

GE Fanuc Automation

Computer Numerical Control Products

 α Series Control Motor

Maintenance Manual

GFZ-65165E/01

April 1994

PREFACE

This manual describes information necessary to maintain FANUC control motor amplifier α series products, such as a power supply module, servo amplifier module, and spindle amplifier module.

Part I explains the start-up procedure, and part II focuses on troubleshooting.

Product name	Abbrevi- ations	Product name	Abbrevi- ations
FANUC Series 0–TC	FS0–TC	Power Supply Module	PSM
FANUC Series 0–MC	FS0–MC	Servo Amplifier Module	SVM
FANUC Series 15	FS15	Spindle Amplifier Module	SPM
FANUC Series 16	FS16		
FANUC Series 18	FS18		
FANUC Series 20	FS20		
FANUC Series 21	FS21		
FANUC Power Mate MODEL D	PM–D		
FANUC Power Mate MODEL F	PM–F		

The abbreviations listed below are used in this manual.

In this manual, the servo parameter number is explained as shown below.

(Example)

Related manuals

The following six kinds of manuals are available for FANUC CONTROL MOTOR α series. In the table, this manual is marked with an asterisk (*).

Document name	Document number	Major contents	Major usage	
FANUC AC SERVO MOTOR α series DESCRIPTIONS	B–65142E	 Specification Characteristics External dimensions Connections 	 Selection of motor Connection of motor 	
FANUC AC SPINDLE MOTOR α series DESCRIPTIONS	B–65152E	 Specification Characteristics External dimensions Connections 		
FANUC CONTROL MOTOR AMPLIFIER α series DESCRIPTIONS	B-65162E	 Specifications and functions Installation External dimensions and maintenance area Connections 	 Selection of amplifier Connection of amplifier 	
FANUC CONTROL MOTOR α series MAINTENANCE MANUAL	B–65165E	 Start up procedure Troubleshooting Maintenance of motor 	 Start up the system (Hardware) Troubleshooting Maintenance of motor 	*
FANUC AC SERVO MOTOR α series PARAMETER MANUAL	B-65150E	 Initial setting Setting parameters Description of parameters 	 Start up the system (Software) 	
FANUC AC SPINDLE MOTOR α series PARAMETER MANUAL	B65160E	 Initial setting Setting parameters Description of parameters 	 Turning the system (Parameters) 	

I START-UP PROCEDURE

1.	OVERVIEW		3
2.	CONFIGUR	ATIONS	4
	2.1 CO	NFIGURATIONS	4
	2.1 COL	JOR COMPONENTS	5
	2.2.1	Power Supply Module	5
	2.2.2	Servo Amplifier Module	5
	2.2.3	Spindle Amplifier Module	7
3.	START-UP	PROCEDURE	8
	3.1 SUI	MMARY OF THE START-UP PROCEDURE	8
	3.2 CO	NNECTING THE POWER	9
	3.2.1	Checking The Voltage And Capacity Of The Power	9
	3.2.2	Connecting A Protective Ground	9
	3.2.3	Selecting The Ground Fault Interrupter That Matches The Leakage Current	9
	3.3 SET	TTING THE PRINTED-CIRCUIT BOARD	10
	3.3.1	Power Supply Module	10
	3.3.2	Servo Amplifier Module	10
	3.3.3	Spindle Amplifier Module	13
	3.4 INI	TIALIZING SERVO PARAMETERS	14
	3.4.1	Servo Amplifier Module	14
	3.4.2	Spindle Amplifier Module	20
4.	CONFIRMA	TION OF THE OPERATION	24
	4.1 POV	WER SUPPLY MODULE	24
	4.1.1	Check Terminal On The Printed-circuit Board	25
	4.1.2	Checking The Power Supply Voltages	26
	4.1.3	Checking The Status Leds	26
	4.1.4	The PIL LED (power ON indicator) Is Off.	27
	4.1.5	Checking For What Keeps The Mcc From Being Switched On	27
	4.2 SEF	RVO AMPLIFIER MODULE	28
	4.2.1	Check Pin Board	28
	4.2.2	Checking The Control Power Supply Voltage	31
	4.2.3	Checking The STATUS Display	32
	4.2.4	The STATUS Display Does Not Light.	33
	4.2.5	Servo Check Board	33
	4.3 SPI	NDLE AMPLIFIER MODULE	37
	4.3.1	Spindle Check Board	38
	4.3.2	Checking The Control Power Supply Voltage	41
	4.3.3	STATUS Display	42
	4.3.4	The PIL LED (power ON indicator) Is Off.	43
	4.3.5	The STATUS Display Is Blinking With "––"	43
	4.3.6	Checking The Feedback Signal Waveform	44
	4.3.7	Observing The Internal Data	49

II TROUBLESHOOTING

1.	OVERV	EW	61
2.	ALARM	NUMBERS AND BRIEF DESCRIPTIONS	62
	2.1	ALARM NUMBERS IN SERIES 15 (SERVO ALARMS)	62

	2.2	FOR SERIES 0–C (SERVO ALARM)	65
	2.3	FOR SERIES 16,18,20 (SERVO ALARM)	68
3.	TROUBL	ESHOOTING AND ACTION	71
	3.1	POWER SUPPLY MODULE	71
	3.1.	1 Alarm Code 01	71
	3.1.2	2 Alarm Code 02	71
	3.1.	3 Alarm Code 03	72
	3.1.4	4 Alarm Code 04	72
	3.1.	5 Alarm Code 05	72
	3.1.	6 Alarm Code 06	72
	3.1.7	7 Alarm Code 07	72
	3.2	SERVO AMPLIFIER MODULE TROUBLESHOOTING	73
	3.2.	Abnormal Current Alarms (8, 9, A, b, C, d, and E in the LED display)	73
	3.2.2	2 IPM Alarms (8., 9., A., b., C., d., and E in the LED display; note these codes are displayed simultaneously with a period.)	74
	3.2.3	3 Control Power Supply Undervoltage Alarm (2 in the LED display)	75
	3.2.4	4 DC link Undervoltage Alarm (5 in the LED display)	75
	3.2.:	5 Fan Stopped Alarm (1 in the LED display)	75
	3.2.	6 Current Conversion Error Alarm	75
	3.3	SERVO SOFTWARE	76
	3.3.	1 Servo Adjustment Screen	76
	3.3.2	2 Overload Alarm	77
	3.3.	3 Feedback Disconnected Alarm	77
	3.3.4	4 Motor Overheat Alarm	78
	3.3.	5 Invalid Servo Parameter Setting Parameters	78
	3.3.	6 Pulse Coder Error Alarm	84
	3.3.2	7 Rotation Speed Data Error Alarm	84
	3.3.	8 Pulse Coder Communication Error Alarm	85
	3.4	SPINDLE AMPLIFIER MODULE	86
	3.4.	1 Alarm A0, A1	86
	3.4.2	2 Alarm AL–01	86
	3.4.	3 Alarm AL–02	87
	3.4.4	4 Alarm AL–03	87
	3.4.:	5 Alarm AL–07	87
	3.4.0	6 Alarm AL–09	88
	3.4.	7 Alarm AL–12	88
	3.4.3	8 Alarm AL-13	88
	3.4.	9 Alarm AL-15	89
	5.4. 2.4	10 Alarm AL 10	89
	3.4. 3.4	11 Alarm AL 20	89
	3.4.	12 Alarm AL 24	09 00
	3.4.	14 Alarm AI -25	90 QA
	3.4	15 Alarm AL –26	90
	3.4	16 Alarm AL –27	91
	3.4	17 Alarm AL–28	92
	3.4.	18 Alarm AL–29	92
	3.4.	19 Alarm AL–31	92
	3.4.2	20 Alarm AL–32	93

	3.4.21	Alarm AL–34	93
	3.4.22	Alarm AL35	93
	3.4.23	Alarm AL-36	93
	3.4.24	Alarm AL-37	94
	3.4.25	Alarm AL39	94
	3.4.26	Alarm AL-40	95
	3.4.27	Alarm AL41	95
	3.4.28	Alarm AL-42	96
	3.4.29	Alarm AL-43	96
	3.4.30	Alarm AL–44	97
	3.4.31	Alarm AL–46	97
	3.4.32	Alarm AL–47	97
	3.4.33	Alarm AL–49	98
	3.4.34	Alarm AL–50	98
	3.4.35	Alarm AL-53, AL-53	98
	3.4.36	Alarm AL–54	98
	3.4.37	Alarm AL55	99
	2 / 20		00
	5.4.56	Alarm AL–36	99
4.	HOW TO RE	EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS	99 100
4.	4.1 HO	Alarm AL-30 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES	99 100 100
4.	4.1 HO 4.1.1	Alarm AL-36 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES	100 100 100
4.	4.1 HO 4.1.1 4.1.2	Alarm AL-36 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES 60/90 mm Width Modules 150 mm Width Module	99 100 100 100 102
4.	4.1 HO 4.1.1 4.1.2 4.2 PO	Alarm AL-36 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES	99 100 100 100 102 105
4.	4.1 HO 4.1.1 4.1.2 4.2 PO 4.2.1	Alarm AL-56 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES 60/90 mm Width Modules 150 mm Width Module WER SUPPLY MODULE Replacing Fuses	100 100 102 105 105
4.	4.1 HO 4.1.1 4.1.2 4.2 PO 4.2.1 4.2.2	Alarm AL-36 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES 60/90 mm Width Modules 150 mm Width Module WER SUPPLY MODULE Replacing Fuses Replacing The Printed–circuit Board	99 100 100 102 105 105 105
4.	4.1 HO 4.1.1 4.1.2 4.2 PO 4.2.1 4.2.2 4.3 SEE	Alarm AL-56 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES 60/90 mm Width Modules 150 mm Width Module WER SUPPLY MODULE Replacing Fuses Replacing The Printed–circuit Board RVO AMPLIFIER MODULE	99 100 100 102 105 105 106 106
4.	4.1 HO 4.1.1 4.1.2 4.2 PO 4.2.1 4.2.2 4.3 SEI 4.3.1	Alarm AL-56 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES	99 100 100 100 102 105 106 106 106
4.	4.1 HO 4.1.1 4.1.2 4.2 POV 4.2.1 4.2.2 4.3 SEH 4.3.1 4.3.2	Alarm AL-56 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES 60/90 mm Width Modules 150 mm Width Module WER SUPPLY MODULE Replacing Fuses Replacing The Printed–circuit Board RVO AMPLIFIER MODULE Replacing The Fuses Replacing The Fuses Replacing The Fuses Replacing The Fuses	99 100 100 102 105 105 106 106 106 106
4.	4.1 HO 4.1.1 4.1.2 4.2 PO' 4.2.1 4.2.2 4.3 SEH 4.3.1 4.3.2 4.4 SPI	Alarm AL-36 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES 60/90 mm Width Modules 150 mm Width Module WER SUPPLY MODULE Replacing Fuses Replacing The Printed-circuit Board RVO AMPLIFIER MODULE Replacing The Fuses Replacing The Printed-circuit Board NDLE AMPLIFIER MODULE	99 100 100 102 105 105 106 106 106 106 106 107
4.	4.1 HO 4.1.1 4.1.2 4.2 POV 4.2.1 4.2.2 4.3 SEH 4.3.1 4.3.2 4.4 SPI 4.4.1	Alarm AL-56 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES 60/90 mm Width Modules 150 mm Width Module WER SUPPLY MODULE Replacing Fuses . Replacing The Printed–circuit Board RVO AMPLIFIER MODULE Replacing The Fuses Replacing The Fuses Replacing The Printed–circuit Board NDLE AMPLIFIER MODULE Replacing The Fuse	99 100 100 102 105 106 106 106 106 107 107
4.	4.1 HO 4.1.1 4.1.2 4.2 POV 4.2.1 4.2.2 4.3 SEH 4.3.1 4.3.2 4.4 SPI 4.4.1 4.4.2	Alarm AL-56 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES 60/90 mm Width Modules 150 mm Width Module WER SUPPLY MODULE Replacing Fuses Replacing The Printed-circuit Board RVO AMPLIFIER MODULE Replacing The Fuses Replacing The Fuses Replacing The Printed-circuit Board NDLE AMPLIFIER MODULE Replacing The Fuse Replacing The Printed-circuit Board	99 100 100 102 105 105 106 106 106 106 107 107
4.	HOW TO RE 4.1 HO 4.1.1 4.1.2 4.2 PO' 4.2.1 4.2.2 4.3 SEI 4.3.1 4.3.2 4.4 SPI 4.4.1 4.4.2 4.4.3	Alarm AL-56 EPLACE THE FUSES AND PRINTED CIRCUIT BOARDS W TO REMOVE THE CASES 60/90 mm Width Modules 150 mm Width Module WER SUPPLY MODULE Replacing Fuses Replacing The Printed-circuit Board RVO AMPLIFIER MODULE Replacing The Fuses Replacing The Fuses Replacing The Printed-circuit Board NDLE AMPLIFIER MODULE Replacing The Fuse Replacing The RoM And Detection Modules	99 100 100 102 105 106 106 106 106 107 107 107 107

III MOTOR MAINTENANCE

1.	AC SER	VO MOTOR MAINTENANCE	111
	1.1	RECEIVING AND KEEPING AC SERVO MOTORS	111
	1.2	DAILY INSPECTION OF AC SERVO MOTORS	111
	1.3	PERIODIC INSPECTION OF AC SERVO MOTORS	113
	1.4	REPLACING THE PULSE CODER	115
	1.5	REPLACEMENT PARTS SPECIFICATIONS	118
2.	SPINDL	E MOTOR MAINTENANCE	120
	2.1	PREVENTIVE MAINTENANCE	120
	2.2	PARTS FOR MAINTENANCE	121
	2.3	ALLOWABLE RADIAL LOAD	122

I START-UP PROCEDURE

OVERVIEW

This part describes the units and components of the FANUC control motor amplifier α series. It also explains the following information necessary to start up the control motor amplifier:

- Connecting the power
- Setting the printed-circuit board
- Initializing the parameter
- Confirmation of the operation

2

CONFIGURATIONS

2.1 CONFIGURATIONS

The FANUC control motor amplifier α series consists of the units and components listed below:

- (1) Power supply module (PSM) (basic)
- (2) Servo amplifier module (SVM) (basic)
- (3) Spindle amplifier module (SPM) (basic)
- (4) AC reactor (basic)
- (5) Connectors (for connecting cables) (basic)
- (6) Fuses (basic)
- (7) Power transformer (option)
- (8) Fan adaptor

The diagram below shows an example of a basic configuration of the FANUC control motor amplifier α series system. The basic configuration consists of two two–axis servo amplifier modules and one spindle amplifier module.

(option)

NOTE1

Refer to the Control Motor Amplifier α series Specifications for combinations of the power supply module, servo amplifier module, and spindle amplifier module.

NOTE2

Always use the circuit breakers, magnetic contactor, and AC reactor.

NOTE3

Install a surge suppressor between the power lines and between each power line and a ground at the input of the power magnetics cabinet to protect the system from lightning surge.

2.2 MAJOR COMPONENTS

2.2.1

Power Supply Module

Model	Order specification	Wiring board specification	P.C.B.specification	Remarks
PSM-5.5	A06B-6077-H106	A16B-2202-0460	A16B-2202-0420	
PSM-11	A06B-6077-H111	A16B-2202-0461		
PSM-15	A06B–6077–H115	A20B-1005-0590	A16B-2202-0080	
PSM–26	A06B-6077-H126			
PSM-30	A06B-6077-H130			

2.2.2 Servo Amplifier Module

(1) Servo amplifier module (1axis)

Model	Order specification	Wiring board specification	P.C.B.specification	Remarks
SVM1-12	A06B–6079–H101	A16B-2202-0480	A20B-2001-0820	
SVM1-20	A06B-6079-H102	A16B-2202-0481		
SVM1-40S	A06B-6079-H103	A16B-2202-0600		
SVM1-40L	A06B–6079–H104	A16B-2202-0601		
SVM1-80	A06B–6079–H105	A16B-2202-0602		
SVM1-130	A06B–6079–H106	A16B-2202-0510	A20B-2001-0822	

— 5 —

Model	Order specification	Wiring board specification	P.C.B.specification	Remarks
SVM2-12/12	A06B-6079-H201	A16B-2202-0490	A20B-2001-0821	
SVM2-12/20	A06B-6079-H202	A16B-2202-0491		
SVM2-20/20	A06B-6079-H203	A16B-2202-0492		
SVM2-12/40	A06B-6079-H204	A16B-2202-0610		
SVM2-20/40	A06B-6079-H205	A16B-2202-0611		
SVM2-40/40	A06B-6079-H206	A16B-2202-0612		
SVM2-40/80	A06B-6079-H207	A16B-2202-0613	A20B-2001-0823	
SVM2-80/80	A06B-6079-H208	A16B-2202-0614]	

(2) Servo amplifier module (2axis)

(3) Servo amplifier module (3axis)

Your order specification will vary with the interface you use for the NC.

(a) When you use an NC other than the FS20 or FS21–GA

Model	Order specification	Wiring board specification	P.C.B.specification	Remarks
SVM3-12/12/12	A06B-6079-H301	A16B-2202-0500	A20B-2001-0750	
SVM3-12/12/20	A06B-6079-H302	A16B-2202-0501		
SVM3-12/20/20	A06B-6079-H303	A16B-2202-0502		
SVM3-20/20/20	A06B-6079-H304	A16B-2202-0503		
SVM3-12/12/40	A06B-6079-H305	A16B-2202-0504		
SVM3-12/20/40	A06B-6079-H306	A16B-2202-0505		
SVM3-20/20/40	A06B-6079-H307	A16B-2202-0506		

Corresponding NC: FS15–A/B, FS0–C, FS16–A/B, FS18–A,

FS21–TA

Power Mate MODEL D, Power Mate MODEL F

(b) When you use the FS20 or FS21–GA

Model	Order specification	Wiring board specification	P.C.B.specification	Remarks
SVM3-12/12/12	A06B-6080-H301	A16B-2202-0500	A20B-2001-0760	
SVM3-12/12/20	A06B-6080-H302	A16B-2202-0501		
SVM3-12/20/20	A06B-6080-H303	A16B-2202-0502		
SVM3-20/20/20	A06B-6080-H304	A16B-2202-0503		
SVM3-12/12/40	A06B-6080-H305	A16B-2202-0504		
SVM3-12/20/40	A06B-6080-H306	A16B-2202-0505		
SVM3-20/20/40	A06B-6080-H307	A16B-2202-0506		

Corresponding NC: FS20, FS21–GA

the spindle amplifier module.

Your order specification will vary with the detector (function) you use for

2.2.3 Spindle Amplifier Module

(1) Type I (standard specification)

Model	Order specification	Unit specification	Wiring board specification	P.C.B.specifica- tion	ROM (type)
SPM-2.2	A06B-6078-H202#H500	A06B-6078-H202	A16B-2202-0470	A16B-2202-0430	A06B-6072-H500
SPM-5.5	A06B-6078-H206#H500	A06B-6078-H206	A16B-2202-0471	A16B-2202-0431	(9D00)
SPM-11	A06B-6078-H211#H500	A06B-6078-H211			
SPM-15	A06B-6078-H215#H500	A06B-6078-H215	A16B-1005-0572	A16B-2202-0070	
SPM-22	A06B-6078-H222#H500	A06B-6078-H222	A16B-1005-0571		
SPM-26	A06B-6078-H226#H500	A06B-6078-H226	A16B-1005-0570		
SPM-30	A06B-6078-H230#H500	A06B-6078-H230	A16B-1005-0573		

Applicable detectors: 1 Pulse generator, position coder, and magnetic sensor

2 Sensor built in the motor

(2) Type II (Cs contour control/separate built-in sensor specification)

Model	Order specification	Unit specification	Wiring board specification	P.C.B.specifica- tion	ROM (type)
SPM-2.2	A06B-6078-H302#H500	A06B-6078-H302	A16B-2202-0470	A16B-2202-0433	A06B-6072-H500
SPM-5.5	A06B-6078-H306#H500	A06B-6078-H306	A16B-2202-0471	A16B-2202-0434	(9000)
SPM-11	A06B-6078-H311#H500	A06B-6078-H311			
SPM-15	A06B-6078-H315#H500	A06B-6078-H315	A16B-1005-0572	A16B-2202-0160	
SPM-22	A06B-6078-H322#H500	A06B-6078-H322	A16B-1005-0571		
SPM-26	A06B-6078-H326#H500	A06B-6078-H326	A16B-1005-0570		
SPM-30	A06B-6078-H330#H500	A06B-6078-H330	A16B-1005-0573		

Applicable detectors: 1 Pulse generator + built-in sensor (using position coder signals only)

- 2 High-resolution magnetic pulse coder (motor only)
- 3 High-resolution magnetic pulse coder (motor and spindle)
- 4 High–resolution position coder + high–resolution magnetic pulse coder (motor only)

(3) Type III (spindle switch/differential speed control specification)

Model	Order specification	Unit specification	Wiring board specification	P.C.B.specifica- tion	ROM (type)
SPM-11	A06B-6078-H411#H500	A06B-6078-H411	A20B-1005-0574	A16B-2202-0160	A06B-6072-H500
SPM-15	A06B-6078-H415#H500	A06B-6078-H415	A20B-1005-0572		(9D00)
SPM-22	A06B-6078-H422#H500	A06B-6078-H422	A20B-1005-0571		
SPM-26	A06B-6078-H426#H500	A06B-6078-H426	A20B-1005-0570		
SPM-30	A06B-6078-H430#H500	A06B-6078-H430	A20B-1005-0573		

Applicable function: 1 Spindle switch control (switching only the speed or both the speed and position)

2 Spindle switch control (switching the built-in sensor)

3 Differential speed control (position coder signal input circuit)

START-UP PROCEDURE

3.1 SUMMARY OF THE START-UP PROCEDURE

First make sure that the specifications of the CNC, control motors, control motor amplifiers, and other units you received are exactly what you ordered. Then, connect the units and make sure that the connections are correct. Now start up the power supply module, servo amplifier module, and spindle amplifier module in the stated order.

3.2 CONNECTING THE POWER

3.2.1

Checking The Voltage And Capacity Of The Power Measure the voltage of the AC power. Depending on the measurement, take action as follows:

Table 3.2.1 (1) Action for the AC power

AC power voltage	Nominal voltage	Action			
170VA220V	200V	These power lines can be connected directly to the system.			
210VA253V	230V	Note) If the voltage is below the rated value, the rated output may not be obtained.			
254V or more	380VA550V	This power line must be connected through an insulation transformer to step down the voltage to 200 V.			

Table 3.2.1 (2) lists the input power specification for the power supply module. Use a power source with sufficient capacity so that the system will not malfunction due to a voltage drop even at a time of peak load.

Table 3.2.1 (2) Action for the AC Power

Model	PSM -5.5	PSM -11	PSM -15	PSM 26	PSM -30
Allowable input-voltage fluctuation	AC200/220/230V-15%, +10%				
Power source frequency	50/60Hz^1Hz				
Power source capacity (kVA)	9	17	22	37	44

3.2.2 Connecting A Protective Ground	Before connecting the power source, attach the protective ground line to the connection terminal PE of the power supply module.
Protective Ground	

3.2.3 Selecting The Ground Fault Interrupter That Matches The Leakage Current Because the drive circuit of the servo amplifier module and spindle amplifier module uses an IGBT pulse width modulation control method, high–frequency current leaks to the ground through the stray capacitance in the motor windings, power line, and amplifiers. The leakage current may cause the ground fault interrupter or leakage–protection relay on the power source side to malfunction. Therefore, use a ground fault interrupter designed for operation with an inverter, which is protected against such malfunctions.

- 9 ---

(1) Leakage current from the control motor

The limits of leakage current in motors and amplifiers have not yet been determined. The following tables show the leakage current limits for the S series motors and amplifiers'. Use them for reference. (a) Servo motors

Motor model	Leakage current of commercially avail- able power frequency component
α0.5 to α6	1.8mA
α12 to α22	2.0mA
α30 to α40	2.5mA

(b) Spindle motors

Motor model	Leakage current of commorcially avail- able power frequency component	
α1 tαο 22	2.0mA	

(2) Example of selecting a ground fault interrupter

- Servo motor $\alpha 12/3000 \times 3$, each with a 5-meter power cord
- Spindle motor α15, with a 10-meter power cord With the conditions above:

From a manufacturer's brochure, select the ground fault interrupter designed for operation with an inverter that has a rated nooperation current greater than $\phi\phi\phi$ mA.

Before supplying power, set the printed–circuit board as listed below.

3.3 SETTING THE PRINTED-CIRCUIT BOARD

Power Supply Module

3.3.1

(1) Checking the DIP switch setting

Model	DIP switch	Position	Description
PSM-5.5 to -11	S1	S1 SHORT Do not change the setting of	
	S2 OPEN		switches because they were already set at the factory.
PSM-15 to -30	RSW	3	

3.3.2 Servo Amplifier Module

(1) Checking the jumper plug setting (for 1-axis and 2-axis servo amplifier modules)

Set the servo amplifier module to either interface type A or B with the jumper plugs.

— 10 —

Jumpe	er plug	Description
S1	S2	Description
SHORT	OPEN	With this setting, the servo amplifier module can operate with the NC (such as FS0, FS15, FS16, FS18, or PM–D) designed for operation with interface type A. In this case the JV*B connector is sued.
OPEN	SHORT	With this setting, the servo amplifier module can operate with the NC (such as FS20 or FS21–G) designed for operation with interface type B. In this case the JS*B and JF* connectors are used.

NOTE

There is no jumper plug or DIP switch on the three–axis servo amplifier module. The specification of the servo amplifier module determines the type (A or B) of the interface with which it can operate.

— 11 —

(2) Mounting the batteries for the ABS pulse coder

If your servo amplifier is the one that operates with interface type B, it can contain batteries (backup batteries) for the ABS pulse coder.

Remove the battery cover and put a battery in the holder, then put on the battery cover. Attach the battery connector to CX5X or CX5Y.

NOTE1

Connectors CX5X and XX5Y are connected internally. When the battery is connected for the first time, either connector may be used.

NOTE2

Be very careful when handling a lithium battery. If a lithium battery is short–circuited, it may overheat, blow out, or catch fire.

3.3.3 Spindle Amplifier Module

(1) (1) SPM–2.2 to -11 types I and II

These modules do not have a jumper plug or DIP switch.

(2) SPM-15 to -30 types I and II, and SPM-11 to -30 type III Location of the DIP switch

DIP switch	Switch setting (factory–set to the <u>underlined</u> position)	Description				
S1	ON	If two SPMs are connected to one serial inter-				
	<u>OFF</u>	OFF in the other.				
S2	<u>ON</u>	If an analog filter is used	at the load meter out-			
	OFF	put, S2 is set to ON. If r	not, it is set to OFF.			
53	<u>ON</u>	If an analog filter is used at the speedometer				
	OFF	output, S3 is set to ON. If not, it is set to OFF.				
	S4: ON, S5: OFF	Reference switch of NPN type (pull up)	Reference switch (ex-			
S4 S5	S4: OFF, S5: ON	Reference switch of PNP type (pull down)	receive function) set-			
	<u>S4: OFF, S5: OFF</u>	The external reference signal receive function.	spindle			
	S6: ON, S7: OFF	Reference switch of NPN type (pull up)				
S6 S7	S6: OFF, S7: ON	Reference switch of PNP type (pull down)	ternal reference switch (ex- ternal reference signal receive function) set-			
	<u>S6: OFF, S7: OFF</u>	The external reference signal receive function is not used.	ting for the sub-spindle			

3.4 INITIALIZING SERVO PARAMETERS

3.4.1 Servo Amplifier Module Before servo parameter initialization

Before starting servo parameter initialization, confirm the following:

- 1 NC model (Example: Series 15–B)
- 2 Servo motor model (Example: $\alpha 6/2000$)
- 3 Pulse coder built in a motor (Example: α pulse coder)
- 4 Whether a separate position detector is used or not (Example: Not used)
- 5 Distance the machine tool moves per revolution of the motor (Example: 10 mm per one revolution)
- 6 Machine detection unit (Example: 0.001 mm)
- 7 NC command unit (Example: 0.001 mm)

Servo parameter initialization procedure

- 1 Switch on the NC in an emergency stop state. Enable parameter writing (PWE = 1).
- 2 Initialize servo parameters on the servo setting screen. To display the servo setting screen, follow the procedure below, using the key on the NC.
 - Series 15

Press the SERVICE key several times, and the servo setting screen will appear.

- Series 16, 18, 20, and 21

 $SYSTEM \Rightarrow [SYSTEM] \Rightarrow [\bigcirc] \Rightarrow [SV-PRM]$

If no servo screen appears, set the following parameter as shown, and switch the NC off and on again.

	b7	b6	b5	b4	b3	b2	b1	b0
3111								SVS

SVS (b0)=1 (to display the servo screen)

Series 0–C

Press the PARAM key several times, and the servo setting screen will appear.

If no servo screen appears, set the following parameter as shown, and switch the NC off and on again.

SVS (b0)=0 (to display the servo screen)

When the following menu appears on the screen, move the cursor to the item you want to set and enter data directly.

— 14 —

(
Servo set		0	1000 N0000
τνιτάτι σύτ στης		X axis	Z axis
Motor ID No.		16	16
AMR		00000000	00000000
CMR		2	2
Feed gear	N	1	1
(N/M)	М	100	1
Direction Set		111	-111
Velocity Pulse No.		8192	819
Position Palse No.		12500	1250
Ref. counter		10000	10000
Value SETTING =)

Servo setting menu

3 Start initializing

	b7	b6	b5	b4	b3	b2	b1	b0
Initial set bits							DGPR	PLC0

4 Specify the motor ID No.

Select the motor ID No. according to the model and specification (four digits in the middle segment of A06B–XXXX–BXXX) of your motor.

Motor model		α12HV		α22HV α3		α30H	IV	V αC3/2000		αC6/2000) α	xC12/2000	αC22/1500
Motor specification		0	176	0177		017	0178			0123		0127	0128
Motor type No.			3	2	ŀ	5		7		8		9	10
α0.5	α3/300	00	α6/20	000	α6/3	3000	α1	2/2000	α	12/3000	α2	22/2000	α22/3000
0142	0123	3	012	27	01	128	()142		0143		0147	0148
13	15		16	6	1	17		18		19		20	21
α30/2000	α30/30	00	αM3/3	3000 αM6/		/3000	αM	9/3000					
0152 0153		3	016	0161		0162		0163					
22	23		24	2		25		26	1				
α22/1500	α22/1500 α30/1200		α40/2 with F	/2000 α40, h FAN witho		/2000 ut FAN	E	6/2000	E	1/3000	E	2/3000	
0146	0151		015	58	0157			0106		0101		0102	
27	28		29)	3	30		34		35		36	
α2/2000	αL3/20	000	αL6/3	000	αL9/	αL9/3000		25/3000	αΙ	_50/2000	α	1/3000	α2/3000
0372	0372 0561 0562		05	564	0571			0572		0371	0373		
46	56		57	7	Ę	58		59		60		61	62

5 Set AMR as described below. The setting does not depend on the model of the motor.

α pulse coder 00000000

6 Set CMR with the scale of a distance the NC instructs the machine to move.

CMR = Command unit/Detection unit

Usually, CMR=1, so specity 2.

7 Specify the flexible feed gear (F.FG). This function makes it easy to specify a detection unit for the leads and gear reduction ratios of various ball screws by changing the number of position feedback pulses from the pulse coder and separate detector.

Setting for the α pulse coder and serial pulse coder A in the semi–closed mode									
(Note1) F.FG numerator (≤ 32767) F.FG denominator (≤ 32767)	=	Number of position pulses neces- sary for each revolution of the motor 1000000	(as irreducible fraction)						

NOTE1

For both F.FG numerator and denominator, the maximum setting value (after reduced) is 32767.

(Example of setting) For detection in 1 µm units, specify as follows:

Ball screw lead	Number of necessary position pulses	F&FG
10 (mm/rev)	10000 (pulses/rev)	1/100
20	20000	2/100 or 1/50
30	30000	3/100

(Example of setting)

If the machine is set to detection in 1,000 degree units with a gear reduction ratio of 100:1 for the rotation axis, the table rotates by 360/100 degrees each time the motor makes one turn. 1000 position pulses are necessary for the table to rotate through one degree. The number of position pulses necessary for the motor to make one turn is:

360/100 _ 1000 = 3600

Setting for use of a separate detector (full-closed)

F.FG numerator (≤ 32767) F.FG denominator (≤ 32767) Number of position pulses necessary for the motor to make one turn

Number of position pulses from the separate detector when the motor makes one turn

(as irreducible fraction)

NOTE2

DMR can also be used with the separate position detector, provided that F.FG = 0.

Example of setting) When the separate detector detects 1 μ m for 10000 (pulses/rev)

Ball screw lead	Number of necessary position pulses	F&FG	DMR
1 (mm/rev)	1000 (pulses/rev)	1/10	-
5	5000	1/2	2
10	10000	1/1	4

8 Specify the direction in which the motor rotates.

111	Clockwise as viewed from the pulse coder
-111	Counterclockwise as viewed from the pulse coder

— 17 —

9 Specify the number of velocity pulses and the number of position pulses.

	Semi–	closed	Full-closed		
Command unit (µm)	1	0.1	1	0.1	
Initialization bit	b0=0	b0=1	b0=0	b0=1	
Number of velocity pulses	8192	819	8192	819	
Number of position pulses	12500	1250	Np	Np/10	

Np: Number of position pulses from the separate detector when the motor makes one turn

When using a separate detector (full-closed mode), also specify the following parameters:

- Series 15, 16, 18, 20, 21

 b7
 b6
 b5
 b4
 b3
 b2
 b1
 b0

 37
 STP8
 STP7
 STP4
 STPZ
 STPX
 STPX

STPX to 8 The separate position detector is:

- 0:Not used for the X-axis, Y-axis, Z-axis, fourth axis, seventh axis, or eighth axis
- 1:Used for the X-axis, Y-axis, Z-axis, fourth axis, seventh axis, and eighth axis

10 Specify the reference counter. The reference counter is used in making a return to the reference position by a grid method. The value to be specified is the number of pulses necessary for the motor to make one turn, or a value obtained by dividing the number by an integer.

(Example of setting)

 α pulse coder, semi-closed (detection in 1 μ m units)

Ball screw lead	Number of nec- essary position pulses	Reference counter	Grid width
10mm/rev	10000pulses/rev	10000	10mm
20	20000	20000	20
30	30000	30000	30

11 Switch the NC off and on again.

This completes servo parameter initialization.

If a servo alarm related to pulse coders occurs for an axis for which a servo motor or amplifier is not connected, specify the following parameter.

		b7	b6	b5	b4	b3	b2	b1	b0
1953									
1955									
2009	8209								SERD
2005	0//03								

SERD(b0) The serial feedback dummy function is:

0:Not used

1:Used

12 When you are going to use an α pulse coder as an absolute pulse coder, use the following procedure.

The procedure for setting absolute position communication using the α pulse coder is somewhat different from the procedure using serial pulse coder A.

- 1. Set the following parameter, and switch the CNC off.
- Series 15, 16, 18, 20, 21

		b7	b6	b5	b4	b3	b2	b1	b0	
1815				APCX						
	Bit 5 (APCX) 0:Does not perform as absolute position pulsecoder. 1:Performs absolute position as communication pulsecod – Series 0–C									
		b7	b6	b5	b4	b3	b2	b1	b0	
21				APC8	APC7	APC4	APCZ	APCY	APCX	
STPX to 8										

0:Does not perform absolute position communication for the X-, Y-, Z-, 4-, 7-, or 8-axis.

— 19 —

		1:Perfor 7- 4-	rms absolu - 7– or 8-	te position -axis	communication	for the X–, Y–,
	2.	After m connect on.	aking sure	e that the switcl	battery for the h the	pulse coder is NC
	3. 4. 5.	Absolut perform referenc More m JOG Fe Turm of	e position and a reposition otor more ed. ff and on th	n commu request to 1 is display than one re ne CNC.	nication is return to the ed. evolution by	← These step were adde
	6. 7.	Absolut request Return t	e positior to return to to the refer	the reference posit	nication is perf ence position is ion.	formed, and a displayed.
3.4.2 Spindle Amplifier Module	(1) Auton Start a procee The a param 1 Sj au Fe (a	natic spind automatic dure. automatic neters com- pecify the ntomaticall or model c or model c or motors v) Specify those fo adjust manuall o) If there i model, motor w initializa	Ile parame spindle pa initializati mon to all model coo ly. codes, refer with no mo the model or your mo the paran ly so that the is no paran specify the vith output ation, adju	ter initializ rameter in ion sets the models an le number to the ressolution of the tor model. heters by hey fit you neter value e model co control sw st the para o that they	zation itialization using the initial values d those for an ind for motor parar pective parameter use the method (the parameter va After automati entering appr ur motor. e similar to those ode for your motor. itching, as 64).	g the following s for both the dividual model. neters to be set er manual. a) or (b) below. alues similar to c initialization, opriate values for your motor otor as 0 (for a After automatic ing appropriate
			Paramete	er No.		
	FS		FS	515	FS16/18/20/21	Value
	6633	6773	3133	3273	4133	Model code
	2 Sj	pecify so erformed.	that autor	natic spin	dle parameter i	nitialization is

Parameter No.					
FS	FS0C		FS15 FS16/18/20/		Value
No. 1	No. 2	No. 1	No. 2	PM–D/F	
6519#7	6659#7	-	-	4019#7	1
_	-	5607#0	5607#1	_	0

NOTE

These bits are reset to the original setting after automatic parameter initialization.

- 3 When you switch the CNC off and on again, the spindle parameter values assigned to the specified model code are set for your motor model automatically.
- 4 If no model code is available, enter the parameter values for your motor model according to the list of parameters for individual models.
- (2) Spindle speed command parameters

Set the spindle speed command parameters listed below. For details, refer to the relevant CNC manual.

	Parame			
FS0-TC	FS0–MC	FS15	FS16/18/ 20/21 PM–D/F	Description
0013 #7, 6		_	3706 #7, 6	Polarity of the spindle speed command (valid when SSIN = 0 for DI signal)
_	0543 (Note1)	5618	3735	Lowest clamp speed for the spindle motor
_	0542 (Note1)	5619	3736	Highest clamp speed for the spindle motor
65	20	3020	4020	Highest spindle motor speed
0539	0577	5613	-	Spindle speed command off- set (always to be set as 0)
05	16	5614	-	Spindle speed command gain (always to be set as 1000)
0540 A 0543	0541 0539 0555 (Note2)	5621 A 5628	3741 A 3744	Highest spindle speed corre- sponding to each gear

NOTE1

Valid only for M series. However, invalid if the constant surface speed control option is used.)

NOTE2

or M series using the constant surface speed control option, the same parameter Nos. (parameter Nos. 0540 to 0543) as for T series are used.

(3) Parameters for the detectors

The list below contains the parameters for the detectors. The parameters to be set vary with the detectors you use. Refer to the parameter manual for details.

Parameter No.) .		
FS0 –TC	FS0 -MC	FS15	FS16/18/ 20/21 PM–D/F	Description	
65) #	00 0	3000 #0	4000 #0	Directions in which the spindle and motor rotate 0: Same directions 1: Different directions	
65 #2,	11 1, 0	3011 #2, 1, 0	4011 #2, 1, 0	Motor speed detector 0, 0, 0: 64λ/rev 0, 0, 1: 128λ/rev 0, 1, 0: 256λ/rev 0, 1, 1: 512λ/rev 1, 0, 0: 192λ/rev 1, 0, 1: 384λ/rev	
65 #	03 1	3003 #1	4003 #1	Sensor built in the motor 0: Not to be used 1: To be used	
65 #	04 4	3004 #4	4004 #4	Type of sensor built in the motor 0: Standard 1: For α0.5	
65) #	04 1	3004 #1	4004 #1	Built–in sensor on the spindle 0: Not to be used 1: To be used	
65) #:	01 2	3001 #2	4001 #2	Position coder signal 0: No to be used 1: To be used	
65 #	00 2	3000 #2	4000 #2	Direction in which the position coder ro- tates 0: Same as the direction in which the spindle rotates 1: Reverse to the direction in which the spindle rotates	
65 #7, 1	03 6, 4	3003 #7, 6, 4	4003 #7, 6, 4	Position coder signal 0, 0, 0: Position coder Built–in sensor $256\lambda/r$ Cs sensor $\phi/65$ High–resolution position coder 0, 0, 1: Built–in sensor $128\lambda/r$ 0, 1, 0: Built–in sensor $512\lambda/r$ Cs sensor o/130 0, 1, 1: Built–in sensor $64\lambda/r$ 1, 0, 0: Cs sensor o/195 1, 1, 0: Built–in sensor $384\lambda/r$ Cs sensor $\phi/97.5$	
65 #	01 5	3001 #5	4001 #5	Detector for Cs contour control 0: Not to be used 1: To be used	
65) #	01 6	3001 #6	4001 #6	Detector with Cs contour control for built- in motor 0: Motor not built in the spindle 1: Built-in motor	

6504 #0	3004 #0	4004 #0	High–resolution position coder 0: No to be used 1: To be used
6501 #7	3001 #7	4001 #7	Direction in which the detector for Cs contour control rotates 0: Same as the direction in which the spindle rotates 1: Reverse to the direction in which the spindle rotates
6556 to 6559	3056 to 3059	4056 to 4059	Spindle–motor gear ratio (This data is selected with the spindle control DI signals CTH1A and CTH2A.)

٦

4

Г

CONFIRMATION OF THE OPERATION

4.1 Check each item according to the procedure described below. POWER SUPPLY MODULE Example to the procedure described below.

1.	1. Supply control power (200 VAC).		
	Y	4	
2.	Check the ST	TATUS LEDs. See Se	ection 4.1.3.
		ОК	Alarm condition
			See Section 3.1.2 of Part II.
	•	4	
3.	Release the	system from emerger	ncy stop state.
4.	Make sure th	at the MCC is turned	on.
		ОК	↓ NG
			See Section 4.1.4.
		r	
5.	Check the op	eration of the servo a	and spindle motors.
-			

4.1.1 Check Terminal On The Printed–circuit Board

Location of the check terminal

Table 4.1.1	Check	Terminal
-------------	-------	----------

Check terminal	Description						
IR	Phase L1 (phase R) current	The current is positive when it is input to the amplifier.					
IS	Phase L2 (phase S)	Model	Amount of current	Overcurrent alarm			
	current	PSM-5.5	25A/1V	Depending on			
		PSM-11	37.5A/1V	J IPM alarm output			
		PSM-15	50A/1V	300A (6V)			
		PSM–26	75A/1V	450A (6V)			
		PSM-30	100A/1V	600A (6V)			
		If phase L1 and L2 cur PSM enters an alarm s MCC trips, and IGE	rrents exceed the overcurrent state. 3T switching stops.	alarm level,			
		Alarm output (latch	, alarm code 01)				
+24V +5V 0V	Control power						

4.1.2 Checking The Power Supply Voltages

Table 4.1.2 Checking the Power Supply Voltages

Measurement item	Check method			
AC power line voltage	Check on L1, L2, and L3 at terminal board TB2. See Section 3.2.1.			
	Check or	the check terminals.		
Control power voltage		Check terminal	Rating	
		+24V - 0V	$24V \pm 5\%$	
		+5V - 0V	$5V \pm 5\%$	

4.1.3 Checking The Status Leds

	STATUS LEDs	
No.	On Gradient Constraints on Indicated in black.	Description
1.	PIL	The PIL LED (power ON indicator) is off. Control power has not been supplied. The control power circuit is defective. See Section 4.1.2.
2.	PIL	PSM not ready The main circuit is not supplied with power (MCC OFF). Emergency stop state
3.	PIL	PSM ready The main circuit is supplied with power (MCC ON). The PSM is operable.
4.	PIL ALM Alarm code 01 or above is indicated.	Alarm state The PSM is not operable. See Section 3.1 of Part II.

4.1.4 The PIL LED (power ON indicator) Is Off.

Table 4.1.4 Check Method and Action

No.	Cause of trouble	Check method	Action
1.	No AC power is ap- plied.	Check R and S of con- nector CX1.	Ensure a secure con- nection.
2.	The power supply cir- cuit is defective.	The PIL LED (power ON indicator) oper- ates on the +5V power supply. Check the control power supply voltage according to Section 4.1.2.	Check the printed–cir- cuit board.

4.1.5

Checking For What Keeps The Mcc From Being Switched On

- (1) The emergency stop state has not been released.
 - \Rightarrow Ensure a secure connection.
- (2) A terminating connector has not been attached.
 - \Rightarrow Check whether connector K9 for the SVM or SPM has been attached at the end of the connection chain.
- (3) The MCC driving relay is defective.
 - \Rightarrow Check that a circuit between pins 1 and 3 of connector CX4 are closed and opened.

- (4) The MCC driving power has not been supplied or connected.
 - \Rightarrow Ensure a secure connection.

Check each item according to the procedure described below.

4.2 SERVO AMPLIFIER MODULE

4.2.1 Check Pin Board

Overview

Unlike conventional servo amplifiers, the servo amplifier module does not have check pins. When you are going to observe the signals inside the amplifier with an oscilloscope, attach the pin board listed below to the connector.

Order No.	Description of the order
A03B-6071-K290	Printed-circuit board A20B-1005-0340 Cable (20 m) A660-2042-T031#L200R0

Pin arrangement on the pin board

Connection to the servo amplifier module

Pin No.	Signal name	Description
1		
2	0V	Reference voltage
3	IRL (NOTE3)	L-axis phase R motor current signal
4	ISL (NOTE3)	L-axis phase S motor current signal
5	IRM (NOTE1) (NOTE3)	M-axis phase R motor current signal
6	ISM (NOTE1) (NOTE3)	M-axis phase S motor current signal
7	IRN (NOTE1) (NOTE3)	N-axis phase R motor current signal
8	ISN (NOTE1) (NOTE3)	N–axis phase S motor current signal
9	0V	Reference voltage
10	0V	Reference voltage
11	+24V	+24 V power (with tolerance of +5%)
12	+15V	+15 V power (with tolerance of +5%)
13	–15V	+15 V power (with tolerance of +5%)
14	+5V	+5 V power (with tolerance of +5%)
15	ITL	L-axis phase T motor current signal(NOTE2)
16	0V	Reference voltage
17	ITM	M-axis phase T motor current signa l(NOTE2)
18	0V	Reference voltage
19	ITN	N-axis phase T motor current signal(NOTE2)
20	0V	Reference voltage

NOTE1

If there is no axis corresponding to the SVM, no relevant signal is output.

NOTE2

This signal is not output by A06B–6079–H3**.

NOTE3

The output voltage reflects directly the actual current in the motor. To observe the output voltage, use an oscilloscope. The voltmeter position of a volt–ohm–milliammeter or other voltmeters cannot be used.

Current-to-	-voltage	conversion	table
Current to	vonuge	conversion	luoie

Servo amplifier module		Typical applicable motor	Conversion result
SVM1–12 SVM2–12/12 SVM2–12/20 SVM3–12/40 SVM3–12/12/12 SVM3–12/12/20 SVM3–12/12/40 SVM3–12/20/20 SVM3–12/20/40	L, M axis L axis L axis L, M, N axis L, M axis L, M axis L axis L axis L axis	α0.5/3000 α1/3000 α2/2000 α2/3000	3 A/V
SVM1–20 SVM2–12/20 SVM2–20/20 SVM2–20/40 SVM3–12/12/20 SVM3–12/20/20 SVM3–20/20/20 SVM3–20/20/40 SVM3–20/20/40	M axis L, M xis L axis N axis M, N axis L, M, N axis M axis L, M axis	αC3/2000 αC6/2000 αC12/2000	5 A/V
SVM1-40S SVM2-40L SVM2-12/40 SVM2-20/40 SVM3-40/40 SVM3-40/80 SVM3-12/12/40 SVM3-12/20/40 SVM3-20/20/40	M axis M axis L, M axis L axis N axis N axis N axis N axis	α3/3000 α6/2000 α12/2000 α22/1500 αC22/1500 αM3/3000 αL3/3000	10 A/V
SVM1-80 SVM2-40/80 SVM280/80		α6/3000 α12/3000 α22/2000 α30/1200 αM6/3000 αM9/3000 αL6/3000 αL9/3000	20 A/V
SVM1-130		α22/3000 α30/2000 α30/3000 α40/3000 αL25/3000 αL150/2000	32.5 A/V

4.2.2 Checking The Control Power Supply Voltage

Table 4.2.2 Checking the Control Power Supply Voltage

Measurement item	Check method		
Check on t	he check	Rating	
Control power supply pins on the board.	24V – 0V 15V – 0V 5V – 0V –15V – 0V	24V±5% 15%±5% 5V±5% -15V±5%	
4.2.3 Checking The STATUS Display

No.	STATUS display	Description
1.		The STATUS display is not on. The control power supply has not been switched on.
		The power supply circuit is defective. Check the voltages with the data listed in Section 4.2.2.
2.	-	The control power supply is waiting for a ready signal (*MCON).
3.	0	The servo circuit is ready to operate. The motor is supplied with power.
4.	Alarm code from 01 to E is indicated.	Alarm state See Section 3.2 of Part II.

4.2.4 The STATUS Display Does Not Light.

When the PSM is supplied with control power, if the SVM STATUS display does not light, check the items listed below.

Table 4.2.4 Check Method and Action

No.	Cause of trouble	Check method	Action
1.	No control power is applied.	Check 24 V and 0 V on connector CX2.	Ensure a secure con- nection.
2.	The power supply cir- cuit is defective.	The STATUS display operates on the +5V power supply. Check the control power sup- ply voltage according to Section 4.2.2.	Check the printed–cir- cuit board.

4.2.5 Servo Check Board

(1) General

The servo check board receives the digital value used for control inside the digital servo as numerical data and converts it to an analog form.

(2) Servo check board specifications

Specification	Name	
A06B-6057-H602	Servo check board (with a cable having a provision to prevent incorrect insertion)	
A02B-0120-C211	Servo adaptor board (not required for Series 0–C or 15–A)	

(3) Connecting the servo check board

When connecting the check board, always keep the NC switched off. If you do not obtain a correct waveform, install strapping on the 5 MHz side of clock pin S1 on the check board.

4. CONFIRMATION OF THE OPERATION

(4) Location of signal output

Check pin	TSAL	TSAM	CH1	CH2	СНЗ	CH4	CH5	CH6
Signal	<u> </u>	#	L axis VCMD	L axis TCMD	M axis VCMD	M axis TCMD	L axis TSA	M axis TSA

(Check terminal TSAL or TSAM is not used.)

(5) VCMD signal

The VCMD signal is used to output a speed command. It can also be used to measure a very small vibration or uneven movement of the motor. The VCMD signal conversion mode can be switched by a parameter. Because the VCMD signal is clamped at +5 V, the waveform may become difficult to observe. In such a case, switch for easier observation.

234 rpm

3750 rpm

D7 D6 D3 D4 D3 D2	DI	b0
1956 VCM2 VCM1		
VCM2 VCM1 Spec	fied speed	d / 5V
0 0	0.9	155 rpm
0 1		14 rpm

1

1

To check small vibrations, monitor the entire vibration on the DC mode of the ascilloscope then enlarge monitor the desired range on the AC mode.

0

1

When the signal conversion result for the VCMD waveform is W (rpm/5 V), the voltage per positional shift pulse is:

(Example)

Assume the conditions: Position gain = $30 (S^{-1})$, the number of positional feedback pulses/motor revolution = 1000 pulses, and signal conversion result for the VCMD waveform = 14 rpm/5 V with $1 \mu \text{m/pulse}$)

Under these conditions, if you observe E = 300 mV and 1/f = 20 ms: Voltage per positional deviation pulse = 64 mv/pulse

Therefore, table vibration = 300 $_$ 1/64 = 4.6 μm , with a vibration period of 50 Hz

(6) TCMD signal

The TCMD signal outputs a motor torque command. It may be different from the actual current (IR, IS) of the motor rotating at high speed, because the motor produces a back electromotive force.

Maximum current	Signal output for maximum current	Ap/V	Applicable servo moter
12Ap	4.44V	2.7	α0.5, α1/3000 α2/2000, α2/3000
20Ap	4.44V	4.5	αC3/2000, αC6/2000, αC12/2000
40Ap	4.44V	9	α12HV, α22HV, α30HV αC22/1500, αC30/1200 αM3/3000 α3/3000, α6/2000 α12/2000, α22/1500 αL3/3000
80Ap	4.44∨	18	αM6/3000, αM9/3000 α6/3000, α12/3000 α22/2000, α30/1200 αL6/3000, αL9/3000
130Ap	4.44V	29	α22/3000, α30/2000, α30/3000 α40/2000 αL25/3000, αL50/2000

Root mean square value (RMS) = TCMD signal output (Ap) $_$ 0.71

(7) TSA signal

The TSA signal outputs a motor speed.

Signal Conversion 3750 rpm/5V

If the TSA signal is clamped at 5 V, check whether the following parameter is specified.

1726		Not used
2115		Be sure to specify 0.

Check each item according to the procedure described below.

4.3 SPINDLE AMPLIFIER MODULE

1. Supply control power (200 VAC) to the power supply module. 2. Check the STATUS LEDs. OK Alarm condition Part II Troubleshooting 3. Did another machine with the same software system start once? No Yes 4. Prepare and check the PMC ladder. (Refer to the specification manual). 5. Set and check the parameters for serial spindles. (Refer to the parameter manual.) 6. Check the waveform from the detector. See Section 4.4.3. 7. Release the emergency stop state. 8. Make sure that the MCC of the power supply module is on. See Section 4.1. 9. The machine starts operating in normal mode. 10. Check individual functions.

4.3.1
Spindle Check Board

By connecting the check board, you can observe:

- 1 Various signal waveforms.
- 2 Internal data
- (1) Check board specification

There are two types of check boards. They are not interchangeable. Select one that matches your application.

For the items that vary between the two check boards, they are identified by the drawing number of the printed–circuit board.

Table 4.3.1 (1) Check Board Specification

Name	Applicable unit	Specification	Printed–circuit board draw- ing number
	SPM–2.2 to 11 TYPE I SPM–2.2 to 11 TYPE II	A06B-6078-H001	A20B-2001-0830
Spindle check board	SPM-15 to 30 TYPE I SPM-15 to 30 TYPE II SPM-11 to 30 TYPE III	A06B-6072-H051	A20B-1005-0740

(2) Check terminal output signal. (See Section 4.3.3 for details of signals.)

Table 4.3.1 (2)-1	Check Terminal	Output Signals	(A20B-2001-0830)
-------------------	----------------	-----------------------	------------------

Check terminal	Signal name		Signal name
LM	Load meter signal	PA1	Phase A sine wave signal 1
SM	Speedometer signal	PB1	Phase B sine wave signal 1
CH1	Channel 1, for internal data observation	PS1	Phase Z signal 1
CH2	Channel 2, for internal data observation	PA2	Phase A sine wave signal 2
CH1D	Bit 0 on channel 1, for internal data observation	PB2	Phase B sine wave signal 2
CH2D	Bit 0 on channel 2, for internal data observation	PS2	Phase Z signal 2
VRM	Reference voltage (2.5 VDC)	PA3	Phase A sine wave signal 3
LSA1	Magnetic sensor output LSA signal 1	PB3	Phase B sine wave signal 3
EXTSC1	External reference signal 1	PA4	Phase A sine wave signal 4
LSA2	Magnetic sensor output LSA signal 2	PB4	Phase B sine wave signal 4
EXTSC2	External reference signal 2	OVR2	Analog override input signal
PAD	Equivalent position coder output signal phase A	24V	DC+24V
PBD	Equivalent position coder output signal phase B	15V	DC+15V
PSD	Equivalent position coder output signal phase Z	5V	DC+5V
		GND	0V

Check terminal	Signal name			Check terminal	Signal name
LM	Load meter signal			PAD	Equivalent position coder signal phase A
SM	Speedometer sigr	Speedometer signal			Equivalent position coder signal phase B
IU	Phase U current	The current is	positive when it	PSD	Equivalent position coder signal phase Z
IV	Phase V current	is input to the	amplifier.	PA1	Phase A sine wave signal 1
		Model	Conversion result	PB1	Phase B sine wave signal 1
		SPM- 11	33. 3A/ 1V	PS1	Phase Z signal 1
		SPM- 15 50. 0A/ 1V		PA2	Phase A sine wave signal 2
		SPM- 22	66. 7A/ 1V	PB2	Phase B sine wave signal 2
		SPM- 26	100A/1V	PS2	Phase Z signal 2
		SPM- 30	133A/ 1V	PA3	Magnetic sensor output LSA signal 1
VDC	DC link voltage si	gnal	gnal		Phase B sine wave signal 3
VRM	Reference voltage	e (2.5 VDC)		PA4	Phase A sine wave signal 4
MSA1	Magnetic sensor	output MSA sig	nal 1	PB4	Phase B sine wave signal 4
LSA1	Magnetic sensor output LSA signal 1			OVR2	Analog override input signal
EXTSC1	External reference	xternal reference signal 1			DC+24V
MSA2	Magnetic sensor output MSA signal 2			15V	DC+15V
LSA2	Magnetic sensor output LSA signal 2			5V	DC+5V
EXTSC2	External reference	e signal 2		GND	DC 0V

Table 4.3.1 (2)-2 Check Terminal Output Signals (A20B-1005-0740)

(3) Connecting the check board

1 Connecting the check board (A20B–2001–0830)

2 Connecting the check board (A20B–1005–0740)

(4) Check terminal arrangement

1 Check terminal arrangement (A20B–2001–0830)

— 40 —

2 Check terminal arrangement (A20B–1005–0740)

(1) SPM-2.2 to -11 types I and II

Table 4.3.2 (1) Checking the Control Power Supply Voltage

Check item	Check method				
		Check terminal	Rating		
Control power supply voltage	Check on the check termi- nals on the check board.	+5 – 0V +15V – 0V –15V – 0V	5V^5% 15V^5% –15V^5%		

4.3.2 Checking The Control Power Supply Voltage (2) SPM-15 to -30 types I and II, SPM-11 to -30 types III

Table 4.3.2 (2) Checking the Control Power Supply Voltage

Check item	Check method				
		Check terminal	Rating		
Control power supply voltage	Check on the check termi- nals on the check board.	+5 – 0V +15V – 0V +24V – 0V	5V^5% 15%^5% 24V^5%		

4.3.3 STATUS Display

	STATUS display		
No.	On Off Dff Dff Dff Dff Dff Dff Dff	Description	
1.	PIL	The PIL LED (power ON indicator) is off. The control power supply has not been switched on. The power supply circuit is defective. See Section 4.3.2.	
2.	PIL ALM ERR	For about 1.0 s after the control power supply is switched on, the lower two digits of the ROM series No. are indicated. Example) 00: ROM series No. 9D <u>00</u>	
↓ 3.	PIL ALM ERR	The ROM edition number is displayed for about 1.0 s. 01, 02, 03, and so on correspond to A, B, C, and so on, respectively. Example) 04: ROM edition D	
4.	PIL ALM ERR Blinking	The CNC has not been switched on. The machine is waiting for serial communication and parameter loading to end.	
5.	PIL ALM ERR	Parameter loading has ended. The motor is not supplied with power.	
6.	PIL ALM ERR	The motor is supplied with power.	
7.	PIL ALM ERR Alarm codes 01 or above is displayed.	Alarm state The SPM is not operable. See Section 3.3 of Part II.	
8.	PIL ALM ERR Error code 01 or above is displayed.	Error state Incorrect parameter setting or improper sequence. Refer to the parameter manual.	

4.3.4 The PIL LED (power ON indicator) Is Off.

When the power supply module is supplied with control power, if the PIL LED on the spindle amplifier module is off, check according to the table below.

Table 4.3.4 Check Method and Action

No.	Cause of trouble	Check method	Action
1.	Control power is not supplied.	Check for 24 V and 0 V on connector CX2.	Ensure a secure connection.
2.	The power supply circuit is defective.	The PIL LED operates on +5 V. Check the control power supply voltages with the values described in section 4.3.2.	Check the printed– circuit board.

4.3.5 The STATUS Display Is Blinking With "--"

After the CNC has started up, if the STATUS display is still blinking with "-", check according to the table below.

Table 4.3.5 Check Method and Action

No.	Cause of trouble	Check method	Action
1.	When only one SPM is available, the setting is such that two SPMs are connected. (SPM–15 to –30).	Check the switch setting.	Set DIP switch S1 to OFF.
2.	The CNC has not been set in such a way that α series (serial spindle) can be used.	Check the parameters. Refer to the parameter manual.	Set the parame- ters correctly.
3.	The CNC has not been connected.	Be careful that the speci- fication of the electric-to- electric interface cable is different from that of the I/O link adaptor cable.	Check the con- nection and speci- fication.

JY4

JY3

JY6

JY8

JY7

JY2

JY3

JY6

JY7

4.3.6 **Checking The Feedback Signal** Waveform

No.

1.

2.

3.

4.

5.

6.

7.

8.

side

(NOTE 3)

SUB side

(NOTE 3)

(NOTE 3)

SUB side

(NOTE 3)

MAIN side

Position coder

Magnetic sensor

Pulse generator

Magnetic sensor

Built-in sensor

Built-in sensor

signal

signal

External reference

External reference

Position coder

The measurement positions and connector connections vary from one detector configuration to another. Check the waveform with Table 4.3.4. The check terminals are on the check board.

Do not observe the feedback signal before the parameters for the detectors are set. Phase A, B, and Z signals are not output until the parameters are loaded from the CNC.

Cs contour control

Motor speed Position feed-**One-rotation** Connector Detector feedback sig-Spindle posiback signal signal connection Motor speed nal tion Pulse generator PA1,PB1 JY2 PAD,PBD PSD JY4 Position coder MSA1 JY3 Magnetic sensor LSA1 PA1,PB1 PA1,PB1 PS1 JY2 Built-in sensor External reference signal EXTSC1 JY3 JY5 Pulse generator PA2,PB2 (NOTE1) Separate built-in sensor JY2 PA1,PB1 PS1 (spindle) (NOTE1) Z (NOTE2) PSD High-resolution magnetic pulse PA2,PB2 PA3,PB3 PA2,PB2 PA3,PB3 JY5 coder (built-in motor) High-resolution magnetic pulse PA1,PB1 PA4,PB4 JY2 coder (motor) High-resolution magnetic pulse Z(NOTE2) PA2,PB2 PA3,PB3 JY5 coder (spindle) PSD High-resolution magnetic pulse PA1,PB1 PA4,PB4 JY2 coder (motor) High-resolution magnetic pulse PAD, PBD PSD PA3,PB3 JY4 coder (spindle) Pulse generator PA1,PB1 JY2 MAIN

PAD, PBD

PAD,PBD

PA1,PB1

PA2,PB2

MSA1

MSA2

PSD

LSA1

PSD

LSA2

PS1

PS2

EXTSC1

EXTSC2

Table 4.3.6 Check Terminals by Detector Configuration

NOTE1

PA2,PB2

PA1,PB1

PA2,PB2

Position where the connector for SPM-2.2 to -11 is connected. For SPM–15 to –30, see the table below.

- 44 -----

Table 4.3.6 Check Terminals by Detector Configuration (continued)

		Motor speed	Position food	One rotation Cs conto		ır control	Connector
No.	Detector	feedback sig- nal	back signal	signal	Motor speed	Spindle posi- tion	connection
	Pulse generator	PA1,PB1					JY2
9.	Separate built–in sensor (spindle)		PA2,PB2	PS2			JY6

NOTE2

Check terminal Z is on the preamplifier printed-circuit board.

The PSD signal is a square wave produced from the Z signal (analog waveform). It is on the check board.

NOTE3

All output signals are for the currently selected spindle (MAIN or SUB).

(1) Motor speed feedback signal (pulse generator)

Measurement conditions

Direction of rotation: Normal (CCW), reverse (CW) Motor speed : 1500 rpm

No.	Measurement location		Sample v	vaveform
1.	PA1,PB1 (PA2, PB2 for the sub- spindle)			Vo Vo
		Measure- ment item	Standard	Make sure that the mea- surement meets the standard.
		Vs ampli- tude	0.64 to 0.90V	
		Vo offset	2.5V ±90mV	Measure with a digital voltmeter in the DC range.

— 45 —

(2) Motor speed feedback signal (for other than built–in sensor α 0.5) Measurement conditions

Direction of rotation: Normal (CCW), reverse (CW) Motor speed : 1500 rpm

No.	Measurement location	Sample waveform		
1.	PA1,PB1 (PA2, PB2 for the sub- spindle)	0V	Vo Vo	
		PA1 (PA2) 0V PB1 (PB2) 0V Adjust the mounting position so that the ripple in the output exceed 70 mV.	of the detector	
		Measure- ment item Standard Make su surement standard	tre that the mea- tre that the meets the	
		Vs ampli- tude 0.66 to 0.93V		
	Detection gear	Vo offset 2.5V Measur ±272mV voltmet range.	e with a digital er in the DC	
		θphase90±3°When tdifferencesuiteas viewdetection	he motor is ro- lockwise (CW) wed from the on gear side	
2.	PS1 (PS2 for the sub–spindle)	0V VRM (2. 5V)	Vo	
		Measure- ment item Standard Make su suremer standard	tre that the mea- the meets the	
		Vs ampli- tude 1.08 to 2.40V		
		Vo offset 2.5V Measur ±500mV voltmet range.	e with a digital er in the DC	

— 46 —

(3) Motor speed feedback signal

Measurement conditions Direction of rotation: Normal (CCW), reverse (CW)

Motor speed: 1500 rpm

No.	Measurement location	Sample waveform		
1.	PA1,PB1 (PA2, PB2 for the sub- spindle)	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$		
		Adjust the so that the exceed 70	mounting p ipple in the mV.	position of the detector a output signal does not
		Measure- ment item	Standard	Make sure that the mea- surement meets the standard.
		Vs ampli- tude	0.50 to 1.45V	
	Detection gear	Vo offset	2.5V ±295mV	Measure with a digital voltmeter in the DC range.
		θ phase difference	90±3°	When the motor is ro- tating clockwise (CW) as viewed from the detection gear side
2.	PS1 (PS2 for the sub–spindle)	Example 1	2M (2. 5V)	Example 2
		Measure- ment item	Standard	Make sure that the mea- surement meets the standard.
		Vs ampli- tude	2V min.	If the Vs amplitude is not less the 2 V, the waveform may be clamped.
		Vo offset	2.5V ±500mV	Measure with a digital voltmeter in the DC range.

(4) Cs contour control feedback signal (motor speed feedback signal, spindle position feedback signal)

The preamplifier was factory-set, but you should check its waveform after it is mounted on the machine. If it does not meet the standard, you must readjust it.

After mounting the sensor, check the waveform before you mount the pulley, draw bar, brake, etc.

Direction of rotation:Normal (CCW), reverse (CW)Motor speed:1500 rpm

— 48 —

4.3.7 Observing The Internal Data

(1) Overview

By using the check board, you can convert digital signals used for control in the spindle amplifier module to analog voltage, and observe the conversion result with an oscilloscope. The internal data can be indicated also with the five-digit display.

• A20B-2001-0830

This model has two analog output channels (CH1 and CH2) at which the internal data (with output of -5 V to +5 V) can be observed. It also has CH1D and CH2D at which specific bits such as data bits can be observed.

• A20B–1005–0740 This model outputs internal data (output of 0 to 11 V) at terminals LM and SM using the analog output circuit for the load meter (LM) and speedometer (SM).

(2) Major characteristics

	Applicable module			
	Printed-circuit board			
Item	SPM-2.2 to -11 TYPE I SPM-2.2 to -11 TYPE II		SPM-15 to -30 TYPE I SPM-15 to -30 TYPE II SPM-11 to -30 TYPE III	
	A20B-20001-0830		A20B-1005-0740	
Measurement point	CH1,CH2	CH1D,CH2D	LM,SM	
Output voltage range	-5V to 5V	H :2Vmin L :0.8Vmax	0V to 11V	
Resolution	About 38mV (10V/256)	-	About 43mV (11V/256)	
Input impedance of the external measur- ing instrument	10kΩmin	10kΩmin	10kΩmin	

(3) Observation method

By setting data using four DIP switches on the check board, you can output internal data to the five–digit display, analog voltage output circuit, channels 1 and 2 (LM and SM or CH1 and CH2).

Data on channels 1 and 2 is the one from an 8–bit D/A convertor. The correspondence between channel 1/2 and the check terminal is listed below.

	Check terminal		
Measurement point	Printed-circuit board		
	A20B-2001-0830	A20B-1005-0740	
Channel 1	CH1 CH1D, data bit 0	LM	
Channel 2	CH2 CH2D, data bit 0	SM	

NOTE

When using printed–circuit board A20B–1005–0740, set DIP switches S2 and S3 on the spindle amplifier module front panel to OFF. After observation, set them to ON. This operation is not necessary when you use printed–circuit board A20B–2001–0830.

DIP switch	ON position	OFF position
S2, S3	Output voltage is filtered out.	Output voltage is not filtered out.

(4) Specifying data to be monitored

1 Press the four setting switches at the same time for at least a second.HFFFFFIwill be displayed on the indicator.

2 Turn off the switches and press theHMODEIswitch.Hd-00Iwill be displayed on the indicator and the system will enter the mode for monitoring internal data.

In this mode, the motor can be operated normally.

- 3 Press theHUPIorHDOWNIswitch while holding down theHMODEIswitch. The indicator display will change in the range ofHd-00ItoHd-12I.
- 4 The following shows the correspondence between the destinations of the internal data of the serial spindle and addresses d-01 to d-12.
 - d-01 to d-04 : Specifies the amount of data to be output to the indicator, data shift, and output format (decimal or hexadecimal).
 - d-05 to d-08 : Specifies the amount of data to be output to the LM terminal, data shift, and whether an offset is provided.
 - d-09 to d-12 : Specifies the amount of data to be output to the SM terminal, data shift, and whether an offset is provided.
- 5 Select address d-xx in the procedure for setting data described in (3).
- 6 Turn off theHMODEIswitch. Hd-xxIwill disappear 0.5 second later, and the data will be displayed for a second. Change the set data using theHUPIorHDOWNIswitch within the second the data is displayed.
- 7 When more than a second elapses without pressing theHUPIorHDOWNIswitch, data cannot be changed.
 If theHMODEIswitch is turned on or off, however, setting can be started from the beginning of the step in item (6).
- (5) Description of Addresses

[Output to the indicator]

Address	Description	Initial value
d–01	Specifies a data number.	0
d–02	Shift at data output (0 to 31 bits)	0
d–03	Data shift direction 0 : Data is shifted right. 1 : Data is shifted left.	0
d-04	Display format 0 : Decimal notation 1 : Hexadecimal notation(0 to F)	0

— 51 —

[Output to	o the c	channel	1]
------------	---------	---------	----

		Initial	Initial value		
Address	Description	Printed–circuit board (output terminal name)			
		A20B-2001-0830 (CH1)	A20B-1005-0740 (LM)		
d–05	Specifies a data num- ber	218	132		
d–06	Shift at data output (0 to 31 bits)	8	0		
d–07	Data shift direction 0 : Data is shifted right 1 : Data is shifted left	0	0		
d–08	Offset 0 : Not provided 1 : Provided	1	0		

[Output to the channel 2]

		Initial value		
Address	Description	Printed–circuit board (output terminal name)		
		A20B-2001-0830 (CH2)	A20B-1005-0740 (SM)	
d–09	Specifies a data num- ber	19	131	
d–10	Shift at data output (0 to 31 bits)	18	0	
d–11	Data shift direction 0 : Data is shifted right 1 : Data is shifted left	0	0	
d–12	Offset 0 : Not provided 1 : Provided	1	0	

(6) Principles in Outputting the Internal Data of the Serial Spindle The length of data is 32 bits (BIT31 TO BIT00) unless it is described as 16 bits.

BIT31 &&&&	BITO	3 BIT02	BIT01	BIT00
------------	------	---------	-------	-------

1 Example of output to the indicator

Example1 Displaying data in decimal

When the number of digits to shift data (d-02)=0 and display format (d-04)=0 (decimal notation): The last 16 bits of data (BIT15 to BIT00) are converted into decimal (0 to 65535 max.) and displayed.

— 52 —

Example2 Displaying data in hexadecimal

When the number of digits to shift data (d-02)=0 and display format (d-04)=1 (hexadecimal notation): The last 16 bits of data (BIT15 to BIT00) are converted into hexadecimal (0 to FFFFF max.) and displayed.

Example3 Shifting data left

When the number of digits to shift data (d-02)=3, the shift direction is left (d-03=1), and display format (d-04)=1 (hexadecimal notation): Data in BIT12 to BIT00 and the last three bits of data (=0) are converted into hexadecimal (0 to FFFFF max.) and displayed.

Example4 Shifting data right

When the number of digits to shift data (d-02)=5, shift direction is right (d-03=0), and display format (d-04)=0 (decimal notation): Data in BIT20 to BIT05 is converted into decimal (0 to 65535 max.) and displayed.

— 53 —

Example5 Shifting data right when the data length is 16 bits When the data length is 16 bits, data shift (d-02)=5, shift direction is right (d-03=0), and display format is decimal notation (d-04=0): The first five bits of data and data in BIT15 to BIT05 are converted into decimal and displayed.

2 Example of output to the channel 1

Internal data is output to channel 1 by setting it in an 8-bit D/A convertor.

The output range of the D/A convertor varies from one printed–circuit board to another. The output ranges from -5 V to +5 V (printed–circuit board A20B–2001–0830) or from 0 V to +11 V (printed–circuit board A20B–1005–0740) according to the internal data that is set. See the table below.

Internal data in	Setting d-08	Output on	Output on channel 1	
(decimal)	(whether there is offset)	Printed–circuit board		
(10 011000)	A20B-2001-0830	A20B-1005-0740	
0000000(0)	0	-5V	0V	
11111111(255)	0	+4.96V	+11V	
1000000(-128)	1	-5V	0V	
0000000(0)	1	0V	+5.5V	
01111111(127)	1	+4.96V	+11V	

Example1 Data set

When the number of digits to shift data (d-06)=0 and when no offset is provided (d-08=0): The last eight bits of data (BIT07 to BIT00) is set in the D/A converter of the LM terminal.

Set in the D/A converter for channel 1 output

Example2 Shifting data left

When the number of digits to shift data (d-06)=3, shift direction is right (d-07=1), and no offset is provided (d-08=0): Data in BIT14 to BIT00 and the last three bits of data (=0) are set in the D/A converter.

Set in the D/A converter for channel 1 output

Example3 Shifting data right

When the number of digits to shift data (d-06)=10, shift direction is right (d-07=1), and no offset is provided (d-08=0): Data in BIT17 to BIT10 is set in the D/A converter.

Set in the D/A converter for channel 1 output

Example4 Shifting data right when the data length is 16 bits When the data length is 16 bits, data shift (d-06)=10, shift direction is right (d-07=0), and no offset is provided (d-08=0): The first two bits of data (=0) and data in BIT15 to BIT10 are set in the D/A converter.

Set in the D/A converter for channel 1 output

Example5 If an offset is provided

When the number of digits to shift data (d-06)=10, shift direction is right (d-07=0), and an offset is provided (d-08=1): Data in most significant bit BIT17 (to which 1 is added) and data in BIT16 to BIT10 are set in the D/A converter.

Set in the D/A converter for channel 1 output

Example6 Data bit observation

(for printed-circuit board A20B-2001-0830 only)

For data shift (d-06) = 0 with no offset (d-08 = 0), the lowest data bit (BIT00) can be observed as a high/low level at check terminal CH1D.

Example of output to the channel 2

Output to the channel 2 is the same as that to the channel 1. However, the addresses for setting data (d-09 to d-12) are different from those for output to the channel 1.

Setting velocity information in the channel 1 and the number of errors in the channel 2 enables simultaneous monitoring of the change in each data item using the two channels.

- (7) Data Numbers
 - 1 Main data

Data No.	Description	Data length	Remarks
16	Motor speed command	32	The 12th bit (BIT12) indi- cates a units in rpm.
19	Motor speed	32	The 12th bit (BIT12) indi- cates a units in rpm.
25	Motor speed deviation (speed command - motor speed)	32	The 12th bit (BIT12) indi- cates a units in rpm.
4	Move command	32	Number of command pulses for ITP (usually 8 ms)
9	Positioning error	32	Number of erroneous pulses (Spindle synchro- nous control Cs contour control Rigid mode)
90	Torque command	16	0 to ±16384
131	Speedometer data	16	SM terminal
132	Load meter data	16	LM terminal
136	Position error	32	Number of erroneous pulses (Position coder orientation)

2 Data to be transmitted between the serial spindle and the CNC

Data No.	Description	Data length	Remarks		
2	Control bit signal 1	16	Command bit sent from the CNC to the spindle		
3	Control bit signal 2	16	Command bit sent from the CNC to the spindle		
5	Speed command data	16	216384 for the maximum speed command		
6	Spindle control signal	16	Command bit sent from the PMC to the spindle		
10	Load meter data	16	0 to 32767 (maximum)		
11	Motor speed data	16	±16384 for maximum speed		
12	Spindle status signal	16	Status bit sent from the spindle to the PMC		

3 Others

Data No.	Description	Data length	Remarks
112	Position coder data	16	Number of the pulses
112	Position coder data	10	that return to the position coder for ITP (usually 8ms)
51	U-phase current com- mand	16	
52	V-phase current com- mand	16	
53	W-phase current com- mand	16	
218	U–phase current (A/D changer data)	16	10V/FS with 8 bits shifted left(Note)
219	V–phase current (A/D changer data)	16	
121	Magnetic sensor signal (MS signal on the main spindle side)	16	15.4V/FS with 8 bits shif ted left(Note)
125	Magnetic sensor signal (MS signal on the sub– spindle side)	16	
162	DC link voltage	316	1000V/FS with 8 bits shifted left(Note)

Table 4.3.7 (1)	Internal Data Conversion	(A20B-2001-0830)
		(ALUD LUUI 0000)

Data No.	Signal name	Description (conversion with 8 bits shifted left and with an offset)				
218	IU	Phase U current	The current is	s positive when it		
219	IV	Phase V current	Phase V current is input to the amplifier.			
			Model	Conversion result		
			SPM-2.2 SPM-5.5	16.7A/1V		
			SPM- 11			
			SPM- 15	50. 0A/ 1V		
			SPM- 22	66. 7A/ 1V		
			SPM- 26	100A/ 1V		
			SPM- 30	133A/ 1V		
162	VDC	DC link voltage signal		100V/1V		
121	MSA1	Magnetic sensor output MSA signal 1 1.54V/1V				
125	MSA2	Magnetic sensor output	Magnetic sensor output MSA signal 2 1.54V/1V			

Example

Observation of phase U current in the SPM-11

Example of Monitoring Data

1 Example of monitoring a positioning error using the LM terminal

Address	Description	Set Data			
d–05	Data number	9	9	9	9
d–06	Data shift	0	1	1	2
d–07	Data shift direction	0	0	1	1
d–08	Offset	1	1	1	1
Data unit (NOTE)		256p/FS	512p/FS	128p/FS	64p/FS

NOTE

Printed–circuit board A20B–2001–0830 : FS=10V (–5V to 5V) Printed–circuit board A20B–1005–0740 : FS=11V (0V to 11V)

2 Example of monitoring a motor speed using the SM terminal

Address	Description		Set Data	
d–09	Data number	19	19	19
d–10	Data shift	12	13	11
d–11	Data shift direction	0	0	0
d–12	Offset	1	0	0
Da	ta unit (NOTE)	256p/FS	512p/FS	128p/FS

NOTE

Printed–circuit board A20B–2001–0830 : FS=10V (–5V to 5V) Printed–circuit board A20B–1005–0740 : FS=11V (0V to 11V)

II TROUBLESHOOTING

OVERVIEW

This part describes the troubleshooting procedure for each module. Read the section related to your current trouble to locate it and take an appropriate action.

First, check the alarm number and STATUS display indicated on your module with each list (alarm numbers in the list are those for the CNC) in Chapter 2 to find the corresponding detailed information in Chapter 3. Then take an appropriate action according to the detailed information.

- Power supply module
- Servo amplifier module
- Spindle amplifier module

ALARM NUMBERS AND BRIEF DESCRIPTIONS

2.1 ALARM NUMBERS IN SERIES 15 (SERVO ALARMS)

Alarm No.	SVM	SPM	PSM	Description	Remarks
SV001				Overload alarm	3.4.2
SV003	8 9 A b C d E		1	Abnormal current alarm (L axis) (M axis) (N axis) (L, M axis) (M, N axis) (L, N axis) (L, N axis) (L, M, N axis) (L, M, N axis)	3.2.1
	8. 9. A. b. C. d. E.			IPM alarm (L axis) (M axis) (N axis) (L, M axis) (L, M axis) (M, N axis) (L, N axis) (L, M, N axis)	3.2.2
SV004			7	DC link overvoltage	3.1.7
SV005			5	Precharge alarm (Series 15–A) (simultaneously with SV006)	3.1.5
SV006	2 5		4	Control power supply undervoltage alarm DC link undervoltage alarm (SVM) DC link undervoltage alarm (PSM) Power supply state alarm	3.2.3 3.2.4 3.1.4 3.1.6
			5	Precharge alarm (Series 15–A) (simultaneously with SV005)	3.1.5
SV015				Feedback disconnected alarm	3.4.3
SV023	1		2 3	Fan stop alarm (SVM) Fan stop alarm (PSM) Overheat alarm (PSM) Overheat alarm (motor)	3.2.5 3.1.2 3.1.3 3.4.4
SV027				Invalid servo parameter setting alarm	3.4.5
SV110				α pulse coder error alarm	3.4.6
SV114				Rotation speed data error alarm	3.4.7
SV115				Pulse coder communication error alarm	3.4.8
SV116			5	Precharge alarm (Series 15–B)	3.1.5
SV117				Current conversion error alarm	3.2.6

For Series 15 (spindle alarm)

Alarm No.	SVM	SPM	PSM	Description	Remarks
OT300		A0		Program ROM error	3.3.1
OT300		A1		Program RAM error	3.3.1
OT301		01		Motor overheat	3.3.2
OT302		02		Excessive velocity error	3.3.3
OT339		03		DC link fuse blown	3.3.4
OT339		04	06	Input power supply open phase and power supply failure	3.1.6
OT307		07		Overspeed	3.3.5
OT309		09		Main circuit overload	3.3.6
OT311		11	07	DC link overvoltage	3.1.7
OT312		12		DC link overcurrent/IPM alarm	3.3.7
OT300		13		CPU internal data memory failure	3.3.8
OT399		15		Speed range switching and spindle switching alarm	3.3.9
OT300		16		RAM error	3.3.10
OT300		19		Phase U current detector circuit excessive offset	3.3.11
OT300		20		Phase V current detector circuit excessive offset	3.3.12
OT300		24		Serial transfer data error	3.3.13
OT300		25		Serial data transfer stopped	3.3.14
OT326		26		Cs contouring control velocity detection signal disconnected	3.3.15
OT327		27		Position coder signal disconnected	3.3.16
OT328		28		Cs contouring control position detection signal disconnected	3.3.17
OT329		29		Short-period overload	3.3.18
OT330		30	01	PSM main circuit overcurrent	3.1.1
OT331		31		Speed detection signal disconnected and motor lock alarm	3.3.19
OT300		32		Serial communication LSI internal RAM error	3.3.20
OT333		33	05	DC link precharge failure	3.1.5
OT334		34		Parameter data out of specification	3.3.21
OT335		35		Too large gear ratio specified	3.3.22
OT336		36		Error counter overflow	3.3.23
OT399		37		Speed detector parameter error	3.3.24
OT399		39		Cs contouring control one–rotation signal detection error	3.3.25
OT399		40		Cs contour controling one–rotation signal not detected	3.3.26
OT399		41		Position coder one-rotation signal detection error	3.3.27
OT399		42		Position coder one-rotation signal not detected	3.3.28
OT399		43		Differential speed mode position coder signal disconnected	3.3.29
OT399		44		A/D conversion error	3.3.30

Alarm No.	SVM	SPM	PSM	Description	Remarks
OT399		46		Position coder one-rotation signal detection error during thread cutting	3.3.31
OT399		47		Position coder signal error	3.3.32
OT399		49		Excessive differential speed conversion result	3.3.33
OT399		50		Excessive speed command computed value during the synchronization control of the spindle	3.3.34
OT399		51	04	DC link undervoltage	3.1.4
OT399		52		ITP signal error I	3.3.35
OT399		53		ITP signal error II	3.3.35
OT399		54		Overload current alarm	3.3.36
OT399		55		Power line state error at spindle or speed range switching	3.3.37
OT399		56		Control circuit cooling fan stopped	3.3.38
OT399		58	03	PSM main circuit overload	3.1.3
OT399		59	02	PSM cooling fan stopped	3.1.2

2.2 FOR SERIES 0–C (SERVO ALARM)

A	larm No.	SVM	SPM	PSM	Description	Remarks			
309	Alarm3				α pulse coder error alarm	3.4.6			
	Alarm4				Pulse coder communication error alarm	3.4.8			
400	Alarm1 bit7	1		2 3	Fan stopped alarm (SVM) Fan stopped alarm (PSM) Overheat alarm (PSM) Overheat alarm (motor)	3.2.5 3.1.2 3.1.3 3.4.4			
414	Alarm1 bit3			7	DC link overvoltage alarm	3.1.7			
	Alarm1 bit2 Alarm1 bit6			5	Precharge alarm (Bits 2 and 6 of alarm 1 are set to 1 simultaneously.)	3.1.5			
	Alarm1 bit4	8 9 A b C d E		1	Abnormal current alarm (L axis) (M axis) (N axis) (L, M axis) (M, N axis) (L, N axis) (L, N axis) (L, M, N axis) (PSM overcurrent + IPM alarm)	3.2.1 3.1.1			
		8. 9. 6. C. d. E.			IPM alarm (L axis) (M axis) (N axis) (L, M axis) (M, N axis) (L, N axis) (L, N axis) (L, M, N axis)	3.2.2			
	Alarm1 bit5				Overload alarm	3.4.2			
	Alarm1 bit6	2 5		4 6	Control power supply undervoltage alarm DC link undervoltage alarm (SVM) DC link undervoltage alarm (PSM) Power supply state alarm	3.2.3 3.2.4 3.1.4 3.1.6			
416	Alarm1 bit1				Feedback disconnected alarm	3.4.3			
	417				Invalid servo parameter setting alarm	3.4.5			
	↑ For how to interpret alarms 1 to 3, see Alarm1 Diagnose No.720–723 Section 3.4.1 or diagnose No. listed at Alarm2 Diagnose No.730–733								

Section 3.4.1 or diagnose the right.

Alarm2 Diagnose No.730–733 Alarm3 Diagnose No.760–763 Alarm4 Diagnose No.770–773

For Series 0–C (spindle alarm)

Alarm No.	SVM	SPM	PSM	Description	Remarks
945	1	A0		Program ROM error	3.3.1
945		A1		Program RAM error	3.3.1
409		01		Motor overheat	3.3.2
409		02		Excessive velocity error	3.3.3
409		03		DC link fuse blown	3.3.4
409		04	06	Input power supply open phase and power supply failure	3.1.6
409		07		Overspeed	3.3.5
409		09		Main circuit overload	3.3.6
409		11	07	DC link overvoltage	3.1.7
409		12		DC link overcurrent/IPM alarm	3.3.7
408		13		CPU internal data memory failure	3.3.8
409		15		Speed range switching and spindle switching alarm	3.3.9
408		16		RAM error	3.3.10
408		19		Phase U current detector circuit excessive offset	3.3.11
408		20		Phase V current detector circuit excessive offset	3.3.12
945		24		Serial transfer data error	3.3.13
945		25		Serial data transfer stopped	3.3.14
409		26		Cs contouring control velocity detection signal disconnected	3.3.15
409		27		Position coder signal disconnected	3.3.16
409		28		Cs contouring control position detection signal disconnected	3.3.17
409		29		Short-period overload	3.3.18
409		30	01	PSM main circuit overcurrent	3.1.1
409		31		Speed detection signal disconnected and motor lock alarm	3.3.19
408		32		Serial communication LSI internal RAM error	3.3.20
409		33	05	DC link precharge failure	3.1.5
409		34		Parameter data out of specification	3.3.21
409		35		Too large gear ratio specified	3.3.22
409		36		Error counter overflow	3.3.23
409		37		Speed detector parameter error	3.3.24
409		39		Cs contouring control one-rotation signal detection error	3.3.25
409		40		Cs contouring control one-rotation signal not detected	3.3.26
409		41		Position coder one-rotation signal detection error	3.3.27
409		42		Position coder one-rotation signal not detected	3.3.28
409		43		Differential speed mode position coder signal disconnected	3.3.29
409	1	44		A/D conversion error	3.3.30

Alarm No.	SVM	SPM	PSM	Description	Remarks
409		46		Position coder one-rotation signal detection error during thread cutting	3.3.31
409		47		Position coder signal error	3.3.32
409		49		Excessive differential speed conversion result	3.3.33
409		50		Excessive speed command computed value during the synchronization control of the spindle	3.3.34
409		51	04	DC link undervoltage	3.1.4
409		52		ITP signal error I	3.3.35
409		53		ITP signal error II	3.3.35
409		54		Overload current alarm	3.3.36
409		55		Power line state error at spindle or speed range switching	3.3.37
409		56		Control circuit cooling fan stopped	3.3.38
409		58	03	PSM main circuit overload	3.1.3
409		59	02	PSM cooling fan stopped	3.1.2

2.3 FOR SERIES 16,18,20 (SERVO ALARM)

A	larm No.	SVM	SPM	PSM	Description	Remarks
350	Alarm3				α pulse coder error alarm	3.4.6
	Alarm4 bit6				Rotation speed data error alarm	3.4.7
351	Alarm4				Pulse coder communication error alarm	3.4.8
400	Alarm1 bit7	1		2 3	Fan stopped alarm (SVM) Fan stopped alarm (PSM) Overheat alarm (PSM) Overheat alarm (motor)	3.2.5 3.1.2 3.1.3 3.4.4
414	Alarm1 bit3			7	DC link overvoltage alarm	3.1.7
	Alarm1 bit4	8 9 A b C d E		1	Abnormal current alarm (L axis) (M axis) (N axis) (L, M axis) (M, N axis) (L, N axis) (L, N axis) (L, M, N axis) (L, M, N axis)	3.2.1 3.1.1
		8. 9. 6. 6. 6. E.			IPM alarm (L axis) (M axis) (N axis) (L, M axis) (M, N axis) (L, N axis) (L, N axis) (L, M, N axis)	3.2.2
	Alarm1 bit5				Over load alarm	3.4.2
	Alarm1 bit6	2 5		4 6	Control power supply undervoltage alarm DC link undervoltage alarm (SVM) DC link undervoltage alarm (PSM) Power supply state alarm	3.2.3 3.2.4 3.1.4 3.1.6
	Alarm5 bit2	1		2	Fan stopped alarm (Series 20 only) Fan stopped alarm (Series 20 only)	3.2.5 3.1.2
	Alarm5 bit5			5	Precharge alarm	3.1.5
	Alarm5 bit6				Current conversion error alarm	3.2.6
416	Alarm1 bit1				Feedback disconnected alarm	3.4.1
	417				Invalid servo parameter setting alarm	3.4.5

 $\hat{1}$ For how to interpret alarms 1 to 3, see Section 3.4.1 or diagnose No. listed at the right.

Alarm1Diagnose No.200Alarm3Diagnose No.202Alarm4Diagnose No.203Alarm5Diagnose No.204
For Series 16,18,20 (spindle alarm)

NOTE

Alarm number is 751 for the 1st spindle and 761 for the 2nd spindle.

Alarm No.	SVM	SPM	PSM	Description	Remarks
749		A0		Program ROM error	3.3.1
749		A1		Program RAM error	3.3.1
751 (AL–01)		01		Motor overheat	3.3.2
751 (AL–02)		02		Excessive velocity error	3.3.3
751 (AL–03)		03		DC link fuse blown	3.3.4
751 (AL–04)		04	06	Input power supply open phase and power supply failure	3.1.6
751 (AL–07)		07		Overspeed	3.3.5
751 (AL–08)		09		Main circuit overload	3.3.6
751 (AL–11)		11	07	DC link overvoltage	3.1.7
751 (AL–12)		12		DC link overcurrent/IPM alarm	3.3.7
750		13		CPU internal data memory failure	3.3.8
751 (AL–15)		15		Speed range switching and spindle switching alarm	3.3.9
750		16		RAM error	3.3.10
750		19		Phase U current detector circuit excessive offset	3.3.11
750		20		Phase V current detector circuit excessive offset	3.3.12
749		24		Serial transfer data error	3.3.13
749		25		Serial data transfer stopped	3.3.14
751 (AL–26)		26		Cs contouring control velocity detection signal disconnected	3.3.15
751 (AL–27)		27		Position coder signal disconnected	3.3.16
751 (AL–28)		28		Cs contouring control position detection signal disconnected	3.3.17
751 (AL–29)		29		Short-period overload	3.3.18
751 (AL–30)		30	01	PSM main circuit overcurrent	3.1.1
751 (AL–31)		31		Speed detection signal disconnected and motor lock alarm	3.3.19
750		32		Serial communication LSI internal RAM error	3.3.20
751 (AL–33)		33	05	DC link precharge failure	3.1.5
751 (AL–34)		34		Parameter data out of specification	3.3.21
751 (AL–35)		35		Too large gear ratio specified	3.3.22
751 (AL–36)		36		Error counter overflow	3.3.23
751 (AL–37)		37		Speed detector parameter error	3.3.24
751 (AL–39)		39		Cs contouring control one–rotation signal detection error	3.3.25
751 (AL-40)		40		Cs contouring control one–rotation signal not detected	3.3.26
751 (AL–41)		41		Position coder one-rotation signal detection error	3.3.27

Alarm No.	SVM	SPM	PSM	Description	Remarks
751 (AL–42)		42		Position coder one-rotation signal not detected	3.3.28
751 (AL–43)		43		Differential speed mode position coder signal disconnected	3.3.29
751 (AL–44)		44		A/D conversion error	3.3.30
751 (AL–46)		46		Position coder one-rotation signal detection error during thread cutting	3.3.31
751 (AL–47)		47		Position coder signal error	3.3.32
751 (AL–49)		49		Excessive differential speed conversion result	3.3.33
751 (AL–50)		50		Excessive speed command computed value during the synchronization control of the spindle	3.3.34
751 (AL–51)		51	04	DC link undervoltage	3.1.4
751 (AL–52)		52		ITP signal error I	3.3.35
751 (AL–53)		53		ITP signal error II	3.3.35
751 (AL–54)		54		Overload current alarm	3.3.36
751 (AL–55)		55		Power line state error at spindle or speed range switching	3.3.37
751 (AL–56)		56		Control circuit cooling fan stopped	3.3.38
751 (AL–58)		58	03	PSM main circuit overload	3.1.3
751 (AL–59)		59	02	PSM cooling fan stopped	3.1.2

TROUBLESHOOTING AND ACTION 3.1 If an alarm occurs, in the STATUS display, the ALM LED lights red, and the two-digit 7-segment display indicates an alarm code. **POWER** SUPPLY MODULE STATUS PIL ALM Indicates an alarm code (01 or above) The ALM LED lights red. 3.1.1 | Meaning Alarm Code 01 The main circuit power module (IPM) has detected an error. (PSM-5.5, -11)Overcurrent flows into the input of the main circuit. (PSM-15 to -30) • Cause and troubleshooting (a) IGBT (or IPM) defective \Rightarrow Replace IGBT (or IPM). (b) The specification of the AC reactor does not match the PSM in use. \Rightarrow Check the PSM and the specification of the AC reactor. 3.1.2 | Meaning Alarm Code 02 A cooling fan for the control circuit has stopped. • Cause and troubleshooting (a) Cooling fan broken Check whether the cooling fan rotates normally. \Rightarrow Replace it.

3.1.3 Alarm Code 03	 Meaning The temperature of the main circuit heat sink has risen abnormally. Cause and troubleshooting (a) Cooling fan broken Check whether the cooling fan rotates normally. ⇒ Replace it. (b) Dust accumulation ⇒ Clean the cooling system with a vacuum cleaner or the factory air blower. (c) Overload ⇒ Examine the operating conditions.
3.1.4 Alarm Code 04	 Meaning In the main circuit, the DC voltage (DC link) has dropped. Cause and troubleshooting (a) A small power dip has occurred. Check the power supply. (b) Low input power supply voltage Check the power supply specification. (c) The main circuit power supply may have been switched off with an emergency stop state released. ⇒ Check the sequence.
3.1.5 Alarm Code 05	 Meaning The main circuit capacitor was not recharged within the specified time. Cause and troubleshooting (a) Too many SVM and/or SPM units are connected. ⇒ Check the specification of the PSM. (b) The DC link is short-circuited. ⇒ Check the connection. (c) The recharge current limiting resistor is defective. ⇒ Replace the wiring board.
3.1.6 Alarm Code 06	 Meaning The input power supply is abnormal (open phase). Cause and troubleshooting (a) The input power supply has an open phase. ⇒ Check the connection.
3.1.7 Alarm Code 07	 Meaning In the main circuit, the DC voltage at the DC link is abnormally high. Cause and troubleshooting 72 —

(a) Excessive regenerated power

Regeneration is impossible. The PSM does not have a sufficient capacity.

- \Rightarrow Check the specification of the PSM.
- (b) The output impedance of the AC power source is too high. \Rightarrow Check the power source output impedance.
- (c) Regeneration circuit failure Check whether there is an overvoltage at check terminal IR or IS.
 - \Rightarrow Replace the wiring board or control printed circuit board.
- (d) IGBT (or IPM) defective
 - \Rightarrow Replace the IGBT (or IPM).

3.2 SERVO AMPLIFIER MODULE TROUBLESHOOTING 3.2.1

Abnormal Current Alarms (8, 9, A, b, C, d, and E in the LED display)

(1) Make sure that the following parameters are set to the standard values. If they are not, abnormal current control is performed.

	• В)		No. 1884 NO. 1954 (15- A) , 1955		1809	No. ²		
	10	No. 8X	lo. 2011		No. 8X06	No. 2006	No. 8X04	No. 2004
1991	No.		No. 1967		1853	No. 1852 No. 1		No. ²
No. 8X98	No. 2098	8X74	2074 No	1	No. 8X41	No. 2041	No. 8X40	No. 2040

(1) Remove the power line wires from the amplifier terminals, and release an emergency stop state.If an abnormal current alarm occurs, go to (4).

If not, go to (3).

- (2) Check for insulation between PE and each of the removed power wires U, V, and W. If insulation is perfect, go to (4). If not, disconnect the power wires from the motor connector. Then check for insulation between PE and each of the U, V, and W terminals on the motor.
 - \Rightarrow If there is a short-circuit between PE and U, V, or W of the motor, replace the motor.
 - \Rightarrow If insulation is perfect, replace the power wires.
- (3) Connect the power wires. Attach the check board
 - (A06B–6071–K290) to connector JX5 to measure the waveform of the actual current (IR and IS) in the servo amplifier module. Accelerate or decelerate the motor, and measure the actual current (IR and IS) of the amplifier.

— 73 —

3. TROUBLESHOOTING AND ACTION

If an abnormal current alarm occurs right after an emergency stop state is released, go to (5).

Release an emergency stop state, and start the motor.

Check whether the waveform of the actual current (IR and IS) is a normal sine wave.

- \Rightarrow If normal, go to (5).
- \Rightarrow If not, replace the amplifier.
- (5) Check whether there is noise on the actual current (IR and IS) waveform.
 - \Rightarrow If there is no noise, replace the amplifier.
 - \Rightarrow If there is noise, use a shielding wire, and ground the shielding, or take other countermeasures as required.
- (6) If still there is noise, a probable cause is a defective command cable or a hardware failure in the CNC.

3.2.2

IPM Alarms (8., 9., A., b., C., d., and E in the LED display; note these codes are displayed simultaneously with a period.)

(1) Wait for about 10 minutes. Then release the emergency stop state. If an IPM alarm still occurs, go to (2).

If the cause is IPM overheat, the IPM alarm will not recur. IPM overheat can occur if the ambient temperature is high or the motor is overloaded. Check the operating condition.

(2) Remove the power wires from the amplifier terminals, and release an emergency stop state.

If the IPM alarm does not recur, go to (3).

If the IPM alarm recurs, the probable cause is the operation of the IPM protective function (for overcurrent or power failure). Replace the amplifier and see.

 \Rightarrow If the IPM does not recur, go to (3).

- (3) Check for insulation between PE and each of the removed power wires U, V, and W. If insulation is perfect, go to (4). If not, disconnect the power wires from the motor connector. Then check for insulation between PE and each of the U, V, and W terminals on the motor.
 - \Rightarrow If there is a short-circuit between PE and U, V, or W of the motor, replace the motor.
 - \Rightarrow If insulation is perfect, replace the power wires.

(4) Connect the power wires. Attach the check board

(A06B-6071-K290) to connector JX5 to measure the waveform of the actual current (IR and IS) in the servo amplifier module. Accelerate or decelerate the motor, and measure the actual current (IR and IS) of the amplifier.

If an overcurrent alarm occurs right after an emergency stop state is released, go to (5).

Release an emergency stop state, and start the motor.

Check whether the waveform of the actual current (IR and IS) is a normal sine wave.

- \Rightarrow If normal, go to (5).
- \Rightarrow If not, replace the amplifier.
- (5) Check whether there is noise on the actual current (IR and IS) waveform.

— 74 —

	 ⇒ If there is no noise, replace the amplifier. ⇒ If there is noise, use a shielding wire, and ground the shielding, or take other countermeasures as required. (6) If still there is noise, a probable cause is a defective command cable or a hardware failure in the CNC.
3.2.3 Control Power Supply Undervoltage Alarm (2 in the LED display)	 (1) Check the three–phase input voltage to the amplifier. ⇒ If the voltage is below 0.85 times the rating, adjust it to the rated value. (2) Replace the servo amplifier.
3.2.4 DC link Undervoltage Alarm (5 in the LED display)	 (1) Check the three–phase input voltage to the amplifier. ⇒ If the voltage is below 0.85 times the rating, adjust it to the rated value. (2) Replace the servo amplifier.
3.2.5 Fan Stopped Alarm (1 in the LED display)	 (1) Make sure that the fan is not clogged up. (2) Check the power line connector of the fan for secure connection. (3) Replace the fan or servo amplifier as required.
3.2.6 Current Conversion Error Alarm	 (1) Exchange the command cable with the cable for the axis on which no alarm has occurred. If the alarm occurs on the same axis, go to (3). If the alarm occurs on the new axis, go to (2). (2) The command cable is defective. Replace it. (3) Exchange the command cables according to the diagram here. When switching the CNC on, do so in an emergency stop state. If the alarm recurs on the same axis, go to (5). If the alarm occurs on the other axis, go to (4).
	CNC Servo amplifier Alarmed axis (L-axis) Normal axis (M axis)

- (4) The servo amplifier is defective.
- (5) The module for current conversion in the CNC is defective.

Command cable

3.3 SERVO SOFTWARE

3.3.1 Servo Adjustment	Cause the servo adjustment screen to appear, and check the position error, actual current, and actual speed on it.
Screen	Using the keys on the CNC, enter the required value according to the following procedure.
	• Series 15–B
	Press the SERVICE key several times to cause the servo setting screen

Press the SERVICE key several times to cause the servo setting screen to appear. Then press the [] key, and the servo adjustment screen will

appear.

• Series 0–C, 16, 18, 20, or 21

 $SYSTEM \Rightarrow [SYSTEM] \Rightarrow [\bigcirc] \Rightarrow [SV-TUM]$

If the servo setting screen does not appear, specify the following parameter, then switch the NC off and on again.

Series 16, 18, 20, 21

	_	b7	b6	b5	b4	b3	b2	b1	b0
3111									SVS

SVS (b0)=1 (to display the servo setting screen)

Series 0-C

SVS (b0)=0 (to display the servo setting screen)

(
	Servo adjus	tment	010	01000 N0000			
	X axis						
	Func bit	00000000	Alarm1	00000000			
	Loop goin	3000	Alarm2	00000000			
	Tuning st	0	Alarm3	10000000			
	Set period	0	Alarm4	00000000			
	Int. gain	113	Alarm5	00000000			
	Prop. gain	-1015	Loop gain	3000			
	Filter	0	Pos error	5555			
	Veloc gain	100	Current(%)	5			
			Speed(rpm)	1000			
					Ϊ		

Servo adjustment screen

The cause and detailed information of servo alarms are indicated with alarms 1 to 5.

3.3.2 Overload Alarm

- (1) Make sure that the motor is not vibrating.
 - \Rightarrow If a motor vibrates, the current flowing in it becomes more than necessary, resulting in an alarm.
- (2) Make sure that the power line to the motor is connected correctly.
 - \Rightarrow If the connection is incorrect, an abnormal current flows in the motor, resulting in an alarm.
- (3) Make sure that the following parameters are set correctly.
 - \Rightarrow An overload alarm is issued based on the result of calculation of these parameters. Be sure to set them to the standard values.

18	77	Overload protection coefficient (OVC1)
2062	8X62	
18	78	Overload protection coefficient (OVC2)
2063	8X63	
18	93	Overload protection coefficient (OVCLMT)
2065	8X65	

- (4) Attach the check board (A06B–6071–K290) to connector JX5 to measure the waveform of the actual current (IR and IS) of the servo amplifier module. Start the motor and measure the actual current (IR and IS).
 - \Rightarrow If the actual current exceeds 1.4 times the rated current, the constant for the acceleration/deceleration duration is too small,or the load on the machine is too heavy for the capacity of the motor.
 - \Rightarrow If the actual current exceeds 1.4 times the rated current during normal operation, the load on the machine is too heavy for the capacity of the motor.

This alarm is detailed with alarms 1 and 2 on the servo adjustment screen (\Rightarrow 3.3.1).

Alarm1		Alarm details	Ala	rm2
b7	b2		b7	b4
0	1	CM alarm (α pulse coder)	1	1
0	1	Pulse coder disconnected (soft ware)	0	0
0	1	Separate pulse coder disconnected (hard ware)	1	1

For the CM alarm, go to 3.3.7.

For software disconnected, go to (1).

For hardware disconnected, go to (3).

- (1) For a full-closed Series 0-C system, make sure that the phase C signal is not connected to full-closed feedback pins 10 to 13. When the connection is correct, or when the system is not a Series 0-C, go to (2).
- (2) If there is a large backlash; or if the number of position feedback pulses divided by the motor one–rotation signal is equal to or less than 640, and a software disconnected alarm is detected when it should not, change the alarm level.

3.3.3 Feedback Disconnected Alarm

If the alarm is a separate detector hardware disconnected alarm, check the specification and wiring of the separate detector.

3.3.4 Motor Overheat Alarm

- Check whether the motor has overheated; it is dangerous to touch the motor by the hand or any other part of you body. If the motor is overheated, use it less frequently.
- When the motor is cooled enough, check whether an overheat alarm occurs.
 - \Rightarrow If it occurs, the thermostat is defective.
 - \Rightarrow If not, use the motor less frequently.

Invalid Servo parameter setting alarms.						
Parameter SettingFind the relevant guideline un corresponding "Adjustment i	der "Decis tem."	sion cri	iterion,'	" and	proceed	l to the

Alarm	Decision criterion	Adjustment item
POA1 overflow	Try resetting POA1 to 0. Parameter: No. 8X47–1859–2047–1047 = 0	Adjustment1
1 pulse suppression level overflow	Disable the pulse suppression function. Function bit: No. 8X03–1808–2003–1003,B4 = 0	Adjustment2
Feed-forward coefficient overflow	Reset the feed–forward coefficient to 0. Parameter: No. $8X68-1961-2068 = 0$ No. $8X92-1985-2092$ (advance) = 0	Adjustment3
Position gain overflow	Reset the position gain to 0. Parameter: No. 517–1825–1825 = 0	Adjustment4
Number of position pulses overflow	The number of position pulses is greater than 13100 (No. $8X00-1804-2000$, bit $0 = 1$). Parameter: No. $8X00-1804-2000$, B0	Adjustment5
Motor ID No.	Check whether the motor ID No. is correct. Parameter: No. 8X20–1874–2020	Adjustment6
Invalid axis selection parameter setting	Check whether the setting is correct. Series 0–C: No. 269 to 274 Series 15, 16: No. 1023	
Others	Number of position pulses ≤ 0 Number of velocity pulses ≤ 0 Direction of travel = 0 Feed gear numerator ≤ 0 , denominator ≤ 0 Numerator>denominator(Serial A, α and semi-closed mode)	

NOTE

The parameter numbers in the table are in the following order: No. (Series 0-C)-(Series 15)-(Series 16, 18, 20, 21)

No. (Series 0–C)–(Series 15)–(Series 16, 18, 20, 21)

Survey

If the adjustments described below cannot eliminate overflow, let us work out the setting procedure individually.

Adjustment 1: POA1 overflow (No. 8X47-1859-2047)

Use the tenfold POA1 setting function.

Note) This function is available for 9060/L. 9070/C, 9046/A, and later versions.

• How to use the tenfold POA1 setting function

If POA1 is specified as a negative value, the absolute value is internally multiplied by 10. If the value you want to set is a positive value, specify as follows:

(-1) × the desired setting/10

Adjustment 2: One-pulse suppress (No. 1992-2099)

Reduce the setting according to the flowchart shown below. If an overflow occurs in the FSOC, stop using it, because the level parameter is fixed at a standard value of 400.

	Is the system a semiclosed system with serial pulse coder A or an α pulse coder?
o	Yes
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
	Reduce the setting so that the value of the above formula falls within one word (32767).
L,	► One-pulse suppress × 10000 × Number of velocity FB pulses × Feed gear denominator parameter setting × 8192 × Number of position FB pulses × Feed gear numerator

NOTE

Number of velocity FB pulses (No. 8X23–1876–2023) Number of position FB pulses (No. 8X24–1891–2024) Feed gear numerator (No. 8X84–1977–2084) Feed gear denominator (No. 8X85–1978–2085)

<u>Adjustment 3:</u> Feed forward coefficient (No. 8X68–1961–2068, No. 8X92–1985–2092 (advance)) [9060, 9070, Series]

Specify the position gain setting range expansion function. Function bit: No. 1804–2000–1000, B4=1 (Series 15–B, 16, 18, 20, 21)

• The function also expands the feed–forward coefficient range. [9046 Series]

If a negative number is specified for the feed–forward coefficient, the internal processing assumes a value ten times the absolute number of the specified number.

If the calculation result obtained during parameter setting exceeds 32767, specify as follows:

(-1) x calculation result/10

Adjustment 4: Position gain

Use the position gain setting range expansion function.

Setting: No. 8X11–1955, B5 = 1 (Series 0–C, 15–A)

Multiply 8X24–1891 by 8 and re–enter it.

No. 2000–1804, B4 = 1 (Series 15–B, 16, 18, 20, 21)

 \downarrow If an overflow still occurs :

1 Multiply the feed gear (or DMR) value by an integer.

2 Increase the following values by the same integer.

Parameter	Series 0–C	Series 15	Series 16, 18, 20, 21
CMR	No. 100–103	No. 1820	No. 1820
Effective area	500–503	1826,27	1826,27
Limit to a position error during travel	504–507	1828	1828
Limit to a position error at a halt	593–596	1829	1829
Backlash	535–538	1851,52	1851,52
Reference counter	570–573	1896	1821

(Example) The position gain overflows internally under the following conditions:

 α pulse coder, Reduction gear ratio: 1/20, Ball screw: 1 mm/rev, Position gain: 30 (with 1 μ scale)

In this case, specify the position gain setting range expansion function. For 9046 series, multiply the number of position pulses by 8.

Number of position pulses $50 \xrightarrow{-\times 8} 400$ (No. 8X24–1891)

Adjustment 5: Number of position pulses

Make the changes listed below. Value E must satisfy the following: Number of current position pulses/E < 13100

— 80 —

Curre	ent setting va	lue/E	Curre	ent setting va	lue/E
Series 0–C Series 15		Series 16	Series 0–C	Series 15	Series 16
No. 8X23 8X24 8X43 8X44 8X54 8X56 8X57	No. 1876 1891 1855 1856 1866 1868 1868	No. 2023 2024 2043 2044 2054 2056 2057	No. 8X53 8X74 8X76	No. 1865 1967 1969	No. 2053 2074 2076

Adjustment 6: Motor ID No.

The motor ID numbers valid for each series of models are listed below.

9046 series	15–89 (edition A)
9060 series	15–89 (edition K)
	3–89 (edition L)
9070 series	3–89 (edition C)

Reference

Feed-forward cosfficient overflow check (9060, 9070 series)

If the result of any of the following calculations exceed 32767, an overflow occurs.

3. TROUBLESHOOTING AND ACTION

Position gain overflow check

3. TROUBLESHOOTING AND ACTION

3.3.6 Pulse Coder Error	Alarm 3	b7	b6 CSAL	b5 BLAL	b4 PHAL	b3	b2 BZAL	b1 CKAL	b0 SPH
Aldini	(⇒ See S	Section 3	3.3.1.)						
							[Wheth alarm oc each puls	er the ccurs in se coder
								α pulse coder	Serial A

SPH	(b0)	Probably, pulse coder or feedback cable is abnormal, or noise	0	0
CKAL	(b1)	For serial pulse coder A, a clock alarm has occurred.	×	0
		For α pulse coder, the pulse coder or feedback cable is abnormal.		
BZAL	(b2)	The voltage of the pulse coder battery is 0 V. Replace the battery and cause a return to the reference position.	0	0
PHAL	(b4)	Pulse coder or feedback cable is abnormal	×	0
BLAL	(b5)	The voltage of the pulse coder battery is dropping (warning).	0	0
CSAL	(b6)	For serial pulse coder A, a check sum alarm has occurred.	×	0
		For α pulse coder, an LED error has occurred.		

(b7) This is not an alarm.

		b7	b6	b5	b4	b3	b2	b1	b0
Alarm 5					LDAL	PMAL			
$(\Rightarrow$ See Section 3.3.1.)									
PMAL	(b3)	The pulse coder or feedback cable is ab- \bigcirc \times normal.							
LDAL	(b4)	The pulse coder LED is abnormal. \bigcirc ×						×	

3.3.7 Rotation Speed Data Error Alarm

• Serial pulse coder A

RCAL (b3) A rotation speed data error alarm occurred.

• α pulse coder

 $^{(\}Rightarrow$ See Section 3.3.1.)

CMAL (b3) A pulse count error occurred. If the CNC software does not correspond to α Series, this bit is not used for a mode other than the APC MODE. If a built–in pulse coder hardware discontinued alarm (bit 1 of alarm 1 = 1 and bit 7 of alarm 2 = 1) occurs in a system with an α pulse coder, a pulse count error has occurred.

3.3.8 Pulse Coder Communication Error Alarm

	b	o7	b6	b5	b4	b3	b2	b1	b0
Alarm 4	DT	ER	CRC	STB					
$(\Rightarrow$ See Section 3.3.1.)									
STB	B (b5) A communication error occurred from the pulse coder								
		The pulse coder or feedback cable is abnormal, or the servo module is defective.							
CRC	(b6)	Ac	A communication error occurred from the pulse coder						
		The pulse coder or feedback cable is abnormal, or the servo module is defective.							
DTER	(b7)	The	pulse c	oder doe	es not co	mmunica	ate.		
		The	pulse c	oder or f	eedback	cable is	abnorma	al.	

— 85 —

3.4 If an alarm occurs in the spindle amplifier module, the ALM LED lights red in the STATUS display, and the two-digit 7-segment LEDs indicate SPINDLE AMPLIFIER the alarm code. MODULE STATUS PIL ALM \square -ERR Alarm code A0, A1, 01 or above is indicated. The ALM LED lights red. 3.4.1 (1) Meaning Alarm A0, A1 The control program is not running. (2) Cause and corrective action (a) ROM installed improperly or yet to be installed Make sure that the ROM is attached properly to the socket and there is no imperfect contact due to a broken or bent pin. \Rightarrow Install the ROM properly. (b) Incorrect ROM installed The series number of the software is printed on the ROM package and is displayed at power-on. See Section 4.3.3 of Part I. \Rightarrow Replace it with the correct ROM. (c) Printed-circuit board defective \Rightarrow Replace it with a normal printed circuit board. 3.4.2 (1) Meaning Alarm AL-01 The temperature inside the motor is higher than the rating. (2) Cause and corrective action (a) Over loaded operation Check the cutting conditions, the state of the cutting tool, and the load meter reading during cutting. \Rightarrow Examine the cutting conditions and the tool. (b) The cooling fan inside the motor is defective. Check whether the cooling fan rotates smoothly. \Rightarrow Replace the cooling fan. (c) The motor cooling system is dirty. \Rightarrow Clean the cooling system with a vacuum cleaner or the factory air blower. (d) Motor overheat signal wire discontinued or loosely connected Check the motor overheat signal wire for secure connection. \Rightarrow Connect the signal wire properly. (e) Invalid detector parameter setting Check the detector and its parameters. \Rightarrow Set the parameters that match the detector correctly. (f) Motor or thermostat defective \Rightarrow Replace the motor.

3.4.3	(1) Meaning				
 Alarm AL-02 Alarm AL-02 The actual motor speed is largely deviated from the communication speed. (2) Cause and corrective action (a) Over loaded operation or too heavy load Check the load meter to see if the load is too heavy. ⇒ Examine the cutting conditions and the tool again. (b) Abnormal power line connect Check the power line for disconnection or poor contact. ⇒ Connect the power line properly. (c) Incorrect acceleration/deceleration duration parameter set Check the parameter setting and the actual acceler deceleration duration. 					
	FS0 FS15 FS16/18, PM–D/F Description				
	6582	3082	4082	Acceleration/deceleration dura- tion setting	
	(d) Ir C	Set the than th acorrect sp theck the p	parameter with a value e required acceleration peed detector parameter parameter setting and t	e somewhat greater (margin) /deceleration duration. er setting he speed detector.	
	FS0	FS15	FS16/18, PM–D/F	Description	
	6511 #2, 1, 0	3011 #2, 1, 0	4011 #2, 1, 0	Speed detector setting	
	ecording to the speed detector. level. so check the signal cable for				
3.4.4 Alarm AL–03	 (1) Meaning The fuse at the DC link has blown. (2) Cause and corrective action (a) Overcurrent flowed in the main circuit. Check the IGBT module/IPM. If the IGBT module/IPM is defective, it allows overcurrent to flow in the main circuit. ⇒ Replace the fuse and/or IGBT module/IPM. 				
3.4.5 Alarm AL–07	 (1) Meaning The actual motor speed exceeded 115% of the maximum allowable motor speed (standard parameter setting). Cause and corrective action (a) Incorrect speed detector parameter setting 				

3. TROUBLESHOOTING AND ACTION TO BE TAKEN

Check the parameter setting and the speed detector.

	FS0	FS15	FS16/18, PM–D/F	Description				
	6511 #2, 1, 0	3011 #2, 1, 0	4011 #2, 1, 0	Speed detector setting				
	\Rightarrow Set the parameter correctly according to the spe							
3.4.6	(1) Mean	ing						
Alarm AL-09	(2) Cause	emperatur and corr	e of the main circuit h	eat sink has risen abnormally.				
	(1) Cultin (a) C	ooling fai	n defective					
	C	heck whe	ther the cooling fan ro	tates smoothly.				
	= (b) 0	⇒ Replac	e the cooling fan.					
	(0) C	heck the l	oad meter to see if the	load is too heavy.				
	=	⇒ Examiı	ne the cutting condition	ns again.				
	(c) C	ooling fai	n clogged	1 1 0 1				
	=	Clean t blower	he cooling fan with a va	acuum cleaner or the factory air				
3.4.7	(1) Mean	ing						
Alarm AL–12	Exces	sive curr	ent flowed in the DC	section (DC link) of the main				
	circui	circuit.						
	The n	The main circuit power module (IPM) detected an error.						
	(2) Cause (2)	e and corre	ective action	ar output terminals or inside the				
	(a) Snort-circuit between the amplifier output terminals or inside the motor							
	С	heck the j	ower line connection	for a short–circuit.				
	=	> Make a defective	correct connection. I	Replace the motor if it is				
	(b) I0	GBT (or I	PM) defective					
	R	eplace the	e IGBT (or IPM).					
	(c) P	rinted-cir	cuit board defective					
	= (d) Ir	Replac	e the printed circuit bo	bard.				
	(u) II C	heck the	model-specific parameters	eter settings with the model –				
	sj	pecific par	ameter list.					
	=	Set the	parameters with the va	lues that match the motor used.				
3.4.8	(1) Mean	ing						
Alarm AL-13	The memory inside the CPU is abnormal. It is checked when power							
	is swi	tched on.						
	(2) Cause (a)	e and corre	ective action					
	(a) P	Replac	e the printed circuit bo	bard.				
			- r					

--- 88 ----

3.4.9 Alarm AL–15	 (1) Meaning A sequence of switching operations was incorrect during speed range switching control or spindle switching control. Cause and corrective action (a) Switching unit (magnetic contactor for power line switching) defective Check the operation of the switching unit. ⇒ Replace the switching unit. (b) Loose contact of the magnetic contactor state signal (auxiliary contact signal) Make sure that the magnetic contactor state signal is switched properly. ⇒ Connect the magnetic contactor correctly. (c) Improper sequence ⇒ Adjust the switching unit for the correct sequence.
3.4.10 Alarm AL–16	 (1) Meaning The memory (RAM) is abnormal. It is checked when power is switched on. (2) Cause and corrective action (a) Printed–circuit board defective ⇒ Replace the printed–circuit board.
3.4.11 Alarm AL–19	 (1) Meaning The offset voltage for the phase U current detection circuit is too high. This check is made when power is switched on. (2) Cause and corrective action (a) Loose contact of the printed–circuit board Check that the printed–circuit board is connected to the power circuit securely. ⇒ Connect the printed–circuit board securely. (b) Phase U current detection circuit defective. ⇒ Replace the printed–circuit board. (c) A/D converter defective ⇒ Replace the printed–circuit board.
3.4.12 Alarm AL–20	 (1) Meaning The offset voltage for the phase V current detection circuit is too high. This check is made when power is switched on. (2) Cause and corrective action (a) Loose contact of the printed–circuit board Check that the printed–circuit board is connected to the power circuit securely. ⇒ Connect the printed–circuit board securely. (b) Phase V current detection circuit defective.

B-651	165E/01
D-03	

3. TROUBLESHOOTING AND ACTION TO BE TAKEN	TROUBLESHOOTING	B-65165E/01
	\Rightarrow Replace the printed–circuit board.	
3.4.13 Alarm AL–24	 (1) Meaning The serial communication data between the amplifier is abnormal. (This alarm occurs also is switched off.) (2) Cause and corrective action (a) The CNC power is off. ⇒ Switch on the CNC power. 	he CNC and spindle when the CNC power

3.4.14 (1) Meaning Alarm AL-25 Serial communication between the CNC and the spindle amplifier has stopped. (2) Cause and corrective action (a) Serial communication cable defective Check the connection of the cable. Also check for a broken wire. \Rightarrow Connect the cable correctly. If any wire in the cable is broken, replace it. (b) Serial communication LSI chip defective \Rightarrow Replace the printed-circuit board. 3.4.15 (1) Meaning Alarm AL-26 The Cs contouring control speed detection signal (detector on the motor side) is abnormal. (2) Cause and corrective action (a) Feedback signal cable defective Check the connection of the cable. Also check for a broken wire. \Rightarrow Connect the cable correctly. If any wire in the cable is broken, replace it. (b) Feedback signal level insufficient Check the feedback signal level with an oscilloscope. \Rightarrow Adjust so that the feedback signal level becomes the rated value. (c) Feedback signal cable not shielded properly (circuit malfunction due to noise) Check whether the cable is shielded properly. \Rightarrow Shield it correctly.

(b) Serial communication cable defective

(c) Serial communication LSI chip defective

(d) I/O link adapter defective (if used) \Rightarrow Replace the I/O link adapter.

replace it.

LSI on it.

Check the connection of the cable. Also check for a broken wire. \Rightarrow Connect the cable correctly. If any wire in the cable is broken,

 \Rightarrow Replace the LSI chip or the printed–circuit board with the

- (d) Detection circuit defective
 - \Rightarrow Replace the printed-circuit board.
- (e) Incorrect parameter setting Check the parameter setting for use of the Cs contouring control detector.

FS0	FS15	FS16/18, PM–D/F	Description
6511#5	3011#5	4011#5	Parameter set to specify use of the Cs contouring control detector

 \Rightarrow Set the parameter correctly according to the detector used.

3.4.16	(1) Meaning					
Alarm AL–27	Posit	tion code	r signal error			
	Cause an	d correct	ive action			
	(a) I	Feedback	signal cable defectiv	gnal cable defective		
	Check the connection of the cable. Also check for			ble. Also check for a broken wire.		
	=	⇒ Conne	ect the cable correctly.	. If any wire in the cable is broken,		
	replace it.					
	(b) I	Position c	oder defective			
	(Check the	position coder signa	1.		
	\Rightarrow Replace the position coder.					
	(c) I	Feedback	signal level insuffic	cient (for built-in sensor or the		
	ł	high-resolution magnetic pulse coder)				
	(Check the	feedback signal leve	el with an oscilloscope.		
	Ξ	⇒ Adjus value.	t so that the feedback	signal level becomes the rated		
	(d) I	Feedback	signal cable not shiel	ded properly (circuit malfunction		
	(lue to noi	se)			
	(Check wh	ether the cable is shi	elded properly.		
	=	⇒ Shield	l it correctly.			
	(e) I	Detection	circuit defective			
	=	⇒ Repla	ce the printed-circuit	t board.		
	(f) I	ncorrect	parameter setting			
	(Check the	e parameter set to sp	pecify use of the Cs contouring		
	C	control de	tector.			
	FS0	FS15	FS16/18, PM–D/F	Description		
	6501#2	3001#2	4001#2	Parameter set to specify use of the Cs contouring control detector		

 \Rightarrow Set the parameter correctly according to the detector used.

3.4.17 Alarm AL–28	 (1) Mear The G spind (2) Caus (a) F G = (b) F G = (c) F G = (d) I = (e) I G G = 	 (1) Meaning The Cs contouring control speed detection signal (detector on the spindle side) is abnormal. (2) Cause and corrective action (a) Feedback signal cable defective Check the connection of the cable. Also check for a broken wire ⇒ Connect the cable correctly. If any wire in the cable is broken replace it (b) Feedback signal level insufficient Check the feedback signal level with an oscilloscope. ⇒ Adjust so that the feedback signal level becomes the rated value. (c) Feedback signal cable not shielded properly (circuit malfunction due to noise) Check whether the cable is shielded properly. ⇒ Shield it correctly. (d) Detection circuit defective ⇒ Replace the printed–circuit board. (e) Incorrect parameter setting Check the parameter set to specify use of the Cs contouring control detector. 		
	FS0	FS15	FS16/18, PM–D/F	Description
	6501#2	3001#2	4001#2	Parameter set to specify use of the Cs contouring control detector
3.4.18 Alarm AL–29	= (1) Mear Exce by a secor (2) Caus (a) C C =	⇒ Set the sing ssive load parameter ands as set e and con Overloade Check the ⇒ Exam	e parameter correctly d (at least 90% of the er) was applied conti initially by a parame rective action ed operation, or too ha load meter to see if t ine the cutting condit	maximum output as set initially nuously for a certain period (30 eter). eavy load the load is too heavy. tions and the tool again.
3.4.19 Alarm AL–31	 (1) Mear The r speed (2) Caus (a) M (c) (b) M (c) 	ting motor can l, or ever e and cor Aotor loc Check w hysically ⇒ Remo Aotor spe Check the	nnot rotate at a specif stops. rective action ked hether the motor c. locked. ve the cause. eed feedback cable de connection of the cab	ied speed. It rotates at very low annot accelerate because it is fective ble. Also check for a broken wire.

	\Rightarrow Connect the cable correctly. If any wire in the cable is broken,
	 (c) Motor speed feedback signal abnormal Check the speed feedback signal with an oscilloscope. ⇒ Adjust so that the feedback signal level becomes the rated value. (d) Incorrect power line wire connection
	check the connection of the power line wires (for phase order, etc.) \Rightarrow Connect the power line correctly.
3.4.20 Alarm AL–32	 (1) Meaning The memory in the serial communication LSI chip is abnormal. It is checked when power is turned on. (2) Cause and corrective action (a) LSI chip defective ⇒ Replace the printed–circuit board.
3.4.21 Alarm AL–34	 (1) Meaning The parameter setting is invalid. (2) Cause and corrective action (a) Incorrect parameter setting Check the parameter setting ⇒ Set the parameter with a valid value.
3.4.22 Alarm AL–35	 (1) Meaning The value set in the gear ratio data parameter is greater than the limit allowed in the internal processing. (2) Cause and corrective action (a) Incorrect gear ratio parameter setting Check whether the specified gear ratio is too high.
	FS0 FS15 FS16/18, PM–D/F Description
	6556 3056 4056 to to to Spindle-to-motor gear ratio 6559 3059 4059 Spindle-to-motor gear ratio
	\Rightarrow Use the appropriate value.
3.4.23	(1) Meaning

Alarm AL-36

(1)

The error counter overflowed.

- (2) Cause and corrective action
 - (a) Incorrect parameter setting

Check whether the values set in the gear ratio and position gain parameters are too large.

FS0	FS15	FS16/18, PM–D/F	Description
6556	3056	4056	Spindle-to-motor gear ratio data
to	to	to	
6559	3059	4059	
6560	3060	4060	Position gain during orientation
to	to	to	
6563	3063	4063	
6565	3065	4065	Position gain during servo
to	to	to	mode/synchronization control
6568	3068	4068	of the spindle
6569 to 6572	3069 to 3072	4069 to 4072	Position gain during Cs contour- ing control

 \Rightarrow Use the appropriate values.

3.4.24 Alarm AL–37

(1) Meaning

When an emergency stop signal was entered, the motor did not decelerate, rather accelerate, or the motor was kept excited even after acceleration/deceleration duration (10 seconds as set initially by a parameter).

- (2) Cause and corrective action
 - (a) Incorrect speed detector parameter setting Check the parameter setting and the speed detector.

FS0	FS15	FS16/18, PM–D/F	Description
6511	3011	4011	Speed detector setting
#2, 1, 0	#2, 1, 0	#2, 1, 0	

- \Rightarrow Set the parameter to the value that matches the speed detector used.
- (b) Incorrect acceleration/deceleration duration parameter setting Check the parameter setting with the required deceleration time.

FS0	FS15	FS16/18, PM–D/F	Description
6582	3082	4082	Acceleration/deceleration dura- tion setting

 \Rightarrow Set the parameter with a value somewhat greater (margin) than the required deceleration duration.

3.4.25	
Alarm	AL-39

- (1) Meaning
 - The Cs contouring control one-rotation signal has not been detected correctly.
- (2) Cause and corrective action
 - (a) Feedback signal cable not shielded properly Check whether there is noise on the feedback signal. Also check whether the cable is shielded properly.
 ⇒ Shield it correctly.
 - (b) Feedback signal level insufficient

Check the feedback signal level with an oscilloscope.

 \Rightarrow Adjust so that the feedback signal level becomes the rated value.

	(c) Incorrect parameter setting Check the composition of the Concentration of the Concentration				
	(detector.	parameter setting for t	ise of the Us contouring control	
	FS0	FS15	FS16/18, PM–D/F	Description	
	6503 #7, 6, 4	3003 #7, 6, 4	4003 F #7, 6, 4 C	Parameter set to specify use of the Cs contouring control detector	
	 ⇒ Set the parameter correctly accord (d) Detection circuit defective ⇒ Replace the printed-circuit board. 				
3.4.26 Alarm AL–40	 (1) Meaning The Cs contouring control one-rotation signal is not generated. (2) Cause and corrective action (a) Feedback signal cable defective Check the connection of the cable. ⇒ Connect the cable correctly. (b) Feedback signal level insufficient Check the offset of the Cs contouring control one-rotation signal with an oscilloscope. ⇒ Adjust the offset of the Cs contouring control one-rotation signal. (c) Detection circuit defective ⇒ Replace the printed-circuit board. 				
3.4.27 Alarm AL–41	 (1) Meaning The position coder one-rotation signal was not detected correctly. (2) Cause and corrective action (a) Feedback signal cable not shielded properly Check whether there is noise on the feedback signal. Also check whether the cable is shielded properly. ⇒ Shield it correctly. (b) Position coder defective Check the position coder signal. ⇒ Replace the position coder. (c) Feedback signal level insufficient (for built-in sensor) Check the feedback signal level with an oscilloscope. ⇒ Adjust so that the feedback signal level becomes the rated value. (d) Incorrect parameter setting Check the parameter setting and the Cs contouring controdetector. 				
	FS0	FS15	FS16/18, PM–D/F	Description	
	6503 #7, 6, 4	3003 #7, 6, 4	4003 #7, 6, 4	Position coder signal setting	

 \Rightarrow Set the parameter correctly according to the detector used.

(e) Detection circuit defective

 \Rightarrow Replace the printed-circuit board.

B-65165E/01

3. TROUBLESHOOTING AND	
ACTION TO BE TAKEN	TROUBLESHOOTING

 (1) Meaning The position coder one-rotation signal was not generated. (2)Cause and corrective action (a) Feedback signal cable defective Check the connection of the cable. ⇒ Connect the cable correctly. (b) Position coder defective Check the position coder signal. ⇒ Replace the position coder. (c) Feedback signal level insufficient (for built-in sensor) Check the feedback signal level with an oscilloscope. ⇒ Adjust the feedback signal level. (d) Detection circuit defective ⇒ Replace the printed-circuit board. 					
 (1) Meaning The position coder signal used for the main spindle during the differential speed mode was disconnected. (2) Cause and corrective action (a) Feedback signal cable defective Check the connection of the cable. Also check for a broken wire. ⇒ Connect the cable correctly. If any wire in the cable is broken, replace the cable. (b) Feedback signal cable not shielded properly Check whether the cable is shielded properly. ⇒ Shield it correctly. (c) Position coder defective Check the position coder. (d) Incorrect parameter setting Check the parameter setting for the differential speed mode functions. FS0 FS15 FS16/18, PM-D/F Description 6500#5 3000#5 4000#5 Setting to specify use of the differential speed mode functions 					
	(c) F (d) E (d) E (d) E (e) F (c) P (c) P (c) P (c) P (c) P (c) P (c) P (c) E (c) P (c) E (c) E (c	$\Rightarrow \text{ Replace}$ (c) Feedback s Check the f $\Rightarrow \text{ Adjust}$ (d) Detection c $\Rightarrow \text{ Replace}$ (d) Detection c $\Rightarrow \text{ Replace}$ (e) Feedback s Check the c $\Rightarrow \text{ Connec}$ (b) Feedback s Check the c $\Rightarrow \text{ Connec}$ (c) Position co Check whe $\Rightarrow \text{ Shield}$ (c) Position co Check the f $\Rightarrow \text{ Replace}$ (d) Incorrect pa Check the functions. FS0 FS15 6500#5 3000#5 $\Rightarrow \text{ Set the}$ (e) Detection c $\Rightarrow \text{ Replace}$	 ⇒ Replace the position cod (c) Feedback signal level insuffi Check the feedback signal le ⇒ Adjust the feedback signal (d) Detection circuit defective ⇒ Replace the printed-circ 1) Meaning The position coder signal used differential speed mode was disc 2) Cause and corrective action (a) Feedback signal cable defect Check the connection of the c ⇒ Connect the cable correct replace the cable. (b) Feedback signal cable not sh Check whether the cable is si ⇒ Shield it correctly. (c) Position coder defective Check the position coder sign ⇒ Replace the position cod (d) Incorrect parameter setting Check the parameter setting functions. FS0 FS15 FS16/18, PM-D 6500#5 3000#5 4000#5 ⇒ Set the parameter correct (e) Detection circuit defective ⇒ Replace the printed-circt 	 ⇒ Replace the position coder. (c) Feedback signal level insufficient Check the feedback signal level w ⇒ Adjust the feedback signal level w ⇒ Replace the printed-circuit box 1) Meaning The position coder signal used for differential speed mode was disconneed 2) Cause and corrective action (a) Feedback signal cable defective Check the connection of the cable. ⇒ Connect the cable correctly. If a replace the cable. (b) Feedback signal cable not shielded Check whether the cable is shielded ⇒ Shield it correctly. (c) Position coder defective Check the position coder. (d) Incorrect parameter setting Check the parameter setting for functions. FS0 FS15 FS16/18, PM-D/F 6500#5 3000#5 4000#5 ⇒ Set the parameter correctly act (e) Detection circuit defective ⇒ Replace the printed-circuit box	

3.4.30 Alarm AL–44	 (1) Meaning An A/D converter error occurred. (2) Cause and corrective action (a) A/D converter defective. ⇒ Replace the printed-circuit board. 					
3.4.31 Alarm AL–46	 (1) Meaning The position coder one-rotation signal was not detected correctly during thread cutting. (2) Cause and corrective action (a) Feedback signal cable not shielded properly Check whether there is noise on the feedback signal. Also check whether the cable is shielded properly. ⇒ Shield it correctly. (b) Position coder defective Check the position coder. (c) Feedback signal level insufficient (for built-in sensor) Check the feedback signal level with an oscilloscope. ⇒ Adjust so that the feedback signal level becomes the rated value. (d) Incorrect parameter setting Check the parameter setting and the Cs contouring control dataeter 					
	FS0 FS15 FS16/18, PM–D/F Description 6503 3003 4003 Position coder signal setting #7, 6, 4 #7, 6, 4 #7, 6, 4 Position coder signal setting					
	 ⇒ Set the parameter correctly according to the detector used. (e) Detection circuit defective ⇒ Replace the printed–circuit board. 					
3.4.32 Alarm AL–47	 (1) Meaning A pulse count for the position coder signal is abnormal. (2) Cause and corrective action (a) Feedback signal cable not shielded properly Check whether there is noise on the feedback signal. Also check whether the cable is shielded properly. ⇒ Shield it correctly. (b) Position coder defective Check the position coder signal. ⇒ Replace the position coder. (c) Feedback signal level insufficient (for built–in sensor) Check the feedback signal level with an oscilloscope. ⇒ Adjust so that the feedback signal level becomes the rated 					

value.

	(d) Incorrect parameter setting Check the parameter setting and the detector.						
	FS0	FS15	FS16/18, PM–D/F 4003 #7, 6, 4	Description Position coder signal setting			
	6503 #7, 6, 4	3003 #7, 6, 4					
	= (e) [] =	according to the detector used.					
3.4.33 Alarm AL–49	 (1) Mean Durin convol (2) Cause (a) T si M n = 	 (1) Meaning During differential speed mode, the sub-spindle motor speed converted from the main spindle motor speed exceeded the limit. (2) Cause and corrective action (a) The differential speed is calculated by multiplying the main spindle motor speed by the gear ratio. Make sure that the calculation result does not exceed the maximum motor speed. ⇒ Do not exceed the maximum motor speed. 					
3.4.34 Alarm AL–50	 (1) Meaning During the synchronization control of the spindle, the calculation result for the speed command exceeded the limit. (2) Cause and corrective action (a) The motor speed command is calculated by multiplying the spindle speed command by the gear ratio. Make sure that the calculation result does not exceed the maximum motor speed. ⇒ Do not exceed the maximum motor speed. 						
3.4.35 Alarm AL–53, AL–53	 (1) Meaning The ITP signal (sync signal for sync with the CNC) stopped. (2) Cause and corrective action (a) CNC error ⇒ Check the operation of the CNC. (b) Serial communication LSI chip defective ⇒ Replace the printed–circuit board. 						
3.4.36 Alarm AL–54	 (1) Mean It wa perio (2) Cause (a) C C the second s	ing s detected d. e and corr Overloaded Check the l hat acceler	I that a high current ective action I operation, or freque load meter to see if th ration/deceleration wa	flowed in the motor for a long nt acceleration/deceleration e load is too heavy. Also check as repeated frequently.			

	=	⇒ Examiı	ne the cutting condition	ns again.				
3.4.37 Alarm AL–55	 (1) Mean During there and the RCH. (2) Cause (a) S da C (b) L (c) In M (c) In M 	 (1) Meaning During spindle switching control or speed range switching control, there was a conflict between the switch request signal (SPSL or RSL) and the power line state confirmation signal (MCFN, MFNHG, or RCH, RCHHG). (2) Cause and corrective action (a) Switching unit (magnetic contactor for power line switching) defective Check the operation of the switching unit. ⇒ Replace the switching unit (magnetic contactor for power line switching). (b) Loose contact of the magnetic contactor state signal (auxiliary contact signal) Make sure that the magnetic contactor state signal is switched properly. => Connect the magnetic contactor correctly. (c) Incorrect parameter setting Make sure that the parameters for the power line state signals related to spindle switch control and output switch control are set 						
	FS0	FS15	FS16/18, PM–D/F	Description				
	6514#2	3014#2	4014#2	Parameter to specify the power line state signal for spindle switching control				
	6514#3	3014#3	4014#3	Parameter to specify the power line state signal for speed range switching control				

Set the parameter correctly according to the system used.

3.4.38 Alarm AL–56

(1) Meaning

The cooling fan for the control circuit stopped.

- (2) Cause and corrective action
 - (a) Cooling fan defective

Check whether the cooling fan rotates smoothly.

 \Rightarrow Replace the cooling fan.

4

HOW TO REPLACE THE FUSES AND PRINTED CIRCUIT BOARDS

Before replacing fuses or printed-circuit boards, make sure that the recharge-under-way LED (red) is off.

To replace the fuses or printed–circuit board in each module, remove its case according to the procedure described below.

4.1 HOW TO REMOVE THE CASES

4.1.1 60/90 mm Width Modules Target modules: PSM-5.5 to -11

SVM SPM-2.2 to -11

(1) Make sure that the recharge–under–way LED (red) is off.

(2) Remove the face plate.

— 100 —

(3) Remove the cases

(5) Remove the IPM.

— 101 —

4.1.2 150 mm Width Module

Target modules: PSM-15 to -30

SPM-15 to -30

 Make sure that the recharge–under–way LED (red) is off. The recharge–under–way LED (red) is at the center of terminal board TB1. Open the cover at the top of the module, and check the LED.

(2) Remove the face plate.

(3) Remove connector PCB.

(4) Remove the case

(5) Remove the printed–circuit board.

While spreading the PCB support hooks, pull the printed–circuit board off the flange surface to remove it.

(6) Remove the IGBT.

4.2 POWER MODULE	SUPPLY		

4.2.1 Replacing Fuses

(1) PSM-5.5 and -11

Remove the cases and printed–circuit board according to Section 4.1.1.

Replace the fuses according to the figure below.

F1 -		Fuse designation	Specification	Remark
F2 —		F1	A60L-0001-0359	250V F5.0A DAITO HM50
		F2	A60L-0001-0175#2.0A	250V F2.0A DAITO HM20
		 Printed—circ 	uit board (A16B–2202–042	20)

Fig. 4.2.1 (1) Locations of the Fuses

(2) PSM-15 to -30

Remove the cases and printed–circuit board according to Section 4.1.2.

Replace the fuses as shown below.

Fig. 4.2.1 (2) Locations of the Fuses

٦

4.2.2	Remove the printed-circuit board according to Section 4.1.		
Replacing The	1 Printed–circuit board version No.		
Printed-circuit Board	2 Setting of DIP switch RSW (or jumper pins S1 and S2)		
	After checking the following, replace the printed-circuit board:		

4.3 SERVO AMPLIFIER MODULE

4.3.1

Г

Replace the fuses according to the figure below.

Replacing The Fuses

F1	Fuse designation	Specification	Remark
	F1	A60L-0001-0290#LM50C	50V F5.0A DAITO LM50C

4.3.2	Remove the printed-circuit board according to Section 4.1.
Replacing The Printed–circuit Board	 Printed-circuit board version No. Setting of jumper pins S1 and S2 (for SVM1 and SVM2 only; SVM3 has no jumper pin to set)

After checking the following, replace the printed-circuit board:

4.4 SPINDLE AMPLIFIER MODULE

4.4.1

Replacing The Fuse

SPM-15 to -30

Replace the fuse according to the figure below.

	Fuse designation	Specification	Remark
	F2	A60L-0001-0290#LM50C	50V F5.0A DAITO LM50C5
F2			

To replace fuse F2 on the wiring board, first remove the cases and printed–circuit board according to the procedure in Section 4.1.

Fuse designatio	n Specification	Remark
F2	A60L-0001-0175#0.5A	250V F0. 5A DAITO HM50
✓ Wiring board	l (A20B–1005–057X)	

Fig. 4.4.1 (1) Location of the Fuse

4.4.2 Replacing The	Remove the printed–circuit board according to the procedure in Section 4.1.		
Printed-circuit Board	1 Printed–circuit board version number		
	2 ROM series and edition		
	3 Whether there is a detection module		

4 Setting of DIP switches S1 to S7

After checking the following, replace the printed-circuit board:

4.4.3 Replacing The ROM And Detection Modules

Remove the printed–circuit board according to the procedure in Section 4.1.

Check the locations of the ROM and detection module with the figure below.

(1) SPM-2.2 to -11 type I and SPM-2.2 to -11 type II

Fig. 4.4.3 (1) Locations of the ROM and Detection Module

(2) SPM-15 to -30 type I

Fig. 4.4.3 (2) Locations of the ROM and Detection Module

(3) SPM-15 to -30 type II and SPM-11 to -30 type III

III MOTOR MAINTENANCE

1

AC SERVO MOTOR MAINTENANCE

Generally, AC servo motors have no parts that wear off or that must be replaced periodically, unlike DC servo motors, which have brushes that must be replaced periodically.

However, you should perform periodic maintenance for servo motors so as to keep their initial performance as long as possible and to prevent breakdowns. AC servo motors have precision detectors. Their incorrect use or damage caused during transportation or assembling can result in breakdowns or accidents. We recommend that you inspect the servo motors periodically according to the descriptions given below.

1.1 RECEIVING AND KEEPING AC SERVO MOTORS

When you receive an AC servo motor, make sure that:

- The motor is exactly the one you ordered, in terms of model, shaft, and detector specifications.
- No damage has been caused on the motor.
- The shaft can be rotated by the hand normally.
- The brake works normally.
- There is no loose bolt or play.

Because FANUC inspects servo motors strictly before shipment, you do not, in principle, have to inspect them when you receive them. However, you should check the specifications (wiring, current, and voltage) of the motor and detector carefully, as required.

The servo motors should be kept indoors as a rule. The storage temperature range is -20 to +60 C. Do not place or install AC servo motors in the place where:

- It is extremely humid and dew is prone to form,
- There is a steep change in temperature,
- There is constant vibration, which may cause damage to the shaft bearings, or
- There is lots of dust and trash.

Before starting operation, or periodically (once a week or month), you should inspect the AC servo motors in terms of the following:

(1) Vibration and noise

Check the motor for abnormal vibration (by the hand) and noise (by the ear) when the motor is:

- Not rotating
- Rotating at low speed
- Accelerating or decelerating

If you find anything unusual, contact your FANUC service staff.

1.2 DAILY INSPECTION OF AC SERVO MOTORS

(2) Damage on the outside

Check the motor cover (red plastic) for crevices and the motor surface (black coating) for scratches and cracks.

If you find a crevice in the motor cover, you should replace it as quickly as possible. For how to replace, see the description about the pulse coder in Section 3.1.4. If you are not sure about replacement, contact you FANUC service staff.

If there is a scratch or crack on the motor surface, the user should repair it by himself as required. If coating has come off, dry the portion of interest (or the entire surface) and coat it with paint for machines such as urethane paint.

(3) Stains and smudges

Check the motor surface and bolt holes for oil or cutting fluid. Wipe off oil and cutting fluid on the motor surface periodically. Oil or cutting fluid can damage the coating by chemical reaction, possibly leading to a failure

Also check how such a liquid leaks onto the motor, and repair if needed.

(4) Overheating

Check to see if the motor is too hot during normal operation. Attach a thermolabel on the motor surface and check it visually to see if the motor becomes too hot during normal operation.

NOTE

Temperature on the motor surface can exceed 80 C under some conditions. Never touch it by the hand.

We recommend that you inspect the AC servo motors for the following items at least once a year.

(1) Observation of torque command (TCMD) and speed command (VCMD) waveforms

Observe normal voltage waveforms with an oscilloscope, and keep notes of them. During periodic inspection, check the current waveforms with the records.

The waveforms vary according to the operating conditions such as load and cutting speed. Note that you should make comparisons under the same condition (for example, during fast traverse to the reference position or low–speed cutting).

See descriptions on the check boards in Section 6 for detailed inspection procedures.

(2) Diagnosis by waveforms

Check the measured waveforms to see whether:

1 The peak current is within the limit to the current in the amplifier.

The limit to the amplifier current is listed below.

1.3 PERIODIC INSPECTION OF AC SERVO MOTORS

 \Rightarrow The motor used to accelerate/decelerate with the amplifier current within the limit (the acceleration/ deceleration torque used to be sufficient), but something is wrong now. If this is the case, the probable causes are:

- The load conditions in the machine have changed because of changed friction or reduced machine efficiency after long period of use.
- Motor failure

α0.5/3000, α1/3000, α2/2000, α2/3000	12Ap
αC3/2000, αC6/2000, αC12/2000	20Ap
α3/3000, α6/2000, α12/2000, α22/1500, αC22/1500, αM3/3000, αL3/3000	40Ap
α6/3000, α12/3000, α22/2000, α30/1200, αΜ6/3000,αΜ9/3000, αL6/3000, αL9/3000	80Ap
α22/3000, α30/2000, α30/3000, α40/2000, αL25/3000, αL50/2000	130Ap

2 The waveform has ripple during constant–speed feeding.

3 The current waveform has ripple or jumps when the motor is not rotating.

If you find anything unusual in relation to the above items, contact your FANUC service staff.

This section explains how to replace the pulse coder and motor cover, assuming that the pulse coder has broken down and is in need of immediate replacement.

When replacing the pulse coder and motor cover, be careful not to give a shock to the pulse coder or motor, because they are precision devices prone to a breakdown. Also keep them from dust and cutting chips.

(1) Model $\alpha 1/2$

 Remove the four M4 hexagonal socket head bolts that fasten the pulse coder. Do not loosen the M3 bolts near each M4 bolt. (Removing the M3 bolts will impair airtightness.)

2 Remove the pulse coder and Oldham's coupling

1.4 REPLACING THE PULSE CODER

— 115 —

3 Mount a new pulse coder on the motor. Place the Oldham's coupling in phase with the mating sections and puts the gears in engagement.

4 Attach the four M4 bolts. When tightening them, be careful not to catch the pulse coder O–ring under them.

- (2) Models α 3 to 40, α C, α M, and α L
 - 1 Loosen the bolts fastening the red motor cover to remove the cover.

- 2 Disconnect the cannon connector for the pulse coder from the red motor cover.
- a) Remove the M3 bolts fastening the connector.
- b) Shift the rubber packing, remove the C-ring fastening the insulator on the back of the connector (on the wiring side), and separate the connector housing from the terminal section.
- c) Remove the connector terminal section from the motor cover.

- d) Put the connector housing back on the pulse coder you removed, and fasten it with the C-ring.
- 3 Cut off the thermal switch leads at places as close to the base of the crimp terminals as possible.
- 4 Remove the four M4 hexagonal socket head bolts fastening the pulse coder. Do not loosen the M3 bolts near each M4 bolt. (Removing the M3 bolts will impair airtightness.)

- 5 Remove the pulse coder and Oldham's coupling.
- 6 Mount a new pulse coder on the motor. The pulse coder may be mounted in any orientation. However, you should place it in the same orientation as the pulse coder that was removed, for easier cabling. Place the Oldham's coupling in phase with the mating sections, and put the gears in engagement.
- 7 Fasten the pulse coder with four M4 bolts.
- 8 Replace the packing on the mounting surface of the motor cover with a new one. If the packing is reused, it does not assure sufficient sealing. Whenever you replace the motor cover, replace the packing too.
- 9 Mount the connector on the cover by reversing the steps of procedure 2.

The connector insulation (insulating material around the terminal) has a key to prevent incorrect insertion. When mounting the connector, align the key to the notch.

10 Connect the thermal switch leads. Strip the tips of the leads on the motor side to about 1 cm, and connect them to the terminals on the pulse coder. Crimp terminals should preferably be used. In emergency, however, the leads may be twined and insulated using vinyl tape. 11 Mount the motor cover. Be careful not caught the pulse coder leads under the motor cover. Fasten the motor cover with bolts.

1.5 REPLACEMENT PARTS SPECIFICATIONS

Listed below are the maintenance arrangement numbers.

(1) Oil seal

Motor model	Oil seal specification (manufacturer's specifica are enclosed in parentheses)	tions
α0.5	A98L-0001-0135/C0514E0 (AC0514E0 type SC)	*1
α1/2	A98L-0001-0135/C0616E0 (AC0616E0 type SC)	*1
α3/6 αC3/6 αM3/6/9 αL3/6/9	A98L-0004-0249/A1188R	*2
α12/22/30/40 αC12/22 αL25/50	A98L-0004-0249/A1189R	*2
α65/100/150	A98L-0001-0135/B3220E0 (AB3220E0 type SB)	*1

- *1 Standard products from NOK K.K.
- *2 Special oil seal for FANUC motors (product of NOK)
- (2) Pulse coder arrangement specification
 - 1 Arrangement specification for pulse coders with no motor cover

[Model a1-2]

- 2 Arrangement specification for pulse coders with a motor cover
 - [Model α3/6, αC3/6, αM, αL3/6/9] A290–0121–T□□ - 575 :αA64 - 577 :αI64 - 584 :Serial A - 578 :αA8 - 580 :αI8

[Model a12-40, aC12/22, aL25/50]

3 Motor cover arrangement specification

A290-05 - X053

2

SPINDLE MOTOR MAINTENANCE

2.1 PREVENTIVE MAINTENANCE

To maintain the original performance and reliability of the spindle motor for a long time, it is necessary to inspect them as described below.

Inspection item	Symptom	Act	tion		
Noise or abnormal	There is unusual noise	Check the following and take neces	ssary actions:		
vibration	or vibration.	Base and installation			
		Centering accuracy of directly coupled section			
		 Abnormal sound from motor shaft bearings (See "Motor shaft bearing" below.) 			
		• Vibration of or noise from the rec	lucer or belts		
		Amplifier failure			
		• Fan motor failure (See "Fan motor" below.)			
Cooling air path	The cooling air path is clogged with dust.	Clean			
Motor surface	Cutting fluid on the motor surface.	Clean. If there is lot of fluid on the motor surface, protect the motor by installing a shelter over it.			
Fan motor	Not rotating.	If the fan motor can be rotated by the hand,	Replace the fan motor.		
		If the fan motor cannot be rotated by the hand,	Remove foreign materials, if any. Adjust its mounting position by loosening the bolts and tightening them again.		
			If the motor still cannot be rotated by the hand, replace it.		
	Unusual sound	Remove foreign materials, if any. A ening the bolts and tightening them	reign materials, if any. Adjust its mounting position by loos- olts and tightening them again.		
		If the motor still cannot be rotated by the hand, replace it.			
Motor shaft bearing	Unusual sound from the motor shaft bearing	Replace the shaft bearing, and check the shaft for centering accuracy. Also check on the radial load. Before replacing the shaft bearing, con- tact your FANUC service staff.			

2.2FORTerminal box partsMAINTENANCEFORTerminal box parts

	Terminal bo		
Model	B 0 0 or B 9 as the last segment of the motor specification number (NOTE1)	B □ 3 □ as the last segment of the motor specification number (NOTE1)	Terminal box lid
α1, α1.5, αC1, αC1.5	A290-0850-T400		A290–0853–V410
α2, α3, αC2, αC3	A290-0853-T400	A290-0853-T401	A290–0853–V410
α6, α8, α12, α15 αP8, αP12, αP15, αP18, αP22 α15(HV) αC6, αC8	A290–0854–T400	A290–0854–T401	A290–0854–V410
α18, α22 α18(HV), α22(HV)	A290–0731–T420	A290–0731–T421	A290–0731–V410
αΡ30, αΡ40, αΡ50	A290–0731–T451	A290-0731-T460	A290–0731–V410

NOTE1

For example, B □ 0 □ for A06B–0856–B100 and B □ 3 □ for A06B–0856–B130

NOTE2

This table may not apply to the motors with B9 $\Box\Box$. Contact you FANUC service staff.

Fail motor datts

Model	Fan cover	Fan motor	Air flow direction
α1, α1.5,	A290-0750-T500 (NOTE2)	A90L-0001-0343/R	Away from the load shaft
αC1, αC1.5	A290-0750-T501 (NOTE2)	A90L-0001-0343/F	Toward the load shaft
α2, α3, αC2, αC3	A290-0853-X501	A90L-0001-0442/R	Away from the load shaft
	A230-0035-A301	A90L-0001-0442/F	Toward the load shaft
α6, α8, αP8	A290-0854-X501	A90L-0001-0443/R	Away from the load shaft
$\alpha C6, \alpha C8$	A230-0034-A301	A90L-0001-0443/F	Toward the load shaft
α12, α15, α18, α22 αΡ12, αΡ15, αΡ18, αΡ22	A290-0856-X501	A90L-0001-0444/R	Away from the load shaft
	A230-0030-A301	A90L-0001-0444/F	Toward the load shaft
αΡ3, αΡ40	A290-0731-T510 (NOTE2)	A90L-0001-0318/R	Away from the load shaft
	A290–0731–T511 (NOTE2)	A90L-0001-0318/F	Toward the load shaft
αP50	A290–1040–T510 (NOTE2)	A90L-0001-0319/R	Away from the load shaft
	A290–1040–T511 (NOTE2)	A90L-0001-0319/F	Toward the load shaft
α15(HV), α18(HV),	A290_0856_X501	A90L-0001-0447/R	Away from the load shaft
α22(HV)	A230-0030-A301	A90L-0001-0447/F	Toward the load shaft

— 121 —

NOTE

Specification number for a fan assembly with a fan motor

2.3 ALLOWABLE RADIAL LOAD

Do not apply the radial load exceeding the data listed below on the motor output shaft.

Model	Maximum allowable radial load on the tip of the output shaft
α0.5	30Kg
α1, αC1	40Kg
α1.5, α2, αC1.5, αC2	90Kg
α3, αC3	150Kg
α6, αC6	200Kg
α8, α12, α15 αΡ8, αΡ12, αΡ15 α15(HV), αC8	300Kg
α18, α22, αΡ18, αΡ22 α18(HV), α22(HV)	450Kg
αΡ30, αΡ40	550Kg
αP50	1100Kg

NOTE1

When a belt is used to link the load to the motor shaft, adjust the belt tension so that the limit described above will not be exceeded.

NOTE2

If the center of the belt tension is away from the tip of the output shaft, the maximum allowable load becomes smaller than the data above.

150 mm width module, 102 60/90 mm width modules, 100

-A-

Alarm code 07, 72 Abnormal current alarms (8, 9, A, b, C, d, and E in the LED display), 73 Check pin board, 28

Alarm code 06, 72

ALARM NUMBERS AND BRIEF DESCRIPTIONS, 62 Alarm Numbers in Series 15 (Servo Alarms), 62 Allowable Radial Load, 122

Alarm code 05, 72

-C-

Check terminal on the printed-circuit board, 25 Checking for what keeps the MCC from being switched on, 27 Checking the control power supply voltage, 31241 Checking the feedback signal waveform, 44 Checking the power supply voltages, 26 Checking the STATUS display, 32 Checking the STATUS LEDs, 26 Checking the voltage and capacity of the power, 9 CONFIGURATIONS, 4 Configurations, 4 CONFIRMATION OF THE OPERATION, 24 Connecting a protective ground, 9 Connecting the Power, 9 Control power supply undervoltage alarm (2 in the LED display), 75 Current conversion error alarm, 75

-D-

Daily Inspection of AC Servo Motors, 111 DC link undervoltage alarm (5 in the LED display), 75

F

Fan stopped alarm (1 in the LED display), 75 Feedback disconnected alarm, 77 For Series 0-C (servo alarm), 65 For Series 16,18,20 (servo alarm), 68

-H-

How to remove the cases, 100

HOW TO REPLACE THE FUSES AND PRINTED CIRCUIT BOARDS, 100

Initializing Servo Parameters, 14

Invalid servo parameter setting parameters, 78

IPM alarms (8., 9., A., b., C., d., and E in the LED display; note these codes are displayed simultaneously with a period.), 74

AC SERVO MOTOR MAINTENANCE, 111 Alarm A0, A1, 86 Alarm AL-01, 86 Alarm AL-02, 87 Alarm AL-03, 87 Alarm AL-07, 87 Alarm AL-09, 88 Alarm AL-12, 88 Alarm AL-13, 88 Alarm AL-15, 89 Alarm AL-16, 89 Alarm AL-19, 89 Alarm AL-20, 89 Alarm AL-24, 90 Alarm AL-25, 90 Alarm AL-26, 90 Alarm AL-27, 91 Alarm AL-28, 92 Alarm AL-29, 92 Alarm AL-31, 92 Alarm AL-32, 93 Alarm AL-34, 93 Alarm AL-35, 93 Alarm AL-36, 93 Alarm AL-37, 94 Alarm AL-39, 94 Alarm AL-40, 95 Alarm AL-41, 95 Alarm AL-42, 96 Alarm AL-43, 96 Alarm AL-44, 97 Alarm AL-46, 97 Alarm AL-47, 97 Alarm AL-49, 98 Alarm AL-50, 98 Alarm AL-53, AL-53, 98 Alarm AL-54, 98 Alarm AL-55, 99 Alarm AL-56, 99 Alarm code 01, 71 Alarm code 02, 71 Alarm code 03, 72 Alarm code 04, 72

Index

—M—

Major Components, 5 MOTOR MAINTENANCE, 109 Motor overheat alarm, 78

-0-

Observing the internal data, 49 Overload alarm, 77 OVERVIEW, 3261

-P-

Parts for maintenance, 121 Periodic inspection of AC servo motors, 113 Power Supply Module, 24 Power supply module, 52102712105 Preventive Maintenance, 120 Pulse coder communication error alarm, 85 Pulse coder error alarm, 84

-R-

Receiving and keeping AC servo motors, 111 Replacement Parts Specifications, 118 Replacing fuses, 105 Replacing the fuse, 107 Replacing the fuses, 106 Replacing the printed–circuit board, 1062107 Replacing the Pulse Coder, 115 Replacing the ROM and detection modules, 108 Rotation speed data error alarm, 84

S

Selecting the ground fault interrupter that matches the leakage current, 9 Servo adjustment screen, 76 Servo Amplifier Module, 106 Servo Amplifier Module, 5[2]10[2]14[2]28 Servo Amplifier Module Troubleshooting, 73 Servo check board, 33 Servo software, 76 Setting the printed–circuit board, 10 Spindle Amplifier Module, 37[2]86 Spindle Amplifier Module, 37[2]86 Spindle amplifier module, 7[2]13[2]20[2]107 Spindle check board, 38 SPINDLE MOTOR MAINTENANCE, 120 START–UP PROCEDURE, 1[2]8 STATUS display, 42 Summary of the Start–up Procedure, 8

-T-

The PIL LED (power ON indicator) is off., 27243 The STATUS display does not light., 33 The STATUS display is blinking with "—", 43 TROUBLESHOOTING, 59 TROUBLESHOOTING AND ACTION, 71

Q	
ō	
С С	
Ř	
C	
ion	
rision	
evision	

FANUC CONTROL MOTOR α series MAINTENANCE MANUAL (B-65165E)

			Contents
			Date
			Edition
			Contents
		Apr., '94	Date
		01	Edition