can be connected to a single power supply module, provided the above output capacity conditions are satisfied.

The table below lists the maximum number of modules which can be connected.

SPM	SVM								
SPMC	SVM1	SVM2	SVM3						
	6								
2		4							
			3						

Table 4.3.4 Maximum number of modules that can be connected

⚠ CAUTION

- 1 When different types of servo amplifier modules are connected, the following condition must be satisfied:
 - $6 \ge \text{Number of SVM1s} \times 1 + \text{Number of VM2s} \times 1.5$
 - $6 \ge$ Number of SVM1s \times 1 + Number of SVM3s \times 2 The maximum number of servo amplifier modules that can be connected is the same when a spindle amplifier module is not used.
- 2 No SVM3 is available in the 400-V input series.

4.3.5 Notes on αHVi Series PSM Selection

When the αHVi series is used, a restriction is imposed on the combination with an SPM.

- (1) For SPM-30HV*i*, select PSM-30HV*i* or a higher model.
- (2) For SPM-45HV*i*, select PSM-45HV*i* or a higher model.
- (3) For SPM-75HVi and SPM-100HVi, select PSM-75HVi or a higher model.

4.4 HOW TO SELECT THE POWER SUPPLY MODULE (PSMR)

Select a power supply module that satisfies the rated output capacity and maximum output capacity, calculated as follows:

Table 4.4 200-V input

Model	PSMR-3i	PSMR-5.5 <i>i</i>
Rated output capability	3kW	7.5kW
Maximum output capability	12kW	20kW

NOTE

No specification is defined for the peak output capability of the PSMRs.

4.4.1 How to Obtain the Power Supply Module Rated Output Capability

Select a power supply module with a rated output not less than the sum of the total continuous rated output of the spindle motors times 1.15, plus the total continuous rated output of the servo motors times 0.6.

Rated output capacity of power supply module

 $\geq \Sigma$ Continuous rated output of spindle motor \times 1.15

+ Σ Continuous rated output of servo motor \times 0.6

When only spindle amplifier module is to be connected to a power supply module, select the power supply module so that the 30-minute rated output of the spindle motor does not exceed the rated output capacity of the power supply module.

Rated output capacity of a power supply module \geq 30-minute rated output of a spindle motor

Table 4.3 lists the rated output capacities of the power supply modules. Tables 4.5.1(a) to (c) list the continuous rated outputs of the servo motors. Tables 4.5.2(a) and (b) list the continuous rated outputs or 30-minute rated output of the spindle motors.

4.4.2 How to Obtain the Power Supply Module Maximum Output Capability

Select the power supply module whose maximum output capability will not be exceeded by the total of the sum of the maximum acceleration spindle motor outputs and the sum of the maximum acceleration outputs of the servo motors that are accelerated simultaneously and whose acceleration time exceeds 0.3 seconds.

Maximum output of power supply module

- $\geq \Sigma$ Accelerating maximum output of spindle motor +
- Σ Maximum acceleration-time outputs of the servo motors whose acceleration time exceeds **0.3 seconds**.

(on simultaneous acceleration/deceleration axis)

Table 4.4 lists the maximum output capacities of the power supply modules. Tables 4.5.1(a) to (c) list the accelerating maximum outputs of the servo motors. Tables 4.5.2(a) and (b) list the accelerating maximum outputs of the spindle motors.

4.4.3 Number of Connected Servo Amplifier Modules and Spindle Amplifier Modules

Multiple servo amplifier modules and spindle amplifier modules can be connected to a single power supply module, provided the above output capacity conditions are satisfied.

The table below lists the maximum number of modules which can be connected.

Table 4.4.3 Maximum number of modules that can be connected

SPM		SVM	
SPIVI	SVM1	SVM2	SVM3
	4		
	1	2	
0	2	1	
		1	1
	2		
1	1	1	
			1

4.4.4 Selecting a Regenerative Discharge Unit

In the power supply module (PSMR), the regenerative discharge unit (regenerative resistor) dissipates the energy generated during deceleration of a motor (regeneration).

The amount of heat generated by the regenerative discharge unit varies with the motor type, rotation speed, load inertia, and continuous repetition cycle (duty cycle). Use a regenerative discharge unit of a suitable capacity for the load and operation cycle time.

How to Calculate the Required Capacity for the Regenerative Discharge Unit

Select a regenerative discharge unit having a capacity greater than or equal to the total rotation energy of all the servo motors and the spindle motor.

How to calculate the rotation energy is described in below.

Capacity of regenerative discharge unit $\geq \Sigma$ Rotation energy of motor

See Table 4.4.4 for details of the capacity of the regenerative discharge unit.

(1) Servo motor (for horizontal movement)

Amount of regenerative discharge (power [W]) when rapid traverse acceleration/deceleration is performed once every F sec

(a) SI unit system

$$w = \frac{1}{F} \times (5.48 \times 10^{-3} \cdot (Jm + JL) \cdot Vm^2 - 5.23 \times 10^{-2} \cdot ta \cdot Vm \cdot TL) [W]$$

F: Frequency of rapid traverse acceleration/deceleration [sec/number of times]

Unless otherwise specified, rapid traverse acceleration/deceleration is assumed to be performed about once every 5 seconds.

Jm: Rotor inertia of the motor [kg·m²]

JL: Motor-shaft-converted inertia of the load [kg·m²]

Vm : Motor speed at rapid traverse [min⁻¹]

ta: Rapid traverse acceleration/deceleration time [sec]

TL : Machine frictional torque (motor-converted value) $[N \cdot m]$

(b) CGS unit system

$$w = \frac{1}{F} \times (5.37 \times 10^{-4} \cdot (Jm + JL) \cdot Vm^2 - 5.13 \times 10^{-3} \cdot ta \cdot Vm \cdot TL) [W]$$

F: Rapid traverse acceleration/deceleration cycle [s/number of times]

About once every five seconds unless otherwise specified

Jm : Rotor inertia of motor [kg·cm·s²]

JL: Load inertia (value for motor shaft) [kg·cm·s²]

Vm : Motor rotation speed for rapid traverse [min⁻¹]

ta: Rapid traverse acceleration/deceleration time [s]

TL: Friction torque of machine (value for motor) [kg·cm]

(2) Servo motor (for vertical movement)

The amount of regenerative discharge (power [W]) when the operation duty for downward rapid traverse is D(%)

(a) SI unit system

$$w = 1.047 \times 10^{-1} \cdot Th \cdot Vm \times \frac{D}{100} [W]$$

Th: Upward torque that the motor applies at the time of downward rapid traverse [N·m]

Vm : Motor speed at rapid traverse [min⁻¹]

D: Operation duty [%] for downward rapid traverse D is set to 50% maximum. Usually, D is less than 50%.

(b) CGS unit system

$$w = 1.026 \times 10^{-2} \cdot Th \cdot Vm \times \frac{D}{100} [W]$$

Th: Upward torque of motor during lowering by rapid traverse [kg·cm]

Vm: Motor rotation speed for rapid traverse [min⁻¹]

D: Downward operation duty during lowering by rapid traverse [%]

D is a maximum of 50% and usually less.

(3) Spindle motor

(a) SI unit system

$$w = 5.48 \times 10^{-3} \cdot (Jm + JL) \cdot N^2 \times \frac{1}{Dt} [W]$$

 \mbox{Jm} : Rotor inertia of the motor $[\mbox{kg}{\cdot}\mbox{m}^2]$

JL: Motor-shaft-converted inertia of the load [kg·m²]

N: Motor speed [min⁻¹]

Dt: Duty cycle [sec]

(b) CGS unit system

$$w = 5.37 \times 10^{-2} \cdot (Jm + JL) \cdot N^2 \times \frac{1}{Dt} [W]$$

Jm: Rotor inertia of motor [kg·cm·s²]

JL : Load inertia (value for motor shaft) [kg·cm·s 2]

N: Motor rotation speed [min⁻¹]

Dt: Duty cycle [s]

Cautions for selecting a regenerative discharge unit

Table.4.4.4 Required capacity for the Regenerative Discharge unit

Dogoporativo		Capacity		
Regenerative discharge unit	1	Nind speed	Remarks	
discharge unit	0m/sec 2m/sec			
A06B-6089-H510	100W	250W	-	Resistance : 16Ω
A06B-6089-H500	200W	400W	600W	Resistance : 16Ω
A06B-6089-H713	-	-	800W	Forced cooling fan motor is included Resistance : 16Ω
A06B-6089-H711	-	-	800W	Forced cooling fan motor is included Resistance : 8Ω
A06B-6089-H712	-	-	1200W	Forced cooling fan motor is included Resistance : 8Ω

NOTE

- 1 The "maximum output at acceleration" value is provided only to aid in the selection of a power supply module; this is not a guaranteed value.
- 2 When a spindle motor with a maximum output of 5kW or more is used, the resistance of the regenerative discharge unit must be 8Ω . If a regenerative discharge unit with a resistance of 16Ω is used for a spindle motor with a maximum output of 5 kW or more , a regeneration excess alarm (alarm No. 08) may be generated in the PSMR when the spindle is decelerated.

4.5 LIST OF MOTOR OUTPUT CAPACITIES FOR POWER **SUPPLY SELECTION**

4.5.1 Servo Motor Continuous Rated Outputs and Maximum Outputs at Acceleration

This section gives the output data for servo motor. These data are used for selecting a power supply module of the $\alpha is/\alpha i$ series servo amplifier. See FANUC AC SERVO MOTOR $\alpha is/\alpha i$ series DESCRIPTIONS (B-65262EN) for details.

(1) Servo motor $\alpha is/\alpha i$ series (200-V input series)

Table 4.5.1(a)

Motor model	Continuous rated	Maximum output at
Motor model	output	acceleration
α1/5000 <i>i</i>	0.50kW	2.0kW
α2/5000 <i>i</i>	0.75kW	2.9kW
α4/4000 <i>i</i>	1.4kW	4.5kW
α8/3000 <i>i</i>	1.6kW	5.7kW
α12/3000 <i>i</i>	3.0kW	7.6kW
α22/3000 <i>i</i>	4.0kW	9.6kW
α30/3000 <i>i</i>	7.0kW	21kW
α40/3000 <i>i</i>	6.0kW	18kW
α 40/3000 i with fan	9.0kW	18kW
α2/5000 <i>i</i> s	0.75kW	2.8kW
α4/5000 <i>i</i> s	1.0kW	3.1kW
α8/4000 <i>i</i> s	2.5kW	8.0kW
α12/4000 <i>i</i> s	2.7kW	12kW
α22/4000 <i>i</i> s	4.5kW	17kW
α30/4000 <i>i</i> s	5.5kW	22kW
α40/4000 <i>i</i> s	5.5kW	24kW
α50/3000 <i>i</i> s	5kW	39kW
α 50/3000 i s with fan	14kW	39kW
α100/2500 <i>i</i> s	11kW	38kW
α200/2500 <i>i</i> s	20kW	48kW
α300/2000 <i>i</i> s	37kW	96kW
α500/2000 <i>i</i> s	50kW	104kW

NOTE

(2) Servo motor βis series (200-V input series)

Table 4.5.1(b)

Motor model	Continuous rated output	Maximum output at acceleration
β0.2/5000 <i>i</i> s	0.05kW	0.24kW
β0.3/5000 <i>i</i> s	0.1kW	0.4kW
β0.4/5000 <i>i</i> s	0.13kW	0.5kW
β0.5/5000 <i>i</i> s	0.2kW	1.1kW
β1/5000 <i>i</i> s	0.4kW	1.7kW
β2/4000 <i>i</i> s	0.5kW	2.3kW
β4/4000 <i>i</i> s	0.75kW	2.5kW
β8/3000 <i>i</i> s	1.2kW	2.8kW
β12/3000 <i>i</i> s	1.8kW	5.4kW
β22/2000 <i>i</i> s	2.5kW	5.2kW

NOTE

There is a possibility to change the data because of under evaluation.

(3) Servo motor $\alpha(HV)is/\alpha(HV)i$ series (400-V input series)

Table 4.5.1(c)

Motor model	Continuous rated output	Maximum output at acceleration
α4/4000HV <i>i</i>	1.4kW	4.5kW
α8/3000HV <i>i</i>	1.6kW	5.7kW
α12/3000HV <i>i</i>	3.0kW	7.5kW
α22/3000HVi	4.0kW	9.6kW
α2/5000HV <i>i</i> s	0.75kW	2.8kW
α4/5000HV <i>i</i> s	1.0kW	3.1kW
α8/4000HV <i>i</i> s	2.3kW	8.0kW
α12/4000HV <i>i</i> s	2.5kW	12kW
α22/4000HV <i>i</i> s	4.5kW	20kW
α30/4000HV <i>i</i> s	5.5kW	22kW
α40/4000HV <i>i</i> s	5.5kW	24kW
α50/3000HV <i>i</i> s	5kW	39kW
α50/3000HVis with fan	14kW	39kW
α100/2500HV <i>i</i> s	11kW	38kW
α200/2500HV <i>i</i> s	20kW	48kW
α300/2500HV <i>i</i> s	37kW	96kW
α500/2000HV <i>i</i> s	50kW	104kW
α1000/2000HV <i>i</i> s	100kW	189kW

NOTE

4.5.2 Spindle Motor Continuous Rated Outputs and Maximum Outputs at Acceleration

This section gives the output data for spindle motor. These data are used for selecting a power supply module of the αi series servo amplifier. See FANUC AC SPINDLE MOTOR αi series DESCRIPTIONS (B-65272EN) for details.

(1) Spindle motor αi series (200-V input series)

Table 4.5.2(a)

Motor	Continuous	10010 4.0.2(u)	Maximum
model	rated output	30-minute rated output	output at acceleration
α0.5/10000 <i>i</i>	0.55kW	1.1kW (15-minute rated)	1.32kW
$\alpha 1/10000i$	1.5kW	2.2kW (15-minute rated)	2.64kW
α1/15000 <i>i</i>	1.5kW	2.2kW (15-minute rated)	5.6kW
α1.5/10000 <i>i</i>	1.1kW	3.7kW (10-minute rated)	4.44kW
α1.5/15000 <i>i</i>	1.5kW	2.2kW (15-minute rated)	13kW
α2/10000i	2.2kW	3.7kW (15-minute rated)	4.44kW
α2/15000 <i>i</i>	2.2kW	3.7kW (15-minute rated)	20kW
α3/10000 <i>i</i>	3.7kW	5.5kW	6.6kW
α3/12000 <i>i</i>	3.7kW	5.5kW	13kW
α6/10000 <i>i</i> α6/12000 <i>i</i>	5.5kW	7.5kW	9kW
α8/8000 <i>i</i> α8/10000 <i>i</i>	7.5kW	11kW	13.2kW
α 12/7000 i α 12/10000 i	11kW	15kW	18kW
α 15/7000 i α 15/10000 i	15kW	18.5kW	22.2kW
α 18/7000 i	18.5kW	22kW	26.4kW
α18/10000 <i>i</i>	10.5844	ZZRVV	20.400
α 22/7000 <i>i</i> α 22/10000 <i>i</i>	22kW	26kW	31.2kW
α30/6000 <i>i</i>	30kW	37kW	44.4kW
α40/6000i	37kW	45kW	54kW
α50/6000i	45kW	55kW	66kW
α12/6000 <i>i</i> ρ α12/8000 <i>i</i> ρ	5.5kW	7.5kW	12.3kW
α15/6000 <i>i</i> _P α15/8000 <i>i</i> _P	7.5kW	9kW	13.5kW
α18/6000 <i>i</i> _P α18/8000 <i>i</i> _P	9kW	11kW	15.1kW
α22/6000 <i>i</i> P α22/8000 <i>i</i> P	11kW	15kW	20kW
α30/6000 <i>i</i> P	15kW	18.5kW	25kW
α40/6000 <i>i</i> P	18.5kW	22kW	29kW
α50/6000 <i>i</i> P	22kW	30kW	35.4kW
α60/4500 <i>i</i> P	22kW	30kW	36kW

NOTE

(2) Spindle motor $\alpha(HV)i$ series (400-V input series)

Table 4.5.2(b)

Motor model	Continuous rated output	30-minute rated output	Maximum output at acceleration
α0.5/10000HV <i>i</i>	0.55kW	1.1kW(15-minute rated)	1.32kW
α1/10000HV <i>i</i>	1.5kW	2.2kW(15-minute rated)	2.64kW
α1.5/10000HV <i>i</i>	1.1kW	3.7kW(10-minute rated)	4.44kW
α2/10000HV <i>i</i>	2.2kW	3.7kW(15-minute rated)	4.44kW
α3/10000HV <i>i</i>	3.7kW	5.5kW	6.6kW
α6/10000HV <i>i</i>	5.5kW	7.5kW	9kW
α8/8000HVi	7.5kW	11kW	13.2kW
α12/7000HV <i>i</i>	11kW	15kW	18kW
α15/7000HV <i>i</i>	15kW	18.5kW	22.2kW
α22/7000HV <i>i</i>	22kW	26kW	31.2kW
α30/6000HV <i>i</i>	30kW	37kW	44.4kW
α40/6000HVi	37kW	45kW	54kW
α60/4500HV <i>i</i>	60kW	75kW	90kW
α100/4000HV <i>i</i>	100kW	-	117kW
α15/6000HV <i>i</i> P	7.5kW	9kW	13.5kW
α22/6000HV <i>i</i> P	11kW	15kW	20kW
α40/6000HV <i>i</i> P	18.5kW	22kW	29kW
α50/6000HV <i>i</i> P	22kW	30kW	35.4kW
α60/4500HV <i>i</i> P	22kW	30kW	36kW

(3) Spindle motor αCi series (200-V input series)

Table 4.5.2(c)

1 4510 4:012(0)				
Motor model	Continuous rated output	30-minute rated output	Maximum output at acceleration	
αC1/6000i	1.5kW	2.2kW(15-minute rated)	2.64kW	
αC2/6000i	2.2kW	3.7kW(15-minute rated)	4.44kW	
αC3/6000i	3.7kW	5.5kW	6.6kW	
αC6/6000i	5.5kW	7.5kW	9kW	
αC8/6000i	7.5kW	11kW	13.2kW	
αC12/6000i	11kW	15kW	18kW	
αC15/6000i	15kW	18.5kW	22.2kW	

NOTE

B-65282EN/05 5.INSTALLATION

5

INSTALLATION

5.INSTALLATION B-65282EN/05

5.1 LEAKAGE CURRENT

The servo amplifier αi series drives the motor by using the transistor PWM inverter method. This causes a high-frequency leakage current to flow via the ground drift capacitance in the motor winding, power cable, and amplifier. This may cause a device installed on the power supply side, such as a ground fault interrupter or leakage-protection relay, to malfunction.

When a circuit breaker with a ground fault interrupter is used, it must be selected so that the sum of the values calculated according to (a) and (b) described below is not greater than the non-operating current value.

(a) Selection criterion per amplifier

Model: SVM and SPM

Criterion for selection: 2 mA per amplifier (Note 1)

(b) Selection criterion per motor

Criterion for selection: 1 mA per motor (Note 1)

The following example shows how to use selection criteria (a) and (b):

Example:

When the system consists of SMV1×1, SVM3×1 (three motors), and SPM×1

 $2 \text{ mA} \times 3 \text{ (for the amplifiers)} + 1 \text{ mA} \times 5 \text{ (for the motors)} = 11 \text{ mA}$

→ Select a circuit breaker (Note 2) with a non-operating current of 11 mA or higher. (A general ground fault interrupter that can be used for the above example is the one with a rated sensitivity current of 30 mA and a non-operating current of 15 mA.)

NOTE

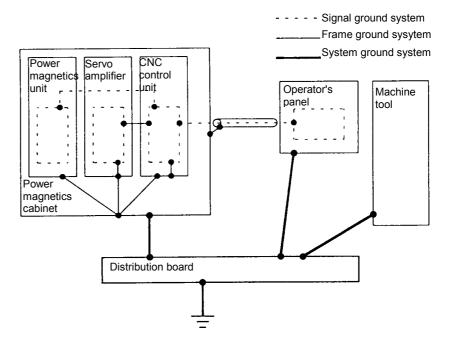
- 1 These criteria are for selecting a circuit breaker with a ground fault interrupter; they do not indicate accurate leakage currents.
- 2 A circuit breaker may malfunction depending on the frequency characteristic of the ground fault interrupter. Therefore, use a ground fault interrupter supporting the use of inverters.
- 3 The above criteria are values in the commercial frequency band. Some measuring instruments for measuring leakage current may sense a high frequency band, thus showing a larger value.

B-65282EN/05 5.INSTALLATION

5.2 GROUND

The following ground systems are provided for the CNC machine tool:

(a) Signal ground system (SG)


The signal ground (SG) supplies the reference voltage (0V) of the electrical signal system.

(b) Frame ground system (FG)

The frame ground system (FG) is used for safety, and suppressing external and internal noises. In the frame ground system, the frames, cases of the units, panels, and shields for the interface cables between the units are connected.

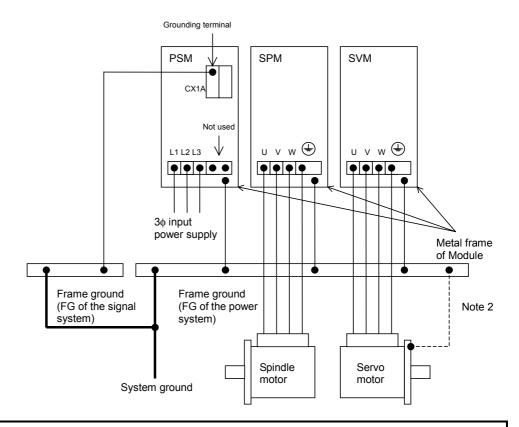
(c) System ground system

The system ground system is used to connect the frame ground systems connected between devices or units with the ground.

[Notes on connecting the ground systems]

- Connect the signal ground (0V) with the frame ground (FG) at only one place in the power supply module.
- The grounding resistance of the system ground shall be 100 ohms or less (class D grounding).
- The system ground cable must have enough cross-sectional area to safely carry the accidental current flow into the system ground when an accident such as a short circuit occurs. (Generally, it must have the cross-sectional area of the AC power cable or more.)
- Use the cable containing the AC power wire and the system ground wire so that power is supplied with the ground wire connected.

5.INSTALLATION B-65282EN/05


(1) Grounding of each module

Achieve separation between the frame ground (FG) of the power system and that of the signal system. Otherwise, noise may propagate from the power system to the signal system, possibly causing the unit to malfunction.

- (a) Power supply module

 Connect the ground terminal of connector CX1A to the frame ground. This acts as the signal ground. Connect the ground terminal of the metal frame to the frame ground.
- (b) Servo amplifier module and spindle amplifier module Connect the ground cable of the motor power cable to a ground terminal of the terminal block of the module. Connect the other ground terminal of the terminal block to the frame ground. Connect the ground terminal of the metal frame to the frame ground.
- (c) Regenerative discharge unit and DBM

 Connect the ground terminal of the metal frame to the frame ground.

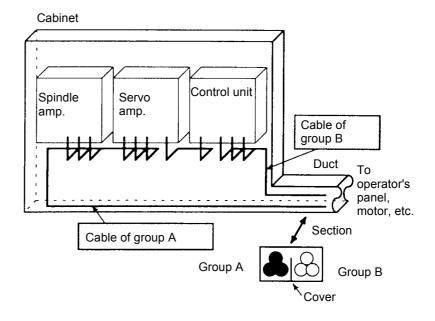
NOTE

- 1 Securing the ground terminal and a cable together is not permitted.
- 2 The motor flange mounting section may not be able to be connected to the machine mounting section of the power magnetics cabinet via the mechanical unit at sufficiently low impedance in a machine. In this case, a cable of a minimum required length that is at least 1.25 mm² thick must be run from the motor flange to the frame ground of the power magnetics cabinet. The cable must also be separated from the motor power line as much as possible.

B-65282EN/05 5.INSTALLATION

5.3 NOISE PREVENTION

5.3.1 Separation of Signal Lines


If a signal cable is near a power cable, noise may be induced. The signal cables must be separated from the power cables when routed. When power and signal cables cannot possibly be separated from each other, the cables must be run in parallel in the minimum distance. When a conduit is used, it is recommended that the signal cables be separated from the power cables in it.

[Types of cables]

Lijpes	1 cuotesj	
Group	Signal type	Action
	Amplifier input power line	Concrete himding (Note 1) or
۸	Motor power line	Separate binding (Note 1) or electromagnetic shielding (Note 2)
-	Magnetic contactor driving coil (Note 3)	is necessary for group B cables.
	Cable between CNC and SPM	Separate hinding or
В	Cable for position feedback or velocity feedback	Separate binding or electromagnetic shielding is necessary for group A cables. All
	Cable for Positioncoder	cables must be shielded.
	Other cable related to sensor	0

NOTE

- 1 The groups must be 10 cm or more apart from one another when binding the cables in each group.
- 2 The electromagnetic shield refers to shielding between groups with grounded steel plates.
- 3 Attach a noise suppressor such as a spark killer to the magnetic contactor driving coil.

5.INSTALLATION B-65282EN/05

5.3.2 Cable Clamp and Shield Processing

• Terminal processing of the shield sheaths
Perform terminal processing of the shield sheaths of the signal
cables according to the description in Section 9.3.

Cable clamp

The cables that run into the amplifier and which require shield processing, with the exception of K14, K15, K17, K18, K19, K31, and K33, must be clamped as indicated in Fig. 5.3.2(a).

Clamping secures a cable and also provides shielding. Clamping must always be performed since it is very important for stable system operation.

Strip part of the cable jacket to expose the shield sheath, as shown in the figure below. Secure that part of the cable to the ground plate by using a clamp. At this time, the ground plate must be in contact with the surface of the shield so that the contact area becomes wide

Connect each shield cable to the ground plate installed near the cabinet inlet by using a ground clamp. This prevents noise generated in the panel from being emitted to external devices.

Connect the cable clamp of the signal cables of SVM connected to common PSM to common the ground plate for signals.

Grounding

The ground plate must be created and installed by the user as shown in Figs. 5.3.2(b) to (e).

B-65282EN/05 5.INSTALLATION

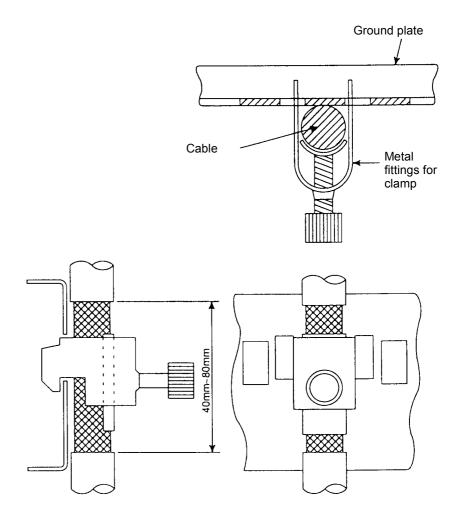


Fig.5.3.2(a) Cable clamp (1)

5.INSTALLATION B-65282EN/05

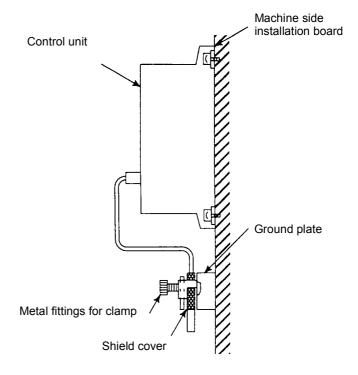


Fig.5.3.2(b) Cable clamp (2)

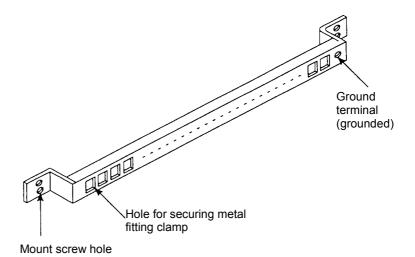


Fig.5.3.2(c) Ground plate

For the ground plate, use a metal plate of 2 mm or thicker, which surface is plated with nickel.

B-65282EN/05 5.INSTALLATION

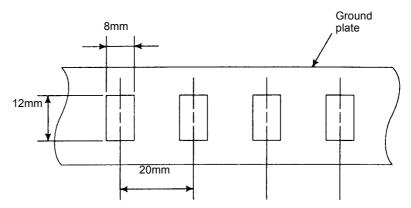
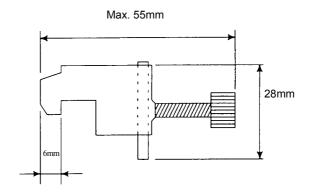



Fig.5.3.2(d) Ground plate holes

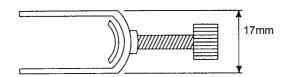


Fig.5.3.2(e) Outer drawings of metal fittings for clamp

5.INSTALLATION B-65282EN/05

5.3.3 Others

Cable length

If a cable is longer than required, a loss of power increases, and the signal line becomes likelier to be affected by noise. Use each cable of the minimum required length.

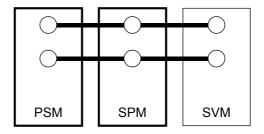
Use of shield cables

• Satisfying the requirements of the EMC Directives

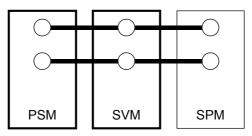
To satisfy the requirements of the EMC Directives enforced in

Europe, it is recommended that a shield cable be used as a power
cable and a double-shield cable be used as a signal cable. If it is
difficult to use a shield cable, it is recommended that a conduit
having an electromagnetic shielding effect be used.

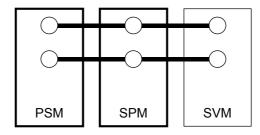
• Protection against noise


Noise generated from the shielded wire of a power shield cable may affect signals via the shielded wire of a signal cable. For this reason, separate the ground of the shielded wire of a power cable from that of the shielded wire of a signal cable. Use different ground clamping plates (ground plates) for power cables and signal cables to improve safety.

B-65282EN/05 5.INSTALLATION


5.4 MODULE INSTALLATION

A restriction is imposed on the order of module installation as described below.


(1) When an SPM-30HV*i*, SPM-45HV*i*, SPM-75HV*i*, or SPM-100HV*i* is used Install the PSM and SPM close to each other.

(2) When an SVM-360HV*i* is used Install the PSM and SVM-360HV*i* close to each other.

(3) When an SPM-45*i* or SPM-55*i* is used Install the PSM and SPM close to each other.

6

HEAT DISSIPATION

6.1 200-V INPUT SERIES

The amount of heat dissipation by each module of the servo amplifier αi series is described below.

6.1.1 Power Supply Module

Table 6.1.1(a) PSM*i*

Name	Ordering number	Rated output	Total amount of heat dissipation	Residual amount of heat in the cabinet
PSM-5.5 <i>i</i>	A06B-6110-H006	5.5kW	100W	53W
PSM-11 <i>i</i>	A06B-6110-H011	11kW	158W	53W
PSM-15 <i>i</i>	A06B-6110-H015	15kW	333W	61W
PSM-26i	A06B-6110-H026	26kW	597W	75W
PSM-30i	A06B-6110-H030	30kW	681W	79W
PSM-37 <i>i</i>	A06B-6110-H037	37kW	706W	81W
PSM-55i	A06D 6110 H055	45kW	921W	91W
F3IVI-331	A06B-6110-H055	55kW	1115W	101W

Table 6.1.1(b) AC reactor for PSMi

Name	Ordering number	Rated output	Total amount of heat dissipation
For PSM-5.5 <i>i</i>	A041 0004 0455	5.5kW	16W
For PSM-11i	A81L-0001-0155	11kW	38W
For PSM-15i	A81L-0001-0156	15kW	50W
For PSM-26i	A81L-0001-0157	26kW	70W
For PSM-30i	A81L-0001-0158	30kW	65W
For PSM-37i	A81L-0001-0159	37kW	55W
For PSM-55i	A81L-0001-0160	55kW	79W

Table 6.1.1(c) PSMR*i*

Name	Ordering number	Rated output	Total amount of heat dissipation	Residual amount of heat in the cabinet
PSMR-3i	A06B-6115-H006	3kW	60W	60W
PSMR-5.5i	A00D 0445 H044	5.5kW	105W	55W
F3WR-5.5 <i>i</i>	A06B-6115-H011	7.5kW	130W	60W

Table 6.1.1(d) AC line filter for PSMRi

rubic of the fact that the first terms				
Name	Ordering number	Rated output	Total amount of heat dissipation	
For PSMR-3i	A81L-0001-0083#3C	2.0kW	10W	
		3.0kW	15W	
For PSMR-5.5i	-5.5 <i>i</i> A81L-0001-0101#C	5.5kW	40W	
		7.5kW	50W	

6.1.2 **Servo Amplifier Module**

The amount of heat dissipation by the SVM depends on the SVM model and the current that flows through the servo motor. For the current that flows through a servo motor, reference the continuous rated current of each servo motor. (For the continuous rated current of each servo motor, refer to the servo motor descriptions.) As the current that flows through a servo motor, the root-mean-square value of the current that flows through an actual servo motor on a machine can be used. The amount of heat dissipation indicated below assumes the use of HRV2.

(1) Total amount of heat dissipation

The total amount of heat dissipation by the SVM is calculated according to the following expression:

Total amount of heat dissipation

 $= a + Ka1 \times b1 + Ka2 \times b2 + Ka3 \times b3$

: Amount of heat dissipation determined by the SVM

model [W]

Ka1: Coefficient determined by the SVM [W/Arms] b1 : Current flowing through the servo motor [Arms] Ka2: Coefficient determined by the SVM [W/Arms]

b2 : Current flowing through the servo motor [Arms] Ka3: Coefficient determined by the SVM [W/Arms]

b3 : Current flowing through the servo motor [Arms]

SVM 1-axis (Total amount of heat dissipation)

Name	Specification	a [W]	K [W/Arms]
SVM1-20 <i>i</i>	H103	13	Ka1: 5.0
SVM1-40 <i>i</i>	H104	13	Ka1: 4.6
SVM1-80 <i>i</i>	H105	13	Ka1: 4.3
SVM1-160 <i>i</i>	H106	17	Ka1: 4.7
SVM1-360 <i>i</i>	H109	25	Ka1: 4.9

SVM 2-axis (Total amount of heat dissipation)

Name	Specification	а	Axis	K DA//A www.o.l	
		[W]	_	[W/Arms]	
SVM2-4/4 <i>i</i>	H201	17	L	Ka1: 5.0	
O V IVIZ-4/41	11201	17	M	Ka2: 5.0	
SVM2-20/20 <i>i</i>	11005	47	L	Ka1: 5.0	
3 V IVIZ-20/201	H205	17	M	Ka2: 5.0	
SVM2-20/40 <i>i</i>	11000	47	L	Ka1: 5.0	
3 V IVIZ-20/401	H206	17	М	Ka2: 4.6	
SVM2-40/40 <i>i</i>	11007	19	L	Ka1: 4.6	
SVIVIZ-40/401	H207		М	Ka2: 4.6	
CV/MO_40/00:	11000	40	L	Ka1: 4.6	
SVM2-40/80 <i>i</i>	H208	19	M	Ka2: 4.3	
C)/M2 00/00:	11000	40	L	Ka1: 4.3	
SVM2-80/80 <i>i</i>	H209	H209 19	19	М	Ka2: 4.3
CV/M2 90/460:	SVM2-80/160 <i>i</i> H210	10	L	Ka1: 4.3	
3 V IVIZ-8U/ 16U1		19	М	Ka2: 4.7	
CV/M2 160/160:	11044	10	L	Ka1: 4.7	
SVM2-160/160 <i>i</i>	I2-160/160 <i>i</i> H211	19	М	Ka2: 4.7	

SVM 3-axis (Total amount of heat dissipation)

SVIN 3-axis (Total amount of neat dissipation)				
Name	Specification	a [W]	Axis	K [W/Arms]
			L	Ka1: 5.0
SVM3-4/4/4 <i>i</i>	H301	21	М	Ka2: 5.0
			N	Ka3: 5.0
			L	Ka1: 5.0
SVM3-20/20/20 <i>i</i>	H303	21	М	Ka2: 5.0
			N	Ka3: 5.0
SVM3-20/20/40 <i>i</i>			L	Ka1: 5.0
	H304	21	М	Ka2: 5.0
			N	Ka3: 4.6

(2) Residual amount of heat in the cabinet

By placing the heat sink section of the SVM outside the cabinet, the residual amount of heat in the cabinet can be calculated according to the expression below.

Residual amount of heat in the cabinet

 $= a + Kb1 \times b1 + Kb2 \times b2 + Kb3 \times b3$

a : Amount of heat dissipation determined by the SVM model [W]

Kb1: Coefficient determined by the SVM [W/Arms]
b1: Current flowing through the servo motor [Arms]
Kb2: Coefficient determined by the SVM [W/Arms]
b2: Current flowing through the servo motor [Arms]
Kb3: Coefficient determined by the SVM [W/Arms]
b3: Current flowing through the servo motor [Arms]

SVM 1-axis

Name	Specification	a [W]	K [W/Arms]
SVM1-20 <i>i</i>	H103	13	Kb1: 5.0
SVM1-40 <i>i</i>	H104	13	Kb1: 0.92
SVM1-80 <i>i</i>	H105	13	Kb1: 0.86
SVM1-160 <i>i</i>	H106	13	Kb1: 0.47
SVM1-360 <i>i</i>	H109	18	Kb1: 0.25

SVM 2-axis

Name	Specification	a [W]	Axis	K [W/Arms]
SVM2-4/4 <i>i</i>	11004	47	L	Kb1: 5.0
5 V IVIZ-4/41	H201	17	М	Kb2: 5.0
SVM2-20/20 <i>i</i>	H205	17	L	Kb1: 5.0
3 V IVIZ-20/201	H2U5	17	М	Kb2: 5.0
SVM2-20/40 <i>i</i>	H206	17	L	Kb1: 1.0
3 V IVIZ-20/401	H206	17	М	Kb2: 0.92
SVM2-40/40 <i>i</i>	H207	17	L	Kb1: 0.46
3 7 1712-40/401			М	Kb2: 0.46
SVM2-40/80 <i>i</i>	H208	17	L	Kb1: 0.46
3 7 1712-40/001	П200	17	M	Kb2: 0.43
SVM2-80/80 <i>i</i>	Hann	17	L	Kb1: 0.43
3 V IVIZ-00/001	i H209	17	М	Kb2: 0.43
CV/M2 90/160;	SVM2-80/160 <i>i</i> H210	17	L	Kb1: 0.43
SVIVIZ-80/1601		17	М	Kb2: 0.47
SVM2-160/160 <i>i</i>	U011	17	L	Kb1: 0.47
3 V IVIZ-100/1001	H211		M	Kb2: 0.47

SVM 3-axis

Name	Specification	a [W]	Axis	K [W/Arms]
			L	Kb1: 5.0
SVM3-4/4/4 <i>i</i>	H301	21	М	Kb2: 5.0
			N	Kb3: 5.0
SVM3-20/20/20 <i>i</i>	H303	21	L	Kb1: 5.0
			М	Kb2: 5.0
			N	Kb3: 5.0
			L	Kb1: 5.0
SVM3-20/20/40 <i>i</i>	H304	19	М	Kb2: 5.0
			N	Kb3: 0.92

6.1.3 Spindle Amplifier Module

Table 6.1.3(a) SPM

Name	Ordering number	Rated output (Note 1)	Total amount of heat dissipatio n	Residual amount of heat in the cabinet
SPM-2.2 <i>i</i>	A06B-6111-H002#H550	1.5kW	75W	37W
SDM-5 5i	A06B-6111-H006#H550	2.2kW	112W	36W
31 W-3.31	AU0B-0111-HUU0#HD00U	3.7kW	120W	36W
SPM-11i	A06B-6111-H011#H550	5.5kW	171W	41W
SFIVI-111		7.5kW	218W	46W
SPM-15 <i>i</i>	A06B-6111-H015#H550	11kW	273W	45W
SPM-22i	AOGD 6111 H022#HEE0	15kW	435W	53W
SPIVI-ZZI	A06B-6111-H022#H550	18.5kW	515W	57W
SPM-26i	A06B-6111-H026#H550	22kW	684W	62W
SPM-30 <i>i</i>	A06B-6111-H030#H550	26kW	739W	65W
CDM 45:	AOCD C444 LIQ4E#LIEEO	30kW	911W	75W
SPM-45i	A06B-6111-H045#H550	37kW	1123W	85W
SPM-55i	A06B-6111-H055#H550	45kW	1360W	98W

NOTE

- 1 "Rated output" indicates the continuous rated output of the motor.
- 2 The indicated amounts of heat dissipation assume the use of HRV2.

6.2 400-V INPUT SERIES

The amount of heat dissipation by each module of the servo amplifier $\alpha(HV)i$ series is described below.

6.2.1 Power Suplly Module

Table 6.2.1(a) PSM(HV)*i*

Name	Ordering number	Rated output	Total amount of heat dissipation	Residual amount of heat in the cabinet
PSM-11HVi	A06B-6120-H011	11kW	136W	51W
PSM-18HVi	A06B-6120-H018	18kW	274W	57W
PSM-30HVi	A06B-6120-H030	30kW	380W	64W
		30kW	394W	64W
PSM-45HVi	A06B-6120-H045	37kW	475W	68W
		45kW	567W	75W
PSM-75HVi	A06D 6420 H075	60kW	600W	75W
PSIVI-75HV1	A06B-6120-H075	75kW	738W	82W
PSM-100HVi	A06B-6120-H100	100kW	1380W	110W

Table 6.2.1(b) AC reactor for PSM(HV)i

Name	Ordering number	Rated output	Total amount of heat dissipation
For PSM-11HVi		11kW	38W
For PSM-18HVi	A81L-0001-0163	18kW	70W
For PSM-30HVi	1041 0004 0404	30kW	60W
For PSM-45HVi	A81L-0001-0164	45kW	100W
For PSM-75HVi	A041 0004 0405	75kW	120W
For PSM-100HVi	A81L-0001-0165	100kW	180W

6.2.2 Servo Amplifier Module

The amount of heat dissipation by the SVM depends on the SVM model and the current that flows through the servo motor. For the current that flows through a servo motor, reference the continuous rated current of each servo motor. (For the continuous rated current of each servo motor, refer to the servo motor descriptions.) As the current that flows through a servo motor, the root-mean-square value of the current that flows through an actual servo motor on a machine can be used. The amount of heat dissipation indicated below assumes the use of HRV2.

(1) Total amount of heat dissipation

The total amount of heat dissipation by the SVM is calculated according to the following expression:

Total amount of heat dissipation = $a + Ka1 \times b1 + Ka2 \times b2$

a : Amount of heat dissipation determined by the SVM

model [W]

Ka1: Coefficient determined by the SVM [W/Arms]
b1: Current flowing through the servo motor [Arms]
Ka2: Coefficient determined by the SVM [W/Arms]
b2: Current flowing through the servo motor [Arms]

SVM 1-axis (Total amount of heat dissipation)

Name	Specification	a [W]	K [W/Arms]
SVM1-10HV <i>i</i>	H102	13	Ka1: 8.2
SVM1-20HV <i>i</i>	H103	13	Ka1: 8.8
SVM1-40HVi	H104	13	Ka1: 8.8
SVM1-80HV <i>i</i>	H105	17	Ka1: 9.0
SVM1-180HV <i>i</i>	H106	25	Ka1: 8.8
SVM1-360HV <i>i</i>	H109	34	Ka1: 7.8

SVM 2axis (Total amount of heat dissipation)

Name	Specification	a [W]	Axis	K [W/Arms]
SVM2-10/10HV <i>i</i>	H202	17	L	Ka1: 8.2
3 V IVIZ-10/10 H V I	H2U2	17	М	Ka2: 8.2
SVM2-20/20HV <i>i</i>	HOOF	17	L	Ka1: 8.8
3 V IVIZ-20/20 FI V I	H2U5	H205 17 M	М	Ka2: 8.8
SVM2-20/40HV <i>i</i>	Hane	17	L	Ka1: 8.8
3 V IVIZ-20/40 M V 1	H206	17	М	Ka2: 8.8
SVM2-40/40HV <i>i</i>	H207	17	L	Ka1: 8.8
3 V IVIZ-40/40 FI V I		П207 I7 М	М	Ka2: 8.8
SVM2-40/80HV <i>i</i>	H208 17	17	L	Ka1: 8.8
3 V IVIZ-40/00 M V I		17	М	Ka2: 9.0
SVM2-80/80HV <i>i</i>	H300	17	L	Ka1: 9.0
3 V IVIZ-00/00 TV 1	H209	17	М	Ka2: 9.0

(2) Residual amount of heat in the cabinet

By placing the heat sink section of the SVM outside the cabinet, the residual amount of heat in the cabinet can be calculated according to the expression below.

Residual amount of heat in the cabinet

 $= a + Kb1 \times b1 + Kb2 \times b2$

a : Amount of heat dissipation determined by the SVM

model [W]

Kb1: Coefficient determined by the SVM [W/Arms]
b1: Current flowing through the servo motor [Arms]
Kb2: Coefficient determined by the SVM [W/Arms]
b2: Current flowing through the servo motor [Arms]

SVM 1-axis (Residual amount of heat in the cabinet)

Name	Specification	a [W]	K [W/Arms]
SVM1-10HVi	H102	13	Kb1: 8.2
SVM1-20HVi	H103	13	Kb1: 1.76
SVM1-40HVi	H104	13	Kb1: 1.76
SVM1-80HV <i>i</i>	H105	13	Kb1: 0.90
SVM1-180HV <i>i</i>	H106	18	Kb1: 0.44
SVM1-360HV <i>i</i>	H109	20	Kb1: 0.39

SVM 2-axis

Name	Specification	a [W]	Axis	K [W/Arms]	
SVM2-10/10HV <i>i</i>	H202	17	L	Kb1: 8.2	
3 V IVIZ-10/10 H V I	H202	17	М	Kb2: 8.2	
SVM2-20/20HV <i>i</i>	HOOF	17	L	Kb1: 1.76	
3 V IVIZ-20/20 FI V 1	H205	17	М	Kb2: 1.76	
SVM2-20/40HV <i>i</i>	H206	17	L	Kb1: 0.88	
3 V IVIZ-20/40 FI V I	H206	17	М	Kb2: 0.88	
SVM2-40/40HV <i>i</i>	H207	17	L	Kb1: 0.88	
3 V IVIZ-40/40 FI V I	H207	17 17 M	М	Kb2: 0.88	
SVM2-40/80HV <i>i</i>	780HV <i>i</i> H208 17	47	L	Kb1: 0.88	
3 V IVIZ-40/00 TV 1		17	М	Kb2: 0.90	
SVM2-80/80HV <i>i</i>	11200	47	L	Kb1: 0.90	
3 V IVIZ-00/80 H V1	$\exists Vi \mid H209 \mid 1$	17	М	Kb2: 0.90	

6.2.3 Spindle Amplifier Module

Table 6.2.3 SPM

Name	Ordering number	Rated output (Note 1)	Total amount of heat dissipation	Residual amount of heat in the cabinet
		0.55kW	26W	18W
SPM-5.5HVi	A06B-6121-H006#H550	1.5kW	44W	22W
3FW-5.5HV1		2.2kW	59W	24W
		3.7kW	87W	29W
SPM-11HVi	AOCD 0404 H044#HEE0	5.5kW	122W	37W
SPIVI-TTHV1	A06B-6121-H011#H550	7.5kW	156W	39W
SPM-15HVi	A06B-6121-H015#H550	11kW	189W	40W
SPM-30HVi	A00D 0404 H000#HEE0	15kW	247W	41W
	A06B-6121-H030#H550	22kW	349W	45W
SPM-45HVi	A O O D C A O A L I O A E # L I E E O	30kW	482W	52W
	A06B-6121-H045#H550	37kW	588W	57W
SPM-75HVi	A06B-6121-H075#H550	60kW	1264W	91W
SPM-100HVi	A06B-6121-H100#H550	100kW	2100W	150W

NOTE

- 1 "Rated output" indicates the continuous rated output of the motor.
- 2 The indicated amounts of heat dissipation assume the use of HRV2.

B-65282EN/05 7.COOLING

7 COOLING

The αi series has a built-in fan for external fin cooling, so that external forced air cooling is unnecessary.

To maintain cooling efficiency, be sure to provide maintenance areas as described in Section 8.1.

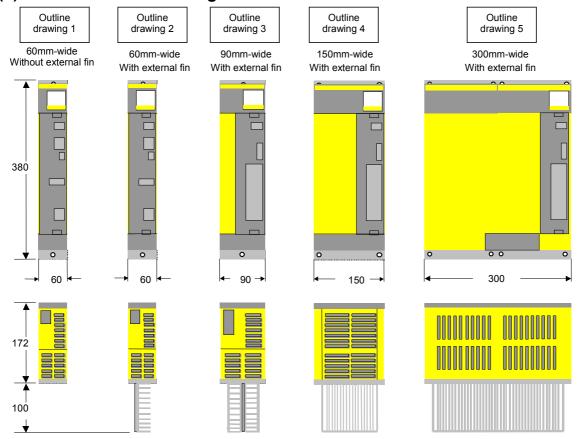
EXTERNAL DIMENSIONS AND MAINTENANCE AREA

8.1 OUTLINE DRAWINGS

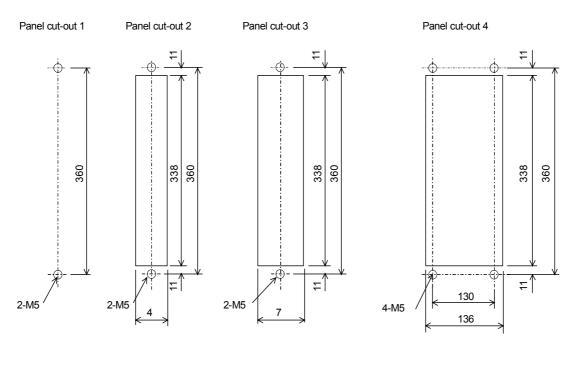
8.1.1 Outline Drawings of Modules, Panel Cut-out, and Maintenance Area

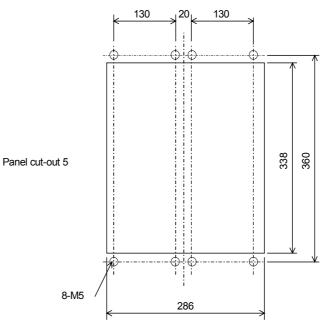
(1) Power supply modules

	Model		Outline drawing	Panel cut-out	Maintenance area		
	200-V input series	PSM-5.5 <i>i</i>	Outline drawing 2	Panel cut-out 2	Maintenance area 1		
		PSM-11 <i>i</i>	Outline drawing 3	Panel cut-out 3	Maintenance area 2		
		PSM-15 <i>i</i>	Outline drawing 3	Panel cut-out 3	Maintenance area 2		
		PSM-26i	Outline drawing 4	Panel cut-out 4	Maintenance area 3		
		PSM-30 <i>i</i>	Outline drawing 4	Panel cut-out 4	Maintenance area 3		
D		PSM-37i	Outline drawing 4	Panel cut-out 4	Maintenance area 3		
Power		PSM-55 <i>i</i>	Outline drawing 5	Panel cut-out 5	Maintenance area 4		
regeneration type	400-V input series	PSM-11HVi	Outline drawing 3	Panel cut-out 3	Maintenance area 2		
		PSM-18HVi	Outline drawing 3	Panel cut-out 3	Maintenance area 2		
		PSM-30HVi	Outline drawing 4	Panel cut-out 4	Maintenance area 3		
		PSM-45HVi	Outline drawing 4	Panel cut-out 4	Maintenance area 3		
		PSM-75HVi	Outline drawing 5	Panel cut-out 5	Maintenance area 4		
		PSM-100HVi	Outline drawing 5	Panel cut-out 5	Maintenance area 4		
Resistance	200-V input	PSMR-3i	Outline drawing 1	Panel cut-out 1	Maintenance area 1		
regeneration type	series	PSMR-5.5i	Outline drawing 2	Panel cut-out 2	Maintenance area 1		


(2) Servo amplifier modules

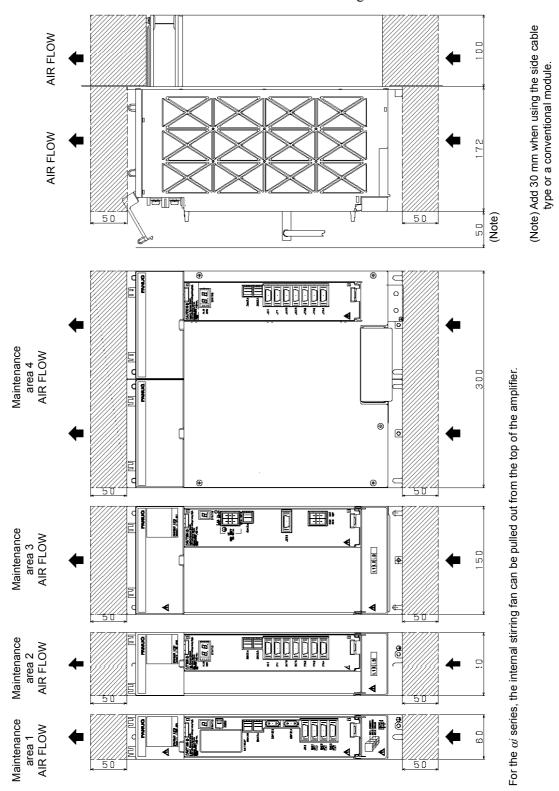
	Model		Outline drawing	Panel cut-out	Maintenance area	
	1 axis	SVM1-20 <i>i</i>	Outline drawing 1	Panel cut-out 1	Maintenance area 1	
		SVM1-40 <i>i</i>	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SVM1-80 <i>i</i>	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SVM1-160 <i>i</i>	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SVM1-360 <i>i</i>	Outline drawing 4	Panel cut-out 4	Maintenance area 3	
		SVM2-4/4 <i>i</i>	Outline drawing 1	Panel cut-out 1	Maintenance area 1	
		SVM2-20/20i	Outline drawing 1	Panel cut-out 1	Maintenance area 1	
200 \/ innert corice		SVM2-20/40i	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
200-V input series	2 axes	SVM2-40/40i	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SVM2-40/80i	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SVM2-80/80i	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SVM2-80/160i	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
		SVM2-160/160i	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
	3 axes	SVM3-4/4/4i	Outline drawing 1	Panel cut-out 1	Maintenance area 1	
		SVM3-20/20/20i	Outline drawing 1	Panel cut-out 1	Maintenance area 1	
		SVM3-20/20/40i	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
	1 axis	SVM1-10HVi	Outline drawing 1	Panel cut-out 1	Maintenance area 1	
		SVM1-20HVi	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SVM1-40HVi	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SVM1-80HVi	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SVM1-180HV <i>i</i>	Outline drawing 4	Panel cut-out 4	Maintenance area 3	
400 V input corice		SVM1-360HVi	Outline drawing 5	Panel cut-out 5	Maintenance area 4	
400-V input series	2 axes	SVM2-10/10HVi	Outline drawing 1	Panel cut-out 1	Maintenance area 1	
		SVM2-20/20HVi	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SVM2-20/40HVi	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
		SVM2-40/40HVi	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
		SVM2-40/80HVi	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
		SVM2-80/80HVi	Outline drawing 3	Panel cut-out 3	Maintenance area 2	

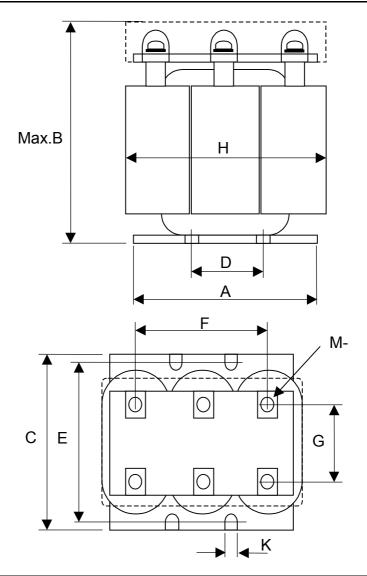

(3) Spindle amplifier modules


-	Model		Outline drawing	Panel cut-out	Maintenance area	
		SPM-2.2 <i>i</i>	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SPM-5.5 <i>i</i>	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SPM-11 <i>i</i>	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
		SPM-15 <i>i</i>	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
	200-V input series	SPM-22 <i>i</i>	Outline drawing 4	Panel cut-out 4	Maintenance area 3	
	·	SPM-26 <i>i</i>	Outline drawing 4	Panel cut-out 4	Maintenance area 3	
		SPM-30 <i>i</i>	Outline drawing 4	Panel cut-out 4	Maintenance area 3	
αi series		SPM-45 <i>i</i>	Outline drawing 5	Panel cut-out 5	Maintenance area 4	
a series		SPM-55 <i>i</i>	Outline drawing 5	Panel cut-out 5	Maintenance area 4	
	400-V input series	SPM-5.5HVi	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SPM-11HVi	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
		SPM-15HVi	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
		SPM-30HVi	Outline drawing 4	Panel cut-out 4	Maintenance area 3	
		SPM-45HVi	Outline drawing 4	Panel cut-out 4	Maintenance area 3	
		SPM-75HVi	Outline drawing 5	Panel cut-out 5	Maintenance area 4	
		SPM-100HVi	Outline drawing 5	Panel cut-out 5	Maintenance area 4	
	200-V input series	SPMC-2.2i	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
αC <i>i</i> series		SPMC-5.5 <i>i</i>	Outline drawing 2	Panel cut-out 2	Maintenance area 1	
		SPMC-11i	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
		SPMC-15i	Outline drawing 3	Panel cut-out 3	Maintenance area 2	
		SPMC-22i	Outline drawing 4	Panel cut-out 4	Maintenance area 3	

(4) Module outline drawings

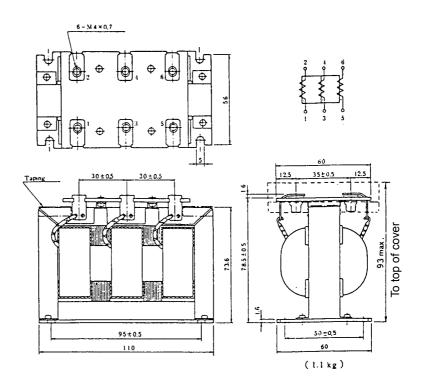
(5) Panel cut-out drawings

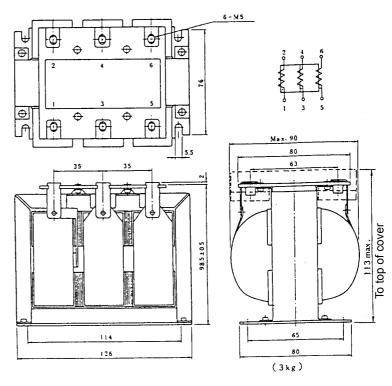



See Section 8.2 for details.

(6) Maintenance area drawings

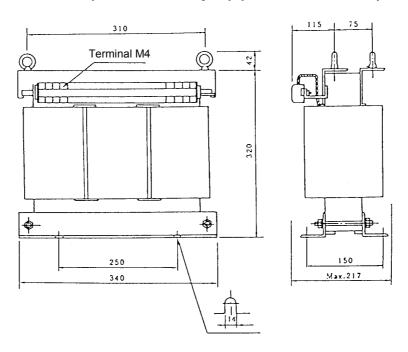
An amplifier contains a fan motor for internal stirring. To allow air to flow and make replacement of a fan unit easy, be sure to reserve the shaded areas shown in the figure below.


8.1.2 AC Reactor Unit

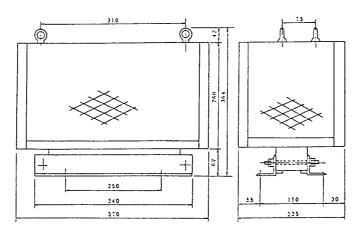

	Α	В	С	D	E	F	G	Н	K	M-
For PSM-5.5 <i>i</i> , 11 <i>i</i>	135	155	82	50	65	89	48	135	5	M5
For PSM-15 <i>i</i>	135	155	108	42	95	84	66	135	7.2	M5
For PSM-26i	125	155	165	EE	115	0.4	66	125	7.2	M5
For PSM-30i	135	155	165	55	145	84	66	135	1.2	CIVI
For PSM-37i	185	160	145	80	100	124	106	185	7.2	M8
For PSM-55i	185	170	165	80	100	124	125	185	7.2	M8
For PSM-11HV <i>i</i> , 18Hv <i>i</i>	135	155	165	55	145	84	66	135	7	M5
For PSM-30HVi, 45HVi	185	172	175	70	154	116	106	185	7	M8
For PSM-75HVi, 100HVi	248	200	238	105	216	155	151	248	7	M10

8.1.3 AC Line Filter

A81L-0001-0083#3C

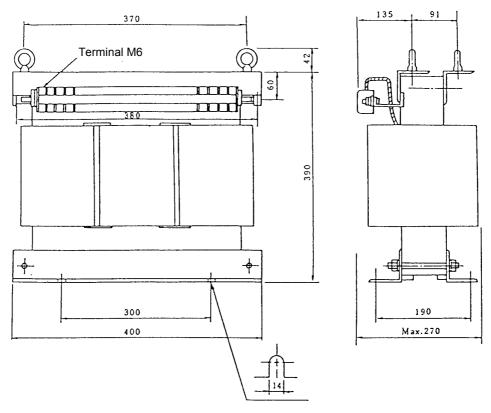


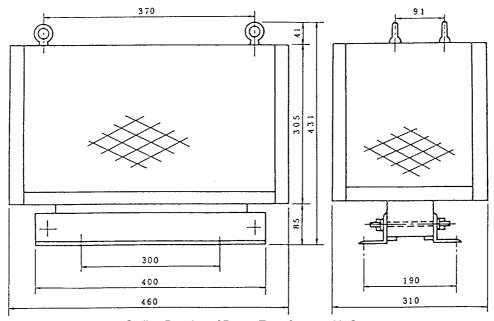
A81L-0001-0101#C



8.1.4 Power Transformer

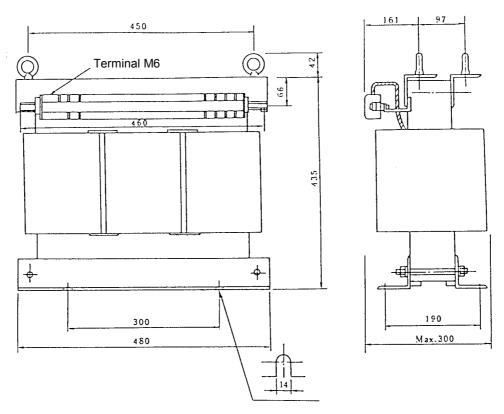
For PSM-5.5i, PSMR-5.5i (at 5.5 kW output) (A06B-6052-J001)

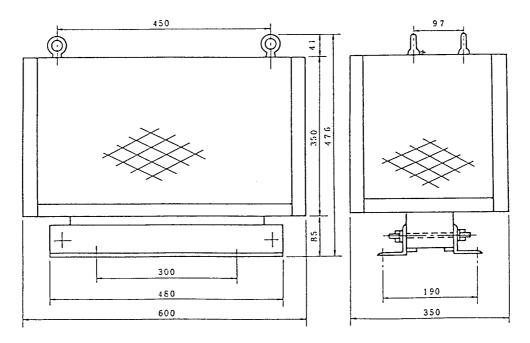

Outline Drawing of Power Transformer with no Cover


Outline Drawing of Power Transformer with Cover

NOTE

For PSM-11*i*, PSMR-5.5*i* (at 7.5KW output) (A06B-6044-J006)

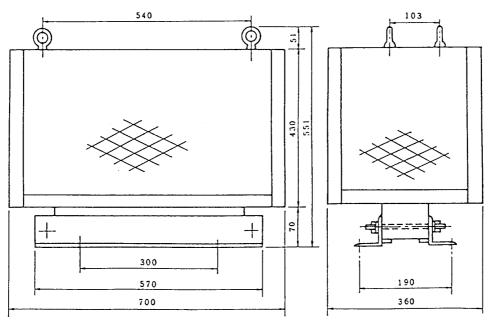

Outline Drawing of Power Transformer with no Cover


Outline Drawing of Power Transformer with Cover

NOTE

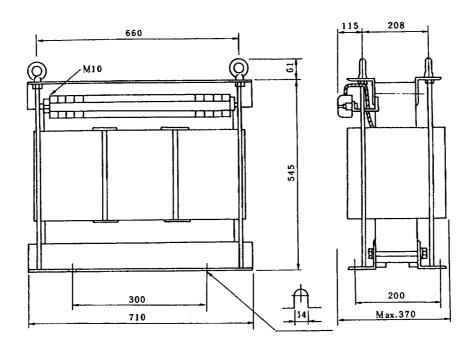
For PSM-15i (A06B-6044-J007)

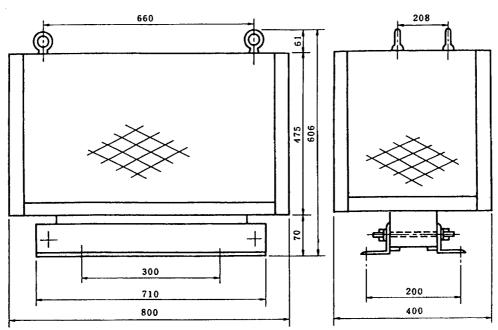

Outline Drawing of Power Transformer with no Cover


Outline Drawing of Power Transformer with Cover

NOTE

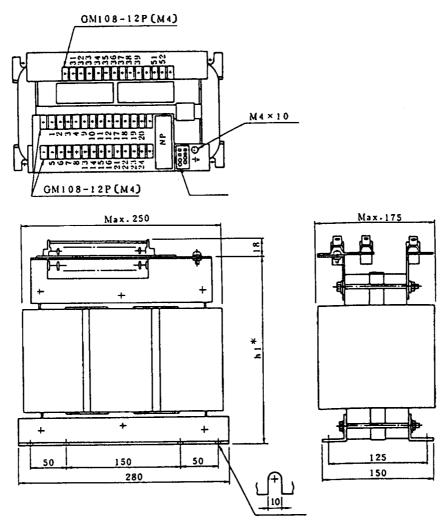
For PSM-26i, 30i (A06B-6044-J010)


Outline Drawing of Power Transformer with no Cover


Outline Drawing of Power Transformer with Cover

NOTE

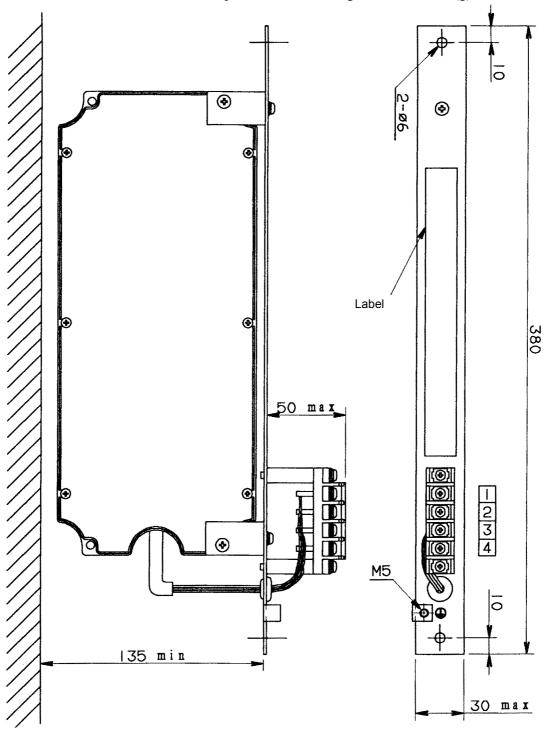
For PSM-37i, 55i (at 45kW output) (A06B-6044-J015)


Outline Drawing of Power Transformer with no Cover

Outline Drawing of Power Transformer with Cover

NOTE

For PSMR-3i (2KW output) (A80L-0024-0006), PSMR-3i (3KW output) (A80L-0026-0003)



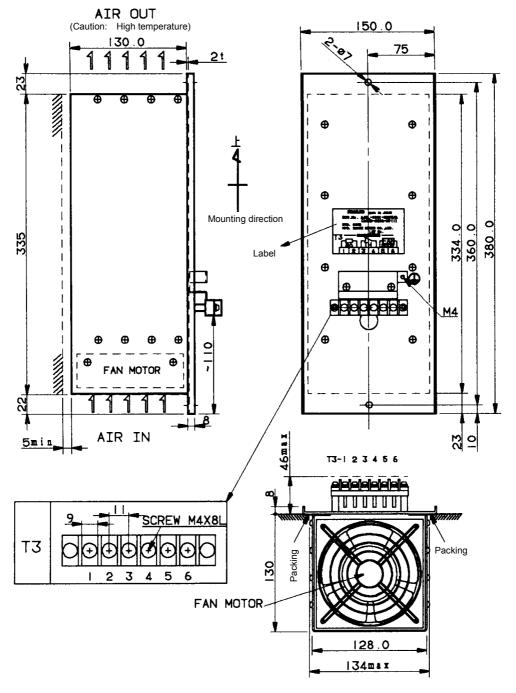
Drawing number	A80L-0024-0006	A80L-0026-0003
Type (name)	SBE	SCE
Weight	27 kg	36 kg
hl* (height of transformer)	217mm max	247mm max

8.1.5 Regenerative Discharge Unit

A06B-6089-H510

For the panel cut-out drawing, see Section 8.2 (g).

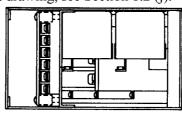
Terminal block: $M4 \times 4$ Weight: 0.8 kg

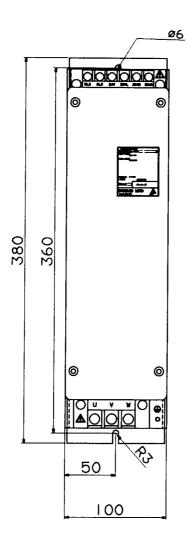

A06B-6089-H500

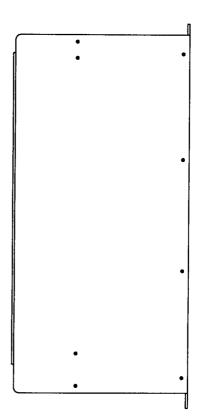
For the panel cut-out drawing, see Section 8.2 (h).

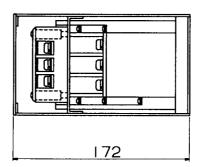
A06B-6089-H711 to H713

For the panel cut-out drawing, see Section 8.2 (i).)

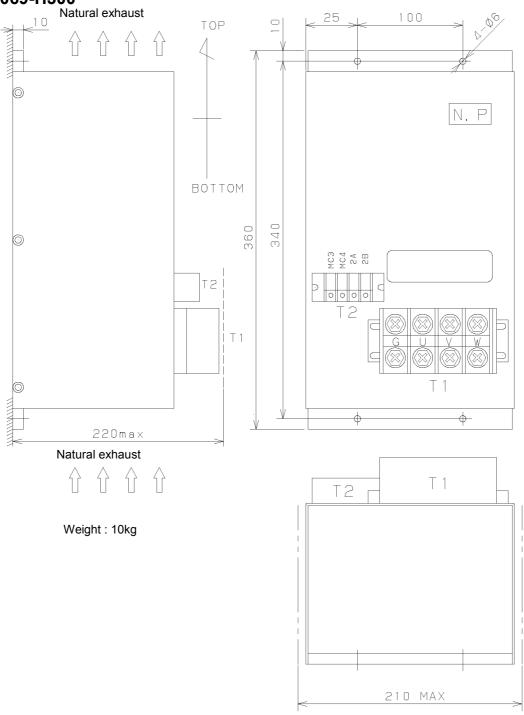


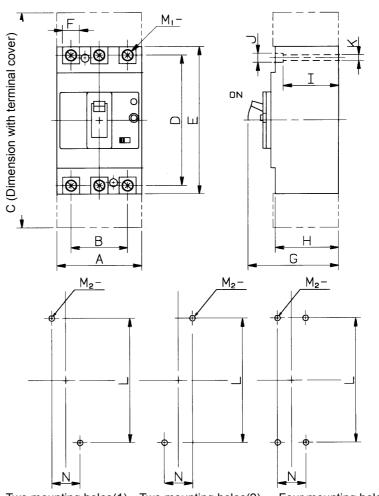

Drawing number	Weight
A06B-6089-H711	5Kg
A06B-6089-H712	6Kg
A06B-6089-H713	5Kg


8.1.6 Dynamic Brake Module (DBM)


A06B-6079-H401

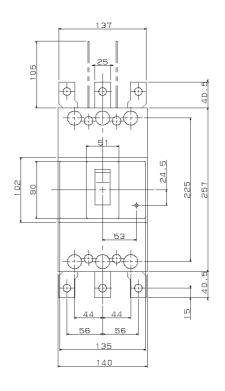
For the panel cut-out drawing, see Section 8.2 (j).

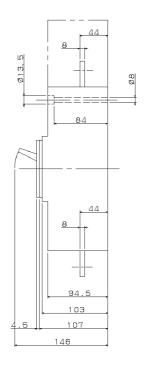


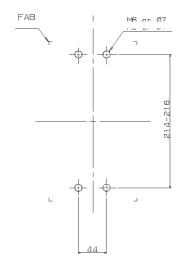

A06B-6069-H300

8.1.7 Circuit Breaker

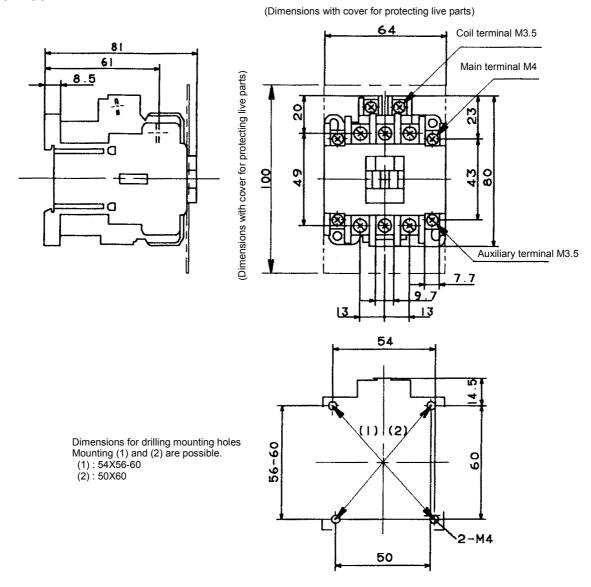
(a) to (j) A06B-6077-K101 to A06B-6077-K110

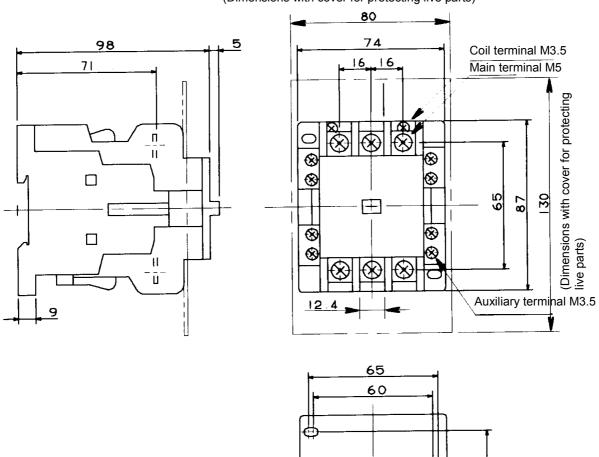

	Ordering drawing number	Α	В	С	D	E	M ₁₋	F	G	Н	ı	J	К	L	M ₂ .	N	Mounting
(a)	A06B-6077-K101	75	50	190	115	130	M5	17	80	56	49	ф8	φ5	110	M4	25	2 positions (1)
(b)	A06B-6077-K102																0 :::
(c)	A06B-6077-K103	75	50	190	115	130	M8	17	80	56	49	φ8	φ5	110	M4	25	2 positions
(d)	A06B-6077-K104																(1)
(e)	A06B-6077-K108																
(f)	A06B-6077-K105																
(g)	A06B-6077-K110	105	70	265	144	165	M8	25.5	84	56	47	φ8.5	φ4.5	126	M4	35	4 positions
(h)	A06B-6077-K109																
(i)	A06B-6077-K107																
(j)	A06B-6077-K106	75	50	156	80	96	M5	12.5	80	41	14	ф8.5	ф4.5	80-84	M4	25	2 positions (2)




Two mounting holes(1) Two mounting holes(2) Four mounting holes

The circuit breakers have two or four mounting holes.

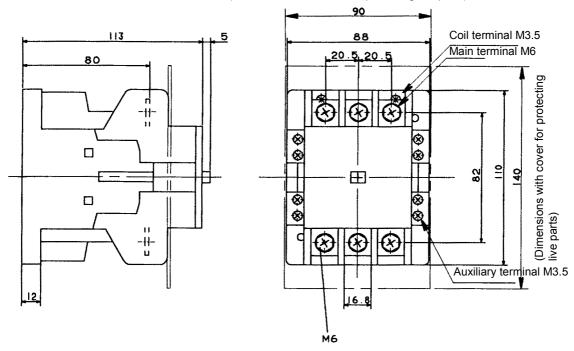

(k) A06B-6077-K111

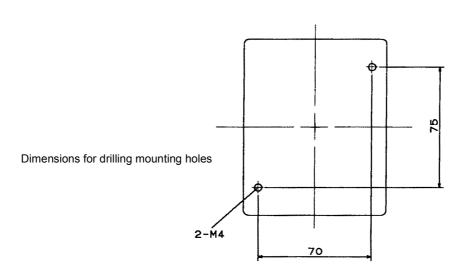

8.1.8 Magnetic Contactors

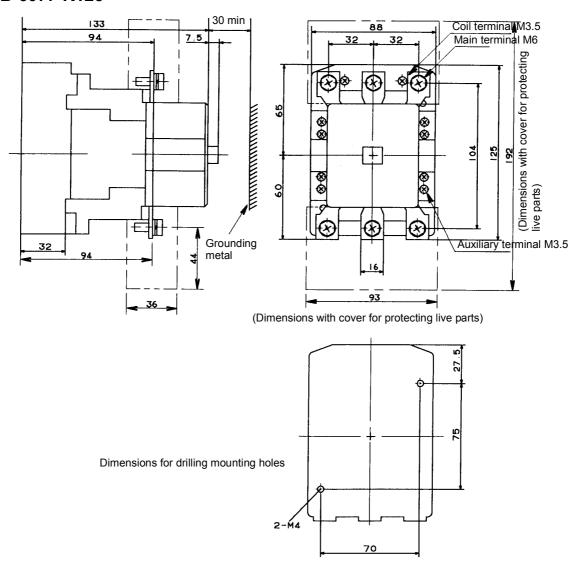
Ordering drawing	Fuji Electric part number		Operation coil	Auxiliary contact	
number	Body	Cover	voitage	structure	
A06B-6077-K121	SC-5-1	162 164	200V/50Hz 200-220V/60Hz	1a1b	0.38Kg

A06B-6077-K122, A06B-6077-K123

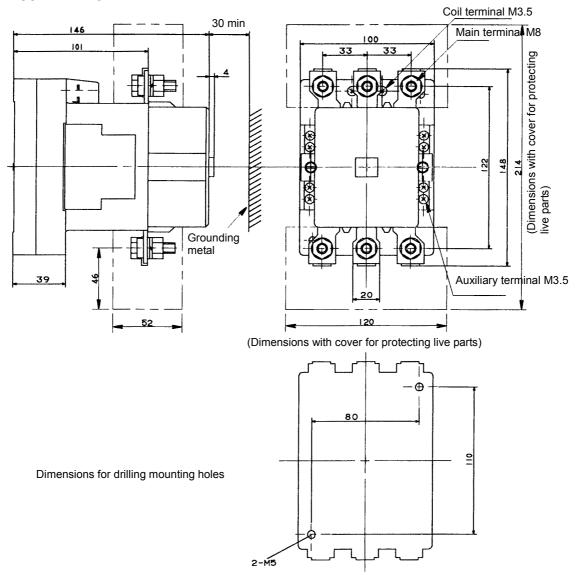
(Dimensions with cover for protecting live parts)

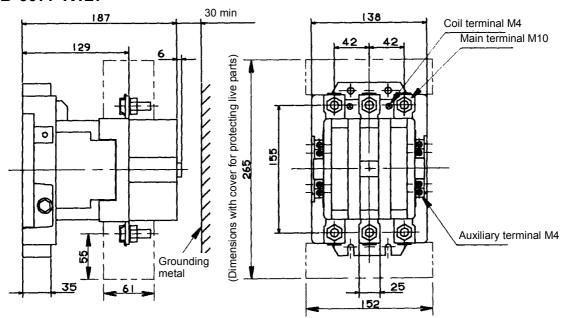


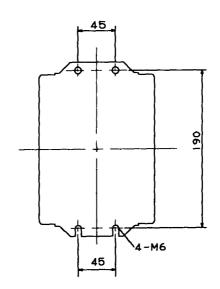

Dimensions for drilling mounting holes

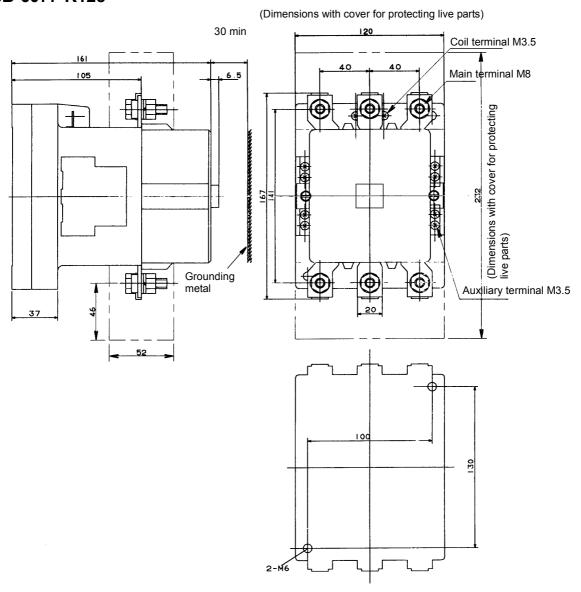

Ordering drawing	Fuji Electric part number		Operation coil voltage	Auxiliary contact	Weight
number	Body	Cover	voitage	structure	
A06B-6077-K122	SC-1N	SZ-1N/T	200V/50Hz	0-0h	0.68Kg
A06B-6077-K123	SC-2N	SZ-1N/T	200-220V/60Hz	2a2b	0.68Kg

(Dimensions with cover for protecting live parts)

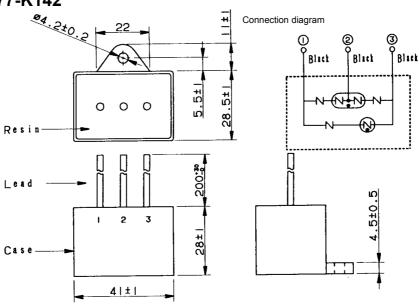



Ordering drawing	Fuji Electric part number		Operation coil	Auxiliary contact	
number	Body	Cover	voltage	structure	
A06B-6077-K124	SC-2SN	ICZ ZCNI/T	200V/50Hz 200-220V/60Hz	2a2b	1.3Kg

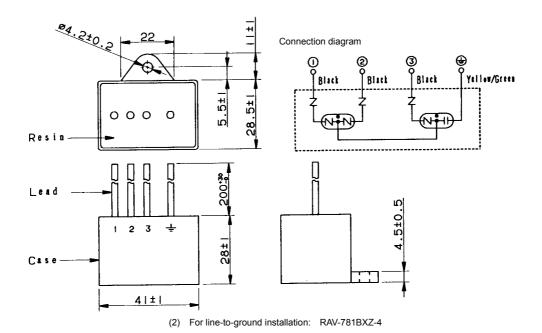

Ordering drawing	_	ctric part nber	Operation coil	Auxiliary contact	Weight
number	Body	Cover	voltage	structure	
A06B-6077-K125	SC-4N	IQ7_/M/T	200V/50Hz 200-220V/60Hz	2a2b	1.5Kg


Ordering drawing	Fuji Electric part number		Operation coil voltage	Auxiliary contact	
number	Body	Cover	voitage	structure	
A06B-6077-K126	SC-5N	197-5N/T	200V/50Hz 200-220V/60Hz	2a2b	2.5Kg

(Dimensions with cover for protecting live parts)

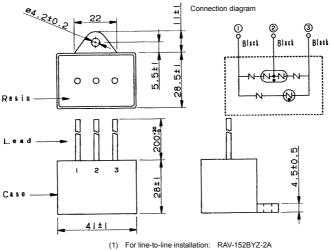


Ordering drawing	_	ctric part nber	Operation coil	Auxiliary contact	
number	Body	Cover	voltage	structure	
A06B-6077-K127	SC-8N	IQ7_QNI/T	200V/50Hz 200-220V/60Hz	2a2b	5.2Kg

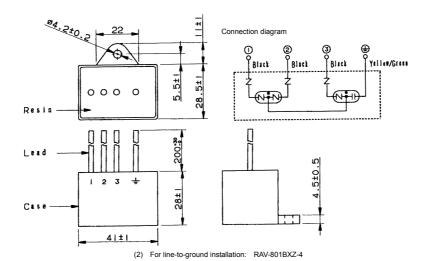


Ordering drawing	Fuji Electric part number		Operation coil voltage	Auxiliary contact	Weight
number	Body	Cover	voitage	structure	
A06B-6077-K128	SC-7N	197-5N/T	200V/50Hz 200-220V/60Hz	2a2b	3.4Kg

8.1.9 Lightning Surge Protector

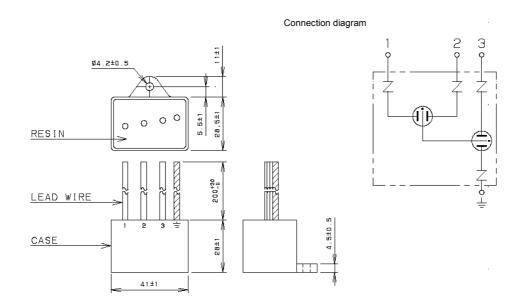


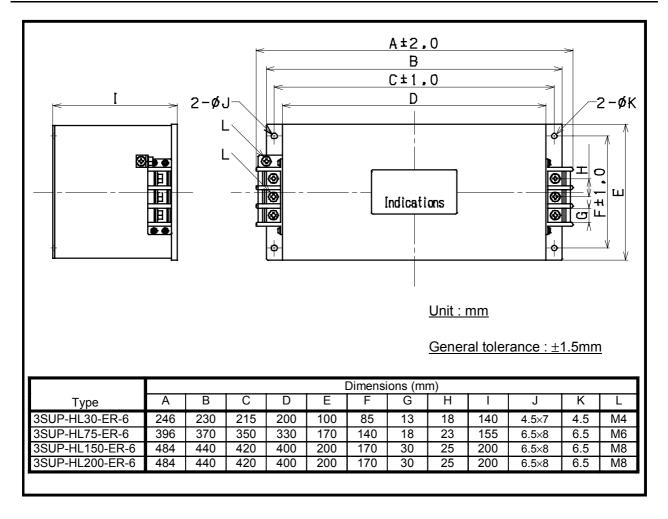
(1) For line-to-line installation: RAV-781BYZ-2



Specification	Rated voltage	Clamp voltage	Surge withstand current	Surge withstand voltage
R·A·V-781BYZ-2	250VAC	783VDC ±10%(V1.0)	2500A(8/20μS)	20kV(1.2/50μS)

Specification	Rated voltage	AC discharge start voltage	Surge withstand current	Maximum surge discharge start voltage
R·A·V-781BXZ-4	line-to-line: 430VAC, line-to-ground: 250VAC	700VAC ±20%(Ua)	2500A(8/20μS)	2.0kV(1.2/50μS)

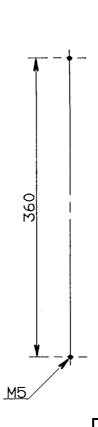


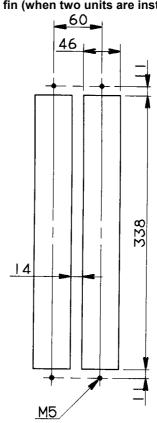

Specification Rated voltage		Clamp voltage	Surge withstand current	Surge withstand voltage
R·A·V-152BYZ-2A	460VAC	1470V ±10%(V1.0)	2500A(8/20μS)	20kV(1.2/50μS)

Specification	Rated voltage	AC discharge start voltage	Surge withstand current	Maximum surge discharge start voltage
R·A·V-801BXZ-4	line-to-line: 500VAC, line-to-ground: 290VAC	800VAC ±20%(Ua)	2500A(8/20μS)	2.32kV(1.2/50μS)

Specification	Rated voltage	AC discharge start voltage	Clamp voltage	Surge withstand current	Surge withstand voltage	Maximum surge discharge start voltage
R·C·M-601BUZ-4	250VAC	560VAC ±20%(Ua)	2000V ±10%(V1.0)	2500A (8/20μS)	20kV (1.2/50μS)	2kV (1.2/50μS)

8.1.10 Noise Filter

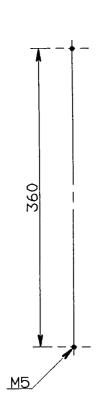

3SUP-HLx-ER-6: External dimensions of noise filter

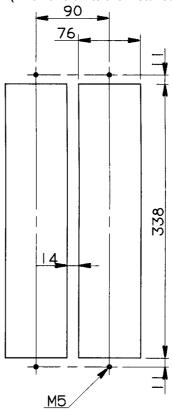

8.2 PANEL CUT-OUT DIAGRAMS

60-mm-wide amplifier

With no external fin

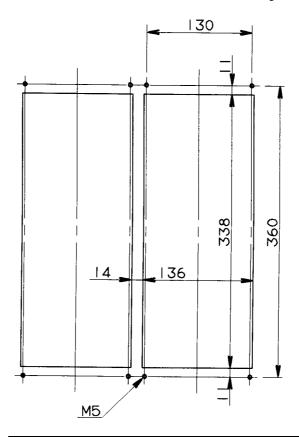
With external fin (when two units are installed side by side)

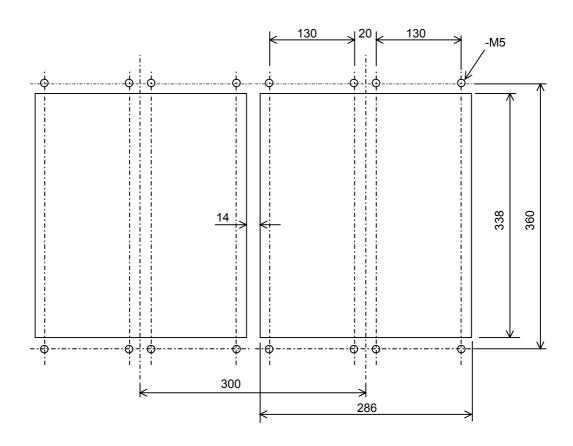



- 1 When an external fin is provided, attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) to the fin to protect it against oil and dust.
- 2 Reinforce the right and left sides of the panel cutout in the power magnetics cabinet by using fittings such as angles to maintain satisfactory contact between the sheet metal of the power magnetics cabinet and the flange of the amplifier.

90-mm-wide amplifier

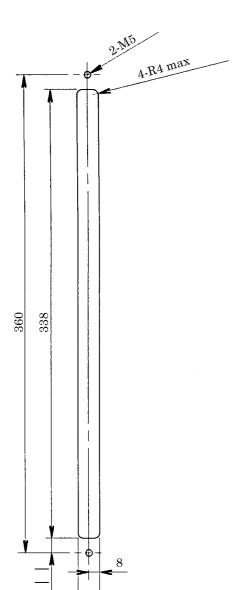
With no external fin

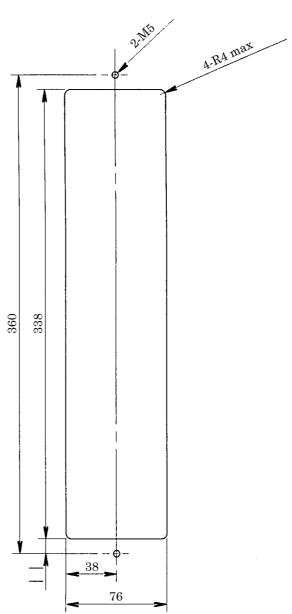

With external fin (when two units are installed side by side)


- 1 When an external fin is provided, attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) to the fin to protect it against oil and dust.
- 2 Reinforce the right and left sides of the panel cutout in the power magnetics cabinet by using fittings such as angles to maintain satisfactory contact between the sheet metal of the power magnetics cabinet and the flange of the amplifier.

150-mm-wide amplifier (when two units are installed side-by-side)

- 1 Attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) for protection against oil and dust.
- 2 Reinforce the right and left sides of the panel cutout in the power magnetics cabinet by using fittings such as angles to maintain satisfactory contact between the sheet metal of the power magnetics cabinet and the flange of the amplifier.

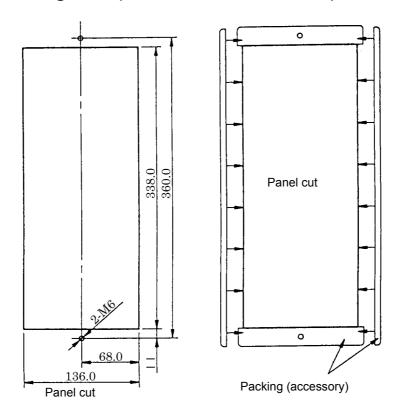

300-mm-wide amplifier (when two units are installed side-by-side)



- 1 Attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) for protection against oil and dust.
- 2 Reinforce the right and left sides of the panel cutout in the power magnetics cabinet by using fittings such as angles to maintain satisfactory contact between the sheet metal of the power magnetics cabinet and the flange of the amplifier.

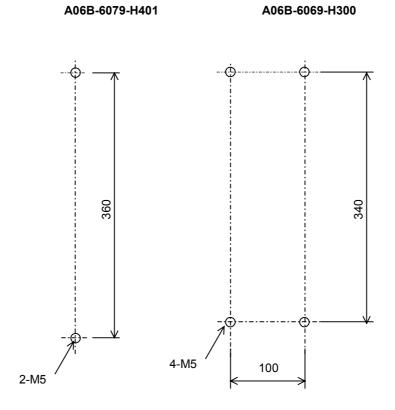
Regenerative discharge unit (A06B-6089-H510)

Regenerative discharge unit (A06B-6089-H500)



NOTE

Attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) for protection against oil and dust.


Regenerative discharge unit (A06B-6089-H711 to -H713)

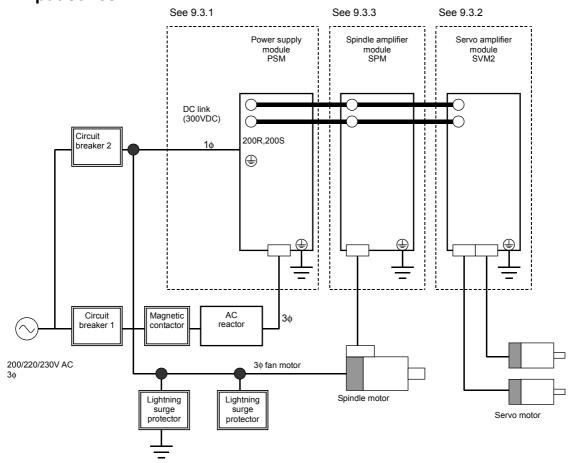
NOTE

Attach a packing (acrylonitrile-butadiene rubber, NBR [soft type]) for protection against oil and dust.

Dynamic brake module

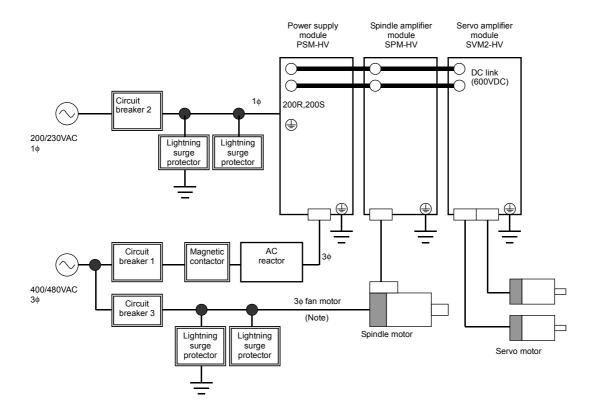
9.CONNECTION B-65282EN/05

9


CONNECTION

<u>B-65282EN/05</u> <u>9.CONNECTION</u>

9.1 TOTAL CONNECTION DIAGRAM


The following connection diagram is an example of combining a PSM, SPM, and a 2-axes SVM. For detailed descriptions about how to connect these units, see their respective connection diagrams.

200-V input series

9.CONNECTION B-65282EN/05

400-V input series

⚠ CAUTION

When the spindle motor model $\alpha 1 HVi$, $\alpha 1.5 HVi$, $\alpha 2 HVi$, $\alpha 3 HVi$, $\alpha 1 HVi$ T, $\alpha 2 HVi$ T, or $\alpha 3 HVi$ T is used, the specification of the fan motor is below: Single phase, 200/230 VAC

9.CONNECTION B-65282EN/05

9.2 **CONNECTOR LOCATION**

9.2.1 **Power Supply Module (PSM)**

PSM-5.5*i*

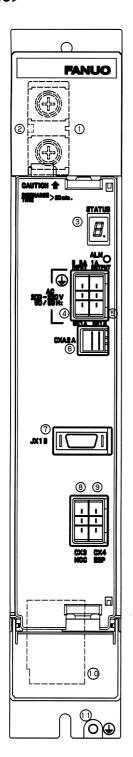


Table.9.2.1(a) Names of connectors and terminal blocks

	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	200VAC input connector	CX1A	
6	Output connector for PSM interface	CXA2A	24VDC power supply
8	Connector for main power MCC control signal	CX3	
9	Connector for ESP signal	CX4	
10	Connector for motor power line	CZ1	
11	Tapped hole for grounding the flange	=	

⚠ WARNING

Do not touch module components or connected cables while this LED is lit. There is a danger of electric shock.

9.CONNECTION B-65282EN/05

$\mathsf{PS} \underline{\mathsf{M-}11} i.\ \mathsf{PSM-}15 i.\ \mathsf{PSM-}11 \mathsf{HV} i,\ \mathsf{PSM-}18 \mathsf{HV} i$

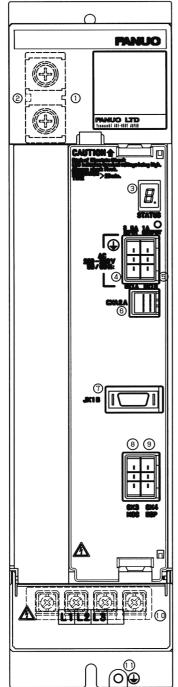


Table.9.2.1(b) Names of connectors and terminal blocks

	Table: 3.2.1(b) Names of Connectors and terminal blocks						
	Names	Display	Remarks				
1	DC link terminal block		Display the terminal block TB1				
2	DC link charge LED		(Warning)				
3	Status LED	STATUS					
4	200VAC input connector	CX1A					
6	Output connector for PSM interface	CXA2A	24VDC power supply				
8	Connector for main power MCC control signal	CX3					
9	Connector for ESP signal	CX4					
10	Terminal block for motor power line	TB2					
11	Tapped hole for grounding the flange	=					

⚠ WARNING

Do not touch module components or connected cables while this LED is lit. There is a danger of electric shock.

<u>B-65282EN/05</u> <u>9.CONNECTION</u>

PSM-26*i*, PSM-30*i*, PSM-37*i*, PSM-30HV*i*, PSM-45HV*i*

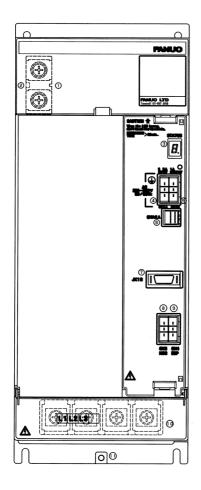
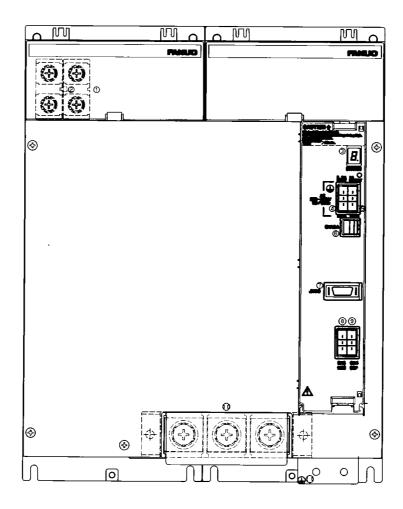


Table.9.2.1(c) Names of connectors and terminal blocks

	Names	Display	Remarks		
1	DC link terminal block		Display the terminal block TB1		
2	DC link charge LED		(Warning)		
3	3 Status LED	STATUS			
4	4 200VAC input connector	CX1A			
6	Output connector for PSM interface	CXA2A	24VDC power supply		
8	Connector for main power MCC control signal	CX3			
9	Connector for ESP signal	CX4			
10	Terminal block for motor power line	TB2			
11	Tapped hole for grounding the flange	<u></u>			


⚠ WARNING

PSM-55*i*, PSM-75HV*i*, PSM-100HV*i*

Table.9.2.1(d) Names of connectors and terminal blocks

	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	200VAC input connector	CX1A	
6	Output connector for PSM interface	CXA2A	24VDC power supply
8	Connector for main power MCC control signal	CX3	
9	Connector for ESP signal	CX4	
10	Terminal block for motor power line	TB2	
11	Tapped hole for grounding the flange		

⚠ WARNING

<u>B-65282EN/05</u> <u>9.CONNECTION</u>

PSMR-3*i*, **PSMR-5**.5*i*

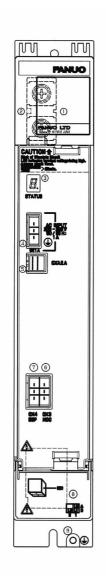


Table.9.2.1(e) Names of connectors and terminal blocks

	Names	Display	Remarks
1	1 DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	4 200VAC input connector		
5	Output connector for PSM interface	CXA2A	24VDC power supply
6	Connector for main power MCC control signal	CX3	
7	Connector for ESP signal	CX4	
8-1	Terminal block for motor power line	CZ1	XX key
8-2	Terminal block for regenerative discharge resistor	CZ2	YY key
9	Tapped hole for grounding the flange		

⚠ WARNING

9.2.2 Servo Amplifier Module (SVM)

60/90mm-wide SVM

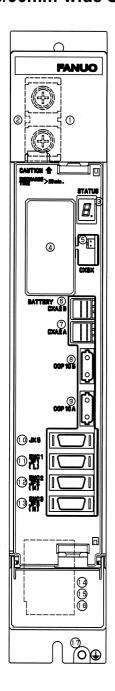


Table.9.2.2(a) Names of connectors and terminal blocks

No.	Names	Display	Remarks
1	DC link terminal block	-	Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	,
4	Location of the batteries for the SVM built-in-type absolute Pulsecoder	BATTERY	
5	Battery connector for the SVM built-in- type absolute Pulsecoder	CX5X	
6	Input connector for PSM interface	CXA2B	24VDC power supply The interface for the absolute Pulsecoder batteries is included.
7	Output connector for PSM interface	CXA2A	
8	FSSB optical input connector	COP10B	
9	FSSB optical output connector	COP10A	
10	Signal check connector	JX5	Unused
11	Pulsecoder connector : L axis	ENC1/JF1	
12	Pulsecoder connector : M axis	ENC2/JF2	
13	Pulsecoder connector : N axis	ENC3/JF3	
14	Connector for motor power line: L axis	CZ2L	For SVM1, CZ2
15	Connector for motor power line: M axis	CZ2M	
16	Connector for motor power line: N axis	CZ2N	
17	Tapped hole for grounding the flange		

⚠ WARNING

<u>B-65282EN/05</u> <u>9.CONNECTION</u>

SVM1-360*i*, SVM1-180Hv*i*

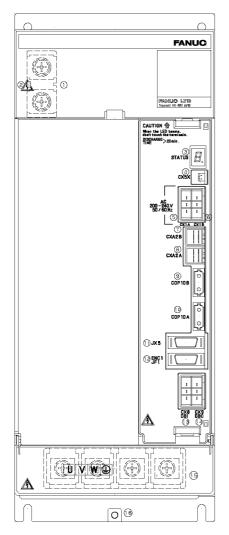


Table.9.2.2(b) Names of connectors and terminal blocks

	rable.9.2.2(b) Names of connectors and terminal blocks			
No.	Names	Display	Remarks	
1	DC link terminal block		Display the terminal	
'	DC IIIK terriiriai biock		block TB1	
2	DC link charge LED		(Warning)	
3	Status LED	STATUS		
4	Battery connector for the SVM built-in-	CX5X		
	type absolute Pulsecoder			
5	200VAC power supply input connector	CX1A	Power supply for DB	
6	200VAC power supply input connector	CX1B	Tower supply for BB	
			24VDC power	
l _		0)/4.05	supply	
7	Input connector for PSM interface	CXA2B	The interface for the	
			absolute Pulsecoder	
-			batteries is included.	
8	Output connector for PSM interface	CXA2A		
9	FSSB optical input connector	COP10B		
10	FSSB optical output connector	COP10A		
11	Signal check connector	JX5	Unused	
12	Pulsecoder connector	ENC1/JF1		
13	Dynamic module interface for connector	CX8		
14	Connector for the magnetic contactor drive coil of the dynamic brake module	CX9		
15	Terminal block for connection to motor power line		Display the terminal block TB2	
16	Tapped hole for grounding the flange	<u></u>		

⚠ WARNING

SVM1-360HVi

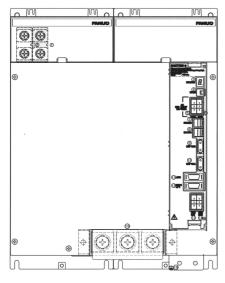


Table.9.2.2(c) Names of connectors and terminal blocks

No.	Names	Display	Remarks
1	1 DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	Battery connector for the SVM built-in- type absolute Pulsecoder	CX5X	
5	200VAC power supply input connector	CX1A	Davier aventy for DD
6	200VAC power supply input connector	CX1B	Power supply for DB
7	Input connector for PSM interface	CXA2B	24VDC power supply The interface for the absolute Pulsecoder batteries is included.
8	Output connector for PSM interface	CXA2A	
9	FSSB optical input connector	COP10B	
10	FSSB optical output connector	COP10A	
11	Signal check connector	JX5	Unused
12	Pulsecoder connector	ENC1/JF1	
13	Dynamic module interface for connector	CX8	
14	Connector for the magnetic contactor drive coil of the dynamic brake module	CX9	
15	Terminal block for connection to motor power line		Display the terminal block TB2
16			

⚠ WARNING

9.2.3 **Spindle Amplifier Module (SPM)**

SPM-2.2*i*, SPM-5.5*i*, SPM-5.5HV*i* (TYPE A, B)

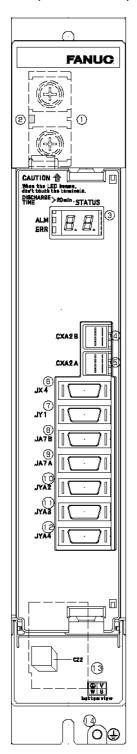


Table.9.2.3(a) Names of connectors and terminal blocks

	Names	Display	Remarks
1	DC link terminal block	,	Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	Input connector for PSM interface	CXA2B	24VDC power supply
5	Output connector for PSM interface	CXA2A	
6	Communication connector between Positioncoder signal and SPM	JX4	The signal for the check board is also output.
7	Connector for load meter and speedometer	JY1	The signal for the check board is also output.
8	Input connector for electric serial interface	JA7B	
9	Output connector for electric serial interface	JA7A	
10	Connector for spindle sensor for motor	JYA2	Mi, MZi, and BZi sensors
11	Connector for Positioncoder and external single rotation signal	JYA3	
12	Connector for separate spindle sensor	JYA4	TYPE B only
13	Connector for motor power line		Display the CZ2
14	Tapped hole for grounding the flange	<u></u>	

⚠ WARNING

SPM-11i, SPM-15i, SPM-11HVi, SPM-15HVi (TYPE A, B)

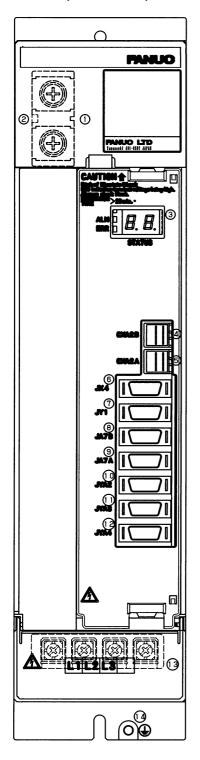


Table.9.2.3 (b) Names of connectors and terminal blocks

	Table.9.2.3 (b) Names of connectors and terminal blocks		
	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	Input connector for PSM interface	CXA2B	24VDC power supply
5	Output connector for PSM interface	CXA2A	
6	Communication connector between Positioncoder signal and SPM	JX4	The signal for the check board is also output.
7	Connector for load meter and speedometer	JY1	The signal for the check board is also output.
8	Input connector for electric serial interface	JA7B	
9	Output connector for electric serial interface	JA7A	
10	Connector for spindle sensor for motor	JYA2	Mi, MZi, and BZi sensors
11	Connector for Positioncoder and external single rotation signal	JYA3	
12	Connector for separate spindle sensor	JYA4	TYPE B only
13	Connector for motor power line		Display the TB2
14	Tapped hole for grounding the flange		

∱ WARNING

<u>B-65282EN/05</u> <u>9.CONNECTION</u>

SPM-22*i*, SPM-26*i*, SPM-30*i*, SPM-30HV*i*, SPM-45HV*i* (TYPE A, B)

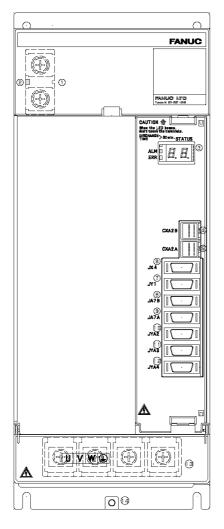


Table.9.2.3 (c) Names of connectors and terminal blocks

	Table.9.2.3 (c) Names of connectors and terminal blocks			
	Names	Display	Remarks	
1	DC link terminal block		Display the terminal block TB1	
2	DC link charge LED		(Warning)	
3	Status LED	STATUS		
4	Input connector for PSM interface	CXA2B	24VDC power supply	
5	Output connector for PSM interface	CXA2A		
6	Communication connector between Positioncoder signal and SPM	JX4	The signal for the check board is also output.	
7	Connector for load meter and speedometer	JY1	The signal for the check board is also output.	
8	Input connector for electric serial interface	JA7B		
9	Output connector for electric serial interface	JA7A		
10	Connector for spindle sensor for motor	JYA2	Mi, MZi, and BZi sensors	
11	Connector for Positioncoder and external single rotation signal	JYA3		
12	Connector for separate spindle sensor	JYA4	TYPE B only	
13	Connector for motor power line		Display the TB2	
14	Tapped hole for grounding the flange			

⚠ WARNING

SPM-45*i*, **SPM-55***i*, **SPM-75HV***i*, **SPM-100HV***i* (**TYPE A**, B)

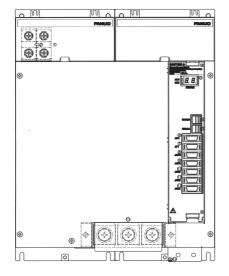
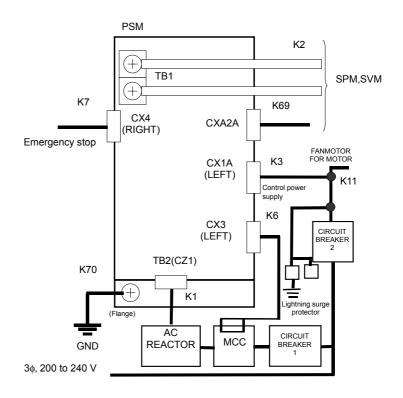
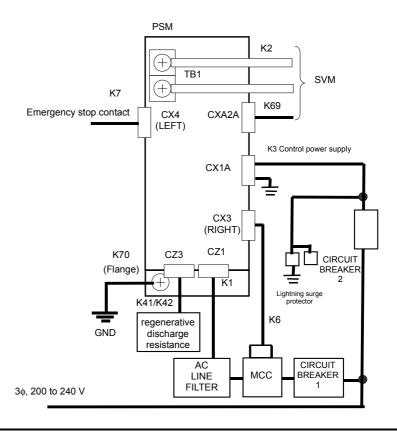


Table.9.2.3 (d) Names of connectors and terminal blocks

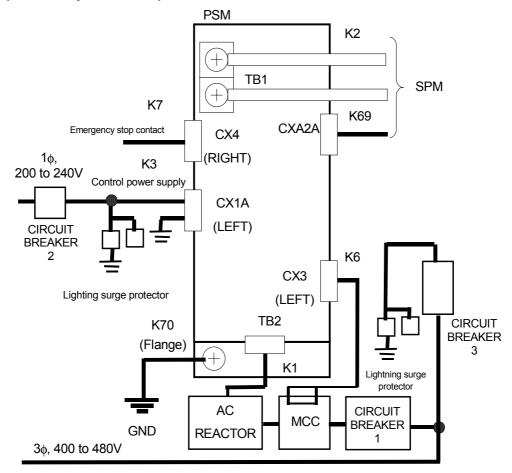

	Names	Display	Remarks
1	DC link terminal block		Display the terminal block TB1
2	DC link charge LED		(Warning)
3	Status LED	STATUS	
4	Input connector for PSM interface	CXA2B	24VDC power supply
5	Output connector for PSM interface	CXA2A	
6	Communication connector between Positioncoder signal and SPM	JX4	The signal for the check board is also output.
7	Connector for load meter and speedometer	JY1	The signal for the check board is also output.
8	Input connector for electric serial interface	JA7B	
9	Output connector for electric serial interface	JA7A	
10	Connector for spindle sensor for motor	JYA2	Mi, MZi, and BZi sensors
11	Connector for Positioncoder and external single rotation signal	JYA3	
12	Connector for separate spindle sensor	JYA4	TYPE B only
13	Connector for motor power line		Display the TB2
14	Tapped hole for grounding the flange		

⚠ WARNING

9.3 CABLE CONNECTION DETAILS


9.3.1 Power Supply Module Connection Diagram

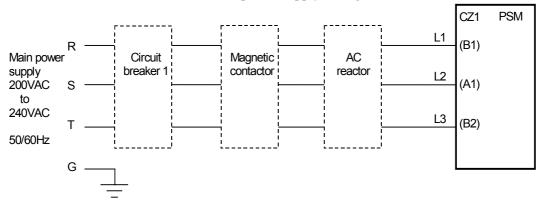
PSM (200-V input series)


- 1 Always install the circuit breakers, magnetic contactor, and AC reactor.
- 2 To protect the equipment from lightning surge voltages, install a lightning surge protector across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet. See Appendix A for details.
- 3 Always connect the control power supply cable to the CX1A. If it is connected to the CX1B, fuses inside the unit may below.
- 4 See Section 5.2 for the type of the cable to be used for making a connection to a frame ground.

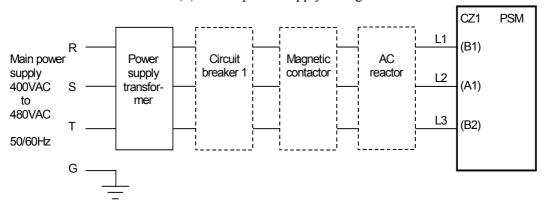
PSMR (200-V input series)

- 1 Always install the circuit breakers, magnetic contactor, and AC reactor.
- 2 To protect the equipment from lightning surge voltages, install a lightning surge protector across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet. See Appendix A for details.
- 3 Always connect the control power supply cable to the CX1A. If it is connected to the CX1B, fuses inside the unit may below.

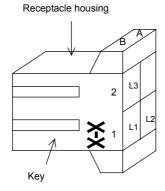
PSM-HV (400-V input series)


- 1 Always install the circuit breakers, magnetic contactor, and AC reactor.
- 2 To protect the equipment from lightning surge voltages, install a lightning surge protector across each pair of power lines and across each power line and the grounding line at the power inlet of the power magnetics cabinet. See Appendix A for details.
- 3 Always connect the control power supply cable to the CX1A. If it is connected to the CX1B, fuses inside the unit may below.
- 4 See Section 5.2 for the type of the cable to be used for making a connection to a frame ground.

9.3.1.1 Details of cable K1 (power supply line)


Cable K1 is used to supply main power to the power supply module. Make sure that the cable used between the power supply and power supply module satisfies the requirements listed in Table 9.3.1.1.

(1) For PSM - PSM-5.5*i*


(a) For a power supply voltage of 200 to 240 VAC

(b) For a power supply voltage of 400 to 480 VAC

Pin location of CZ1

Cable K1 Specifications

	Applic	licable cable	
Model	Heavy-duty power cable (Note 1)	Heat-resistant cable (Note 2)	
PSM-5.5 <i>i</i>	5.5mm ²	5.5mm ²	

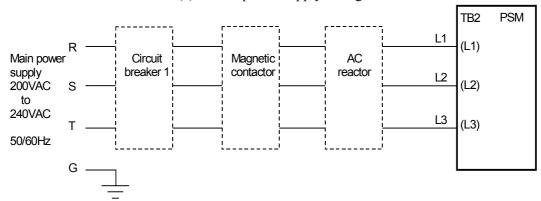
NOTE

- 1 Four-conductor polyvinyl heavy-duty power cable (JIS C3312) (VCT : heat-resistant 60°C)
- 2 Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.
- 3 The cross-section area of each cable is determined under the following conditions:
 - (1) At PSM rated output
 - (2) Environment temperature of cable: 30°C
 - (3) Number of harnesses 3 (No current flows through the ground wire during normal operation.)

Select a required cable cross-section area according to the user environment and conditions.

Connector Specifications

Model	Connector key (Note 1)	Applicable contact (Note 1)	
PSM-5.5 <i>i</i>	XX	M size	
F 31VI-3.31	1-917807-2	316041-6	


See Subsection 9.4 for detailed explanations about the specification of the D-5000.

NOTE

Tyco Electronics AMP D-5000 series Select a contact size according to the cross-section area of the cable.

- PSM-11*i*

(a) For a power supply voltage of 200 to 240 VAC

(b) For a power supply voltage of 400 to 480 VAC

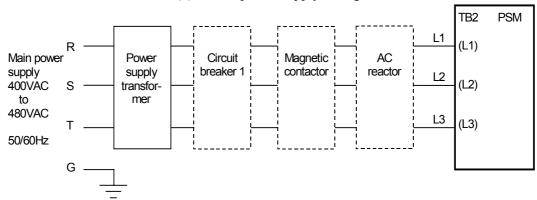
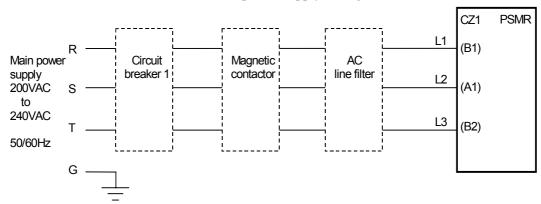


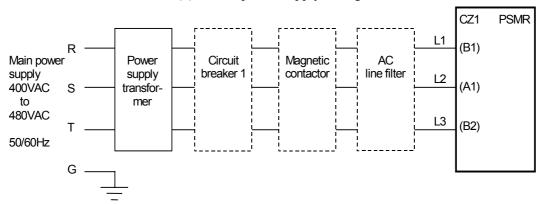
Table.9.3.1.1(a) Cable K1 Specifications

rubicio (u) dubic iti deconicatione				
	Applicable cable			
Model	Heavy-duty power cable (Note 1)	Heat-resistant cable (Note 2)	Terminal screw	Tightening torque
PSM-11 <i>i</i>	-	8mm ² or more	NAA	1.1 to
PSM-15 <i>i</i>	14 mm ² or more	14mm ² or more	M4	1.5N·m
PSM-26 <i>i</i>	-	22mm ² or more	MC	0.54-
PSM-30 <i>i</i>	-	22mm ² or more	M6	3.5 to 4.5N⋅m
PSM-37 <i>i</i>	-	38mm ² or more	M6 (Note 3)	4.5111
PSM-55 <i>i</i>	-	R,S,T: 80mm ² or more G: 40mm ² or more	M10 M6	

NOTE


1 Four-conductor polyvinyl heavy-duty power cable (JIS C3312) (VCT : heat-resistant 60°C)

- 2 Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.
- 3 Applicable crimp terminal for PSM-37*i* : 38-6S
- 4 The cross-section area of each cable is determined under the following conditions:
 - (1) At PSM rated output
 - (2) Environment temperature of cable: 30°C
 - (3) Number of harnesses 3 (No current flows through the ground wire during normal operation.)


Select a required cable cross-section area according to the user environment and conditions.

(2) For PSMR

(a) For a power supply voltage of 200 to 240 VAC

(b) For a power supply voltage of 400 to 480 VAC

Cable K1 Specifications

Model	Applicable	e cable
Model	Heavy-duty power cable (Note 1) Heat-resistant ca	
PSMR-3i	3.5mm ²	3.5mm ²
PSMR-5.5i	5.5mm ²	5.5mm ²

NOTE

- 1 Four-conductor polyvinyl heavy-duty power cable (JIS C3312) (VCT : heat-resistant 60°C)
- 2 Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.

Connector Specifications

Model	Connector key (Note 1)	Applicable contact (Note 1)
PSMR-3i	XX	M size
PSMR-5.5 <i>i</i>	1-917807-2	316041-6

<u>B-65282EN/05</u> <u>9.CONNECTION</u>

See Subsection 9.4 for detailed explanations about the specification of the D-5000.

NOTE

Tyco Electronics AMP D-5000 series Select a contact size according to the cross-section area of the cable.

(3) For PSM-HV

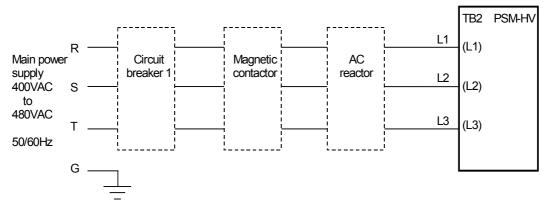
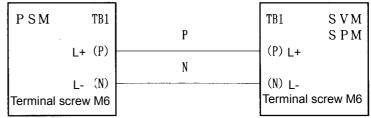


Table.9.3.1.1(b) Cable K1 Specifications

	Applicable cable			
Model	Heavy-duty power cable (Note 1)	Heat-resistant cable (Note 2)	Terminal screw	Tightening torque
PSM-11HVi	5.5 mm ² or more	5.5mm ² or more	N/A	1 1 to 1 ENm
PSM-18HVi	-	8mm ² or more	M4	1.1 to 1.5Nm
PSM-30HVi	-	14mm ² or more	M6	3.5 to 4.5Nm
PSM-45HVi	-	22mm ² or more	IVIO	3.5 (0 4.5)(11)
PSM-75HVi	-	R,S,T: 38mm ² or more G: 22mm ² or more	M10 M6	
		R,S,T: 80mm ² or more	M10	
PSM-100HVi	-	G: 40mm ² or more	M6	

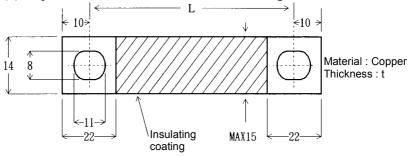
NOTE

- 1 Four-conductor polyvinyl heavy-duty power cable (JIS C3312) (VCT : heat-resistant 60°C)
- 2 Fire-retardant polyflex wire (heat-resistant 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.
- 3 The cross-section area of each cable is determined under the following conditions:
 - (1) At PSM rated output
 - (2) Environment temperature of cable: 30°C
 - (3) Number of harnesses 3 (No current flows through the ground wire during normal operation.)

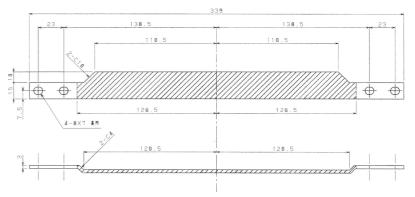

Select a required cable cross-section area according to the user environment and conditions.

9.3.1.2 Details of short bar K2

Short bar K2 is used to supply the DC link voltage generated in each power supply module to other modules.


When designing a short bar for connecting modules placed close to each other, refer to the "Specifications of short bars for connecting modules placed close to each other."

To determine the length of a short bar to be used for connecting modules placed separately, refer to "Location of terminal board TB1." Optional short bars are available from FANUC. Refer to the "DC Link Short Bar Specifications."



Specifications of short bars for connecting modules placed close to each other

(1) Specifications of short bars for connecting the modules

(2) Specifications of short bars for connecting the modules (Figure example of short bars for connecting 300-mm-wide modules)

Hatched area: Apply PVC coating. Thickness: 1t or more

Table.9.3.1.2 Short Bar K2 Specifications

Module location	Short bar length L	Short bar thickness t	Cross-section area (Note)	
Unit of 300mm-wide	300mm	3.0mm	50mm ²	
Unit of 150mm-wide	150mm	1.5mm	21mm ²	
Unit of 90mm-wide	90mm	1.5mm	21 mm ²	
Unit of 60mm-wide	60mm	1.5mm	21 mm ²	

- 1 Modules need not necessarily be connected with a short bar (copper plate).
 - If the modules cannot be placed close to each other, however, they cannot help being separated from each other.
 - If you connect them with a power cable, however, the cable may not be thinner than indicated below and must be insulated with heat-resistant polyvinyl.
- 2 When the width is 300 mm (SPM-45*i*, SPM-55*i*, PSM-55*i*, SPM-75HV*i*, SPM-100HV*i*, PSM-75HV*i*, PSM-100HV*i*, or SVM1-360HV*i*), cabling needs to be performed using the two screws at P and N. So, use a dedicated short bar (A06B-6078-K841, two each per set).

Location of terminal board TB1 on each module

Fig.9.3.1.2(a) and Fig.9.3.1.2(b) show the location of terminal board TB1 on each module.

If you want to install modules at distances not specified herein, design short bars by referring to the dimensions shown below.

When designing a short bar for connecting 300-mm-wide modules in particular, conform to the above figure specifications and apply the above coating.

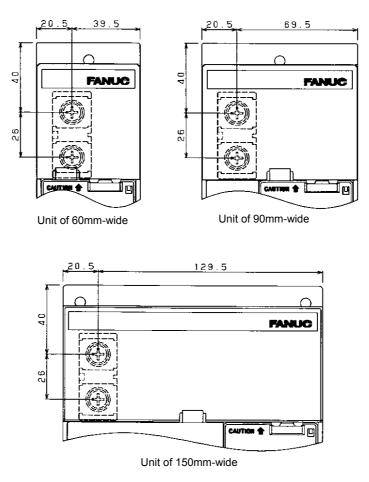


Fig.9.3.1.2(a) Location of Terminal Board TB1 on the units of 60-, 90-, and 150-mm-Wide

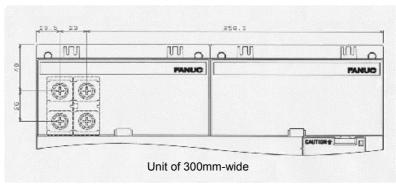
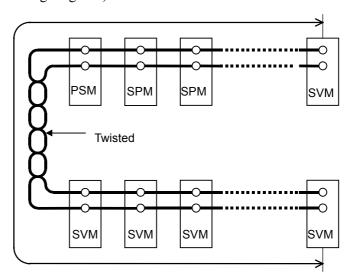
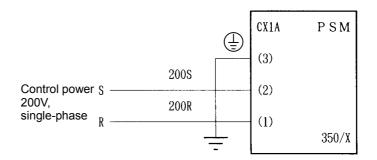



Fig.9.3.1.2(b) Location of Terminal Board TB1 on the units of 300-mm-Wide

<u>B-65282EN/05</u> 9.CONNECTION


About the length of the DC link cable

Suppress the length of the DC link cable to within 1.5 m. (See the following diagram.)

9.3.1.3 Details of cable K3

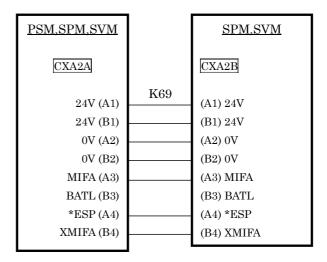
Cable K3 is used to supply control power to the power supply module.

Cable specification:

Two-conductor polyvinyl heavy-duty power cable (JIS C3312), conductor size of 1.25 mm² (50/0.18),

PVC sheath 9.6 mm in diameter

Connector specification:


Tyco Electronics AMP connector with receptacle housing 1-178128-3 and receptacle contact 1-175218-2

NOTE

Always connect cable K3 to the CX1A. If it is connected to the CX1B, fuses inside the unit may blow.

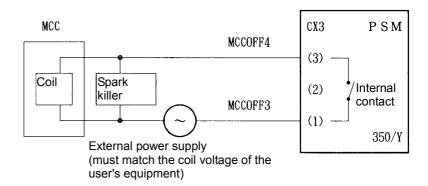
9.3.1.4 Details of cable K69

The cable K69 is used between the PSM, SPM, and SVM.

Connector specification

Manufacturer	Tyco Electronics AMP	
	D-2100 series	
Connector	Housing 1-1318119-4 (1 pieces)	
specification	Contact 1318107-1 (8 pieces)	
	[Ordering information : A06B-6110-K210 connector only]	
Conductor size	0.5mm ² , AWG20	
Instruction	4.00.2.02 *****	
outer diameter	1.08-2.83 mm	

NOTE


The (B3)BATL is the interface used to connect the batteries for the absolute Pulsecoder. For details, see the description of battery connection in Subsection 9.3.2.10.

⚠ WARNING

- 1 When using the built-in battery (A06B-6073-K001), never connect the BATL(B3) of the connector CXA2A/CXA2B.
 - Otherwise, a short-circuit will occur between the battery output voltages for different SVMs, possibly resulting in the batteries becoming very hot, which is dangerous.
- 2 Do not connect more than one battery to the same BATL(B3) line. Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.

9.3.1.5 Details of cable K6

Cable K6 is used to control the magnetic contactor if it is installed outside the unit.

Cable specification:

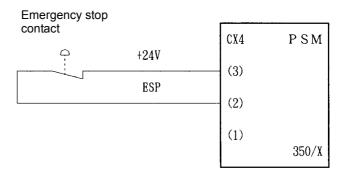
Two-conductor polyvinyl heavy-duty power cable (JIS C3312), conductor size of 1.25 mm² (50/0.18), PVC sheath 9.6 mm in diameter

Connector specification:

Tyco Electronics AMP connector with receptacle housing 2-178128-3 and receptacle contact 1-175218-2

Internal-contact specification:

	Resistive load (cos¢=1)	Inductive load (cos = 0.4, L/R=7msec)	
Rated load	250VAC, 5A / 30VDC, 5A	250VAC, 2A / 30VDC, 2A	
Maximum contact rating	5A	5A	


NOTE

Always install a spark killer (CR) that matches the magnetic contactor to protect the internal contacts. The following table lists the recommended capacitances and resistances.

Coil voltage	С	R
24VDC	0.22μF	22Ω
100 to 230VAC	0.1μF	220Ω

9.3.1.6 Details of cable K7

Cable K7 is used to supply an emergency stop signal to the power supply module.

Cable specification:

Two-conductor polyvinyl heavy-duty power cable (JIS C3312), conductor size of 1.25 mm² (50/0.18), PVC sheath 9.6 mm in diameter

Connector specification:

Tyco Electronics AMP connector with receptacle housing 1-178128-3 and receptacle contact 1-175218-2

(1) When the contact is ON (closed), the spindle motor and servo motor are enabled.

When the contact is OFF (open), the external magnetic contactor (MCC) is in the off state, and the spindle motor and servo motor do not operate.

- (2) When the contact is set to OFF (open) during motor rotation, the spindle motor decelerates, then stops, and the servo motor is stopped by the dynamic brake.
- (3) The contact input signal is specified as follows:
 - <1> As the external contact capacity, a voltage of at least 30 VDC and a current of at least 100 mA are required.
 - <2> Significant levels (with the voltage between input pins) when the contactless signal input mode is used: Low level "logic 0": Up to 2 V

High level "logic 1": At least 20 V

(4) When the PSM main power is turned off for safety in such a case that the machine protection door is open, the contact of the ESP signal (CX4), which is input to the PSM, must be set to OFF (open) within 200 ms after turn-off of the PSM main power. When the contact of the ESP signal (CX4) remains ON (closed) after the PSM main power is turned off, a DC link low-voltage alarm (alarm No. 4) occurs in the PSM.

9.3.1.7 Details of cable K70

(a) The cable K70 is used to connect the connector CX1A on the power supply module to the frame ground of the cabinet.

Conductor size: 1.25 mm²

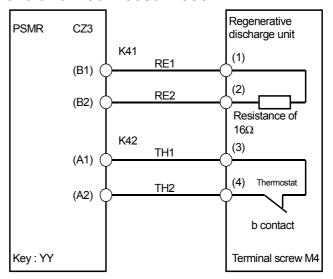
- (b) The cable K70 is used to connect the metal frame of the power supply module to the frame ground of the cabinet.
- (c) The cable K70 is used to connect the metal frames of the servo amplifier module and spindle amplifier module to the frame ground of the cabinet.

Table 4.3.1.7 Grounding cable conductor diameter

Motor power cable cross-section S (mm²)	Grounding cable cross-section (mm²)
S ≤ 5.5	5.5 or greater
5.5 < S ≤ 16	S or greater
16 < S ≤ 35	16 or greater
35 < S	S/2 or greater

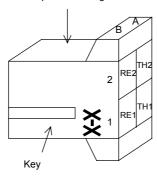
(d) The cable K70 is used to connect the metal frame of the dynamic brake module (DBM) to the frame ground of the cabinet. Select the size of the cable according to Table 4.3.1.7. The cross-section size of the motor power cable listed in the table complies with the conductor diameter of the motor power cable used in a unit to which the DBM is connected.

NOTE


The following M5 crimp terminal can be used with a cable having a large conductor diameter.

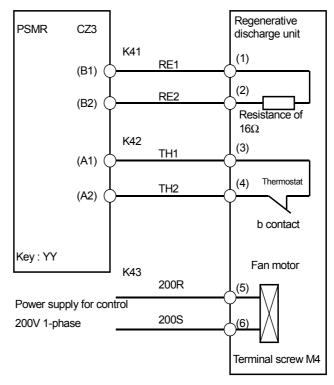
Nichifu Co., Ltd. CB22-5S

Overall conductor size range: 16.78 to 22.66 mm²


9.3.1.8 Detailed description of the connection of cables K41 (for regenerative discharge resistance), K42 (for thermostat), and K43 (for fan motor)

Connection for A06B-6089-H510 and A06B-6089-H500

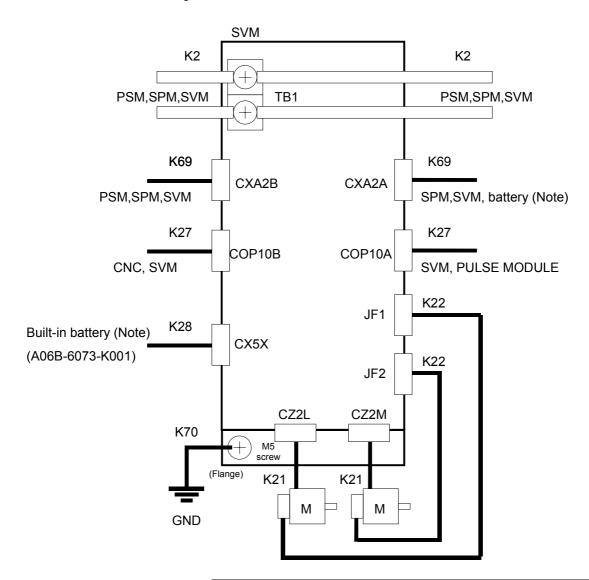
Tyco Electronics AMP D-5000


Receptacle housing

Cable	Applicable cable	Connector	Applicable
number	VCT(heat resistant 60°C (Note 1)	key (Note 2)	contact (Note 2)
K41	2mm ² Two-conductor polyvinyl heavy-duty power cable (JIS C3312)	YY 2-917807-2	S size 316040-6
K42	1.25mm ² Two-conductor polyvinyl heavy-duty power cable (JIS C3312)		S size 316040-6

- 1 Run cables K41 and K42 without tying them in a bundle.
- 2 CZ1 near them is for the power supply. Be careful of the connector key.

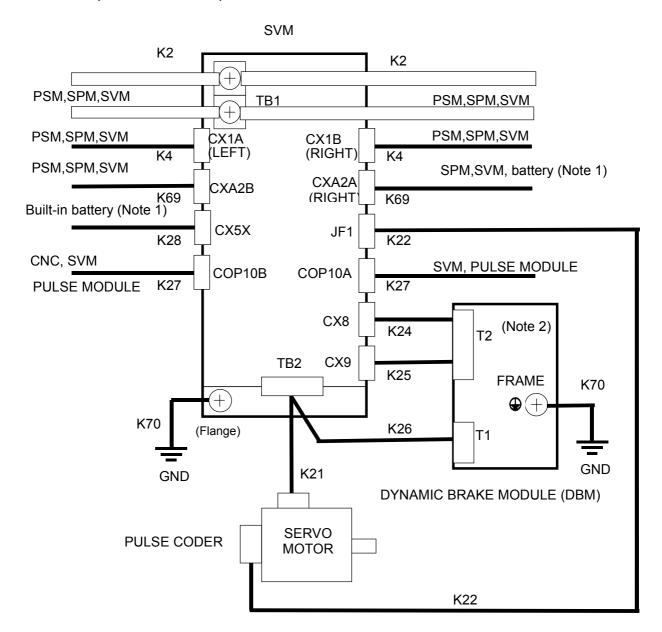
Connection for A06B-6089-H711 to -H713


Cable	Applicable cable	Connector	Applicable	
number	VCT(heat resistant 60°C (Note 1)	key (Note 2)	contact (Note 2)	
K41	2mm ² Two-conductor polyvinyl heavy-duty power cable (JIS C3312)	YY	S size 316040-6	
K42	1.25mm ² Two-conductor polyvinyl heavy-duty power cable (JIS C3312)	2-917807-2	S size 316040-6	
K43	2mm ² Two-conductor polyvinyl heavy-duty power cable (JIS C3312)			

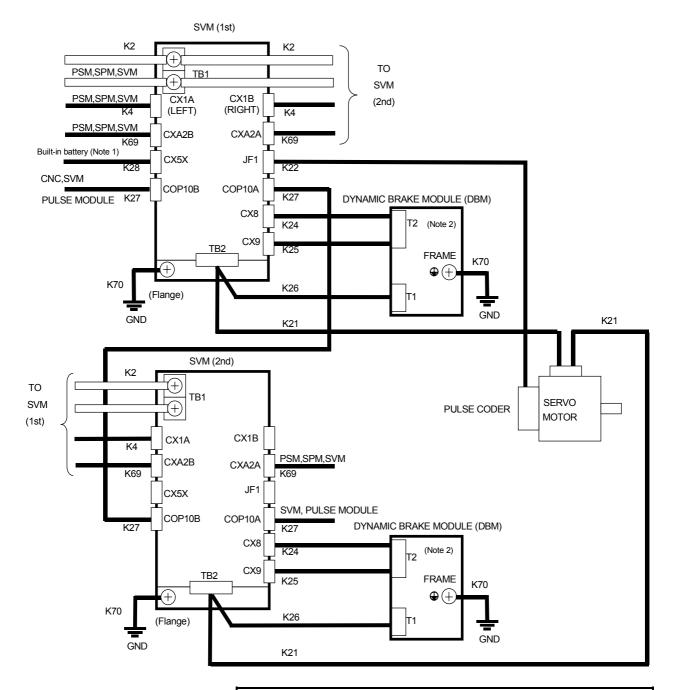
- 1 Run cables K41, K42, and K43 without tying them in a bundle.
- 2 CZ1 near them is for the power supply. Be careful of the connector key.

<u>B-65282EN/05</u> <u>9.CONNECTION</u>

9.3.2 Servo Amplifier Module Connection Diagram


60mm- or 90mm-wide SVM (example : SVM2) Without connection to dynamic brake module

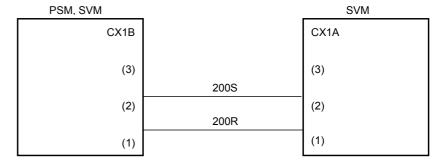
NOTE


See Subsection 9.3.2.10 for connection to the battery or built-in battery.

SVM1-360*i*, SVM1-180HV*i*, SVM1-360HV*i*

- 1 See Subsection 9.3.2.10 for connection to the battery or built-in battery.
- 2 Connect one dynamic brake module for each servo amplifier.

SVM1-360i, SVM1-180HVi, SVM1-360HVi (Control at single motor and twin amplifier (SMTA))


- 1 See Subsection 9.3.2.10 for connection to the battery or built-in battery.
- 2 Connect one dynamic brake module for each servo amplifier.

9.3.2.1 Details of cable K2

The cable K2 is used to connect the DC link. See Item 9.3.1.2.

9.3.2.2 Details of cable K4

Cable K4 is a connection cable used to supply power (single phase, 200 VAC) for driving the dynamic brake unit to the SVM.

Example cable:

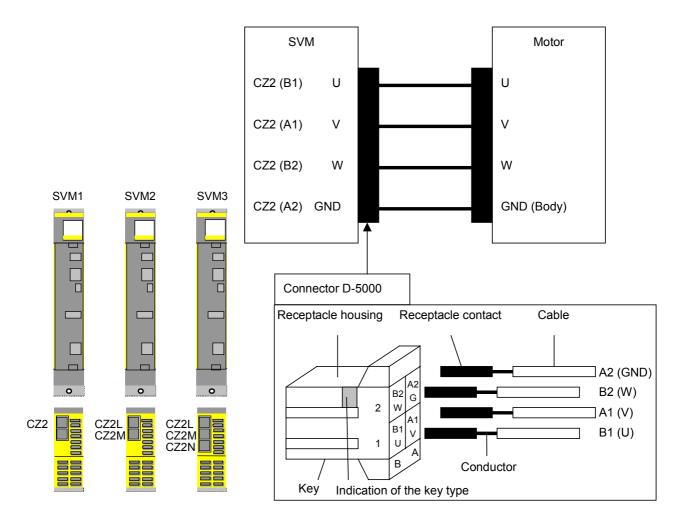
Two-conductor polyvinyl heavy-duty power cable (JIS C3312)

Conductor size of : 1.25mm² (50/0.18)

PVC sheath 9.6 mm in diameter

Connector specification:

Tyco Electronics AMP connector with receptacle housing 1-178128-3 and receptacle contact 1-175218-2


9.3.2.3 Details of cable K69

The cable K69 is a communication cable used between modules. See Item 9.3.1.4.

9.3.2.4 Details of cable K21

Models other than SVM1-360*i*, SVM1-180HV*i*, and SVM1-360HV*i*

The cable K21 is a power cable used between the SVM and motor. The cable is attached to the SVM through the connector D-5000.

NOTE

When the $\alpha(HV)i$ series SVM is used, always mount the motor flange on a cabinet (machine) connected to the system ground. It may be difficult to connect the motor flange to a cabinet (machine) connected to the system ground. In this case, connect the motor flange and frame ground (ground plate of the cabinet) using a cable at least 1.25 mm² thick. The cable must be separated from the power lines as much as possible.

About the receptacle housing of the SVM-side connector

The SVM-side connector is a key type. The key is intended to prevent incorrect connection between the axes of multi-axis amplifiers (SVM2 and SVM3). Select the receptacle housing that matches the SVM and its axis that are to be used.

See Subsection 9.4.2 for detailed explanations about the specification of the D-5000.

Specification of the key	Applicable SVM
XX	SVM1, SVM2(L), SVM3(L)
XY	SVM2(M), SVM3(M)
YY	SVM3(N)

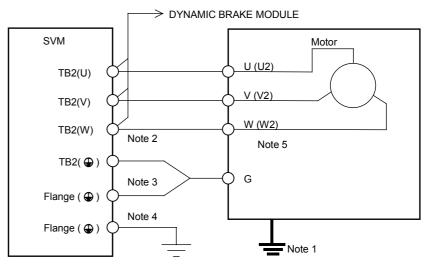
About the receptacle contact of the SVM-side connector

Four types receptacle contacts are prepared for the different line diameter of the cable. Please use the receptacle contact which suits the line diameter of the cable.

See Subsection 9.4.2 for detailed explanations about the specification of the D-5000.

About the cable specification

Select the cable specification by considering the following conditions for use.

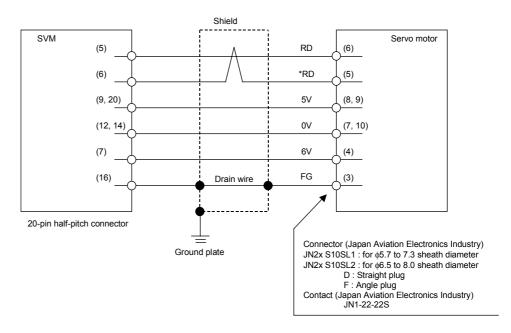

- <1> Motor current rating or current needed in use on a real machine
- <2> Cable type (heat resistance temperature, etc.)
- <3> Environment in which the cable is installed (operating ambient temperature, etc.)
- <4> Need of water proofing (pay attention to the diameter of the applicable cable clamp)
- <5> Certification for CE marking (compliance with various safety standards and EMC standard)
- <6> Securing insulation space among the cable pins at the time of cabling

About the motor-side connector

The specification of the motor-side connector varies from one motor model to another.

Refer to "FANUC AC SERVO MOTOR $\alpha is/\alpha i$ series Descriptions (B-65262EN)" for explanations about the specification of the motor-side connector.

SVM1-360*i*, **SVM1-180HV***i*, and **SVM1-360HV***i*


NOTE

- 1 When the α(HV)*i* series SVM is used, always mount the motor flange on a cabinet (machine) connected to the system ground. It may be difficult to connect the motor flange to a cabinet (machine) connected to the system ground. In this case, connect the motor flange and frame ground (ground plate of the cabinet) using a cable at least 1.25 mm² thick. The cable must be separated from the power lines as much as possible.
- 2 Size of screw for motor power line TB2(U), TB2(V), and TB2(W)
 - For SVM1-360*i*, SVM1-180HV*i* : M6
 - For SVM1-360HVi : M10
- 3 Connection for motor ground lead
 - For SVM1-360*i*, SVM1-180HV*i* : Connection to TB2(G) (M6)
 - For SVM1-360HVi : Connection to flange (M6)
- 4 Size of screws for connection between flange and ground
 - For SVM1-360*i*, SVM1-180HV*i* : M5
 - For SVM1-360HVi : M6
- 5 In single-motor twin-amplifier (SMTA) control (in which one motor is driven by two SVMs), connect motor power lines U, V, W, and G to the first SVM and motor power lines U2, V2, W2, and G to the second SVM.

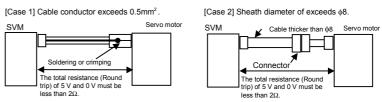
9.3.2.5 Details of cable K22

The cable K22 is used to connect the SVM and Pulsecoder.

For servo motor αi , αi s, $\alpha (HV)i$, $\alpha (HV)i$ s series and Servo motor βi s series ($\beta 0.4/5000i$ s to $\beta 22/2000i$ s)

Using cable conductor

coming capita contactor						
Signal name	Cable length : 28m or less	Cable length : 50m or less				
	0.3mm ² × 5 (Note 4)	0.5mm ² × 5 (Note 4)				
5V, 0V, 6V	Strand configuration 12/0.18 or 60/0.08	Strand configuration 20/0.18 or 104/0.08				
	Insulation outer diameter ϕ 0.8 to ϕ 1.5	Insulation outer diameter ϕ 0.8 to ϕ 1.5				
	0.18mm ² or more	0.18mm ² or more				
RD, *RD	Twisted-pair wire	Twisted-pair wire				
	Insulation outer diameter ϕ 0.8 to ϕ 1.5	Insulation outer diameter ϕ 0.8 to ϕ 1.5				
Drain wire	0.15mm ² or more	0.15mm ² or more				


See Subsection 9.4.1 for explanations about the SVM-side connector that matches the recommended cable.

See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

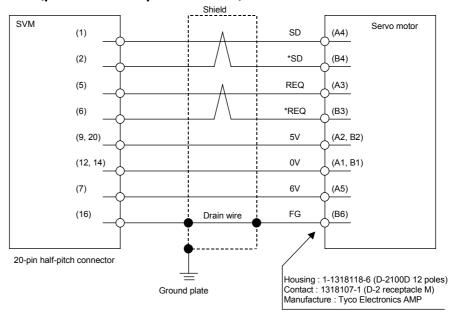
1 The ground plate to which the shield is connected must be placed as close as possible to the servo amplifier so that distance between the ground plate and the servo amplifier becomes shortest.

- 2 In case that the cable is prepared by MTB, total resistance of 5V and 0V must be less than 2Ω .
- 3 Pulsecoder side connector can accept maximum 0.5mm^2 (wire construction 20/0.18 or 104/0.08, diameter ϕ 1.5 or less) wire and sheath diameter is ϕ 5.7 to ϕ 8.0. In case of using thicker wire or cable, take measures described below.

- 4 In case of incremental Pulsecoder, 6V is not necessary to be connected.
- Crimp tool specification

A06B-6114-K201/JN1S: For 0.3 mm²

A06B-6114-K201/JN1L: For 0.18 mm² or 0.5 mm²


• Connector kit specification

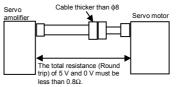
A06B-6114-K204/S: Straight plug (including a contact) A06B-6114-K204/E: Elbow plug (including a contact)

• Recommended cable

A66L-0001-0460: Flexible cable 28m or less long A66L-0001-0462: Flexible cable 50m or less long A66L-0001-0481: Fixed cable 28m or less long A66L-0001-0491: Fixed cable 50m or less long

For servo motor βi s series ($\beta 0.2/5000 i$ s, $\beta 0.3/5000 i$ s)

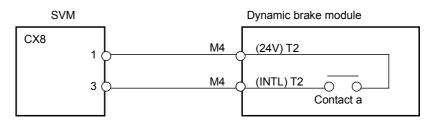
Using cable conductor

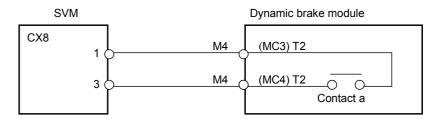

Using Cable Conductor			
Cable length	Cable length : 20m or less		
	0.5mm ² (AWG21) × 5 (Note 4)		
5V, 0V,6V	Strand configuration 20/0.18		
	Insulation outer diameter $\phi 0.88$ to $\phi 1.5$		
	0.18mm ² (AWG25) or more Twisted-pair wireInsulation		
SD, *SD, REQ, *REQ	Strand configuration 7/0.18		
	Insulation outer diameter $\phi 0.88$ to $\phi 1.5$		
Drain wire	0.15mm ² or more		
	$0.5 \text{mm}^2 \times 5 + 0.18 \text{mm}^2 \times \text{two-pair}$		
	(For a fixed cable)		
Recommended wire	Hitachi Cable, Ltd.: UL20276-SB(0)5x21AWG+2Px25AWG		
	(For a movable cable)		
	Hitachi Cable, Ltd.: UL20276-SB(FLEX)5x20AWG+2Px25AWG		

See Subsection 9.4.1 for explanations about the SVM-side connector that matches the recommended cable.

NOTE

1 The ground plate to which the shield is connected must be placed as close as possible to the servo amplifier so that distance between the ground plate and the servo amplifier becomes shortest.


- 2 In case that the cable is prepared by the user, the total resistance (round trip) of 5 V and 0 V must be less than 0.8Ω .
- 3 The maximum applicable wire diameter of the cable connector on the motor side is 0.5 mm² (when crimping tool 1463475-1 is used) or 0.85 mm² (when crimping tool 1276654-1 is used).In case of using thicker wire or cable, take measures described below.


4 In case of incremental Pulsecoder, 6V is not necessary to be connected.

9.3.2.6 Details of cable K24

(1) For A06B-6079-H401

(2) For A06B-6069-H300

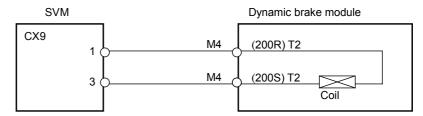
Example cable:

Two-conductor polyvinyl heavy-duty power cable (JIS C3312)

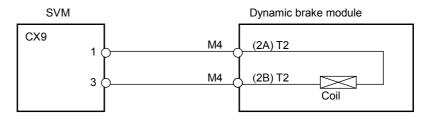
Conductor size of : 1.25mm² (50/0.18)

PVC sheath 9.6 mm in diameter

Connector specification:


Tyco Electronics AMP connector with receptacle housing 2-178128-3 and receptacle contact 1-175218-2

Crimping terminal:


2-4

9.3.2.7 Details of cable K25

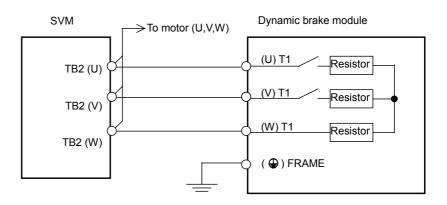
(1) For A06B-6079-H401

(2) For A06B-6069-H300

Example cable:

Two-conductor polyvinyl heavy-duty power cable (JIS C3312) Conductor size of: 1.25mm² (50/0.18)

PVC sheath 9.6 mm in diameter


Connector specification:

Tyco Electronics AMP connector with receptacle housing 1-178128-3 and receptacle contact 1-175218-2

Crimping terminal:

2-4

9.3.2.8 Details of cable K26

Example cable:

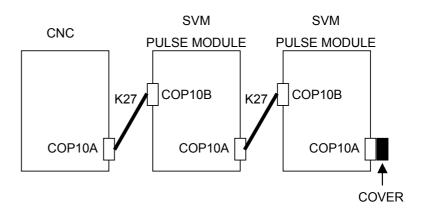
Fire-retardant polyflex wire (maximum conductor temperature 105°C) or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd., 5.5 mm² or larger

Connector specification:

Tyco Electronics AMP connector with receptacle housing 1-178128-3 and receptacle contact 1-175218-2

Crimping terminal:

DBM side 5.5-5 (SVM1-360*i*, SVM1-180HV*i*)


5.5-8 (SVM1-360HV*i*)

SVM side 5.5-6 (SVM1-360*i*, SVM1-180HV*i*)

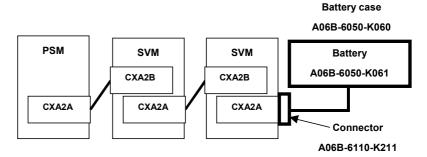
5.5-10 (SVM1-360HV*i*)

9.3.2.9 Details of cable K27

Cable K27 is an optical fiber cable used in the FSSB interface.

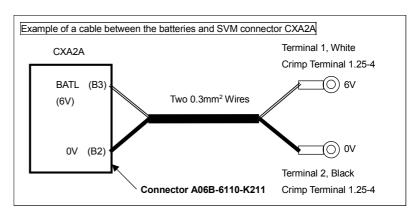
- The cable is run from connector COP10A in the CNC, SVM, or pulse module to connector COP10B in the SVM or pulse module.
- Connector COP10A of a module at the end of the cable chain must be covered with the cap supplied with the module.
- Refer to the applicable CNC connection manual for detailed specifications of the optical fiber cable.

9.3.2.10 Connecting the battery (for the absolute Pulsecoder)

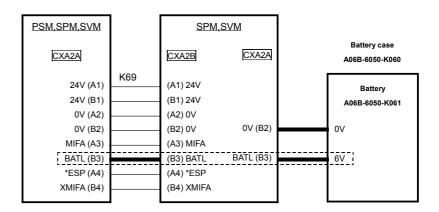

The following two methods can be used to connect the batteries for the absolute Pulsecoder: [connection method 1] and [connection method 2]

NOTE

- 1 Since the battery is a part that is in need of periodic maintenance by nature, it is recommended to use [connection method 1]. In this case, commercial batteries (four R20 alkaline batteries), which are easy to purchase, can be used.
- 2 The built-in batteries used in [connection method 2] must be purchased directly from FANUC. It is recommended that spare built-in batteries is purchased.


[Connection method 1]

Supplying power from one battery unit to more than one SVM


- A battery case (A06B-6050-K060) and four R20 alkaline batteries (A06B-6050-K061) are available as options. Commercial R20 alkaline batteries can also be used.

[Connection between the battery case and module]

- A connector (A06B-6110-K211) for connecting batteries is available as an option.

[Connection between modules]

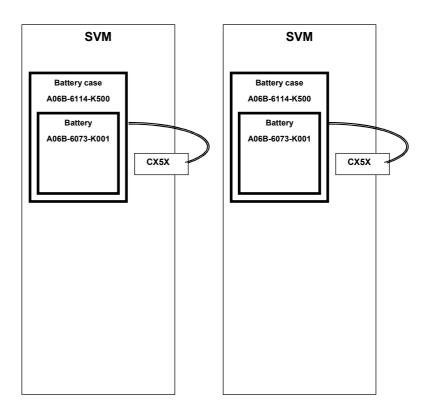
- The BATL(B3) is an interface for supplying power from one absolute Pulsecoder battery unit to more than one SVM.

- Specification of the connector K69

Manufacturer	Tyco Electronics AMP			
	D-2100 series			
Connector	Housing 1-1318119-4 (2 pieces)			
specification	Contact 1318107-1 (8 pieces)			
	[Ordering information : A06B-6110-K210 connector only]			
Conductor size	0.5mm ² , AWG20			
Instruction	4 00 0 00			
outer diameter	1.08-2.83 mm			

NOTE

- 1 Up to six servo motors can be connected to one battery.
- 2 The life of the batteries are about two years if they are used for six αi series servo motors and one year if they are used for six α series servo motors.

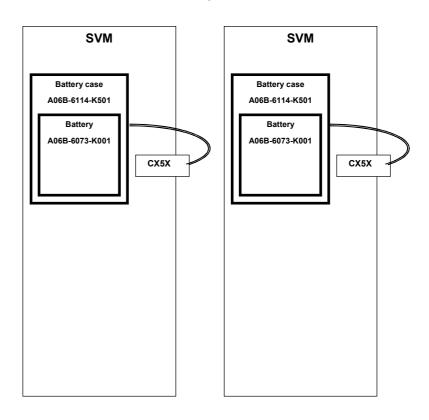

⚠ WARNING

Do not connect more than one battery to the same BATL(B3) line.

Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.

[Connection method 2]

- Incorporating built-in batteries in each SVM (Models other than SVM1-360*i*, SVM1-180HV*i*, and SVM1-360HV*i*)


- Using the built-in battery (A06B-6073-K001) requires the battery case (A06B-6114-K500).

A cover originally mounted at the SVM battery location cannot be used with the battery (A06B-6073-K001).

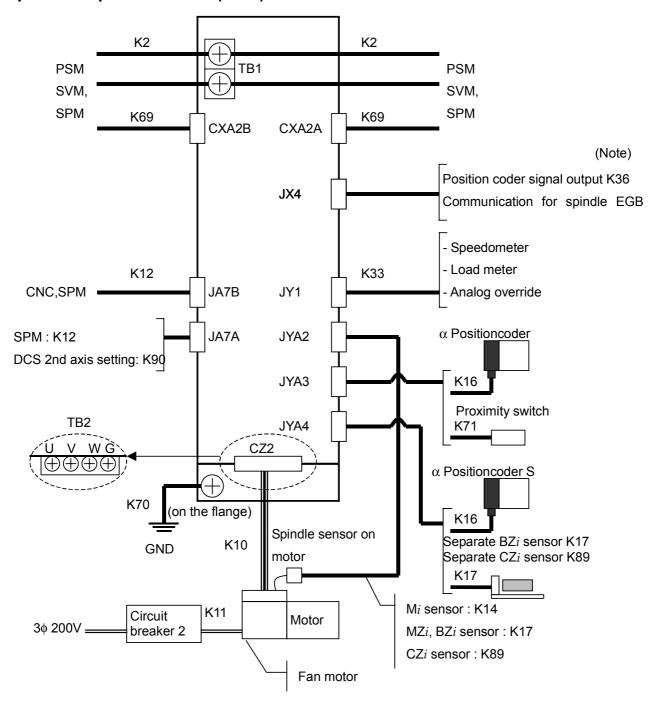
⚠ WARNING

- 1 When using the built-in battery (A06B-6073-K001), never connect the BATL(B3) of the connector CXA2A/CXA2B.
 - Otherwise, a short-circuit will occur between the output voltages of different SVM batteries, possibly resulting in the batteries becoming very hot, which is dangerous.
- 2 Do not connect more than one battery to the same BATL(B3) line.
 - Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.

- Incorporating built-in batteries in each SVM (Models SVM1-360*i*, SVM1-180HV*i*, and SVM1-360HV*i*)

- Using the built-in battery (A06B-6073-K001) requires the battery case (A06B-6114-K501).

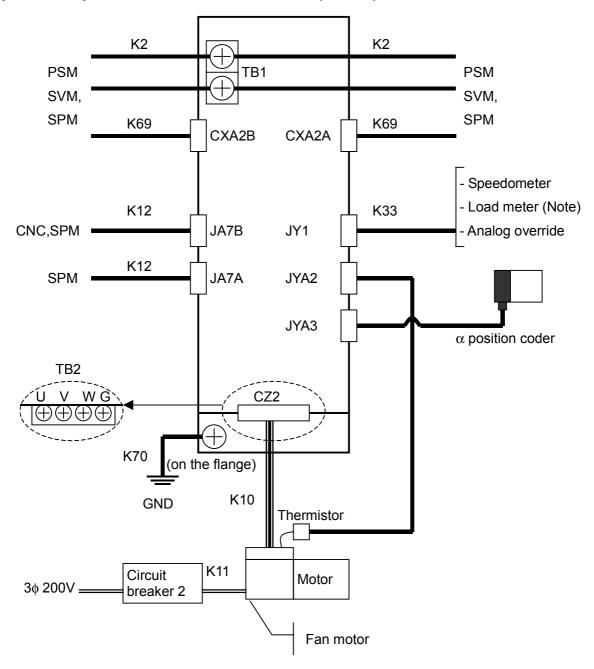
⚠ WARNING


- 1 When using the built-in battery (A06B-6073-K001), never connect the BATL(B3) of the connector CXA2A/CXA2B.
 - Otherwise, a short-circuit will occur between the output voltages of different SVM batteries, possibly resulting in the batteries becoming very hot, which is dangerous.
- 2 Do not connect more than one battery to the same BATL(B3) line.
 - Otherwise, a short-circuit will occur between the output voltages of different batteries, possibly resulting in the batteries becoming very hot, which is dangerous.

9.3.2.11 Details of cable K70

Connect the SVM flange to the grounding plate through a grounding cable. (Protective ground connection)
See Subsection 9.3.1.7 for detailed descriptions about the K70.

9.3.3 Spindle Amplifier Module Connection Diagram


Spindle amplifier module (SPM)

NOTE

This diagram applies to SPM TYPE B. For TYPE A, neither the JYA4 function nor the JX4 function is provided.

Spindle amplifier module for αCi series (SPMC)

NOTE

Only one channel is available for analog output. Select the load meter or speedometer by parameter setting.

9.3.3.1 Details of cable K2

See Item 9.3.1.2.

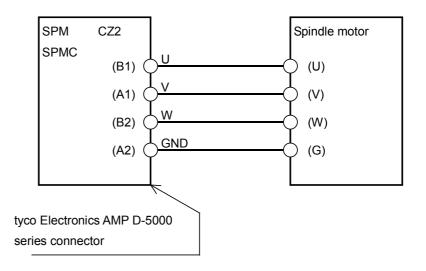
9.3.3.2 Details of cable K69

See Item 9.3.1.4.

9.3.3.3 Details of cable K10 (power cable)

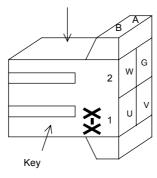
For the SPM-2.2*i*, SPM-5.5*i*, SPMC-2.2*i*, and SPMC-5.5*i*, a connector (D-5000) is used to attach the SPM motor power cable. For other models (SPM-11*i* and higher), a terminal board is used for connection.

This subsection does not include the dimensions of the crimp terminal or the shape of the motor-side connector.


Refer to "AC SPINDLE MOTOR αi series Descriptions (B-65272EN)" for these items.

About the cable specification

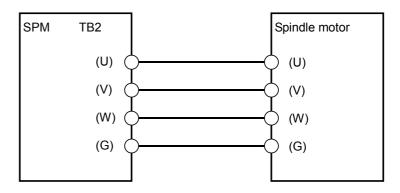
Select the cable specification by considering the following conditions for use


- <1> Motor current rating or current needed in use on a real machine
- <2> Cable type (heat resistance temperature, etc.)
- <3> Environment in which the cable is installed (operating ambient temperature, etc.)
- <4> Need of water proofing (pay attention to the diameter of the applicable cable clamp)
- <5> Certification for CE marking (compliance with various safety standards and EMC standard)
- <6> Securing insulation space among the cable pins at the time of cabling

Connection through a connector

Location of connector pins

Receptacle housing



- 200-V input series

Key specification	Applicable models		
	SPM-2.2 <i>i</i> , SPM-5.5 <i>i</i>		
XX	SPMC-2.2 <i>i</i> , SPMC-5.5 <i>i</i>		
	SPM-5.5HVi		

See Subsection 9.4.2 for details.

Connection through a terminal block

- 200-V input series

Cables should be connected to the SPM or SPMC using crimp terminals as listed in the following table.

erminals as instea in the folio will take to					
Amplifier models	Terminal screw	Rigid torque			
SPM-11 <i>i</i> , SPMC-11 <i>i</i>	M4	1 1 to 1 5 N m			
SPM-15 <i>i</i> ,SPMC-15 <i>i</i>	M4	1.1 to 1.5 N⋅m			
SPM-22 <i>i</i> , SPMC-22 <i>i</i>	M6				
SPM-26 <i>i</i>	M6	3.5 to 4.5 N⋅m			
SPM-30 <i>i</i>	M6				
CDM 45; CDM 55;	U V W : M10	15 to 16 N⋅m			
SPM-45 <i>i</i> , SPM-55 <i>i</i>	G : M6	3.5 to 4.5 N·m			

- 400-V input series

Cables should be connected to the SPM using crimp terminals as listed in the following table.

instead in the following table.		
Amplifier models	Terminal screw	Rigid torque
SPM-11HVi	M4	4 4 to 4 5 N
SPM-15HVi	M4	1.1 to 1.5 N⋅m
SPM-30HVi	M6	0 F to 4 F N
SPM-45HVi	M6	3.5 to 4.5 N·m
ODM ZELIVI: ODM 400LIVI:	U V W : M10	15 to 16 N·m
SPM-75HVi, SPM-100HVi	G · M6	3.5 to 4.5 N.m

9.3.3.4 Details of cable K70

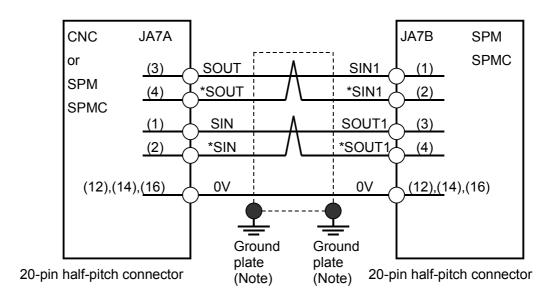
Connect the SPM flange or SPMC flange to the grounding plate through a grounding cable. (Protective ground connection)
For connection with the SPM or SPMC, use the crimp terminal selected according to the following table.

200-V input series

Amplifier model	Terminal screw	Rigid torque
SPM-2.2 <i>i</i> , SPM-5.5 <i>i</i> , SPM-11 <i>i</i> , SPM-15 <i>i</i> , SPM-22 <i>i</i> , SPM-26 <i>i</i> , SPM-30 <i>i</i> SPMC-2.2 <i>i</i> , SPMC-5.5 <i>i</i> , SPMC-11 <i>i</i> , SPMC-15 <i>i</i> , SPMC-22 <i>i</i>	M5	2 to 2.5Nm
SPM-45 <i>i</i> , SPM-55 <i>i</i>	M6	3.5 to 4.5Nm

See Subsection 9.3.1.7. for details of the cable K70.

400-V input series


Amplifier model	Terminal screw	Rigid torque
SPM-5.5HV <i>i</i> , SPM-11HV <i>i</i> , SPM-15HV <i>i</i> , SPM-30HV <i>i</i> , SPM-45HV <i>i</i>	M5	2 to 2.5Nm
SPM-75HVi, SPM-100HVi	M6	3.5 to 4.5Nm

See Subsection 9.3.1.7. for details of the cable K70.

9.3.3.5 Details of cable K11

See FANUC AC SPINDLE MOTOR αi series DESCRIPTIOPNS (B-65272EN) for details of this Subsection.

9.3.3.6 Details of cable K12

Cable specification: 0.09 mm² twisted pair with common shielded Recommended cable (wire only): A66L-0001-0284#10P See Section 9.4.1 for details of connectors applied to recommended cable.

See Appendix B for details of cables.

NOTE

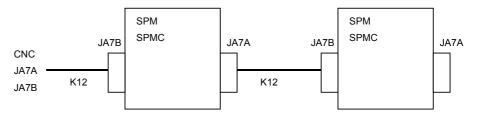
If cable K12 is installed near the likes of a power cable, its shielding wire must be connected to a grounding plate. If an SPM or SPMC is installed near the CNC or another SPM or SPMC, however, it is not necessary to connect the shielding wire to a grounding plate.

Connector pin assignment

JA7A and JA7B

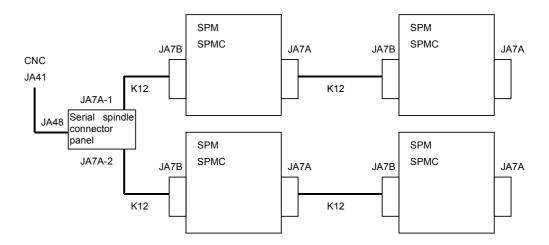
9	5V (Note 1)	10		19	20	5V (Note 1)
7		8		17	18	5V (Note 1)
5		6		15	16	0V
3	SOUT	4	*SOUT	13	14	0V
1	SIN	2	*SIN	11	12	0V

NOTE

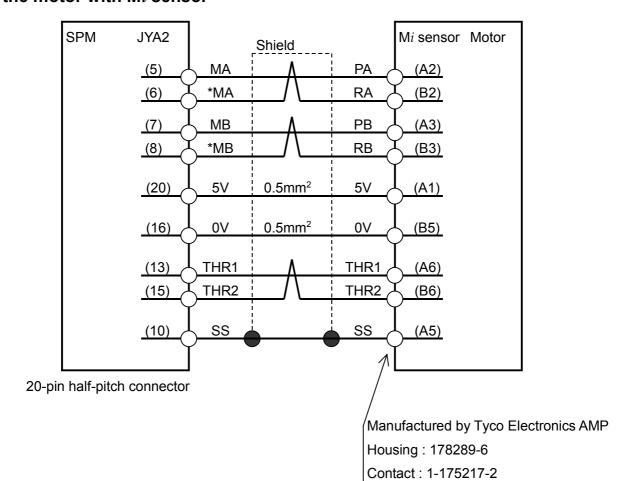

- 1 The +5V pin is intended for optical link transmission based on the optical I/O link adapter. Do not use it when a metal cable is being used; otherwise, the +5 V line of the CNC will be short-circuited with that of the SPM or SPMC.
- 2 SPM or SPMC serial interface connection using an optical fiber cable

The use of an optical I/O link adapter with the SPM or SPMC serial interface extends the maximum allowable length of the optical fiber cable to up to 200 m.

Use optical fiber cables in the following cases:


- When the required cable length is 20 m or longer.
- When the cable must be extended across multiple cabinets, and the cabinets cannot be connected with a grounding wire 5.5 mm² or larger.
- The cable may be affected by noise, for example, if the cable is laid near a strong magnetic noise source like a welding machine or in parallel with a power line over a long distance.

- Electrical interface connection between two SPM or SMPC units


- Electrical interface connection between four SPM or SMPC units in i series

Refer to the applicable CNC Connection Manual (Hardware) for a detailed description of the serial spindle connector panel.

9.3.3.7 Details of cable K14

For the motor with Mi sensor

Cable specification:

6 common shielded cable

(Three 0.18mm² twisted pairs + 0.5mm² wires)

Recommended cable conductor: A66L-0001-0368

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

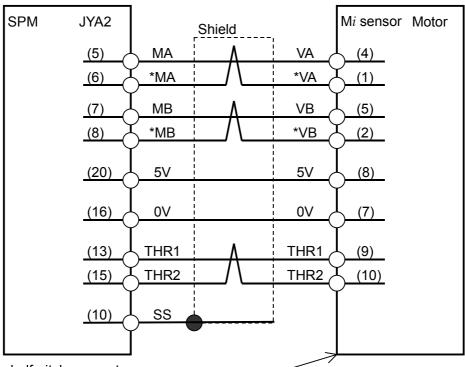
NOTE

If only one 5 V line and only one 0 V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.

- Connector pin assignment

JYA2

9	5V	10	SS	19	#	20	5V
			****		.,	40	5) /
7	MB	8	*MB	17	#	18	5V
		6	*MA			16	0V
5	MA	0	IVIA	15	THR2	10	UV
		4	#			14	0V
3	#	-	#	13	THR1	14	UV
			*1.47			40	0) /
1	MZ	2	*MZ	11	#	12	0V


NOTE

Do not use any pin that is marked #, because they may already be in use for input/output signals for an optional PCB.

Pin arrangement of the connector (manufactured by Tyco Electronics AMP) on the motor side

A1	+5V	B1	
A2	PA	B2	RA
А3	РВ	ВЗ	RB
A4		В4	
A5	SS	B5	0V
A6	THR1	B6	THR2

For the $\alpha 0.5i$ spindle motor with Mi sensor

20-pin half-pitch connector

Housing (Japan Aviation Electronics Industry)

JN1xS10SL1 : Applicable sheath diameter ϕ 5.7 to 7.3 JN1xS10SL2 : Applicable sheath diameter ϕ 6.5 to 8.0

D : Straight plug F : Angle plug

Contact (Japan Aviation Electronics Industry)

JN1-22-22S

Cable specification:

2 common shielded cable

(Three 0.2mm^2 twisted pairs $+ 0.3 \text{mm}^2$ wires)

Recommended cable conductor: A66L-0001-0482

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

Keep the electrical resistance across each of the 5V and 0V lines to within 5.7Ω .

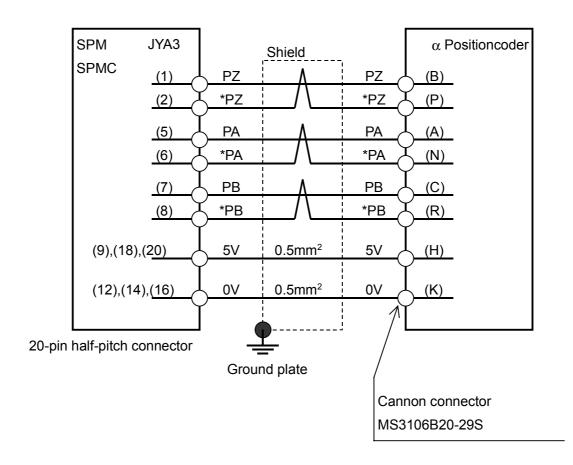
Recommended cable: Up to 41m

Connector pin assignment

Pin arrangement of the connector (manufactured by Japan Aviation Electronics Industry) on the motor side

*VA
*VB
VA
VB
0V
5V
THR1
THR2

• Crimp tool specification


A06B-6114-K201/JN1S

(Applicable wire diameter: AWG#22 to #24, AWG#26 to #28)

• Connector kit specification

A06B-6114-K200/S : Straight plug (including a contact) A06B-6114-K200/E : Elbow plug (including a contact)

9.3.3.8 Details of cable K16

Cable specification:

6 common shielded cable

(Three 0.18mm² twisted pairs + 0.5mm² wires)

Recommended cable conductor: A66L-0001-0286

See Section 9.4.1 for explanations about the JYA3-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

If only one 5 V line and only one 0 V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.

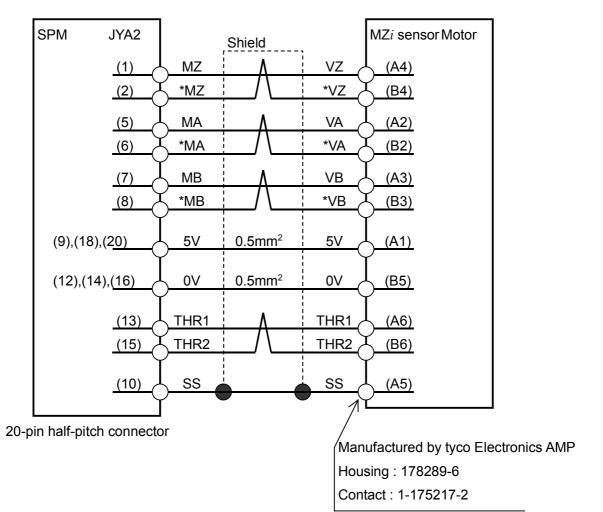
Connector pin assignment

JYA3

9	5V	10	#	19	#	20	5V
7	PB	8	*PB	17	#	18	5V
5	PA	6	*PA	15	EXTSC	16	0V
3	#	4	#	13	SCCOM	14	0V
1	PZ	2	*PZ	11	24V	12	0V

NOTE

Do not use any pin that is marked #, because they may already be in use for input/output signals for an optional PCB.


Pin arrangement of the cannon connector on the Positioncoder side

Α	PA	В	PZ	С	PB
D		E		F	
G		Н	+5V	J	
K	0V	L		М	
N	*PA	Р	*PZ	R	*PB
S		Т			

9.3.3.9 Details of cable K17

It is unnecessary to wire THR1 and THR2 if the BZ*i* sensor is used as a separate detector (connected to the connector JYA4).

For the motor with MZi sensor

Cable specification:

6 common shielded cable

(Four 0.18mm² twisted pairs + 0.5mm² wires)

Recommended cable conductor: A66L-0001-0368

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

If only one 5 V line and only one 0 V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.

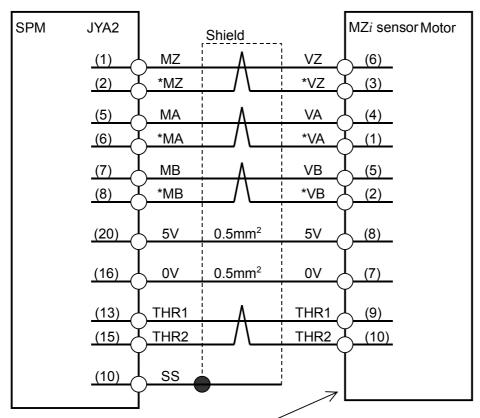
- Connector pin assignment

JYA2

See Subsection for cable K14.

JYA4

9	5V	10	SS	19	#	20	5V
9		8	*MB	19	#	18	<i>E</i> \/
7	MB	°	IVID	17	#	10	5V
-		6	*MA	45		16	0V
5	MA			15			
3	#	4	#	13		14	0V
		2	*MZ			12	0V
1	MZ	_	.,,,,	11	#		


NOTE

Do not use any pin that is marked #, because they may already be in use for input/output signals for an optional PCB.

Pin arrangement of the connector (manufactured by Tyco Electronics AMP) on the motor side

A1	+5V	B1	
A2	VA	B2	*VA
А3	VB	В3	*VB
A4	VZ	B4	*VZ
A5	SS	B5	0V
A6	THR1	B6	THR2

For the $\alpha 0.5i$ spindle motor with MZi sensor

20-pin half-pitch connector

Housing (Japan Aviation Electronics Industry)

JN1xS10SL1 : Applicable sheath diameter ϕ 5.7 to 7.3 JN1xS10SL2 : Applicable sheath diameter ϕ 6.5 to 8.0

D : Straight plug F : Angle plug

Contact (Japan Aviation Electronics Industry)

JN1-22-22S

Cable specification:

2 common shielded cable

(Four 0.2mm² twisted pairs + 0.3mm² wires)

Recommended cable conductor: A66L-0001-0482

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

Keep the electrical resistance across each of the 5V and 0V lines to within 4Ω .

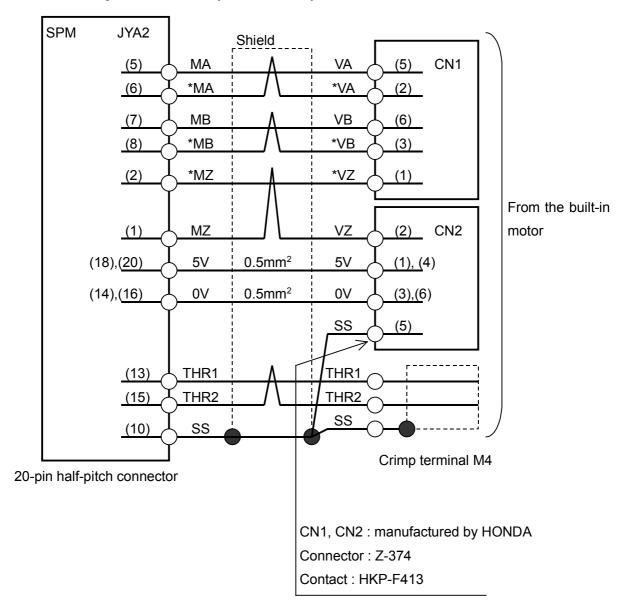
Recommended cable: Up to 28m

- Connector pin assignment

Pin arrangement of the connector (manufactured by Japan Aviation Electronics Industry) on the motor side

1	*VA
2	*VB
3	*VZ
4	VA
5	VB
6	VZ
7	0V
8	5V
9	THR1
10	THR2

• Crimp tool specification


A06B-6114-K201/JN1S

(Applicable wire diameter: AWG#22 to #24, AWG#26 to #28)

• Connector kit specification

A06B-6114-K200/S : Straight plug (including a contact) A06B-6114-K200/E : Elbow plug (including a contact)

For the built-in spindle motor (BZi sensor)

Cable specification:

6 common shielded cable

(Four 0.18mm² twisted pairs + 0.5mm² wires)

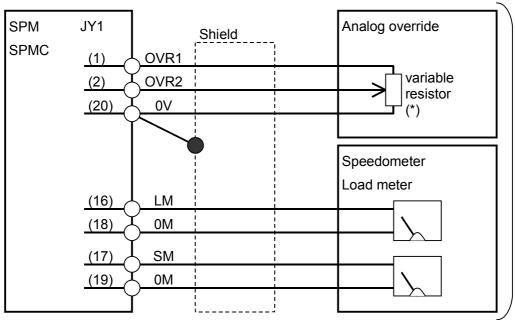
Recommended cable conductor: A66L-0001-0368

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

NOTE

If only one 5 V line and only one 0 V line are used, use pins 20 and 16 for them, so that, if the connector is attached the wrong way, the sensor can be prevented from being damaged.

- Connector pin assignment


Pin arrangement of the connector CN1 (manufactured by Honda Tsushin Honda Kogyo Co., Ltd.) on the motor side

1	*VZ	4	
2	*VA	5	VA
3	*VB	6	VB

Pin arrangement of the connector CN2 (manufactured by Honda Tsushin Honda Kogyo Co., Ltd.) on the motor side

1	5V	4	5V
2	VZ	5	SS
3	0V	6	0V

9.3.3.10 Details of cable K33

20-pin half-pitch connector

Power magnetics cabinet

Cable specification:

0.09mm² common shielded cable

Recommended cable conductor: A66L-0001-0284#10P

See Section 9.4.1 for explanations about the JYA1-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

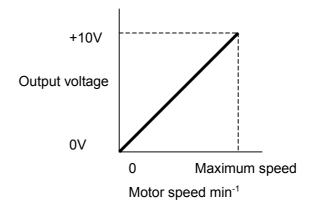
NOTE

- 1 Select such an external resistance such that VR+R1 falls within the range between 2 k Ω and 10 k Ω .
- 2 The SPMC has no LM output. For the SM output, select the load meter or speedometer by parameter setting.

Connector pin assignment

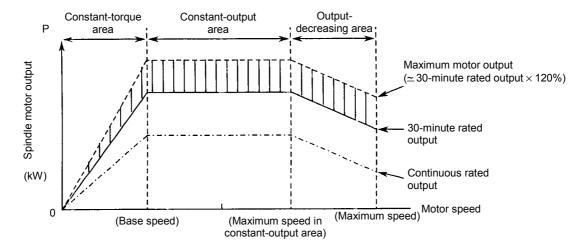
JY1

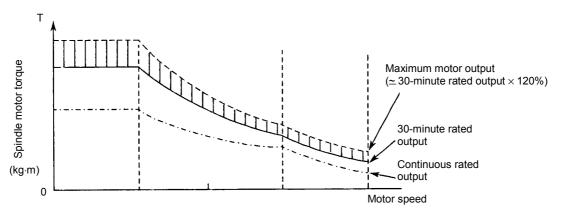
9	#	10	#	19	ОМ	20	0V
7	#	8	#	17	SM	18	ОМ
5	#	6	#	15	#	16	LM
3	#	4	#	13	#	14	#
1	OVR1	2	OVR2	11	#	12	#

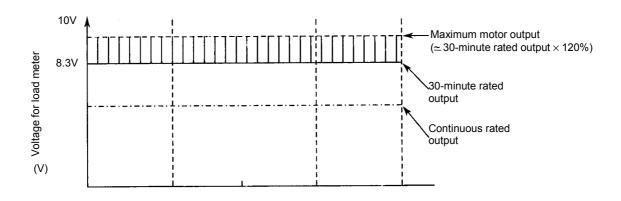

NOTE

Pins indicated # are intended to input or output signals used on a spindle check board. Do not connect any other signal line to them.

Voltage signal for the speedometer (SM)

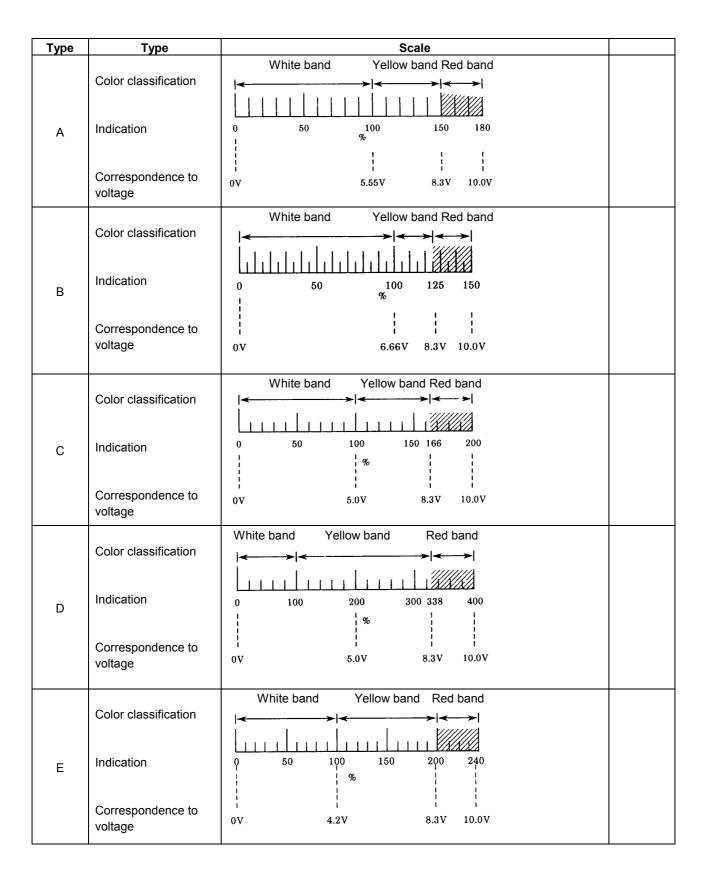

By externally connecting a tachometer, the speed of the spindle motor can be indicated. The voltage (DC) proportional to the speed is output, regardless of the rotation direction of the motor. At the maximum motor speed, $+10~\rm V$ is output.


The output voltage of the speedometer in the forward direction and reverse direction is calibrated using a parameter. The precision is $\pm 3\%$ Max.



Voltage signal for the load meter (LM)

The load meter indicates a load ratio, that is, the ratio of load at the time of non-load rotation of the machine tool spindle or at the time of cutting to the maximum output of the spindle motor. At the rated input voltage, the relationships of spindle motor output, spindle motor torque, and voltage for the load meter with speed are as described below.

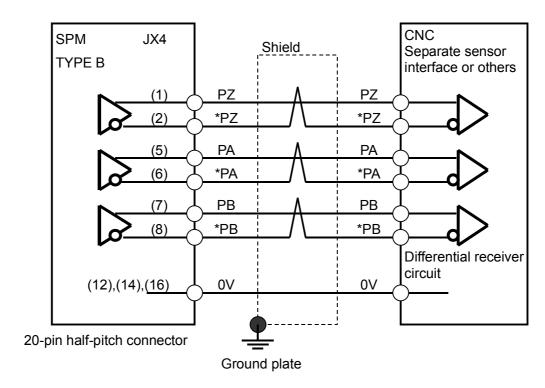

A load meter indication of 100% is provided for the continuous rating of the spindle motor. The table below indicates the relationships between typical spindle motor output values and load meter voltages. From the table below, it is considered that approximately five load

meter indications are provided.

		Valtage for load	Ratio (%) with 100%	Example of load meter		
Motor model	Output (kW)	Voltage for load	indicated for	Type of load meter		
		meter (V)(NOTE)	continuous rating	used	Ratio to full scale (%)	
	0.55	4.2	100		100	
α0.5/10000 <i>i</i>	1.1	8.3	200	E	200	
	1.32	10.0	240		240	
	1.5	5.7	100		102.2	
α1/10000 <i>i</i>	2.2	8.3	147	Α	150	
	2.64	10.0	176		180	
	1.1	2.5	100		100	
α1.5/10000 <i>i</i>	3.7	8.4	338	D	338	
	4.4	10.0	400		400	
	2.2	5.0	100		101	
$\alpha 2/10000i$	3.7	8.3	166	С	166	
	4.4	10.0	200		200	
	3.7	5.6	100		100.8	
α3/10000 <i>i</i>	5.5	8.3	148	Α	150	
	6.6	10.0	178		180	
	5.5	6.1	100		109.8	
α6/10000 <i>i</i>	7.5	8.3	136	Α	150	
	9.0	10.0	164	1	180	
	7.5	5.7	100		102.6	
α8/8000 <i>i</i>	11.0	8.3	146	Α	150	
	13.2	10.0	175	1	180	
	11	6.1	100		109.8	
α12/7000 <i>i</i>	15	8.3	136	А	150	
	18	10.0	164	1	180	
	15	6.7	100		100.5	
α15/7000 <i>i</i>	18.5	8.3	124	В	125	
	22.2	10.0	149		150	
	18.5	7.0	100		105	
α18/7000 <i>i</i>	22.0	8.3	118	В	125	
	26.4	10.0	142	1	150	
	22.0	7.0	100		105	
α 22/7000 <i>i</i>	26.0	8.3	118	В	125	
	31.2	10.0	142	1	150	
	30.0	6.7	100		105.5	
α30/5000 <i>i</i>	37.0	8.3	124	В	125	
	44.4	10.0	149	1	150	
	37.0	6.8	100		103	
α40/6000 <i>i</i>	45.0	8.3	122	В	125	
	54.0	10.0	146	1	150	
	45.0	6.8	100		103	
α50/4500 <i>i</i>	55.0	8.3	122	В	125	
	66.0	10.0	146	1	150	

NOTE

The precision of load meter voltage depends on the used speed and input voltage. The maximum error is about $\pm 15\%$.



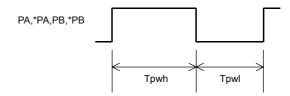
Indication for spindle switching and output switching

The speed indication voltage and dynamometer indication voltage may vary between the main spindle and sub-spindle in spindle switching and between the high winding and low winding in output switching. In such a case, switch the tachometer and dynamometer as shown below.

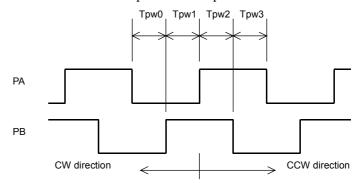
9.3.3.11 Details of cable K36

Cable specification: 0.09 mm² twisted pair with common shielded Recommended cable (wire only): A66L-0001-0284#10P See Section 9.4.1 for details of connectors applied to recommended cable.

See Appendix B for details of cables.


Specification of position coder signal output

Item	Specification		
	α position coder		
	α position coder S		
SPM input sensor	MZi sensor		
	BZi sensor		
	CZi sensor		
Output signals PA, *PA, PB, *PB	1024 pulses/rotation (*1)		
Output signals PZ, *PZ	1 pulse/rotation		
Output signal laval	Differential driver signal		
Output signal level	(RS422 compatible)		

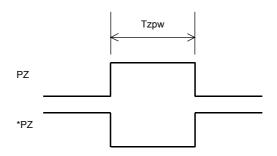

^{*1} A resolution of 4096 pulses/rotation can be obtained by counting the edges of phases A and B (× 4 circuit).

Phase A/B signal

Width of phase A/B signal

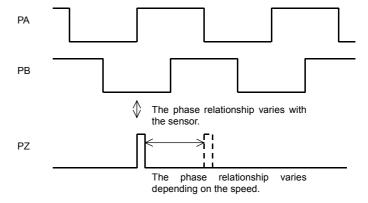
Phase difference between phase A and phase B

*PA and *PB represent the negative logic signals of PA and PB, respectively.

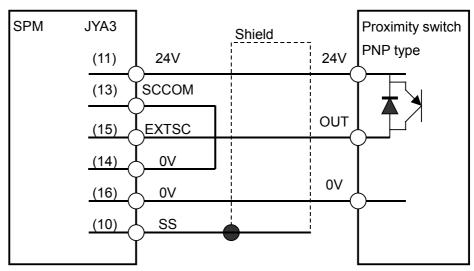

Symbol	Specification	Remark
Tpwh, Tpwl	Min 636ns	Including a maximum of driver rising/falling
Tpw0,1,2,3	Min 636ns	delay time skew (30 ns)

This specification does not include the effect of the cable capacity and the skew due to delay on the receiver side.

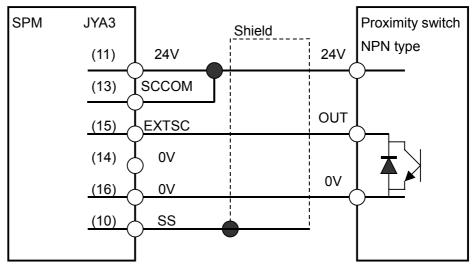
As shown in state A below, a waveform may be distorted at the edge of phase A or B. In addition, the edge may be encountered too late or too early as shown in state B or C. Even in these states, the minimum time is defined according to the specifications described on the previous page, such as the pulse width and the difference between phase A and phase B.

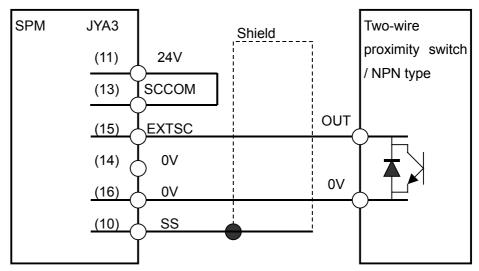

Phase Z signal

Width of phase Z signal



Symbol	Specification
Tzpw	The minimum width is 1/4096 of one rotation.


- * Edge distortion of signal Z Note that the edge of signal Z may be distorted.
- * Phase relationship between the phase Z signal and the phase A/B signal
 - The phase relationship between the phase Z signal and the phase A/B signal varies with the sensor.
 - When the speed changes, the phase relationship between the phase Z signal and the phase A/B signal may vary. The range of variation is approximately (1 p/5000 min-1.


9.3.3.12 Details of cable K71

20-pin half-pitch connector

20-pin half-pitch connector

20-pin half-pitch connector

Cable specification:

0.09mm² common shielded cable

Recommended cable conductor: A66L-0001-0284#10P

See Section 9.4.1 for explanations about the JYA3-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

Connector pin assignment

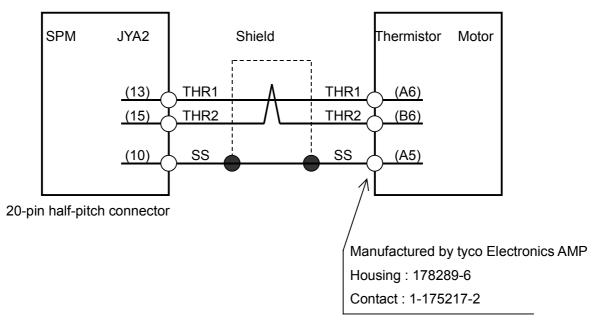
See Subsection "- Connector pin assignment" for the K16.

External one-rotation signal switch (proximity switch)

Use an external one-rotation signal switch (proximity switch) that satisfies the specifications indicated below.

(a) DC two-wire proximity switch

(1)	<i>,</i> · · ·
Item	Specification
Supply voltage	24 VDC ±1.5 V
Supply voltage	(24 VDC is fed from the spindle amplifier module.)
Response frequency	400 Hz or higher
Load current	16 mA or higher
Residual voltage	4 V or higher
Supply (leakage) current	1.5 mA or lower

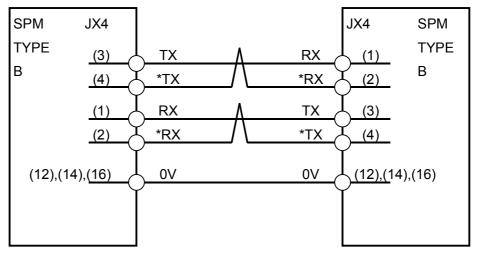

(b) DC three-wire proximity switch

Item	Specification
Cumply waltage	24 VDC ±1.5 V
Supply voltage	(24 VDC is fed from the spindle amplifier module.)
Response frequency	400 Hz or higher
Load current	16 mA or higher
Residual voltage	4 V or higher
Supply current	50mA or lower

NOTE

The location where a proximity switch signal occurs depends on the temperature. So, consider the ambient temperature when selecting a proximity switch.

9.3.3.13 Details of cable K79



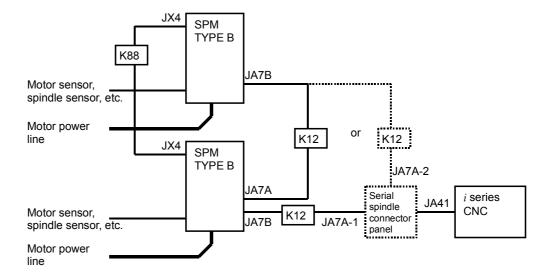
Cable specification:

0.18 mm² twisted pair with common shielded Recommended cable conductor: A66L-0001-0368
See Section 9.4.1 for explanations about the JYA3-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

9.3.3.14 Details of cable K88

This cable is required when using the spindle EGB function.

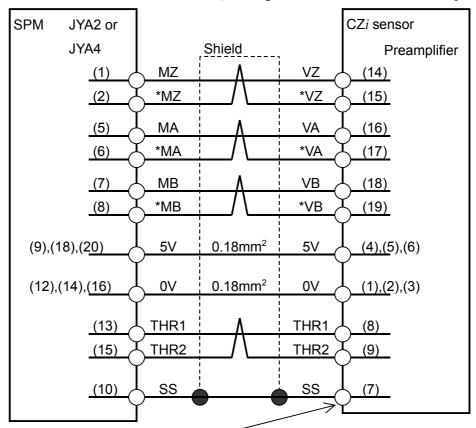
20-pin half-pitch connector


20-pin half-pitch connector

Cable specification: 0.09 mm² twisted pair with common shielded Recommended cable (wire only): A66L-0001-0284#10P See Section 9.4.1 for details of connectors applied to recommended cable.

See Appendix B for details of cables.

NOTE


- 1 The length of cable K88 must be 3 m or shorter and run within the same cabinet.
- 2 The SPMs that use this connection must be connected to the same CNC as shown below.

B-65282EN/05 9.CONNECTION

9.3.3.15 Details of cable K89

When the CZi sensor is used as a separate detector (connected to connector JYA4), wiring for THR1 and THR2 is not required.

20-pin half-pitch connector

Manufactured by Hirose Electric Co., Ltd.

Crimp type

Crimping pin: HR22-SC-122 (15 pins are required for one connector)

Housing: HR22-12WTPA-20SC

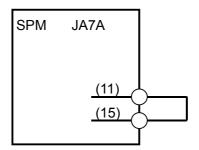
Crimping tool: HR22-TA-2428HC (Hirose Electric Co., Ltd.)

Soldering type

HR22-12WTPA-20S

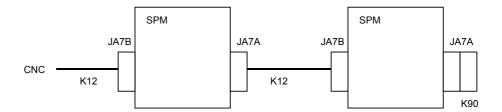
Cable specification:

6 common shielded cable


(Four 0.18mm² twisted pairs + 0.18mm² wires)

Recommended cable conductor: A66L-0001-0367

See Section 9.4.1 for explanations about the JYA2-side connector that matches the recommended cable. See Appendix B, "About Cable Conductors," for detailed explanations about the cable.

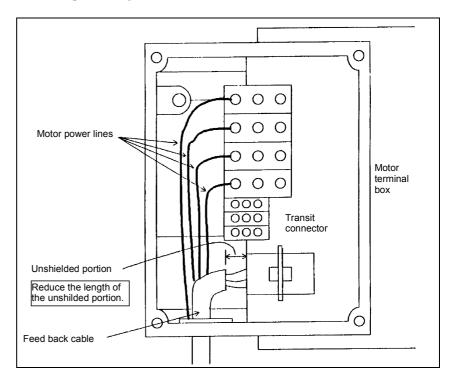

9.3.3.16 Details of cable K90

Only when the dual check safety function is used, this connection is required for the second spindle.

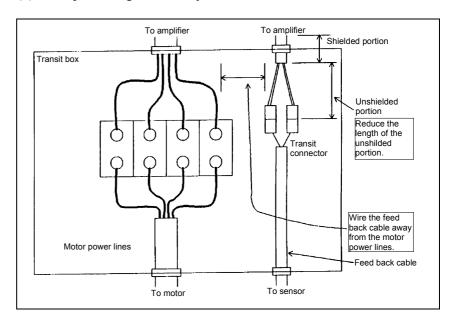
20-pin half-pitch connector

When the dual check safety function is used, connector K90 must be connected to JA7A of the second spindle.

B-65282EN/05 9.CONNECTION


9.3.3.17 Spindle Motor Feedback Cable Connection

The connector of the feedback cable connected to the spindle motor may have the following problems, depending on the wiring in the motor terminal box (transit box for the built-in motor):


- Variations in low speed become large.
- The alarm lamp indicating a discontinued sensor signal lights improperly.
- The alarm lamp indicating a missing sensor signal position pulse lights improperly (for the MZi and BZi sensors).

Give consideration to wiring so that minimum lengths of non-shielded portions are provided for the connector connecting the cable for SPM and signals output from the spindle motor. (See the examples below.)

(1) Sample wiring in the motor terminal box

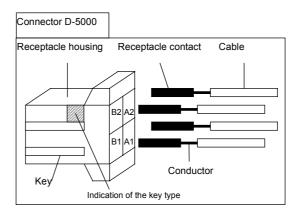
(2) Sample wiring in the relay box for the built-in motor

9.4 DETAILS OF CONNECTORS

9.4.1 20-Pin Half-Pitch Connectors

The following table lists the 20-pin half-pitch connectors used for the αi series servo amplifier and the recommended cables for these connectors.

Use connectors that match the recommended cables specified on the applicable connection diagram in detail.


Recommended-cable specification	Applicable connector	Connector model number	Housing model number	Connector + housing
Crimp type		Hirose Electric Co., Ltd. FI30-20S Honda Tsushin Kogyo	Sideways cable slot type FI-20-CVS2	Sideways cable slot type FI30-20S-CVS2
A001 0004 0004#40D		Co., Ltd. PCR-E20FA	PCR-V20LA	
A66L-0001-0284#10P	Soldering type	Hirose Electric Co., Ltd. FI40B-20S Honda Tsushin Kogyo Co., Ltd. PCR-E20FS	Sideways cable slot type FI-20-CVS2 PCR-V20LA	Sideways cable slot type FI40B-20S-CVS2
A66L-0001-0286 A66L-0001-0460 A66L-0001-0462 A66L-0001-0481 A66L-0001-0491	Soldering type Note that this connector does not have pin No. 11, 13, 15, 17, or 19.	Hirose Electric Co., Ltd. FI40B-2015S	Sideways cable slot type FI-2015-CVS	Sideways cable slot type FI40B-2015S-CVS
A66L-0001-0368	Soldering type	Hirose Electric Co., Ltd. FI40B-20S	Sideways cable slot type FI-20-CVS5	Sideways cable slot type FI40B-20S-CVS5

9.4.2 Tyco Electronics AMP D-5000 Series Connector

The αi series uses the D-5000 series connector (manufactured by Tyco Electronics AMP) for the motor power cable.

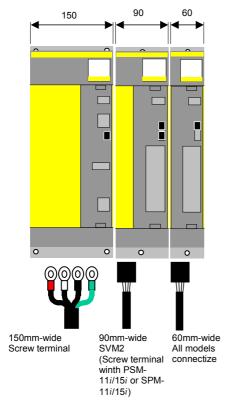
The connector is provided with three keys that assure it is inserted in the correct direction. In addition, four types of receptacle contacts are available, from which the user can select the suitable one depending on the amount of current to use (size of the conductor).

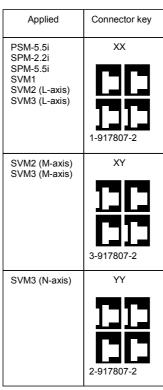
Connectors and tools can be ordered directly from Tyco Electronics AMP. FANUC also furnishes options. For details, see Subsection 3.1.3.3, "Connectors."

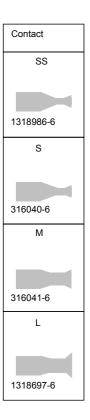
Receptacle housing

There are three different key types for the receptacle housing. Be sure to select the receptacle housing of the key type that matches the servo axis you use.

Receptacle housing model number	Specificatio n of the key	Applicable servo amplifier
1-917807-2	xx	PSM-5.5 <i>i</i> , SPM-2.2 <i>i</i> , SPM-5.5 <i>i</i> SVM1, SVM2(L), SVM3(L)
3-917807-2	XY	SVM2(M), SVM3(M)
2-917807-2	YY	SVM3(N)


(Reference)


There is a cable-end connectors which are inserted no matter what key is used. Contact the connector manufacturer (Tyco Electronics AMP) for details.


Receptacle contact

Four receptacle contact types are available, so as to support different conductor diameters. Be sure to select the receptacle contact (silver plating) that matches the servo axis you use.

Rectangle contact model number		Conductor size (mm²)	Conductor size AWG	Insulation outer diameter (mm)	Manual tool model number
SS size	1318986-6	0.50 - 1.42	20/18	1.08-3.23	1366656-1
S size	316040-6	1.23 – 2.27	16/14	3.0-3.8	234170-1
M size	316041-6	3.08 - 5.50	12/10	4.0-5.2	234171-1
L size	1318697-6	7.27 - 8.92	8	4.9-7.8	1366044-1

10 SPINDLE-RELATED OPTIONS

10.1 SPINDLE ORIENTATION

Sensor

Sensor	Description		
α position coder	Connected to the spindle on a 1:1 basis (directly connected by using a gear or timing belt)		
α position coder S	Connected to the spindle on a 1:1 basis (directly connected by using a gear or timing belt)		
MZi sensor			
BZi sensot	Directly connected to the spindle on a 1:1 basis		
CZi sensot			
Mi sensor	Installed on the spindle. The meter is connected with the spindle by using a goor		
Proximity switch	Installed on the spindle. The motor is connected with the spindle by using a gear.		

Detection unit and repetitive positioning precision

Sensor	Number of feedback signals	Detection unit	Repetitive positioning precision(NOTE)
α position coder	1024p/rev	0.088°	±0.2°
α position coder S	1024p/rev	0.088°	±0.2°
MZi sensor, BZi sensor	128λ/rev to 512λ/rev	0.088°	±0.2°
CZi sensor	512λ/rev to 1024λ/rev	0.088°	±0.2°
Mi sensor + proximity switch	128λ/rev to 512λ/rev	0.088°	±0.2° When the gear ratio is 1:1. An error due to gear backlash is excluded.

NOTE

- 1 The error factors on the machine side are excluded.
- 2 With the Mi sensor plus proximity switch method, stop position control is exercised using the Mi sensor built into the motor, with the proximity switch installed on the spindle used as the reference. So, pay attention to the following mechanical error factors:
 - When the gear ratio is higher than 1:1 (on the spindle acceleration side), repetitive positioning precision decreases.
 - The stop position can move by a gear backlash.

10.2 POWER LINE SWITCH UNIT

10.2.1 Overview

The switch unit is installed between a spindle amplifier module and spindle motor to exercise spindle switch control and output switch control.

- (1) Power switching from one motor to another (spindle switch control)
- (2) Power line switching between the two different windings of a motor (output switch control)

NOTE

This switch function cannot be used with the αCi series.

10.2.2 Specification

Magnetic contactor specification

<u> </u>						
FANUC ordering drawing number	A58L-000 Fuji Electric		A58L-00 Fuji Electri			
Rated voltage	220	V	220V			
Rated current	65A		12	5A		
Closing/breaking current	Closing	780A	Closing	1500A		
capacity	Breaking	650A	Breaking	1250A		
Open/close frequency	1	1200 times/	nour or more			
Life	Mechanical	5,000	0,000 times or more			
Lile	Electrical	1,000	0,000 times or more			
Rating of operating	2	200V/220V 15% to +10%				
electromagnetic coil		50/60H	0Hz ±1Hz			
Target spindle amplifier module	Up to SP	M-15 <i>i</i> Up to SPM-30 <i>i</i>				

Relay specification

FANUC ordering drawing number	A58L-0001-0307 OMRON (Model LY2-D)			
Rated voltage	24V ±10%			
Rated current	36.9mA			

10.2.3 Outside and Mounting Dimension Diagrams

Outside and mounting dimension diagrams of the switch unit for spindle switch control and output switch control (Y/Y connection)

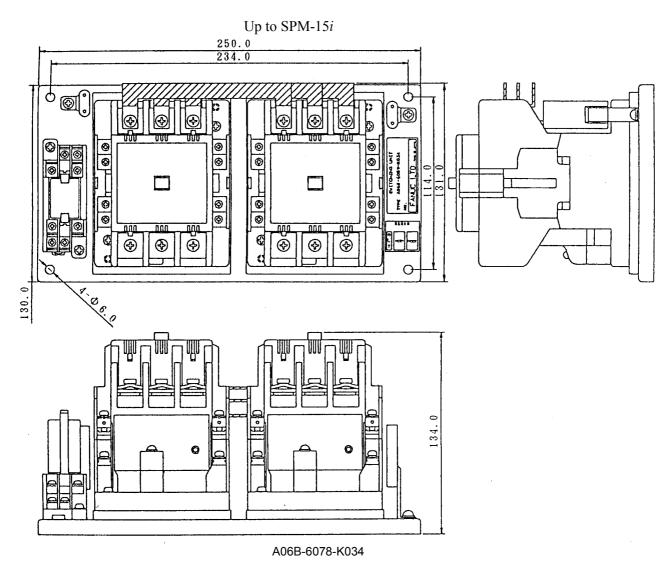
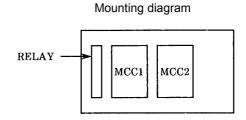
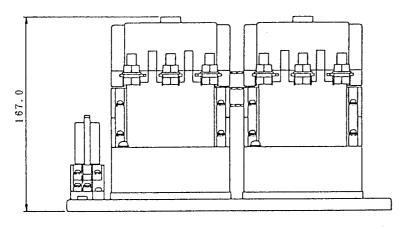
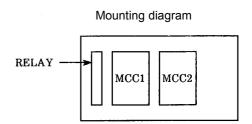
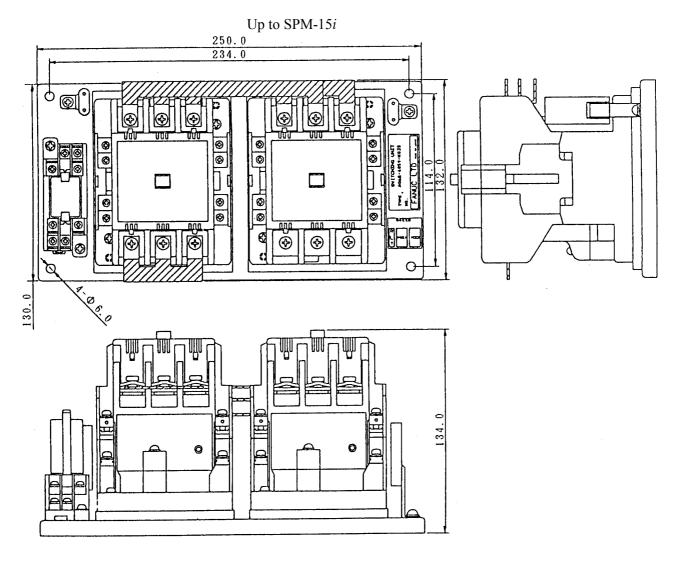




Fig. A





A06B-6078-K036

Fig. B

Outside and mounting dimension diagrams of the switch unit for output switch control (Y/ Δ connection)

A06B-6078-K035

Fig. A

Mounting diagram

RELAY MCC1 MCC2

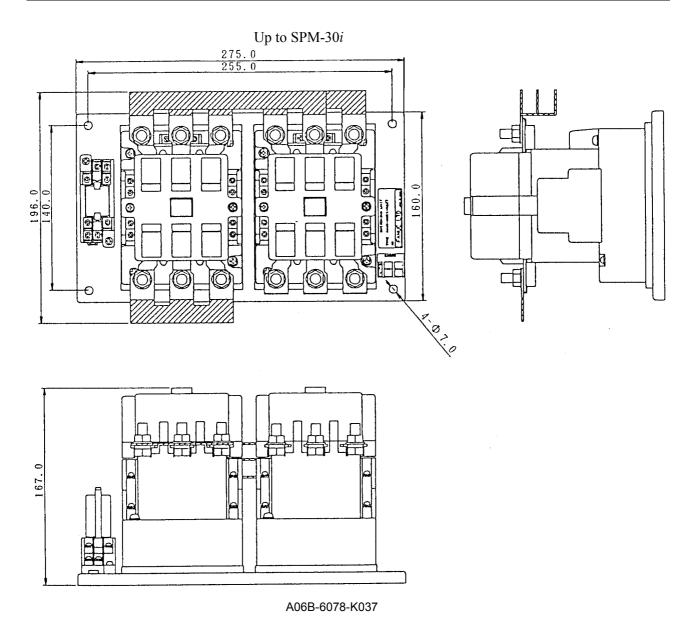
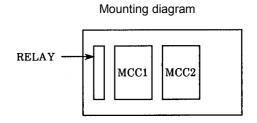
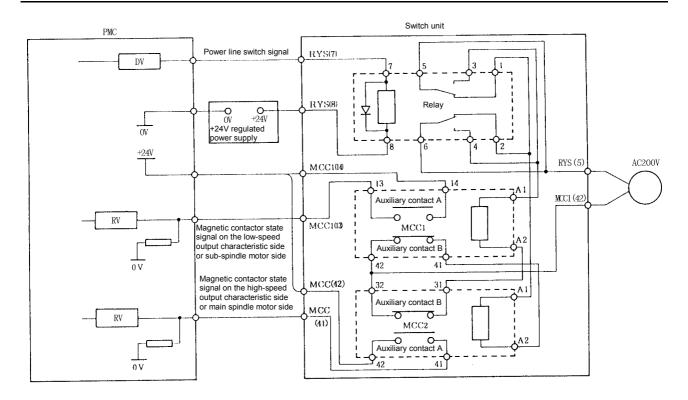




Fig. B

10.2.4 Connection

NOTE

Make a connection to the switch unit by direct screwing on the screw terminal of the magnetic contactor and relay socket.

10.2.5 Notes

(1) Install the switch unit under the same conditions as for the spindle amplifier.

Installation conditions

- Ambient temperature

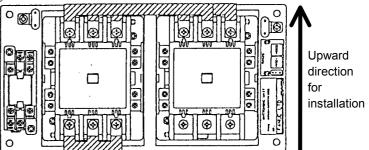
Ambient temperature of the unit:

0 to 55°C (at operation)

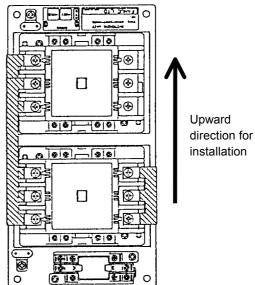
0 to 45°C (at keeping and transportation)

- Humidity

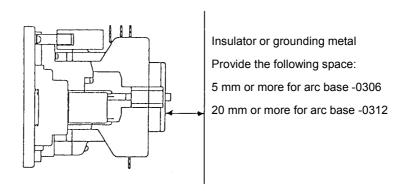
Normally 90% RH or below, and condensation-free


- Vibration

In operation: Below 0.5G


- Atmosphere

No corrosive or conductive mists or drops should deposit directly on the electronic circuits.


(2) The figure below shows the standard method of installation. However, the switch unit may be tilted up to 15 degrees toward the right or left.

(3) The switch unit may need to be installed horizontally from a viewpoint of cabling or installation (Fig. 11.7.6(b)). In this case, however, the characteristics of the magnetic contactor remain almost the same, but the mechanical life and open/close frequency decrease.

(4) Provide an arc space as shown below.

(5) If the main magnetic contactor unit is installed incorrectly or incompletely, the contact can make an abrupt movement due to a shock upon power-up, or its life can be adversely affected. Moreover, if the electric cable to be connected is not tightened sufficiently, an overheat can occur or the electric cable can come off, resulting in a major accident.

(a) Tightening torque

(i) Magnetic contactor

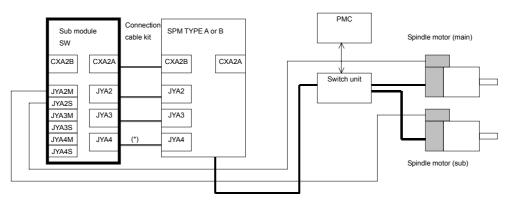
Location	Tightening torque [kg·cm]				
Location	A58L-0001-0306	A58L-0001-0312			
MCC main terminal	62.0 (M6.0)	84.0 (M8.0)			
MCC auxiliary terminal	14.0 (M3.5)	14.0 (M3.5)			

(ii) Relay socket

Location	Tightening torque [kg-cm]			
Relay socket	14.0 (M3.5)			

10.3 SUB MODULE SW

The sub module SW is 60 mm wide. By being combined with SPM TYPE A or SPM TYPE B according to a required function, the sub module SW is used for the spindle switch function to switch between two motors (main and sub) with one spindle amplifier module.


- A cable for connecting the SW module with the SPM needs to be prepared.
- A metal plate for mounting needs to be prepared.

NOTE

The sub module SW cannot be used with the αCi series.

For the drawing numbers of the sub module SW and connection cable kit, see Chapter 3.

10.3.1 Configuration

(*) Only when the sub module SW is combined with SPM TYPE B

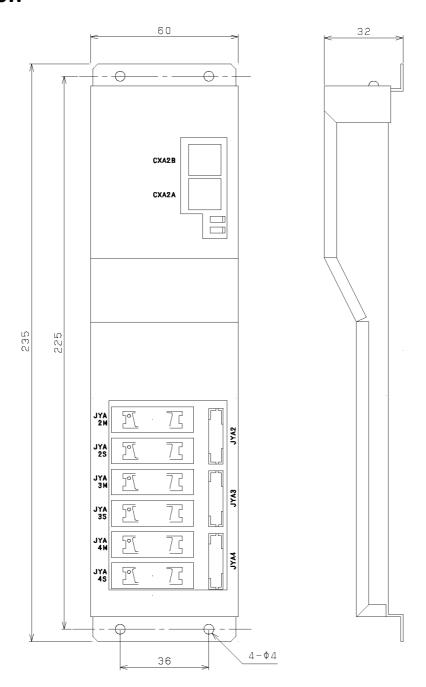
10.3.2 Specification

By combining the sub module SW with SPM TYPE A or SPM TYPE B, the spindle switch function for switching between two motors (main and sub) with one spindle amplifier module can be used.

The table below indicates allowable combinations of detectors and functions on the main and sub sides of spindle switch control. If the main or sub side of spindle switch control includes a function that requires SPM TYPE B (organization number 6 or 7 indicated below), select TYPE B as an SPM to be combined with the sub module SW.

			Organization on main or sub side					side	Remarks	
			1	2	3	4	5	6	7	Remarks
CDM combin		SPM TYPE A	0	0	0	0	0			
SPIVI COMBIN	ed with sub module SW	SPM TYPE B						0	0	
		Mi sensor	0			0	0	0	0	
		MZi sensor		0			4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	Sensor on the motor	BZi sensor (when a built-								
Spindle system configuration		in motor is used) CZi sensor (when a built- in motor is used)			0					
Jg		α position coder				0				*3
	0	External 1-rotation					0			*3
	Sensor on the spindle	BZi sensor, CZi sensor						0		*3
		α position coder S							0	*3
	Rigid tapping		O*1	0	0	0	O*2	0	0	
	Orientation by a position coder			0	0	0		0	0	*4
Function	Orientation by the external one-rotation signal						_			
	Caindle avachronization	Velocity synchronization	O *2	0	0	0	O*2	0	0	*5
	Spindle synchronization	Phase synchronization		0	0	0		0	0	*5
	Threading			0	0	0		0	0	
	Cs-axis contour control			0	0			0	0	*5

- *1 The spindle and motor must be interconnected with a timing belt or gear. No orientation is available to adjust the tapping start position.
- *2 The spindle and motor must be interconnected with a timing belt or gear.
- *3 The spindle and detector must be interconnected in one-to-one connection mode.
- *4 Orientation of external stop position setting type can be used on the main side only.
- *5 Two motor amplifiers are required.
- *6 Cs contour control can be used on the main side only.

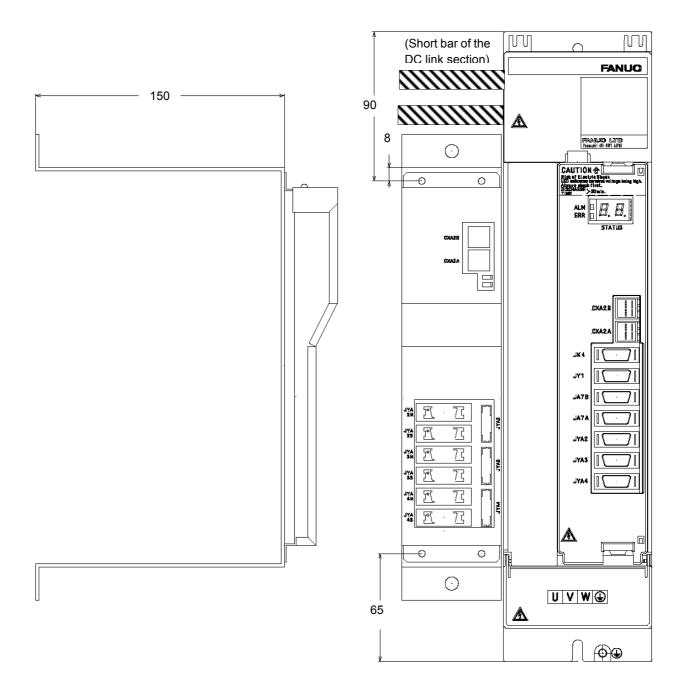

Other notes

Up to two stages of parameter gear switching can be set on the sub side.

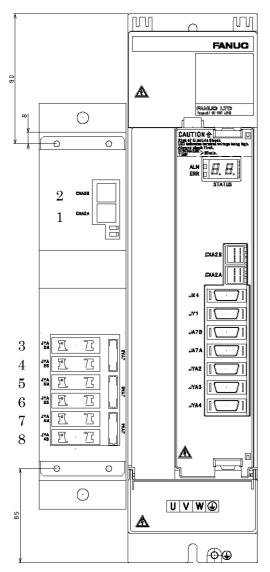
With the Power Mate, only Model D and F can use spindle switch control.

10.3.3 External Dimensions

Sub module SW



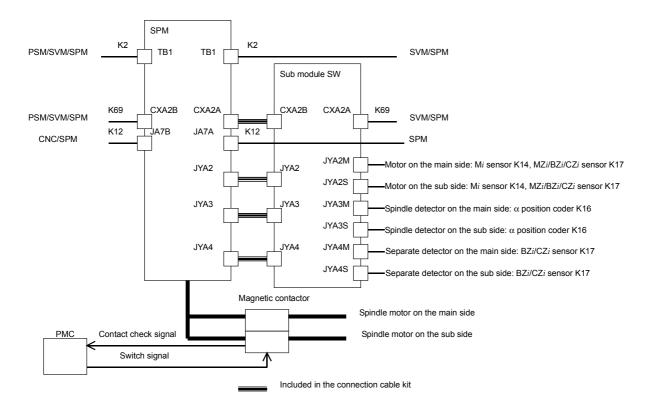
NOTE


A metal plate for mounting the sub module SW needs to be separately prepared.

Installation when the sub module SW is combined with an SPM-15i (90 mm wide)

Prepare a metal plate for mounting the sub module SW. The dimensions of a metal plate for mounting the sub module SW are specified to avoid interference with the short bar of the DC link section.

10.3.4 Connector Installation Diagram (for Combination with SPM-15*i*)


	Name	Indication		
1	Connector for PSM interface output	CXA2A		
2	Connector for PSM interface input	CXA2B		
3	Connector (main side) for spindle sensor connection on motor side	JYA2M		
4	Connector (sub side) for spindle sensor connection on motor side	JYA2S		
5	Connector for position coder connection and external one-rotation signal connection (main side)	JYA3M		
6	Connector for position coder connection and external one-rotation signal connection (sub side)	JYA3S		
7	Connector for separate spindle sensor connection (main side)	JYA4M		
8	Connector for separate spindle sensor connection (sub side)	JYA4S		

NOTE

Install a module 150 mm wide or more (SPM-22i and higher, SPM-30HVi and higher) on the right side of the SPM.

10.3.5 Connection

Total connection diagram

For details of the connection cables other than the connection cable kit, see the items of relevant K numbers in Chapter 9.

For the drawing number of the connection cable kit, see Chapter 3.

1 1 SPINDLE-RELATED DETECTORS

11.1 POSITION CODER

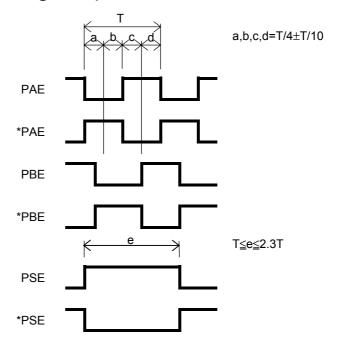
11.1.1 α Position Coder

Name and drawing number

Name	Drawing number	Remarks
α position coder	A860-0309-T302	☐68 flange mounting, 10,000min ⁻¹

Absolute maximum rating

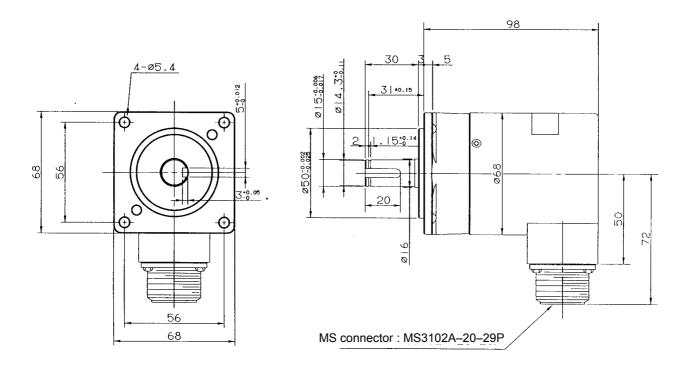
Item	Specification
Power supply voltage	-0.5V to +7.0V
Operating temperature range	0°C to +50°C
Humidity	95%RH or lower


Electric specification

	Item	Specification	
Powe	r supply voltage	5V±5%	
Supply current		350mA or lower	
Output signal	PAE,*PAE,PBE,*PBE	1,024 pulses/revolution	
Output signal	PSE,*PSE	1 pulse/revolution	

Mechanical specification

Item	Specification			
Input axis inertia	9.8×10 ⁻³ kg⋅m² or lower			
Input axis start torque	0.098N·m	n or lower		
Input avia allowable load	Radial load (operating)	98N		
Input axis allowable load	Thrust load (operating)	49N		
Maximum speed	10,000min ⁻¹			
Structure	Dust-proof and drip-proof structure (Equivalent to			
Structure	IP55: When a water-proof connector is installed)			
Anti-vibration acceleration	10G			
Weight	Approx. 0.75kg			


Signal phase relationships (timing chart)

Output pin arrangement

Α	В	С	D	E	F	G	Н	J
PAE	PSE	PBE					+5V	
K	L	М	N	Р	R	S	Т	
0V			*PAE	*PSE	*PBE			

External dimensions

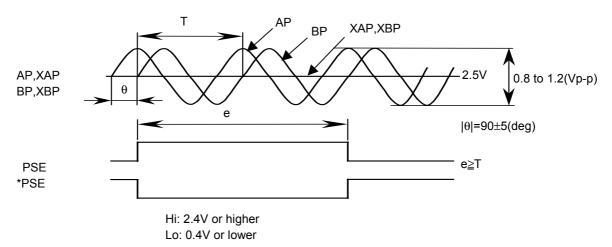
11.1.2 α Position Coder S

Name and drawing number

Name	Drawing number	Remarks
α position coder S	A860-0309-T352	☐68 flange mounting, 10,000min ⁻¹

Absolute maximum rating

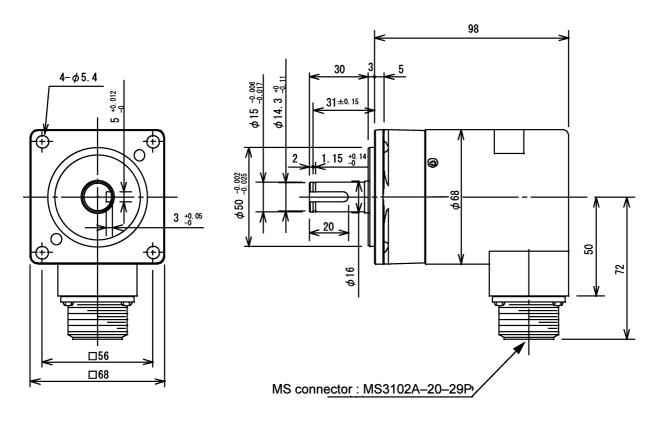
Item	Specification
Power supply voltage	-0.5V to +7.0V
Operating temperature range	0°C to +50°C
Humidity	95%RH or lower


Electric specification

	Item	Specification	
Pov	ver supply voltage	5V±5%	
Supply current		350mA or lower	
Outrot siemel	AP,BP	1,024 λ/revolution	
Output signal	PSE,*PSE	1 pulse/revolution	

Mechanical specification

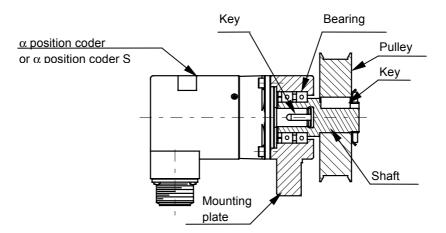
Item	Specification			
Input axis inertia	9.8×10 ⁻³ kg·m ² or lower			
Input axis start torque	0.098N·m	n or lower		
lanut avia allavvahla land	Radial load (operating)	98N		
Input axis allowable load	Thrust load (operating)	49N		
Maximum speed	10,000min ⁻¹			
Structure	Dust-proof and drip-proof structure (Equivalent to			
Structure	IP55: When a water-proof connector is installed)			
Anti-vibration acceleration	10G			
Weight	Approx. 0.75kg			


Signal phase relationships (timing chart)

Output pin arrangement

Α	В	С	D	E	F	G	Н	J
AP	PSE	BP					+5V	
K	L	М	N	Р	R	S	Т	
0V			XAP	*PSE	XBP			

External dimensions



11.1.3 Installation Conditions and Notes

(1) Connection method

Two methods of connecting an α position coder or α position coder S with the spindle are available.

- (a) One method connects a position coder to the rear part of the spindle by using a flexible joint. In this case, spindle rotation is transferred to the position coder accurately, so that the positioning precision of the position coder becomes high. In this case, however, the location where the position coder can be installed is limited, so the mechanical section may need to be modified.
- (b) With the other method, as shown below, a shaft for holding a pulley is fitted onto the shaft of the position coder, and the shaft is held by two bearings. The pulley of the position coder is connected via a timing belt with the pulley attached to the spindle.

This method is generally used to connect a conventional position coder with the spindle. In this case, however, pay attention to the following:

- <1> If there is backlash between the shaft for holding a pulley and the shaft of the position coder, fretting can occur on the shaft of the position coder, or the key can become loose, causing the positioning precision of the position coder to degrade. So, ensure such a fitting tolerance that there is no backlash between the shaft of the position coder and the shaft for holding a pulley and between the key and the key groove.
- <2> If the periphery of the pulley of the position coder is eccentric relative to the axis center of the shaft of the position coder, or the periphery of the pulley fitted onto the shaft is eccentric relative to the axis center of the shaft, the positioning precision of the spindle degrades in proportion to the magnitude of eccentricity. So, minimize these eccentricities.

(2) Shock

The position coder is a precision detector. So, be careful not to apply a shock to the shaft.

(3) Atmosphere

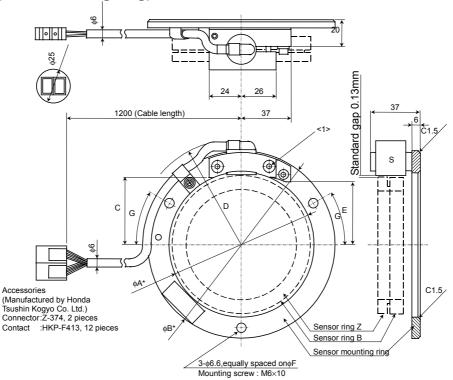
The protection grade of the position coder satisfies IP55. However, this standard is applicable to short-time performance. So, ensure that the position coder is not routinely exposed to a coolant and lubricant, and that there is no deposit of oil. If the position coder is exposed to a coolant or lubricant, install a protection cover.

11.2 BZ*i* SENSOR

Name and drawing number

		Remarks				
Name	Ordering	Marinahan		Sensor ring		
Name	number	Number of teeth	Max. speed	Inner diameter	Outer diameter	
BZi sensor 128	A860-2120-T201	100	20,000min ⁻¹	φ40	φ52	
BZi sensor 128H	A860-2120-T211	128	70,000min ⁻¹			
BZi sensor 256	A860-2120-T401	0.00	15,000min ⁻¹	± 0.0	±400 0	
BZi sensor 256H	A860-2120-T411	256	30,000min ⁻¹	φ82	φ103.2	
BZi sensor 384	A860-2120-T511	384	15,000min ⁻¹	φ125	φ154.4	
BZi sensor 512	A860-2120-T611	512	10,000min ⁻¹	φ160	φ205.6	

Absolute maximum rating


Item	Specification
Power supply voltage	-0.5 to +7.0V
Operating temperature range	0 to +80°C
Humidity	95%RH or less

Electric specification

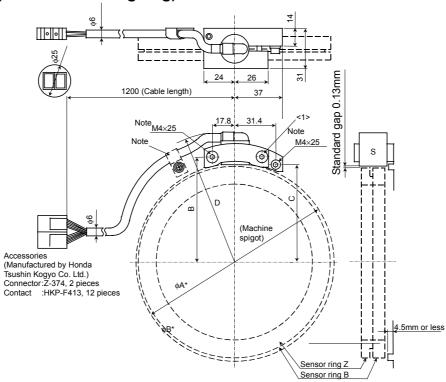
Item			Specification
Power supply voltage		5V±5%	
	Supply	current	0.05A
		BZi sensor 128/128H	128λ/rev.
VA,*VA	VA,*VA	BZi sensor 256/256H	256λ/rev.
Output	VB,*VB	BZi sensor 384	384λ/rev.
signals		BZi sensor 512	512λ/rev.
	VZ,*VZ	Common to all models	1λ/rev.

External dimensions

- BZi sensor (with mounting ring)

Sensor type No.	Sensor ring	Number of teeth	фА *	φВ *	С	D	Е	φF	G
A860-2120-T201	Ring 1	400	EGLIG. a aday a a	100h6 . a ay a aga	O.F.	R57	20	70	100
A860-2120-T211	Ring 2	128	56H6+0.019/-0.0	100h6+0.0/-0.022	25	K5/	20	78	10°
A860-2120-T401	Ring 3	256	100.000000000	140b6 . a av a aas	E1	Doo	46	104	200
A860-2120-T411	Ring 4	256	108+0.040/+0.020	140h6+0.0/-0.025	51	R80	46	124	30°

For the outside dimensions of the sensor ring, see "Sensor ring" described later.

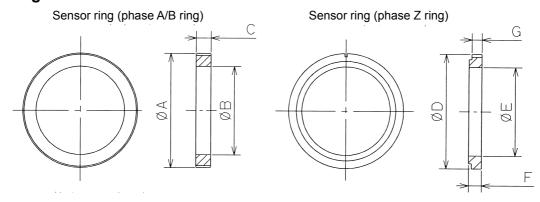

NOTE

- Use this sensor under 80°C.
- Handle these precision parts with special care. In particular, never apply external force to part S.
- The sensor consists of electric circuit. Therefore, keep away from dust, oil, and any other harmful things.
- The dimensions marked with asterisk are applied to the fitting diameter. Be sure to install the sensor so that it is aligned with the inner or outer diameter of the guide. Otherwise, the detector may produce incorrect output.
- The gap between sensor and detecting ring is preadjusted. The output signal may not indicate the target value due to a dimensional error of the mounting spigot. When installing a sensor, check the output signal. If the specified value is not satisfied, loosen the screw(*1) and make a gap adjustment.
 - *1 The recommended tightening torque of the screw is 1.2 Nm (12 kgfcm) ±10%. After tightening the screw, check, with a gap gauge of 0.1 mm, that a gap of at least 0.1 mm is provided between the sensor and the sensor ring.

For the gap adjustment output signal level, refer to "II. INSTRUCTION" in "FANUC AC SPINDLE MOTOR αi_B series DESCRIPTIONS (B-65292EN)".

- Connect the shield wire.
- For easy maintenance, mount the sensor at a position where it can be replaced easily.
- Sensor rings with the same specification number can be replaced with each other.
- Sensor rings with different specification numbers cannot be used in combination.
- Mating connectors are provided with the sensor.

- BZi sensor (without mounting ring)



Sensor type No.	Sensor ring	Number of teeth	φА	В	С	D
A860-2120-T511	Ring 5	384	158+0.0/-0.025	84.3	78.3	R110
A860-2120-T611	Ring 6	512	210+0.0/-0.030	110.8	104.8	R140

For the outside dimensions of the sensor ring, see "Sensor ring" described later.

- Use this sensor under 80°C.
- Handle these precision parts with special care. In particular, never apply external force to part S.
- The sensor consists of electric circuit. Therefore, keep away from dust, oil, and any other harmful things.
- Mount the sensor, pressing it against the spigot (dimension ϕA) on the machine (the height of the spigot on the machine is 4.5 mm or less).
- T The gap between sensor and detecting ring is preadjusted. The output signal may not indicate the target value due to a dimensional error of the mounting spigot. When installing a sensor, check the output signal. If the specified value is not satisfied, loosen the screw(*1) and make a gap adjustment.
 - *1 The recommended tightening torque of the screw is 1.2 Nm (12 kgfcm) (10%. After tightening the screw, check, with a gap gauge of 0.1 mm, that a gap of at least 0.1 mm is provided between the sensor and the sensor ring. For the gap adjustment output signal level, refer to "II. INSTRUCTION" in "FANUC AC SPINDLE MOTOR αiB series DESCRIPTIONS (B-65292EN)".
- For installation, use screws of M4×20mm and M4×25mm.
- Fasten the cable at a proper location so that if the cable is pulled, no direct force is applied to the sensor.
- · Connect the shield wire.
- For easy maintenance, mount the sensor at a position where it can be replaced easily.
- Sensor rings with the same specification number can be replaced with each other.
- Sensor rings with different specification numbers cannot be used in combination.
- Mating connectors are provided with the sensor.

Sensor ring

Dimensions

	Phase A/B ring)			Phase Z ring			
	φА	φВ	С	φD	φЕ	F	G
Ring 1, 2	52+0.0/-0.020	40+0.016/-0.0	10±0.1	52+0.0/-0.020	40+0.016/-0.0	8.6±0.1	6.7
Ring 3, 4	103.2+0.0/-0.020	82+0.0/-0.018	10±0.1	103.2+0.0/-0.020	82+0.0/-0.018	8.6±0.1	6.7
Ring 5	154.4+0.0/-0.020	125+0.025/-0.0	10±0.1	154.4+0.0/-0.020	125+0.025/-0.0	8.6±0.1	6.7
Ring 6	205.6+0.0/-0.020	160+0.020/-0.005	10±0.1	205.6+0.0/-0.020	160+0.020/-0.005	8.6±0.1	6.7

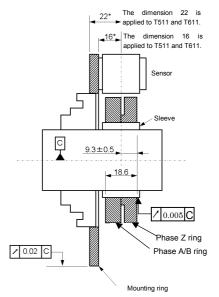
For the outside dimensions of the sensor, see "BZi sensor" described earlier.

NOTE

- Press fit the rings on a sleeve, then install the sleeve on the spindle shaft.
- Used ring can be recycled only one time.
- The circumference has special teeth. Therefore carefully protect against deformation and chipping due to external force.
- Check the feedback signal after mounting the sensor. For output signal adjustment, refer to "II. ASSEMBLY" in "FANUC AC SPINDLE MOTOR αiB series DESCRIPTIONS (B-65292EN)".

Allowable maximum speed

	Ring 1	Ring 2	Ring 3	Ring 4	Ring 5	Ring 6
Sensor type No.	T201	T211	T401	T411	T511	T611
Number of teeth	128	128	256	256	384	512
Max. speed (min ⁻¹)	20,000	70,000	15,000	30,000	15,000	10,000


NOTE

• Interference for shrink fitting of the rings is changed according to the maximum speed of spindle. Refer to "Tightening allowance" described later.

BZi sensor installation

As shown below, install ring A and ring B.

- Press the rings through the sleeve, then press the sleeve into the shaft. Ensure that the A/B phase ring and the Z phase ring are joined closely with each other.
- Ensure that a displacement between the middle point (9.3 mm) of the thickness of the A/B phase ring plus the Z phase ring and the center of the sensor lies within ±0.5 mm.
- Ensure that the swing of the sleeve relative to the center of the shaft lies within 0.005

- Ensure that the swing of the mounting ring relative to the center of the shaft lies within 0.02 mm.

Tightening allowance

The table below indicates the shrink fitting allowance for each sensor ring at maximum speed.

Unit: µm

Max. speed	T201	T211	T401	T411	T511	T611
(min ⁻¹)	Ring 1	Ring 2	Ring 3	Ring 4	Ring 5	Ring 6
3000					φ8 to φ43	φ11 to φ41
3500			φ7 to φ35	φ7 to φ35	φ9 to φ44	φ13 to φ43
4500	↓6 to ↓22	↓6 to ↓22			φ11 to φ46	φ19 to φ49
6000	φ6 to φ32	φ6 to φ32	φ9 to φ37	φ9 to φ37	φ15 to φ50	φ29 to φ59
8000			φ11 to φ39	φ11 to φ39	φ24 to φ59	φ47 to φ77
10000			φ14 to φ42	φ14 to φ42	φ35 to φ70	φ71 to φ101
12000	φ7 to φ33	φ7 to φ33	φ18 to φ46	φ18 to φ46	φ47 to φ82	
15000	φ8 to φ34	φ8 to φ34	φ26 to φ54	φ26 to φ54	φ71 to φ106	
20000	φ10 to φ36	φ10 to φ36		φ41 to φ69		
25000		φ12 to φ38		φ62 to φ90		
30000		φ15 t o φ41		φ87 to φ115		
40000		φ23 to φ49				
50000		φ33 to φ59				
60000		φ43 to φ69				
70000		φ57 to φ83				

- 1 Select a tightening allowance from the table above according to the maximum speed and type of a ring used. A failure to satisfy a tightening allowance indicated above can cause idle running or damage.
- 2 Each ring cannot be used at a speed higher than the indicated speeds. For the maximum allowable speed of each ring, see "Sensor ring" described earlier.

Compatibility

The BZ*i* sensor is compatible with the BZ sensor. For details, see the list below.

BZ sensor drawing number	BZi sensor drawing number
A860-0392-T012	A860-2120-T201
A860-0392-T082	A860-2120-T211
A860-0392-T011	A860-2120-T401
A860-0392-T081	A860-2120-T411
A860-0392-T018	A860-2120-T511
A860-0392-T013	A860-2120-T611

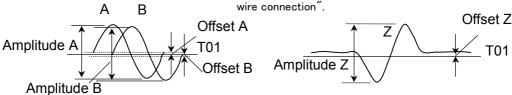
11.3 **CZi SENSOR**

Name and drawing number

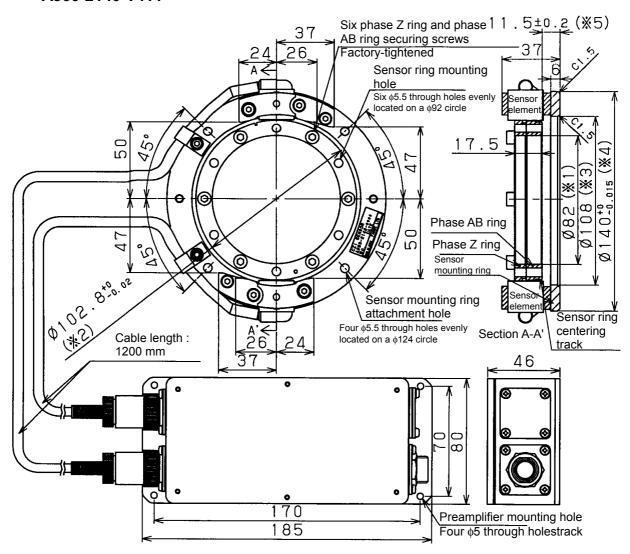
		Remarks				
Name	Ordering	Missaalaass		Sensor ring		
Name	number	Number of teeth	Max. speed	Inner	Outer	
		or teetii		diameter	diameter	
CZi sensor 512	A860-2140-T411	512	15,000min ⁻¹	φ82	φ102.8	
CZi sensor 768	A860-2140-T511	768	10,000min ⁻¹	φ125	φ154	
CZi sensor 1024	A860-2140-T611	1024	8,000min ⁻¹	φ160	φ205.2	

Absolute maximum rating

Item	Specification
Power supply voltage	-0.5 to +7.0V
Operating temperature range	0 to +50°C
Humidity	95%RH or less

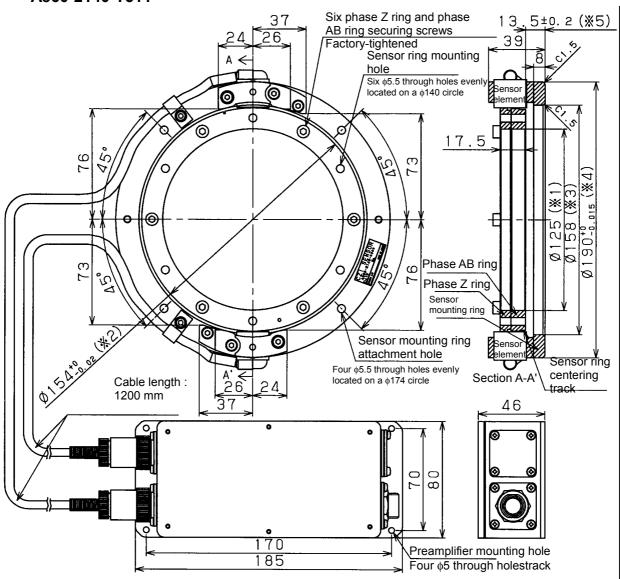

Electric specification

Item		Specification			
Power supply voltage		5V±5%			
	Supply current		Supply current		150mA or less
		CZi sensor 512	512λ/rev.		
Output	VA,*VA	CZi sensor 768	768λ/rev.		
signals	VB,*VB CZi sensor 1024		1024λ/rev.		
	VZ,*VZ	Common to all models	1λ/rev.		


(Preamplifier output at ordinary temperatures and 500 min⁻¹.)

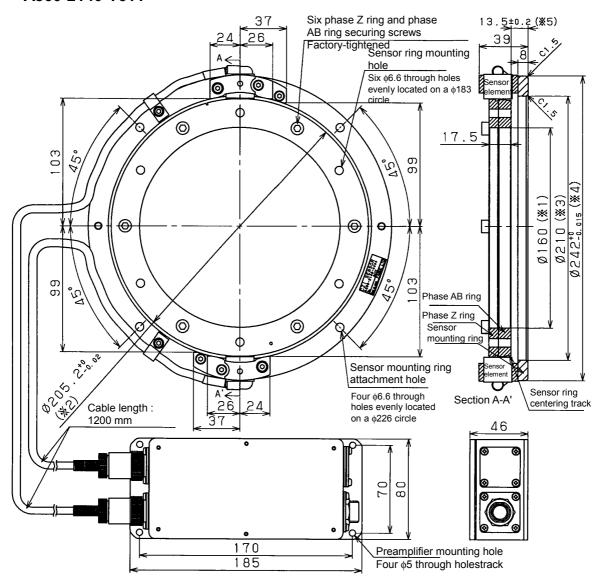
Signal name	Check pin	Output amplitude	Offset
Phase A	A (T01 reference)	1000±100mVp-p	±50mV
Phase B	B (T01 reference)	1000±100mvp-p	±SUIIIV
Phase Z	Z (T01 reference)	660 to 1650mVp-p	±50mV

For information on connector pins, see "Specification of wire connection". Offset Z


External dimensions CZi sensor 512 A860-2140-T411

For details on mounting, see "Installation".

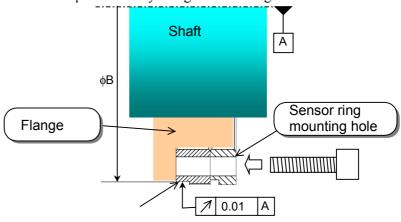
- (*1) A positive tolerance is set for the inside diameter of the sensor ring.
- (*2) This value represents the outside diameter of the teeth surface of the sensor ring.
- (*3) A positive tolerance is set for the inside diameter of the sensor mounting ring.
- (*4) This value represents the outside diameter of the sensor mounting ring.
- (*5) This value represents the distance from the bottom of the sensor mounting ring to the bottom of the sensor ring.
- This equipment must be used at temperatures up to 50°C.
- Since the CZi sensor is set in advance in combination with the ring and, sensor, and preamplifier, it must be treated as a integrated set.
- Since these are precision components, extreme caution must be taken to use them. In particular, do not apply external forces to the sensor elements.
- The detector is an electronic component. Dustproof and dripproof actions must be taken on the machine side to prevent chippings, oil, water, or other deleterious substances from being attached.
- The preamplifier box has water resistance equivalent to IP55. If cutting fluid is splashed continuously or it remains wet for an extended period of time, it may fail. Be careful to prevent cutting fluid from being splashed.
- Do not apply a vibration more that 1 G to the preamplifier box.
- Be sure to connect the shield cable. Ground the preamplifier box to a grounding terminal or the machine body.
- The detector must be installed in an easy-to-replace location to enhance maintainability.


CZ*i* sensor 768 A860-2140-T511

For details on mounting, see "Installation".

- (*1) A positive tolerance is set for the inside diameter of the sensor ring.
- (*2) This value represents the outside diameter of the teeth surface of the sensor ring.
- (*3) A positive tolerance is set for the inside diameter of the sensor mounting ring.
 - (*4) This value represents the outside diameter of the sensor mounting ring.
- (*5) This value represents the distance from the bottom of the sensor mounting ring to the bottom of the sensor ring.
- This equipment must be used at temperatures up to 50°C.
- Since the CZi sensor is set in advance in combination with the ring and, sensor, and preamplifier, it must be treated as a integrated set.
- Since these are precision components, extreme caution must be taken to use them. In particular, do not apply external forces to the sensor elements.
- The detector is an electronic component. Dustproof and dripproof actions must be taken on the machine side to prevent chippings, oil, water, or other deleterious substances from being attached.
- The preamplifier box has water resistance equivalent to IP55. If cutting fluid is splashed continuously or it remains wet for an extended period of time, it may fail. Be careful to prevent cutting fluid from being splashed.
- Do not apply a vibration more that 1 G to the preamplifier box.
- Be sure to connect the shield cable. Ground the preamplifier box to a grounding terminal or the machine body.
- The detector must be installed in an easy-to-replace location to enhance maintainability.

CZ*i* sensor 1024 A860-2140-T611

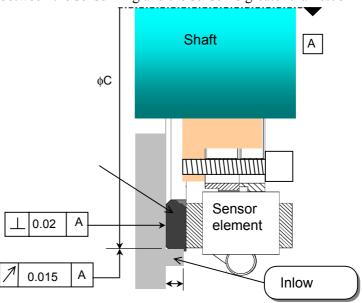


For details on mounting, see "Installation".

- (*1) A positive tolerance is set for the inside diameter of the sensor ring.
- (*2) This value represents the outside diameter of the teeth surface of the sensor ring.
- (*3) A positive tolerance is set for the inside diameter of the sensor mounting ring.
- (*4) This value represents the outside diameter of the sensor mounting ring.
- (*5) This value represents the distance from the bottom of the sensor mounting ring to the bottom of the sensor ring.
- This equipment must be used at temperatures up to 50°C.
- Since the CZi sensor is set in advance in combination with the ring and, sensor, and preamplifier, it must be treated as a integrated set.
- Since these are precision components, extreme caution must be taken to use them. In particular, do not apply external forces to the sensor elements.
- The detector is an electronic component. Dustproof and dripproof actions must be taken on the machine side to prevent chippings, oil, water, or other deleterious substances from being attached.
- The preamplifier box has water resistance equivalent to IP55. If cutting fluid is splashed continuously or it remains wet for an extended period of time, it may fail. Be careful to prevent cutting fluid from being splashed.
- Do not apply a vibration more that 1 G to the preamplifier box.
- Be sure to connect the shield cable. Ground the preamplifier box to a grounding terminal or the machine body.

Attachment Attaching the sensor ring

Provide a flange on the shaft side and then attach the sensor ring in the axis direction using the sensor ring attachment hole. Secure it after performing centering so that the swing relative to the rotation center is 10 µm or less by using the centering track.

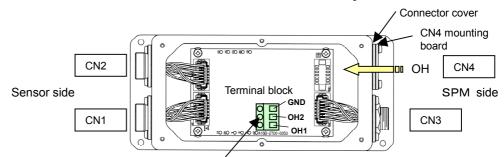


Specification	Outside diameter of the centering track (φΒ)	Sensor ring mounting hole position	Screw
A860-2140-T411	φ101	Six φ5.5 through holes evenly located on a φ92 circle	M5
A860-2140-T511	φ152.2	Six φ5.5 through holes evenly located on a φ140 circle	M5
A860-2140-T611	ф203.4	Six φ6.6 through holes evenly located on a φ183 circle	M6

- Make design in such a way that the clearance between the outer surface of the flange and the inner diameter of the sensor ring is approximately 0.1 mm for centering.
- Secure the sensor ring using end face screwing instead of shrinkage fitting.
- The sensor ring consists of the phase Z ring and phase AB ring. Since it is secured by screws in advance, do not remove them. Since a countersunk hole is not provided, a machine must be designed so that the head of a screw is out of the way of it.
- To perform centering, be sure to use the centering track. (The outer surface of the phase Z ring and the teeth pitch circle do not have the same axis.) For centering, use a plastic hammer to prevent the teeth of a gear being damaged.
- Magnetic dust attached on the gear teeth may cause a detection error. Perform air blowing or the like upon completion of centering.

Attaching the sensor mounting ring

Provide an inlow on the machine side and then attach the sensor mounting ring by engaging the outer surface of the sensor mounting ring in the inner surface of the inlow. (The sizes related to the inlow parts on the machine side must meet the conditions shown below so that the detection accuracy is not degraded.) When securing it by screws, push the mounting ring from the CN1 sensor side against the inlow and then secure it as shown in the following figure. After securing it, use a feeler gage or other tool to verify that the gap between the sensor ring and the sensor is greater than 0.08 mm.

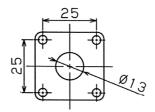

Specification	Outside diameter of the sensor mounting ring	Inside diameter of the inlow (φC)	Height of the inlow (D)	Distance from the bottom of the sensor mounting ring to the bottom of the sensor ring (E)
A860-2140-T411	φ140 ⁺⁰ _{-0.015}	φ140 ^{+0.015} ₋₀	5.5 or less	11.5±0.2
A860-2140-T511	φ190 ⁺⁰ _{-0.015}	φ190 ^{+0.015} ₋₀	7.5 or less	13.5±0.2
A860-2140-T611	φ242 ⁺⁰ _{-0.015}	φ242 ^{+0.015} ₋₀	7.5 or less	13.5±0.2

NOTE

- Provide an inlow, if possible, on the machine side and engage the sensor mounting ring to the inlow. Do not tap the outer surface of the sensor mounting ring for centering.

Connecting an OH cable

Open the lid of the preamplifier box and then remove the connector cover on the CN4 side. Draw the OH cable from the CN4 side and then connect it to the terminal block on the printed circuit board.

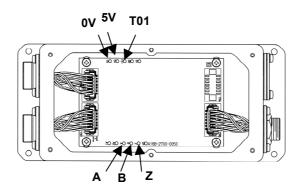

Torque the screws to 0.3 N·m using a flatblade screwdriver.

The cable clamp for an OH cable must be prepared by the user. To fix the cable clamp, use the CN4 connector attachment board.

Recommended cable clamp: SKINTOP ST-7 of LAPP CABLE

Outside diameter of an OH cable: \$5.2±0.3

Diameter of the holes in the CN4 connector attachment board: \$\phi13\$


CN4 connector attachment

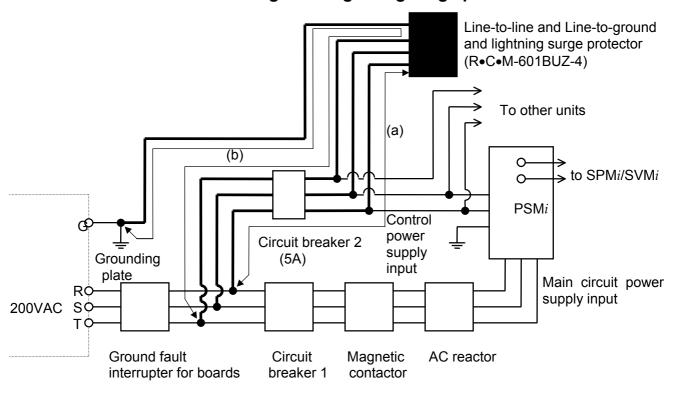
- Since the sensor, preamplifier, and sensor ring are integrally adjusted, these components must be treated as a single component. In addition, since the variable resistor on the board within the preamplifier is adjusted in advance, the resistor value must not be changed.
- "CN1" (black) and "CN2" (blue) is marked in the connector section on the sensor side. The appropriate connectors must be connected as shown in the figure above.

Checking output signals

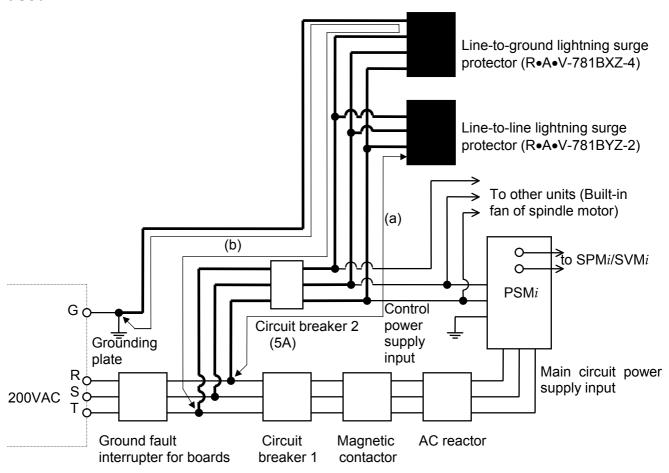
When checking output signals, see "Electric specification" (output signals do not need to be adjusted).

- When checking a waveform without connecting to the SPM, supply power to the 0 V and 5 V pins.
- The shape of the lissajous for A/B phase output signals is a perfect circle

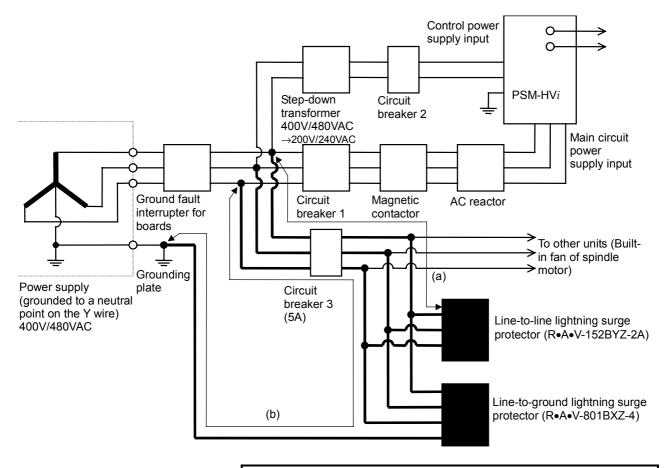
APPENDIX



FITTING A LIGHTNING SURGE PROTECTION DEVICE


This appendix describes how to install a lightning surge protector and provides notes on installation.

A.1 200-V INPUT SERIES POWER SUPPLY


When a line-to-line and line-to-ground lightning surge protector is used

When line-to-line and line-to-ground lightning surge protectors are individually used

A.2 400-V INPUT SERIES POWER SUPPLY

⚠ CAUTION

When the spindle motor $\alpha 1HVi$, $\alpha 1.5HVi$, $\alpha 2HVi$, or $\alpha 3HVi$ is used, specification of the fan motor for $\alpha T1HVi$, $\alpha T2HVi$, and $\alpha T3HVi$ is below : $1 \oplus 200/230VAC$

A.3 CAUTIONS

(1) To increase the efficiency of lightning surge absorption, the wires indicated by bold lines should be as short as possible.

Wire cross-sectional area: 2 mm² or more

Wire length:

The total length of the cables used for line-to-line lightning surge protector (a) and that used for line-to-ground lightning surge protector (b) must not exceed 2 m.

- (2) When performing a dielectric strength test by applying an overvoltage to the power line, line-to-ground lightning surge protector must be removed to enable the applied voltage to be maintained.
- (3) The circuit breaker 2 (5A) or circuit breaker 3 (5A) works for line protection when the lightning surge absorber is short-circuited because of a surge higher than its rating being applied.
- (4) Because current does not flow through lightning surge protector in a normal state, the circuit breaker 2 (5A) or circuit breaker 3 (5A) can be used together with the surge absorbers as well as with other equipment.

CABLES

This appendix describes the cables used for the 20-pin interface connectors.

The cables are basically the same as those used for the FS16/18.

The table below lists the cables we have developed for interface connectors.

Contact the manufacturers as required.

Cable name	Purpose		Configuration	FANUC specification	Manufacturer	Manufacturer specification
			0.00	A66L-0001-0284#10P	Hitachi Electric	UL20276-SB(0)
10-pair	For general ι	100			Cable Co., Ltd.	10P×28AWG(7/0.127)
cable		use	0.09mm TO pairs	A66L-0001-0264#10P	Oki Electric	7/0.127 10P VX10-SV
		T	_		Cable Co., Ltd.	770.127 101 VX10-0V
			0.3mm ² 5 cables	14661 -0001-0460	Hitachi Electric	UL20276-SB(FLEX)
			0.20mm ² 1 pairs		Cable Co., Ltd.	5×23AWG+1P×25AWG
Composito			0.5mm ² 5 cables	14661 -1111111-11262	Hitachi Electric	UL20276-SB(FLEX)
Composite 7-core	For		0.20mm ² 1 pairs		Cable Co., Ltd.	5×20AWG+1P×25AWG
cable	Pulsecoder	r 28m or less	0.3mm ² 5 cables	A66L-0001-0481	Hitachi Electric	UL20276-SB(0)
cable			0.18mm ² 1 pairs	A00L-0001-0401	Cable Co., Ltd.	5×23AWG+1P×25AWG
			0.5mm ² 5 cables	A66L-0001-0491	Hitachi Electric	UL20276-SB(0)
		Fixed	0.18mm ² 1 pairs		Cable Co., Ltd.	5×20AWG+1P×25AWG
Composite	For Mi senso	or(for $\alpha 0.5i$)	0.3mm ² 2 cables		Hitachi Electric	UL20276-SB(FLEX)
10-core cable	For MZi sensor(for $\alpha 0.5i$			A66L-0001-0482		2×23AWG+4P×25AWG
Commonito					Hitachi Electric	F-CO-VV(0)-SB
Composite For α positi		ncoder	0.5mm ² 6 cables	A66L-0001-0286	Cable Co., Ltd.	6×0.5SQ+3P×0.18SQ
117-COPA 1 '	For α position	oncoder S	0.18mm ² 3 pairs	A00L-0001-0200	Oki Electric	MIX12C(7/0.18,
					Cable Co., Ltd.	20/0.18)HRS-SV
10 noir	10-pair cable For CZi sensor		0.18mm ² 10 pairs		Shinko Electric	
-					Industries Co.,	FNC-019
Cable					Ltd.	
Composite			0.5mm ² 6 cables 0.18mm ² 5 pairs	A66L-0001-0368	Shinko Electric	
16-core					Industries Co.,	FNC-021
cable			o. rollilli o palls		Ltd.	

B.1 10-PAIR CABLE

Specifications

Item		Unit	Specifications	
Product No.		_	A66L-0001-0284#10P	
Manufacturer			Hitachi Cable,Ltd.	
		_	Oki Electric Cable, Co.,Ltd.	
Rating		_	60°C, 30V:UL2789 80°C, 30V:UL80276	
	Conductor	_	Stranded wire of tinned annealed copper (ASTM B-286)	
Material	Insulator	_	Cross-linked vinyl	
	Shield braid	_	Tinned annealed copper wire	
	Sheath	_	Heat-resistant oilproof vinyl	
Number of pair		Pairs	10	
	Size	AWG	28	
Conductor	Structure	Conductors/	7/0.127	
		mm		
	Outside diameter	mm	0.38	
	Thickness	mm	0.1 (Thinnest portion : 0.08(3. 1mils))	
Insulator	Outside diameter (approx.)	mm	0.58	
	Core style (rating)	mm	UL15157(80°C, 30V)	
Twisted pair	Outside diameter (approx.)	mm	1.16	
i wistea paii	Pitch	mm	20 or less	
Lay		_	Collect the required number of twisted pairs into a cable, then wrap binding tape around the cable. To make the cable round apply a cable separator as required.	
Lay diameter (a	approx.)	mm	3.5	
		Conductors/	Hitachi Cable : Not available	
Drain wire	rain wire		Oki Electric Cable : Available,10/0.12	
Shield braid	Element wire diameter	mm	0.12	
	Braid density	%	85 or more	
	Color	_	Black	
	Thickness	mm	1.0	
Sheath	Outside diameter (approx.)	mm	6.2	
Standard lengt		mm	200	
Packing method		mm	Bundle	
. coming metho	Resistance of conductor (20°C)	Ω/km	233 or less	
Electrical performance	Insulation resistance (20°C)	MΩ-km	10 or less	
	Dielectric strength (AC)	V/min	300	
Flame resistance		_	Shall pass flame resistance test VW-1SC of UL standards.	

Cable structure

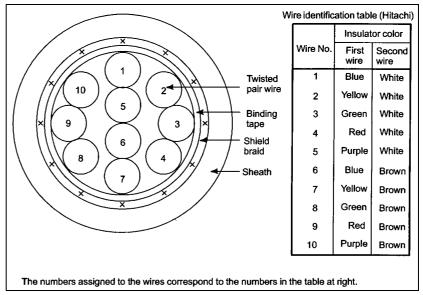


Fig.B.1(a) Cable made by Hitachi Electric Cable

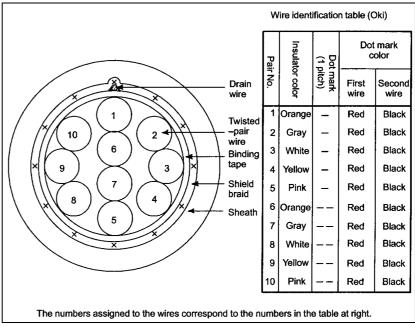
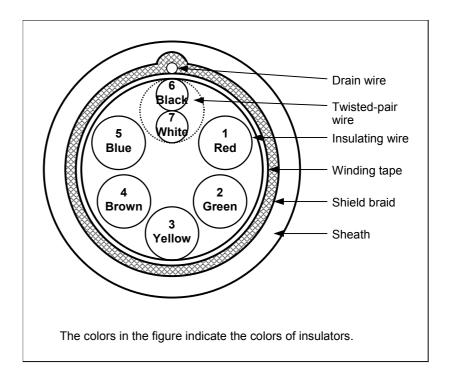


Fig.B.2(b) Cable made by Oki Electric Cable

B.2 COMPOSITE 7-CORE CABLE

A66L-0001-0460


- Specifications

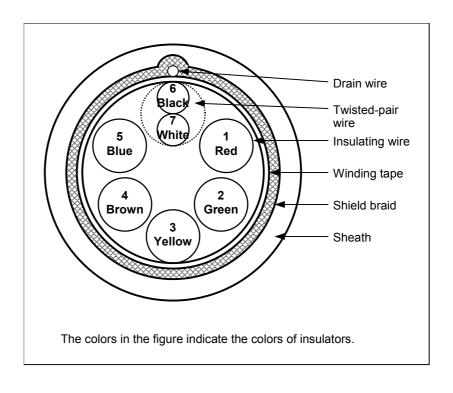
Item		Unit	Specifications		
Product No.		_	A66L-0001-0460		
Manufacturer		_	Hitachi Electric Cable Co., Ltd.		
Rating		_	80°C, 30V		
	Conductor,braid-shielded wire,drain wire	-	Strand wire of tinned annealed copper (JIS C3152)		
Material	Insulator	_	Fluorine plastics (ETFE)		
	Sheath	_	Oilproof, heat-resistant vinyl		
Number of wir	res (wire nos.)	Cores	5 (1 to 5) 2 (one pair) (6 to 7)		
	Size	mm ²	0.3	0.20	
Conductor	Structure	Conductors /mm	60/0.08	40/0.08	
	Conductors	mm	0.72	0.58	
Insulator	Standard thickness	mm	0.15	0.15	
irisulatoi	Outside diameter	mm	1.02	0.88	
Turista di main	Outside diameter	mm	_	1.76	
Twisted pair	Pitch (approx.)	mm	_	13	
Lay diameter (approx.)		mm	3.4		
	Size	mm ²	0.15		
Drain wire	Structure		30/0.08		
	Outside diameter	mm	0.51		
	Element wire diameter	mm	0.12		
Chiald braid	Thickness	mm	0.3		
Shield braid	Braid density	%	85 or more		
	Outside diameter (approx.)	mm	4.2		
	Color	-	Black		
Chaath	Standard thickness	mm	1.0		
Sheath Sheath	Standard outside diameter (approx.)	mm	6.2		
	Outside diameter allowance	mm	5.7 to 7.3 (Note)		
Standard length		m	200		
Packing method		_	Bundle		
Electrical	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	69.5 or less (1 to 5)	109 or less (6 to 7)	
performance	Insulation resistance (20°C)	MΩ-km	100 or more		
	Dielectric strength (AC)	_	500VAC for 5 minutes		
Flame resistance		_	Shall pass flame resistance test VW-1 of UL standards.		

NOTE

The maximum outside diameter applies to portions other than the drain wire.

- Cable structure

A66L-0001-0462


- Specifications

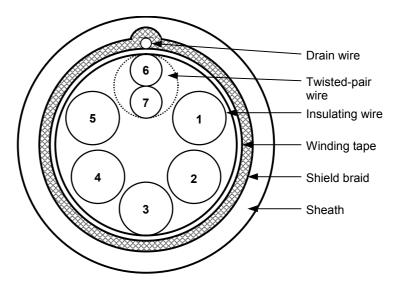
Item		Unit	Specifications	
Product No.	roduct No.		A66L-0001-0462	
Manufacturer		_	Hitachi Electric Cable Co., Ltd.	
Rating	ating		80°C, 30V	
	Conductor,braid-shielded wire,drain wire	-	Strand wire of tinned annealed copper (JIS C3152)	
Material	Insulator	_	Fluorine plastics (ETFE)	
	Sheath	_	Oilproof, heat-resistant vinyl	
Number of wi	res (wire nos.)	Cores	5 (1 to 5)	2 (one pair) (6 to 7)
	Size	mm ²	0.5	0.20
Conductor	Structure	Conductors /mm	104/0.08	40/0.08
	Conductors	mm	0.94	0.58
Inquiator	Standard thickness	mm	0.2	0.15
Insulator	Outside diameter	mm	1.34	0.88
Twisted noir	Outside diameter	mm	_	1.76
i wisted pair	Twisted pair Pitch (approx.)		_	13
Lay diameter (approx.)		mm	4.2	
	Size	mm ²	0.15	
Drain wire	Structure	Wires/mm	30/0.08	
	Outside diameter	mm	0.51	
	Element wire diameter	mm	0.12	
Chiald braid	Thickness	mm	0.3	
Shield braid	Braid density	%	85 or more	
	Outside diameter (approx.)	mm	5.0	
	Color	_	Black	
	Standard thickness	mm	1.0	
Sheath	Standard outside diameter	mm	7.0	
	(approx.)	mm	7.0	
	Outside diameter allowance	mm	6.5 to 8.0 (Note)	
Standard length		m	200	
Packing meth	od	-	Bundle	
Electrical	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	40.1 or less (1 to 5)	109 or less (6 to 7)
performance	Insulation resistance (20°C)	MΩ-km	100 or more	
	Dielectric strength (AC)	_	500VAC for 5 minutes	
Flame resista		_	Shall pass flame resistance test VW-1 of UL standards.	

NOTE

The maximum outside diameter applies to portions other than the drain wire.

- Cable structure

A66L-0001-0481


- Specifications

Item		Unit	Specifications		
Product No.		_	A66L-0001-0481		
Manufacturer		_	Hitachi Electric Cable Co., Ltd.		
Rating		_	80°C, 30V		
	Conductor,braid-shielded wire,drain wire	_	Strand wire of tinned annealed copper (JIS C3152)		
Material	Insulator	_	Heat-resistant vinyl		
	Sheath	_	Oilproof, heat-resistant v	vinyl	
Number of wir	res (wire nos.)	Cores	5 (1 to 5)	2 (one pair) (6 to 7)	
	Size	mm ²	0.3	0.18	
Conductor	Structure	Conductors /mm	12/0.18	7/0.18	
	Conductors	mm	0.72	0.54	
Inquiator	Standard thickness	mm	0.25	0.25	
Insulator	Outside diameter	mm	1.22	0.94	
Twisted pair	Outside diameter	mm	- .	1.88	
Twisted pair Pitch (approx.)		mm	_	20	
Lay diameter (approx.)		mm	3.9		
	Size	mm ²	0.18		
Drain wire	Structure	Wires/mm	7/0.18		
	Outside diameter	mm	0.54		
	Element wire diameter	mm	0.12		
Shield braid	Thickness	mm	0.3		
Silleid braid	Braid density	%	85 or more		
	Outside diameter (approx.)	mm	4.6		
	Color	_	Black		
	Standard thickness	mm	0.8		
Sheath	Standard outside diameter (approx.)	mm	6.2		
	Outside diameter allowance	mm	5.7 to 7.3 (Note)		
Standard leng	gth	m	200		
Packing meth	od		Bundle		
Electrical	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	65.7 or less (1 to 5)	113 or less (6 to 7)	
performance	Insulation resistance (20°C)	MΩ-km	15 or more		
	Dielectric strength (AC)	_	500VAC for 5 minutes		
Flame resista	nce	_	Shall pass flame resistance test VW-1 of UL standards.		

NOTE

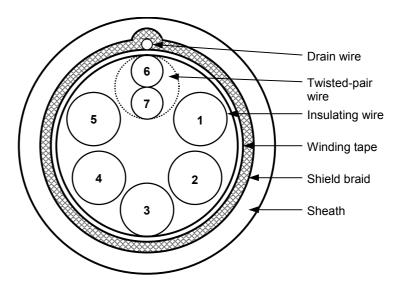
The maximum outside diameter applies to portions other than the drain wire.

- Cable structure

The numbers assigned to the wires correspond to the numbers in the table below.

Wire No.	Insulator color	Dot mark color
1	Yellow	
2	Yellow	Black
3	Yellow	Red
4	Bright green	Black
5	Bright green	Red
6	Light brown	Black
7	Light brown	Red

A66L-0001-0491


- Specifications

Item		Unit	Specifications		
Product No.		_	A66L-0001-0491		
Manufacturer		_	Hitachi Electric Cable Co., Ltd.		
Rating		_	80°C, 30V		
_	Conductor,braid-shielded wire,drain wire	_	Strand wire of tinned annealed copper (JIS C3152)		
Material	Insulator	_	Heat-resistant vinyl		
	Sheath	_	Oilproof, heat-resistant v	rinyl	
Number of wir	res (wire nos.)	Cores	5 (1 to 5)	2 (one pair) (6 to 7)	
	Size	mm ²	0.5	0.18	
Conductor	Structure	Conductors /mm		7/0.18	
	Conductors	mm	0.93	0.54	
Inquiator	Standard thickness	mm	0.25	0.25	
Insulator	Outside diameter	mm	1.43	0.94	
T 1.1. 1	Outside diameter	mm	_	1.88	
Twisted pair Pitch (approx.)		mm	_	23	
Lay diameter (approx.)		mm	4.4		
	Size	mm ²	0.18		
Drain wire	Structure	Wires/mm	7/0.18		
	Outside diameter	mm	0.54		
	Element wire diameter	mm	0.12		
Shield braid	Thickness	mm	0.3		
Silleid braid	Braid density	%	85 or more		
	Outside diameter (approx.)	mm	5.1		
	Color	_	Black		
	Standard thickness	mm	0.55		
Sheath	Standard outside diameter (approx.)	mm	6.2		
	Outside diameter allowance	mm	5.7 to 7.3 (Note)		
Standard leng	gth	m	200		
Packing meth	od		Bundle		
Electrical	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	39.4 or less (1 to 5)	113 or less (6 to 7)	
performance	Insulation resistance (20°C)	MΩ-km	15 or more		
	Dielectric strength (AC)	_	500VAC for 5 minutes		
Flame resista	nce	_	Shall pass flame resistance test VW-1 of UL standards.		

NOTE

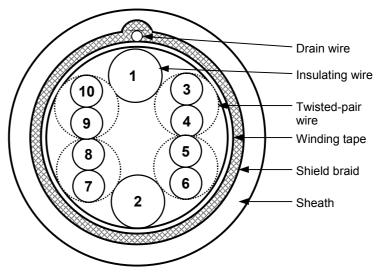
The maximum outside diameter applies to portions other than the drain wire.

- Cable structure

The numbers assigned to the wires correspond to the numbers in the table below.

Wire No.	Insulator color	Dot mark color
1	Light brown	
2	Yellow	
3	Yellow	Black
4	Yellow	Red
5	Bright green	
6	Light brown	Black
7	Light brown	Red

B.3 COMPOSITE 10-CORE CABLE


Specifications

	ltem		Specifications		
Product No.		_	A66L-0001-0482		
Manufacturer	acturer		Hitachi Electric Cable Co., Ltd.		
Rating		_	80°C, 30V		
	Conductor, braid-shielded wire, drain wire	-	Strand wire of tinned annealed copper (JIS C3152)		
Material	Insulator	_	Heat-resistant vinyl		
	Sheath	_	Oilproof, heat-resistant vinyl		
Number of wir	res (wire nos.)	Cores	2	8 (four pairs)	
	Size	mm ²	0.3	0.2	
Conductor	Structure	Conductors /mm	60/0.08	40/0.08	
	Conductors	mm	0.72	0.58	
Insulator	Standard thickness	mm	0.25	0.2	
insulator	Outside diameter	mm	1.22	0.98	
Twisted pair	Outside diameter	mm	_	1.96	
Twisted pair Pitch (approx.)		mm	_		
Lay diameter		mm	5.0		
	Size	mm ²	0.15		
Drain wire	Structure	Wires/mm	30/0.08		
	Outside diameter	mm	0.51		
	Element wire diameter	mm	0.12		
Shield braid	Thickness	mm	0.3		
Silieid braid	Braid density	%	85 or more		
	Outside diameter (approx.)	mm	5.7		
	Color	_	Black		
	Standard thickness	mm	0.65		
Sheath	Standard outside diameter (approx.)	mm	7.0		
	Outside diameter allowance	mm	6.5 to 8.0 (Note)		
Standard leng	yth	m	200		
Packing meth		-	Bundle		
Electrical	Resistance of conductor (at 20°C) (wire nos.)	Ω/km	69.5 or less	109 or less	
performance	Insulation resistance (20°C)	MΩ-km	15 or more		
- I	Dielectric strength (AC)	_	500VAC for 5 minutes		
Flame resista		_	Shall pass flame resistance	test VW-1 of UL standards.	

NOTE

The maximum outside diameter applies to portions other than the drain wire.

Cable structure

The numbers assigned to the wires correspond to the numbers in the table below.

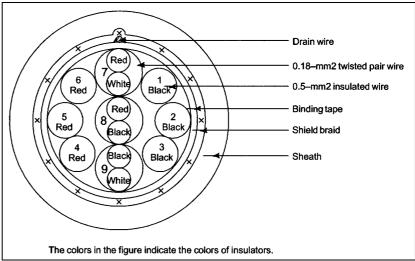
Wire No.	Insulator color	Dot mark color
1	Light brown	
2	Yellow	
3	Light brown	Black
4	Light brown	Red
5	Yellow	Black
6	Yellow	Red
7	Bright green	Black
8	Bright green	Red
9	Gray	Black
10	Gray	Red

B.4 COMPOSITE 12-CORE CABLE

Specifications

Product No.		A66L-0001-0286		
lonufacturor.		Hitachi Electric Cable Co., Ltd.		
Manufacturer		Oki Cable, Ltd.		
Rating		80°C, 30V		
Conductor, braid-shielded wire,		Strand wire of tinned anneale	d copper (JIS C3152)	
Insulator	_	Heat-resistant flame-retardan	t vinvl	
	_			
	Cores	<u> </u>	6 (three pairs) (7 to 9)	
		,	0.18	
Structure	Conductors	20/0.18	7/0.18	
Conductors		0.94	0.54	
minimum thickness is at least	mm	0.25	0.2	
	mm	1.50	0.94	
			1.88	
	_		Left	
•	mm		20 or less	
Lay		Twist the wires at an appropriate pitch so the outermost layer is right-twisted, and wrap tape around the outermost layer. Apply a cable separator as required.		
	mm	5.7	•	
Size	mm ²	0.3		
Structure		12/0.18		
Outside diameter	mm	0.72		
Element wire diameter	mm	0.12		
Thickness	mm	0.3		
Braid density	%	70		
Outside diameter	mm	6.3		
Color	_	Black		
Standard thickness (The				
85% of the standard thickness.)	mm	1.1		
Outside diameter	mm	8.5Max.9.0(1)		
Standard length		100		
od	-	Bundle		
Resistance of conductor (at 20°C) (wire nos.)	Ω/km	39.4 (1 to 6)	113 (7 to 9)	
Insulation resistance (20°C)	MΩ-km	15	•	
, ,		500		
	_	Shall pass flame resistance test VW-1SC of UL standards.		
	drain wire nsulator Sheath es (wire nos.) Size Structure Conductors Standard thickness (The minimum thickness is at least 30% of the standard thickness.) Outside diameter Outside diameter Oirection of lay Pitch Size Structure Outside diameter Element wire diameter Thickness Braid density Outside diameter Color Standard thickness (The minimum thickness is at least 35% of the standard thickness.) Outside diameter th od Resistance of conductor (at 20°C) (wire nos.)	drain wire — nsulator — Sheath — es (wire nos.) Cores Size mm² Conductors mm Structure Conductors Conductors mm Standard thickness (The minimum thickness is at least 30% of the standard thickness.) mm Dutside diameter mm Dutside diameter mm Direction of lay — Pitch mm Size mm²² Structure Wires/mm Dutside diameter mm Element wire diameter mm Thickness mm Braid density % Dutside diameter mm Color — Standard thickness (The minimum thickness is at least 35% of the standard thickness.) mm Dutside diameter mm th m of the standard thickness.) mm Outside diameter mm th m dod — Resistance of conductor (at 20°C) (wire nos.) 0/km<	- 80°C, 30V	

NOTE

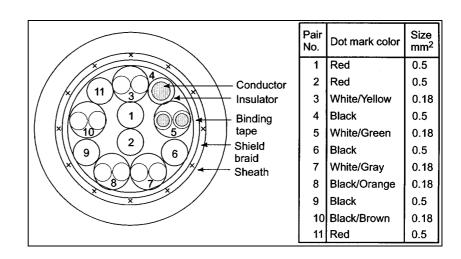

The maximum outside diameter applies to portions other than the drain wire.

Markings on cable

- (i) Name or symbol of the manufacturer
- (ii) Manufacturing year

Cable structure

The cable structure is shown below.

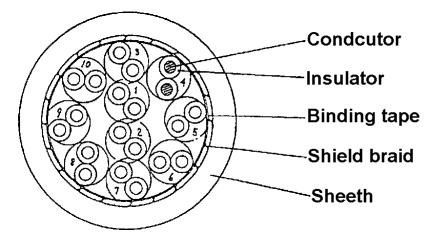


B.5 COMPOSITE 16-CORE CABLE

Specifications

Item		Unit	Specifications		
Product No.				A66L-0001-0368(FNC-021)	
Manufacturer				Shinko Electric Industries Co., Ltd.	
Rating			80°C, 60V		
	Conductor			Stranded wire of tinned ann	ealed copper (JIS C 3152)
	Insulator	Insulator		Heat-resistant polivinyl chior	ride
Material	Shield braid			Tinned annealed copper wir	e
	Sheath			Heat-resistant, oil-resistance chioride (S-3)	e, flame-retardent polivinyl
Number of pairs			Pairs	6	10 (5-pair)
	Nominal cross- area	sectional	mm ²	0.5	0.18
Conductor	Structure		Conductors /mm	20/0.18	7/0.18
	Outside diameter (approx.)		mm	0.9	0.54
Insulator	Thickness		mm	0.25 (Average thickness : 90% or more)	0.2 (Average thickness : 90% or more)
	Outside diameter (approx.)		mm	1.5	0.94
Twisted pair	Outside diamet	er (approx.)	mm	_	1.88 (pitch : 20 mm or less)
Lay	Diameter (appr	ox.)	mm	6.5	
Tape-wound wire	Diameter (appr	ox.)	mm	6.6	
Drain wire	Structure		Conductors /mm	12/0.18	
Shield	Element wire d	ameter	mm	0.12 (Braid density: 70% or	more)
	Color			Black	
Sheath	Thickness		mm	1.0 (Average thickness: 90°	% or more)
	Outside diamet		mm	9.2 ± 0.3	
	Electric	0.18mm ²	Ω/km	113 or less (20°C JIS C 3005 6)	
Electrical	resistance	0.5mm ²	22/ NIII	39.4 or less (20°C JIS C 3005 6)	
performance	Dielectricstrength		V/min	AC500(JIS C 3005 8 (2))	
	Insulation resistance		MΩ-k m	15 or more (20°C JIS C 3005 9.1)	

Cable structure



B.6 10-PAIR CABLE

Specifications

Item		Unit	Specifications
Product No.			A66L-0001-0367(FNC-019)
Manufacturer			Shinko Electric Industries Co., Ltd.
Rating			80°C, 60V
	Conductor		Stranded wire of tinned annealed copper (JIS C 3152)
	Insulator		Heat-resistant polivinyl chioride
Material	Shield braid		Tinned annealed copper wire
	Sheath		Heat-resistant, oil-resistance, flame-retardent polivinyl chioride (S-3)
Number of pairs	3	Pairs	20 (10-pair)
	Nominal cross-sectional area	mm^2	0.18
Conductor	Structure	Conductors /mm	7/0.18
	Outside diameter (approx.)	mm	0.54
lm a lata v	Thickness	mm	0.25 (Average thickness : 90% or more)
Insulator	Outside diameter (approx.)	mm	1.04
Twisted pair	Outside diameter (approx.)	mm	2.08 (pitch : 25 mm or less)
Lay	Diameter (approx.)	mm	6.5
Tape-wound wire	Diameter (approx.)	mm	6.6
Shield	Element wire diameter	mm	0.12 (Braid density: 70% or more)
	Color		Black
Sheath	Thickness	mm	1.0 (Average thickness : 90% or more)
	Outside diameter	mm	9.2 ± 0.3
	Electric resistance	Ω /km	110 or less (20°C JIS C 3005 6)
Electrical	Dielectricstrength	V/min	AC500(JIS C 3005 8 (2))
performance	Insulation resistance	MΩ-km	15 or more (20°C JIS C 3005 9.1)

Cable structure

Pair number	Dot mark color	
1	Black/Orange	
2	Black/Gray	
3	White/Yellow	
4	White/Green	
5	White/Brown	
6	White/Orange	
7	White/Gray	
8	Black/Yellow	
9	Black/Green	
10	Black/Brown	

EXTERNAL DIMENSIONS OF EACH CONNECTOR

Manufacture : Tyco Electronics AMP

Type : 1-178128-3

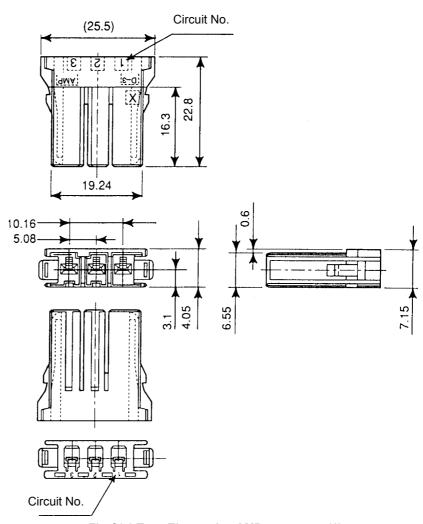


Fig.C(a) Tyco Electronics AMP connector (1)

Manufacture : Tyco Electronics AMP

Type : 2-178128-3

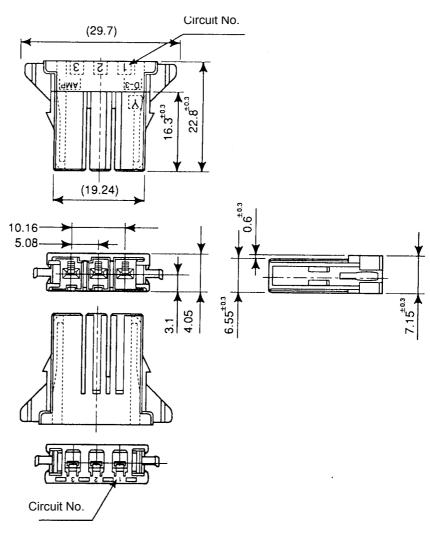


Fig.C(b) Tyco Electronics AMP connector (2)

Manufacture : Tyco Electronics AMP

Type : 1-175218-2 Cable : AWG16, 18, 20

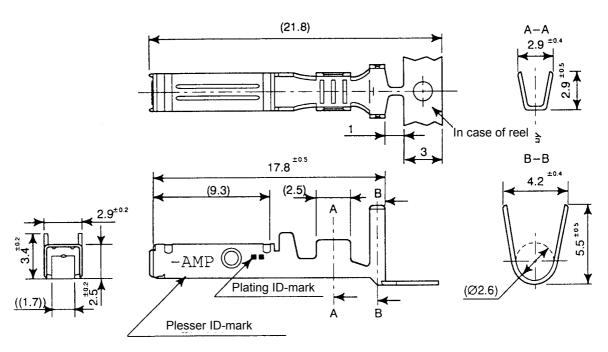


Fig.C(c) Contact for Tyco Electronics AMP connector

Tyco Electronics AMP 1-1318119-4 Manufacture

Type

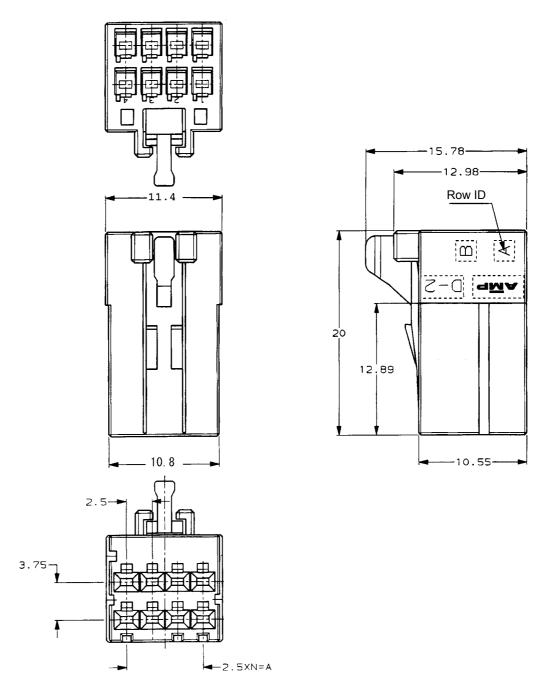


Fig.C(d) Contact for Tyco Electronics AMP connector

Type : FI30-20S (crimp type) Housing : FI-20-CVS2 (plastic)

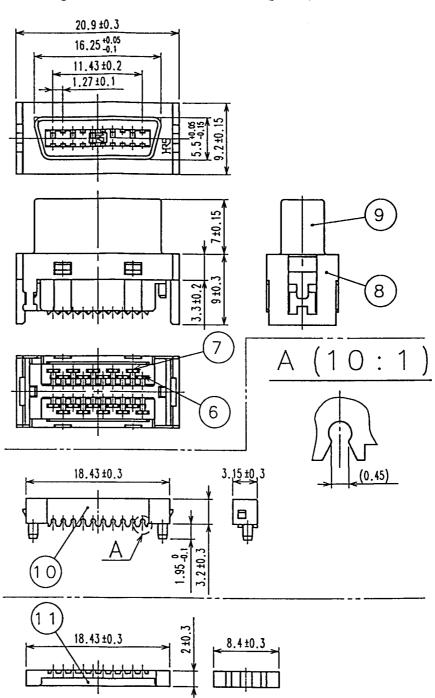
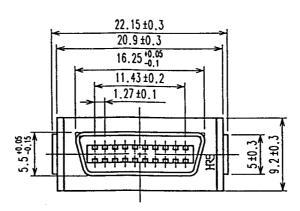



Fig.C(e) Connector for interface (Crimp type)

Type : FI40-20S (solder type) Housing : FI-20-CVS5 (plastic)

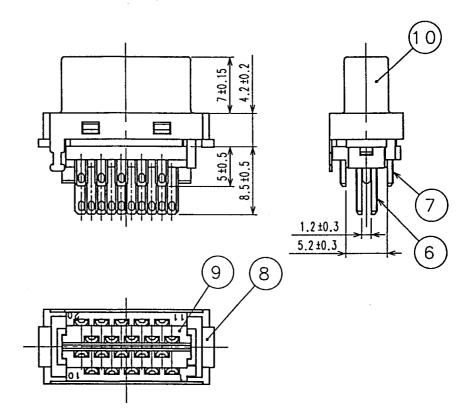


Fig.C(f) Connector for interface (Solder type)

Manufacture:HIROSE ELECTRIC CO., LTD.Type:FI40B-2015S (solder type)Housing:FI-2015-CVS (plastic)

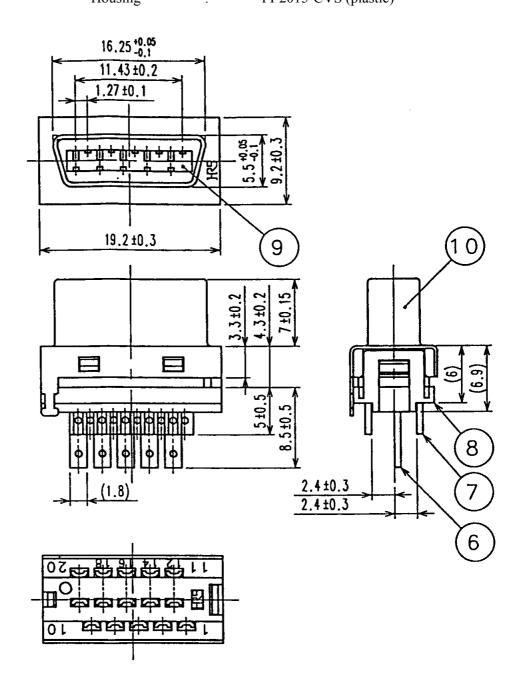


Fig.C(g) Connector for interface (Solder type)

NOTE

This connector does not contact locations 11, 13, 15, 17, and 19.

Type : FI-20-CVS2 Connector : FI30-20S

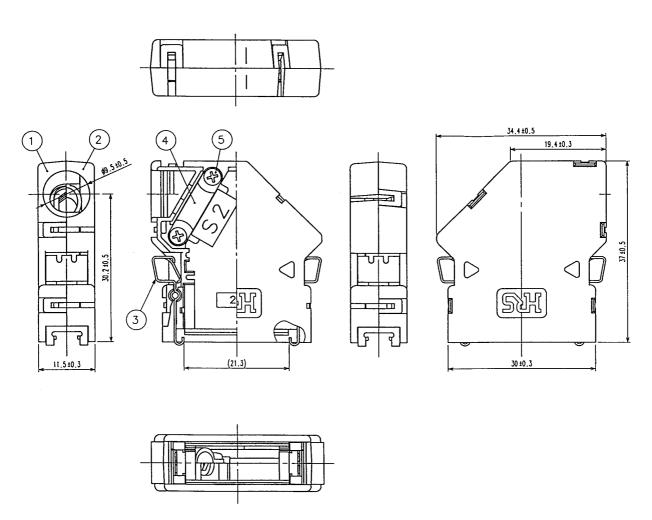
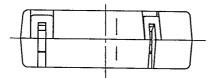
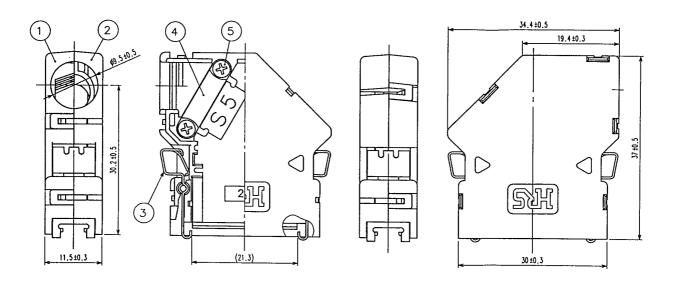




Fig.C(h) Connector housing (Side cable type)

Type : FI-20-CVS5 Connector : FI40B-20S

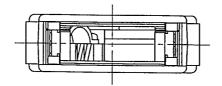
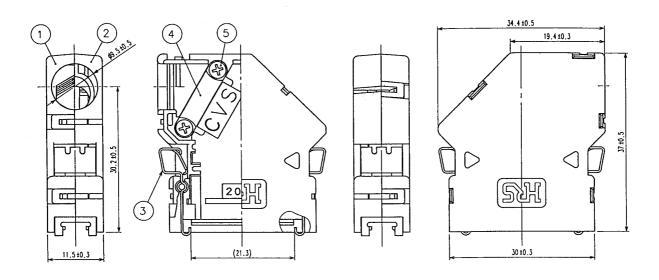



Fig.C(i) Connector housing (Side cable type)

Type : FI-2015-CVS Connector : FI40B-2015S

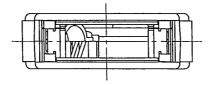


Fig.C(j) Connector housing (Side cable type)

FEEDBACK CABLE LENGTH

D.1 SPINDLE CABLE LENGTH (WHEN RECOMMENDED **CABLES ARE USED)**

Detector	Recommended cable	Cable structure	Maximum cable length
		0.5mm ² , 6 conductors (for power supply) 0.18mm ² , 5 pairs (for signals)	72m When one power line is used
MZi sensor, BZi sensor	A66L-0001-0368	0.5mm ² , 6 conductors (for power supply) 0.18mm ² , 5 pairs (for signals)	50m When one power line is used
Mi sensor (for $\alpha 0.5i$) A66L-0001-0482		0.3mm ² , 2 conductors (for power supply) 0.2mm ² , 3 pairs (for signals)	41m
MZi sensor (for $\alpha 0.5i$) A66L-0001-0482		0.3mm ² , 2 conductors (for power supply) 0.2mm ² , 4 pairs (for signals)	28m
CZi sensor	A66L-0001-0367	0.18mm ² , 10 pairs (for signals and power supply)	18m When three power lines is used
α positioncoder A66L-0001-0286 0.5mm ² , 6 conductors (for power supply 0.18mm ² , 3 pairs (for signals)		7m When one power line is used	
α positioncoder S A66L-0001-0286		0.5mm ² , 6 conductors (for power supply) 0.18mm ² , 3 pairs (for signals)	7m When one power line is used

When a cable other than one of the recommended cables above is used, the voltage drop in the cable must be within 0.2 V for a +5 V power supply.

(Tip)

Maximum cable length L can be found from the following formula:

 $L[m] \le 0.2[V] \times n[line] \div 2 \div I[A] \div R[\Omega/m]$

n: Number of power lines (number of +5V or +15V lines)

I: Current consumption of the detector

R : Resistance of a wire used for a power line

Detector	Current consumption
Mi sensor (pulse generator)	0.035A
MZi sensor, BZi sensor (built-in sensor)	0.05A
CZi sensor	0.15A
α Positioncoder	0.35A
α Positioncoder S	0.35A

D.2 SERVO CABLE LENGTH (WHEN RECOMMENDED CABLES ARE USED)

Recommended cable	Cable structure	Maximum cable length
A66L-0001-0460	0.3mm ² , 5 conductors (for power supply) 0.20mm ² , 1 pair (for signals)	28m
A66L-0001-0462	0.5mm ² , 5 conductors (for power supply) 0.20mm ² , 1 pair (for signals)	50m
A66L-0001-0481	0.3mm ² , 5 conductors (for power supply) 0.18mm ² , 1 pair (for signals)	28m
A66L-0001-0491	0.5mm ² , 5 conductors (for power supply) 0.18mm ² , 1 pair (for signals)	50m

When a cable other than recommended cable is used, ensure that the sum of the resistances of 0 V and 5 V is 2 ohms or less.

POWER LINE FOR SERVO MOTOR AND AMPLIFIER

E.1 SELECTING A POWER CABLE

Select the cable specification by considering the following conditions for use:

- <1> Motor current rating or current needed in use on a real machine
- <2> Cable type (heat resistance temperature, etc.)
- <3> Environment in which the cable is installed (operating ambient temperature, etc.)
- <4> Need of water proofing (pay attention to the diameter of the applicable cable clamp)
- <5> Certification for CE marking (compliance with various safety standards and EMC standard)
- <6> Insulation distance between the cable and terminal is secured at the time of wiring.

Examples of selecting a heavy-duty power cable are shown below. Fully check the cable specifications based on the actual use conditions and use an example below.

The cable diameters are determined based on JCS No. 168 D (1980), "Allowable Currents for Power Cables (1)."

Selection example of power line (reference)

[Selection example 1]

Heavy-duty power cable specification :
 Maximum allowable conductor temperature 60°C

• Environment temperature : 30°C

Cable diameter [mm²]	Allowable current value [Arms]	Receptacle contact specification
0.75	Up to 11	SS size 1318986-6
1.25	Up to 15	S size 316040-6
2	Up to 19	S size 316040-6
3.5	Up to 27	M size 316041-6
5.5	Up to 35	M size 316041-6
8	Up to 43	L size 1318697-6

[Selection example 2]

 Heavy-duty power cable specification : Maximum allowable conductor temperature 80°C

• Environment temperature : 55°C

	r	
Cable diameter [mm²]	Allowable current value [Arms]	Receptacle contact specification
0.75	Up to 9.2	SS size 1318986-6
1.25	Up to 12.7	S size 316040-6
2	Up to 16.3	S size 316040-6
3.5	Up to 23.4	M size 316041-6
5.5	Up to 31.2	M size 316041-6
8	Up to 38.3	L size 1318697-6

[Selection example 3]

• Fire-retardant polyflex wire or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.:

Maximum allowable conductor temperature 105°C

• Environment temperature : 30°C

Cable diameter [mm²]	Allowable current value [Arms]
0.75	Up to 12
1.25	Up to 16
2	Up to 21
3.5	Up to 32
5.5	Up to 43
8	Up to 55
14	Up to 79
22	Up to 113
30	Up to 137

[Selection example 2]

• Fire-retardant polyflex wire or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.:

Maximum allowable conductor temperature 105°C

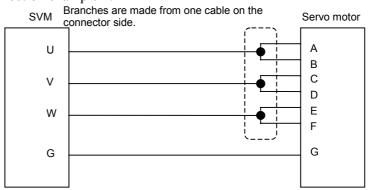
• Environment temperature : 55°C

Cable diameter [mm²]	Allowable current value [Arms]
0.75	Up to 10
1.25	Up to 13
2	Up to 17
3.5	Up to 26
5.5	Up to 35
8	Up to 44
14	Up to 64
22	Up to 92
30	Up to 112
38	Up to 131

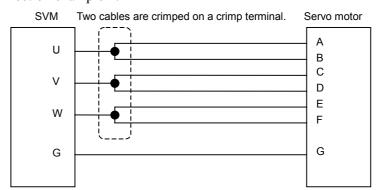
E.2 SAMPLE POWER CABLES SELECTED FOR SERVO MOTORS (REFERENCE)

Examples of selections when a heavy-duty power cord is used

Servo motor	Continuous rated current [Arms] (reference value)	Environment temperature 30°C Cable diameter [mm²]	Environment temperature 55°C Cable diameter [mm ²]
α1/5000 <i>i</i>	2.7	0.75	0.75
α2/5000 <i>i</i> s	3.3	0.75	0.75
α2/5000 <i>i</i>	3.5	0.75	0.75
α4/5000 <i>i</i> s	6.1	0.75	0.75
α4/4000 <i>i</i>	7.7	0.75	0.75
α8/3000 <i>i</i>	8.4	0.75	0.75
α8/4000 <i>i</i> s	11.1	0.75	1.25
α12/4000 <i>i</i> s	13.4	1.25	2
α12/3000 <i>i</i>	18.1	2	3.5
α22/3000i	18.4	2	3.5
α22/4000 <i>i</i> s	27.9	5.5	5.5
α30/4000 <i>i</i> s	31.7	5.5	5.5
α40/3000i	32.3	5.5	8
α40/4000 <i>i</i> s	36.2	8	8
α30/3000i	39	8	8


Example of selection when a fire-retardant polyflex wire equivalent to LMFC of The Furukawa Electric Co., Ltd. is used

Servo motor	Continuous rated current [Arms] (reference value)	Environment temperature 30°C Cable diameter [mm²]	Environment temperature 55°C Cable diameter [mm²]
α50/3000HV <i>i</i> s	28	3.5	5.5
α100/2500HV <i>i</i> s	40	5.5	8
α 50/3000 i s with fan	79	8×2 (Note 1)	
α100/2500 <i>i</i> s	79	14	22
α300/2000HV <i>i</i> s	96	22	30
α500/2000HV <i>i</i> s	115	30	38
α1000/2000HV <i>i</i> s	110×2 (Note 2)	22	30


NOTE

- 1 The power line connector for α 50/3000is has seven pins. See connection example 1 and connection example 2.
- 2 One motor is driven by two servo amplifiers. In this case, the current that flows on the power line per servo amplifier is a half of the motor current.

Connection example 1:

Connection example 2:

E.3 SAMPLE POWER CABLES SELECTED FOR SPINDLE MOTORS (REFERENCE)

Environment temperature:30°C

	Motor model		odel Applicable cable		Terminal size	
			Heat-	Heat-		
SPM			resistant	resistant	Amplifier	
model	$\alpha i, \alpha(HV)i$	αi P	60°C	105°C	side	Motor side
			(Note 1)	(Note 2)		
SPM-2.2 <i>i</i>	α0.5 <i>i</i>		0.75mm ²		Connector	Connector
5PIVI-2.21	α1 <i>i</i>		2mm ²		Connector	M5
	α1.5 <i>i</i>		3.5mm ²		Connector	ME
SPM-5.5 <i>i</i>	α2 <i>i</i>				Connector	M5
	α3i		5.5 mm ²		Connector	M5
SPM-11 <i>i</i>	α6 <i>i</i>	α12 <i>i</i> _P	14 mm ²	3.5 mm ²	M4	M5
SFIVI-111	α8i		14 mm ²	5.5mm ²	M4	M5
SPM-15 <i>i</i>		α15 <i>i</i> _P	14 mm ²	5.5mm ²	M4	M5
3FW-13 <i>t</i>	α12 <i>i</i>	α18 <i>i</i> _P	14 mm ²	8mm ²	M4	M5
SPM-22i	α15 <i>i</i>	$\alpha 22i_{P}$		14mm ²	M6	M5
3FIVI-221	α18 <i>i</i>	$\alpha 30 i_{ m P}$		14mm ²	M6	M6
SPM-26i	α 22 <i>i</i>	α40 <i>i</i> _P α50 <i>i</i> _P		22mm ²	M6	M6
SPM-30 <i>i</i>		α60 <i>i</i> _P		22mm ²	M6	M6
CDM 45:	α 30 <i>i</i>			30mm ²	M10	M10
SPM-45i	α 40 <i>i</i>			38mm ²	M10	M10
SPM-55i	α 50 <i>i</i>			50mm ²	M10	M10
	α0.5HVi			0.75mm ²	Connector	Connector
	α1HVi					
SPM-5.5HVi	α1.5HV <i>i</i>			0.75mm ²	Connector	NAE-
	α2HVi			0.7511111	Connector	M5
	α3HVi					
SPM-11HVi	α6HVi			2.0 mm ²	M4	M5
SPINI-TITIVI	α8HVi			2.0 mm ²	M4	M5
SPM-15HVi	α12HVi			3.5 mm ²	M4	M5
SPM-30HVi	α15HVi			5.5mm ²	M6	M5
3PIVI-3UFIV <i>1</i>	α22HVi			8mm ²	M6	M6
CDM 4E:	α30HVi			14mm ²	M6	M10
SPM-45i	α40HVi			22mm ²	M6	M10
SPM-75HVi	α60HV <i>i</i> α100HV <i>i</i>			38mm²	M10	M10
SPM-100HVi				50mm ²	M10	M10

NOTE

- 1 Equivalent to four-conductor polyvinyl heavy-duty power cable (JIS C3312)
- 2 Fire-retardant polyflex wire or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.

Environment temperature:55°C

	Motor model Applicab		ble cable Terminal size		nal size	
CDM			Heat-	Heat-		
SPM model	au!		resistant	resistant	Amplifier	Motor side
modei	αi	α <i>i</i> Ρ	60°C	105°C	side	Wiotor Side
			(Note 1)	(Note 2)		
SPM-2.2 <i>i</i>	$\alpha 0.5i$		0.75mm ²		Connector	Connector
31 W-2.21	α1 <i>i</i>		1.25mm ²		Connector	M5
	α 1.5 i		3.5mm ²		Connector	M5
SPM-5.5 <i>i</i>	α2 <i>i</i>				Connector	CIVI
	$\alpha 3i$		5.5 mm ²		Connector	M5
SPM-11 <i>i</i>	α6 <i>i</i>	$\alpha 12i_{P}$	8 mm ²	5.5 mm ²	M4	M5
SFIVE III	$\alpha 8i$		14 mm ²	8mm ²	M4	M5
SPM-15 <i>i</i>		α15 <i>i</i> _P	14 mm ²	8mm ²	M4	M5
3F W- 13 <i>t</i>	v12 <i>i</i>	α18 <i>i</i> _P	14 mm ²	8mm ²	M4	M5
SPM-22 <i>i</i>	α 15 i	α22 <i>i</i> _P		14mm ²	M6	M5
3FIVI-221	α18 <i>i</i>	$\alpha 30 i_{ m P}$		22mm ²	M6	M6
SPM-26i	α 22 i	$\alpha 40 i_{ m P}$		22mm ²	M6	M6
3FIVI-20 <i>i</i>	0.221	α50 <i>i</i> _P		2211111		
SPM-30 <i>i</i>		α60 <i>i</i> _P		22mm ²	M6	M6
SPM-45i	α 30 <i>i</i>			38mm ²	M10	M10
31 W-43 <i>i</i>	α 40 <i>i</i>			50mm ²	M10	M10
SPM-55 <i>i</i>	α 50 i			60mm ²	M10	M10
	α 0.5HV i			0.75mm ²	Connector	Connector
	α 1HV i					
SPM-5.5HVi	α 1.5HV i			0.75mm ²	Connector	M5
	α2HVi					
	α3HVi			1.25mm ²	Connector	M5
SPM-11HVi	α6HVi			3.5 mm ²	M4	M5
31 W-1111V	α8HVi			3.5 mm ²	M4	M5
SPM-15HVi	α12HVi			5.5 mm ²	M4	M5
SPM-30HVi	α15HVi			5.5mm ²	M6	M5
31 101-301101	α22HVi			14mm ²	M6	M6
SPM-45i	α30HVi			22mm ²	M6	M10
JI IVI-401	α 40HV i			22mm ²	M6	M10
SPM-75HVi	α60HVi			50mm ²	N440	M40
GI IVI-7 GI IVI	α100HV <i>i</i>				M10	M10
SPM-100HVi				60mm ²	M10	M10

NOTE

- 1 Equivalent to four-conductor polyvinyl heavy-duty power cable (JIS C3312)
- 2 Fire-retardant polyflex wire or equivalent to LMFC manufactured by The Furukawa Electric Co., Ltd.

INDEX

INDEX

<number></number>		Details of cable K1 (power supply line)	172
10-PAIR CABLE	314	Details of cable K10 (power cable)	211
200-V Input Series		Details of cable K11	214
200-V INPUT SERIES POWER SUPPLY		Details of cable K12	215
20-Pin Half-Pitch Connectors		Details of cable K14	
400-V Input Series		Details of cable K16	222
400-V INPUT SERIES POWER SUPPLY		Details of cable K17	224
100 V IN OT BERIES TO WERE SOTTET	. 200	Details of cable K2	,
<a>		Details of cable K21	193
AC line filter	, 122	Details of cable K22	
AC reactor	49	Details of cable K24	200
AC Reactor Unit	121	Details of cable K25	201
		Details of cable K26	202
Battery for absolute Pulsecoder	60	Details of cable K27	203
BZi SENSOR.		Details of cable K3	182
BEI SENSOR	. 211	Details of cable K33	230
<c></c>		Details of cable K36	237
Cable Clamp and Shield Processing	96	Details of cable K4	192
CABLE CONNECTION DETAILS	169	Details of cable K6	184
CABLES	. 298	Details of cable K69	. 183, 192, 211
CAUTIONS	. 297	Details of cable K7	185
Circuit Breaker	. 134	Details of cable K70	186
Circuit breaker and magnetic contactor	63	Details of cable K70	208, 214
COMPOSITE 10-CORE CABLE	. 309	Details of cable K71	240
COMPOSITE 12-CORE CABLE	. 311	Details of cable K79	243
COMPOSITE 16-CORE CABLE	. 313	Details of cable K88	244
COMPOSITE 7-CORE CABLE	. 301	Details of cable K89	245
CONFIGURATION	1, 3	Details of cable K90	246
Configuration	. 262	DETAILS OF CONNECTORS	249
Connecting the battery (for the absolute Pulsecoder)	. 204	Details of short bar K2	178
CONNECTION	. 154	Dynamic Brake Module (DBM)	132
Connection	, 267	<e></e>	
Connector Installation Diagram (for Combination		ENVIRONMENTAL CONDITIONS	26
with SPM-15i)	. 266	External Dimensions	
CONNECTOR LOCATION	157	EXTERNAL DIMENSIONS AND MAINT.	
Connectors	50	AREA	
COOLING	. 113	EXTERNAL DIMENSIONS OF EACH	117
CZi SENSOR	283	CONNECTOR	315
<d></d>		<f></f>	
Detailed description of the connection of cables K41			; cented 4
(for regenerative discharge resistance), K42 (for		FEATURES OF THE SERVO AMPLIFIER	
thermostat), and K43 (for fan motor)	. 187	FEEDBACK CABLE LENGTH	323

FITTING A LIGHTNING SURGE PROTECTION	Notes on HVi Series PSM Selection
DEVICE	Number of Connected Servo Amplifier Modules and
Fuses	Spindle Amplifier Modules
<g></g>	Number of Connected Servo Amplifier Modules and
GROUND	Spindle Amplifier Modules
GROUND93	<0>
<h>></h>	ORDERING INFORMATION 42
HEAT DISSIPATION	Others
How to Obtain the Power Supply Module Maximum	OUTLINE DRAWINGS
Output Capability	Outline Drawings of Modules, Panel Cut-out, and
How to Obtain the Power Supply Module Peak	Maintenance Area
Maximum Output Capability78	Outside and Mounting Dimension Diagrams
How to Obtain the Power Supply Module Rated Output	Outside and Mounting Dimension Diagrams233
Capability 77, 81	<p></p>
HOW TO SELECT THE MODULE70	PANEL CUT-OUT DIAGRAMS 147
HOW TO SELECT THE POWER SUPPLY MODULE	POSITION CODER269
(PSM)	POWER LINE FOR SERVO MOTOR AND
HOW TO SELECT THE POWER SUPPLY MODULE	AMPLIFIER 328
(PSMR)80	Power line switch unit
HOW TO SELECT THE SERVO AMPLIFIER	POWER LINE SWITCH UNIT254
MODULE (SVM)71	Power Suplly Module
HOW TO SELECT THE SPINDLE AMPLIFIER	Power Supply Module (PSM)31, 43, 157
MODULE (SPM)	Power supply module (PSM-HV)46
	Power supply module (PSMR)
<i></i>	Power Supply Module Connection Diagram 169
INPUT POWER	Power transformer
INSTALLATION	·
Installation Conditions and Notes	<r></r>
<l></l>	Regenerative discharge unit
LEAKAGE CURRENT	<\$>
Lightning surge protector	SAFETY PRECAUTIONSs-1
Lightning Surge Protector	SAMPLE POWER CABLES SELECTED FOR
LINEUP	SERVO MOTORS (REFERENCE)
LIST OF MOTOR OUTPUT CAPACITIES FOR POWER	SAMPLE POWER CABLES SELECTED FOR
SUPPLY SELECTION	SPINDLE MOTORS (REFERENCE)
Serrer seederion	SELECTING A POWER CABLE
<m></m>	Selecting a Regenerative Discharge Unit
Magnetic Contactors	Sensors for spindle 68
MODULE INSTALLATION	Separation of Signal Lines 95
MODULE NAME 8	SERVO AMPLIFIER
<n></n>	Servo Amplifier Module
Noise filter	Servo Amplifier Module (SVM)
NOISE PREVENTION	Servo Amplifier Module (SVM)
Notes	Servo amplifier module (SVM-HV)
TACHES	301 10 uniprinter module (5 111-11 1 1

B-65282EN/05 INDEX

Servo Amplifier Module Connection Diagram 189
SERVO CABLE LENGTH (WHEN
RECOMMENDED CABLES ARE USED) 327
Servo Motor Continuous Rated Outputs and
Maximum Outputs at Acceleration
Specification
SPECIFICATIONS12
SPECIFICATIONS OF THE MODULES31
Spindle Amplifier Module
Spindle Amplifier Module (SPM)
Spindle Amplifier Module (SPM)
Spindle amplifier module (SPMC)
Spindle amplifier module (SPM-HV)
Spindle Amplifier Module Connection Diagram 209
SPINDLE CABLE LENGTH (WHEN
RECOMMENDED CABLES ARE USED) 326
Spindle Motor Continuous Rated Outputs and
Maximum Outputs at Acceleration
Spindle Motor Feedback Cable Connection
SPINDLE ORIENTATION
SPINDLE-RELATED DETECTORS
SPINDLE-RELATED OPTIONS
Sub module SW
SUB MODULE SW
<t></t>
TOTAL CONNECTION DIAGRAM 155
Tyco Electronics AMP D-5000 Series Connector 250
WEIGHT 40
<a>>
α Position Coder
α Position Coder S
αCi Spindle Amplifier Module (SPMC)

Revision Record

FANUC SERVO AMPLIFIER αi series DESCRIPTIONS (B-65282EN)

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.