Category Archives: Troubleshooting

PLC vs. DCS: What’s the difference?

Before we get into the differences of a PLC’s and DCS’s, we need to talk about what each of them are designed to do.

What is a PLC?

A PLC, or Programmable Logic Controller, is a computer that has been adapted to specifically meet the needs of any specific manufacturing process. These devices come in many different shapes and sizes, with many options for digital and analog I/O, as well as protection from high temperatures, vibration, and electrical noise. The invention of the PLC allowed computers to be streamlined into the industrial automation process.

A PLC can be a single device calculating and executing operations, or a rack of different modules may be used to meet whatever your automation system requires. Some of the additional components include processors, power supplies, additional IO, interfaces, and much more.  Every part works together to be able to run open or closed loop operations that are rated at high speed and high precision. Take a CNC machine for example; a PLC would be used to control positioning and motion, as well as torque control. These devices are popular because they are very inexpensive relative to the amount of power and how many hours you get out of them.

 What is a DCS?

A Distributed Control System is an automated control system that streamlines the functionalities of the various devices that are used throughout an entire work space. This type of system uses many different controllers to allow all the machining parts to talk to each other as well as computers that can input parameters and display information such as power usage, speed, and much more. These controllers are distributed geographically across a plant to allow for high-speed communication to the control room. When using different types of modules however, the system may require different communication standards such as Modbus and Profibus. DCS’s started coming to fruition throughout the 1960’s once the microcomputer was brought widespread into the market.

Then what exactly is the difference?

A PLC will probably be used to control a machine that isn’t too complex wheres the DCS can have total control of all the operations in an entire plant. The PLC is preferred in situations where the machine does not have to worry about meeting specific conditions inside the plant. These conditions typically involve operations that may need to stop or restart, as well maintaining precise temperatures. A DCS will be able to take advantage of all the aspects of an automated system, from the machines and sensors to the controllers and computers. An entire DCS is much more expensive than a few PLC’s, but each have their advantages in any given situation and certain automated systems will always require one over the other.

Visit MRO Electric and Supply’s website to see all of our available Programmable Logic Controllers. If we don’t have what you need listed on the site, contact us at sales@mroelectric.com or (800)691-8511 and we will be happy to help.

Testing your Alpha Power Supply Module

The following is a set of instructions to help you get your Alpha Power Supply Module to read “- -” on the display and have a consistent 300 volt DC output:

  1. Turn off the power. Make sure the charge light is off before doing anything. Check for a short between the bottom and top buss bars. If there is a short, disconnect all modules until the short disappears. Once there is no short, continue.
  2. Feed a 3 phase input into L1, L2, and L3 of the the power supply. Between 200V and 220V AC for leg to leg connections and between 100V and 110V AC for let to ground connections.
  3. Feed 200V into the CX1A connector.
  4. Install a jumper onto the top/bottom pins of the grouping of 3 pins on the CX3/MCC cable coming into the power supply.
  5. Install a jumper onto the top two pins of the grouping of 3 pins on the CX4 cable on the power supply.
  6. Make sure that all screws on the PCB are tightly screwed in.

alpha-power-supply

After following this process, your power supply module should now read “- -” and have baseline voltage output. Sometimes you may not have the necessary equipment to make a diagnosis on your motor, but we do. MRO Electric and Supply offers high quality repair services on all motors and spindle drives so you don’t have to worry about it. Please take a look at our website to see all available brands and parts we can service for you. Our rebuilds for these size drives usually only take 2-3 days, which includes rebuilding the part, painting the part, and fully testing the part to ensure top quality. By getting your part back to you as soon as possible, you are able to minimize downtime, and by doing the job right you can have peace of mind knowing that your FANUC drive will now work properly and not be the reason for downtime in the future.

MRO Electric and Supply has new and refurbished FANUC CNC parts available. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Diagnosing your FANUC Current Alarm

If you are getting a high current alarm on your FANUC motor, it is going to be caused by either the motor itself, the drive, or a cable. To begin the process of figuring out which alarm you are receiving you must disconnect the leads from the motor. Try powering it up and look to see if the alarm LED is lit. Fanuc alarms include the HC LED, alarm 8/9/A/B for Servo motors, and alarm 12 for Spindle motors.

fanuc high current

  • If you no longer are seeing an alarm, the motor is most likely bad.
  • If you have powered the motor and are receiving the alarm, the issue is most likely with the drive.

Because you have disconnected the leads from the motor, you are able to use an ohm meter/megger to monitor the power levels of the cable and motor, and make sure they are working as intended. Using a megger will help you decide if your motor is grounded correctly where an ohm reader will let you know if your motor has shorted.

Using your ohm meter check for shorts both leg-to-leg and leg-to-ground on each of the legs. The leg-to-leg readings should be consistently low between every leg while the leg-to-ground readings will stay open. The megger is used to check between the leg and ground to see if the problem could be with the terminal box on the motor or any cables connected to it.

Sometimes you may not have the necessary equipment to make a diagnosis on your motor, but we do. MRO Electric and Supply offers high quality repair services on all motors so you don’t have to worry about it. Check out our website to see all available brands and parts we can service for you.

MRO Electric and Supply has new and refurbished FANUC CNC parts available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

 

G Codes

G Codes

G Codes

As a generic name for a plain-text language in which CNC machine are able to understand, G-Codes are important to understand in the manufacturing, automation and engineering spaces. You can enter a G-Code manually if you wish, but you do not have to because of the CAD/CAM software’ abilities along with the machine controller.  G-Codes are not necessarily readable by humans, but it’s possible to look through the file and determine what is generally occurring.

In the factory automation space, nobody likes downtime and receiving error codes. While using CNCs (view FANUC CNC parts here), many professionals are faced with G Codes. By definition, a G Code is a computer code language that is used to guide CNC machine devices to perform specific motions. A few examples of specific motions would be:

  • canned cycles
  • work coordinates
  • several repetitive cycles.
G Codes: canned cycles-

Also referred to as a fixed cycle, canned cycles are ways to effectively and efficiently perform repetitive CNC machining operations. They automate specific machining functions. A few examples would be pocketing, threading, and drilling. A canned cycle is almost always stored as a pre-program in a machine’s controller. To learn more about canned cycles, check out this article courtesy of zero-divide.net.

G Codes: work coordinates-

The G Code coordinate pipeline goes something like this:

  • Unit conversion to metric
  • Convert from relative to absolute and polar to Cartesian: g90g91XYZ()
  • G52, G54, and G92 offsets
  • G51 scaling
  • G68 coordinate rotation

G-Code is the most popular programming language used for programming CNC machinery. Some G words alter the state of the machine so that it changes from cutting straight lines to cutting arcs. Other G words cause the interpretation of numbers as millimeters rather than inches. Some G words set or remove tool length or diameter offsets. Be sure to check out our article covering FANUC CNC Codes here.

MRO Electric and Supply has new and refurbished FANUC CNC parts available. We also offer repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.

Tool Parameters, Feeds, and Speeds

Listed below are some easily-understood G-code commands in which are used for setting the speed, feed, and tool parameters.

F= Feed

The F command’s purpose is to set the feed rate. Keep in mind, the machine operates at the specified speed rate when G1 is used, G1 commands are set to operate at the set F value.

An error is likely to occur if the feed rate (F) isn’t set once before the first G1 call.  Here is an example:

  • G1 F1500 X100 Y100

S= Spindle Speed

The S command’s purpose is to set the spindle speed. The Spindle speed is almost always set in RPMs (revolutions per minute). Here is an example:

  • S10000

T= Tool

The T command’s purpose is paired with M6 in order to display the tool number to be used for cutting the current file. Here is an example:

  • M6 T1
Below is a complete listing of G Codes:
  • G00     Rapid traverse 
  • G01     Linear interpolation with feed rate
  • G02     Circular interpolation (clockwise)
  • G03     Circular interpolation (counterclockwise)
  • G2/G3   Helical interpolation
  • G04     Dwell time in milliseconds
  • G05     Spline definition
  • G06     Spline interpolation
  • G07     Tangential circular interpolation, Helix interpolation, Polygon interpolation, Feedrate interpolation
  • G08     Ramping function at block transition / Look ahead “off”
  • G09     No ramping function at block transition / Look ahead “on”
  • G10     Stop dynamic block preprocessing
  • G11     Stop interpolation during block preprocessing
  • G12     Circular interpolation (CW) with radius
  • G13     Circular interpolation (CCW) with radius
  • G14     Polar coordinate programming, absolute
  • G15     Polar coordinate programming, relative
  • G16     Definition of the pole point of the polar coordinate system
  • G17     Selection of the X, Y plane
  • G18     Selection of the Z, X plane
  • G19     Selection of the Y, Z plane
  • G20     Selection of a freely definable plane
  • G21     Parallel axes “on”
  • G22     Parallel axes “off”
  • G24     Safe zone programming; lower limit values
  • G25     Safe zone programming; upper limit values
  • G26     Safe zone programming “off”
  • G27     Safe zone programming “on”
  • G33     Thread cutting with constant pitch
  • G34     Thread cutting with dynamic pitch
  • G35     Oscillation configuration
  • G38     Mirror imaging “on”
  • G39     Mirror imaging “off”
  • G40     Path compensations “off”
  • G41     Path compensation left of the workpiece contour
  • G42     Path compensation right of the workpiece contour
  • G43     Path compensation left of the workpiece contour with altered approach
  • G44     Path compensation right of the workpiece contour with altered approach
  • G50     Scaling
  • G51     Part rotation; programming in degrees
  • G52     Part rotation; programming in radians
  • G53     Zero offset off
  • G54     Zero offset #1
  • G55     Zero offset #2
  • G56     Zero offset #3
  • G57     Zero offset #4
  • G58     Zero offset #5
  • G59     Zero offset #6
  • G63 Feed/spindle override not active
  • G66 Feed/spindle override active
  • G70     Inch format active
  • G71     Metric format active
  • G72     Interpolation with precision stop “off”
  • G73     Interpolation with precision stop “on”
  • G74     Move to home position
  • G75     Curvature function activation
  • G76     Curvature acceleration limit
  • G78     Normalcy function “on” (rotational axis orientation)
  • G79     Normalcy function “off”
G80 – G89 for milling applications:
  • G80     Canned cycle “off”
  • G81     Drilling to final depth canned cycle
  • G82     Spot facing with dwell time canned cycle
  • G83     Deep hole drilling canned cycle
  • G84     Tapping or Thread cutting with balanced chuck canned cycle
  • G85     Reaming canned cycle
  • G86     Boring canned cycle
  • G87     Reaming with measuring stop canned cycle
  • G88     Boring with spindle stop canned cycle
  • G89     Boring with intermediate stop canned cycle
G81 – G88 for cylindrical grinding applications:
  • G81     Reciprocation without plunge
  • G82     Incremental face grinding
  • G83     Incremental plunge grinding
  • G84     Multi-pass face grinding
  • G85     Multi-pass diameter grinding
  • G86     Shoulder grinding
  • G87     Shoulder grinding with face plunge
  • G88     Shoulder grinding with diameter plunge
  • G90     Absolute programming
  • G91     Incremental programming
  • G92     Position preset
  • G93     Constant tool circumference velocity “on” (grinding wheel)
  • G94     Feed in mm / min (or inch / min)
  • G95     Feed per revolution (mm / rev or inch / rev)
  • G96     Constant cutting speed “on”
  • G97     Constant cutting speed “off”
  • G98     Positioning axis signal to PLC
  • G99     Axis offset
  • G100   Polar transformation “off”
  • G101   Polar transformation “on”
  • G102   Cylinder barrel transformation “on”; cartesian coordinate system
  • G103   Cylinder barrel transformation “on,” with real-time-radius compensation (RRC)
  • G104   Cylinder barrel transformation with centerline migration (CLM) and RRC
  • G105   Polar transformation “on” with polar axis selections
  • G106   Cylinder barrel transformation “on” polar-/cylinder-coordinates
  • G107   Cylinder barrel transformation “on” polar-/cylinder-coordinates with RRC
  • G108   Cylinder barrel transformation polar-/cylinder-coordinates with CLM and RRC
  • G109   Axis transformation programming of the tool depth
  • G110   Power control axis selection/channel 1
  • G111   Power control pre-selection V1, F1, T1/channel 1 (Voltage, Frequency, Time)
  • G112   Power control pre-selection V2, F2, T2/channel 1
  • G113   Power control pre-selection V3, F3, T3/channel 1
  • G114   Power control pre-selection T4/channel 1
  • G115   Power control pre-selection T5/channel 1
  • G116   Power control pre-selection T6/pulsing output
  • G117   Power control pre-selection T7/pulsing output
  • G120   Axis transformation; orientation changing of the linear interpolation rotary axis
  • G121   Axis transformation; orientation change in a plane
  • G125   Electronic gearbox; plain teeth
  • G126   Electronic gearbox; helical gearing, axial
  • G127   Electronic gearbox; helical gearing, tangential
  • G128   Electronic gearbox; helical gearing, diagonal
  • G130   Axis transformation; programming of the type of the orientation change
  • G131   Axis transformation; programming of the type of the orientation change
  • G132   Axis transformation; programming of the type of the orientation change
  • G133   Zero lag thread cutting “on”
  • G134   Zero lag thread cutting “off”
  • G140   Axis transformation; orientation designation workpiece fixed coordinates
  • G141   Axis transformation; orientation designation active coordinates
  • G160   ART activation
  • G161   ART learning function for velocity factors “on”
  • G162   ART learning function deactivation
  • G163   ART learning function for acceleration factors
  • G164   ART learning function for acceleration changing
  • G165   Command filter “on”
  • G166   Command filter “off”
  • G170   Digital measuring signals; block transfer with hard stop
  • G171   Digital measuring signals; block transfer without hard stop
  • G172   Digital measuring signals; block transfer with smooth stop
  • G175   SERCOS-identification number “write”
  • G176   SERCOS-identification number “read”
  • G180   Axis transformation “off”
  • G181   Axis transformation “on” with not rotated coordinate system
  • G182   Axis transformation “on” with rotated/displaced coordinate system
  • G183   Axis transformation; definition of the coordinate system
  • G184   Axis transformation; programming tool dimensions
  • G186   Look ahead; corner acceleration; circle tolerance
  • G188   Activation of the positioning axes
  • G190   Diameter programming deactivation
  • G191   Diameter programming “on” and display of the contact point
  • G192   Diameter programming; only display contact point diameter
  • G193   Diameter programming; only display contact point actual axes center point
  • G200   Corner smoothing “off”
  • G201   Corner smoothing “on” with defined radius
  • G202   Corner smoothing “on” with defined corner tolerance
  • G203   Corner smoothing with defined radius up to maximum tolerance
  • G210   Power control axis selection/Channel 2
  • G211   Power control pre-selection V1, F1, T1/Channel 2
  • G212   Power control pre-selection V2, F2, T2/Channel 2
  • G213   Power control pre-selection V3, F3, T3/Channel 2
  • G214   Power control pre-selection T4/Channel 2
  • G215   Power control pre-selection T5/Channel 2
  • G216   Power control pre-selection T6/pulsing output/Channel 2
  • G217   Power control pre-selection T7/pulsing output/Channel 2
  • G220   Angled wheel transformation “off”
  • G221   Angled wheel transformation “on”
  • G222   Angled wheel transformation “on” but angled wheel moves before others
  • G223   Angled wheel transformation “on” but angled wheel moves after others
  • G265   Distance regulation – axis selection
  • G270   Turning finishing cycle
  • G271   Stock removal in turning
  • G272   Stock removal in facing
  • G274   Peck finishing cycle
  • G275   Outer diameter / internal diameter turning cycle
  • G276   Multiple pass threading cycle
  • G310   Power control axes selection /channel 3
  • G311   Power control pre-selection V1, F1, T1/channel 3
  • G312   Power control pre-selection V2, F2, T2/channel 3
  • G313   Power control pre-selection V3, F3, T3/channel 3
  • G314   Power control pre-selection T4/channel 3
  • G315   Power control pre-selection T5/channel 3
  • G316   Power control pre-selection T6/pulsing output/Channel 3
  • G317   Power control pre-selection T7/pulsing output/Channel 3

 

In conclusion, becoming well-versed on CNC G-Codes, along with other codes associated with CNCs is imperative in this day and age. By having up-to-speed knowledge of CNC codes, you could most definitely set yourself apart from the average Joe.

 

FANUC A16B-1212-0100 Power Supply Unit

MRO Electric and Supply has new and refurbished FANUC A16B-1212-0100 power supply units available now, and also offers repair pricing. For more information, please call 800-691-8511 or email sales@mroelectric.com.
a16b-1212-0100 wiring diagram
A16B-1212-0100 Wiring Diagram

The A16B-1212-0100 is an easy to mount CNC power supply that is designed to connect directly to the System 0 master PCB. All its AC inputs and DC outputs are linked via connectors. Because the power supply unit has a built-in input unit function, it is not necessary to prepare a a separate relay or input unit for switching the AC input on and off. The AC input can be connected directly to the power supply unit. The unit has an AC service outlet, which is switched on and off simultaneously with the power supply unit. This AC service outlet can be used to supply power to a unit such as a fan motor. Sometimes the alternate FANUC part number P007P0355 is used.

 

FANUC A16B-1212-0100 Input / Output Connectors

Connector NameDescription
CP1200/220/230/240 VAC input
CP2200/220/230/240 VAC output
(switched on and off simultaneously with the power supply unit)
CP3- Power on/off switch contact signal input.
- External alarm signal input.
- Alarm signal input.
CP12- Supply of +5 V, +15 V, –15 V, +24 V, and +24E to the master
printed–circuit board.
- EN signal output.
CP14- +24E supply for the additional I/O B2 printed circuit board
(for Series 0).
- +24E supply for the connection unit (for Series 15)
CP15+24V supply for the 9” monochrome CRT/MDI unit (for Series 0).

* MRO Electric can offer replacement 9" monitors for your unit.

 

 

Descriptions of the A16B-1212-0100 I/O Signals and Display LEDs
  1. AC power supply display LED (green) – When an AC power source is connected to the power supply unit, the LED lights regardless of whether the unit is on or off.
  2. Alarm display LED (red) – If the power supply unit is switched off because of an alarm condition due to a failure such as an output error, the alarm display LED lights and remains on until the alarm condition is cleared by pressing the OFF switch or shutting down the AC power supply.
  3. ENABLE signal EN (output) – This TTL level signal indicates that all DC outputs are normal. It becomes low if an output failure is detected in any circuit.
  4. Power supply on/off control signal ON–OFF–COM (input) – If two switches are connected to this circuit as shown below, pressing the ON switch turns on the power supply unit, while pressing the OFF switch turns the unit off. If an alarm occurs in the power supply unit, and the alarm display LED lights in red, however, pressing the ON switch will not turn on the power supply unit. In this case, it is necessary to remove the cause of the alarm and press the OFF switch. Pressing the OFF switch clears the alarm condition. Subsequently pressing the ON switch turns on the power supply
    unit.
  5. External alarm signal AL (input) – When a contact signal from another unit or external power supply becomes ”closed,” the ENABLE signal of this power supply unit becomes low, thus immediately turning off the power supply unit.
  6. Alarm signal FA–FB (output) –  This contact signal indicates the state of all DC outputs. The contact is open when all the DC outputs are normal. It is closed if an output failure is detected in any DC output circuit. If an external alarm signal (item 5) is connected, the FA–FB contact opens, when all DC outputs are normal and the external alarm signal is ”open.” The contact closes when the external alarm signal becomes ”closed.”
Adjustments and Settings

The FANUC A16B-1212-0100 power supply unit requires no adjustment or setting. Do not attempt to adjust the reference voltage (=10.00V) at A10 unless absolutely necessary, because the reference voltage has been adjusted during unit test; merely confirm the voltage across A10 and A0 of check connector CP16. If the reference voltage at A10 falls outside the rated range, set it to 10.00V, using VR11, while measuring the voltage with a digital voltmeter. Rotating VR11 clockwise increases the voltage at A10. After the power supply unit is replaced, always to check the reference voltage at A10.

 

a16b-1212-0100
A16B-1212-0100
Micromaster 420

Siemens Micromaster 420 Faults and Alarms

 Siemens Micromaster 420 Faults and Alarms

A blog we posted earlier this week about the Micromaster 420 troubleshooting referenced the Faults and Alarms list for the Micromaster series, so we decided that it would make sense to make the list of Micromaster 420 Faults and Alarms directly available. This is from the corresponding manual for the Micromaster 420 series, but it is buried within the manual which most people most likely don’t even have. Hopefully, this helps with your troubleshooting.

Check out our article touching on Siemens Simodrive E/R Module Fault Troubleshooting, along with other Siemens series coverage.

View our 420 Micromaster Drives in stock. For more information or to request a quote, please call 800-691-8511 or email sales@mroelectric.com. We also provide pre-priced Micromaster 420 Repairs.

Continue reading Siemens Micromaster 420 Faults and Alarms

FANUC Controls Alarms

FANUC CNC Troubleshooting – Frequently Asked Questions

MRO Electric stocks new and refurbished FANUC products, and also offers reliable FANUC repairs. Please call 800691-8511 or email sales@mroelectric.com for a quote.

What is the proper method to test a motor for a short?
The proper way to test a FANUC motor for a short is to first lock out the machine, remove the cable from the drive, and test all three motor phases to ground with a megohmmeter. This will test both the motor and the cable for problems.

Why am I getting errors when I connect to my FANUC drive’s RS-232 port?
There are a number of explanations for these errors. The RS-323 port is a high-fail component on a FANUC drive as it is very susceptible to electrical surges. However, the RS-232 cable is also another high-fail item. Ensure that you are using a cable that is known to be functional when communicating. Otherwise when you attempt to read-in or punch-out a cable, you will get an 086 alarm that is going to indicate that the cable is incorrect, or that the port has failed.

To test whether the cable or the port has failed, take a known good cable and insert it into the RS-232 port. Next, set your machine up to receive a file. The screen should being to flash “READ”. Next, transmit your file into the machine tool. If the machine continues to flash “READ” (or “LSK” on modern controls) but never receives the file, you have a defective communications port on either the memory board or the master board. These boards or your machine will need to be sent in for repair.

What is an Axis Communications Error?
An Axis Communications Error indicates a communications problem between the motor encoder and the CNC control. This can be caused by the motor encoder itself,  the cable going to the encoder, or the axis control card the cable is plugged into.

What is an Excess Error Alarm and why is it caused?
Generally, an Excess Error means that the machine has moved beyond its allowable tolerance. The CNC has told the servo drive to make a move, the servo drive moves the motor,  which in turn moves the encoder. As the machine moves, there will be some deviation. This deviation is known as the Excess. The parameters set how much deviation/excess should be allowed.

These errors can be caused by a variety of problems. For example, a dull tool can caused the axis to be pushed out of position which results in a deviation error. Debris build up can cause deviations while the machine is stopped. Additionally, a failed servo drive can also cause deviation errors.

What is FANUC Alarm 401?
Alarm 401 is a very generic alarm. It simply means that the servo’s did not obey. The CNC, which is in charge of the servos, tells the servo drives to turn on and remain on. If for whatever reason the servo drive turns itself off without the permission from the CNC, the CNC will generate a 401 alarm. This alarm will usually occur with other alarms, such as the 414 Alarm.

What is FANUC Alarm 414?
The 414 Alarm is an alarm issued by the CNC that says a problem has been found in either the servo drive or the feedback system. The alarm will show which axis is causing the problem. To identify the specifics of this alarm, you must go into the CNC diagnostics page. Diagnostics number 200 on the 16th row will indicate what is causing the problem.

What is the difference between a High-Current Alarm and an Over-Current alarm?
A high current is an abnormal current that can be caused by noise. When the system detects this, it will generally shut the machine down and generate a High-Current Alarm. This alarm is usually caused by defective servo drive or cooling contamination inside of the motor windings or cable.

An Over-Current Alarm indicates that too much current has flowed through the DC link. This is usually caused by a short in the system, an unplanned contact, a defective transistor module, or dull tooling attempting to make a cut. 

Why do I get a Soft Overtravel Alarm when I try to reference a newly installed motor?
When the CNC power down, it remembers its last known position. When you restart the machine, an incremental encoder will ask that the machine be re-positioned. When you try to do a re-reference of the machine tool, and it doesn’t agree with where the last known position was, the machine with automatically go into a default that indicates a Soft Overtravel Alarm. These alarms can occur as any point in the travel of the machine. To bypass this alarm, power the machine down and hold down the key with the letter “P” on it as well as the “Cancel” button (at the same time). Then power the machine up while you continue to hold down both of these buttons. If you do this, the machine will ignore all Soft Overtravels until the first zero referenced position has been done on that axis, and will clear the Soft Overtravel Alarms.

I unplugged my AC or DC FANUC motors, and now I am getting a 300APC Alarm. What is that?
A 300APC Alarm indicates that you are using an absolute pulse coder. The difference between an absolute pulse coder and a incremental pulse coder deals in the memory retention of the position. Using a CNC control with an incremental pulse coder, you must reference the machine every time you turn the machine back on.

With an absolute pulse coder, there is a battery backed memory that retains the position of the machine tool when it powers down. When the CNC machine turns back on, it asks the encoder its position, and the encoder then responds back with its current position. If it is within tolerance of where it was when it shut down, the CNC will continue to run the program. However, if you lose the memory retention due to an encoder cable being unplugged, you will end up with the 300 level APC alarms. These alarms simply signify that the machine must be re-referenced. The re-referencing procedure is determined by the machine tool builder – consult your machine tool builder manual for the proper operation.

Siemens Simodrive Diagnostics and Troubleshooting

On the front of the Siemens Simodrive monitoring and NE modules there is a series of 6 LED lights that are used to diagnose issues with the drive. We have a diagram of the LED below along with the meaning of each light so that customers can properly diagnose their Siemens Simodrives.

Continue reading Siemens Simodrive Diagnostics and Troubleshooting

Modicon 140CPU65260: Beyond the User Manual / Firmware Information

Have a Modicon CPU down? Request a Quote on a Spare Today.

The Modicon Quantum 140CPU65260 is a Pentium Unity processor with 3072 kB of internal RAM and a clock frequency of 266 MHz. It has 2 local racks, and can have 6 optional modules: Ethernet, Modbus, Modbus Plus, Profibus DP, and Sy/Max. The module has 2 local signaling LEDs – 1 red for Ethernet collision and 1 green for Ethernet activity.

The 140CPU65260 firmware has a long history. The launch version was Unity Pro V2.0. Over time, 50+ changes have been made to a variety for firmware versions, correcting a number of bugs and issues. You should always update your module to the latest firmware revision. Firmware versions greater than V3.30 must be used with Copro version 5.8.

140CPU65260 firmware version V3.5 and all previous versions contain hardcoded backdoors that produce multiple vulnerabilities, allowing hackers (even remote ones) to view firmware, modify the module’s website, modify passwords, and download and run custom firmware.

Overall, the 140CPU65260 has a total of 4 communication ports. One Modbus (RS-232/RS-485), one Modbus Plus (RS-485), one USB, and one Ethernet. The CPU module requires a bus current of 2760 mA. This module also comes with a key switch. Its reference capacity for discrete (bits) is 62 kBytes and its reference capacity for registers (words) is also 64 kBytes. Its battery has a shelf life of 10 years and its service life is 12 mAh. The 140CPU65260 uses a 3V lithium battery.

The CPU module contains a number of built-in diagnostic capabilities. On powerup, it will check and diagnose any issues with RAM, RAM address, executive checksum, user logic, and the processor. While running, it will check all of these functions with the exception of the processor.

MRO Electric and Supply carries both new and refurbished Modicon 140CPU65260 Modules. For more information or to request a price quote, please email sales@mroelectric.com or call 800-691-8511.
140CPU65260
140CPU65260

 

A06B-6079-H208

FANUC A06B-6079-H208: Beyond the User Manual

The FANUC A06B-6079-H208 is a Servo Amplifier Module, SVM2-80/80. This module drives a servo motor of the 200V input series. It is a 2-Axis amplifier, and can be used with Type A or Type B interfaces. The module weighs approximately 7.0 Kg. Its external dimensions are 380 x 90 x 307 millimeters. It has a rated output current [Arms] of 18.7 and a nominal current limit [Ap] of 80.

One common alarm for the A06B-6079-H208 is Alarm 9. When this occurs, the M-Axis has an over current caused by a servo drive or motor fault. If you have an Alarm 9 with a dot, then that is an M-Axis IPM alarm, and you should replace or repair your A06B-6079-H208.

Below is the A06B-6079-H208 wiring diagram for ground cable connections:

A06B-6079-H208 Wiring Diagram
A06B-6079-H208 Wiring Diagram

The A06B-6079-H208 converts alternating current to direct current in the converter section, and exercises variable motor speed control by PWM control based on switching by the six transistors in the inverter section. Switching noise is generated by the 6 transistors turning off and on at high speeds. Each time a transistor turns on or off, noise current flows to ground through stray capacitance between the cable or motor and ground. The value of this noise current depends on the stray capacitance and transistor switching speed. The frequency band of the amplifier’s noise is about 30-40 MHz.

The presence of this noise means that cost-effective measures should be taken to reduce its level. Noise problems prevented prior to operation can help reduce costs over the lifetime of the installation. The following precautions should be taken when installing your A06B-6079-H208.
– Separate power lines and motor power lines from signal lines.
– Contain power lines and motor power lines in a metallic conduit.
– Perform appropriate grounding installation including grounding wire connections. This will also serve to prevent electrical shock due to leakage currents.
– Grounding wires should be as thick and as short as possible.

Noise can affect things like radio communication, refrigeration, telehones, fax machines, and essentially any electronics nearby.

MRO Electric stocks new and refurbished A06B-6079-H208 Servo Amplifiers. If you would like more information or to purchase a spare or replacement drive, please call 800-691-8511 or email sales@mroelectric.com.
A06B-6079-H208
A06B-6079-H208