Category Archives: Configuration

tsxcusbmbp

Schneider Electric TSXCUSBMBP: Beyond the User Manual

Need a replacement TSXCUSBMBP? Request a Price Quote Now.

The Schneider Electric TSXCUSBMBP is a USB Modbus Plus Communications Adapter. In this guide, we will show you how to install the hardware, configure the driver software, and use the Modbus Plus network diagnostics features of the driver software.

Important: The least versions of the TSXCUSBMBP driver to run on Win Server 2012 R2 are driver versions 8.0 and 8.1.

The TSXCUSBMBP is designed to bridge the gap between a USB connection and the Modbus Plus network. It combines hardware and software together in one simple and single device. The module has its own Modbus Plus node address which can be set through the TSXCUSBMBP driver software. This module allows software applications using the serial Modbus RTU communications to connect on the high-speed Modbus Plus network, as well as provide diagnostic capabilities to the Modbus Plus network.

Most Win32 Applications that support serial Mdubus communications can use a Modicon TSXCUSBMBP to connect on a Modbus Plus network. A VSP (Virtual Serial Port) is what redirects communications from Concept, Unity, ProWorx32 and other programs to the TSXCUSBMBP communications adapter. After the VSP is installed, it will create one serial port with the port reference as defined in the module’s driver software. When configuring the Modbus application software, this port reference is selected as the serial port for the application to use. The routing table is used to associate Modbus Slave IDs with 5-byte Modbus Plus routing paths which allow the application software to communicate with any Modbus Plus device within range on the network.

The TSXCUSBMBP’s hardware consists of a box with a USB cable from one end (which connects to the PC) and a standard Modbus Plus DB9 connector on the other end (for the Modbus Plus network). Local signalling LEDs on the top cover of the device tell you the presence of power from the USB port and the state of the Modbus Plus network – no external power supply is required.

TSXCUSBMBP Installation

To install the TSXCUSBMBP, you will need the following:
– Windows XP Operating System with service pack 2, or Windows 2000 with Service Pack 4 or greater.
– 1 MB of free disk space.
– Minimum of 256 MB of RAM.
– One free USB port or a USB Hub that supports USB 1.1 or greater.

If a previous version of the TSXCUSBMBP was installed, the VSP component of the driver must be manually uninstalled using Device Manager before a new version can be installed. After this, the new driver should be installed before connecting the new TSXCUSBMBP to the PC. After the new driver is installed, connect the TSXCUSBMBP and install using the New Hardware Wizard. After completing the instructions, you should see a message stating “Your new hardware is ready to use.” Restart your computer, and the device should be fully functional. If the driver starts up before the TSXCUSBMBP is connected, then it will be necessary to re-scan for adapters so the driver can detect it.

TSXCUSBMBP Configuration

To configure the module, you will need to do the following:

1. Configure the Modbus Plus Node Address
The communications adapter must be assigned a Modbus Plus node address to communicate on the network. Select “Settings” and then type the address in the appropriate box. When complete, hit “Save”.

2. Configure the Slave Response Timeout
The slave response timeout is used by the module each time it sends a request from an application out on the network to a slave device. Use the manual to determine the appropriate value that should be used with your system. Select “Settings” and then type the value in the appropriate box. When complete, hit “Save”.

3. Configure the Virtual Serial (COM) Port
To do this, select “Virtual Modbus Port.” Select the desired COM port from the list available. When complete, click “Save”.

If you experience any problems while configuring your adapter, please use the table below to determine the appropriate error code given by the LEDs, if applicable. As always, refer to the user manual for more complete information.

TSXCUSBMBP Error Codes
TSXCUSBMBP Error Codes
MRO Electric carries both New and Refurbished TSXCUSBMBP Communication Adapters. For more information on this module or to request a price quote, please call 800-691-8511 or email sales@mroelectric.com.
tsxcusbmbp
TSXCUSBMBP

FANUC A06B-6079-H206 – Beyond the User Manual

The FANUC A06B-6079-H206 is a 2-axis servo amplifier module. Its standard dimensions are 380 x 60 x 307 mm. The Status display is a 7-segment LED that indicates the operation status on the module. If the Status display is not on then the power is not turned on, the cable has a power connection, or the module is defective. If the module is defective, replace the fuse or servo amplifier. If there is a single middle line on the display, the control power supply is waiting for the ready signal. If all the outside lines are on, the servo amplifier is ready to operate and the servo motor is supplied with power. If an alarm is issued on the servo amplifier, a value other than “0” and “-” is displayed.

A pin board can be used with the A06B-6079-H206. The use of a check pin board allows you to observe the signals inside the servo amplifier. CN1 and CN2 are wired with a one to one correspondence. The connector pin numbers correspond to the check pin numbers. You can observe an instantaneous motor current value by observing the voltage across a reference voltage check pin and a motor current check pin with an oscilloscope. Note that you cannot use a device as a multimeter to observe the correct values. You can also measure the voltage across a reference voltage (0V) check pin and a power check pin with a multimeter, oscilloscope, or the like to observe the power supply voltage fr the control circuit inside the servo amplifier. If the measured voltage is within 5% relative to the nominal voltage, the measured voltage is considered acceptable.

A special lithium battery can be installed in the A06B-6079-H206. Be sure to install the battery with correct polarity, otherwise it may overheat, blow out, or catch fire. Use the factory-installed protection sockets in the unused connector after installing. This can help prevent the battery from short-circuiting.

MRO Electric and Supply Company sells new and refurbished A06B-6079-H206 servo amplifier modules.  To request a quote or for more information, please email sales@mroelectric.com or call 800-691-8511. 

a06b-6079-h206
A06B-6079-H206

 

Simodrive 611 Power Modules – Manual Anthologies

Simodrives 611 power modules can be used to operate the following motors: 

  • 1FT6, 1FK6 and 1FK7 servo motors 
  • 1FW6 built–in torque motors (direct drives) 
  • 1FN linear motors 
  • 1PH main spindle motors 
  • Standard induction motors; if IM operation is selected, only inverter pulse frequencies of 4 kHz and 8 kHz are permissible. 
  • 1PM hollowshaft motors for main spindle drives (direct drives) 
  • 1FE1 main spindle motors 
  • 2SP1 motor spindle 
  • Third–party motors, if according to the motor manufacturer the motor meets the requirements for sine modulation, insulation, and dV/dt resistance.

For special motors with a low leakage inductance (where the controller settings are not adequate), it may be necessary to provide a series reactor in the form of a 3–arm iron core reactor (not a Corovac reactor) and/or increase the inverter pulse frequencies of the converter. Motors with a low leakage inductance are, from experience, motors that can achieve high stator frequencies (maximum motor stator frequency > 300 Hz) or motors with a high rated current (rated current > 85 A).

A wide range of 1–axis or 2–axis power modules is available. These modules are graded according to the current ratings and can be supplied with three different cooling techniques. The current–related data refers to the series–preset values. At higher frequencies of the fundamental waves or for higher clock cycle frequencies, ambient temperatures and installation altitudes above 1000 m above sea level, power deratings apply as subsequently listed. Matched, pre–assembled cables are available to connect the motors. Ordering information is provided in the ”Motors” section of the NC 60 catalog. Shield terminal plates are available to meet EMC requirements when using shielded power cables.

The equipment bus cable is included in the scope of supply of the power module. The drive bus cables must be ordered separately for the digital system. The current data of the power modules (PM modules) are normalized values to which all of the control units refer. The output currents can be limited by the control unit being used.

MRO Electric offers both New and Remanufactured Siemens Simodrives 611. Please visit our Siemens CNC and Automation Page for more information. You may also contact sales@mroelectric.com or call 1-800-691-8511.

Siemens Simodrive 611

Siemens Simodrive 611

UNI3404: Beyond the User Manual

The UNI3404 is available with a number of option modules, which increase its flexibility and make it suitable for a very wide range of applications. These modules are briefly described in the following paragraphs. For full details refer to UNI3404 manual that is supplied with each of them. The modules are in two physical formats and are known as Large Option Modules (LOM) and Small Option Modules (SOM). Each Undrive may be fitted with one LOM and one SOM.

Unidrive UNI3404 Large Option Modules
  1. UD78 High Precision Analog Input Module. (LOM):
    • This module provides the following features: a) Infinite resolution analog input for precision speed and position control. Large Option Module Small Option Module 1. Introduction 11 b) RS485 communication port. c) Back up supply connector (requires user provided 24VDC) to maintain power to the drive control circuits and encoder feedback when the 3 phase input to the drive is disconnected.
  2. UD70 Co-Processor Module (LOM)
    • The UD70 is an Intel 960 based co processor module that allows the user to write programs in both IEC1131 ladder / Function Block Diagram and Drive Programming Language (DPL) to provide 1.5 axis motion control and sequence control. This is accomplished using the SyPT programming tool on a PC. The module is fitted with an RS232 programming port for this purpose. It also has an RS485 port for general use and this supports the ANSI protocol as a slave or master controller and ModBus RTU as a slave only.
  3. UD71 Serial Communications Module (LOM)
    • The UD71 provides simple serial communication and has both RS232 and RS485 ports.
  4. UD73 Profibus Interface Module (LOM)
    • The UD73 provides full UD70 co-processor functionality and additionally allows the drive to be connected to a Profibus DP network running at speeds up to 1.5 Mbaud.
  5. UD74 Interbus-S Interface Module (LOM)
    • The UD74 provides full UD70 co-processor functionality and additionally allows the drive to be connected to an Interbus-S network at a fixed data rate of 500 Kbaud.
  6. UD75 CTNet Interface Module (LOM)
    • The UD75 provides full UD70 co-processor functionality and additionally allows connection to a CTNet nework. CTNet is Control Techniques fully de-centralized peer to peer fieldbus. This allows implementation of a fully distributed control system with no central PLC controller required.
  7. UD76 Modbus Plus Interface Module (LOM)
    • The UD76 provides full UD70 co-processor functionality and additionally allows connection to a Modbus Plus network.
  8. UD77 DeviceNet interface module (LOM)
    • The UD77 provides full UD70 co-processor functionality and additionally allows connection to a DeviceNet network.
  9. CAN interface module
    • This is based on the UD77 hardware but has different firmware to allow the user to communicate through the CAN physical layer but using his own protocol written using the SyPT toolkit.
  10. CanOpen interface module
    • This is based on the UD77 hardware but the firmware is changed so that the network uses the CanOpen protocol.
Unidrive UNI3404 Small Option Modules
  1. UD50 Extended I/O module
    • This module provides the following additional I/O capability:
      • a) qty. 3, 24VDC digital inputs.
      • b) qty. 3, dual function (user selectable) 24VDC digital inputs / outputs. Rated at 30mA when configured as outputs.
      • c) qty. 2, 10 bit plus sign analog inputs +10 to –10VDC
      • d) qty. 1, analog output +10 to –10VDC.
  2. UD51
    • Second encoder module In servo mode this provides the drive with the following additional capabilities:
      • a) Allows use of a second incremental encoder as a master reference input for digital lock, Electronic Gear box and camming functions.
      • b) Alternatively the UD51 may be configured for frequency and direction input to be used as the drive speed reference.
  3. UD52 Sin/Cos encoder module
    • The UD52 allows a servomotor fitted with a sin/cos encoder to be used. This provides an interpolated resolution of up to 1,048,576 ppr when used with a 512 pulse sin cos encoder and also allows use of an optional 4096 revolution absolute encoder. The Unimotor is available with these encoders fitted as a standard option.
  4. UD53 Resolver Module
    • The UD53 allows use with a servomotor having resolver feedback. This is much more rugged than an encoder and therefore suitable for use in harsh environments. The UD53 can operate with resolver having either 2:1 or 3:1 turns ratio (primary : secondary)
  5. UD55 Cloning Module
    • The cloning module is intended to make it possible to copy up to 8 different parameter sets and subsequently load any of these onto another drive. It is useful in a production environment when many drives have to be set up with the same parameters. Unlike the other small option modules it is not normally left permanently installed in a drive.

 

Contact us today for an instant quote on any Control Techniques Unidrive, small option module, or large option module at 1-800-691-8511 or at sales@mroelectric.com

uni3404
UNI3404

140ACI03000 Configuration and Setup

You can check out our previous blog post on the 140ACI03000 datasheet, wiring diagram,  and manual here for more information.

140ACI03000 Wiring Configuration Features:

The Modicon 140ACI03000 configuration processor easily plugs into the Quantum backplane. The fiber optic cable connects the two Hot Standby processors to provide a high speed communication path between the two controllers. No additional intermediate supervisor is required. This minimizes hardware and reduces panel space requirements. Simple installation makes the Quantum Hot Standby option processor an easy addition to any control system setup.

The new 140ACI03000 scaling configuration provides two methods for system configuration. The Quantum Hot Standby system also delivers the power of user configurable State RAM transfers from the primary to standby controllers. This new option provides all of the power of the function block solution and more. As few as 16 inputs, 16 outputs, one input register, and one output/holding register or as many as 64k, in the Quantum 486 controllers, can be configured for transfer in one or multiple scans. This option provides true separation of system configuration and control programming.

Users that are comfortable with the 984/800 series hot standby solution can opt for the single function block. This option provides all of the programming necessary to perform the hot standby function. By simply entering and energizing the function block in each controller, the default settings will affect a secure and reliable control system.

Should the user select to implement some optional hot standby functionality, all user options are triggered by inputs or register bits in the function block. Using Modsoft 2.3 DX Zoom capability all register bit functions are described in easy to understand terms that eliminate guess work.
Options include remote control of the standby system, remote status information, reverse and non-transfer of key register data and control of Modbus port addresses.

 

To order you can email sales@mroelectric.com or call 1-800-691-8511.

140ACI03000 Configuration
140ACI03000 Configuration

UD75 Configuration and Setup

You can check out our previous blog post  on the UD75 here for more information.

UD75 Configuration
  1. Isolate the drive from the mains supply and allow 5 minutes for the DC Bus capacitors to discharge.
  2. Insert Large Option Module as shown below. Ensure that it is correctly inserted. The module will click firmly into place.
  3. To remove the module, pull on the black tab, and the module will disengage from the connector and pull out of the drive.
UD75 Configuration: Cable Screen
The screen of the cable at every node on the network MUST be connected to the screen terminal (pin 3) on the CTNet terminal block. When the screen is stripped back to connect the twisted pair to the CTNet terminals, keep the exposed section of the cable as short as possible. On the CTNet PC Interface Adapter Card, there is no screen terminal. The screen should be cut and taped back to prevent it coming into contact with any other surfaces. The on-board terminal resistor should not be connected.
UD75 Configuration: Network Termination
The network MUST be fitted with terminating resistors AT BOTH ENDS!!! If resistors are not fitted, the network appear to work OK, but the noise immunity of the network will be drastically reduced. The terminating resistor value should match the nominal characteristic impedance value for the cable; in the case of the customized CTNet cable, the terminating resistors used should be nominally 78Ω. PC ISA and PCMCIA cards for interfacing a PC to CTNet are available from CT SSPD.

 

For price and ordering info you can email sales@mroelectric.com or call 1-800-691-8511. We have these and all the other Unidrive Classic option modules in stock, along with the drives themselves.

UD75 Configuration
UD75 Configuration

6FC5357-0BB35-0AA0 Configuration and Setup

You can check out our previous blog post on the 6FC5357-0BB35-0AA0 here for more information.

The 6FC5357-0BB35-0AA0 configuration features a modular design comprising line filter, commutating reactor, line supply infeed module, drive modules as well as, when required: monitoring, pulsed resistor and capacitor module(s). Satisfactory operation is ensured only in conjunction with the components that are described in the 6FC5357-0BB35-0AA0 Configuration Manual or published in the Catalog NC60 (Internet Mall) and with adherence to the required boundary/application conditions. Modules can also be arranged in several tiers one above the other or next to one another.

The housings of the  6FC5357-0BB35-0AA0 converter system modules are enclosed and EMC–compatible as specified in EN 60529 (IEC 60529). The electrical system is designed to comply with EN 50178 (VDE 0160) and EN 60204, and an EC declaration of conformity is available. The connections in the module group, motor cables, encoder lines and bus lines must be made using preassembled MOTION–CONNECT lines.

Due to the limited conductivity of the DC link busbars of the modules with module width 150 mm, the DC link power PZK of these modules must not exceed 55 kW. Larger DC link busbars must be used if this restriction cannot be complied with. The DC link power PZK of the subsequent modules is calculated according to the engineering rule specified in the manual. The larger DC link busbars can be ordered as a set. The set includes reinforced DC link busbars for module widths 50 mm, 100 mm and 150 mm. The standard DC link brackets between the modules may not be changed, even when strengthened DC link busbars are used.

 

To order or get price you can email sales@mroelectric.com or call 1-800-691-8511.

6FC5357-0BB35-0AA0
6FC5357-0BB35-0AA0 Configuation

140ARI03010 Configuration and Setup

You can check out our previous blog post on the 140ARI03010 here for more information.

140ARI03010 Terminal Strip Keying

Field wiring terminal strips and module housings in the 140ARI03010 configuration are slotted on the left and right sides of the PCB card slot to accept keying pins (see I/O Module figure). The purpose of keying is to prevent plugging the terminal strip into the wrong module, once wiring connections have been made. Keying is implemented at the discretion of the user.

Primary keying is provided on the right side of the 140ARI03010 configuration, marked A through F (top and bottom positions are coded the same). Primary keying provides module class coding. Primary codes have been pre-defined (see the following chart). Secondary keying is provided on the left side of the module, marked 1 through 6. Secondary keying codes are user-definable and may be used to identify module personality within module classes, or other unique site requirements. To support keying, all 140ARI03010 modules accepting terminal strips come with 12 customer- installable primary keys (six yellow keys each for the module and terminal strip) and six secondary keys (three white keys each for the module and terminal strip).
To implement the user-optional secondary keying code (designed to prevent the mismatching of terminal strips to I/O modules of identical type), 17 slot positions have been provided in modules and terminal strips to support a variety of coding schemes.
In addition (by using the secondary keying code), the user may key the field wiring terminal to the position where the module is installed in a backplane, using the white keys for each code.
140ARI03010 Map Status
The Quantum I/O map menu entry allows you to assign the 3x register that defines the start of a table in which I/O-mapped module status is available. You may either enter the 3x value, or the value 0 (indicating no choice). The value entered is displayed in the summary information on the top of the Quantum I/O Map. Modules in a backplane report status (and fault) information in an 8-bit byte—therefore, one word of the table conveys the status information for two modules
To get prices and more information, you can email sales@mroelectric.com or call 1-800-691-8511.
140ARI03010 Diagram
140ARI03010 Configuration

 

6SN1145-1BA01-0BA1 Configuration and Setup

You can view our previous blog post on the Siemens 6SN1145-1BA01-0BA1 manual here for more information.

Drive Line-Up
The Siemens 1P 6SN1145-1BA01-0BA1 configuration is modular, comprising line filter, commutating reactor, line supply infeed module, drive modules as well as, when required: monitoring, pulsed resistor and capacitor module(s). Satisfactory operation is ensured only in conjunction with the components that are described in the Configuration Manual or published in the Catalog NC60 (Internet Mall) and with adherence to the required boundary/application conditions. In order to avoid contamination, the modules should be installed in a control cabinet with degree of protection IP 54. Modules can also be arranged in several tiers one above the other or next to one another.

Due to the limited conductivity of the DC link busbars of the modules with module width 150 mm, the DC link power PZK of the Siemens 6SN1145-1BA01-0BA1 configuration must not exceed 55 kW. Larger DC link busbars must be used if this restriction cannot be complied with. The DC link power PZK of the subsequent modules is calculated according to the engineering rule specified in Chapter 1.3 of the manual. The larger DC link busbars can be ordered as a set with Order No. [MLFB] 1P 6SN1161–1AA02–6AA0. The set includes reinforced DC link busbars for module widths 50 mm, 100 mm and 150 mm. The standard DC link brackets between the modules may not be changed, even when strengthened DC link busbars are used.

For a 6SN1161–1AA02–6AA0 price quote and ordering info you can email sales@mroelectric.com or call 1-800-691-8511.
6SN1145-1BA01-0BA1 Configuration
Siemens 6SN1145-1BA01-0BA1 Configuration

140ACI04000 Configuration and Setup

You can check out our previous blog post on the 140ACI04000 manual here for more information.

140ACI04000 Wiring Configuration Overview
The Modicon 140ACI04000 module option processor provides Quantum Series controllers with the high availability and security critical process applications demand. Central to the system is the standby controller with current system status for automatic switchover in the event of a primary controller failure. This means critical processes are unaffected by control system hardware failures. The result – productivity goes up while downtime is minimized.
At the beginning of every primary controller scan, the current register and I/O state table is transferred to the Hot Standby across a high-speed, secure fiber optic communication link. In the event of a primary controller failure, the standby option processor takes control of the system with up-to-date I/O and register status information for a bumpless, controlled transfer with minimal process impact. Critical processes which cannot tolerate any disruption of control are assured a fast, smooth switchover, allowing the 140ACI04000 resolution.
Features / Benefits
  • A single-board Modicon Hot Standby option processor in each controller system improves reliability by eliminating the intermediate supervisor controller.
  • System control transfers occur in either direction increasing system uptime by eliminating the master-slave relationship.
  • Integrity of the user programs are verified and compared in both controllers to ensure high security.
  • High-speed fiber optic communication link between processors minimizes scan impact and improves productivity.
  • Primary I/O state table transfers to the standby controller every scan or in multiple scans providing up-to-date system status and higher system integrity.
  • Software control of Modbus and Modbus Plus ports allows host computer communications to either controller with no custom communication drivers.
  • New configuration extension mode provides greater flexibility in state RAM transfer.
  • An optional ladder logic function block delivers an easy migration path for 984/800 Series hot standby users.
  • The Hot Standby system is compatible with all Modicon TSX Quantum controllers and S908 remote I/O systems for cost-effective system design

To get the 140ACI04000 price and availability you can email sales@mroelectric.com or call 1-800-691-8511.

140ACI04000
140ACI04000