Category Archives: Troubleshooting

How does a relay work?

What is relay?

A relay is an electrically controlled switch that has the ability to turn a circuit on or off. Depending on the application relays can do a number of things. Relays can be used as switches to turn things on and off, or as amplifiers to convert smaller currents into larger ones. They can also be used to control a circuit with a low power signal or when multiple circuits need to be controlled by a single signal.

There are two kinds of relays, electromagnetic and solid state. In this post, we will be focusing on electromagnetic relays and how they work.

Basic Parts of a relay

Armature– is a basic metal piece that is balanced on a pivot or a stand. It is considered the moving ‘arm’ of the relay. It makes or breaks the connection with the contacts connected to it.

Spring– is connected to one end of the armature and pushes the armature back into place if no current is passing through.

Electromagnet– is a metal wire wrapped around a metal core. The wire does not have magnetic property but can be converted into a magnet with the help of an electrical signal.

Yoke– is a small metal piece affixedon a core which attracts and holds the armature when the coil is energized.

Contacts– conductive material that exists within the device whose physical contact opens or closes a circuit

A break refers to the number of locations on a circuit that a switch can make or break the flow of current. In electromechanical relays, there can be single breaks and double breaks. A single break is usually used with low power devices while a double break is usually used with high power devices.

A pole refers to the number of circuits that relays can pass through a switch. A single pole contact carries current through one circuit, while a double can carry it through two.

A throw refers to the number of separate wiring paths. For example, a triple throw switch can be connected to one of three contacts instead of one.

How does it work?

Source:
https://www.electronics-tutorials.ws/io/io_5.html

In an electromechanical relay, a small circuit has the ability to switch a larger circuit on or off through contacts by using an electromagnet. When charged, the electromagnet creates a magnetic field that attracts the armature and closes the contacts. Some contacts come in different configurations depending on the use of the relay. A normally open (NO) relay’s contacts are open when there is no current passing through, while a normally closed (NC) relay’s contacts are closed when there is no current passing through.

Source:
https://www.explainthatstuff.com/howrelayswork.html

There are many things to consider when choosing a relay for a project. Lifespan, operating environment, mechanical loads, size, and number and type of contacts are all important factors in choosing the right relay.

Pros and Cons of Electromagnetic relays

Advantages

Fast operation and reset

More definitive ON/OFF

Simple and most reliable

Disadvantages

Suffers the effects of age

No directional features


MRO Electric and Supply has an extensive inventory of relays in stock.  Please call email sales@mroelectric or call us at 800-691-8511 for a quote.

Yaskawa SIGMA 5 Troubleshooting

Yaskawa has established a firm position as the leading international developer of servo products in recent years, surpassing its competitors with innovation and utilization of advanced modern technologies.

Its Sigma 5 series is absolutely top of the class! Incorporated with the latest and most desirable features, this fleet of servo products does not disappoint. The Sigma 5 series catalog is briefly over-viewed below.

  • SERVOPACKs is a series consisting of high-end networkable amplifiers that support motors up to 55 kW
  • Rotary Servo Motors with outputs in the wide range of 50W – 15kW
  • Direct Drive Servomotors with peak torque 6-600 Nm
  • Linear Servomotors are directly driven by a coil
  • Linear Slides complete the package for customers using linear servomotors, comprising of components such as slides, carriages, etc.

With such a versatile range of products, Sigma 5 series is easily what you would want to have in your workshops and industries.

SGMGV-09ADA61

All servo drives are tailored according to contemporary market demands. With so many different kinds of motors, the drives make use of complex algorithms that allow engineers to exercise precise control over the motor output, helping them achieve the accuracy modern applications require.

Yaskawa is highly regarded among consumers and the industry for its professionalism. From product development to customer dealing, this quality shows through at each stage, and this is exactly what puts this company at the top.

This blog is dedicated to one aspect of this characteristic: Troubleshooting. Sigma 5 series is undoubtedly the most functional of all but this also means that the intricacies involved can sometimes be difficult to handle.

If one of these products does not perform as it should be, troubleshooting it should be something that field engineers should be able to do. Thankfully, the Sigma 5 series is accompanied by clear troubleshooting guidelines and is one of the most easy to handle.

  • Product Documentation

Each product comes with comprehensive documentation that can be accessed at any time to gain in-depth knowledge of its working. These documents contain important information like dedicated troubleshooting guides, operating parameter, alarm lists, product structure, and specifications.

With this information at hand, troubleshooting any of the Sigma 5 products becomes a piece of cake!

  • Software Support

Sigma 5 series comes with a very supportive software suite as well which can serve as the perfect troubleshooting tool. During installation and operation, these software used extensively for product setup and configuration.

The SigmaWin+ is an intuitive tool that allows convenient setup of each servo product. If you observe anything out of the normal with your Sigma 5 products, the first thing to do would be to check whether the configuration settings are compatible with your application.

Its most helpful function is the alarm diagnostic function. Troubleshooting is usually initiated after a machine raises an alarm. This software is designed to identify all the possible reasons that might have generated a specific alarm, and presents possible corrective measures as well.

Moreover, SigmaWin+ has enhanced features such as wiring check and auto-tuning of multiple parameters. Using these you can not only find the loopholes you are looking for but also optimize operations.

  • Yaskawa Customer Support

To top off the aforementioned troubleshooting options, MRO’s Repair team is always available for help. If you are experiencing a mind-boggling issue with your Sigma 5 products, this team is the go-to. Apart from repair work, MRO Electric and Supply has a core exchange program that saves the buyer time and money when receiving their new unit.

ATS48 Soft Start Troubleshooting and Introduction

The Altistart 48(ATS48) series of soft starters by Square D allows for consistent start/stop rates that are independent of motor loads. These devices are more advanced than the standard drives that cannot control the applied motor torque. Featuring contact wiring and control, the soft starter allows for near-seamless integration with existing operations. Many preset parameters are included with the device and they cover a large spectrum of operations. Additional parameters may also be loaded up to meet specific needs. Available power ratings include:

  • 3 – 200 HP @ 208VAC, 60 Hz
  • 5 – 250 HP @ 230VAC, 60 Hz
  • 10 – 500 HP @ 460VAC, 60 Hz
  • 15 – 600 HP @ 575VAC, 60Hz

The ATS48 series features a dual configuration of two motors which allows for a cascaded start/stop in many operations. Using the Torque Control System(TCS) the unit can minimize wear on gears which allows for less time servicing the unit.

The Altistart 48 series takes advantage of the PowerSuite™ software for programming of your drive or soft starter.  With this software, you will be able to monitor and document all of your operations. Configurations are easily saved via hard disk, CD-ROM, flash memory, etc. Using Ethernet technology, the user is able to configure and monitor operations on the go, and a constant feed of information allows for real-time opportunity to modify and adjust configuration files on the fly.

Troubleshooting can be an issue for people when so many different things are going on. It just isn’t feasible to stop operations every time an error occurs. Below is a list of fault codes for the ATS48 Soft Start series that will help determine most issues:

Fault CodeDescription
nLP
rdY
Soft start without run command and:
• Line power not supplied
• Line power supplied
tbSStarting time delay not elapsed
HEAMotor preheating in progress
(Use SUP menu to set up monitoring
parameter. Factory setting: Motor Current.)
Soft start with run command
brLSoft start braking
StbWaiting for a command (RUN or STOP) in
cascade mode
CFF Invalid configuration on power-up
CFI Invalid configuration
CLFLoss of Control Power
EEFInternal memory fault
EtFExternal fault
ErFLine frequency out of tolerance
InFInternal fault
LrFLocked rotor fault
OCFOvercurrent fault
OHFSoft start overheating fault
OLCCurrent overload fault
OLFMotor overload/ground fault
OtFMotor thermal fault detected by PTC probes
PHFLoss of line or motor phase
PIFPhase reversal fault
SLFSerial link fault
StFExcessive starting time
ULFMotor underload fault
USFLack of AC line power on a run command

MRO Electric and Supply carries all models of this unit and has a fast and easy repair service to get your unit fixed and back into your hands as soon as possible.

PLC vs. DCS: What’s the difference?

Before we get into the differences of a PLC’s and DCS’s, we need to talk about what each of them are designed to do.

What is a PLC?

A PLC, or Programmable Logic Controller, is a computer that has been adapted to specifically meet the needs of any specific manufacturing process. These devices come in many different shapes and sizes, with many options for digital and analog I/O, as well as protection from high temperatures, vibration, and electrical noise. The invention of the PLC allowed computers to be streamlined into the industrial automation process.

A PLC can be a single device calculating and executing operations, or a rack of different modules may be used to meet whatever your automation system requires. Some of the additional components include processors, power supplies, additional IO, interfaces, and much more.  Every part works together to be able to run open or closed loop operations that are rated at high speed and high precision. Take a CNC machine for example; a PLC would be used to control positioning and motion, as well as torque control. These devices are popular because they are very inexpensive relative to the amount of power and how many hours you get out of them.

 What is a DCS?

A Distributed Control System is an automated control system that streamlines the functionalities of the various devices that are used throughout an entire work space. This type of system uses many different controllers to allow all the machining parts to talk to each other as well as computers that can input parameters and display information such as power usage, speed, and much more. These controllers are distributed geographically across a plant to allow for high-speed communication to the control room. When using different types of modules however, the system may require different communication standards such as Modbus and Profibus. DCS’s started coming to fruition throughout the 1960’s once the microcomputer was brought widespread into the market.

Then what exactly is the difference?

A PLC will probably be used to control a machine that isn’t too complex wheres the DCS can have total control of all the operations in an entire plant. The PLC is preferred in situations where the machine does not have to worry about meeting specific conditions inside the plant. These conditions typically involve operations that may need to stop or restart, as well maintaining precise temperatures. A DCS will be able to take advantage of all the aspects of an automated system, from the machines and sensors to the controllers and computers. An entire DCS is much more expensive than a few PLC’s, but each have their advantages in any given situation and certain automated systems will always require one over the other.

Visit MRO Electric and Supply’s website to see all of our available Programmable Logic Controllers. If we don’t have what you need listed on the site, contact us at sales@mroelectric.com or (800)691-8511 and we will be happy to help.

Testing your Alpha Power Supply Module

The following is a set of instructions to help you get your Alpha Power Supply Module to read “- -” on the display and have a consistent 300 volt DC output:

  1. Turn off the power. Make sure the charge light is off before doing anything. Check for a short between the bottom and top buss bars. If there is a short, disconnect all modules until the short disappears. Once there is no short, continue.
  2. Feed a 3 phase input into L1, L2, and L3 of the the power supply. Between 200V and 220V AC for leg to leg connections and between 100V and 110V AC for let to ground connections.
  3. Feed 200V into the CX1A connector.
  4. Install a jumper onto the top/bottom pins of the grouping of 3 pins on the CX3/MCC cable coming into the power supply.
  5. Install a jumper onto the top two pins of the grouping of 3 pins on the CX4 cable on the power supply.
  6. Make sure that all screws on the PCB are tightly screwed in.

alpha-power-supply

After following this process, your power supply module should now read “- -” and have baseline voltage output. Sometimes you may not have the necessary equipment to make a diagnosis on your motor, but we do. MRO Electric and Supply offers high quality repair services on all motors and spindle drives so you don’t have to worry about it. Please take a look at our website to see all available brands and parts we can service for you. Our rebuilds for these size drives usually only take 2-3 days, which includes rebuilding the part, painting the part, and fully testing the part to ensure top quality. By getting your part back to you as soon as possible, you are able to minimize downtime, and by doing the job right you can have peace of mind knowing that your FANUC drive will now work properly and not be the reason for downtime in the future.

MRO Electric and Supply has new and refurbished FANUC CNC parts available. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Diagnosing your FANUC Current Alarm

If you are getting a high current alarm on your FANUC motor, it is going to be caused by either the motor itself, the drive, or a cable. To begin the process of figuring out which alarm you are receiving you must disconnect the leads from the motor. Try powering it up and look to see if the alarm LED is lit. Fanuc alarms include the HC LED, alarm 8/9/A/B for Servo motors, and alarm 12 for Spindle motors.

  • If you no longer are seeing an alarm, the motor is most likely bad.
  • If you have powered the motor and are receiving the alarm, the issue is most likely with the drive.

Because you have disconnected the leads from the motor, you are able to use an ohm meter/megger to monitor the power levels of the cable and motor, and make sure they are working as intended. Using a megger will help you decide if your motor is grounded correctly where an ohm reader will let you know if your motor has shorted.

Using your ohm meter check for shorts both leg-to-leg and leg-to-ground on each of the legs. The leg-to-leg readings should be consistently low between every leg while the leg-to-ground readings will stay open. The megger is used to check between the leg and ground to see if the problem could be with the terminal box on the motor or any cables connected to it.

Sometimes you may not have the necessary equipment to make a diagnosis on your motor, but we do. MRO Electric and Supply offers high quality repair services on all motors so you don’t have to worry about it. Check out our website to see all available brands and parts we can service for you.

MRO Electric and Supply has new and refurbished FANUC CNC parts available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

G Codes

G Codes

G Codes

As a generic name for a plain-text language in which CNC machine are able to understand, G-Codes are important to understand in the manufacturing, automation and engineering spaces. You can enter a G-Code manually if you wish, but you do not have to because of the CAD/CAM software’ abilities along with the machine controller.  G-Codes are not necessarily readable by humans, but it’s possible to look through the file and determine what is generally occurring.

In the factory automation space, nobody likes downtime and receiving error codes. While using CNCs (view FANUC CNC parts here), many professionals are faced with G Codes. By definition, a G Code is a computer code language that is used to guide CNC machine devices to perform specific motions. A few examples of specific motions would be:

  • canned cycles
  • work coordinates
  • several repetitive cycles.
G Codes: canned cycles-

Also referred to as a fixed cycle, canned cycles are ways to effectively and efficiently perform repetitive CNC machining operations. They automate specific machining functions. A few examples would be pocketing, threading, and drilling. A canned cycle is almost always stored as a pre-program in a machine’s controller. To learn more about canned cycles, check out this article courtesy of zero-divide.net.

G Codes: work coordinates-

The G Code coordinate pipeline goes something like this:

  • Unit conversion to metric
  • Convert from relative to absolute and polar to Cartesian: g90g91XYZ()
  • G52, G54, and G92 offsets
  • G51 scaling
  • G68 coordinate rotation

G-Code is the most popular programming language used for programming CNC machinery. Some G words alter the state of the machine so that it changes from cutting straight lines to cutting arcs. Other G words cause the interpretation of numbers as millimeters rather than inches. Some G words set or remove tool length or diameter offsets. Be sure to check out our article covering FANUC CNC Codes here.

MRO Electric and Supply has new and refurbished FANUC CNC parts available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Tool Parameters, Feeds, and Speeds

Listed below are some easily-understood G-code commands in which are used for setting the speed, feed, and tool parameters.

F= Feed

The F command’s purpose is to set the feed rate. Keep in mind, the machine operates at the specified speed rate when G1 is used, G1 commands are set to operate at the set F value.

An error is likely to occur if the feed rate (F) isn’t set once before the first G1 call.  Here is an example:

  • G1 F1500 X100 Y100

S= Spindle Speed

The S command’s purpose is to set the spindle speed. The Spindle speed is almost always set in RPMs (revolutions per minute). Here is an example:

  • S10000

T= Tool

The T command’s purpose is paired with M6 in order to display the tool number to be used for cutting the current file. Here is an example:

  • M6 T1
Below is a complete listing of G Codes:
  • G00     Rapid traverse 
  • G01     Linear interpolation with feed rate
  • G02     Circular interpolation (clockwise)
  • G03     Circular interpolation (counterclockwise)
  • G2/G3   Helical interpolation
  • G04     Dwell time in milliseconds
  • G05     Spline definition
  • G06     Spline interpolation
  • G07     Tangential circular interpolation, Helix interpolation, Polygon interpolation, Feedrate interpolation
  • G08     Ramping function at block transition / Look ahead “off”
  • G09     No ramping function at block transition / Look ahead “on”
  • G10     Stop dynamic block preprocessing
  • G11     Stop interpolation during block preprocessing
  • G12     Circular interpolation (CW) with radius
  • G13     Circular interpolation (CCW) with radius
  • G14     Polar coordinate programming, absolute
  • G15     Polar coordinate programming, relative
  • G16     Definition of the pole point of the polar coordinate system
  • G17     Selection of the X, Y plane
  • G18     Selection of the Z, X plane
  • G19     Selection of the Y, Z plane
  • G20     Selection of a freely definable plane
  • G21     Parallel axes “on”
  • G22     Parallel axes “off”
  • G24     Safe zone programming; lower limit values
  • G25     Safe zone programming; upper limit values
  • G26     Safe zone programming “off”
  • G27     Safe zone programming “on”
  • G33     Thread cutting with constant pitch
  • G34     Thread cutting with dynamic pitch
  • G35     Oscillation configuration
  • G38     Mirror imaging “on”
  • G39     Mirror imaging “off”
  • G40     Path compensations “off”
  • G41     Path compensation left of the workpiece contour
  • G42     Path compensation right of the workpiece contour
  • G43     Path compensation left of the workpiece contour with altered approach
  • G44     Path compensation right of the workpiece contour with altered approach
  • G50     Scaling
  • G51     Part rotation; programming in degrees
  • G52     Part rotation; programming in radians
  • G53     Zero offset off
  • G54     Zero offset #1
  • G55     Zero offset #2
  • G56     Zero offset #3
  • G57     Zero offset #4
  • G58     Zero offset #5
  • G59     Zero offset #6
  • G63 Feed/spindle override not active
  • G66 Feed/spindle override active
  • G70     Inch format active
  • G71     Metric format active
  • G72     Interpolation with precision stop “off”
  • G73     Interpolation with precision stop “on”
  • G74     Move to home position
  • G75     Curvature function activation
  • G76     Curvature acceleration limit
  • G78     Normalcy function “on” (rotational axis orientation)
  • G79     Normalcy function “off”
G80 – G89 for milling applications:
  • G80     Canned cycle “off”
  • G81     Drilling to final depth canned cycle
  • G82     Spot facing with dwell time canned cycle
  • G83     Deep hole drilling canned cycle
  • G84     Tapping or Thread cutting with balanced chuck canned cycle
  • G85     Reaming canned cycle
  • G86     Boring canned cycle
  • G87     Reaming with measuring stop canned cycle
  • G88     Boring with spindle stop canned cycle
  • G89     Boring with intermediate stop canned cycle
G81 – G88 for cylindrical grinding applications:
  • G81     Reciprocation without plunge
  • G82     Incremental face grinding
  • G83     Incremental plunge grinding
  • G84     Multi-pass face grinding
  • G85     Multi-pass diameter grinding
  • G86     Shoulder grinding
  • G87     Shoulder grinding with face plunge
  • G88     Shoulder grinding with diameter plunge
  • G90     Absolute programming
  • G91     Incremental programming
  • G92     Position preset
  • G93     Constant tool circumference velocity “on” (grinding wheel)
  • G94     Feed in mm / min (or inch / min)
  • G95     Feed per revolution (mm / rev or inch / rev)
  • G96     Constant cutting speed “on”
  • G97     Constant cutting speed “off”
  • G98     Positioning axis signal to PLC
  • G99     Axis offset
  • G100   Polar transformation “off”
  • G101   Polar transformation “on”
  • G102   Cylinder barrel transformation “on”; cartesian coordinate system
  • G103   Cylinder barrel transformation “on,” with real-time-radius compensation (RRC)
  • G104   Cylinder barrel transformation with centerline migration (CLM) and RRC
  • G105   Polar transformation “on” with polar axis selections
  • G106   Cylinder barrel transformation “on” polar-/cylinder-coordinates
  • G107   Cylinder barrel transformation “on” polar-/cylinder-coordinates with RRC
  • G108   Cylinder barrel transformation polar-/cylinder-coordinates with CLM and RRC
  • G109   Axis transformation programming of the tool depth
  • G110   Power control axis selection/channel 1
  • G111   Power control pre-selection V1, F1, T1/channel 1 (Voltage, Frequency, Time)
  • G112   Power control pre-selection V2, F2, T2/channel 1
  • G113   Power control pre-selection V3, F3, T3/channel 1
  • G114   Power control pre-selection T4/channel 1
  • G115   Power control pre-selection T5/channel 1
  • G116   Power control pre-selection T6/pulsing output
  • G117   Power control pre-selection T7/pulsing output
  • G120   Axis transformation; orientation changing of the linear interpolation rotary axis
  • G121   Axis transformation; orientation change in a plane
  • G125   Electronic gearbox; plain teeth
  • G126   Electronic gearbox; helical gearing, axial
  • G127   Electronic gearbox; helical gearing, tangential
  • G128   Electronic gearbox; helical gearing, diagonal
  • G130   Axis transformation; programming of the type of the orientation change
  • G131   Axis transformation; programming of the type of the orientation change
  • G132   Axis transformation; programming of the type of the orientation change
  • G133   Zero lag thread cutting “on”
  • G134   Zero lag thread cutting “off”
  • G140   Axis transformation; orientation designation workpiece fixed coordinates
  • G141   Axis transformation; orientation designation active coordinates
  • G160   ART activation
  • G161   ART learning function for velocity factors “on”
  • G162   ART learning function deactivation
  • G163   ART learning function for acceleration factors
  • G164   ART learning function for acceleration changing
  • G165   Command filter “on”
  • G166   Command filter “off”
  • G170   Digital measuring signals; block transfer with hard stop
  • G171   Digital measuring signals; block transfer without hard stop
  • G172   Digital measuring signals; block transfer with smooth stop
  • G175   SERCOS-identification number “write”
  • G176   SERCOS-identification number “read”
  • G180   Axis transformation “off”
  • G181   Axis transformation “on” with not rotated coordinate system
  • G182   Axis transformation “on” with rotated/displaced coordinate system
  • G183   Axis transformation; definition of the coordinate system
  • G184   Axis transformation; programming tool dimensions
  • G186   Look ahead; corner acceleration; circle tolerance
  • G188   Activation of the positioning axes
  • G190   Diameter programming deactivation
  • G191   Diameter programming “on” and display of the contact point
  • G192   Diameter programming; only display contact point diameter
  • G193   Diameter programming; only display contact point actual axes center point
  • G200   Corner smoothing “off”
  • G201   Corner smoothing “on” with defined radius
  • G202   Corner smoothing “on” with defined corner tolerance
  • G203   Corner smoothing with defined radius up to maximum tolerance
  • G210   Power control axis selection/Channel 2
  • G211   Power control pre-selection V1, F1, T1/Channel 2
  • G212   Power control pre-selection V2, F2, T2/Channel 2
  • G213   Power control pre-selection V3, F3, T3/Channel 2
  • G214   Power control pre-selection T4/Channel 2
  • G215   Power control pre-selection T5/Channel 2
  • G216   Power control pre-selection T6/pulsing output/Channel 2
  • G217   Power control pre-selection T7/pulsing output/Channel 2
  • G220   Angled wheel transformation “off”
  • G221   Angled wheel transformation “on”
  • G222   Angled wheel transformation “on” but angled wheel moves before others
  • G223   Angled wheel transformation “on” but angled wheel moves after others
  • G265   Distance regulation – axis selection
  • G270   Turning finishing cycle
  • G271   Stock removal in turning
  • G272   Stock removal in facing
  • G274   Peck finishing cycle
  • G275   Outer diameter / internal diameter turning cycle
  • G276   Multiple pass threading cycle
  • G310   Power control axes selection /channel 3
  • G311   Power control pre-selection V1, F1, T1/channel 3
  • G312   Power control pre-selection V2, F2, T2/channel 3
  • G313   Power control pre-selection V3, F3, T3/channel 3
  • G314   Power control pre-selection T4/channel 3
  • G315   Power control pre-selection T5/channel 3
  • G316   Power control pre-selection T6/pulsing output/Channel 3
  • G317   Power control pre-selection T7/pulsing output/Channel 3

In conclusion, becoming well-versed on CNC G-Codes, along with other codes associated with CNCs is imperative in this day and age. By having up-to-speed knowledge of CNC codes, you could most definitely set yourself apart from the average Joe.

FANUC A16B-1212-0100 Power Supply Unit

MRO Electric and Supply has new and refurbished FANUC A16B-1212-0100 power supply units available now, and also offers repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

a16b-1212-0100 wiring diagram
A16B-1212-0100 Wiring Diagram

The A16B-1212-0100 is an easy to mount CNC power supply that is designed to connect directly to the System 0 master PCB. All its AC inputs and DC outputs are linked via connectors. Because the power supply unit has a built-in input unit function, it is not necessary to prepare a a separate relay or input unit for switching the AC input on and off. The AC input can be connected directly to the power supply unit. The unit has an AC service outlet, which is switched on and off simultaneously with the power supply unit. This AC service outlet can be used to supply power to a unit such as a fan motor. Sometimes the alternate FANUC part number P007P0355 is used.

FANUC A16B-1212-0100 Input / Output Connectors

Connector NameDescription
CP1200/220/230/240 VAC input
CP2200/220/230/240 VAC output
(switched on and off simultaneously with the power supply unit)
CP3- Power on/off switch contact signal input.
- External alarm signal input.
- Alarm signal input.
CP12- Supply of +5 V, +15 V, –15 V, +24 V, and +24E to the master
printed–circuit board.
- EN signal output.
CP14- +24E supply for the additional I/O B2 printed circuit board
(for Series 0).
- +24E supply for the connection unit (for Series 15)
CP15+24V supply for the 9” monochrome CRT/MDI unit (for Series 0).

* MRO Electric can offer replacement 9" monitors for your unit.

Descriptions of the A16B-1212-0100 I/O Signals and Display LEDs
    1. AC power supply display LED (green) – When an AC power source is connected to the power supply unit, the LED lights regardless of whether the unit is on or off.
    1. Alarm display LED (red) – If the power supply unit is switched off because of an alarm condition due to a failure such as an output error, the alarm display LED lights and remains on until the alarm condition is cleared by pressing the OFF switch or shutting down the AC power supply.
  1. ENABLE signal EN (output) – This TTL level signal indicates that all DC outputs are normal. It becomes low if an output failure is detected in any circuit.
  2. Power supply on/off control signal ON–OFF–COM (input) – If two switches are connected to this circuit as shown below, pressing the ON switch turns on the power supply unit, while pressing the OFF switch turns the unit off. If an alarm occurs in the power supply unit, and the alarm display LED lights in red, however, pressing the ON switch will not turn on the power supply unit. In this case, it is necessary to remove the cause of the alarm and press the OFF switch. Pressing the OFF switch clears the alarm condition. Subsequently pressing the ON switch turns on the power supply
    unit.
  3. External alarm signal AL (input) – When a contact signal from another unit or external power supply becomes ”closed,” the ENABLE signal of this power supply unit becomes low, thus immediately turning off the power supply unit.
  4. Alarm signal FA–FB (output) –  This contact signal indicates the state of all DC outputs. The contact is open when all the DC outputs are normal. It is closed if an output failure is detected in any DC output circuit. If an external alarm signal (item 5) is connected, the FA–FB contact opens, when all DC outputs are normal and the external alarm signal is ”open.” The contact closes when the external alarm signal becomes ”closed.”
Adjustments and Settings

The FANUC A16B-1212-0100 power supply unit requires no adjustment or setting. Do not attempt to adjust the reference voltage (=10.00V) at A10 unless absolutely necessary, because the reference voltage has been adjusted during unit test; merely confirm the voltage across A10 and A0 of check connector CP16. If the reference voltage at A10 falls outside the rated range, set it to 10.00V, using VR11, while measuring the voltage with a digital voltmeter. Rotating VR11 clockwise increases the voltage at A10. After the power supply unit is replaced, always to check the reference voltage at A10.

a16b-1212-0100
A16B-1212-0100

Micromaster 420

Siemens Micromaster 420 Faults and Alarms

 Siemens Micromaster 420 Faults and Alarms

A blog we posted earlier this week about the Micromaster 420 troubleshooting referenced the Faults and Alarms list for the Micromaster series, so we decided that it would make sense to make the list of Micromaster 420 Faults and Alarms directly available. This is from the corresponding manual for the Micromaster 420 series, but it is buried within the manual which most people most likely don’t even have. Hopefully, this helps with your troubleshooting.

Check out our article touching on Siemens Simodrive E/R Module Fault Troubleshooting, along with other Siemens series coverage.

View our 420 Micromaster Drives in stock. For more information or to request a quote, please call 800-691-8511 or email sales@mroelectric.com. We also provide pre-priced Micromaster 420 Repairs.

Continue reading Siemens Micromaster 420 Faults and Alarms

FANUC Controls Alarms

FANUC CNC Troubleshooting – Frequently Asked Questions

MRO Electric stocks new and refurbished FANUC products, and also offers reliable FANUC repairs. Please call 800691-8511 or email sales@mroelectric.com for a quote.

What is the proper method to test a motor for a short?
The proper way to test a FANUC motor for a short is to first lock out the machine, remove the cable from the drive, and test all three motor phases to ground with a megohmmeter. This will test both the motor and the cable for problems.

Why am I getting errors when I connect to my FANUC drive’s RS-232 port?
There are a number of explanations for these errors. The RS-323 port is a high-fail component on a FANUC drive as it is very susceptible to electrical surges. However, the RS-232 cable is also another high-fail item. Ensure that you are using a cable that is known to be functional when communicating. Otherwise when you attempt to read-in or punch-out a cable, you will get an 086 alarm that is going to indicate that the cable is incorrect, or that the port has failed.

To test whether the cable or the port has failed, take a known good cable and insert it into the RS-232 port. Next, set your machine up to receive a file. The screen should being to flash “READ”. Next, transmit your file into the machine tool. If the machine continues to flash “READ” (or “LSK” on modern controls) but never receives the file, you have a defective communications port on either the memory board or the master board. These boards or your machine will need to be sent in for repair.

What is an Axis Communications Error?
An Axis Communications Error indicates a communications problem between the motor encoder and the CNC control. This can be caused by the motor encoder itself,  the cable going to the encoder, or the axis control card the cable is plugged into.

What is an Excess Error Alarm and why is it caused?
Generally, an Excess Error means that the machine has moved beyond its allowable tolerance. The CNC has told the servo drive to make a move, the servo drive moves the motor,  which in turn moves the encoder. As the machine moves, there will be some deviation. This deviation is known as the Excess. The parameters set how much deviation/excess should be allowed.

These errors can be caused by a variety of problems. For example, a dull tool can caused the axis to be pushed out of position which results in a deviation error. Debris build up can cause deviations while the machine is stopped. Additionally, a failed servo drive can also cause deviation errors.

What is FANUC Alarm 401?
Alarm 401 is a very generic alarm. It simply means that the servo’s did not obey. The CNC, which is in charge of the servos, tells the servo drives to turn on and remain on. If for whatever reason the servo drive turns itself off without the permission from the CNC, the CNC will generate a 401 alarm. This alarm will usually occur with other alarms, such as the 414 Alarm.

What is FANUC Alarm 414?
The 414 Alarm is an alarm issued by the CNC that says a problem has been found in either the servo drive or the feedback system. The alarm will show which axis is causing the problem. To identify the specifics of this alarm, you must go into the CNC diagnostics page. Diagnostics number 200 on the 16th row will indicate what is causing the problem.

What is the difference between a High-Current Alarm and an Over-Current alarm?
A high current is an abnormal current that can be caused by noise. When the system detects this, it will generally shut the machine down and generate a High-Current Alarm. This alarm is usually caused by defective servo drive or cooling contamination inside of the motor windings or cable.

An Over-Current Alarm indicates that too much current has flowed through the DC link. This is usually caused by a short in the system, an unplanned contact, a defective transistor module, or dull tooling attempting to make a cut. 

Why do I get a Soft Overtravel Alarm when I try to reference a newly installed motor?
When the CNC power down, it remembers its last known position. When you restart the machine, an incremental encoder will ask that the machine be re-positioned. When you try to do a re-reference of the machine tool, and it doesn’t agree with where the last known position was, the machine with automatically go into a default that indicates a Soft Overtravel Alarm. These alarms can occur as any point in the travel of the machine. To bypass this alarm, power the machine down and hold down the key with the letter “P” on it as well as the “Cancel” button (at the same time). Then power the machine up while you continue to hold down both of these buttons. If you do this, the machine will ignore all Soft Overtravels until the first zero referenced position has been done on that axis, and will clear the Soft Overtravel Alarms.

I unplugged my AC or DC FANUC motors, and now I am getting a 300APC Alarm. What is that?
A 300APC Alarm indicates that you are using an absolute pulse coder. The difference between an absolute pulse coder and a incremental pulse coder deals in the memory retention of the position. Using a CNC control with an incremental pulse coder, you must reference the machine every time you turn the machine back on.

With an absolute pulse coder, there is a battery backed memory that retains the position of the machine tool when it powers down. When the CNC machine turns back on, it asks the encoder its position, and the encoder then responds back with its current position. If it is within tolerance of where it was when it shut down, the CNC will continue to run the program. However, if you lose the memory retention due to an encoder cable being unplugged, you will end up with the 300 level APC alarms. These alarms simply signify that the machine must be re-referenced. The re-referencing procedure is determined by the machine tool builder – consult your machine tool builder manual for the proper operation.